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Dedication 

In dedication to my precious family, Ryan, Elza, Mariangela and Fatima 

for your loving support and encouragement. 

“If we could give every individual the right amount of nourishment and exercise, not too little 

and not too much, we would have found the safest way to health.” 

Hippocrates, 450 B.C. 
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Abstract 

Cystic Fibrosis (CF) is a multisystemic condition that affects almost every organ in the body, 

but especially the lungs. Regular physical activity (PA) can significantly slow disease 

progression and has become a crucial part of CF care. Previous research evaluating PA in CF 

has been hindered by the use of cut-points developed for healthy populations and the 

investigation of collinear movement behaviours as independent entities, both of which are 

likely to have confounded their findings and any subsequent inferences regarding associated 

health outcomes. Therefore, the overall aim of this thesis was to investigate the measurement 

and analysis of PA in those with CF.  

An initial systematic review provided recommendations for research calibrating accelerometry 

in paediatric clinical populations, highlighting that the pathophysiology of the condition must 

be accounted for and that the protocol should include a broad range of activities varying in 

intensity (Chapter 4). Subsequently, Chapter 5 developed and cross-validated raw 

acceleration CF-specific cut-points in youth which were then further assessed in Chapter 6, 

demonstrating that the CF-specific thresholds were associated with higher levels of moderate-

to-vigorous physical activity (MVPA) and sedentary time (SED) and lower levels of light PA 

compared to generic cut-points. Furthermore, lung function was associated with light PA when 

using condition-specific thresholds. Further investigation of the relationship between PA and 

health in Chapter 7 found that reallocating time from sedentary to any other behaviour was 

beneficial for lung function, with the greatest improvements observed when SED was 

reallocated to sleep or MVPA. Finally, Chapter 8 developed and validated machine learning 

algorithms that achieved excellent accuracy to classify PA types and intensities in youth with 

CF.  

In conclusion, these findings significantly advance the assessment of PA, enhancing our 

understanding of the relationship between PA and health in CF and informing future condition-

specific PA guidelines, care strategies and interventions. 
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𝑧𝑖 =  √
𝐷 − 𝑖

𝐷 − 𝑖 + 1 
 𝑙𝑛

𝑥𝑖

√Π𝑗
𝐷 = 𝑖 + 1𝑥𝑗  

𝐷−𝑖
, 𝑓𝑜𝑟 𝑖 = 1, … , 𝐷 − 1 
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CHAPTER 1 

Introduction 

 

Cystic Fibrosis (CF) is an autosomal recessive condition more prevalent in the Caucasian 

population, currently affecting more than 100,000 individuals worldwide and 10,500 people in 

the United Kingdom (UK; Cystic Fibrosis Trust, 2018). Whilst a cure is yet to be found, life 

expectancy has increased progressively to a median survival age of 48 and 44 years for males 

and females, respectively, due to a broader understanding of the condition and advancements 

in treatments (Keogh & Stanojevic, 2018). Cystic Fibrosis is caused by a single mutation in the 

long arm of chromosome seven that translates to a chloride channel protein. The result is a 

chloride channel with abnormal function that causes a disruption in the homeostasis of 

electrolytes throughout the whole body, but particularly in the lungs and pancreas (Hull, 2012). 

Consequently, CF is characterised, amongst other things, by progressive lung disease and 

malnutrition, with the most common cause of death being respiratory failure (Elborn, 2016; 

Radtke et al., 2017).  

Physical activity (PA) is a broad term describing any bodily movement produced by 

skeletal muscles that requires energy expenditure, and encompasses activities including, but 

not limited to, leisure, household, transport, sport and exercise (Caspersen et al., 1985). Among 

many other benefits, in those with CF, regular PA maintains pulmonary function, reduces the 

number of hospitalisations and improves overall health (Hebestreit et al., 2014). More 

specifically, exercise, a sub-component of PA, in those with CF improves blood glucose control 

(Foster et al., 2018), bone mineral density (Selvadurai et al., 2002), pulmonary clearance (Cox 

et al., 2018), quality of life (QoL; Hebestreit et al., 2014) and aerobic capacity independent of 

lung function, age or gender (Cox et al., 2018). Therefore, regular PA is vital to the 

maintenance of lung function, enhancing prognosis, survival and quality of life in those with 

CF (Paranjape et al., 2012; Schneiderman et al., 2013). Despite the crucial importance of PA, 

children and adolescents with CF, become less physically active with age (Bacil et al., 2015). 

However, whilst age-related declines are similarly reported in healthy children as they 

approach maturation (Bacil et al., 2015), the declines appear to be greater, and possibly from a 

lower baseline, in those with CF (Nixon et al., 2001). Of concern, physical inactivity has 

serious implications for those with CF, such as decreased aerobic capacity, reduced life 

expectancy and accelerated disease progression (Radtke et al., 2017).  
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Despite the recognised benefits associated with regular PA for children with CF, there is 

still a dearth of research objectively assessing PA levels in those populations (Kilbride et al., 

2012; Mackintosh et al., 2018; Selvadurai et al., 2004). Consequently, there is little consensus 

on PA levels in paediatric CF populations, which is particularly concerning given the 

contribution of physical inactivity in accelerating disease progression (Troosters et al., 2009). 

Indeed, Aznar et al. (2014) reported that as little as 2.1% of children with CF achieved the 

recommended 60 minutes of moderate-to-vigorous physical activity (MVPA) daily 

(Department of Health and Social Care, 2019), but engaged in more total PA, largely 

accumulated from  lower intensities, in comparison with their healthy peers. In contrast, 

Selvadurai et al. (2004) reported that no significant differences in PA levels were found 

between children with and without CF. These inconsistent findings may be due to inter-study 

methodological discrepancies, not least the reduction of raw accelerometer data to arbitrary 

‘counts’, which are associated with major limitations, such as the loss of key information for 

PA classification (Schmiedek et al., 2016). Indeed, the use of machine learning and/or cut-

points developed from raw acceleration metrics have been shown to provide superior accuracy 

in comparison to counts in healthy children (Schmiedek et al., 2016).  

The interpretation of earlier studies reporting PA levels in those with CF is limited by 

their reliance on cut-points developed for healthy populations, which fail to account for the 

greater nutritional and energetic demands engendered by the condition (Brage et al., 2019). 

Specifically, chronic respiratory diseases, such as CF, are often associated with higher 

energetic demands due to the high cost of breathing and reduced exercise tolerance (Lipert & 

Jegier, 2017). These demands are likely to translate to a greater relative intensity of a given 

activity or accelerometry signal, potentially leading to the misclassification of PA intensities, 

and thus overall PA levels, in those with CF. These issues may be further exacerbated by the 

delayed onset of puberty (Aswani et al., 2003), as well as a slower rate of progression (Landon 

& Rosenfeld, 1987), suggested in youth with CF, although these remain controversial 

(Goldsweig et al., 2019). Indeed, PA levels are likely to change after the onset of puberty in 

those with CF (Selvadurai et al., 2004). Therefore, the establishment of specific guidance 

regarding the type, intensity and frequency of PA and exercise that is prescribed is not only 

required, but would greatly benefit children and adolescents with CF (Cox et al., 2018). It is 

imperative to ascertain the optimal dose of PA and exercise required to confer health benefits 

for those with CF.   
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Regular PA can elicit acute and chronic physiological changes which might vary 

according to the frequency, duration, intensity and type of the activity. Accelerometers are 

currently the most widely used method to measure PA among a wide array of available 

techniques (Lipert & Jegier, 2017; Patterson et al., 2018). Accelerometers are wearable devices 

able to detect velocity over time, which can be translated into PA patterns and intensities by 

using cut-points, prediction equations or, more recently, machine learning models (Farrahi et 

al., 2019; Welk, 2005). Specifically, accelerometers allow the objective measurement of PA 

intensities, such as light physical activity (LPA) and MVPA, as well as sedentary time (SED). 

However, an important limitation of using prediction equations and cut-points to derive time 

spent in the respective intensity domains is that they are highly specific to the population from 

which they were derived. When such cut-points are applied to other populations or activities 

other than those on which they were developed, they can significantly over- or underestimate 

energy expenditure (EE; Serra et al., 2017; Stephens et al., 2016). Indeed, cut-points and 

predictive equations developed for healthy populations will not account for the altered resting 

metabolic rate and higher EE demands that are typical in individuals with chronic conditions, 

such as CF (Bandini et al., 1991; Epstein et al., 1989; Ramsey et al., 1992).  

Recently, considerable attention has focussed on machine learning approaches to estimate 

EE from accelerometer data, with suggestions that this may be the most accurate method for 

PA classification, providing 99.8% accuracy when applied to free-living behaviours in healthy 

children (Ahmadi, Chowdhury, et al., 2020; Fergus et al., 2015) and adults (Bonomi, Plasqui, 

et al., 2009; Doherty et al., 2018; Staudenmayer et al., 2015; Staudenmayer et al., 2009). 

Furthermore, machine learning has been used in clinical populations, such as Cerebral Palsy 

(Ahmadi et al., 2018; Trost et al., 2016), demonstrating higher accuracy (> 80%) in comparison 

with traditional methods (~60%). The detail that can be achieved with machine learning 

algorithms has the potential to facilitate a greater understanding of the relationship between 

different PA behaviours and health outcomes.  

It is well known that less SED and more time being physically active are associated with 

multiple health benefits, and therefore, are the targets of the majority of interventions. 

However, it is pertinent to note the finite nature of PA behaviours, such that any reallocations 

of behaviour must have reciprocal effects (Aitchison, 1982; Dumuid et al., 2018). 

Compositional analysis has been suggested to produce more reliable results when compared to 

traditional approaches, such as regression models. Interestingly, Chastin et al. (2015) found 

that compositional analysis resulted in different associations between PA and cardiometabolic 
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health markers in comparison with traditional approaches. This raises important questions as 

to the most appropriate way to analyse accelerometer data, with little consideration to date of 

the application of such methods to clinical populations. A more integrated approach that 

includes all daily activity behaviours could provide crucial information for future PA 

recommendations (Dumuid et al., 2018); disease-specific measures of PA levels in CF are 

paramount to advancing our understanding of the association between PA and health outcomes, 

enabling the tailoring of interventions and recommendations for those with CF. 

 

1.1 Thesis Aims 

The overall aim of this thesis was to investigate the PA levels in those with CF. Specifically, 

the thesis sought to develop CF-specific cut-points for youth, accounting for relevant factors, 

such as maturity stage and disease severity. A further aim was to use these cut-points to 

investigate how PA was accumulated in youth with CF. Specifically, this thesis sought to: 

Chapter 4 (Study 1) – Provide a thorough systematic review of the literature and draw 

recommendations for the calibration and cross-validation of accelerometry in children and 

adolescents with chronic conditions. 

Chapter 5 (Study 2) – Develop and cross-validate disease-specific cut-points for the 

measurement of sedentary, moderate and vigorous activities in children and adolescents with 

CF and investigate how these thresholds vary according to accelerometer placement and brand. 

Chapter 6 (Study 3) – Determine the PA levels in children and adolescents with CF using 

disease-specific cut-points in order to (i) assess whether the PA guidelines for health are being 

met; and (ii) to investigate the association between PA levels and lung function. 

Chapter 7 (Study 4) – Use compositional analyses to investigate the association between time 

spent in sleep, SED, LPA and MVPA with lung function in children and adolescents with CF.    

Chapter 8 (Study 5) – Develop and cross-validate machine learning models to predict different 

activities and intensities in children and adolescents with CF, across different accelerometer 

brands and placements. 
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CHAPTER 2 

Literature Review 

 

2.1 History of Cystic Fibrosis 

 

       The first account of Cystic Fibrosis (CF) was in the 1930s, prior to it even being recognised 

as a disease when Blackfan and Wolbach (1933) described the condition as a pathology of the 

pancreas, as well as a lung disease, caused by Vitamin A deficiency. Later, Andersen (1938) 

defined the condition as ‘the cystic fibrosis of the pancreas’ (pp. 344 - 396). Thus, the condition 

was originally considered as originating from a pancreatic failure, leading to malnutrition, 

growth impairment and pulmonary infection (Davis, 2006). Ten years later, during the heat 

wave in New York, it was first discovered that some of the infants presenting heat prostration 

had elevated levels of sodium and chloride in their sweat, which is now a key characteristic of 

CF diagnosis (Di Sant'Agnese et al., 1953). However, it was not until 1989 that the cause of 

CF was discovered to be a genetic mutation (Dodge, 2015; Ratjen et al., 2015). 

 

2.2 Pathogenesis of Cystic Fibrosis 

 

Cystic Fibrosis is caused by a mutation in the gene responsible for the transcription of the 

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and is the most common, 

fatal, hereditary disorder worldwide (Hector et al., 2015). More than 2,000 gene variations are 

related to CF, but only 150 cause CFTR malfunction. The CFTR gene translates to the CFTR 

chloride channel protein which also has a fundamental role in the secretion of bicarbonate and 

inhibition of sodium transport. Thus, mutations not only have an impact on the synthesis of 

CFTR protein, but also on its function, quantity, placement and stability in the cell membrane, 

which can lead to a broad range of manifestations of the disease, even for individuals with the 

same genotype (Elborn, 2016; Hector et al., 2015; Ratjen et al., 2015).  

Cystic Fibrosis is typically characterised by progressive deterioration in lung function and 

exocrine pancreatic insufficiency (Somayaji et al., 2017). Indeed, chronic obstructive lung 

disease, from viscous mucus accumulation, airway inflammation and bacterial infection, is the 

major cause of morbidity and mortality in CF (Mall & Hartl, 2014). Furthermore, pancreatic 
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insufficiency results in gastrointestinal malabsorption and malnutrition, which are associated 

with decreased fat stores, muscle wasting and impaired growth. Whilst single organ 

manifestations can be present in individuals with residual CFTR function and are considered 

mild mutations, ‘severe mutations’ are usually associated with multiple manifestations (Elborn, 

2016). Moreover, individuals with CF may also present with secondary manifestations, such 

as distal intestinal obstruction syndrome (DIOS), CF-related liver disease, oesophageal varices, 

bone disease, joint and abdominal pain and CF-related diabetes (CFRD; Ratjen et al., 2015). 

 

2.2.1 Cystic Fibrosis Transmembrane Regulator  

 

CFTR mutations are categorised into six classes according to their impact on function; 

classes I, II and III are considered severe, with no residual function of the CFTR channel, while 

classes IV, V and VI have some CFTR residual function and are associated with a mild 

phenotype. Whilst clinically relevant, this classification system is not without problems. 

Indeed, one class does not always explain the phenotype as one mutation can fall into more 

than one class (Cutting, 2014). For example, the Phe508del is the most common CFTR 

mutation in northern Europeans and is mainly categorised as class II with a misfolded CFTR. 

However, some small amount of the CFTR protein is transported to the membrane and still 

functions albeit at severely reduced levels, placing the mutation into classes III and VI (Cutting, 

2014; Sosnay et al., 2013; Wilschanski et al., 1995). 

 

2.3 Pathophysiology of Lung Disease in Cystic Fibrosis  

 

Airway disease is of particular importance as the main cause of mortality and morbidity 

in CF, and is hypothesised to result from an intricate process involving mucus accumulation 

(Ratjen, 2009). Whilst the pathophysiology of lung disease in CF is yet to be fully understood, 

the study of CFTR function has provided some understanding of the complex disease 

manifestations. Specifically, the faulty epithelial CFTR leads to an abnormal transportation of 

chloride, sodium and bicarbonate, resulting in diminished airway surface hydration in the lungs 

(Henderson et al., 2014). This inadequate hydration and osmolality causes ciliary instability 

and collapse, subsequently hindering mucociliary clearance which, in turn, leads to mucus 
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accumulation (Ratjen, 2009). Diminished hydration of the airway surface also contributes to 

the impaired transportation of this mucus and may help to explain the changes in the physical 

properties and adhesion of mucus. Furthermore, the disruption in CFTR function may impair 

the transportation of bicarbonate, leading to key changes in pH levels that culminate in an 

increased mucus viscosity and an impaired innate immunity (Elborn, 2016). The accumulation 

and alteration in the properties of mucus increase the predisposition to infection and airway 

injury, ultimately leading to loss of airway functionality, and respiratory failure (Ratjen, 2009).  

As CFTR regulates the inflammatory response by interacting with integral membrane 

proteins, it is directly associated with the high number of exacerbations observed in those with 

CF. Specifically, evidence suggests that the mutation of CFTR causes epithelial cells to become 

pro-inflammatory compared to healthy cells (Elborn, 2016). The reason for the pro-

inflammatory response in CF may be the interaction between the mutated CFTR and leukocytes 

cells. Evidence suggests that the mutated CFTR has a direct effect on neutrophil degranulation 

(Pohl et al., 2014) and on the inflammatory response of macrophages (Bruscia & Bonfield, 

2016). Indeed, neutrophilic inflammation releases factors, such as neutrophil elastase, which 

exacerbate the airway dehydration, increase mucus production and cause significant damage 

(Elborn, 2016; Ratjen, 2009). In addition, deficiency of CFTR is also linked to abnormal 

regulatory T cell response (Hector et al., 2015). Despite this, it is currently unknown whether 

the infection of the airway must precede inflammation to initiate the respiratory disease in CF 

(Elborn, 2016; Ratjen, 2009). Pseudomonas aeruginosa, Staphylococcus aureus and 

Aspergillus species are among the most common pathogens affecting those with CF and are 

associated with frequent exacerbations (Bhatt, 2013). Infection control is therefore imperative 

to avoid tissue damage and subsequent respiratory failure.  

  

2.4 Clinical Manifestations of Cystic Fibrosis Lung Disease  

 

Lung disease in CF is progressive, with a broad range of clinical manifestations that 

usually involve dyspnea, sputum production and chronic cough (Davies et al. 2007). The onset 

of CF lung disease consists of air trapping, bronchial wall thickening and bronchiolitis. 

