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Summary

This work is focused on the development of constitutive models for elastoplastic-fracture
behaviour in scenarios characterised by large deformation ranging from laboratory to geolog-
ical length scale. Both seepage and geomechanical fields are considered, with the assumption
of isothermal field.

The standard Drucker-Prager model is enhanced by applying 7-plane correction factor,
and the use of hardening properties which depends on the evolution of effective plastic
strain. Non-associative potential plastic flow function is used to derive the plastic flow
vector. To ensure finite energy dissipation during softening, regularisation technique based
on fracture energy approach is adopted. The resulting modified Drucker-Prager model is
combined with rotating crack model (which relies on Rankine failure criterion) to develop an
elastoplastic-fracture framework by considering multi-step stress update procedures. The
advantage of multi-step stress update is that the framework allows the use of any elastoplastic
model without any major change in the code. Performance of this set of constitutive models is
assessed by studying several simulation examples, including bearing capacity of strip footing,
crack propagation in a specimen with pre-existing inclined fault, influence of size effect
on borehole instability, influence of pore pressure on thrust fault formation, and hydraulic
fracture due to fluid injection. Overall, the numerical results show good agreement with
available analytical solutions or experimental findings.

For basin-scale problem, SR4 model is used due to its capability to capture the evolution
of pre-consolidation pressure p., that is not considered in Drucker-Prager model. In this
case, the goal is to simulate basin-scale gravitational deformation in a prograding delta
due to fluid overpressure in shale layer with synkinematic sedimentation. With the aid of
adaptive remeshing algorithm, the result successfully produces distinct fault patterns across
the prograding delta in terms of plastic strain distribution. In particular, three different
zones are observed: extensional, transition, and compressional zone. The extensional zone
is characterised by basinward-dipping normal faults, whereas the compressional zone is
characterised by basinward-verging fore-thrust faults.

Overall, the simulation results illustrate the potential that the developed constitutive
models under the integrated flow-geomechanical modelling framework could offer to future

analysis of more complex geological evolution.
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Chapter 1
Introduction

Rocks are mainly categorised into three types: sedimentary, metamorphic, and igneous.
These rocks do not remain the same forever because of rock cycle. Rock cycle is driven
by the Earth internal heat engine, which is responsible for mantle convection as well as
hydrological cycle driven by the Sun. In other words, rock cycle is impossible without
sufficient heat from the planet core and liquid water (e.g. Moon).

Weathering, erosion,
transportation,
& deposition

The Rock

Sedimentary
rock

A
‘ Deeper burial,
Metamorphic

heat, and pressure
rock

Melting

Fig. 1.1 Schematic of rock cycle. Figure obtained from [63]

Rock cycle is summarised in Figure 1.1. At depth below the Earth surface where the
temperature is in the range of 800°C-1300°C, magma is completely in molten form. If the
magma is trapped within the crust and undergoes cooling process, it will be crystallised as
intrusive igneous rock. On other hand, if the magma is erupted onto the Earth surface, it will
be cooled relatively faster and crystallised as extrusive igneous rock. Any rock that is exposed

(e.g. via tectonic-related uplifting process) to the Earth surface are subjected to weathering
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process, which may come in the form of biological (e.g. rock disintegration by plants),
chemical (e.g. acidic rain), and physical (e.g. thermal stress caused by change in temperature)
processes. Weathered rocks are fragmented rocks that are typically transported by fluid
movement to surfaces at lower height, where they are eventually deposited. When more
new sediments are deposited in the same place, the buried sediments undergo compaction
and cementation, becoming sedimentary rocks. If these rocks are continuously buried to a
greater depth and subjected to intense heat and pressure, they will be transformed back to
metamorphic rock.

Despite the straightforward explanation provided by rock cycle concept, the compu-
tational modelling of each physical phenomenon is far from being straightforward. This
requires an integrated modelling framework that properly accounts for the coupling between
the reaction, transport and mechanical dynamic evolution of the geophysical rock formation.
Such a modelling framework relies on the computation of simultaneous evolution of a number
of different fields including: the state variables that describe the internal state of the rock
formation (i.e. the material state boundary surface), rock permeability, fluid properties, the
evolving rock texture and mineralogy, thermal conductivity, fault and fracture characteristics,
etc., to name a few.

In view of this, thermo-hydro-mechanical (THM) models have been applied in various
fields for different needs. In hydrocarbon industry, THM analysis is required to simulate
changes induced by reservoir production [33, 79, 78, 100, 35, 139, 154, 55, 113, 164, 107,
163]. Depleted reservoirs are re-utilised for CO, sequestration[145, 146]. THM models
are also frequently applied to simulations related to the storage of nuclear waste products
[32, 23, 127, 147].

THM analysis has also been extended to the modelling of sedimentary basin. Sedimentary
basin is defined as region that is subjected to prolonged crustal subsidence that provides space
for infilling by sediments. Over geological time, the sediments accumulate to considerable
thickness that varies across the globe (Figure 1.2). Some examples of sedimentary rocks
include sandstone, shale, siltstone, limestone and rock salt. In terms of geomechanical

modelling, the applications of THM analysis include

* General description of basin development [4]
* Porosity evolution in North Sea fields [161, 21, 22]

* Influence of compaction and diagenesis on overpressure development [150, 130, 178,
149, 74]

* Pore pressure generation via disequilibrium compaction [22, 174], via hydrocarbon

maturation [179, 82] and via aquathermal pressuring [104]



Fig. 1.2 Global distribution of sediment thickness. Figure obtained from [99]

* Simulations of sedimentation and large-strain consolidation in sedimentary basins
using constitutive relations for mechanical compaction and permeability change based

on experimental data for several clays compacted to high effective stress [80]
* Simulation of compaction in sedimentary basins [105]
* Basin modelling studies [5]

* Detailed description of the assumptions adopted in basin and petroleum systems
modelling [83]

* Overview of fluid flow including the influence of temperature [17]
* Basin scale heat flow analysis without deformation [4, 83]

¢ Crustal-like thermo-mechanical models [6, 25, 134, 137, 180]

* Probabilistic calibration of 1D heat flow [182]

In crustal-scale modelling, porous flow field is generally neglected so that a thermo-
mechanical (TM) analysis is performed. The sediments, in these simulations, are commonly
treated as being viscous non-Newtonian. However, in some cases, more complex models are
used, including multi-mechanism creep model for the lithosphere [137], combined viscous
and brittle deformation model for near surface sediment [136], and viscous models with

pressure-dependent stress potentials [29, 75].



4 Introduction

However, there are limited publications related to the numerical simulation of fault
initiation and propagation within sedimentary rocks in a prograding delta due to gravity
instability triggered by overpressured shale layer and synkinematic sedimentation. The
best example related to this geologic activity is Niger delta. Referring to Figure 1.3, Niger
delta can be divided into three main zones: extensional, transition, and compressional zones.
Extensional zone is characterised by basinward-dipping normal faults, whereas compressional

zone is characterised by basinward-verging fore-thrust faults.

Transitional N
Detachment Inner fold

<+— Outer fold and thrust belt Fold and
Zone thrust belt

Diapiric
Belt

E: ional Province ——#

g5

Oceanic Basement

Fig. 1.3 Niger delta tectonic structure. Figure obtained from [45]

In view of this geologic structure, sandbox modelling technique has been used by [124]
to produce excellent results, in which fault patterns as observed in the field are successfully
replicated. As shown in Figure 1.4, two distinct regions are evident in the final deformation
configuration. Extensional zone is characterised by normal faults, while compressional zone
is characterised by fore-thrust faults. However, for this specific case, analog model is usually
limited by the cohesive strength of sand material, which is insufficient to contain high fluid
pressure in the base layer. Therefore, the representation of overpressured shale layer in the
sandbox model may not be accurate.

e A——
P e e A ——

Fig. 1.4 Figures obtained from [124], showing the fault patterns obtained from sandbox
model
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As for numerical modelling, large-scale delta instability under shale tectonics in continen-
tal margin has been simulated by [89]. The authors take isostatic compensation into account
in the simulation of the delta progradation. The shale material is assumed to be Bingham
visco-plastic fluid once the yield stress is exceeded. That is, when the pore fluid pressure
is elevated close to the lithostatic pressure, shale starts to flow viscously. Although no
synkinematic sedimentation is taken into account', normal and fore-thrust faults are able to
be visualised in terms of horizontal strain rate. In addition, the distribution of Hubbert-Rubey
pore pressure ratio reflects very well the distribution of fore-thrust faults in the compressional

zone.

1.1 The Aim of the Thesis

The aim of the thesis is to develop a coupled geomechanical/flow-modelling framework
for the simulation of basin-scale evolution over geological time frames, with focus on
the elastoplastic-fracture constitutive modelling. The models are evaluated via a series
of numerical examples. Later in the penultimate chapter, the simulation result of large-
scale delta instability due to overpressured shale layer is presented. The author maintains
that faults should be visualised in terms of plastic strain, as opposed to strain rate. Using
the constitutive models in the developed computational framework, it will be shown that
synthetic basinward-dipping normal faults as well as basinward-verging fore-thrust faults
are successfully reproduced in terms of plastic strain in the extensional and compressional
regions, respectively. The final deformation configuration is the result of gravitational
instability triggered by overpressured shale layer, and of progradation due to synkinematic
sedimentation on the top surface, for which the slope angle gradually reduces. The latter is

an indication of weak basal strength.

1.2 Outline of the thesis

This thesis is organised as follows,

* Chapter 2. A brief overview of governing equation related to seepage and geome-
chanical fields is presented. For the seepage field, the governing equation (2.45) is
formulated by combining the mass balance equation of both fields. For geomechanical
fields, the governing equation (2.1) is simply derived from linear momentum balance

equation with the application of effective stress principle.

!, which essentially contributes to the increase of overpressure via disequilibrium compaction mechanism
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* Chapter 3. In this chapter, fundamental topics of nonlinear continuum mechanics are
briefly discussed as precursor of the formulation of weak-form governing equations
based on the principle of virtual power. Next, the equations are spatially discretised
using finite element method, and temporally discretised using explicit central difference
time integration scheme. Several numerical strategies are discussed, including lumped
mass matrix, artificial bulk viscosity damping, and averaged volumetric strain method.
Stress update procedure based on Green-Naghdi stress rate is derived by exploiting pull
back and push forward operations. Finally, undrained and fixed stress split schemes,
which allow seepage and geomechanical fields to be solved separately, are presented.
In the adopted split schemes, a single flow time step in the seepage field encapsulates

multiple fine time steps in the geomechanical field.

* Chapter 4. This chapter presents the elastoplastic-fracture constitutive models for
pressure-sensitive geomaterials. The yield functions for modified Drucker-Prager and
SR4 model are introduced, along with the corresponding non-associative potential plas-
tic flow functions, the hardening laws, and the return-mapping algorithm. Both models
are incorporated with 7-plane correction factor. The techniques of regularisation of
plastic state variables are also discussed. Next, rotating crack model based on Rankine
failure criterion and its implementation with elastoplastic models are introduced. Using
Drucker-Prager model as an example, possible coupling between cohesion and tensile
strength is explored via power law formulation. Finally, various single-element tests
are performed. Using modified Drucker-Prager model, the first test is to validate that
the stress path does not cross the yield surface into the realm of inadmissible stress
state. The second test is to validate the material response under conventional triaxial
compression (CTC) and triaxial extension (TXE) conditions using SR4 model. The
third test is to obtain correct stress-strain response for a elastoplastic-fracture model

with the consideration of coupled cohesion-tensile strength.

* Chapter 5. Numerical examples of laboratory-scale test simulation are presented using
the developed elastoplastic-fracture framework. In this chapter, only the modified
Drucker-Prager model is used. (1) Bearing capacity of strip footing is predicted and
compared against analytical solution to verify the accuracy of numerical solutions. (2)
Crack propagation and coalescence are simulated using specimen with pre-existing
inclined fault. Both quasi-brittle and relatively soft materials are simulated. Secondary
crack, that is of shear origin, is successfully reproduced in specimen with two inclined
fault. Good agreement is observed between numerical and experimental findings.

(3) Next, the influence of size effect on borehole instability is simulated to validate
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that regularisation algorithm is successfully implemented. In particular, the collapse
pressure of larger specimen is predicted to be lower than that of smaller specimen.
(4) Uniaxial consolidation and sedimentation of soil column are analysed in separate
simulation tests and compared against available analytical solutions. (5) The complex-
ity of hydromechanical simulation test is elevated by analysing the influence of pore
pressure on thrust fault formation. This test involves frequent adaptive remeshing due
to the formation of strain localisation that depends on the level of pore pressure in
the base layer. (6) Finally, the entire elastoplastic-fracture framework coupled with
pore pressure field is put into test by simulating hydraulic fracture induced by fluid

injection.

* Chapter 6. This goal of this chapter is to simulate basin-scale gravitational deformation
in a prograding delta due to fluid overpressure in shale layer with synkinematic
sedimentation. SR4 elastoplastic model is used in this chapter to take into account
the important influence of preconsolidation pressure p.. With the aid of adaptive
remeshing algorithm, the result successfully produces distinct fault patterns across the
prograding delta in terms of plastic strain distribution. In particular, three different
zones are observed: extensional, transition, and compressional zone. The extensional
zone is characterised by basinward-dipping normal faults, whereas the compressional
zone is characterised by basinward-verging fore-thrust faults.

* Chapter 7. This chapter concludes the thesis with a summary of contributions and
important results obtained during the course of this work. Some suggestions for further
research work is also included.






Chapter 2

Review of Flow-Geomechanical
Governing Equations

2.1 Introduction

In this chapter, a brief overview of governing equations that cover both porous flow and
geomechanical fields is presented. The condition of pore fluid within porous media is assumed
to be incompressible, fully saturated, single-phased flow under isothermal equilibrium
condition. It is noted hereby that the derivation of mass balance equations is based on the

summary provided by [111].