Subsequent obstructive pulmonary disease occurs as a result of inflammation combined with 

viscous mucus blockage of the airways and hyperventilation (Somayaji et al., 2017). Persistent 

inflammation and infections in the airway can cause irreversible damage and bronchiectasis, 
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which is characterised by structural impairment of the airways (i.e. thickening, dilatation, and 

herniation). Specifically, bronchiectasis compromises clearance of mucus and leads to further 

inflammation and infection, which contributes to the vicious cycle of recurrent and persistent 

pulmonary exacerbations. Subsequently, as a result of lung disease progression, respiratory 

failure results in hypoxemia and hypoventilation (Don Hayes et al., 2014). In extreme cases, a 

complex process involving alveolar hypoxia stimulates pulmonary vasoconstriction, which can 

progress to pulmonary hypertension and cor pulmonale (Don Hayes et al., 2014; Evans et al., 

2011).  

Objective measures of disease progression are extremely important in chronic 

conditions, such as CF, in order to tailor treatment and maintenance of the condition. 

Spirometry is the most common technique to measure pulmonary function in individuals with 

CF (Scholz et al., 2017; Vilozni et al., 2007). Specifically, forced expiratory volume in the first 

second (FEV1) is the main outcome measure derived from spirometry, and is directly associated 

with survival (Kerem et al., 1992; Taylor-Robinson et al., 2012). Importantly, FEV1, commonly 

expressed as percentage of the predicted value (FEV1%predicted), is also used to grade disease 

severity as mild (> 70%), moderate (40 - 69%) or severe (< 40%; Davies & Alton, 2009). 

Diminished FEV1 rates can indicate an exacerbation and/or poor treatment response, and is 

used to inform critical clinical decisions in those with CF, such as referral for lung transplant. 

Therefore, it is vital to distinguish changes in FEV1%predicted due to measurement error or 

normal daily-fluctuations from important clinical alterations related to the progression of 

airway disease (Taylor-Robinson et al., 2012). It is therefore recommended that additional 

measures are considered when interpreting any potential changes in lung function. For 

example, forced vital capacity (FVC), also measured by spirometry, can also indicate 

obstruction and dynamic collapse of the airways during a forced expiratory manoeuvre 

(Quanjer & Weiner, 2014).  

                                         

2.5 Extrapulmonary Manifestations of Cystic Fibrosis 

 

2.5.1 Gastrointestinal Disorders 

 

The impairment of CFTR might also have important consequences to the 

gastrointestinal tract, specifically involving the pancreas, intestines and liver (Haack et al., 
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2013; Somayaji et al., 2017). Indeed, evidence suggests that those with CF present chronic 

inflammation of the gastrointestinal tract (Somayaji et al., 2017). In the pancreas, the lack of 

CFTR will result in reduced water content of pancreatic secretions and a decreased in pH level, 

leading to pancreatic insufficiency in 60 - 80% of individuals with CF (Castellani & Assael, 

2017). Pancreatic insufficiency occurs due to the obstructive viscosity of the luminal content, 

which subsequently progresses to inflammation and fibrosis of the organ. Malnutrition and 

poor growth are consequences of fat malabsorption due to pancreatic exocrine insufficiency. 

Ultimately, later in life, the loss of pancreatic function can lead to CFRD, which is associated 

with a poor prognosis (Moran, Becker, et al., 2010).  

 

2.5.2 Endocrine Comorbidities 

 

As CFTR is expressed in epithelial cells and functions as an important regulator in 

multiple physiological processes, endocrine comorbidities are common in those with CF. The 

most common endocrine comorbidity in CF is CFRD due to pancreatic fibrosis, affecting 40-

50% of older patients (Castellani & Assael, 2017). Fibrosis of the pancreas is progressive and 

occasionally affects the insulae, causing reduced insulin secretion (Kayani et al., 2018). Despite 

showing similar features as type 1 and type 2 diabetes, CFRD is considered as distinct clinical 

entity, and it is related with worsening of lung disease and increased mortality (Moran, 

Brunzell, et al., 2010). For example, Okoniewski et al. (2020) found that children with CFRD 

and poor glycaemic control show lower FEV1 recovery during acute pulmonary exacerbations. 

In accordance, improvement in hyperglycaemia control reduces respiratory exacerbations and 

delay lung disease progression (Castellani & Assael, 2017).  

A complex variety of factors contributes to bone disease in CF, such as malnutrition, 

lung disease severity, poor mobility, steroid use, systemic inflammation, and increased bone 

turnover. In the late stages of the disease, 50% of individuals with CF are at risk of developing 

osteopenia, osteoporosis, and consequently, bone fractures. Furthermore, CFTR is also 

expressed in bone cells and might play an important role on bone metabolism (Castellani & 

Assael, 2017). Reduced growth velocity is another important endocrine alteration that is often 

present in CF children and adolescents (Wong et al., 2016). Such delayed growth has been 

attributed to a diminished pituitary secretion of growth hormone, coupled with chronic 

inflammation and suboptimal nutrition (Castellani & Assael, 2017; Wong et al., 2016). 
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Importantly, short stature, specifically height below the 5th United States National Centre for 

Health Statistics (NCHS) percentile for age, is an independent predictor of mortality and 

directly associated with disease severity, as an indicator of malnutrition or frequent pulmonary 

exacerbations (Beker et al., 2001; Vieni et al., 2013; Wong et al., 2016). The implications of 

delayed growth are a lower lung reserve and delayed skeletal maturation, and it often precedes 

the onset of CFRD (Wong et al., 2016). 

 

2.6 Epidemiology: Incidence and Mortality of Cystic Fibrosis in the UK 

 

Whilst CF was first described in 1938 as a deadly disease affecting early childhood, the 

majority of deaths currently occur in adulthood, with CF now considered an adult disorder 

(Elborn, 2016). Following advances in our understanding of the condition, which enabled more 

effective therapies, predicted survival has increased from 18 years in 1976 to 47.3 years in 

2018 (Figure 2.1; Davis, 2006; Keogh & Stanojevic, 2018). However, CF still poses a 

significant challenge for the health-care systems as a multi-organ disease that requires 

multidisciplinary care and age-specific expertise (Elborn, 2016).  

 

 

 

 

 

 

 

 

 

Figure 2.1 Median Predicted Survival age in Cystic Fibrosis   

Image adapted from Cystic Fibrosis Trust (2018) 

 

Individuals with CF are recommended daily treatment, which varies according to disease 

severity but usually involves keeping their lungs free of mucus to avoid infections. 
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Physiotherapy is one of the foundation treatments, with the techniques used drastically 

advancing in recent decades. Initially, in the early 1980s, physiotherapy for those with CF 

comprised solely of airway clearance techniques, and children were recommended to refrain 

from moderate-to-vigorous physical activity (MVPA). In contrast, the regular practice of 

physical activity (PA) and exercise are now an integral part of the care for those with CF to 

counter lung function decline, assist in airway clearance, and improve and maintain bone 

mineral density, muscle strength and cardiovascular fitness (Cosulich et al., 2017; Lannefors, 

2012). Given that regular PA and exercise are key to delay the decline in FEV1%predicted (Figure 

2.2) and reduce the number of exacerbations, they are also considered as important prognostic 

indicators (Lannefors, 2012).  

 

 

Figure 2.2 Lung Function (FEV1%predicted) Decline in Cystic Fibrosis  

Image adapted from Cystic Fibrosis Trust (2018). Annual review refers to the multidisciplinary yearly assessment conducted 

in specialist Cystic Fibrosis Centres. 

 

Despite recent efforts to consolidate PA and exercise in the therapeutic routine (Cosulich 

et al., 2017), those with CF face numerous disease-specific barriers, such as exercise 

intolerance, in addition to the barriers typically faced by their healthy peers. For example, 

Denford et al. (2020) identified the lack of enjoyment of PA and family’s sedentary lifestyles 

as barriers to PA that were common to those with and without CF. In contrast, unstable health 

and a perception of limited control over the condition were barriers to PA exclusive to youth 

and young adults with CF. Rand and Prasad (2012) also reported that treatment burden is an 

important factor limiting regular PA in CF populations. The pathophysiological alterations in 

CF are also the source of exercise intolerance, therefore hindering PA accumulation, which 
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subsequently reduces the tolerance to exercise even further in a vicious cycle (Wilkes et al., 

2009). 

2.7 Factors Limiting Exercise Tolerance in Cystic Fibrosis 

 

In addition to constituting one of the barriers to PA, exercise intolerance also has 

important implications to the measurement of PA in CF. Specifically, the pathologic exercise 

intolerance is one of the main justifications for the enhanced energetic cost of daily-life 

activities for those with CF in comparison with their healthy counterparts (Matel & Milla, 

2009). Consequently, device-based measures of PA in CF are likely to be misclassified, since 

those methods are usually calibrated using the energy expenditure (EE) of healthy populations 

as a reference (Troosters et al., 2009). Exercise intolerance in CF is multifactorial, but 

particularly occurs due to pulmonary disease, malnutrition and chronic inflammation (Pastré et 

al., 2014). Additionally, hemodynamic dysfunction and low oxidative efficiency may also 

contribute to the reduced exercise tolerance in CF. Fielding et al. (2015) found that aerobic 

performance during maximum cardiopulmonary exercise test (CPET) was significantly lower 

in CF in comparison with healthy controls. Exercise capacity is usually determined with a 

CPET and expressed as peak oxygen uptake (V O2peak), which is defined as the maximum ability 

to generate energy through aerobic metabolism (Nichols et al., 2015; Vendrusculo et al., 2019). 

Most importantly, V O2peak, maximal work rate, and ventilatory equivalents for oxygen uptake 

(VE/V O2), measured during a CPET, all predict survival in CF (Savi et al., 2013).  

 

2.7.1 Pulmonary Factors 

 

Progressive airway disease with subsequent decreases in FEV1 are the main pulmonary 

factors contributing to exercise intolerance in CF. Specifically, those factors culminate in 

airflow limitation, increased physiological dead space, carbon dioxide retention and static 

hyperinflation (Bongers et al., 2014; Paolo et al., 2019). The increase in dead space is also 

exacerbated during exercise, causing a deficit in the ventilatory reserve and ventilatory 

capacity. Indeed, children and adults with CF often show an increased maximal voluntary 

ventilation during vigorous activities as a compensation mechanism (Sovtic et al., 2013; Stein 

et al., 2003). However, this compensation mechanism often results in hyperinflation, 
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hypoxemia and the premature fatigue of respiratory muscles (de Jong et al., 1997). In particular, 

exercise induced hypoxemia is a key determinant of exercise intolerance in CF, and it is defined 

as a reduction of > 4% from the oxygen saturation at rest in children (Narang et al., 2003).  

 

2.7.2 Cardiovascular Factors 

 

As lung disease progresses in CF, pulmonary hypertension and cor pulmonale might 

affect the structure of the heart, particularly with regard to the right ventricle. Specifically, 

dilation of the right ventricle causes the heart to assume an abnormal shape, such as a concave 

curvature with posterior dislocation of the interventricular septum. Consequently, these 

anatomical abnormalities lead to dysfunctional contraction of the cardiomyocytes and 

subsequent reductions in stroke volume. Indeed, Van Iterson et al. (2018) showed that those 

with mild-to-moderate CF had a reduced stroke volume and lower cardiac output during a 

submaximal exercise test compared to healthy controls. Whilst the cardiomyopathy secondary 

to lung disease in severe CF is well described in the literature (Sayyid & Sellers, 2017), studies 

using echocardiography also demonstrated decreased ventricular strain even in those with 

preserved lung function (Sayyid & Sellers, 2017; Sellers et al., 2015). This is suggested to be 

due to the effect of the abnormal CFTR on the cardiomyocytes (Sellers et al., 2015), which 

results in impaired cardiac function. Indeed, Van Iterson et al. (2016) demonstrated that the 

abnormal cardiac function was strongly related to exercise intolerance during CPET in those 

with moderate CF.  

 

2.7.3 Nutritional and Metabolic Factors 

 

Nutrition has been reported to be related with longitudinal changes in exercise capacity 

(Klijn et al., 2003) and skeletal muscle function in CF. Essentially, malnutrition and prolonged 

nutritional deficits can cause muscle wasting and reductions in fat free mass (Lands et al., 1992; 

Papalexopoulou et al., 2018). Most importantly, the systematic reduction of peripheral muscle 

negatively affects lung function and exercise tolerance in CF. Initially, mitochondrial 

dysfunction was considered as the main cause for the pathophysiological changes in skeletal 

peripheral muscles in CF (de Meer et al., 1995). However, studies measuring muscle 
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metabolism during exercise in CF have shown a slower recovery and reduced concentration of 

substrates in skeletal muscles. In addition, evidence suggests that the peripheral muscle 

weakness in CF might also result from factors such as calcium dysregulation, systemic 

inflammation, hypoxemia and enhanced energetic demands (Jaffé & Montgomery, 2005; 

Selvadurai et al., 2003). It is noteworthy that the exercise intolerance is likely to lead to physical 

inactivity and consequently further aggravate the systemic muscle weakness (Dupont et al., 

2009). Finally, whilst inactivity is not the main cause for muscle weakness, PA plays a crucial 

role in exercise tolerance and muscle strength in CF (Dupont et al., 2009).      

 

2.8 Physical Activity and Sedentary Behaviour 

 

Defined as “any bodily movement produced by skeletal muscles that results in energy 

expenditure above resting” (Caspersen et al., 1985; page 126), PA is usually classified 

according to activity intensity, specifically light (LPA), moderate (MPA) and vigorous (VPA) 

physical activity. Additionally, as PA is habitual, it can also be categorised as occupational, 

household, transport and sports, for example. Exercise, a subcomponent of PA, is planned and 

structured with a focus on maintaining or improving fitness (Caspersen et al., 1985). The 

recommendation that children and adolescents should accumulate at least 60 minutes of MVPA 

per day across the week are in place for non-clinical populations (Chief Medical Officers, 

2019).  

The Sedentary Behaviour Research Network defined sedentary behaviour as any waking 

behaviour eliciting an enery expenditure (EE) below 1.5 metabolic equivalents of task (METs) 

whilst in a sitting, reclining or lying posture; and sedentary time (SED) as the time spent in 

sedentary behaviour (Tremblay et al., 2017). It is noteworthy that sedentary behaviour and 

physical inactivity are not synonyms (Pate et al., 2008). More specifically, physical inactivity 

is a well recognised risk factor accounting for 9% of premature mortality worldwide (Lee et 

al., 2012), and it is defined as insufficient PA levels to meet the current guidelines (Tremblay 

et al., 2017). Indeed, van der Ploeg and Melvyn (2017) highlighted that it is possible to 

accumulate large amounts of both MVPA and SED in the course of a day. Most importantly, 

the accurate estimation of SED and MVPA in CF is vital in order to establish their impact on 

health, and, subsequently, inform strategies and guidelines in this population.   
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2.9 The Impact of Physical Activity on Health in those with Cystic Fibrosis 

 

The benefits of PA and exercise in healthy populations are well established, particularly 

those associated with MVPA (Warburton et al., 2010); regular PA and exercise provide 

protective effects and are directly associated with a healthy cardiometabolic profile across the 

life span. In those with CF, PA is positively correlated with lung function, aerobic capacity, 

exercise tolerance, nutritional status and quality of life (QoL) in both children (Hebestreit et 

al., 2006; Hebestreit et al., 2014; Schneiderman et al., 2014) and adults (Savi, Di Paolo, et al., 

2015; Shelley et al., 2019). Furthermore, regular PA increases airway clearance and leads to a 

reduction in exacerbations and hospitalisations (Savi et al., 2013; Swisher & Erickson, 2008). 

Consequently, the National Institute for Health and Care Excellence (NICE) guidelines advise 

the use of PA and exercise as part of the management of CF, to maintain respiratory function 

or slow respiratory function decline, facilitate sputum clearance, improve bone density, and 

benefit the musculoskeletal system (Cosulich et al., 2017). 

 

2.9.1 Physical Activity and Exercise Capacity 

 

When exercise was first investigated as a possible therapeutic tool for people with CF 

(Godfrey & Mearns, 1971), aerobic training was considered to be more beneficial than 

anaerobic training. Subsequently, regular aerobic exercise training has been evidenced to slow 

lung function decline and increase exercise tolerance in children with CF (Schneiderman-

Walker et al. 2000; Swisher et al. 2015). Additionally, regular PA seems to be related with the 

maintenance of increased aerobic capacity following an exercise intervention even during 

exacerbations (Selvadurai et al., 2002). Specifically, Selvadurai et al. (2002) developed a 

randomised controlled intervention to assess the impact of performing aerobic and resistance 

training in children with CF, during a hospital admission as a result of an acute exacerbation. 

The aerobic group showed significantly better peak aerobic capacity and PA levels in 

comparison with no training or resistance training, which were maintained four weeks after the 

intervention (Selvadurai et al., 2002). It is hypothesised that the increased PA is likely to 

explain the maintained aerobic capacity following intervention cessation. This is congruent 

with previous research which suggests that PA promotion has a positive impact on aerobic 

capacity in those with CF, although it is noteworthy that causality cannot be established given 
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their cross-sectional design (Hebestreit et al., 2006; Savi, Di Paolo, et al., 2015; Troosters et 

al., 2009). In addition, regular PA, particularly MPA and VPA, are a significant predictor of 

exercise capacity in CF, even after adjusting for confounders such as body size, sex, lung 

function, and muscle-power (Hebestreit et al., 2006). Improvements in PA levels and aerobic 

capacity were also shown at the six- to eight-week follow-up of a four-week home-based 

behavioural program to increase PA in children with CF (Light et al., 1998). However, the 

small sample size, subjective assessment of PA and short intervention duration warrants 

caution when interpreting these results.  

 

2.9.2 Physical Activity and Lung Function 

 

Several studies have demonstrated the benefits of PA and exercise for the maintenance 

(Hebestreit et al., 2010; Schneiderman-Walker et al., 2000) or improvement (Paranjape et al., 

2012) of lung function. Specifically, exercise programs have been shown to be effective at 

delaying lung function decline in children and adolescents with CF (Hebestreit et al., 2010; 

Schneiderman-Walker et al., 2000). However, a few studies found that exercise interventions 

only improved FVC (Moorcroft et al., 2004; Schneiderman-Walker et al., 2000), with no effect 

on FEV1 (Klijn et al., 2004; Kriemler et al., 2016). One possible explanation is that long-term 

regular PA is important for lung function maintenance and therefore short intervention 

durations would not be sufficient to confer such benefits. Indeed, a longitudinal study following 

children and adolescents with CF for nine years demonstrated that those with high levels of 

self-reported PA had a reduced FEV1 decline in comparison to those who had lower PA levels 

(Schneiderman et al., 2013). Furthermore, an increased PA was also associated with a reduced 

decline in FEV1, even at low intensities (Schneiderman et al., 2013). Nonetheless, research 

investigating the association, or effect, of PA with lung function in CF remains sparse, and 

have often relied on subjective measures of PA, which are associated with inherent problems 

such as recall bias (Celis-Morales et al., 2012). 

Currently, there is a dearth of research and a lack of consensus regarding the PA levels 

in children and adolescents with CF. The scarcity of research and discrepancy regarding PA 

levels in CF affects the understanding of the relationship between PA and lung function. For 

example, Mackintosh et al. (2018) found that LPA was associated with lung function in 

children with CF, whereas Cox et al. (2018) found that 30 minutes of MVPA daily was 
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associated with lung function in adults with CF. While Savi, Simmonds, et al. (2015)  suggested 

that lower PA levels were associated with more exacerbations in adults with CF, this 

association was not sustained after adjusting for age, lung function, sex and genotype. Most 

importantly, much debate has been given to the mechanisms underpinning the therapeutic 

effects of exercise and PA on lung function. It is hypothesised that decreased respiratory muscle 

strength, particularly expiratory muscles, diminishes lung function and exercise tolerance 

(Sovtic et al., 2018). Alternatively, regular aerobic exercise has been shown to help maintain 

higher indices of respiratory muscle strength in CF patients, which might partially explain its 

therapeutic effect on lung function (Dassios et al., 2013). In addition, exercise enhances 

mucociliary clearance (Dwyer et al., 2017; Radtke et al., 2018), potentially through the 

generation of increased ventilation and shear force (Prasad & Ammani, 2014). 

 Tucker et al. (2017) found improvements in lung function after a single bout of MVPA. 

Specifically, following acute exercise,  an improvement in the lung clearance index was 

reported, which provides a functional index of lung obstruction. It was suggested that an 

increase in the tension of respiratory muscles, coupled with the greater mucous clearance, 

during exercise might facilitate the expansion of lower airways, thereby relieving air trapping 

and increasing ventilatory reserve (Tucker et al., 2017). Moreover, exercise-related 

immunological responses may play a key role in delaying lung function decline in CF. A single 

exercise session has been shown to increase leukocytes and the systemic release of immune-

modulatory peptides, such as interleukins, which are related with immune activation (van de 

Weert-van Leeuwen et al., 2013; van de Weert-van Leeuwen et al., 2012). In addition, regular 

MPA is associated with a reduction in infection susceptibility (van de Weert-van Leeuwen et 

al., 2013). Given that chronic infections and exacerbations are pivotal to the progression of 

airway disease in CF, the importance of exercise in reducing infection, thereby maintaining 

lung health, cannot be underestimated. 

 

2.9.3 Physical Activity and Quality of Life 

 

Self-reported PA and aerobic capacity are associated with increased QoL in children and 

adolescents with mild and moderate CF (Hebestreit et al., 2014). Furthermore, long-term 

improvements in QoL were demonstrated in children with CF after a home-based, partially 

supervised exercise intervention (Hebestreit et al., 2010). In accord, Schneiderman-Walker et 

al. (2000) reported health-related QoL benefits measured with the revised CF questionnaire 
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(CFQR; Quittner et al., 2012), such as less chest congestion and higher energy levels, following 

a three-year home-based exercise intervention in children and adolescents with CF. Evidence 

also suggests that exercise interventions are beneficial to enhance self-perception and general 

self-worth (Gulmans et al., 1999). However, similar benefits were not reported in shorter 

duration interventions, corroborating the notion that long-term regular PA and exercise are 

needed to enhance QoL in children and adolescents with CF.  

 

2.10 The Measurement of Physical Activity  

 

Physical activity is a complex concept that includes different contexts, making it 

particularly challenging to assess (Matthews et al., 2012). Essentially, PA can be measured 

objectively or subjectively. Subjective methods consist of questionnaires and records that 

usually require recalling recent activities, and are common in large cohorts given their greater 

feasibility. In contrast, objective methods are capable of measuring the movement or the energy 

expended (Ainsworth, 2009; Matthews et al., 2012; Sylvia et al., 2014). Examples of objective 

assessments of PA are pedometers, accelerometers and doubly labelled water. Whilst objective 

methods to assess PA are reliable and accurate, they require equipment and expertise which 

reduces their feasibility in clinical settings (Matthews et al., 2012; Sylvia et al., 2014). 

Intervention and observational studies often use objective assessment tools, more recently 

referred to as device-based measures due to the associated subjective processing techniques 

(Bassett, 2012), to obtain a more accurate measure of PA (Matthews et al., 2012; Troiano et 

al., 2014). Accelerometers are able to estimate the intensity, duration and energy cost of 

different activities in an accurate and reliable manner (Welk, 2005). Despite this, additional 

consideration must be given when measuring PA in clinical populations, such as CF (Stephens 

et al., 2016). For example, accelerometry might not account for systemic pathophysiological 

alterations, such as exercise intolerance, and the consequent enhanced metabolic cost of daily-

life activities in comparison to healthy populations (Bell et al., 2001).  

 

a. Questionnaires and Log-books 

Self-report questionnaires are broadly used in epidemiological research given their low 

cost and practicality (Ainsworth, 2009; Sylvia et al., 2014). This method relies on the 

participants’ ability to recall past activities and can vary greatly regarding the parameters 
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measured (i.e. PA type, intensity and duration). For example, whilst global questionnaires 

investigate general PA levels without providing much detail about specific PA types and 

patterns, recall questionnaires are tailored to identify the frequency, duration and type of the 

activities performed (Ainsworth, 2009). Additionally, recall questionnaires can be designed to 

investigate different domains of PA, such as leisure activities, daily-life activities and activities 

related to specific health-guidelines. The International Physical Activity Questionnaire (IPAQ; 

Craig et al., 2003) and the 7-day Physical Activity Recall (PAR; Sallis et al., 1993) are 

examples of frequently used questionnaires for PA assessment. Despite this, self-report 

methods are susceptible to recall bias and have low validity when compared to doubly labelled 

water or accelerometers (Pierce et al., 2006; Rangul et al., 2008; Richardson et al., 2001). 

Questionnaires in particular often have low accuracy to measure different intensities of PA, as 

well as EE, and are limited by social factors such as age and complexity of questions (Pierce 

et al., 2006; Rangul et al., 2008; Richardson et al., 2001). Alternatively, diaries and log-books 

have been shown to provide more detailed information as they require immediate records of 

PA. Thus, log books are also used alongside accelerometers to provide additional information, 

which is also important to contextualise non-wear data (Matthews et al., 2012; O’Donoghue et 

al., 2018).      

 

b. Direct Observation 

Direct observation utilises a trained independent observer recording PA in an assigned 

space and population (Honas et al., 2008). This method is more accurate and reliable than 

subjective questionnaires, particularly in young children and older adults as they might have 

difficulties recalling past activities (MacDonald et al., 2012; Pate et al., 2010). The downsides 

of direct observation are the high cost, lack of direct EE measures, and limited applicability to 

a free-living environment. Additionally, participants might react differently with the 

knowledge that they are being observed (Sylvia et al., 2014). 

 

c. Motion Sensors 

Currently, there are two types of motion sensors for PA measurement, pedometers and 

accelerometers (Ainsworth, 2009). Pedometers are able to measure movement in the horizontal 

axis, providing a measure of steps taken. They operate by a spring-suspended lever arm that is 

triggered during vertical acceleration and are usually worn around the waist or ankle. Despite 
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the low cost and ease of application, pedometers can only provide a measure of PA volume and 

is limited to activities such as walking and running. As pedometers promote PA reactivity in 

participants, it is commonly used as a PA intervention tool (Bravata et al., 2007). Alternatively, 

accelerometers have the ability to record large amounts of PA data that can be translated into 

EE or PA intensities (Sylvia et al., 2014). Indeed, given their reliability and accuracy, 

accelerometers are the most popular instrument to assess PA across the lifespan and clinical 

status (Arvidsson, Fridolfsson, & Börjesson, 2019; Matthews et al., 2012). 

 

2.10.1 Accelerometers for Physical Activity Assessment 

 

Accelerometers are small electronic devices designed to measure acceleration, which 

can be expressed as counts per unit of time, or more recently, as raw acceleration data (Troiano 

et al., 2014). Raw acceleration data or counts are then used to quantify the intensity and 

duration of movements. In addition, accelerometers can also be used to estimate EE with 

specifically developed algorithms and equations (Pischon & Steinbrecher, 2016).  

Most accelerometers are ‘cantilever beam’, which means that they have a piezoelectric 

element that bends in response to acceleration. This allows the accelerometer to translate 

mechanical motion into a voltage signal at a determined sampling frequency, which is then 

stored in the device memory as raw acceleration signal over a user-specified time-sampling 

interval denominated epoch (Mathie et al., 2004). Little consensus exists regarding the use of 

different epoch lengths (i.e. from one second to one minute) for the analysis of the acceleration 

data, with longer epochs potentially resulting in the loss of important information. Indeed, the 

selection of epoch length affects the outcomes, with higher epoch lengths resulting in less 

predicted MVPA and LPA and more SED in healthy children (Colley et al., 2014). In accord, 

it has been postulated that shorter epoch lengths are more appropriate for children and 

adolescents, whose PA is characterised by short sporadic bursts (Colley et al., 2014; McClain 

et al., 2008). The sampling frequency is the rate at which the accelerometer collects 

acceleration data, and it is usually defined at 30 – 100 Hz for the measurement of PA 

(Arvidsson, Fridolfsson, & Börjesson, 2019). Specifically, recent research has advised the use 

of a sampling frequency rate of at least 30 Hz to guarantee that all movement will be included 

in the measurement (Arvidsson, Fridolfsson, & Börjesson, 2019).  
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Accelerometers have evolved to become smaller, more reliable, and provide additional 

physiological measures such as heart rate (Nichols et al., 2010). Several brands, and indeed 

models, of accelerometers are currently available, with ActiGraph and GENEActiv being the 

most popular choices, not least as they are able to provide unfiltered raw acceleration data. The 

difference between accelerometer brands generally lies in the sampling rate, ranging from 20 

to 100 Hz, varied filtering options and the dynamic measurement range of the sensor 

(Ainsworth, 2009). Most importantly, a systematic review of the literature indicated that 

triaxial accelerometers, calibrated using EE measured by indirect calorimetry, are able to 

accurately classify SED and PA levels in healthy children (Lynch et al., 2019). Beyond 

providing detailed information regarding PA intensity, duration and volume (Syed et al., 2020), 

accelerometers can also be used to estimate SED (Carlson et al., 2019) and sleep patterns (van 

Hees et al., 2018). In addition, accelerometers offer minimal burden to participants at a relative 

lower cost (Bassett, 2012; Bassett et al., 2012). Whilst the use of accelerometers has clear 

advantages, it is not without limitations. For example, accelerometers are not able to measure 

isometric muscle contractions such as carrying or lifting weights, or consider variabilities of 

terrain such as incline, or account for specific non-locomotor activities (i.e., cycling). 

Consequently, accelerometers have been shown to provide low accuracy to classify cycling 

(Robertson et al., 2010) and strength-based activities (Skender et al., 2016). Additionally, data 

collection is highly dependent on participants’ compliance (Matthews et al., 2012). Essentially, 

accelerometers should be worn for a minimum number of days in order to be representative of 

the individual’s habitual PA (Bassett, 2012; Bassett et al., 2012). Finally, it is important to 

consider whether wearing an accelerometer might increase the participant’s motivation to be 

more physically active and, subsequently, the associated bias (Napolitano et al., 2010). For 

example, Dössegger et al. (2014) demonstrated that the awareness of being measured 

introduced significant bias to the PA outcomes in healthy children and adolescents, particularly 

during the first day of the measurement. Consequently, this reactivity effect leads to an 

overestimation of the PA levels in these populations, which could subsequently impact the 

association between PA levels and health outcomes.   

 

The accelerometer placement varies according to the research question and the activity 

being measured, though common sites are the waist, wrist and thigh. Earlier studies adopted 

the waist as the preferred site due to its proximity to the body’s centre of gravity, which favours 

the measurement of ambulatory activities, such as walking and running  (Freedson et al., 2005). 
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However, in addition to providing limited accuracy for assessing SED, this placement site is 

known to result in poor compliance during free-living measurements (Fairclough et al., 2016; 

Rowlands et al., 2014). Subsequently, research has shifted towards using a wrist-worn device 

to avoid misclassification and bias associated with low compliance (Rowlands et al., 2014).  

 

2.10.2 Accelerometer reliability 

 

Reliability, the degree to which a method is able to produce stable and consistent results, 

is instrumental for the assessment of PA and SED, particularly in clinical populations. There 

are distinct approaches to assess inter- and intra-accelerometer reliability; intra-monitor 

reliability is assessed through mechanical shakers, with inter-monitor reliability examined 

during a lab-based activity protocol or in free-living settings.  

The ActiGraph has been extensively tested for intra- and inter-monitor reliability. Whilst 

previous models of ActiGraph yielded good to excellent reliability in clinical and healthy 

paediatric populations (O'Neil et al., 2014; Wood et al., 2008), the ActiGraph GT9X 

accelerometer has mostly been tested in healthy adults since it was first released in 2014 

(Metcalf et al., 2018; Valkenet & Veenhof, 2019; Yang et al., 2018). Kim and Lochbaum 

(2018) demonstrated that the GT9X showed greater correlations with EE than the Polar Active 

watch and a previous model of ActiGraph (GT3X+) during unstructured activities in healthy 

children. Similarly, Yang et al. (2018) demonstrated that the GT9X yielded low errors and low 

coefficient of variation for detecting different PA types and intensities in healthy adults. 

Although the GENEActiv has not been as widely tested for reliability as the ActiGraph, some 

data is available in healthy adults. Specifically, Esliger et al. (2011) found high intra- and inter-

monitor reliability when compared to a mechanical shaker and the ActiGraph (GT1M), 

respectively, independent of placement.     

  

2.11 Calibration of Accelerometry 

 

Accelerometer raw data is meaningless without a context and therefore requires the use 

of thresholds or cut-points to be translated into intensity-based metrics. However, obtaining the 

true measure of PA requires careful consideration of the populations’ context, such as age and 
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clinical status (Watson et al., 2014). As such, accelerometry calibration is performed in order 

to generate population-specific cut-points. As a result, numerous calibration studies derived 

accelerometer-based prediction equations and population-specific cut-points (Freedson et al., 

2005; Troiano et al., 2008). Calibration is performed for a particular accelerometer model and 

analyses the accelerometer data against a reference criterion during a determined PA protocol.  

Janz (1994) published the first study developing thresholds to estimate PA in children 

(7 - 15 years) from the distribution of counts per minute derived from the CSA (Computer 

Science Application) accelerometer. Subsequently, Freedson et al. (1998) derived cut-points 

from accelerometer counts to measure PA intensities and EE, using the uniaxial CSA (7164 

accelerometer). Freedson et al. (1998) utilised a laboratory-based protocol to record 

accelerometer counts from a hip-worn accelerometer and EE during walking, jogging, and 

running. A linear regression was employed to predict EE from the accelerometer counts and, 

subsequently, cut-points were calculated to classify PA into LPA, MPA, hard and very hard. 

Subsequently, numerous studies have sought to develop cut-points for classifying PA in 

children (Evenson et al., 2008; Freedson et al., 2005; Mackintosh et al., 2012; Mattocks et al., 

2007). 

Earlier calibration studies have mainly utilised laboratory-based protocols, usually 

encompassing highly structured activities such as walking and running (Nichols et al., 1999; 

Swan et al., 1997; Trost et al., 1998). Due to an inherent lack of ecological validity, such 

laboratory-derived thresholds typically result in substantial misclassifications of EE and PA 

intensities when applied to habitual data (Basset et al., 2000; Hendelman et al., 2000). 

Hendelman et al. (2000) first demonstrated this concept by comparing regression equations to 

predict EE from accelerometer counts that were developed from two different types of 

protocols: one from a walking protocol and one from a daily-life protocol (windows washing, 

dusting, vacuuming, lawn mowing, planting shrubs). Hendelman et al. (2000) concluded that 

the regression equations were highly dependent on the type of activities involved in the 

calibration protocol; the equation derived from the walking protocol underestimated EE by 

30.5 - 56.8% when applied to activities from the daily-life protocol. Consequently, calibration 

protocols have now progressed to incorporate a broad range of activities and a variety of 

intensities in order to mimic daily life (Evenson et al., 2008; Freedson et al., 2005; Mackintosh 

et al., 2012; Puyau et al., 2002). 
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Although the adoption of a structured protocol including activities varying in intensity 

enhanced PA prediction in comparison with previous approaches (Crouter et al., 2013), the 

majority of the cut-points and equations still yielded large individual prediction errors (Kim et 

al., 2012). It is important to acknowledge, however, that the comparison of cut-points and 

equations derived from different calibrations protocols is challenging. Specifically, 

comparability is compromised by the wide variation in accelerometer characteristics (i.e. 

number of axes, brand, and model) and settings (i.e. epoch, frequency). Additionally, cut-points 

can be developed using a broad range of criterion references (e.g. EE, direct observation, HR) 

and protocols (laboratory-based, daily-life, free-living). Lastly, the statistical approach utilised 

to derive cut-points impacts the validity and performance of the thresholds (Welk, 2005).  