2.2 Linear Momentum Equation

In geomechanical field, the linear momentum balance equation for solid phase within porous

media is given by

V- (6'—aps) +((1—n)ps+nps)b=pa, (2.1)
Total stre;srtensor, c Bulk dg?lsity, P

where 6 is effective stress tensor, o is Biot’s coefficient, p ¢ 1s pore fluid pressure, n is
porosity, py is density of solid phase, py is density of fluid phase, b is body force per unit
deformed volume, a = it is acceleration field of solid phase, and u is displacement field.
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Biot’s coefficient o, which controls the proportion of fluid pressure to resist confining
pressure, is given by
K/
a=1—— 2.2
I 2:2)
where K’ is the drained bulk modulus and Kj is the solid phase bulk modulus.

The lower bound of « is obtained by having K’ = K;. This is when the porosity n =0,
resulting in o = 0. The upper bound of « is obtained when the porosity n reaches a critical
value, beyond which the material particles start to fluidize. In this case, K’ = 0, resulting in
a = 1. In view of this, an empirical porosity-dependent model of Biot’s coefficient is given
by [150]

n
an) = ————-: 23

(n) n+a(ng—n)’ 2.3)

where ng is the porosity during deposition, and parameter a is an empirically determined

material constant.

Biot's Coefficient a

1.0}
08l
0.6}
04}

0.2+

: : : : — Porosity n
0.1 0.2 0.3 0.4 0.5

— a=0.1 a=0.25 a=0.5 — a=1.0

Fig. 2.1 Biot’s coefficient as function of porosity, whose curve is controlled by parameter a

2.3 Mass Balance Equation

Mass balance equations for fluid field and solid field are derived and combined to capture
the contribution of volumetric strain from geomechanical field to the evolution of pore fluid
pressure in fluid field as well as to update the stress states in geomechanical field using the
converged solution of pore fluid pressure in fluid field.

Before proceeding to the derivation of mass balance equation, it is stated hereby that

throughout the simulations in the current study, it is assumed that fluid flow within porous
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medium obeys Darcy’s law, which is defined by

K
=2 (Vpr—prg). 2.4
q “f( pr—pr8) (2.4)

where ¢q is Darcy flow velocity vector, K is hydraulic permeability tensor, and piy is fluid
viscosity.

In general, the deformation of porous medium and the evolution of pore fluid pressure
are concurrent, and therefore the calculation of Darcy flow velocity should be proportional to

the difference between fluid velocity vector vy and solid particle velocity vector v, such that

g=n(vi—vy). (2.5)

2.3.1 Fluid Phase Mass Balance Equation

Based on the principle of mass conservation, the fluid continuity equation is given by

d (npy)
ot

+V- (nprf) =0. (2.6)

In the following derivations, it is intended to introduce the py — p constitutive relation
into the fluid continuity equation via fluid compressibility coefficient 87, which is given by

1 JV
Br=— 2 2.7)

Vf ap f lisothermal

Now, consider the mass conservation of fluid expressed in difference form

proVio = psVr = (Pro+Aps) (Vo +AVy)
R pf()Vf() + pf()AVf + VfoApf, (2.8)

where Vi is the fluid volume.
Via rearrangement, we obtain
AVf . Ap f

= —— 2.9
Vro Pro (29)
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In the limit of small perturbation', we may express the above relation as

% = _% (2.10)
Vy Pr
or in time rate form,

Vf ot - pf ot

On the other hand, the fluid compressibility equation (2.7) can be rearranged into time

rate form as

1 an —ﬁ apf

2.12
Vf ot ( )
which leads us to forming the following p s — py constitutive relation
ap ap
atf = prBr f. (2.13)
Now, the fluid continuity equation is further expanded?®
& P 9pPf dan
V. 0. 2.14
N+ Pro-+ PV (nvy) = (2.14)
By using (2.13), the continuity equation is now expressed as
d d
nBy S+ 54V (nvy) =0, (2.15)

!'The transformation is achieved by expressing In(x) using Taylor’s expansion series in the vicinity of
X = XQ-

In(x)

0
In(xp 4+ Ax) = In(xp) + Ax 3 + higher order terms
x

X=X(

Ax
= In(xp + Ax) — In(xp) ~ —
0

xo+Axdx Ax
- [T
X0

The fluid density is assumed to be independent of spatial variation.
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The term V - (nvf) may be alternatively re-expressed by including the solid particle

velocity vector

V. (nvp) =V (n(vy—v5))+V-(nvy)

(2.16)
=V-q+V-(nvy),

so that we can now include, in the following fluid continuity equation, the contribution of
solid deformation on the evolution of pore fluid pressure p s via the term V - (nvy), which will
be derived later

apf on .
nﬁf7+E+V~q+V-(nvs)—0. (2.17)

2.3.2 Solid Phase Mass Balance Equation

Similar to the fluid continuity equation, the mass balance equation of solid phase of a porous
medium is expressed by

d((1—n)ps)

5 + V- ((1—n) psvs) =0. (2.18)

In a similar fashion to the fluid field, in the following derivations, it is intended to
introduce the constitutive relation between solid density pg and pore fluid pressure p ¢ as well
as the mean stress p via solid compressibility coefficient Cy. Now, consider a solid specimen

undergoing two stages of compressive loading:
e Stage 1: Increase of confining pressure = increase in pore fluid pressure (Apconr = Apy)

* Stage 2: Increase of confining pressure = increase in effective stress (Apeonr = —Ap/,

since the convention of compression-negative is applied to p’)
Recall the definition of unjacketed compressibility Cy

1 A
Co=——= Y , (2.19)

Vv Ap conf | p,=constant

where V is bulk volume and py is differential pressure. The current goal is formulate the
volume change of solid phase AV; in response to differential pore fluid pressure Ap; and
mean stress Ap.

In Stage 1, as the confining pressure increases, the bulk volume decreases. Since the

relation Ap.o,r = Apy holds in this stage, the corresponding bulk compressibility is simply
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expressed by

1 AV
c—_ Lavi (2.20)
4 Apf Ap'=0

which yields the bulk volume change for Stage 1 as

AV
+ =Gy 2.21)

In addition, as pc,,r increases, the pore volume V), should decrease with the bulk volume
V, despite Apy > 0 since Ap’ = 0. It follows that a pore compressibility can be defined

1 AV,
Cop=———2L : (2.22)
Vo Apy Ap'=0

which yields the pore volume change for Stage 1 as

AV,
V—” = —CyApy. (2.23)
p

The total volume change of solid phase AV; in Stage 1 may now be expressed as

AV, AV AV,

Vi VoV
AV AV,
(1 —n)V V- Vp
AV (2.24)
(7) p/” Vp

N BT

By substitution of (2.21) and (2.23), the volume change of solid phase due to the loading

as prescribed in Stage 1 is given by

AV
Vs

_ —GApy+nCyApy
N 1—n '

(2.25)
Stage 1

In Stage 2, as the confining pressure increases, the bulk volume also decreases. Since the

relation Apeons = —Ap' holds in this stage, the corresponding solid phase compressibility is
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simply expressed by
1 AV, 1 AV,
Ci=—— § :__j, (2.26)
Vs Apcon f Vs Ap
which yields
AV
=C,Ap'. (2.27)
Vs

The effective mean stress is expressed in a volume-averaged fashion [120], such that

(1—-n)p' = p+py, (2.28)

where the total mean stress p is simply linked to the confining pressure via p = — pco, that
is transferred to the solid phase in the presence of pore fluid pressure p at a volume fraction
1 —n . The difference form of (2.28) is then

_ Ap+Apy
1—n

Ap (2.29)

By substitution of the above equation into (2.27), the volume change of solid phase due

to the loading as prescribed in Stage 2 is then given by

AV, CAp +CiA
sl St CApy (2.30)
Vs Stage 2 1—n
Finally, the net volume change of solid phase is computed simply by
AV, _ AV AV _ CsAp + an)Apf. 2.31)
Vs Vs Stage 1 Vs Stage 2 I—n

In the limit of small perturbation and in time rate form, (2.31) is expressed in differential
form as

19V, 1 dp dpy
Vo —im <C‘§+”C¢7 - (232
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Now, consider the mass conservation of solid phase expressed in difference form as done

for pore fluid field

PsOVsO - ps (PsO + Aps) ( 50+ AV, )
~ pSOVSO + psOAVs + VSOAps- (233)

Via rearrangement and in the limit of small perturbation, we obtain

Ny _ 9P (2.34)
Vs Ps
or in time rate form,
1 9V 1 dp;
VS 3 _—E TR (2.35)

By comparing equation above and (2.32) we can immediately form the following equation

odps _ ps [ ~9p . 9ps
- = l—n( Cys = 1Co . (2.36)

Now, the continuity equation for solid field is further expanded?

d aps
PG+ (1=m 4 p V(1 =n)v) =0
ot ot (2.37)
2 (1 =m P vy - (nvy) |
Ps o1 o1 Ps s = PsV - (nvy).
By substitution of (2.36) into the above equation, we arrive at

on ap ops

= — Vv, =V. . .
35 + ( Ci— 3, —nCyp—=- 5 > +V -y (nvy) (2.38)

2.3.3 Combined Mass Balance Equation

By comparing the term V - (nv,) in equation above (solid phase mass balance equation) with
that of (2.17) (fluid mass balance equation)
dpr OJn
nBs !

—‘f‘a——i—v q+V-(nvg) =0,

3The term Vp; is not accounted for. More descriptions are given in the rigorous derivation by [100], p/g 22
beginning from Equation 2.56.
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we may now re-express the solid-fluid continuity equations further as

dps Jn on dp ops B
"B 5 +§+V'q—§+(‘cﬂ‘” o )TV =0 239
op ) '
V-vs+n(ﬁf—c¢)a—f—cs—a’;:—V-q.

The total mean stress p can be expressed in terms of unjacketed compressibility coefficient

C; and Biot’s constant

p=p —aps
= oy (2.40)
_1—058 o
= C, v Pfs

since @ = 1 — % with C as the drained compressibility (solid skeleton compressibility). It
then follows that

ap de, Ips
— =(1- — —. 2.41
Csat ( O‘)az A 241)
By substitution of the term CS%—‘? into (2.39),
0 de d
Vove+n(Br—Co) 2L (1-a) V+acs%:—v-q, (2.42)

ot ot

from which we can simplify to obtain the governing equation for pore fluid and solid fields:

J
oV v+ (n (B —Co) +0C) =L = —V-q. (2.43)

N

Storativity term, S

For homogeneous porous media, we have Cy = C;. The storativity term § is then
simplified as
n  a—n

S = —-nC. = —
l’lﬁf—F((x I’l) N Kf+ Ks 9

(2.44)

where K and Kj are the stiffness of fluid and solid grain, respectively. By assuming Darcy’s

de
8_tv’ the form of (2.43) is then further

law for pore fluid flow (2.4) and recognising V - vy =
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Rock Type So(10%)

P 4q

Sandstone 1 5 2
Pure Chalk 250 3 2
Kaolinite 4800 3 2
Mud 69000 3 2

Table 2.1 Material constants for modified form of Kozeny-Carmen model (2.46)

simplified as

e, n oa—n)\dps K
oSG+ 5 ) TV (G Cree) e

which is similar to [100]’s version by assuming incompressible, single-phased flow fully

saturated in porous medium under isothermal equilibrium condition.

2.4 Hydraulic Permeability

The discharge of pore fluid is largely driven by the change of porosity, which has direct
influence on the hydraulic permeability. A empirical model based on Kozeny-Carmen
relationship [150], which relates permeability with porosity using the analogy of an array of
regular spheres, is expressed by
k= koﬁ, where ko = S%). (2.46)
where k is hydraulic permeability (m?) and ko is the reference permeablity. This model
includes the effect of specific surface of rock matrix Sq [m?/m?], and some material constants
A, p,q:
Typical value of A is 0.2, and the material constants are provided in Table 2.1. Another
variant of empirical Kozeny-Carmen model is given by [165], who defined a multi-stage

relationship between permeability and porostiy

20n°
m < 0.1
k= 0 3 (2.47)
0.2n
,n>0.1

S3(1—n)? -
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Sandstone Siltsone Shale
Porosity | log mD | Porosity | log mD | Porosity | log mD
0.01 -1.8 0.01 -8.52 0.01 -6.28
0.25 3.00 0.25 -3.00 0.25 -1.00
0.41 4.33 0.70 -1.00 0.55 0.71

Table 2.2 Piecewise-linear porosity-permeability (log mD) data for sandstone, siltstone, and
shale [83]

In the case of low porosity, the rapid decrease in permeability is attributable to the finding
[165] that some pore throats are effectively closed, leading to reduced connectivity of pore
network. On the other hand, [83] suggested plotting the log permeability* (logmD) versus
porosity in a piecewise linear manner. A sample properties for typical sandstone and shale as
well as organic-lean siltstone are shown in Table 2.2.

For the case of hydraulic fracturing, it is found that [70] the enhancement of permeability
as a result of micro-cracking is generally significant. A model related to such permeability

augmentation was proposed by a review paper [110]

k=ko(n—nc)?, (2.48)
where kg refers to the characteristic permeability as n —n, = 0.01, p ~ 3.8+ 0.4 is an em-
pirical parameter, and 7. is the fluid flow percolation threshold, below which no connected
fracture network should exist. The review shows that, using the relation above, the perme-
ability increase could reach six orders of magnitude higher in response to a 4% porosity
increase.

Another permeability augmentation model for hydraulic fracturing is given by [83], where
the permeability is function of pore fluid pressure p; and fracturing pressure p .. Similar
to the concept of tensile strength, fracturing pressure represents the level of excess pressure
at which hydraulic fracture occurs. The value of py ., varies according to burial depth and
lithology of the geomaterials. Expressed in terms of logarithm, the fracture permeability is
given by

Pf—DPfer

logks =logk+As Py
Cr

(2.49)

where k and k are, respectively, intact and fracture permeabilities, and A, is a material
constant. It is given [83] that the value of A, for clastic rocks is typically 3logmD = 103mD.

“4The use of log permeability is demonstrated in [83]. In general, a log mD = 10¢ mD
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2.5 Fluid Diffusion Time Scale

In compaction-dominant evolution (e.g. deltaic progradation), fluid overpressure may arise
locally depending on the hydraulic permeability of the surrounding geomaterials. In the
context of hydrocarbon industry, for instance, this phenomenon may be important as high
overpressure normally triggers hydraulic fracturing, which in turn defines new migration
paths for the fluid as a means to relieve the overpressure. Therefore, in the context of
geomechanical modelling, the time scale associated with fluid diffusion #; is often compared
with the time scale related to solid deformation® 7,. If z; >> t,, the condition tends to be
undrained, whereas if ¢, > t;, the condition tends to be drained.