A further concern in deriving cut-points is the statistical approach employed to translate 

the accelerometer raw metrics into intensity thresholds. Whilst earlier studies have utilised 

linear regression (Puyau et al., 2002; Trost et al., 1998), this approach was shown to provide 

limited accuracy when classifying activity intensities or predicting EE (Freedson et al., 2005; 

Trost et al., 1998). Specifically, both EE and PA are generally non-linear, particularly when 

approaching more strenuous activities (Brage et al., 2003). By using linear regression, 

researchers are assuming homoscedasticity of the values. It is therefore presumed that the error 

of the prediction is consistent across all values, which is not always true when working with 

different PA intensities (Jago et al., 2007). Other studies attempted to circumvent these 

limitations by applying non-linear regression (Pate et al., 2006), with no significant 

improvement in prediction accuracy. Subsequently, the receiver operating characteristic (ROC) 

curve was proposed to overcome the limitations of regression methods, given its ability to 

quantify sensitivity and specificity with continuous outcomes, while including all possible 

decision thresholds (Jago et al., 2007). Consequently, a wide range of studies have employed 

ROC curve methods to develop cut-points in healthy children and adolescents (Chandler et al., 

2016a; Sirard et al., 2005; van Cauwenberghe et al., 2011). In addition, cut-points that were 

recently developed from raw acceleration data in healthy children have also employed ROC, 

achieving moderate-to-excellent accuracy (Crotti et al., 2020; Evenson et al., 2008; Mackintosh 

et al., 2012).   

Recent research identified the use of accelerometer counts as an important factor 

limiting prediction accuracy (Kühnhausen et al., 2017). Specifically, vital information for PA 

classification is lost in the process of converting raw acceleration data to accelerometer counts 

(Kühnhausen et al., 2017). In contrast, the use of raw acceleration metrics broaden the control 
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over data processing and facilitate comparisons between accelerometer brands and placements 

(Fairclough et al., 2016). In 2013, the use of raw accelerometer data was greatly facilitated with 

the development of an open-source tool to process and analyse unfiltered acceleration data 

(Migueles, Rowlands, et al., 2019; van Hees et al., 2014; van Hees et al., 2015) Consequently, 

calibration studies started to develop cut-points from raw acceleration data metrics, such as 

Euclidean Norm Minus One (ENMO) and Mean Amplitude Deviation (MAD; Aittasalo et al., 

2015; Hildebrand et al., 2014). Whilst research is embracing raw acceleration thresholds, no 

research to date has developed raw metric cut-points in clinical populations.  

The vast majority of the cut-points developed have been derived from healthy 

populations, with little consideration given to their applicability to those with clinical 

conditions, such as CF. Specifically, CF pathophysiological alterations suggests that a higher 

EE is likely to be demanded for a given activity relative to their healthy peers, which 

consequently impacts the performance of cut-points (Stephens et al., 2016). In accord, 

Mackintosh et al. (2018) hypothesised that the high-LPA accumulation observed in children 

and adolescents with CF was likely a result of using generic cut-points, consequently  

underestimating the PA levels in a CF population. Indeed, Stephens et al. (2016) found that 

current prediction equations to transform accelerometer counts into EE developed in healthy 

children are not accurate for paediatric clinical populations, including CF. Subsequently, 

Stephens et al. (2016) developed disease-specific prediction equations and cut-points, which 

both achieved higher accuracy when compared to non-specific approaches. Nonetheless, the 

newly predicted cut-points and equations still yielded a significantly high standard error (0.47 

– 0.76), which may be attributed to protocol characteristics, such as the use of accelerometer 

counts instead of raw metrics (Stephens et al., 2016). Thus, further accelerometry calibration 

in CF is warranted in order to enhance prediction accuracy, and therefore, accurately inform 

future studies tailoring exercise interventions and clinical-specific PA guidelines.   

 

2.12 Physical Activity Levels in Cystic Fibrosis  

 

There is a dearth of research investigating device-measured PA levels in CF, with the 

limited information available largely equivocal and, consequently, understanding regarding the 

potential health outcomes associated with different PA levels remains sparse. Specifically, 

whilst Nixon et al. (2001) reported that children and adolescents with CF accumulated less 
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vigorous activities than their healthy peers, Selvadurai et al. (2004) found no significant 

differences. In accord with Nixon et al. (2001), recent studies have also reported that children 

and adolescents with CF engaged in less strenuous activities in comparison with sex- and age- 

matched controls (Aznar et al., 2014; Jantzen et al., 2016; Mackintosh et al., 2018). 

Interestingly, Aznar et al. (2014) reported that although children with CF engaged in less 

vigorous activities, they accumulated a greater volume of PA overall when compared to their 

healthy counterparts. Such discrepancies may be due, at least in part, to methodological 

inconsistences, particularly the use of generic cut-points (Mackintosh et al., 2018). Indeed, PA 

levels previously reported are potentially not representative of the true volume of PA 

accumulated by those with CF given the lack of CF-specific cut-points, which therefore hinders 

further conclusions regarding associated health outcomes. In addition, it is noteworthy that the 

use of traditional approaches, such as linear regression or accelerometer count cut-points, may 

also limit the accuracy of PA prediction. Recent technological advancements have allowed 

accelerometers to measure three-dimensional, unfiltered, raw acceleration data, and, 

subsequently, the development of novel processing methods, all of which seek to overcome the 

limitations associated with device-based measurements of PA. 

The PA levels in people with CF are impacted by sex and maturation, with girls 

significantly reducing their PA levels after the onset of puberty (Selvadurai et al., 2004). In 

addition, evidence suggests that the PA levels of pre-pubertal children with CF are comparable 

to their healthy peers until the onset of puberty when it starts to decline (Aznar et al., 2014; 

Jantzen et al., 2016). This sex disparity may explain the greater annual decline in FEV1 

observed in girls compared to boys, and consequently, the poor survival of females with CF 

(Schneiderman-Walker et al., 2005). Savi, Di Paolo, et al. (2015) showed that this sex disparity 

continues into adulthood, with women with CF showing significantly lower PA levels in 

comparison with their male peers, even when adjusted by age, BMI, FEV1%predicted, infection 

with Pseudomonas aeruginosa, genotype, diabetes and pancreatic insufficiency. Despite the 

important impact of sex and maturity on PA levels in individuals with CF, most studies 

investigating PA in CF have not accounted for these factors (Aznar et al., 2014; Jantzen et al., 

2016; Nixon et al., 2001), which might have led to erroneous conclusions. Another important 

factor that warrants attention when evaluating PA levels in CF is disease severity. Indeed, 

Nixon et al. (2001) showed that children with moderate-to-severe CF engage in significantly 

less VPA than their healthy counterparts. Moreover, Nixon et al. (2001)  hypothesised that such 

a discrepancy was likely to be related with reduced exercise capacity in CF. In accord, adults 
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with CF have also been shown to have lower PA levels than their healthy peers, which  has 

been associated with increased disease severity, and consequently, reduction in exercise 

tolerance (Rasekaba et al., 2013).  

It is noteworthy that longitudinal research demonstrated an association between low 

socioeconomic status and greater disease severity and prognosis (Swartz et al., 2003; Taylor-

Robinson et al., 2013).  Of interest, Schechter et al. (2009) found that the poor health outcomes 

observed in people with CF with a lower socioeconomic status was not explained by 

differential health services or prescription of chronic therapy. Robust research found that lower 

socioeconomic status is associated with lower PA across the lifespan in healthy individuals 

(O’Donoghue et al., 2018), and it might help to explain the poorer prognosis in those with CF 

with lower socioeconomic status. Finally, important cross-national disparities in PA levels 

were found in a large survey (Guthold et al., 2020) including 168 countries and 1.9 million 

participants. Although the effect of cross-national differences to PA levels in CF has not been 

evaluated to date, this factor is relevant to the analyses and interpretation of PA, and therefore, 

should be considered.   

 

2.13 Novel Approaches to Assess and Analyse Physical Activity 

 

Whilst the development of condition-specific cut-points is likely to enhance PA prediction 

accuracy, previous studies investigating PA levels and lung function in CF have mainly 

employed traditional approaches, such as the use of linear regression, which is associated with 

significant error (Pedišić, 2014). Alternatively, novel approaches such as compositional 

analysis and machine learning algorithms are promising methods to advance PA research.  

 

2.13.1 Compositional Analysis 

 

In order to study the impact of different PA intensities to health outcomes, it is crucial 

to first understand what composes a typical day, which consists of different PA behaviours, 

SED and sleep. Given that the amount of time available in a day is finite, any increase in one 

of these components will result in a reduction or displacement of the others (Dumuid et al., 

2018; Olds et al., 2017). Traditional linear approaches are not designed to account for the 
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collinearity between different PA intensities as observed by Pedišić (2014). This implies that 

the majority of studies investigating PA levels in CF, and associated health factors, have only 

analysed each of these behaviours in isolation without considering their compositional nature 

or accounting for the displacement of time (Hebestreit et al., 2014; Schneiderman et al., 2014). 

Unsurprisingly, the association between the different PA intensities and health outcomes in 

those with CF remains equivocal (Collaco et al., 2014; Cox et al., 2016; Mackintosh et al., 

2018). 

Pedišić (2014) was the first to propose the use of compositional analysis as the best 

statistical framework (VIRTUE) to analyse and understand PA behaviours as time-use data,  

which has furthered our understanding of how the relationship between sleep, PA and SED 

impacts health outcomes (Chaput et al., 2014; Chaput et al., 2017; Štefelová et al., 2018). 

Specifically, compositional data lives in the compositional sample space (d-simplex) where it 

is constrained by its own relative nature. A key step in compositional analysis is the 

performance of normalisation methods, such as the transformation of the relative information 

into a set of log-ratios (Chastin et al., 2015). Briefly, normalisation methods are applied in 

order to transpose the compositional data from the d-simplex into the real sample space, where 

traditional statistics (i.e., linear regression) can be performed (Aitchison, 1982; Dumuid et al., 

2018; Pawlowsky-Glahn et al., 2015).  

While rethinking PA behaviours in a compositional way might solve a methodological 

issue, it also helps to create a broader understanding of PA. Indeed, by adopting a 

compositional perspective of different PA behaviours, one is tasked with recognising how the 

different behaviours interact with each other throughout the day. Recently, research using 

compositional analysis has shown that PA behaviours, SED and sleep can affect health in a 

direct manner, but also by displacing the time available for other behaviours (Chastin et al., 

2015). In accord, Chastin et al. (2015) demonstrated that the relationship between health 

outcomes and each behaviour varies according to the amount of time spent in the other 

behaviours. There is growing interested in how the reallocation of PA behaviours, sleep and 

SED might affect health outcomes, particularly in clinical populations such as CF. For 

example, recent studies using compositional analysis indicated that increasing MVPA by 

displacing time available for SED was beneficial to reduce mortality risk (McGregor, Palarea-

Albaladejo, Dall, Del Pozo Cruz, et al., 2019), cardiometabolic biomarkers (McGregor, 

Palarea-Albaladejo, Dall, Stamatakis, et al., 2019) and diabetes markers (Swindell et al., 2020). 

Despite this, no research to date has applied compositional analysis to investigate the impact 
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of displacing different movement behaviours to health outcomes in CF. Finally, the use of 

compositional analysis is fundamental to inform interventions targeting all PA domains, SED 

and sleep, synergistically.  

 

2.13.2 Machine Learning  

 

Whilst the use of cut-points and linear equations constituted an important first step in 

PA research, these methods have been criticised for poor prediction accuracy and large error 

(Bassett, 2012; Bassett et al., 2012; Trost et al., 2012). It is noteworthy that the previous 

methodological approaches reflected the accelerometry capabilities at that point in time; recent 

technological advances engender the potential for applying superior analysis to PA data. 

Specifically, machine learning techniques can distinguish activity types, and predict EE, PA 

intensities and SED from accelerometry data (Preece et al., 2009). Machine learning 

encompasses an array of complex algorithms with the specific trait of recognising and learning 

from different patterns. Unsurprisingly, research in healthy children has started to shift towards 

machine learning modelling approaches given their promising potential in enhancing PA 

prediction (de Vries et al., 2011; Ruch et al., 2011; Trost et al., 2018), though the majority of 

research still utilises cut-points. Specifically, PA modelling approaches usually utilises 

accelerometer counts or raw acceleration data in the algorithms, which subsequently derives 

the outputs as EE or activity type. Algorithms are usually designed to extract pre-defined time- 

and/or frequency-domain features from the input data (i.e. mean, standard deviation or root 

mean square error), which are subsequently used to distinguish between activity intensities and 

EE (Preece et al., 2009).    

Amongst the four machine learning algorithms branches (supervised learning, semi-

supervised, reinforcement learning and unsupervised learning), PA research heavily relies on 

the supervised learning strategy. Specifically, this type of algorithm is designed to learn from 

a training dataset (i.e. accelerometry outputs) in order to generate outputs (i.e. PA types and 

EE). Briefly, two main sub-types of algorithms can be distinguished within supervised learning 

according to the type of outcome produced: regression algorithms for continuous variables and 

classification algorithms for categorical variables (see Figure 2.3). However, some algorithms 

alternate between both groups depending on the type of outcome produced (i.e. Random 

Forest). Earlier studies employing machine learning in PA research have mainly utilised 



30 

 

 

 

artificial neural networks (Freedson et al., 2011; Staudenmayer et al., 2009) and decision trees 

(Bonomi, Goris, et al., 2009). Given the lack of consensus regarding which technique yields 

the highest accuracy for PA assessment, recent validation studies in children have employed 

multiple machine learning algorithms (Ahmadi et al., 2018; Ahmadi, Chowdhury, et al., 2020; 

Chowdhury et al., 2017; Steenbock et al., 2019; Trost et al., 2018), reporting that Random 

Forest classifiers achieved significantly higher overall classification accuracy than other 

algorithms (Ahmadi et al., 2018; Chowdhury et al., 2017; Steenbock et al., 2019).  

The Random Forest (Breiman et al., 1984) is an ensemble classifier that generates 

multiple decision tress in order to train a model. Decision trees are similar to a flowchart with 

multiple internal nodes and are built using randomly selected values from the training dataset. 

The internal nodes correspond to a test on one of the generated features from the sample. The 

tree branches correspond to the test results and the leaf nodes to a class label (Kuhn et al., 

2013). The final outcome is produced by assembling the decisions of multiple trees and based 

on a majority vote. It is noteworthy that the Random Forest classifier has numerous advantages 

over other machine learning approaches. Specifically, these models are able to directly operate 

on both continuous and categorical variables, producing highly accurate classifiers. The 

Random Forest is also designed to generate unbiased estimates of the generalisation error 

whilst the classifier operates (Krzywinski & Altman, 2017). Recent studies have increasingly 

adopted this classifier as an alternative to cut-point methods, resulting in highly accurate 

predictions, even in clinical populations (79 – 95.7%; Ahmadi et al., 2018; Ahmadi, 

Chowdhury, et al., 2020; Chowdhury et al., 2017; Steenbock et al., 2019). Indeed, Trost et al. 

(2018) demonstrated that Random Forest classifiers significantly outperformed (74 – 84%) 

traditional cut-point methods (49 – 65%).  
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Figure 2. 3 Types of Machine Learning Supervised Algorithms 

 

The k-Nearest Neighbours (k-NN; Patrick & Fischer, 1970) is considered as a direct 

classifier as it does not have a learning process and works directly with the whole dataset. This 

algorithm employs the similarity principle by examining the class labels of the nearest 

neighbours in the training set. According to the neighbours labels, the training sample is 

classified by votes, with the class most frequently represented receiving the maximum votes 

and assigned as the predicted class (i.e. PA intensities). Any ties between classes are solved by 

favouring the class with the minimum average distance to the training sample (Kataria & Singh, 

2013). Specifically, the distances between neighbours is obtained using the similarity measure 

(i.e. Euclidean distance). Despite the simplicity and efficacy of this algorithm, only a few 

studies have utilised this approach, primarily in healthy adults (Attal et al., 2015; Bao & Intille, 

2004). Nonetheless, the k-NN was reported as the second most accurate algorithm for activity 

recognition in adults (89.3%), only being outperformed by the Random Forest (> 90%; Bao & 

Intille, 2004). Moreover, when comparing different machine learning classifiers to perform 

activity recognition, Attal et al. (2015) found that k-NN outperformed other classifiers 

providing the best accuracy (96.5%), F-measure, recall and precision, followed by Random 

Forest models (94.8%).    
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The extreme Gradient Boosting (XGBoost) is a type of ensemble algorithm designed 

to boost the prediction of classifiers, such as decision trees, by learning from the weak 

predictions and correcting possible errors (Chen & Guestrin, 2016). Specifically, this algorithm 

incorporates a compilation of models and functions by using the weighted averages of results 

generated from previous models to minimise loss function (Friedman, 2001). As such, each 

new model will display a more accurate fit, and consequently, improve overall accuracy. Whilst 

the use of this type of algorithm has yielded excellent accuracy (84 – 99%) in recent studies 

classifying PA types in adults (Guo et al., 2019; Rahman et al., 2020; Zhang et al., 2019), a 

similar approach has not been studied in children. Interestingly, using data from a smartphone 

to recognise five types of activities (walking, stillness, climbing stairs, escalator and elevator 

taking), Zhang et al. (2019) found that placement had a major impact in the accuracy of the 

predictions, with thigh-worn showing the best results.  

Irrespective of the algorithm utilised, machine learning still requires a calibration 

protocol accounting for variables such as placement and reference criterion, in order to classify 

PA. Consequently, errors and misclassification can still arise from the variability in data 

processing, monitor positioning and brand, which can also impact adherence to the protocol 

(Fairclough et al., 2016). Consequently, research investigating the performance of machine 

learning algorithms using data from different accelerometer placements for PA assessment in 

healthy children remains sparse (de Vries et al., 2011; Mackintosh et al., 2016; Montoye et al., 

2019; Trost et al., 2018; Trost et al., 2014). Consequently, there is a lack of consensus regarding 

the optimal placement, with some evidence indicating that machine learning yields acceptable 

classification accuracy irrespective of placement (Mackintosh et al., 2016; Trost et al., 2014), 

whist others reported that models utilising data from waist placement outperformed wrist in 

healthy children (Montoye et al., 2019; Trost et al., 2018). 

It is noteworthy that the use of accelerometer count data is a major factor limiting 

machine learning performance to classify PA types and intensities in children. For example, 

whilst Trost et al. (2012) achieved an overall activity classification accuracy of 80 - 86% when 

applying machine learning to accelerometer counts, Ahmadi, Pfeiffer, et al. (2020) reported an 

overall accuracy of 87.5 - 99.6% when applying the activity recognition algorithms to raw 

acceleration data. Despite the low accuracy associated with this approach (57 - 86%), count-

based data is still broadly used by the majority of studies in healthy children, irrespective of 

machine learning approach, to predict PA types (de Vries et al., 2011; Ruch et al., 2011; Trost 

et al., 2012). This discrepancy is attributed to the loss of vital information during the process 
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of converting raw accelerometer data into counts (Kühnhausen et al., 2017). Additionally, this 

approach is generally performed using proprietary algorithms, which hinders the comparison 

across different accelerometry brands. The use of accelerometry brands such as GENEActiv 

and ActiGraph (GT3X+ and GT9X) facilitates the use of raw, unfiltered, acceleration data and 

may play a key role in further enhancing the PA accuracy prediction (Schmiedek et al., 2016; 

Trost et al., 2020; Trost et al., 2018). Finally, algorithms should be validated to overcome 

confounding factors arising from the calibration protocol in order to accurately identify 

activities intensities in populations other than those from which the models were initially 

derived. 

 

2.14 Summary  

 

Physical activity is well established as vital to the health and wellbeing of those with CF, 

though fundamental questions remain regarding the accurate measurement, and thus 

classification, of PA in those with CF. Specifically, whilst accelerometers are currently the 

preferred method to assess PA intensities (Hagstromer et al., 2007; Matthews et al., 2012; 

Troiano et al., 2008). they are unable to account for the increased RMR, exercise intolerance 

and the high cost of breathing, which are key characteristics of people with CF (Stephens et 

al., 2016). Consequently, it is hypothesised that accelerometry underestimates PA levels when 

utilised to assess PA in children and adolescents with CF (Mackintosh et al., 2018). 

Alternatively, accelerometer calibration can be performed to generate cut-points that are true 

to the physiological context of youth with CF. Thus, the development of specific cut-points to 

measure PA in CF is warranted in order to enhance PA prediction, and as a result, enable more 

informed clinical-specific PA guidelines to be developed. Most importantly, no research to date 

has employed CF-specific cut-points to evaluate PA levels in those with CF, which hinders the 

understanding of the relationship between PA and health outcomes in these populations. 

Furthermore, the subsequent misclassification of PA levels following the use of generic cut-

points might help to explain the lack of consensus on research evaluating PA levels in youth 

with CF (Aznar et al., 2014; Kilbride et al., 2012; Mackintosh et al., 2018; Selvadurai et al., 

2004). For example, whilst some studies described that youth with CF engaged in less in 

strenuous activities than their healthy peers (Aznar et al., 2014; Mackintosh et al., 2018; Nixon 

et al., 2001), others reported no significant differences (Selvadurai et al., 2004). 
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Novel methods, such as the use of machine learning, have received considerable attention 

given their ability to generate highly accurate predictions. Machine learning algorithms, in 

particular, have great potential to enhance PA prediction, thereby, advancing the study of the 

relationship between different PA intensities and health outcomes. Indeed, machine learning 

has been shown to predict PA types and EE from accelerometer data with high accuracy 

(Ahmadi, Chowdhury, et al., 2020; Fergus et al., 2015). As such, machine learning models 

have been used to predict PA in healthy and clinical paediatric populations (Ahmadi et al., 

2018; de Vries et al., 2011; Ruch et al., 2011; Trost et al., 2018), though no research to date 

has utilised machine learning to predict PA intensities in children with CF.  

Earlier studies investigating the relationship between PA levels and lung function in CF 

have mainly utilised traditional approaches (i.e. linear regressions), which are associated with 

significant error when applied to relative data (Pedišić, 2014). Alternatively, novel statistical 

analyses, such as compositional analysis, might be more appropriate to analyse PA intensities. 

Specifically, PA domains, SED and sleep are considered time-use data, and therefore, relative 

in nature as proportions of a complete day (Dumuid et al., 2018; Olds et al., 2017). Indeed, the 

use of compositional analysis can identify whether, and indeed how, different PA intensities 

might be related to health outcomes in CF, which is essential to inform interventions for this 

population.  
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CHAPTER 3 

General Methods 

 

3.1 Overview of Design 

 

This Chapter provides a detailed description of the data collection methods used to 

investigate the measurement of physical activity (PA) in Cystic Fibrosis (CF). Initially, a 

systematic review of the literature (Chapter 4) was conducted in order to inform the protocol 

design of Chapters 5 and 7. Subsequently, three testing sessions were conducted and the data 

from those sessions were utilised in four cross-sectional studies (Chapters 5 to 8; Figure 3.1). 

The initial session incorporated clinical assessments including lung function, resting metabolic 

rate (RMR) and anthropometric measurements. The second session took place after a week and 

included a daily-life activity protocol, with the last session, consisting of a treadmill protocol 

for assessment of aerobic capacity, took place at least 48-hours later. In addition, baseline data 

from the Strategic Research Centre (SRC): Youth Activity Unlimited was included in 

Chapters 6 and 7. This SRC is dedicated to developing resources to support clinical 

practitioners to prescribe PA in CF, and it includes five research sites: Swansea University 

(United Kingdom), the University of Exeter (United Kingdom), University College London 

(United Kingdom), La Trobe University (Australia) and the University of Toronto (Canada). 

 

 

 

 

 

 

 

 

Figure 3.1 Distribution of Testing Session Data within Studies 

Session 1 

Clinical Tests 

Session 2 

Activity Protocol 

Session 3 

Treadmill Protocol 

Chapters 5 to 8 Chapters 5 and 8 Chapter 5 and 8 

n = 129 n = 63 
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3.2 Scientific Review and Ethics Approval 

 

The Joint Study Review Committee initially assessed and approved the protocols for 

Chapter 5 to 8 (Appendix D1). Subsequently, ethics approval was sought from the National 

Health Service Research Ethics Committees (Chapter 5 to 8; 18/WS/0032; Appendix D2) and 

the Alfred Health Human Research Ethics Committee (Chapter 6 to 7; HREC/16/Alfred/188; 

Project 7/17; Appendix D4). 

 

3.3 Study Participants 

 

Children and adolescents (7 – 18 years) were recruited from paediatric CF outpatient clinics 

in South Wales. The primary respiratory consultant confirmed the suitability of each patient 

prior to recruitment. For Chapters 6 and 7, the baseline data from participants with CF from 

the SRC were included. Specifically, the participants included from the SRC were children and 

adults (12 – 35 years) admitted for a respiratory cause and recruited from five hospitals in 

Australia (Victoria, Tasmania, New South Wales and South Australia), as part of a randomised 

controlled trial (Cox et al., 2019). Healthy controls were recruited from Swansea University 

and via friends and family of the CF participants. The supportive written document that was 

provided to all participants and their parents/guardians was specifically tailored for different 

age groups and health status using appropriate language (Appendix E). Potential participants 

were provided with 48-hours to review the study information sheets, after which they were 

contacted to inquire whether they were willing to participate and, if so, their availability. Fully 

informed consent (Appendix F1) and assent (Appendix F2) were obtained from 

parents/guardians and participants, respectively. Participant sample numbers are shown in 

Figure 3.2. 
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Figure 3.2 Flow Chart Describing Participant Numbers 

 

CF children 

included from the 

clinics 

n = 37 

Healthy friends 

and family 

members 

n = 10 

Healthy 
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the University 

n = 19 

CF participants from 
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n = 112 

CF children  

n = 68 

CF adults  

n = 44 

Sub-total accepted 

n = 178 
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n = 3 

Total included in  

Chapters 5 and 8 

n = 63 

Total included in  

Chapter 7 

n = 129 

Total included in  

Chapter 6 

n = 71 

 

Total included overall 

n = 175 
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3.4 Participant Inclusion and Exclusion Criteria  

 

3.4.1 Cystic Fibrosis Group 

 

Participants with a diagnosis of CF according to a newborn screening test, or using CF-

typical symptoms and either two pathological sweat tests (sweat Cl- > 60 mmol·L-1 sweat), or 

a diagnostic genotype, were included. The medical records were consulted in order to extract 

information regarding participants medication. Participants were excluded if they had other 

medical conditions, such as cardiovascular or musculoskeletal issues that could compromise 

their ability to undertake PA. In addition, those with multi-resistant bacteria (Burkholderia 

Cepacia and nontuberculous mycobacteria), an acute exacerbation at the time of the 

assessments (Chapters 5 and 8) or awaiting a transplant were excluded from the study. 

 

3.4.2 Healthy Controls 

 

Children and adolescents were recruited to compose the age- and sex-matched control 

group. Children and adolescents with pulmonary conditions or any conditions affecting the 

ability to exercise, such as cardiovascular or musculoskeletal impairments, were excluded. The 

health status of the control group was confirmed by a short clinical anamnesis where the 

participants were asked if they have any clinical conditions or diseases and whether they were 

taking any medication(s) for health purposes.  

 

3.5 Age 

 

Decimal age was obtained to the nearest 0.1 year during the first session of each 

experimental study. 

  

3.6 Anthropometry 
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Anthropometric measures were obtained during the first session. The same researcher 

performed the measurements, and participants were instructed to wear light clothes and have 

their footwear removed during the assessments.   

 

3.6.1 Body Mass 

 

Body mass was assessed using electronic weighing scales (Seca 876, Hamberg, 

Germany) to the nearest 0.1 kg.  

 

3.6.2 Stature 

 

Stature was obtained to the nearest 0.1 cm using a stadiometer (Holtain Stadiomerter 

603VR, Holtain Ltd, UK). During the procedure, participants were instructed to stand upright 

and look forward whilst positioning their heels against the stadiometer. Sitting stature was 

obtained to the nearest 0.1 cm using a sitting height stadiometer (Holtain Sitting Height 

Stadiometer 607VR, Holtain Ltd, UK).  

 

3.6.3 Body Mass Index 

 

Stature and body mass were used to assess body mass index as follows: 

Equation 3.1 

BMI = body mass (kg) / stature2 (m2) 

Body mass index z-scores (zBMI) were estimated using the World Health Organisation 

(WHO) reference data (de Onis et al., 2004). Specifically, this approach generates measures of 

relative weight adjusted by age and sex through the z-score system, which expresses the 

anthropometric variables as a number of standard deviations (i.e. z-scores) below or above the 

reference mean or median value. The zBMI is fundamental to allow comparisons across 

different age ranges within samples including children and adolescents. The formula used to 

estimate the z-score was: 
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Equation 3.2 

z-score (or SD-score) = (observed value - median value of the reference population) / standard 

deviation value of reference population 

 

3.7 Maturity Status 

 

The peak height velocity (PHV) is the period during adolescence with the maximum rate 

of growth. The estimated age at the PHV can be calculated using a maturity offset prediction 

equation. Specifically, maturity offset is the difference in years from age at PHV, with negative 

values indicating the number of years prior to PHV and positive values indicating number of 

years since PHV. The sex-specific equations developed by Mirwald et al. (2002) were used to 

predict the age at PHV, as follows:  

Equation 3.3 

Boys: Maturity offset (years) = - 9.236 + (0.0002708*(leg length*sitting height)) + 

(−0.001663*(age*leg length)) + (0.007216* (age*sitting height)) + (0.02292*(weight ÷ 

height*100)) 

Equation 3.4 

Girls: Maturity offset (years) = - 9.376 + (0.0001882*(leg length*sitting height)) + 

(0.0022*(age*leg length)) + (0.005841*(age*sitting height)) + (- 0.002658*(age*weight)) + 

(0.07693*(weight ÷ height*100)) 

The leg length was estimated by subtracting sitting height from standing height. The 

prediction equation developed by Mirwald et al. (2002) was validated against skeletal age, and 

it was reported to have an error of estimate of approximately 0.49 and 0.50 for boys and girls, 

respectively. Subsequently, the age at the PHV was used to estimate the pubertal stages with 

pre-pubertal considered > -1 years from PHV, pubertal as -1 to +1 years and post-pubertal as 

> +1 years post PHV. 
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3.8 Metabolic Gas Analysis 

 

 

 

 

 

 

 

Figure 3.3 MetaMax Cortex 3B Gas Analyser 

Consent for photography and publication was obtained from the participant and parents/guardians. 

 

The metabolic system MetaMax Cortex 3B (Figure 3.3; CORTEX Biophysik GmbH, 

Germany) was used in Chapters 5 and 8 to assess oxygen uptake (V O2) and carbon dioxide 

production (V CO2) measured breath-by-breath and averaged every five seconds using the 

MetaSoft® Studio Software (CORTEX Biophysik GmbH, Germany). The same gas analyser 

was also used in Chapters 5 to 6 to assess lung function and RMR, to ensure consistency 

within the measurements. The MetaMax 3B is a portable metabolic system composed of two 

parts, a measurement module and a battery module, both of the same size (120 x 110 x 45 mm). 

This system was designed to be worn on the chest with a harness, and weighs 1.40 kg in total. 

The metabolic system measures volume through a turbine attached to flexible face mask (Hans 

Rudolph, Kansas City, MO). A sampling tube, connected to the turbine, to capture expired air 

to the metabolic system. Standard metabolic algorithms are used to calculate V O2 and V CO2 

through the Haldane transformation (Wasserman et al., 1999). Finally, concentration and 

volume signals were time-aligned to account for the delay in the capillary gas transit and 

analyser rise time (McNarry et al., 2017). 

The analyser was calibrated according to the manufacture guidelines prior to each 

measurement. Specifically, this involves calibrating the analyser using gases of known 

concentrations (16% O2, 5% CO2; Viasys, Hoechberg, Germany) and subsequently, calibrating 

against ambient air. Then, a volume calibration is performed using a standardised three litre 
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syringe (5530 series, Hans Rudolph, Inc., USA). Previous studies investigating the reliability 

and validity of the MetaMax Cortex 3B reported stable and reliable (i.e. precision) results for 

field-based assessments in healthy and clinical populations (Compagnat et al., 2020; 

Macfarlane & Wong, 2012; Vogler et al., 2010). For example, in a validation study, Compagnat 

et al. (2020) compared the performance of the MetaMax 3B with an automated Douglas bag 

system during exercise, demonstrating that V O2 and V CO2 were over-estimated by 

approximately 3 - 4% and 5 - 7%, respectively, when using the metabolic system. The 

MetaMax 3B demonstrated excellent reproducibility yielding errors of < 2% (Macfarlane & 

Wong, 2012).  

 

3.9 Pulmonary Function 

 

A forced vital capacity (FVC) manoeuvre was utilised to determine forced expiratory 

volume in one second (FEV1). Subsequently, the predicted FEV1 (FEV1%predicted) was estimated 

according to a reference equation (Quanjer et al., 2012) for age, sex and body mass, and used 

to categorise disease severity as mild (> 70%), moderate (40 – 69%) or severe (< 40%; Davies 

& Alton, 2009). The spirometry was assessed in accordance with American Thoracic Society 

and European Respiratory Society standards (ATS/ERS; Graham et al., 2019; Moore, 2012).   

The manoeuvre was performed with the participant sitting in an upright position whilst 

maintaining the neck in a fixed neutral position  and verbal encouragement was provided during 

all stages (McCormack et al., 2019). Specifically, participants were instructed to initiate the 

test following three initial resting breaths, breathing as deeply as possible, with a subsequent 

exhalation, which should be performed forcefully and fast, until no further air remained in the 

lungs. Participants were asked to repeat the manoeuvre until three consistent (< 5% variability) 

measures were obtained, up to a maximum of eight repeats (Jat, 2013). In order to be accepted, 

curves had to display a rapid and clear rise reaching the peak flow and a prolonged expiratory 

curve which gradually decreased in flow (Figure 3.4).  

Variation in spirometry might occur due to inter-participant variables, such as age, sex, 

stature, or an underlying respiratory condition, or other factors, such as cough, leakage, effort 

or the number of manoeuvres (Belzer & Lewis, 2019; Künzli et al., 1995). Indeed, mean error 

for FVC and FEV1 has been reported to range from 1.7 – 3.1% when measured using 17 

spirometers in primary care (Hegewald et al., 2016). It is noteworthy, however, that the clinics 
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included in this thesis did not perform the flow calibration as recommended by the ATS/ERS 

(Graham et al., 2019; Moore, 2012), which might have impacted the accuracy of the results. 

Previous research reported intra-person inter-test variability ranging from 1.8 – 4.9% for FVC 

and 2.3 – 4.7% for FEV1 (Belzer & Lewis, 2019). The age- and height-based Quanjer et al. 

(2012) prediction equation yielded -0.3% and -0.4% error for  FEV1 in boys and girls (6 to 19 

years), respectively. Finally, whilst the likely cumulative error is unknown, it is important to 

consider the associated implications and need for further research.  