The time scale for fluid diffusion can be derived by normalising the mass balance equation.
In the followings, the choice of reference parameters are similar to that of [120]. To recap,

the mass balance equation is given by

de, apf _ K
(04 P +SW =V. (,Ll_f (fo_pfg)) )

a_
whereS:l+ n.
Ky K

Now, by letting the following dimensionless parameters be defined as

= - (2.50)
1
x' = 7* (2.51)
S* = SLgAp (2.52)
x pr
=2 2.53
Dy LeAp ( )
K-k (2.54)
ko
L 1
g =-g (2.55)
8
«_ Mf
pi=H (2.56)
Uro
PF = iy (2.57)

where 7, is solid deformation time scale, L is characteristic length, Ap is the difference

between solid density p, and fluid density py, ko is reference hydraulic permeability, Lz is

>This subscript e here means “event’. In the current context, it means any geological event (such as lateral
compression) that generates overpressure so that fluid diffusion can occur.
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the reference fluid viscosity, and g is simply gravity constant, we may obtain the following
dimensionless form of mass balance equation

gaeeraP} _fey. K*
S*dr*  drr 1y

— (Vrj —p;?g*)) : (2.58)
My

where

_ S*upl  SLPup

ty = = (2.59)
‘™ koApgo ko

It is clear from the above equation that, the diffusion time scale #; increases with 1 /ko,

which is expected; low hydraulic permeability increases the fluid diffusion time. Furthermore,
t,

if t; > t, such that t_e ~ 0, the right side of (2.58) will be rendered zero, signifying undrained

d
condition as the fluid diffusion rate is virtually zero.






Chapter 3

Computational Strategies for Coupling
Geomechanics with Fluid Flow

3.1 Kinematics and Geometry Descriptions

This section briefly discusses some of the fundamental ingredients originating from the
literature of nonlinear continuum mechanics (e.g. [54]) that are important for the development

of finite element formulations in the later sections.

3.1.1 Motion as Configuration Mapping

Consider a three-dimensional Euclidean & space containing an open region  with a regular
boundary dQ occupied by a body 4 that undergoes deformation over a time interval [,,,,+1],
causing each material particle of the body to be re-positioned from a reference configuration
to a deformed configuration. The motion of the material particles is assumed to be captured

by a smooth, injective and orientation-preserving configuration mapping function, defined by
0:Q—&. (3.1)

Using the configuration mapping function, the position vectors of each material particle

X in reference configuration are mapped uniquely into a deformed configuration of & via

x=0(X,1). (3.2)
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3.1.2 Deformation Gradient

The stretching process of a deformable body causes the change in the relative distance
between any given points; that is the distance |AX| in a reference configuration has changed
into |Ax| in a deformed configuration. In another word, rigid body motion can take place
when |Ax| = |AX|, indicating the body is either stationary, or has rotated about any axis
without being stretched.

In relation to the description above, a deformation gradient F is introduced and defined
as a two-point push-forward second order tensor that transforms infinitesimal material fibres

dX into a deformed configuration dx, such that
dx =FdX. (3.3)

In terms of displacement vector u, deformation gradient can be alternatively expressed by

~Jdo(X,1)

F=———"=I+V 4

where Vy is the material gradient operator.

3.1.3 Velocity Gradient and Rate of Deformation Gradient

The rate of deformation gradient is given by

. d (de\ d (Jde\ Jdv Jdvde
F‘E(ﬁ)‘ﬁ(?)—ﬁ_ﬁﬁ—m’ (3:3)

which leads us to define the following spatial velocity gradient
I1=V,w=FF', (3.6)

where Vy is the spatial gradient operator. The spatial velocity gradient can also be decom-

posed into its symmetric and skew-symmetric component tensors
1 1
L=5 (141745 (1-17)
2 2 (3.7)
=d+w,

where d is the symmetric rate of deformation tensor and w is the skew-symmetric spin tensor.
The objectivity of d can be demonstrated in the following. Consider an element vector

dX in a reference configuration that is stretched to dx and rotated to dX via an orthogonal
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tensor @, so that we can express

dx = Qdx
= QFdX (3.8)
= FdX,

where F is an effective deformation gradient. Then, using (3.6),

(QF)(QF)‘I

L(QF) (F ~'o") (3.9)
Q IQT+QFF_1QT
= 00" +0IQ".

Accordingly, the transpose of I is simply given by
— 00" +0I"Q". (3.10)

Finally, the objectivity of d can be demonstrated as follows

~ 1 /5 T

d:§<l+l > (3.11)
—Q( (1+1T))QT+%(QQT+QQT> (3.12)
_0d0” + 12 (00"
= QdQ +57 (0Q"). (3.13)

Due to the orthogonality of Q, the term - (QQT) = dtI 0 vanishes, leaving only

d=0d4dQ". (3.14)

3.2 Weighted Residual Formulation

3.2.1 Strong Formulation

The behaviour of solid and fluid phases within a given continuum body % with boundary

0% inside a three-dimensional Euclidean space R is described by the set of the governing
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equations (2.1,2.45).

V.-6+pb—pa=0;

0
(XV-vs—I—S%+V-q:0,

a—n

where 6 =6’ —oapsl, p = (1 —n)ps+nps, S = (Kif + % ) and g = ﬂéf (=Vps+psg).
The absence of fluid acceleration term in the Darcy flow equation is justified by the

assumption [100] where the geomechanical problems in the current study are of transient
quasi-static type; dynamic problems associated with high frequency is beyond the scope of
the current study.

On the boundary d% of the same continuum body %, the parts I'p; and I'p ¢ are
subjected to Dirichlet boundary conditions, respectively, in solid and fluid fields, whereas the
parts I'y s and I'y r are subjected to Neumann boundary conditions, respectively, in solid and
fluid fields. The conditions to be satisfied are that

I'psNIys=9; Ip,Ul'ns= d% (Solid field); (3.15)
FD’f ﬂFN’f =, FDJ UFNJ =0% (Fluid field). (3.16)

Then, the boundary and initial conditions for the governing equations are

u=uonlp,xt (3.17)
c-n=tftonly,xt (3.18)
pr=pronlp Xt (3.19)
prg-n=Q0ronTysxt; (3.20)
Uu=1um
} within % and/or on 0%, (3.21)
Pf=DLf0

where it,f, p¢ and Qf are, respectively, the prescribed displacement, traction, pore fluid
pressure, and fluid mass flux (SI unit = [kg m~2s7']) on the boundary d.% over an interval of
time t = [0,7] C R, whereas ug and p s are the initial values of displacement and pore fluid
pressure applied within the body 2 and/or the boundary 0% at time ¢ = 0. The prescribed
fluid mass flux Q 1 1s defined as the Darcy flow velocity projected in parallel with the unit

normal vector n multiplied by the fluid density py.
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3.2.2 Weak Formulation

In the following, the weak formulation of the set of governing equations is constructed based
on the principle of virtual power. We define, as two separate arbitrary differentiable vector
fields, the kinematically admissible virtual displacement variation (Ou) and virtual pressure
variation (6 py) that independently allow arbitrarily tiny changes in the displacement and
pore fluid pressure within a deformable body, while satisfying displacement and pore fluid
pressure boundary conditions, such that Su =0 onI'p and dps =0 on I'p s. It then follows
that the time rate of virtual displacement variation is termed as virtual velocity variation ov.

In the following, virtual velocity variation 6v and virtual pressure variation §py are
applied, respectively, to the linear momentum and mass balance equations to form virtual

work rate W, and 6W,. For linear momentum equations,
SW, :/ (V-G +pb— pii)- Svdv
Q

(3.22)
:/(V-G)~5vdv—|—/pb-5vdv—/pil-5vdv:0.
Q Q Q

By using chain rule and Divergence theorem, the term [, (V- &) - dvdv is further expanded
as

/ (V.G)-Svdv = / V. (G6v)dv— / G : ViSvdv
Q Q Q

(3.23)
= i-6vda—/ o :0ldv,
oQ Q
and so we may express W, as
SW, — / i-5vda—/ o 61dv+/ pb- 6va’v—/ pi- Svdv = 0. (3.24)
oQ Q Q Q
As for the mass balance equation,
0
oW, = / (OCV-VS—FS%—FV-q) oprdv
Q (3.25)

P
:/ a(v.vs)spfdv+/sﬂ5pfdv+/ (V-q)8psdv=0.
o ' o Ot Q
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Similarly, by using chain rule and Divergence theorem, the term [, (V- gq) § psdv can be

further expanded into

/(V-q)Spfdv:/V-(Spfq)dv—/q-VSpfdv
Q Q Q
— 5-‘-d—/ V&psd
/QQ Pyq-nda Qq prav (3.26)

Or
[ s —d—/ VS pdv,
/agpfpfa o1 VOPraY

so that we may express

apf Qf
— V. s = da— .V —0.
oW, /a( vs)5pfdv+/Sat 5pfdv+/a opr fda /q oprdv=0
(3.27)

3.3 Finite Element Discretisation

3.3.1 Shape Function and Matrix Notation

Let Nl.(e) (x) be a shape function of a generic finite element e located at node i, whose
coordinate is x'. Then, the piecewise interpolation function of a generic field f defined over

a finite element domain ¢ is expressed by

f(x)

Npode .
Y NG (), (3.28)
i=1

where 71,4, is the number of nodes per element, and f' is the approximate value of f at x'.

Now, if the generic field f is defined over a whole domain Q = {Q°!,...,Q¢}, where
ey, 1s the total number of discrete non-overlapping elements in the domain €, its piecewise
interpolation function is expressed by

Npoin

fx)=Y FINE(x), (3.29)
i=1

where n,,;, is the sum of nodes within the discretised domain, and Nig (x) is the global shape

function, which in matrix form, is expressed as global interpolation matrix [54]

Né(x) = [diag[N§(x)]  diagINS ()] - diag[V$ | ()], (3.30)

Npoin
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where diag[N? (x)] is given as a diagonal matrix whose size is the number of spatial dimen-

sions
NSO - 0
. 0 N - 0
diag[N?] = _ (3.31)
O 0 -..- NS

1

On the other hand, the discretisation of strain, for instance, will involve the derivative of
shape function. In conjunction with this need, a global gradient operator B¢ in matrix form is

given as follows.
For three dimensional problems,

Nf, 0 0 NS, 0 0 - NS0
0 Nfz 0 0 Nzg.,2 0o - 0 prom’z 0
g_| 0 © Nf; 0 0 Nf; - 0 0 N .3 a3
Nip NMip 0 Njp Njp 0 o Ny oo Npo 0
0 Nig,3 Nf,z 0 N§,3 Niz 0 N;fpomﬁ prainQ
_Nf3 0 Nig,l Nzg,s 0 Nzg,l Nf,,{,mﬁ 0 proinvl_
For plane strain and plane stress problems,
Nig,l 0 Nég,l U Nspoiml 0
BE=|0 N, 0 N, -~ 0 N . (3.33)
Niy NPy Nip Nypoooo Nyoo No

For operation involving the trace of a tensor, a trace operator vector is introduced. For

three dimensional problems,
m={1,1,1,0,0,0}7, (3.34)
whereas for plane strain and plane stress problems,

m={1,1,0}". (3.35)
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As for the stress and strain tensors, its equivalent vector form is arranged using Voigt’s
notation. For three dimensional problems,

T.
6 ={011,02,033,012,023,031 } " ; (3.36)

€ = {e11, €0, 833,212,263, 2831} . (3.37)
For plane strain and plane stress problems!,

o ={011,00,012}"; (3.38)

£ ={en,en,2en}’. (3.39)

3.3.2 Global Discretisation of Rate of Virtual Work

Using the global shape function N¢ and global gradient operator B¥, the rates of virtual work
O0W; and 6W, are discretised as follows. In particular, N5 and N¢§, are applied, respectively,
for solid and fluid fields. For 6W;,

SWI:/ i-6vda—/ O':SIdv—l—/pb-ﬁvdv—/pu'-évdv
oQ Q Q Q

_ / 7. NSSvda— / " BS Svdv + / pb-NEGHdy — / p (N%i)T - NSSwdy

oQ Q Q Q
T
_ ( / (N&) Fda— / (B odv + / (N&)T pbdvy — / (N§)TN§p{adv> 5% = 0.
oQ Q Q Q
(3.40)

The total stress representation is further expanded as

A}B%Tadv:iégBﬂT(G“—&mN%ﬁﬁdv .
— [ BT odv— [ (BT amNpdv |

By substitution and utilising the arbitrariness of the value of v, we formulate the
following from W, =0

M%+/@W€m—wm:§, (3.42)
Q

633 is solved separately in plane strain as function of 671 and 0,7, whereas €33 is solved separately in plane
stress as function of €] and &,.
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where
ME — / (N&)TNE((1— n)ps +npy)dv; (3.43)
Q
0 — / (B*)T amN&dv; (3.44)
Q
fi= [ e)THda [ (N ((1=mp.+npy )b (3.45)
Q Q '
For 0W,, because the expressions are much longer, the derivation is done separately as
follows
W, = / o (V- vy) 5pfdv+/ S%Spfdv—i—/ 5pfgda—/ q-Vpsdv=0.
Q o OJt 20 pr o
~~ 7N ~~ —_—— e —
A B C D
(3.46)
Part A:
Logarithmic form of the solid volumetric strain is implicitly assumed
JdE dV,
V.ov, = a—;, where de, = 7: (3.47)

and so in matrix form,

/a(v.v)ap dv = /aaéngdv 5p, — /(Ng)TocaéVdv Csp,. (349)
Q § S Q at p S Q p at I
Part B:

In matrix form,

apy r Ipy g o\ T A2 _
L) 5”f"v‘</gs(7) Ny W O

(3.49)
opy T
( A (N;)TSN;;a—tdv) 5p;.

Part C:
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In matrix form,

Or Oy ) i}
=l = / =2 N8da ) o
/ag Py pf ‘= < 2Q Py paa | OPs

o T (3.50)
= N$)T=Lg ) 5p;.
([ 5 %aa) op,
Part D:
Darcy’s law is assumed for g, and so the matrix form is expanded as
/q-VSpfdv:/ £(—fo—i—pfg)-V6pfdv
Q : Q Uy
K K
:—/ —fo-VSpfdv—l—/ —pfg-V5pfdv
Q Uy
K (3.51)
— (- VNS)T B VNS dy + / 2 VNgdv)6
( /Q uf( 5) by Pr8 Py
K r K r
= (- | (VN8)T—(VN$)p dv+/ (VN8)T— dv) 5p
(= foms) - omg)a, L) oy
Combining all the contributions, we obtain
dE ap
5W2:(/(Ng)T gvd +/ Ng TSNg pfd _|_/ Ng TQfda
Pr (3.52)

K T
T - T -

Then, by utilising the arbitrariness of the value of 6 p r» we formulate the following from
oW, =0

pys
Hépp+8*— "~ +Ag —fp, (3.53)
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where

K
Hg:/ VNE)T 2 (VNS )dv:
[N Ny
_ e\T 5
s = [ (N5)TSN5av:
_ T .
A8 — /Q (NS)T v

K
= | (VN8)T —prgd —/
fp /Q( p) “fpfg v P

(3.54)

(N;;)T%da.
Q Pr

3.3.3 Element-Level Representation

In finite element algorithms, computation of global solution as function of global internal
and external forces are based on the assembly of the corresponding forces from element level.
In the following, linear momentum and mass balance equations in terms of shape functions

at element level are shown.

Linear Momentum Equation

Miz+/ B'c'dv—0p;=f., (3.55)
Q
where
M= /Q NTN,((1=n)ps+npy)dv; (3.56)
0— / BT amN ,dv; (3.57)
Q
£ = /a NTida + / NT((1—n)py +npy)bdv. (3.58)
Q Q
Mass Balance Equation
_ Jp oE
pr+sa—tf +A= =], (3.59)
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where
H—/(VN )T—(VN )dv;
Q P Ky P ’

= / (N,)TSN pdv;
Q

(3.60)
A:/Q(Np)Tocdv;

K Oy
— [(VN)T 25 0d —/ N4 da.
o /Q( ») “fpfg v aQ( ») o a

3.4 Numerical Simplification and Strategies

3.4.1 Lumped Mass Matrix

The linear momentum equation is solved explicitly in time to obtain the solution of displace-
ment field #. As will be shown later, an explicit time integration will require the inverse of
consistent mass matrix M for each update. In view of this, nodal lumping method? is used
to reduce the incurred computational cost by replacing the consistent mass matrix with a

diagonal lumped mass matrix. At element level, the lumped mass matrix is given by

M=

diag[1]((1 —n)ps+npy)dv, (3.61)

Q Npode

where diag[1] is a 1,04, X Nyoqe diagonal matrix defined as

1 0 -0
01 --0

diag[1] = _ . (3.62)
00 -1

3.4.2 Ciritical Time Step

The geomechanical problems to be solved in the current study is of quasi-static type. There-
fore, if the inertia effect is negligible, the acoustic stress wave of speed c is less likely to
travel beyond the domain bounded by the element characteristic length /¢ in a single time
step, as compared with highly dynamic cases. This then gives us the opportunity to reduce

the computational cost by artificially increasing the critical time step Az, via mass scaling

Zguitable for linear elements [97]



3.4 Numerical Simplification and Strategies 35

constant f,4ss, such that

e le e

= Min —/T =V Smass | Min z )
,ﬁnassp \/;

where E is the Young’s modulus. The expression of c is estimated using one dimensional

At., = Min

(3.63)

approach. This idealization is compensated by introducing a critical time step factor f,i,
so that the effective critical time step size is given by f.,iAt... In the default settings of
ParaGeo, f.,i; = 0.9 is used for two dimensional problems, and f,,; = 0.7 is used for three
dimensional problems.

However, in order to simulate quasi-static condition, the effect of applied traction, for
instance, should propagate quickly throughout the domain. This can be achieved by increasing
the natural frequency of the system, which is equivalent to increasing the acoustic stress
wave speed c. As a result, in order to simulate quasi-static condition, the critical time step
At., needs to be reduced.

In the implementation, a target time step At is specified by the user, along with an
initial mass scaling constant such that f,,,,5s < 1. The solution mass of all elements will be
reduced accordingly. This will create variable element critical time steps as the characteristic
element length generally varies across the domain.

For elements whose effective critical time Step fijAtcrir > Atiqrg, higher acoustic stress
wave c is allowed due to higher /°. These elements are responsible for simulating quasi-static
condition in the domain. On the other hand, for elements whose effective critical time
step feritAterir < Alrqrg, the mass scaling constant f,,s5 Will then be automatically scaled to
achieve fijAtcriy = Atiqrg. These elements are responsible for reducing the computational
cost by allowing higher critical time step when solving the system.

3.4.3 Damping
Mass Proportional Damping

The phenomenon of damping in geological basin scale is, in general, difficult to be quantified.
One of the techniques to capture the effect of damping is via proportional Rayleigh damping

method via damping matrix C, such that

C=o:M+BK, (3.64)
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, where otz and f3 are parameters dependent on given damping ratio & and the corresponding
natural frequencies @.

The stiffness matrix K is however not assembled during stress update in the explicit time
scheme, and therefore, the damping matrix is further simplified [97] to mass proportional
damping matrix C = agM. It is clear that C inherits diagonality from the lumped mass

matrix. In index form, it is given by
Cii= OC@,-M,',‘ = 2(1)555M,'i, fori=1,...n (3.65)

where @ is the target frequency, &; is the damping factor with 1 being the critical damping of
the lowest frequency, and n is the degrees of freedom.
The proportional coefficient @ is determined by [97]

u’ Ku
a; = Min i M (3.66)
45
Aty

where At is the critical time step, which will be discussed in the next section.

The local diagonal stiffness matrix K is estimated [97] as

N Nl
KN _ 51” int i int,i , (3.67)
ij ﬁf’fl/zAt

where N is the current mechanical time step and f;,, = [o B” 6'dv is the internal force.

With the mass proportional damping matrix, the linear momentum equation is recast as
Mi+Cu+f,,, —QP; = f,, (3.68)
where u is the solid velocity vector.

Artificial Bulk Viscosity Damping

By default, in quasi-static simulation, artificial bulk viscosity damping term is applied
in ParaGeo to attenuate high-frequency oscillations in the effective mean stress during

compression. This method was introduced by [177] for the purpose of mitigating oscillation
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in the simulation of shock wave propagation. The damping term is given by

(3.69)

PI204uaa€’  for &, <0
Qvis = . )
0 for &, >0

where [, is the element characteristic length and Q4 1s @ dimensionless constant.
Bulk viscosity damping can also be specified to treat post-shock small oscillations via
a linear term of the standard bulk viscosity model. Combined with artificial bulk viscosity

damping term above, we obtain

— in€ — Quuaale€y) 1€, for &, <0
C[vis:{ p(Ql Qqude )e v v (3.70)

foré‘v>0’

where c is the element elastic wave speed, and Qy;,, i1s another dimensionless constant.
It follows that, during stress update, the computation of incremental effective mean stress

is dependent on the loading mode

A€,

[
Ap—quis = <K+P (Qlinc - Qquadle_> =

At

A ) Ag, forAg, <0

Ap* = . 37D

Ap = KAg, forAg, >0

where Ap* is the damped increment in effective mean stress. In ParaGeo, the recommended

value for each dimensionless constant are Qy;, = 1.5 and Qyqq = 0.06.

3.4.4 Averaged Volumetric Strain

While the use of linear element is preferred in ParaGeo especially when dealing with contact
problems, the lack of degree of freedom in linear element will readily cause the system to
suffer from volumetric locking. In this case, small perturbation of strain in a linear element
will induce very high resistance against deformation, and thus renders incompressibility in
the linear element.

To curb with this problem, averaged volumetric strain method [57] is employed in
ParaGeo. The main idea is to effectively increase the degree of freedom of a linear element
by allowing each node to absorb the effect from its surrounding elements via averaged

volumetric strain.
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Using the averaged volumetric strain method, the rate of small® strain tensor of an element

is given by

. 2, 1.

E=E€4+ | & +=8 |1, (3.72)
3 3

where the averaged volumetric strain rate &, is given by

. 1 Nyode Noe,i 8 Q
& = ) <—Ze=1 e e>, (3.73)

= oo
Npode i=1 Ze:f Qe

where n,,,4. 1s the number of node per linear element, and n,, is the number of element e
surrounding the current node i, while &,, and €, are, respectively, the volumetric strain rate

and the volume of element e surrounding the current node i.

3.5 Time Discretisation and Solution Update

The use of monolithic Newton-Raphson method to solve coupled flow-geomechanical system
is explained in detail by [100]. However, it is reported [24] that a more advanced monolithic
solver is required to solve saddle point problem that is inherent in the coupled fields involving
nonlinear Biot equations, and to account for constitutive models that are not Lipschitz
continuous [171].

While the coupled approach offers the benefit of unconditional stability, the advantage
of using sequential approach [101, 153, 154, 106, 55, 162, 164, 90] is that existing solver
of different fields can be utilised as long as the corresponding numerical parameters are
well calibrated to ensure solution stability. Furthermore, sequential approach may appeal
to the industrial demands because large opportunity cost will, otherwise, be incurred for
the construction of multi-field robust monolithic solvers. In ParaGeo, sequential approach
is adopted, whereby both seepage and geomechanical fields are solved separately using

different time step sizes.

3.5.1 Geomechanical Field

To recap, the linear momentum equation is given by

Mi(1) — Qp (1) = £,(t) = fin (1), (3.74)

3The use of small strain is justified by the application of Green-Nagdhi stress rate (which will be presented
in later section) that assumes small strain increment for each time step.
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where

1

Npode

M:/QN;{NM(Q—n)szrnpf)dm/Q diag[1)((1 — n)ps +npy)dv;
0= /Q BT amN v
fu:/ N,fida%—/NZ((I—n)ps%—npf)bdv;
2Q Q ’
fint:/BTG/dV.
Q

The linear momentum equation is solved explicitly by using central difference time
discretisation method. Before discretising the linear momentum in time, it is necessary to
define some of the following parameters.

Central Difference Time Discretisation

Time Increment

N+1 N
Displacement Field
Velocity Field
N gVl _ i N aV+1/2 _ ﬁN—1/2_ N1 ,—tN_—,-,N—l 3.77)
= TANFL T ANFL2 AN '

Acceleration Field

GN+1/2 _ jN—1/2

=N o
u' = ANTI (3.78)
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N

The velocity term &' can be alternatively expressed in terms of velocity terms

gN+1/2 _ gN-1/2
AtN-i-]/Z
1(=N+1_ =N 1(=N_| =N—1
(@ @) — s @  +av ) (3.79)
AtN+1/2
N+1 _ zN—1

i =

u
2AtN+l/2

By recognising that

aV+1 :AtN+]ﬁN+1/2+ﬁN

iV = AV N2 N (3.80)

we may Now express

gVt _ V-1
2AN+1/2 (3.81)

_ 2Aﬂ\}+1/2 (AIN+1ﬁN+1/2+AtNﬁN—1/2> '

With the explicit expressions of #" and #", the linear momentum equation at time N can

be expanded into

MNI_‘N fN lnt
ﬁN+1/2 _ ﬁN—l/z N (3.82)

where the subscript * represents the corresponding current value of pore pressure that is
solved separately from the mechanical field.

After rearrangement of the above equation, we obtain*

GN+1/2 (MN)_1<MN V=12 L AN HL/2 (fN o+ oV )) (3.83)

“In staggered scheme, porosity (and therefore the porosity-dependent quantities, e.g. M, Q, f,) assumes the
value from the last mechanical time step N. Accuracy is improved by applying iterative scheme, whereby the
subsequent converged pore pressure value yields a better estimate of effective yield stress and thus, resulting in
more accurate evolution of porosity throughout the deformation history.
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“N+1/2

After solving for velocity field u , we proceed with updating procedure of the

displacement field through

_N+ 1

V= @V 4 g2 ANE (3.84)

from which the current volume of deformed configuration can be computed.
Using the logarithmic definition of the volumetric strain (3.47), porosity is updated
following [120]

d
- —de, (3.85)
which yields by integration
1—nV
I’ZN+1 =1— M (386)

The updated porosity, along with other contributing variables, is used to update the
storativity term S and diagonal global permeability matrix K4. This matrix is initialised
by the user input values, which represent the permeability in directions that are mutually
orthogonal. Using the angle between the local reference system of interest and the reference
system defined by the eigenvectors of K, an orthogonal transformation matrix P can be

formulated in order to calculate the anisotropic permeability K at local reference system
K =P"K3P. (3.87)
For two dimensional problems, we construct K¢ as

KX (n) 0
0 Ky (n)

K& = : (3.88)

where Kx(n) and Ky (n), defined by user, are the eigenvalues of K¢ that could vary with
porosity n.

The rotation matrix is given by

P co§9 sin9‘ (3.89)
—sin@ cos0
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Then, the directional permeability tensor K can be obtained as

_ |Kx(n)cos? 0 +Ky(n)sin®6 (Kx(n)— Ky (n))cos 8 sin 6

| (Kx(n) — Ky(n))cos85in® Ky (n)cos® 6 + Kx (n) sin® 9]. (3.90)

If Kx = Ky = K, we can then recover isotropic permeability matrix, in which case,

K = K% = K(n) [(1) (1)] (3.91)

As for the forcing terms, whereas the external forcing term f, can be updated for the
next mechanical time step via f = f L, (#V1), the update of internal forcing term ff\,]l;rl is

described in the next section.

Green-Naghdi Stress Rate

In ParaGeo, stress update is performed using objective stress rate. This method is based on
hypoelastic theory. It is reported that this theory poses some limitations on the accuracy of
the behaviour of elastic deformation, where dissipation of energy is reported to take place
within a closed (elastic) cycle. However, such inaccuracy is insignificant [54] to materials
with small elastic domain, which also applies to the type of geomaterials used in the current
study.