  

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Maximum Flow-volume Loop 

 

3.10 Resting Metabolic Rate 

 

Participants were instructed to arrive in a two-hour dietary fasting state and having avoided 

caffeine and extraneous exercises in the previous 24-hours. Resting metabolic rate was 

measured using the gas analyser (Metamax 3B, Cortex Biophysik GmbH, Germany) over a 20-

minute period whilst participants were resting in the supine position avoiding any conversation 

or movements. The measurement started following at least 10 minutes at rest, and participants 

were required to stay awake throughout the test, with noise kept to a minimum. In order to 

calculate RMR, the first five and the last two and a half minutes were removed from the 
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analysis, with the remaining values of V O2 and V CO2 averaged (Cooper et al., 2009; Jackson et 

al., 2007). Whilst currently no CF-specific equation is available to calculate RMR, the Weir 

(1949) equation has been broadly used in this population (Hollander-Kraaijeveld et al., 2020; 

O'Rawe et al., 1992; Richards et al., 2001). Therefore, the RMR was calculated according to 

the equation developed by Weir (1949), as follows: 

Equation 3.5 

RMR = 1.44(3.94 ·V O2 + 1.11·V CO2) 

 

3.11 Aerobic Function  

 

 

Figure 3.5 Cardiopulmonary Exercise Test 

Consent for photography and publication was obtained from all participants and their parents/guardians 

 

Participants had their aerobic function assessed during an incremental treadmill test to 

volitional exhaustion using calibrated treadmills at a laboratory (Pulsar®3p, h/p/Cosmos®, 

Germany) and hospital (TrackMaster, FullVision Inc, USA). All participants were equipped 

with a safety harness attached to the treadmill and provided with a screen displaying a virtual 

run to encourage looking forward (Figure 3.5). All CF participants performed this test at the 

hospital, unless their parent/guardians requested to attend the university laboratories instead, 
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with all healthy participants undertaking the exercise test at the university. Participants were 

required to first familiarise themselves with walking and running on the treadmill at different 

speeds, with adjustments made to the harness for each participant. Participants were instructed 

to avoid caffeinated drinks and heavy meals at least two hours prior to the test and arrive in a 

rested and hydrated state. 

The standard Bruce protocol (Bruce et al., 1973) involving three-minute stages to volitional 

exhaustion was used to assess peak oxygen uptake (V O2peak) at the highest 10 s moving average 

(Table 3.1). This protocol is the most widely used treadmill exercise test (Klijn et al., 2003; 

van der Cammen-van Zijp, Ijsselstijn, et al., 2010; van der Cammen-van Zijp, van den Berg-

Emons, et al., 2010) due to its great reliability in healthy children (0.94; Cumming et al., 1978). 

Moreover, this protocol is recommended to assess aerobic capacity in CF populations 

(Hebestreit et al., 2015). During the test, gas exchange variables were measured on a breath-

by-breath basis (MetaMax 3B, Cortex Biophysik GmbH, Germany), and oxygen saturation and 

heart rate and rhythm were assessed throughout using a pulse oximeter (Nonin® WristOx® 

Model 3150, Nonin® Medical Inc., USA) and a three-lead electrocardiogram (ECG; Custo 

Guard ECG, custo med GmbH, Germany), respectively. During the final 30 s of each exercise 

stage, the participant's perceived exertion and breathlessness were assessed using the modified 

Borg scale of perceived exertion (0 - 10; Borg, 1982). Criteria to stop the test included severe 

desaturation (≤ 80% SpO2) accompanied by symptoms and signs of hypoxemia, chest pain, 

signs of respiratory failure, haemoptysis, sudden pallor, loss of co-ordination, mental 

confusion, dizziness or faintness, and complex cardiac ectopy (Hebestreit et al., 2015).  

 

Table 3.1 Stages of Bruce Protocol (Bruce et al., 1973) 

Stage Minutes MPH Grade (%) 

1 3 1.7 10 

2 3 2.5 12 

3 3 3.4 14 

4 3 4.2 16 

5 3 5 18 

6 3 5.5 20 

7 3 6 22 
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3.12 Accelerometry 

 

ActiGraph GT9X Link (ActiGraph, Pensacola, FL) and GENEActiv (ActivInsights Ltd., 

Cambridge, UK) accelerometers were used to measure raw acceleration at 100 Hz. Participants 

were requested to wear three GT9X (writs and right waist) and two GENEActiv (both wrists) 

monitors during the daily-life activity protocol, as well as for seven consecutive days for the 

assessment of habitual PA levels. 

 

3.12.1 ActiGraph  

 

The ActiGraph GT9X Link (Figure 3.6; ActiGraph, Pensacola, USA) is a small triaxial 

micro-electro-mechanical system (MEMs) accelerometer (~ 8 G; size: 3.5 x 3.5 x 1 cm; mass: 

14 grams) combined with a gyroscope (approximate max range of -2,000 deg·sec-1), 

magnetometer and a secondary triaxial sensor (approximate max range of 16 G) to record 

movement, rotation and body position. The sample rate ranges from 30 to 100 Hz and the 

filtering size can be selected from 1 to 60-s epochs.  

 

3.12.2 GENEActiv 

 

The GENEActiv (Figure 3.6; Activinsights Ltd., Cambridgeshire, UK) is waveform 

triaxial MEMs accelerometer (~ 8 G; size: 43 mm x 40 mm x 13 mm; mass: 16 grams) including 

light and temperature sensors. Sample rate can be selected from 10 to 100 Hz, and epoch 

options vary from 1 to 60-s.  

 

 

 

 

    a                                                 b 
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Figure 3.6 Accelerometers used in the Studies 

a. ActiGraph GT9X Link. b GENEActiv. 

 

3.12.3 Accelerometer Data Reduction and Analysis 

 

For the purpose of all the studies within this thesis, the raw acceleration data was extracted 

at 100 Hz as .gt3x and .bin files for ActiGraph GT9X (ActiLife V 6.10.2) and GENEActiv, 

(GENEActiv PC software V2.2), respectively. Specifically, the GGIR package (V 1.2 – 0;  

Migueles, Rowlands, et al., 2019) was used to auto-calibrate and extract raw acceleration data 

from all monitors. As such, all .gt3x files were converted to time-stamp free .csv files and 

subsequently exported along with the .bin files into R statistical software (V3.1.2; R 

Foundation for Statistical Computing, Vienna, Austria) for subsequent pre-processing using 

GGIR. The package was then utilised to extract the raw data from all three axes (x, z and y), 

and calculate the Euclidean Norm Minus One (ENMO) and the Mean Amplitude Deviation 

(MAD) metrics (Migueles, Rowlands, et al., 2019; van Hees et al., 2014). The ENMO metric 

is computed by adjusting the vector magnitude (VM) for gravity by subtracting one 

gravitational unit (1 g = 9.81 m·s-2) from the three raw acceleration signals at each time point 

(i.e. Euclidean Norm). The MAD metric is calculated by removing the static component from 

the measured orthogonal acceleration resultant vector (Bakrania et al., 2016). Following the 

signal pre-processing in R, all values were converted from gravity-based acceleration units (g 

to milligravitational; mg) units and calculated over 5-s epochs (Matthews et al., 2012; Vähä-

Ypyä et al., 2015).  

 

3.13 Estimation and Investigation of Physical Activity in Cystic Fibrosis 

 

3.13.1 Methods to Estimate Physical Activity in Cystic Fibrosis 
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Figure 3.7 Daily-life Protocol 

Consent for photography and publication was obtained from the participant and parents/guardians 

 

This thesis developed two different approaches to predict PA in children with and without 

CF: cut-points and machine learning algorithms. A daily-life activity protocol was designed 

following recommendation from a systematic review (Chapter 4) and used in Chapter 5 to 

develop raw acceleration cut-points and in Chapter 8 to generate machine learning algorithms.  

The daily-life calibration protocol (Figure 3.7) was carefully designed to include activities 

replicating the participant's daily lives using public and patient involvement (PPI). Specifically, 

five participants with CF selected by the physiotherapist, including both children and 

adolescents (7 to 17 years), were invited to complete a survey of common activities from the 

compendium of physical activities (Appendix G1; Ainsworth et al., 2011) and asked to select 

any that they would typically do during their normal routine. The PPI group was representative 

of the final study sample. Fifty-six healthy children and adolescents attending a science festival 

in South Wales also completed the survey. Participants were encouraged to suggest any 

additional activities that were not listed. The six activities with the highest votes, stratified by 

intensity and behaviour type, were selected to be included in the daily-life protocol: watching 

a video, playing on a handheld device (i.e. tablet), colouring/writing, walking, playing self-

selected games, and stairs (Table 3.2). For the activity of walking, all participants received the 

same instruction to walk at a comfortable pace in the provided space. The space consisted of a 
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spacious laboratory and participants covered 200 to 400 m in five minutes. The activity of 

playing self-selected games included a variety of options and was incorporated to the protocol 

in order to simulate the free-living environment. In total, the protocol lasted approximately 50 

minutes, with all activities being performed in a random order, varying from three to ten 

minutes, with a three-minute rest in between. The stairs activity was performed across three 

flights of stairs and consisted of both climbing and descending the stairs. Participants were 

instructed to continuously climb and descend at a comfortable pace, which resulted in a range 

of four to six climbs and descents. The participants wore five accelerometers (three GT9X on 

both wrists and waist, and two GENEActiv on both wrists), the metabolic system and the pulse 

oximeter throughout the whole duration of testing, including the rest periods. All five monitors 

and the metabolic system (MetaMax Cortex 3B) were synchronised to an external clock to 

allow comparability across the outputs.  

 

Table 3.2 Activities Included in the Daily-life protocol 

Activity  Description 

Watching a video Watching a video in a seated position for 10 minutes 

Colouring/writing Colouring or writing in a seated position for 6 minutes 

Playing on a handheld 

device 

Playing games on the handheld device in a seated position for 6 

minutes 

Playing self-selected 

games 

Playing a variety of self-selected games including football, hula 

hoops, tennis, badminton, rugby, skipping and mini bowling for 

6 minutes 

Self-paced walking Walking continuously at a self-selected comfortable pace for 5 

minutes 

Stairs Climbing and descending stairs continuously at a self-selected 

comfortable pace for 3 minutes 

  

The energy expenditure (EE) was obtained as metabolic equivalent of task (MET) 

values for each activity by dividing the V O2 measured for each activity by the resting V O2 

(McMurray et al., 2015). The MET values were then used as the reference criterion to label the 

5-s raw accelerometer data (ENMO, MAD and three axes) as sedentary time (SED; ≤ 1.5 

MET), moderate physical activity (MPA; 4 - 6.9 METS) or vigorous physical activity (VPA; 
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≥ 7 METS; Troiano et al., 2008). In order to avoid transitional movements, accelerometry and 

MET data from the first and last minute of each activity were excluded. Lastly, for the final 

analyses, at least two minutes of data for each activity were included. Subsequently, two 

different approaches were utilised for generating cut-points and machine learning models. 

Specifically, cut-points were developed from the labelled ENMO and MAD metrics, whereas 

machine learning models were generated with the labelled data from the three axes.  

 

a) Cut-points 

The receiver operating characteristics (ROC) analysis (Figure 3.8) method was employed 

to generate cut-points for SED, MPA and VPA. This method was first developed during World 

War II in order to facilitate recognising signal from noise in the radar detection  (Lusted, 1971). 

Briefly, ROC curve is simply a plot of sensitivity (y axis) against 1-specificity (x axis) for 

different cut-point values. In general, the cut-points are a product of a trade-off between 

sensitivity, representing true positives, and specificity, representing false positives. Whilst 

there are many different approaches for identifying the optimal threshold, the Youden index is 

the most common method adopted for this task (Perkins & Schisterman, 2005). Specifically, 

this method identifies the optimal cut-point as the point maximising the Youden function, 

which is defined as following: 

Equation 3.6 

J = maximum (sensitivity(c) + specificity(c) – 1) 

The overall classification accuracy is represented by the ROC area under the curve (AUC), 

with a value equal to 0.5 indicating random chance or absence of classification accuracy, and 

a value of 1 suggesting perfect classification accuracy. As such, AUC values are usually used 

to indicate whether a classification achieved excellent (≥ 0.90), good (0.80 – 0.90), fair (0.70 

– 0.80) or poor (< 0.70) accuracy. Intensity cut-points were developed through the Youden 

index for SED, MPA and VPA for both the healthy and CF groups. As such, the MET values 

were transformed into binary codes according to the different relative intensities (see section 

3.10.1) and used as the dependent variable for the ROC curve. The final step consisted of cross-

validating the cut-points to ensure their applicability to populations other than the one from 

which they were developed. This process was performed through an iterative leave-one-out 

approach, from which the mean squared error (MSE) was calculated. Specifically, cut-points 
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were generated on a loop of n-1 participants and the MSE was obtained from subtracting the 

thresholds and averaging the results (Unal, 2017).  

 

 

 

 

 

 

 

 

Figure 3.8 Receiver Operating Characteristics Analysis 

 

b) Machine Learning  

Machine learning evolved from the study of pattern recognition and computational 

learning theory to become a subfield in computer science, with wide applicability in other 

fields. Machine learning can be defined as the compilation of methods and algorithms that 

allow computers to automate multiple functions through systematic recognition of patterns 

(Dhall et al., 2019). Although machine learning can be classified in different ways, the most 

common is the use of three broad categories designed according to the nature of the learning 

outputs. Briefly, machine learning algorithms can fall into the categories of supervised, 

unsupervised or reinforcement learning. Unsupervised learning occurs when the algorithm is 

provided with unlabelled data, and thereby, it is left to recognise patterns and ‘meaning’ on its 

own. Reinforcement learning happens when the algorithm interacts with a dynamic 

environment in order to achieve a determinate goal (i.e. driving a vehicle, playing a game). 

Supervised learning, which is the category broadly utilised in PA recognition, occurs when the 

algorithm is presented with labelled data and instructions regarding the desired output. 

Sometimes the fourth category of semi-supervised is also acknowledged, with the use of an 

incomplete training set, for example (Dhall et al., 2019). The category of supervised learning 

can be further divided into two main types of algorithms according to the output produced as 
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regression algorithms (continuous variables) and classification algorithms (categorical 

variables). 

Research applying machine learning to classify PA generally uses supervised 

algorithms with training data sets from accelerometer signals labelled with activity type or EE 

(METs). Windowing is common practice amongst classification algorithms, and is performed 

in order to segment the acceleration signal into smaller windows (Preece et al., 2009). 

Subsequently, machine learning algorithms can be applied separately to each segment, and then 

combined to provide the desired output. Preece et al. (2009) defined three windowing 

techniques commonly applied to activity monitoring: sliding, event-defined and activity-

defined windows. The sliding method is characterised by a static width (i.e. 0.25 – 6.7 s) and 

is the most used amongst the three types. Following the segmentation of the signal, a range of 

different parameters, known as ‘features’ are generated and used as inputs. More specifically, 

time-domain features are calculated directly from a window as statistical measures, and 

frequency-domain features are derived from data transformed through a Fast Fourier Transform 

(Preece et al., 2009).  

The selection of features is a crucial step in analyses and greatly affects the accuracy of 

the classifications (Ellis et al., 2014; Kiani et al., 1997). Essentially, including a large number 

of features in the model can increase the risk of overfitting, particularly when working with 

small samples of data. In addition, the inclusion of a large number of features hinders the 

clustering of the data, due to, at least in part, the creation of too many dimensions. 

Subsequently, the large number of dimensions results in every observation generated from the 

data to seem equidistant from all the others in a phenomenon known as the curse of 

dimensionality (Altman & Martin, 2018). In accord, when testing machine learning algorithms 

to predict PA intensities, Montoye, Bradford, et al. (2018) found that including frequency-

domain features did not improve the performance of the models, and even reduced the accuracy 

in some cases. Ellis et al. (2016) demonstrated similar findings when using a random forest 

algorithm to predict PA in a free-living setting. Following the careful selection of the feature 

set from the sensor data, a classifier is then utilised to identify PA types or intensities. 

Currently, there is a wide range of classifiers varying in complexity, but the most common in 

PA research are Random Forest, Artificial Neural Networks and Support Vector Machines 

(Farrahi et al., 2019).       
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The Random Forest classifier combines outputs from multiple decision trees trained 

independently on a random subset of data (Figure 3.9; Breiman et al., 1984). Each tree has 

multiple internal nodes that are split by selecting the best randomly selected features as their 

final prediction (Winham et al., 2013). Subsequently, the final predictions of all trees are 

aggregated and a final prediction (i.e. PA intensity) is defined by a majority vote (Figure 3.9). 

In addition, the Random Forest outperformed other classifiers in previous models designed to 

predict PA types and intensities (Ellis et al., 2014) 

 

 

 

 

 

 

 

 

 

 

The Extreme Gradient Boosting classifier (XGBoost) is a type of boosting algorithm 

that builds a prediction model from other algorithms, most commonly from decision trees 

(Chen & Guestrin, 2016). Unlike the Random Forest classifier that builds its prediction models 

randomly, the XGBoost builds each individual model by allocating weight to instances with 

wrong predictions and high errors. This design allows the algorithm to ‘learn’ from past 

mistakes as the most difficult predictions will be highlighted during the prediction process. As 

such, highlighted ‘weak’ predictions from the decision trees are compared to the reference 

criteria (i.e. EE, activity type), and the distance between these parameters represents the error 

rate of the model (i.e. loss of function). The XGBoost differs from other types of boosting 

classifiers since it is designed to provide second derivative of loss function, which is essential 

to provide further information regarding the efficiency of the model (Chen & Guestrin, 2016).        

                       

Figure 3.9 Simplified Random Forest Classifier 
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W represented the weighted averages 

 

The weighted k-nearest neighbours classifier (k-NN; Dudani, 1976) is a modified 

version of the k-NN classifier, designed to overcome the limitations associated with the 

probabilistic type of classification of the first version. Essentially, the k-NN is designed to 

identify k training samples that are closest to the reference criteria (i.e. EE, activity type), and 

subsequently, assign the classification category according to their distances. The weighted k-

NN allocates weight to each of the neighbours according to their distance to the reference point, 

instead of only adopting the distances as classification criteria. Finally, the points with greater 

weight are located nearest to the reference. The advantage of this classifier is that the Euclidean 

distance is relatively simple to compute. In addition, the use of weighted distances make this 

classifier robust to noisy training data (Cost & Salzberg, 1993). 