Green-Nagdhi stress rate is adopted and used in ParaGeo for plane strain problems

dt
=R(R"6'R)R"

6" =R (i (RTo"R)> R"
: (3.92)

where R is an orthogonal tensor. Note that 6 is a simplified version of Truesdell stress rate,

given by
o —1 d —1 ot p—T T
o°=J'F E(JF o'F~) |F". (3.93)
It is clear from the expression of 6° that Green-Naghdi stress rate assumes

F =RU =R; J=detF =1, (3.94)

which admits small increment via U ~ I.
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In terms of strain increment, it means that the rate of Green-Lagrange strain tensor

becomes

1., . 19 .
E= C=t+- (Vxu)"(Vxu)) ~ &, (3.95)

where € is the time rate of small tensor defined by

= ((Vxu)" +(Vxu)). (3.96)

| =

Stress Update Procedure
In the computation of Green-Naghdi stress rate

Pull Back
—
6" =R(R"6'R)R’, (3.97)
N—————
Push Forward

the time rate of Cauchy stress tensor is firstly transformed into total Lagrangian configuration
via pull-back operation. In this configuration, the Cauchy stress G}V“ is updated via the
standard elastoplastic predictor-corrector algorithm [54]. Then, the updated Cauchy stress
tensor is push-forward into updated Lagrangian configuration as O';N +1

To calculate Cauchy stress increment, the rate of deformation d is integrated over time

increment to obtain the spatial strain increment tensor Ael *! with second order accuracy
1+Ar dVtl gV
/ ddt ~ <+ At =dN A= Ael T2 (3.98)
t
Pull Back Operation

The Cauchy stress tensor at time #¥ and the strain increment tensor are transformed from
updated Lagrangian configuration into total Lagrangian configuration, as follows

A8;(v+1/2 :RT,N+1/2ASJ]CV+1/2RN+1/2; (3.99)

6y =R™N&NRV. (3.100)

Then, the standard elastoplastic predictor-corrector algorithm can proceed by beginning

with the computation of trial stress

"trial, N4-1

N+1/2
Ox

— oy +C:agy 2, (3.101)
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where C is the forth-order elasticity tensor.

If @V is the hardening internal variable at time ", and @(G;ial’NH, aV) is the yield
criterion, then if CI)(G;MI’NH, aV) > 0, plastic strain increment Ay is computed from
(generally non-associative) plastic flow potential ¥, such that

- ¥
Agl N2 M5 (3.102)
where AA is the plastic multiplier.

The corrected stress is then updated by

o = o +C: (g2 - agg ). (3.103)

Push Forward Operation
The stress update is completed by transforming the Cauchy stress tensor from total

Lagrangian configuration back to updated Lagrangian configuration
o.;N-i—] :RN-FIO./)](V-FIRT,N-FI' (3104)

With the updated Cauchy stress tensor, the internal force f;,, is updated for the next
mechanical time step via [, BT 6 V*dv.
A direct way of computing R for planar deformation is proposed by [140]. If the

deformation gradient tensor at time ¢ is given in the following matrix form

Fy F, 0
Fi=|F F, o], (3.105)
0 0 Fl

then the orthogonal rotation tensor R at time ¢ can be obtained as

A —-B 0O
R=|B A 0. (3.106)
0O 0 1
where
FL + F!
P e — (3.107)
V (Fl| + F3)* + (Ff) — Fy)
Ft _Fl
B 21— Fip , (3.108)

V(Fl, +FL)? + (FL, — Fl,)?
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3.5.2 Seepage Field

To recap, the mass balance equation is given by

op 0E
ﬁ+A &

Hpp+S5 +A5"

=fp (3.109)
where
H= / (VN )T—K(VN )dv;
o o TP
. T . T n oa—n .
S = /Q (N,)"SN ,dv = /Q N} <—Kf+ o )div,

A= / (N,)T adv;
Q

(3.110)

K Q f
£ = / (VN = p gdv—/ (N da.
p o 4 1y f o P P
In the adopted coupling strategy (discussed in the next section), the mass balance equation
is firstly solved before the linear momentum equation. In the implementation, a single, coarse
time step in the seepage field encapsulates multiple fine time steps in the geomechanical
field. The mass balance equation is solved implicitly using backward Euler method® for pore

pressure, which is then superimposed with mechanically generated pore pressure®.

=K+1 =K _
py  — Py —K+1 AE) K+1
S| —~—— | +Hp " +A——=f," 3.111
where subscript K denotes the current time in seepage field, Az, is the time step size for flow
field, and AgY represents the the change of volumetric strain over the last mechanical time
step.

3.6 Split Schemes for Flow-Geomechanical Fields

In this section, it is demonstrated how the solvers from both fields communicate with each
other using intermediate solution via split scheme. In particular, it is about the strategy of

how pore pressure is transferred from the seepage field to geomechanical field, as well as how

by involving Newton Raphson method
®Via linear interpolation, pore pressure contributed by seepage field for a given mechanical intermediate
step are added to the pore pressure generated in the previous mechanical step to yield total pore pressure.
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volumetric strain, porosity and updated coordinates are transferred from the geomechanical
field to the seepage field.

In general, geomechanical and seepage fields may exhibit different level of coupling
strengths, depending on the sediment properties and the rate of loading. The mechanism that
influences the coupling strength is the rate of pore pressure generation induced by volumetric
strain. For low permeability sediment, the characteristic time scale for diffusion process is
large; the dissipation of excess pore pressure generated by mechanical compaction will take
longer time before reaching new mechanical equilibrium. In this case, the coupling strength
of geomechanical-porous field is higher than that of high permeability sediment because of
the longer drainage period. Furthermore, cases where loading rate is high or sediment with
high compressibility are also associated with high coupling strength due to increased rate of
volumetric strain and pore pressure generation, respectively.

The application of split scheme method requires some assumptions regarding the state of
one field when another field is being solved. This is related to the treatment towards pore
pressure term Qp f in (3.55) and volumetric strain term A% in (3.59), as will be shown in
the next section.

Different possible type of split schemes are investigated by [93, 91, 92, 94], including
drained split, undrained split, fixed strain split, and fixed stress split schemes. It is found that
drained and fixed strain split schemes exhibit poor solution stability, whereas undrained and
fixed-stress split schemes share the same stability behaviour but differ in convergence and
accuracy. Compared with undrained split scheme, fixed-stress scheme yields less stiff system
and is convergent for an incompressible system with first order accuracy in nonlinear problem.
Therefore, fixed-stress split scheme is preferred by the authors. However, problem related to
pore pressure diffusion driven by volumetric strain is not considered in their investigations.
In addition, non-continuous loading direction as commonly introduced by transient dynamic
algorithm is also not accounted for. Such changes in loading direction could mis-guide the
predictor in undrained and fixed-stress algorithms in terms of loading direction.

In ParaGeo solver, two split schemes are adopted, i.e. undrained and fixed stress schemes,
which are discussed in the followings.

3.6.1 Undrained Split Scheme
Solution Update

In both split schemes, seepage field is solved firstly using coarse time step size, followed by

geomechanical field using fine time step sizes (Figure 3.1). Equation (3.111) is solved for

updated pore pressure from seepage field pf +
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t{f tN
i ~
| At
At,
R AN ", R
ti’7(+1 tN+Atp/At
Seepage Field Geomechanical Field

Fig. 3.1 Illustration of coarse time step in seepage field followed by multiple fine time steps
in geomechanical field in simulating flow-geomechanical fields in split form

In geomechanical field, a linear interpolation based on pf“ and pf is constructed to

account for the pore pressure contribution from the seepage field

P} teepage = (1= )P} + fPFH. (3.112)

The time ratio f, which corresponds to the time increment in both fields, is given by

At
= | —— ] = I Z. .11
f lAtp’ i=1[0,1] € (3.113)

. . A
where Z is the integer space and I = —~.

In undrained split scheme, it is assumed that a locally undrained’ response is generated
due to the deformation of solid matrix for every mechanical time step Asz. For a single

element, this corresponds to zero outflow, whereby

0E, apf B K B
(04 P + W—V' <‘Ll_f (fo—pfg>) =0,

7, which is a good characteristic of low permeability formation
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from which the equation can be discretised to formulate an estimate of pore pressure incre-

ment generated by geomechanical field®

N
N o, N (04 \%

APf mech = —EAEV - _Eln (W) : (3.114)
It can be demonstrated that the computation of total pore pressure contributed by both

fields using the relation

=N+ 2N+ N
pf - pf,seepage + Apf,mech (3.115)
tends not to produce smooth pore pressure, as demonstrated by [91].
To improve the total pore pressure trend, a pore pressure increment Ap g ., 11 mechan-
ical field before the start of the current seepage flow step is used to provide smooth transition
of total pore pressure over the current seepage flow time step Az, (Figure 3.2). The improved

total pore pressure is given by

I_’yﬂ = py,;zlepage +pry,mech + (1 - f)APfO,mechv (31 16)

which is then used in the current mechanical time step ! to compute the current effective

Cauchy stress tensor 6/N*1,

K 1

tp => Apfo,mer:h

b i R é;v" =
At

At,
—_ Y Y

tzl7(+1 tN+Atp/At

Seepage Field Geomechanical Field

Fig. 3.2 Illustration of pore pressure increment A p? in mechanical step before the start of the

current seepage flow step. The term Apy is used to provide smooth transition of total pore
pressure over the current seepage flow time step Az,

81t is not possible to compute Ap?' ;2 ., because the current deformed volume VN+1is not available at the

current mechanical time step.
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Because of the presence of Apl}’ mech 10 (3.116) instead of Apy;z . there is always a

difference of pore pressure in seepage and mechanical fields. Therefore, iterative method is
not adopted for undrained split scheme. Instead, incremental update method is preferred by
enforcing sufficiently small mechanical time step size. A general convention adopted in the

current study is that

_ Ay

At = .
100

(3.117)

3.6.2 Fixed-Stress Split Scheme
Modified Mass Balance Equation

To recap, the mass balance equation (2.45) is given by

JE, n a—n)\dps K
- S v (il _ _
“or +(Kf+ K, ) o1 (uf (Ves pfg))

Using the principle of effective stress, the effective mean stress p’ is introduced

p'=p+oapy, (3.118)
so that
/
P _p  apys
&= T K’
K KK (3.119)

08 _ @ 0p @ dpy
ot K dr K odt’

where p is the total mean stress and K’ is the drained bulk modulus. By substitution, we then

obtain the modified mass balance equation

o dp n  a-n_ of\dp; K
FE_}—(K_JC_I_ Ks +F)7_V'(u_f(fo_pfg)>' (3120)

The equivalent element-wise spatially discretised version is given by

Ipy _ ap
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where

K
H:/ VN, —(VN,)dv:
Q( ») uf( »)

2
o — o
sz/(N,,)TSN,,dv=/N,§ 2L P )Ny
o) o) Ky K, K’
) o (3.122)
T )
G: EA:/Q(NP) EdV,
K Or
f :/ VN, = p ga’v—/ N da,
p Q( p) 1y f ag( p) P
Using the same strategy of time discretisation, we obtain
SK+1 _ 2K _
py — Py —K+1 ApY K+1
S| ——— H G— = ; 3.123

where subscript K denotes the current time in seepage field, and Ap" represents the change

of total mean stress over the previous mechanical time step.

Solution Update

In fixed stress split scheme, seepage field is also solved firstly using (3.123) over coarse time
step size, followed by geomechanical field using fine time step sizes. In this split scheme, the

assumption is that the computation of i)f“

is based on the increment of total mean stress
ApY of the last mechanical time step.
. . . . 2
The drained bulk modulus K’, which appears in the storativity term S as % and the G

matrix, is estimated by

,_ AN
AeN’

(3.124)

With the seepage field pore pressure solution, a linear interpolation based on pf +1and

i)jf is constructed for geomechanical field
P} tvepage = (1= F)PF + B} (3.125)

Because no pore pressure is assumed to be generated by solid deformation in geomechan-
ical field, we may have

=N+1 =N+1
pf+ :pf,Jsreepagw (3.126)
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ty l) ApY, Ael, AtV

I

t§(+1 ¢N+AL, /AL

Seepage Field Geomechanical Field

Fig. 3.3 Illustration of total mean stress increment Ap"Y and volumetric strain increment AglY
over AtV for the computation of pore fluid pressure i)? *+1 at the current mechanical step
(Z‘N—H)

which is then used in the current mechanical time step V! to compute the current effective
Cauchy stress tensor 6Nt

When using fixed-stress algorithm, a performance issue may arise due to stress reversal.
For example, the predictor algorithm of i)f +1still assumes ApY, while it should be —ApY
in the current mechanical time step. To resolve the this issue, fixed-stress split scheme
should be implemented with iteration. Another issue is that, when the total mean stress p is
predominantly dependent on pore pressure, significant change of effective stress will have
small effect in the predictor algorithm of pf *+1 In practice, however, hydraulic fracture will
most likely to take place before the total mean stress becomes predominantly dependent
on pore pressure. In this case, the enhanced hydraulic permeability along the fracture

propagation path will help diffuse local excess pore pressure.






Chapter 4

Elastoplastic-fracture Constitutive
Models for Pressure-Sensitive
Geomaterials

4.1 Elastoplastic Constitutive Equations

Let! ®(o,A) be a yield criteria function that maps any set of stress ¢ and thermodynamical
hardening forces A into a scalar value that defines elastic domain &, plastically admissible

domain & and yield locus % as

& ={o|®(0,A) <0}; 4.1)
& ={o|®(6,4) <0} (4.2)
¥ ={c|®(c,A) =0}, (4.3)

where yield locus % is a set of stresses forming the boundary that lies exactly between
admissible stress space (elastic domain) and inadmissible stress space.

Assuming initially elastic behaviour, if an incremental stress update results in " (¢, A) >
0, then it is required to bring the stress state back to the plastically admissible domain, such
that?

6=D":(¢-¢&"), (4.4)

"For the convenience of notational brevity, effective stress tensor is hereby denoted by ¢ instead of 6"
’In the application, geomaterials are assumed to have small elastic domain. Therefore, the incremental
strain tensor can be decomposed as & = €° + €”.
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where € is the incremental rate of total strain tensor and £ is the incremental rate of plastic
strain tensor.
Using plastic flow rule, the plastic strain tensor is defined by

oY
&€ YN }/86’ 4.5)

where 7 is the rate of plastic multiplier satisfying ¥ > 0, and N is the plastic flow vector
derived from the derivative of a non-negative, convex plastic flow potential function ¥(o,A).

The dissipative mechanism associated with plastic deformation is characterised [54] by
the evolution of internal variables @, such that

v

& =7H = i3,

(4.6)
where H is the generalised hardening modulus. Finally, the evolution of €, and & must be

complemented by loading/unloading conditions

<0, 7>0, Py=0. 4.7)

4.2 Mohr-Coulomb Model

Mohr-Coulomb model is one of the classical, pressure-sensitive frictional model, which is

mathematically represented by
T=c—tan(¢)o, (4.8)

where o is the effective normal stress, ¢ is the cohesion, and ¢ is the friction angle. The
increase of shear strength due to the increase of compressive normal stress, as illustrated
in Figure 4.1, is well explained by [160]. The density of porous material increases with
compressive normal stress. The increase of density naturally increases the rolling and sliding
friction between particle grains. As a result, the kinematic constraints become stricter due to
particle interlocking condition. Therefore, the shear strength increases with normal stress.
In general, the yield limit of Mohr-Coulomb model exhibits strong dependence on the
hydrostatic pressure.
The yield function of Mohr-Coulomb can be alternatively expressed in principal stress
space [54]
QM = (01— 03)+ (01 +03)sing —2ccos @, (4.9)

principal —
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T=c— (tan¢)o

Fig. 4.1 Mohr-Coulomb yield surface T — o space

where 0] > 0, > 03, or in terms of stress invariants [131, 46]

1
oMC = (cos 0— 7 sin O sin ¢> V2 (s)+ p(0)sing — ccos @, (4.10)

where s is the deviatoric stress tensor defined by s = 6 — pl, J; is the second invariant of s
defined by 1s: 5, and 6 € [—Z, Z] is Lode angle. It will be shown (4.10) is useful in deriving
tensile cut-off model in the later sections.

4.3 Drucker-Prager Model

Drucker-Prager model was proposed [61] as a smooth version of Mohr-Coulomb yield
surface. Alternatively, it can also be interpreted as pressure-sensitive von Mises yield criteria

since the yield surface radius as viewed on deviatoric plane changes with mean pressure p.

—o3

-0y

Fig. 4.2 Drucker-Prager yield surface in principal stress space
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The mathematical expression is given by

ol (6,6) = \/h(s)+np—¢, 4.11)

where 1 and ¢ are material parameters and the subscript , refers to “standard”. To fit the

Mohr-Coulomb criterion, the Drucker-Prager model can be reformulated [54] as

@0(0,¢) = /D(s) +np—Ee. (4.12)
If Drucker-Prager yield locus coincides with the outer edges of Mohr-Coulomb yield
locus, then
6sin 6cos
n:—¢- gz—d) (4.13)

V3(3—sing)’ V3(3—sing)

Otherwise, if Drucker-Prager yield locus coincides with the inner edges of Mohr-Coulomb
yield locus, then
6sin¢ 6cos ¢
= = 4.14
1 V3(3+sing) . V3(3+sing) (19
It is also possible to predict Mohr-Coulomb yield criterion using Drucker-Prager model
under plane strain conditions [34] via

3tan ¢ _ _ 3 4.15)

n:\/9—|—12tan2¢, . V9+ 12tan2 ¢

"%@ Drucker-Prager
(outer edges)

Mohr-Coulomb

Drucker-Prager
(inner edges)

_0'1

Fig. 4.3 Approximation of Drucker-Prager model to Mohr-Coulomb yield surface
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4.4 Modified Drucker-Prager Model

4.4.1 Yield Function

As opposed to the circular geometry of yield surface on deviatoric plane (Figure 4.2), it
has been observed that frictional material exhibits [3] non-circular geometry with rounded
corners (Figure 4.4), which is also different from the standard Mohr-Coulomb model with
sharp corners.

61/Po

Triaxial and unioxial
compression tests

~Triaxial extension

and uniaxial tension

R tests
o\/

G3/Po l S,/Po

Fig. 4.4 Shape of yield locus for frictional materials on deviatoric plane [3]

In addition, other experimental evidence [187, 191] also show that yield surface corre-
sponding to compressive triaxial test (CTC) is larger than the one corresponding to reduced
triaxial test (RTE) (Figure 4.5).
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[ ]
[ o
q (MPa)

[u] [we] [we]
o = =
\
. \)“l// L]

-—-o———""/

(a) Yield surface of sand [191] (b) Yield surface of clay [187]

Fig. 4.5 Experimental findings that yield surface associated with CTC test (g > 0) is larger
than that with RTE test (¢ < 0)

In view of the experimental findings, the standard Drucker-Prager yield function is
modified, not only to take in account the changes of yield surface shape on deviatoric plane,
but also the evolution of friction angle and cohesive strength as effective plastic strain

accumulates. The modified Drucker-Prager yield function is given as follows
@ (6,8") = g(0.p)g +tanB(")p —d(&"), (4.16)

where B and d are, respectively, friction angle and cohesion in p — g meridional plane, and
€? is the regularised accumulated effective plastic strain, defined [54] as

. 2 2
P =/-¢&P . &P = \/j e”||. 4.17
V3 1] @17

Friction Angle and Cohesion in Meridional Plane
In terms of effective deviatoric stress ¢, the modified Drucker-Prager yield locus is obtained
by setting ®PF =0

8(6,p)g = —(tanf)p+d. (4.18)

The friction angle B and cohesion d can then be determined using the assumption made with

respect to the Mohr-Coulomb yield criterion.
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If the Drucker-Prager yield locus coincides with the outer edges of the Mohr-Coulomb

yield locus, then

6sing B 6cos ¢

36 _sing) ° " VAG_sing) (*.19)

’n:

By substituting into the standard Drucker-Prager model, we have
std Y JZ + TIP
65sin ¢ ) ( 6.cos ¢ ) (4.20)
h(s(0)+| = o)—| —=——)c
2(5(0)) (\/§(3—sm¢) PO\ 3G —sing)

Then, by setting 27 ¢ — 0 and multiplying the equation above with a factor V3, we utilize
the relation ¢ = /3J> to obtain

6sin ¢ 6cos ¢

= — ) 4.21
1= "3 sing? T3 sing¢ 42
By setting® g = 1 and comparing (4.18) and (4.21), we obtain
1| 6sing 6cos ¢
1
—t < d= 4.22
p =tan [3—sin¢}’ 3_sing* (422)

An alternative way of deriving the above relation is to start from the invariant representa-
tion of the Mohr-Coulomb yield function [131, 47]

1
@%fa”am = (cos 06— % sin @ sin d)) VJ2(s)+ p(0)sing —ccos ¢. (4.23)

Similarly, following the definition of ¢ = 1/3.J>, the yield function above is pre-multiplied
by v/3 to produce

1
d)%vcmam (cos 06— % sin 0 sin (b) q+ \/_p( C)sing — V/3ccos d, (4.24)

from which we obtain

\/§ sin ¢ \/§ cos @
p+
sin 0 sin ¢> (cos 0 — —=sin O sin (]))

c. (4.25)

- (cos 0 —

\/§ ﬁ

3When g = 1, the yield surface coincides with all outer edges of Mohr-Coulomb surface (i.e., pure compres-
sion stress state).
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Lode angle 8 = 30° corresponds to the outer edges of Mohr-Coulomb yield surface
(i.e., pure compression stress state). Therefore, by substituting this Lode angle value, we
can recover the standard Drucker-Prager model which coincides with the outer edges of
Mohr-Coulomb surface

6sin¢ 6cos ¢
C.
3—sing’ 3 _sing

q=-

Finally, similar procedure as demonstrated above can be repeated to unravel (4.22).
However, in some cases, the outer-edge assumption may perform poorly to obtain
analytical result. For example, in a strip-footing example [54], it was found that this
assumption predicts a limit load value that is 140% higher than Prandtl’s solution, whereas
the inner-edge assumption predicts 17% higher. The best candidate was the version of
Drucker-Prager model that predicts identical limit load as Mohr-Coulomb criterion under

plane strain conditions [34]. That is,

7= 3tan ¢ = 3 (4.26)

V9+12tan2¢ 0 \/9+ 12tan¢
By substituting the material parameters using plane strain assumption, one obtains
®(0,c) = Va(s(0)) +np(6) —&Ec

_ JTiseN 3tan ¢ _ 3 .
=V (G))+<\/9—|—12tan2¢)p(6) <\/9+12tan2¢>

Following the definition of ¢ = /3.5, the yield function above is pre-multiplied by /3

to produce
3v/3tan ¢ 33

=— . 4.28

1 (\/9+12tan2¢)>p(6>+<\/9+12tan2¢>c (:28)

In comparison4 with (4.18) when g = 1, we arrive at

4.27)

B =tan~! (4.29)

3v/3tan¢ g 3V3c¢
V9+ 12tan?¢ | 9+ 12tan? ¢ |

“In this strip footing benchmark problem, the variable g is specifically set as 1 throughout the simulation to
approach the analytical solution.
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n-plane Correction Factor

The g(0, p) factor is a m-plane correction term, which controls the radius of yield surface

(ps = ||s]|) as viewed on deviatoric plane. Eekelen [170] reviewed expressions that were

Deviatoric plane
0,+0,+0,=0

n

Hydrostatic axis
0,=0,=0,

O =0 +0,e, + 0,
pn

s =5,6, +5,8, +5;¢,
Fig. 4.6 Representation of multiaxial yield criterion in terms of principal stresses

proposed to correct the deviatoric term as function of Lode angle 6. A useful general

expression is given by

6.0 = (1= (1 +ﬁ<p>;—§))a, (430)

where o is material constant, > = 277 det(s), g = \/3J2, and B(p) is expressed in a similar
way as [56]

B(p) = Boexp (—ﬂlpﬁc) , 431)

where By and B; are material constants’, which define, respectively, the shape in deviatoric
and meridional planes, and p. is the pre-consolidation pressure. The parameters &, By, and
B1 are obtained by fitting the experimental data.

It is clear that, since p. — oo for Drucker-Prager model, we obtain 3 (p) = By, indicating
that the shape of Drucker-Prager yield surface in deviatoric plane is only dependent on the
deviatoric part of stress tensor.

To demonstrate the effect of cohesion d and friction angle 8, we first recognise that

q=+/3h= \/%s s = \/gHsH = \/gpsDP. (4.32)

SWhen By = 0, g = 1. This value recovers the standard Drucker-Prager model, whereby the yield surface on
deviatoric plane is circular with constant radius.
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On the yield locus, we have ®”F = 0. Then, an explicit expression of pP” can be

\[ \/7 ( _tanﬁ ep) ) 4.33)

Assuming o = 0.25 and Sy = 0.60, the effect of cohesion d and friction angle 3 on the

formulated as

geometry of the modified Drucker-Prager yield surface can be illustrated in Figure 4.7. It is
clearly shown that, in deviatoric plane, the yield surface increases in size with cohesion and

friction angle, while the shape does not change since B (p) = By is always constant.

41
Increasing friction angle
oy

Increasing cohesion d

(a) Yield surface increases with cohe- (b) Yield surface increases with friction
sion. angle.

Fig. 4.7 Effect of cohesion d and friction angle 8 on the geometry of modified Drucker-Prager
yield surface in deviatoric plane

It is noted that B has to be carefully calibrated to avoid non-convexity, as illustrated in
Figure 4.8
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Fig. 4.8 Effect of By on the yield surface geometry. Care should be taken when calibrating 3,
to avoid non-convexity of the yield locus.

4.4.2 Non-Associative Potential Plastic Flow Function

The plastic strain tensor is derived from a non-associative plastic flow potential

oY
& YN yao_, (4.34)
where
Y(0,e")=qg+tany(EP)p —d(EP). (4.35)

It is clear that the potential function takes a similar form of the yield function, except
that the friction angle is replaced by dilation angle y associated with plastic volumetric
deformation, and that g = 1. Some experiments show that normality rule does not always
apply. For example [189], in true triaxial tests of sand, it is demonstrated that the incremental
direction of plastic flow tends more to be radial than normal to yield surface.

The plastic flow vector N can be split into deviatoric and volumetric parts

¥ I¥dq ¥ Ip

— == —_— 4.36
96 dq 90  dpdc (4.36)
From (4.35), we can directly determine
0¥ 0¥
=1; —=— =tany. 4.37)

dq dp
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0
For —p, it can be shown that®

Jdo
ap . laTI'(O') . 1 8Gkk
9363 90 390m e
= %6km5kn (em ®en) = %6mn (em®en) (438)
-4
3

d
The derivation of —- starts by expressing ¢ in terms of &

00

q:\/E:V%(S:s):\/g((G_PI)Z(O'—pI))I/Z
3

= \/;(O':O‘—ZpTr(O')+3p2)l/2

. , - N (4.39)
=1\/3 <0' ; O‘—§(Tr(0‘)) +§(Tr(0')) )
B 1 N
It then follows that
~1/2
dqg 3 (1 L1 ) d(6:06) 19(Tr(c))* ITr(o)
56 V2 (2) ¢:0-3(Tr(o) 96 3 omi(o) do
N 2 . 22 __ N
§: e 2Tr(o) I
3
3/1 1 3 s
() e
(4.40)
Since J, = (s : 5), we can express
VI = —=(s:9)'2 = s
V2 V2o (4.41)

= |s|| = /22,

Tr(o) represents trace operator acting on tensor &
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and so,

g [3s 1[3
94 _ 25 22 4.42
o0 Va2l ~ 2Vt (442)

By substitution, the plastic flow vector N can be simplified to

v _owag ovop
do Jdgdo  Jdpdo

1 /3 tan Y (4.43)
=42 1
N3

:Nd + N, 1.

Finally, the plastic strain tensor for the modified Drucker-Prager model is obtained as

&” = yN = yN,+ yN,I

—Z is—Fl'tan 1
—2\/J2 3?’ V. (4.44)

) I,
2854-5851.