Cross-validation is used in machine learning to test the validity whilst preventing 

overfitting. More specifically, cross-validation is a great indication of model overfit due to its 

robust approach and design. For example, a k-fold cross-validation is designed to randomly 

split the training set into k equally sized smaller segments, and then train the model k times 

using all the k segments minus one until all the segments are processed. A common approach 

is the use of a 10-fold cross validation, which will ensure that each model is trained and 

validated 10 times using 10 unique sets of data. The measure of the final accuracy of the model 

is subsequently obtained by averaging the results of each model. 

 

3.13.2 Compositional Analysis to Investigate Physical Activity in Cystic Fibrosis  

 

Figure 3.10 Simplified Extreme Gradient Boosting Decision Trees 

… 

Tree 
1 

Tree 
1 

W

2 

W

1 



55 

 

 

 

The existence of compositional data was first acknowledged in geological sciences, 

after Pearson (1897) described the presence of spurious correlations that affected any data 

measuring proportions of a whole. Whilst studying methods to circumvent the issue associated 

with the spurious correlations, Atchison and Shen (1980) formulated some of the foundations 

of compositional data analysis (Aitchison, 1983, 1992). Compositional data is defined as 

relative variables that are proportions of a whole, including time-use movement behaviours, 

such as PA intensities, SED and sleep (Dumuid et al., 2019; Pedišić, 2014). As such, 

compositional data are interrelated and can only convey relative rather than absolute 

information, which implies that they are only meaningful when interpreted collectively. This 

type of data is constrained to a specific sample space, denominated d-simplex, which can be 

represented in a ternary diagram when accounting for three variables (Figure 3.11). Data living 

in the ‘d-simplex’ are expressed as ratios rather than absolute values, and consequently, they 

cannot be described using arithmetic means and standard deviation. Indeed, Pawlowsky-Glahn 

and Egozcue (2002) demonstrated that the geometric mean is optimal to describe compositional 

data, as it reflects the relative scale of data. Specifically, geometric mean is defined as the nth 

root of the product of n numbers.  

 

 

 

 

 

 

 

 

 

Figure 3.11 Ternary Plot 

 

The use of standard statistical methods (i.e. linear regression) with compositional data 

might lead to erroneous findings, since these approaches were tailored to absolute data living 
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in the ‘real space’. To overcome this issue, Aitchison (1992) proposed the use of a log-ratio 

transformation to normalise the constrained compositional data, thereby allowing the 

application of traditional statistical approaches. However, evidence suggests that the log-ratio 

transformation is asymmetric and non-isometric, and therefore, not suitable for compositional 

analysis of time-use data such as PA (Dumuid et al., 2018). Different approaches to normalise 

compositional data have been proposed since Aitchison’s log-ratio transformation (Egozcue & 

J, 2005; Pawlowsky-Glahn & Egozcue, 2019; Pawlowsky-Glahn et al., 2015). For example, 

Egozcue et al. (2005) proposed the use of an isometric log-ratio (ilr) to transform compositional 

data, as follows for a D-part composition x, with a transformation of z = (z1, …, zD-1)= ilr(x):  

Equation 3.7 

𝑧𝑖 =  √
𝐷−𝑖

𝐷−𝑖+1 
 𝑙𝑛

𝑥𝑖

√Π𝑗
𝐷=𝑖+ 1

𝑥𝑗 
𝐷−𝑖

, 𝑓𝑜𝑟 𝑖 = 1, … , 𝐷 − 1       

The use of ilr transformation produces a set of coordinates that can be used to describe 

the total variance of the composition. Additionally, traditional statistical approaches (i.e. 

multiple regression) can be applied to the ilr coordinates to investigate the relationship between 

compositional data (i.e. movement behaviours) with health outcomes. The coordinates on their 

own are hard to interpret, hence, a sequential binary partition can be used to further explore the 

data (Pawlowsky-Glahn & Egozcue, 2016). The sequential binary partition is used to group the 

composition into separate parts, and it can be applied to investigate the nature and interaction 

of different movement behaviours. Essentially, this approach splits the full composition into 

smaller groups including a numerator and a denominator, which can be specifically tailored to 

address the research question. For example, in order to study the impact of a sedentary-lifestyle 

on health in relation to the other movement behaviours, the partition can be design to include 

inactivity-related components as the numerator, and activity-related components as the 

denominators (Carson, Hunter, et al., 2016; Chastin et al., 2015; Dumuid et al., 2018). Most 

importantly, the implications of compositional analyses to advance the understanding of how 

movement behaviours are related to health are promising. For example, Gupta et al. (2018) 

compared the use of compositional analyses with ilr transformations to a multivariate model in 

order to assess how movement behaviours impact health outcomes. Gupta et al. (2018) showed 

that the inferences regarding time spent sedentary and in PA were significantly different with 

compositional analyses, which indicates that this method has the potential to change the 

findings, and therefore, the core message of a study.  
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CHAPTER 4 

Study One: Calibration and Validation of Accelerometry using cut-points to Assess 

Physical Activity in Paediatric Clinical Groups: A Systematic Review 

 

Abstract 

Regular physical activity is associated with physiological and psychosocial benefits in both 

healthy and clinical populations. However, little is known about tailoring the analysis of 

physical activity using accelerometers to the specific characteristics of chronic conditions. 

Whilst accelerometry is broadly used to assess physical activity, recommendations on 

calibration in paediatric clinical groups are warranted. The aim of this systematic review was 

to provide a critical overview of protocols used to calibrate accelerometry in children and 

adolescents with clinical conditions, as well as to develop recommendations for calibration and 

validation of accelerometry in such populations. The search was performed between March to 

July 2017 using text words and subject headings in six databases. Studies had to develop 

moderate-to-vigorous intensity physical activity (MVPA) cut-points for paediatric clinical 

populations to be included. Risk of bias was assessed using a specific checklist for calibration 

studies. A total of 540,630 titles were identified, with 323 full-text articles assessed. Five 

studies involving 347 participants aged 9 to 15 years were included. Twenty-four MVPA cut-

points were reported for seven clinical conditions, 16 of which were developed for different 

models of ActiGraph, seven for Actical and one for Tritrac-R3D. Statistical approaches 

included mixed regression, machine learning and receiver operating characteristic analyses. 

Disease-specific MVPA cut-points ranged from 152 to 735 counts·15 s-1, with lower cut-points 

found for juvenile arthritis (152 counts·15 s-1), juvenile dermatomyositis (166 counts·15 s-1) 

and inherited muscle disease (297 counts·15 s-1), and higher cut-points associated with cerebral 

palsy (735 counts·15 s-1) and intellectual disabilities (652 counts·15 s-1). The lower MVPA cut-

points for diseases characterised by both ambulatory and metabolic impairments likely reflect 

the higher energetic demands associated with those conditions. 
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4.1 Introduction 

 

Regular physical activity (PA) is recommended for children and adolescents to promote 

health and well-being (WHO, 2020), irrespective of disease status. However, PA plays a 

particularly potent role in youth with chronic conditions and is associated with slowing disease 

progression in conditions such as cerebral palsy (CP; Keawutan et al., 2017; Verschuren et al., 

2016). A common issue for children and adolescents with chronic conditions, is the tendency 

to become less physically active with age and disease progression, which can lead to 

deconditioning and the initiation of a vicious negative spiral involving subsequent reductions 

in the ability to perform PA (Durstine et al., 2013; Torpy et al., 2018).  

Careful consideration should be given when recommending PA to children and 

adolescents with some chronic conditions due to the enhanced nutritional, metabolic and 

energetic requirements associated with the condition or structural disability (West et al., 2019).  

Children and adolescents with chronic conditions would, therefore, benefit from a greater 

understanding of the dose-response relationship between PA and health benefits in order to 

balance this with the potential negative sequalae that could ensue (Riner & Sellhorst, 2013). 

However, the current recommendation that children aged 5 to 18 years should accumulate on 

average at least 60 minutes of moderate-to-vigorous physical activity (MVPA) per day weekly 

(WHO, 2020) has been developed for non-clinical populations, and therefore, are likely to have 

limited applicability to clinical populations. Indeed, a specific clinical guideline would warrant 

a higher degree of specificity and a cautious assessment of particular risks and benefits for each 

condition. It is therefore imperative to account for condition-specific factors that could be 

associated with exercise intolerance and/or an altered physiological response to 

exercise/physical activity (Wells et al., 2019). PA recommendations tailored for children and 

adolescents with clinical conditions, however, remain sparse (Morris, 2008).  

Objective methods used to assess PA, such as accelerometers, are appropriate for 

clinical settings due to the low participant burden and relatively low cost (Trost & O'Neil, 

2014). Accelerometers are capable of detecting patterns of PA accumulation, as well as 

information on PA frequency and intensity, such as sedentary time (SED), light physical 

activity (LPA) and MVPA (Welk, 2005). Specifically, accelerometry measures velocity over a 

period of time which can be translated into intensities of PA by using cut-points (Welk, 2005). 

However, the generation of these cut-points is highly challenging, for example, even within 
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one type of accelerometer, the MVPA cut-point in healthy youth varies from 400 to 3,600 

counts.min-1 (Cain et al., 2013). Whilst the accurate assessment of PA levels is particularly 

important in chronic conditions, inaccurate cut-points can result in over- or underestimated 

predictions. Additionally, it is also important to consider the limitations associated with the use 

of accelerometry. For example, while accelerometry can accurately assess sedentary time, it is 

not able to differentiate between various sedentary activities (Hurter et al., 2018).  Moreover, 

factors such as brand and placement are likely to have an impact on the prediction of both 

sedentary time and time spent in different PA intensities (Godfrey et al., 2008). 

Amongst the challenges of calibrating accelerometry are the different methods to 

translate (e.g., physical activity protocols and criterion method) and interpret (e.g., statistical 

approach) the accelerometer raw signals into biological and behavioural outcomes (e.g., cut-

points). Indeed, a recent systematic review summarising different accelerometry calibration 

studies in healthy populations acknowledged the lack of cut-points that account for individual 

characteristics such as demographic and physiological variations (de Almeida Mendes et al., 

2018). A key limitation of generalising cut-points developed for healthy populations to clinical 

populations is that they will not consider the altered resting metabolic rate (RMR) and higher 

energy expenditure (EE) for a given activity often evident in youth with chronic conditions 

(Bandini et al., 1991; Epstein et al., 1989; Ramsey et al., 1992). Whilst some research has 

sought to calibrate accelerometry in paediatric clinical conditions (Stephens et al., 2016; Trost 

et al., 2015), the lack of standardisation, wide variability in protocol designs and lack of healthy 

matched controls limits interpretation (Logan et al., 2016). Indeed, this systematic review can 

contribute by providing recommendations regarding the most appropriate criterion references, 

types of activities and statistical analyses to calibrate and cross-validate the cut-points. 

The aim of this systematic review was to provide a critical overview of the protocols 

used to calibrate and validate accelerometer-derived MVPA cut-points in children and 

adolescents with clinical conditions and identify key parameters and considerations for future 

research.  

 

4.2 Methods 

 

 This review was performed in accordance with the Preferred Reporting Items for 

Systematic Review and Meta-Analysis statement (Liberati et al., 2009; Moher et al., 2015) and 
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is registered on the International Prospective Register of Systematic Review (PROSPERO 

registration ID:  CRD42016053880).  

 

4.2.1 Search Methods 

 

The search was performed between March and July of 2017 using six databases 

(PubMed, SPORTDiscus, ScienceDirect, Scopus, ISI Web of Knowledge, Wiley Online 

Library). A Population Intervention Comparison Outcome (PICO) framework was adopted to 

build and structure the search; a detailed description of the search protocol is available in the 

Appendix C. The protocol and search strategy were reviewed by an experienced librarian and 

a pilot was performed to ensure the suitability of the criteria and search terms. The search terms 

were in accordance with the 2017 Medical Subject Headings and were inserted as keywords to 

all the databases and platforms. The search terms were: acceleromet*; acceleromet* AND 

(validation OR calibration); acceleromet* AND physical activity; wearable monitors AND 

(calibration OR validation); physical activity AND (calibration OR validation); acceleromet* 

cut-points; energy expenditure AND acceleromet*; and classification AND physical activity 

intensities. The reference lists of relevant reviews and of all the studies included therein were 

examined for studies matching the inclusion criteria.  

 

4.2.2 Eligibility Criteria 

 

Studies published in English from the year 2000 which generated MVPA accelerometry 

cut-points in children and adolescents (5 to 18 years) with any chronic clinical condition  

(disease of long duration and slow progression; Goodman et al., 2013) were included. Only 

studies published after the year 2000 were included in order to avoid the inclusion of outdated 

accelerometer models, such as the Computer Science Application (CSA). Specifically, whilst 

the first accelerometer was developed in 1980 (Montoye et al., 1983), the use of this new 

technology was highly limited due to the high cost and poor reliability (Troiano et al., 2014). 

Furthermore, these devices have limited comparability to modern accelerometer models, 

particularly after the advent of triaxial devices and the option to extract raw acceleration data 

(Freedson et al., 2012). Non-English, non-human and unpublished studies, book chapters, 
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theses, monographs, dissertations and abstracts were not included. In addition, studies using 

accelerometers along with additional technologies such as a microcontroller were not excluded. 

Studies in adults, or calibrating for healthy populations, sedentary behaviour or wheelchair 

users were excluded. It is noteworthy that all studies calibrating accelerometry in adult clinical 

populations constituted another systematic review (Bianchim et al., 2019; Appendix A). This 

sample of studies were investigated and synthesised separately given the different nature of 

calibration protocols for children and adults.  

 

4.2.3 Data Extraction and Management  

  

An EndNote X7 (Clarivate Analytics, USA) database was created with potential 

studies, and all the titles and abstracts were initially screening by one author for selection of 

full-texts. All full-texts selected were then subsequently screened by three authors according 

to the pre-established inclusion criteria. Supplementary information for each study was 

consulted when available. In the case of missing information or variables required for 

completion of the extraction sheet, study authors were contacted, however, no additional data 

was provided. Data was extracted from the included full-texts by one author and reviewed by 

two authors (Table 4.1). Any discrepancies were discussed by the three authors until a 

consensus was reached. 

 

Table 4.1 Summary of the Data Extracted from the Included Studies 

Data extraction 

field 

Information extracted 

Context and 

participants 

The author, year and sample size of the study; participant characteristics such 

as age, health status, height, weight, BMI, ethnicity; and covariates measured 

such as self-report questionnaire data and health scales related to disease 

assessments were extracted.  

 

Study design and 

methods used 

Any information related to the accelerometer, such as accelerometer model 

(e.g., number of axes); accelerometer placement (e.g., wrist [dominant/non-

 

https://www.google.co.uk/search?rlz=1C1CHBD_en-GBGB745GB745&q=Philadelphia&stick=H4sIAAAAAAAAAOPgE-LVT9c3NEyrMC83Ni0rV-LQz9U3SEnOSdfSyCi30k_Oz8lJTS7JzM_Tzy9KT8zLrEoEcYqt0hOLijKLgcIZhQBSLV1yRQAAAA&sa=X&ved=2ahUKEwjL9o_y08TeAhWrLsAKHYRXA0kQmxMoATAPegQIBhAc
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dominant], hip, chest); accelerometer settings (e.g., epoch, sampling frequency, 

use of low frequency filter); and data processing decisions (e.g., wear-time 

criteria) were extracted. Additionally, any information related to the calibration 

protocol, such as protocol design (e.g., laboratory-based, field-based, daily-life 

protocol); duration of the protocol; adjustment of specific variables (e.g., age, 

body mass); performance of individual calibration; criterion measure (e.g., 

energy expenditure, direct observation, heart rate); resting metabolic rate 

assessment; statistical approach (e.g., ROC-curve analyses, linear regression, 

machine learning); validation method (e.g., validation, cross-validation leave-

one-out, cross-validation k-fold); and assessment for agreement (e.g., Kappa, 

Bland-Altman) were also extracted.  

Findings The extracted outcomes were protocol design and cut-points. All the extracted 

protocols were classified in four categories: laboratory-based (walking or 

running, over-ground or on a treadmill), free-living (assessment of participant 

routine), daily-life (daily-life activities performed at the research site), and 

mixed (at least two of laboratory-based, free-living and daily-life) protocols. 

Quality of the study Quality assessment specifically created for calibration studies (checklist sheet). 

 

The risk of bias was assessed independently by two authors using a specific checklist 

(Table 4.2) created according to previous recommendations for calibration protocols (Bassett, 

2012; Bassett et al., 2012; Welk, 2005). This checklist considers six elements of the calibration 

protocol (sample characteristics, accelerometer settings, criterion measure, statistical approach 

for calibration, and statistical approach for validation) to rate studies as good, fair or poor 

according to the criteria described in Table 4.2. The inter-rater reliability was calculated using 

Kappa scores with 0.8 as the minimum acceptable inter-rater agreement (McHugh, 2012). 

Where any discrepancies arose following the risk assessment, all three authors involved in the 

screening and data extraction discussed these until a consensus was reached.  
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Table 4.2 Quality and Risk Assessment Criteria According to Descriptive Variables and Study Design 

Standard Poor Fair Good 

1. Sample 

Characteristics 

Study did not 

include any 

descriptive variables 

other than age and 

sex. 

Study included height, 

weight, body mass index 

and variables specific to 

the clinical condition.  

Study included height, weight, body 

mass index, ethnicity, resting metabolic 

rate, maturity stages and variables 

specific to the clinical condition.  

2. Accelerometer 

Settings 

Study described 

accelerometer 

model.  

Study included 

accelerometer model, 

number of axes and 

placement position.  

Study included accelerometer model, 

number of axes, placement, sampling 

frequency, epoch length and any 

filtering techniques. 

3. Protocol Design Calibration protocol 

composed by 

walking or treadmill 

test. 

Calibration used a mixed 

protocol (daily-life 

activities and a treadmill 

test).  

Mixed protocol combining daily-life 

activities, laboratory protocol test on a 

treadmill and free-living assessments. 

4. Criterion  Speed or direct 

observation. 

Heart rate or metabolic 

equivalent.  

Energy expenditure (including resting 

metabolic rate estimation*). 

5. Statistical 

Approach for 

Calibration 

Linear regression or 

Individual linear 

regression.  