4.4.3 Hardening Law

Following [54] the derivation for the standard Drucker-Prager and Mohr-Coulomb models,
cohesion d € A is taken as the thermodynamical force, while the accumulated effective plastic
strain €7 € @ is taken as the hardening internal variable. Using the definition of hardening

law, we express

v

p_ g _
& =54

1D =7 (4.45)

For the modified Drucker-Prager model, the cohesion, friction angle and dilation angle

are input by the user as function of €7, such that

d=d(&"); (4.46)
B=B(e"): (4.47)
v = y(&P). (4.48)
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4.4.4 Regularisation of State Variables

Concomitant with the large scale evolution of geological structure is the development and
propagation of strain localization in the form of shear bands or faults. However, when
modelling post-localization evolution using the standard continuum method, the localization
band width is found to be sensitive to the mesh size, rather than the material length scale.
Furthermore, the fault propagation is also found to be aligned with element edges. Several
methods have been proposed to solve the aforementioned issues, including gradient plasticity
method and Cosserat continuum method.

In the current work, a regularisation method based on fracture energy approach [135, 11,
50] is adopted. The key is to ensure finite energy dissipation during softening, regardless of

the element size. This is achieved by regularising the effective plastic strain

Im\"
gpe — gpm (L) , (4.49)

I¢

where €7¢ and € are, respectively, the regularised and unregularised effective plastic
strain, [¢ is the characteristic element length, [!" is the characteristic material length, and n is
the material constant (generally 0.6 <n < 1.0).

This expression, along with an illustrative examples in Figure 4.9, implies that the
softening slope becomes steeper as the element size increases. Such change is consistent with
the requirement that the dissipated energy is independent of the element size. For instance,
in order to maintain the same energy dissipation in the failure zone, elements with larger
volume undergoes smaller strain associated with the deformation while elements with smaller

volume undergoes larger strain associated with the deformation.

d Initiz‘al Dc Initial pre-consolidation
.~ cohesion _— pressure
Material Material
softening softening
Element curve Element curve
softening ] Increasing softening ] Increasing
curve element size curve element size
& &
(a) Regularised d — &7 plot for modified (b) Regularised p. — & plot for critical state
Drucker-Prager model elastoplastic model

Fig. 4.9 Regularisation of cohesion-effective plastic strain (left) and preconsolidation pressure-
volumetric plastic strain (right) softening slopes under the influence of element sizes
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The value of characteristic material length /" is dependent on the simulation scale. For
cases where the characteristic deformation scale of the simulation is of the same order as the
deformation scale of the experimental test (e.g. wellbore stability analysis), the characteristic
length corresponds to the width of a single shear band (e.g. 2 —3mm). On the other hand,
in large scale simulation, where the deformation scale is many orders of magnitude greater
than the experimental scale (e.g. the effect of up-scaling), the characteristic length for mesh
regularisation is not the length associated with a single fracture, but associated with the fault
zone. This provides a characteristic length that is the same order as the element discretization.

The advantages of using the fracture energy approach are that

* Mesh invariance of the global energy dissipation is approximately maintained within

an acceptable range of element size.
* The approach may be implemented to regularize both mode I and mode II localization.

* It is straightforward to implement within any finite strain framework and for a range of

constitutive models

The limitation of the method is that localization width should be equal or less than
the characteristic length of the finite elements (i.e. strictly for sub-A and iso-k models).
Nonetheless, it has been shown [50] that the aforementioned regularisation strategy correctly
reproduces the size effects’ in mode II localization (Figure 4.10) in the simulation of thick-

wall cylinder tests for Berea sandstone and Castlegate sandstone.

Mode | rd Mode Il Mode llI

|

Fig. 4.10 Two fracture modes. Mode I is characterised by fracture opening mode via tensile
failure. Mode II is characterised by shearing mode over fracture surface. Mode III is
characterised by tearing mode.

"the sample internal radii ranges from 8mm to 200mm
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4.5 SR4 Model

4.5.1 Yield Functions

SR4 model [49] is a critical state elastoplastic model (Figure 4.11) that is composed of two
functions, which continuously intersect at the maximum deviatoric stress g peqk- The shear
(or dilation) side is defined by SR3 surface [50], while the compression side is defined by an
ellipse in a similar manner with the standard Cam-Clay model [187].

Ellipse J SR3

— Critical State Line
M"’h

— Yield Surface

= Potential Flow
Surface

*P

Pc Pt
Fig. 4.11 Illustration of SR4 model in p — g plane

The shear side of SR4 model is given by the SR3 surface

1
17'_'l7c:> /n

B, (0,60) = (0,p)a + (-~ panp (L=

(4.50)
where p; is the tensile intercept, p. is the pre-consolidation pressure, f3 is the friction angle
defined in meridional p — g plane, and n is a material constant.

The hydrostatic stress value corresponding to gopeqx is denoted by pepeqk, Which can be

shear

d
derived by enforcing a—q = (. We start by setting @84 =0 to yield
pP

P=DPdpeak

. . 1/n
g=-2 p’tanﬁ(p pC) : 4.51)
8 Pt — Pc
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from which
De—p 1/n
dp gn(p—pe) ’ '
so that, for % =0, we obtain
P=DP®peak
npc + pt
Pdpeak = 1+n . (453)
The corresponding ggpeax is then
1/n
Pdpeak — Pc
89 = qdpeak = _(pd>peak - pt) tanﬁ (L> . (4.54)
Pt — Pc
Then, using the expressions for pepeqk and gapeak as well as the relation pepeqr = nll’j:]p L,
we define
Gopeak  Pdpeak — P Papeat —pe )"
Mq; _ pea _ pea t tan ﬂ < pea c)
P@peak Pdpeak Pt — Pc (4 55)

_ _Npe—p)nt)n

Npc+ pr

Note that the denominator is simply Np. + p; = (1 +N)papeak, and the term N(p. — p;)

in the numerator is alternatively expressed as follows

Npe+pr =Npe+pr—Np+Np;
=N(pc—p:i) + (1 +n)p;
= (14N)papeak

= N(pc—pr) = (1 +n)(Popeak — P1)-

It follows that the expression for Mg can be further simplified to

S|=

Mo = _Npe—p)(n+1)7 tan f3
Npe+ pr

1
0 Pap )0 )R
(1 + n)l’@peak

——(n+1)"n (1 S )tanﬁ.

Pdpeak

(4.56)

(4.57)
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On the compression side, the yield locus of the cap model is constructed from a general
ellipse function
pe
+ i I, (4.58)

where a and b are the radii on p and ¢ axes, respectively.

2
P
)

Since the center of the yield surface lies on the point (pecrir,0), and in order to take into

account of the 7-plane correction term, the ellipse function then takes the form

2
+ (gqu) ~1. (4.59)

(P - pCI)peak) 2
a2

Considering that the cap model is constructed for the compression side of the SR4 yield

locus, the radius a can be conveniently formulated as
a = Popeak — Pe; (4.60)
whereas b is simply the maximum deviatoric stress of the yield surface, given by
b = qopeak = Mo P peak- (4.61)

By rearranging the equations above, we obtain

(89)* = b (1 _ w)

a2
’ (4.62)
P — P®peak
— M2 p2 1— ( P ) 7
®FPpeak ( Pdpeak — Pc
from which we can form the yield function of the SR4 cap model
P—Papear \
ea
@, (6.,€0) = (89)* ~ MdPapea (1 - <—”) ) (4.63)
Pdpeak — Pc

It can be verified for the cap model yield locus that

% o mp(bpeak(pcbpeak - p) —0
op N2
(Ppeat — pc>2g\/ = (4.64)

=p= Pdpeak;
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which, substituted back into (4.62), recovers®

2 2 2.2 .
(gCI) = dopeak = Mq3p¢peak’

— Mg = qdpeak (465)
Pdpeak

To recap, the shear side of SR4 yield locus is given by

_ I/n
P3R! (0,€0) =gq+ (p— p;)tan B (5 I;C ) : (4.66)
t— Fc

while the compression side of SR4 yield locus is given by”

2
P — Pdpeak
cDEf; = gq_M‘I)pd)peak\/l - (—pea) s (468)
Pdpeak — Pc
where
Npe+pr
Popeak = H—n, (4.69)
Mg = 120k — _(n41)7n (1— Pr )tanﬁ. (4.70)
Pdpeak Pdpeak

Friction Angle 3 under CTC Condition

Recall from the standard Drucker-Prager model that

and if the yield locus coincides with the outer edges of Mohr-Coulomb yield locus, then

6cos ¢
3—sing’

_ 6sing
=3 Ging’

[Tt

The coincidence with the outer edges of Mohr-Coulomb is a representation of conven-

tional triaxial compression (CTC) condition, whereby the stress condition is described by

8In this case, g9 = o peak-

%Since the yield locus is given by <I>f§;,‘ = 0, the following expression
P — Pdpeak g
ed
DR (0,€]) = (89)> — M&P3 pea (1 = <p¢mk " pc) ) =0 4.67)

has been rearranged as (4.68).
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0| > 0, = 063. In SR4 model, the friction angle is estimated from CTC tests. In view of
this, we require the function g peak = Mo Papear t0 be parallel with g = —7)p + é_ cinp—gq
plane. Effectively, this means —17 = Mg, which can be expanded as

6Sln¢ 1 ( pt )
- —=—(n+1)"n{1-— tan 4.71
3 —sin (P ( ) P®peak ﬁ ( )
to yield
6k si 3t
B = arctan {%] or ¢ = arcsin {ﬁ} , (4.72)
where
1
n+1)n
p— (Nt Do p? , (4.73)
o Pdpeak

Yield Surface in Deviatoric Plane

Recall the m-plane correction factor

0.0 = (150 (1+ﬁ<p>;—§))a,

where  is material constant, r* = Z det(s), ¢ = v/3/2, and B(p) is given by

B(p) = Boexp (—Blpﬁc) :

In the modified Drucker-Prager model, since p. — oo, we have (p) — Py, which is
constant. Therefore, it is expected that the shape of the Drucker-Prager yield surface in
deviatoric plane is unchanged. However, for SR4 model, the value of p. is finite. Hence, its
shape in deviatoric plane should be sensitive to the effective mean stress p, as described by
the equation of B(p).

Recall that, in deviatoric plane, the Lode angle-dependent radius of yield locus is given

by p = \/gq. So, for the shear side (p > papeak), the corresponding radius is given by

2( pi—p (p—pc)l/”

SR4 t

Pirear =\ = tan f3 ) 4.74)
" 3 (g((?,p) Pi=pe
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and for the compression side (p < pepear), We have

2 Mcbl?rb eak ( P — P®peak )2

SR4 D 14 1.7

" —_— 1 . ( . 5)
“ 3 g(@,p) \/ P®peak — Pc

Figure 4.12 shows the response of the shape of SR4 yield locus in deviatoric plane to

the changes of effective mean stress p. The left figure is described by p3&4 while the right

cap »
SR4
shear*

figure is described by p As p approaches tensile intercept p;, the shape increasingly
resembles triangle, whereas when p approaches preconsolidation pressure p., the shape
becomes increasingly rounded. Either way, the size of the yield locus becomes smaller. The

yield locus is the largest when p = pgrir, Which is also observed in Figure 4.11.

o 0y

Towards p, = Poa Towards p,

g3 a2

Compression Side Shear Side

Fig. 4.12 The shape of SR4 yield locus in deviatoric plane is sensitive to the effective mean
stress p. As p approaches p;, the shape tends to be more triangular. Vice versa, as p
approaches p., the shape tends to be more rounded. The size of yield locus is maximum
when p = pocri-
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4.5.2 Non-Associative Potential Plastic Flow Functions

The potential flow function takes the similar form as yield function, except that the friction
angle B is replaced by dilation angle y, and that the yield locus in deviatoric plane is circular

(i.e. g = 1). Accordingly, for shear side, the SR4 potential function is given by

D—pe 1/m
Wit =4+ (p—pz)tanl//< > , (4.76)
Pt — Pc
while the compression side of SR4 potential function is given by
P—Pweri \
WERY = g — Mypweri || 1 - <—) : (4.77)
P¥crit — Pc
where
Mpe+p
P¥crit = #mt (4.78)
My =Lt — _(my1)m (1 S )tan v, (4.79)
P¥crit P¥crit
with My,,;; as the slope of critical state line.
The plastic strain tensor is given by
¥
&' =9yN =y—,
Vi Y 96

where

ov_owaq 2vap
906 dqdo  Jdpdc’

It has already been shown in Section 4.4.2 that

dg 1 /3  dp 1
o6 2V5S ¢ 3
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¥ 0¥
The derivation of 5 and 5, depends on whether the potential function is on the shear
q p

side or the compression side. For the shear side,

0 \PSR4

shear
—nedr — 1. 4.80
2 (4.80)
JYSR4 1 _ _ 1/m
—She“’:tanll/(l-l-—(p ”)) (” ”f) . 481)
Jdp m\ p—pec P — De

The plastic strain tensor can then be expanded as

4 4
QP — '}’ <aq]§}§ear aq alpfllziar ap)

dq do dp do

y 3 1. 1(p=p\\(pP—r\"" (4.82)
2 ]2S+3<'}’tanl//(1+m(p_pc)> (pt_pc) !

. L,
:85‘{‘5851

For the compression side,

a\PSR4
<P =1 (4.83)
dq
awggg . M‘I’ (p - p‘PcriZ)p‘PcriZ (4 84)
dp e N2 '
(pc _p‘{’crit)z\/l - <%>
The plastic strain tensor on the compression side is then given by
oy (P08 00 9V 0p
dq do dp do
_ Z is_'_l '}’ M‘P(p _p‘Pcrit)p‘I‘crit 1 (485)
2V ) 3 ) oo \ 2
(Pe = Pweri)? 1 - (222 )
. I,
=&l &Pl

3
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To recap, on the shear side, the rate of deviatoric and volumetric plastic strains is

expressed by
. Y /3 .
d= > st YiNa ( )
1 . — pe 1/m
ef:ytanw(1+—<p Pt>)<p p) — 37N, 4.87)
M\ p—Pc Pt — Pc
so that
1 /3
N,=—4/ s 4.88
4=\ 5 (4.88)
N :tan‘I’(Hl(P—pt)) (p—pc)l/m (4.89)
3 m\p—pe Pr—Pe

On the compression side, we have

L, T [3
&) =5\ 7.5 = Wa (4.90)

M _ . .
W (P — PBerit) P¥erit : = 37N, 4.91)
(e — p‘I—‘crit)2 \/1 - <1i_—l;;q.;$;>

SRS

&=

.

so that
1 /3
Ny==/—s;
=2\ n
N, — My (p — p‘I’criZ)p‘I’crit (4.92)
v = >
3(pe— p‘Pcrit)z\/l - <Ii:‘;q‘;cr:;)
where
_Mpetpr
PW¥crit 1+m s
M\{J — q¥crit — —<m+ 1)—% (1 . 14 )tan ll/’
P¥crit PW¥crit

so that we can compute the rate of plastic strain tensor as

o Ty
&7 =(Ng+NI) = &)+ 3¢l (4.93)
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4.5.3 Hardening Law

In ParaGeo, there are two methods to describe the evolution of preconsolidation pressure p.
and tensile intercept p; as functions of internal hardening variable, i.e. volumetric plastic
strain €. The first method relies on the empirical input in the form of data points, such that
the value of p. and p; can be obtained via interpolation

Pc = pc(gg); (4.94)
pi = pi(€]). (4.95)

The second method describes p. and p; using exponential functions in the following

forms
veP
Pe = Pc0€Xp (— 7 _”K) ; (4.96)
— poex _ VEmax (4.97)
Dt DPro p A« ¥ 5 .

where p.o and p;q are, respectively, initial preconsolidation pressure and tensile intercept, v
is the specific volume, A is the slope of the normal compression line, x is the slope of the
unloading-reloading line, and 85 max 18 the maximum dilational volumetric plastic strain.

The specific volume v is the ratio between bulk volume and solid volume, given by

Viulk 1
V V. +e = ( )

where e is the void ratio and 7 is the porosity.

Specific volume v

Critical State Normal
Line Compression
Line

/

Unloading-
Reloading Line

Pre-consolidation
Pressure p.

Inp

Fig. 4.13 Illustration of hardening/softening law, describing the evolution of specific volume
as function of the natural logarithm of effective mean pressure p.
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Unlike pe, the tensile strength is treated as non-recoverable'® when the loading becomes
compressive again. Therefore, 85 nax 1S used instead of & in defining the hardening law of p;.
Preconsolidation pressure p. and tensile intercept p; are regularised accordingly as described
in Section 4.4.4 to ensure local finite energy dissipation during the formation and propagation
of shear bands.

In compaction-dominant field scale environment where sediments undergo large change
in porosity, the volumetric strain associated with lower porosity material is expected to be
smaller for a given effective mean pressure increment [84]. This phenomenon can modelled

using a p.-dependent bulk modulus K equation [128]

/

14

= (4.99)

K =Ko+ (1 +Aun)p—KC +Aun

where K is the bulk modulus at deposition, x is the unloading-reloading slope, and A, is

the constant dependence factor.

4.6 Return Mapping Algorithm

4.6.1 Initial Value Problem

Let a motion be prescribed between a given time fy and the next instant of time 7. Then,
with respect to this motion, the small elastic strain tensor €¢(¢), hardening internal variables
o(t), and plastic multiplier rate y are solved using the initial values of small elastic strain
tensor €°(#), hardening internal variables @(#), and the history of the total strain tensor &(t)
for t € |1y, T to satisfy the following elastoplastic constitutive equations:

£°(1) = &(1) — ¥N(o(1),A(r)); (4.100)

0 = 7H(o(1),A(r))
subject to the constraints

7>0, ®(6(1),A1) <0, FB(6(1),A(r)=0. (4.101)

4.6.2 Incremental Constitutive Problem

In the current work, the initial value problem is solved using backward Euler method, which

leads into incremental elastoplastic constitutive problem as stated in the following.

Oynless a separate healing algorithm is called upon.
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Let a motion be prescribed between a given time " and the next instant of time #"*!, such
that At = t"*! — " is defined as the time step of the time interval. Then, with respect to this
motion, the current small elastic strain tensor £¢(¢"*!), hardening internal variables or(#**1),
and plastic multiplier increment Ay are solved using the initial values of small elastic strain
tensor £°(¢"), hardening internal variables @(¢"), and the prescribed incremental total strain

A€ over At to satisfy the following system of algebraic equations

8e7n+1 — %" L Ae —A’}’N(Gn+l,An+l);

n+l __ n n+1 gn+l (4102)
o' =a"+AyH(o" T AT,

subject to the constraints

Ay>0, ®(c"t A" <0, Ayp(c™! AT =0. (4.103)

4.6.3 Decomposition of Stress Tensor into Deviatoric and Hydrostatic
Components

n+1 into its deviatoric and

Similar to plastic strain tensor, it is useful to deconstruct &
volumetric components. In the current work, geomaterials are assumed to have small elastic
domain, and so they are treated to behave linearly elastic. By denoting C as the forth-order

isotropic elasticity tensor, we expand the current stress tensor 6”1 as!!

o'l — 6"+C: <A£n+1/2_A8p,n+l/2)

= (0'"+C : Ae"+1/2> —C: AgPT1/2

clrantl _ . Aep,n+1/2

Lty pyrialnt ] 1 1 (4.104)
_ (sma Ly ptrialns I> —2GAYN™! — 3KAYN™H I
— (strzal n+1 2GA,yNn+l> <pzrial,n+1 _ 3KA’}/N1’,1+1) 1
— SI’H—] +Pn+1l,
from which we have formulated
Sn+1 — Sl‘rialﬂ’l-l—l _ 2GA,YNZ+1 (4105)
pn+1 — ptrial,n-‘rl . 3KA,YN£H-1 (4106)

"'The superscript "*!/2 implies time integration scheme using central difference method.
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Since we use meridional p — ¢ plane to describe stress states and yield locus, it will be

useful to derive an expression for ¢" 1. We first note that

Sn—i—l — strlal,n-‘rl _ ZGA’YNZ—H;

trzal n+1 GA’)/\/_ 1 sn+l (4.107)
JI’H-I
\V /2
By utilising the relation /J3 ™! = 7 L||s"+1||, we express
1 n+1
s =22 (4.108)

" = V2
[+ s+l
2

n+1 . . . . .
The term % is the unit vector corresponding to the direction followed by the correction
path of deviatoric stress tensor on deviatoric plane in the return-mapping algorithm. It is
assumed that this direction is parallel to that of the trial stress state, i.e.

sn+1 Slrial,n+1
571 - [ strialntT||” (4.109)
Hence, we can express
1 1 \/_ girial,n+1 1 rial il
— " =2 — = girannT 4.110
1 || strialnt1]] [ jirial nt1 ( )
2 2
Substituting into (4.107), we obtain
- 3
Sn+1 :StrlalJH—l (1 _A,}/G m) ) (4111)
J2 ?
Also, observe that the (4.107) can also be rearranged into
Sn+l — Sl‘rial,n—i—l 1 ) (4112)
1 +AYG

Jn+1
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Comparing (4.111) and (4.112), it is clear that

3 3
2 2

which can be expanded and simplified as

AYG“ n—H A’)/ “ trzaln+1 A G \/Jn—i-l\/ trmln+l ;

\/Jn—H \/ trial n—H \/Jn+1\/ trial,n+1 0

\/JS_H _ \/Jértal,n—i-l —A’)/\/gG

Since g = \/3J>, we now obtain

V3 = [3re 3Gy,

(4.114)
- qn+1 — qtrial,n+1 o 3GA’}/
To recap,
pn+1 — ptrial,n—i-l _ 3KA’YN",H—1 1S
n+1 __ _trial.n+1 ’ ( : )
g7 =q 3GAy

4.6.4 Modified Drucker-Prager Model

Smooth Return Algorithm

The consistency condition for the discrete form of modified Drucker-Prager yield function is
given by

Pl — gqn+1 4 (tanﬁ”“)p”“ —dm =0, (4.116)

where the notation "*! denotes the updated incremental time step.
It is assumed that the 7-plane correction factor g that is computed using trial stress state

remains unchanged in return-mapping algorithm, i.e.
gl‘l’ial :gn—H’ (4117)

which is hereby denoted as g for notational brevity.
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Then, by substituting the expressions for p"*!

and ¢"*! into the consistency equations,
we obtain

q)n-i-l :g< trial,n+1 _ 3GA}’> + (tanﬁ"“) <ptrial,n+l —Athan an—i—l) _dn+1 =0,

4.118)
where the relation N"+! = 22 lBVHH

has been applied.

To complete the equation, the hardening law is embedded to update the plastic state
variables

dn—i—l — d(éﬂv”"’l);

ﬁn-i—l — ﬁ(ép,n—i-l);

(4.119)
= y(er)
where the hardening internal variable (i.e. effective plastic strain) is updated (4.45)
gPntl — gPn L Ay (4.120)

The full consistency equation for smooth return algorithm is then expressed by

(I)n+l (A’}/) =g (qtrial,n+1 - 3A}’G> +tanB(£‘p’" —|—A}/) (ptrial,n+1 - A)/Ktan l[/(ép’n —i—A’}/))
—d(eP"+Ay) =0.

(4.121)
The scalar function ®"*! (Ay) is solved iteratively using standard Newton-Raphson

method for the unknown incremental plastic multiplier Ay, satisfying Ay > 0. The derivative
of ®"+1(Ay) with respect to Ay is given by

IP(Ay) _ dtanp Jf JErmtIN nl
I ——3gG—|—( 9B 9erml 9Ay P +tanfB
ap.n+l1 ap,n+1
<—Ktany/”“ _AyKatam// dy J¢& ) 0P Jd OJE

dy JEPmHl gAY od gPmt1 9AY
328G+ kﬁp”Jrl sec? B — K tan B! (tan yrl 4 k.,,A’ysec2 V) — kg,

(4.122)

where kg, ky and k, are the slopes associated, respectively, with friction angle f3, dilation
angle v and cohesion d with respect to effective plastic strain €”.
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Then, in the Newton-Raphson algorithm, the update during the i iteration is performed
by

AY T = AY + AAY) | ayeny

Ay (8¢(A7)

*1¢A (4.123)
) e

Ay=Ayi

until Abs [(@(AY )] < tolerance.

Apex Return Algorithm

If the smooth return algorithm yields ¢" ! < 0, then the subroutine of apex return algorithm is
required since, by definition, the effective deviatoric stress g = v/3.J, is always non-negative.

In apex return algorithm, the stress correction procedure is done solely on the axis of
effective mean stress p, which corresponds only to the change of volumetric plastic strain

Ael . In view of this, we observe from plastic flow rule and hardening law that

AgP = Aytan y;
e (4.124)
AEP = Ay,
from which we may form the relation
Ael = AgPtan y. (4.125)

The resulting consistency equation for apex return algorithm is therefore given by

@™ (ABP) =tan B (EP" + AEP) (pm'alvnﬂ — KAEPtany (8P + Aép)> _d(EP" + AEP) = 0.
(4.126)

This scalar function ®**! (Ag?) is solved iteratively using standard Newton-Raphson
method for the unknown effective plastic strain AZ”. The derivative of ®""!(AgP) with
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respect to AE” is given by

dB(AEP)  [(dtanf OB EPMN . .
DAEP _< 3B gern gagr )P tuanb

dany Jy JEMIN 9P dd Jerntl
oy JEPtL JAEP od JEPHT OAEP

= kgp" " sec? B — Ktan B! (tan y" ! + ky AEP sec” y) — ky.

(—Ktan vy KAEP

(4.127)

Then, in the Newton-Raphson algorithm, the update during the " iteration is performed
by

AP — AgPi A(Aép)|Ag-p:Aél%i

(acp(Aép) ) -1 q)(Aép)] (4.128)

— AEP _
JAEP o
AEP=AEPH

until Abs [(P(AE71)] < tolerance.

In case of critical state condition, dilation angle v = 0. This state corresponds to a
failure condition at which soil deformation takes place at zero volumetric plastic strain under
continuous loading due to plastic failure. We may then assume that the cohesive strength is

reduced to zero under this condition.
v=0&d=0. (4.129)

Note that, with the condition of d"*! = 0, we only have one option left for the value of

P! in the consistency equation, and that is
pn+] — ptrial,n—l-] _KAE‘{J — O, (4130)
ptrial,nJrl
= Ael = —x (4.131)

The effective plastic strain is then updated via
grntl —gpn Ay, (4.132)

where

qtrial n+1

AYy=—+~— 4.133
Y 3G ( )
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which is obtained from ¢"*! = 0. The pseudocodes for the return-mapping algorithm are all
listed in Appendix.

4.6.5 SR4 Model
Shear Side Return

The consistency condition for the discrete form of SR4 model yield function on the shear
side requires that

ntl _ opkly 1/N
@SRAn+1 _ p 14 ) —0, (4.134)

+1 +1 +1
shear gqn +(pn —P? )tanﬁ( n+1 fl+1
Pr Pc

which is solved along with
Ael = 3AYN; T
1/m
w1 _ tany - 1 Pl pptl Pt — prtl /
Y 3 m \ prtl — prt! prtl— pptl '
By substituting the expressions for p"*! and ¢"*! into the equations above, we obtain

CI)SR4JZ+1 (A'}/, Agé))

shear

. . trial,n+1 — KAgP — n+1y 1/n
—g <qtrml,n+l . 3GA’)/) + <Ptrlal,n+1 —KASf _p;1+l> tanﬁ (p — nle Pc > — 0’
A
(4.135)

which is to be solved with function f5 gear(AY, A€Y N
fr.shear(By, 88 NJTT) = Aef —3AyN) ™! =0, (4.136)
and function f3 geqr(A€),N1)

f3,shear (Ag\lf ) N\’;1+1 )

j 1 ' 1/m
_ N(}H_l B tan y <1 N l <ptr1al,n+l _KA€5 —p?+ )) <ptrzal,n+1 —KA&? _p?+1> o

3 m ptrial,n+l _ KAS\? —p?—H p;t—i-l _sz-l

(4.137)
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