ROC curve analyses. Machine learning techniques, 

hierarchical models or multilevel 

modelling, adjusting for factors related 

to participant’s characteristics and to 

the pathophysiology of the clinical 

condition to develop the cut-point. 

6. Statistical 

Approach for 

Validation 

No validation 

assessment. 

 

Leave-one-out cross-

validation and agreement 

assessment using Bland-

Altman or kappa score. 

 

K-fold cross-validation using different 

samples and activities. Agreement 

assessment using Bland-Altman or 

Kappa score, and estimates the intra-

class correlation coefficient, and/or 

limits of agreement. 

ROC: receiver operating characteristic. *The criteria for a valid resting metabolic rate estimation was a minimum of 15 min of steady state, 

preferably adopting the formula of de Weir (Weir, 1948) 
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A narrative synthesis of the studies was performed due to the heterogeneity of calibration 

protocols encountered, covering the topics of the protocol design, description of, and 

adjustment for, disease-specific factors, accelerometer brand and settings, criterion measure 

and the statistical approach for generating and validating the cut-points. All cut-points in 

counts·min-1 were reintegrated to counts·15 s-1 epochs, which is commonly used in youth, to 

allow inter-study comparability.  

 

4.3 Results 

 

A total of 543,741 titles were found across all databases, with 540,630 titles remaining 

following the removal of duplicates. Following initial screening of titles and abstract, 619 

articles were selected according to the inclusion criteria by the main author for full-text 

assessment. In total, 614 studies were subsequently excluded, primarily due to being in a 

healthy population (279 studies; Figure 4.4). Five studies (Clanchy et al., 2011; McGarty et al., 

2016; Ryan et al., 2014; Stephens et al., 2016; Trost et al., 2015), including 347 9 – 15-year-

old participants, with a total of 24 generated MVPA cut-points for seven clinical conditions, 

were included in the final synthesis. The clinical conditions were: CP, intellectual disabilities, 

CF, congenital heart diseases (CHD), haemophilia (HE), idiopathic muscular dystrophies 

(IMD), juvenile idiopathic arthritis (JIA; Appendix B).  

The inter-rater Kappa score for risk of bias was 0.80, with authors disagreeing regarding 

accelerometer settings. Discrepancies were regarding the ‘Accelerometer Settings’ scores and 

were resolved after two authors discussed each point resulting in a Kappa score of 1. Most 

studies (n = 4) were classified as fair for sample characteristics, with only one study scoring as 

good. One study scored as fair, and four as good, for accelerometer settings, with three and two 

studies classified as fair and good, respectively, for protocol design. For criterion measure, one 

scored as good, three as fair and one as poor. The majority (n = 4) of the studies scored as fair 

for statistical approach for calibration, with only one scoring as good. Finally, regarding the 

statistical approach for validation, three studies scored as fair and two as poor (Table 4.3). 

 

 

 



65 

 

 

 

S
cr

ee
n

in
g

 
E

li
g
ib

il
it

y
 

Id
en

ti
fi

ca
ti

o
n

 

Records identified through database 

searching 

(n = 543,741) 

PubMed: 24,556 

SportDiscuss: 4,494 

Science Direct: 19,456 

Scopus: 22,655 

Web of Science: 316,219 

Additional records identified 

through reference lists 

(n = 15) 

Records excluded 

(n = 540,011) 

Full-text articles excluded, 

with reasons 

(n = 614) 

Healthy population (279) 

Validation Studies (271) 

Not generating MVPA cut-

points (45) 

Calibrating for adults (11) 

Used additional devices (2) 

Only classification (1) 

Validates the models (1) 

Calibrating for SED (1) 

Specific thresholds (3)  

Bone development (1) 

Studies included in the 

synthesis 

(n = 5) 

Records after duplicates removed 

(n = 540,630) 

Records screened 

(n = 540,630) 

Full-text articles assessed 

for eligibility 

(n = 619) 

In
cl

u
d

ed
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 PRISMA Flow 
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Quality of life (Varni et al., 2004), maturity status (Emmanuel & Bokor, 2017; Stephens 

et al., 2016) and results from a generic health questionnaire (Feldman et al., 1995; Huber et al., 

2001) were used as co-variates. Additionally, three studies (Clanchy et al., 2011; Ryan et al., 

2014; Trost et al., 2015) used the specific classification system for CP (Gross Motor Function 

Classification System - GMFCS). Whilst covariates were considered by most of the included 

studies, only one study (Stephens et al., 2016) adjusted for disease-specific factors when 

generating the cut-points, although no formal description was provided regarding the variables 

included in the model. None of the studies investigated whether the disease-specific factors 

and participant demographics impacted on the developed cut-points. 

 

4.3.1 Accelerometers 

 

Sixteen of the included MVPA cut-points were developed for different ActiGraph 

models (McGarty et al., 2016; Ryan et al., 2014; Stephens et al., 2016; Trost et al., 2015), seven 

for Actical (Stephens et al., 2016) and one for Tritrac-R3D (RT3; Table 4.4; Ryan et al., 2014). 

This translates to 15 MVPA cut-points derived from the vertical axis (VA; Clanchy et al., 2011; 

Stephens et al., 2016) and nine from the vector magnitude (VM; McGarty et al., 2016; Ryan et 

al., 2014; Trost et al., 2015). Three studies utilised hip-worn accelerometry on the right side 

(McGarty et al., 2016; Stephens et al., 2016; Trost et al., 2015) and two studies calibrating for 

CP placed the accelerometer on the least affected side of the body (Clanchy et al., 2011; Ryan 

Table 4.3 Risk of Bias Assessment Results (Checklist sheet) 

Study Sample 

Characteristics 

Accelerometer 

Settings 

Protocol 

Design 

Criterion Statistical 

Approach for 

Calibrations 

Statistical 

Approach for 

Validations 

Clanchy et al. 2011 Fair Fair  Poor Fair Fair Poor 

Ryan et al. 2014 Fair Good Fair Poor Fair Fair 

Trot et al. 2015 Fair Good Fair Fair Good Fair 

McGarty et al. 2016 Fair Good Poor Fair Fair Poor 

Stephens et al., 2016 Good Good Fair Good Fair Fair 
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et al., 2014). The sample frequency varied between 1 to 32 Hz, with one study (Clanchy et al., 

2011) not specifying this information. Two studies used an epoch of 15-s (Stephens et al., 2016; 

Trost et al., 2015), with others using 1-s (Clanchy et al., 2011), 10-s (McGarty et al., 2016) and 

60-s (Ryan et al., 2014).  

  

 

4.3.2 Calibration Protocol Settings 

 

A daily-life calibration protocol was the most commonly used (n = 3), generating 22 

MVPA cut-points, with only two studies utilising a laboratory-based protocol (Clanchy et al., 

2011; Ryan et al., 2014). Indirect calorimetry was the most common physiological criterion 

used for calibration (Clanchy et al., 2011; Ryan et al., 2014; Stephens et al., 2016; Trost et al., 

2015), with one study using direct observation (McGarty et al., 2016). The protocol duration 

 
Table 4.4 Summary of the Accelerometer Models used by the Included Studies 

Name / Model Manufacturer Weight and Size Memory Capacity Axis Frequency 

Sampling 

ActiGraph 7164 (CSA) ActiGraph LLC 

Pensacola, FL 

45.5 g 

5.1 x 4.1 x 1.5 cm 

 

22 days of data with 

60-s epoch 

Uniaxial 10 Hz 

ActiGraph GT3X ActiGraph LLC 

Pensacola, FL 

27 g 

3.8 x 3.7 x 1.8 cm 

 

378 days using 60-s 

epoch 

Triaxial 30 Hz 

ActiGraph wGT3X+  ActiGraph LLC 

Pensacola, FL 

19 g  

4.6 x 3.3 1.5 cm 

 

38 days 100 Hz 

Triaxial 30 – 100 Hz 

Actical Mini-Mitter 

Sunriver, OR 

17.5 g 

2.8 x 2.7 x 1.0 cm 

45d using 60-s 

epoch 

Uniaxial  32 Hz 

Research Tracker 

accelerometer (RT3) 

StayHealthy, Inc; 

Monrovia, 

California 

71.5 g 

71 x 56 x 28 mm 

30 days using 60-s 

epoch 

Triaxial 0.017 – 1 Hz 
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varied from 35 to 240 minutes. Resting metabolic rate was estimated by Stephens et al. (2016) 

using the Weir equation, whereas Clancy et al. (2011) and Trost et al. (2015) used the Schofield 

equation (Schofield, 1985) and Ryan et al. (2014) the Oxford equation (Henry, 2005). As 

McGarty et al. (2016) developed cut-points through direct observation, a RMR estimation was 

not required. All included studies performed a group calibration rather than individual 

calibrations.  

 

4.3.3 Statistical Approach 

 

Fourteen MVPA cut-points were developed through mixed regression models 

(Stephens et al., 2016), six using machine learning (regressing trees; Trost et al., 2015), and 

four through Receiver Operating Characteristic (ROC) analysis (Clanchy et al., 2011; McGarty 

et al., 2016; Ryan et al., 2014; Stephens et al., 2016). Only one study did not perform any kind 

of validation (Clanchy et al., 2011), with all other validations performed using leave-one-out 

cross-validations. No studies utilised independent samples or a different set of activities to 

cross-validate. Eighteen (Clanchy et al., 2011; Ryan et al., 2014; Stephens et al., 2016; Trost 

et al., 2015) of the generated cut-points were validated through comparison of previously 

established cut-points developed for healthy populations (Evenson et al., 2006; Puyau et al., 

2002; Rowlands et al., 2004; Vanhelst et al., 2010). Three studies (McGarty et al., 2016; Ryan 

et al., 2014; Trost et al., 2015) utilised the Kappa score for agreement assessment, whereas two 

studies (Clanchy et al., 2011; Stephens et al., 2016) performed ANOVA.  A description of the 

statistical methods used in each included study is provided in Appendix B.   

 

4.3.4 Outcome 

 

The disease-specific MVPA cut-points ranged from 152 to 724 counts·15 s-1, with 19 

MVPA cut-points presented in counts·15 s-1
, and four presented in counts·min-1 (Table 4.5). 

The sensitivity of the cut-points ranged from 37 to 91%, and the specificity ranged from 85 to 

97%. Cerebral palsy was the mostly widely studied clinical condition, with eight cut-points 

developed across three studies (Clanchy et al., 2011; McMurray et al., 2015; Ryan et al., 2014). 

Trost et al. (2015) generated cut-points for different degrees of CP severity, with fair to 

excellent accuracy, demonstrating better accuracy (lower rates of misclassification, particularly 
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for GMFCS III and for LPA classification) than Evenson et al. (2006) cut-points. In contrast, 

Ryan et al. (2014) and Clanchy et al. (2011) did not develop specific cut-points for different 

GMFCS levels or perform a leave-one-out cross validation, using specificity and sensitivity as 

a measure of validation. Clanchy et al. (2011) cut-points showed no significant improvement 

in PA classification accuracy compared to healthy population cut-points, whilst the MVPA cut-

points of Ryan et al. (2014) demonstrated moderate classification agreement (Evenson et al., 

2006; Rowlands et al., 2004; Vanhelst et al., 2010). Similarly, Stephens et al (2016) also 

applied healthy population cut-points (Evenson et al., 2006) to their participants with various 

chronic conditions (CF, IMD, JIA, HE and CHD), which resulted in poor-to-moderate 

sensitivity in PA classification. Most of the disease-specific cut-points developed were below 

the previously established MVPA cut-points for healthy populations (e.g., 2,020 to 8,199 

counts·min-1). 

 

 

 

Table 4.5 Summary and Validity of the Clinical-specific Moderate-to-vigorous Cut-points 

Conditions (n) Study Reason for split Cut-points 

MVPA (original) 

Cut-points 

MVPA converted 

to counts·15 s-1 

Criterion Validity 

 

 

 

Cerebral palsy (7) 

Trost et al. 2015 GMFCS I / VA 535 (counts·15 s-1) N/A LOOCV – 81.1%  

Trost et al. 2015 GMFCS II / VA  333 (counts·15 s-1) N/A LOOCV – 76.7% 

Trost et al. 2015 GMFCS III/VA  200 (counts·15 s-1) N/A LOOCV – 82.9% 

Trost et al. 2015 GMFCS I / VM  724 (counts·15 s-1) N/A LOOCV – 80.5% 

Trost et al. 2015 GMFCS II / VM  685 (counts·15 s-1) N/A LOOCV – 75.6% 

Trost et al. 2015 GMFCS III / VM  669 (counts·15 s-1) N/A LOOCV – 84.2% 

Ryan et al. 2014 N/A  689.3 (counts·min-1) 172.3 Se – 86.7% / Sp – 

91.9% 

 Clanchy et al. 2011 N/A 2942 (counts·min-1) 735.5 Se – 91.4% / Sp – 

86.2% 

Intellectual 

disability (2) 

McGarty et al. 2016 VA 1008 (counts·min-1) 252 LOOCV – 93% 

Se – 91% / Sp – 

95% 
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 McGarty et al. 2016 VM 2610 (counts·min-1) 652 LOOCV – 87% 

Se – 91% / 84% 

Cystic fibrosis (2) Stephens et al. 2016 CF / ActiGraph 

7164 

487 (counts·15 s-1) N/A Se – 71% / Sp – 

85%   

 Stephens et al. 2016 CF / Actical 7164 368 (counts·15 s-1) N/A Se – 51% / Sp – 

91%  

Chronic heart 

disease (2) 

Stephens et al. 2016 CHD / ActiGraph 

7164 

349 (counts·15 s-1) N/A Se – 42% / Sp – 

85% 

 Stephens et al. 2016 CHD / Actical 349 (counts·15 s-1) N/A Se – 41 / Sp – 94%  

Inherited muscle 

disease (2) 

Stephens et al. 2016 IMD / ActiGraph 

7164 

663 (counts·15 s-1) N/A Se – 81% / Sp – 

90%  

 Stephens et al. 2016 IMD / Actical 297 (counts·15 s-1) N/A Se – 47% / Sp – 

96%  

Juvenile 

dermatomyositis 

(2) 

Stephens et al. 2016 JDM /ActiGraph 

7164 

172 (counts·15 s-1) N/A Se – 41% / Sp – 

90%  

 Stephens et al. 2016 JDM / Actical 166 (counts·15 s-1) N/A Se – 37% / Sp – 

94%  

Haemophilia (2) Stephens et al. 2016 HE / Actical 306 (counts·15 s-1) N/A Se – 49% / Sp – 

92%  

 Stephens et al. 2016 HE / ActiGraph 

7164 

432 (counts·15 s-1) N/A Se – 53% / Sp – 

92%   

Juvenile arthritis 

(2) 

Stephens et al. 2016 JIA / Actical 152 (counts·15 s-1) N/A Se – 49% / Sp – 

94%  

 Stephens et al. 2016 JIA / ActiGraph 

7164 

255 (counts·15 s-1) N/A Se – 41% / Sp – 

90%  

Overall (CF, JA, 

HE, CHD, JDM, 

IMD) (2) 

Stephens et al. 2016 Overall Diseases / 

Actical 

289 (counts·15 s-1) N/A Se – 77% / Se – 

97%  

 Stephens et al. 2016 Overall Diseases / 

ActiGraph 7164 

426 (counts·15 s-1) N/A Se – 78% / Sp – 

94%  
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MVPA: moderate-to-vigorous physical activity; GMFCS: gross motor function classification system; VA: vector axial, VM: 

vector magnitude; LOOCV: leave-one-out cross-validation; Se: sensitivity; Sp: specificity; CF: Cystic Fibrosis; CHD: 

Congenital Heart Disease; IMD: Inherited Muscle Disease; JMD: Juvenile Dermatomyositis; HE: Haemophilia; JA: Duvenile  

Arthritis. 

 

4.4 Discussion 

 

Twenty-four MVPA cut-points were extracted from five studies across seven different 

paediatric clinical groups. Overall, the review revealed little consensus with regards to MVPA 

cut-points, due to, at least in part, the relatively low number of calibration studies and broad 

range of protocol designs and accelerometer settings used in the studies, thereby limiting inter-

study comparisons. Nonetheless, despite this, a thorough methodological quality assessment of 

the included studies was performed, which contributed to a higher transparency and aided the 

interpretation of the outcomes. Moreover, this review presented a critical analysis of the 

methodological challenges faced when developing cut-points for clinical paediatric 

populations, providing recommendations for future studies. 

 

4.4.1 Calibration Protocol for Paediatric Clinical Populations  

 

The majority of the included studies utilised daily-life (McGarty et al., 2016) or mixed 

(Stephens et al., 2016; Trost et al., 2015) protocols composed of daily-life and laboratory 

protocols. To accommodate different disease and disability levels, Stephens et al. (2016) 

adjusted their laboratory-based protocol by performing two different treadmill tests based on 

6-min walking test performance. Whilst the protocol can greatly impact the PA classification, 

the physiological criterion adopted is equally important. For example, both Trost et al. (2015) 

and Stephens et al. (2016) utilised indirect calorimetry as criterion, which therefore considers 

the higher energetic demand associated with a given activity in some chronic conditions 

(Walker et al., 2015). Specifically, diseases associated with chronic inflammation (e.g., CF, 

obesity) and musculoskeletal adaptations (e.g., CP, JIA, IMD) can reduce exercise tolerance, 

leading to chronic deconditioning and a higher EE demand for a given activity (Mehta, 2015).  

It is well known that the majority of paediatric clinical conditions are associated with 

altered cardiometabolic demands (Bar-Or & Rowland, 2004). Thus, studies calibrating 
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accelerometry for these populations should adopt EE as their criterion method. Another 

important consideration is that RMR changes dramatically according to maturity, disease and 

health parameters (McErlane et al., 2017), such as chronic inflammation and reductions in PA 

(Buchdahl et al., 1988; Eisenstein & Berkun, 2014). Specifically, individuals with CF often 

have a greater RMR, which can be explained to some extent by pulmonary impairment 

(Dorlöchter et al., 2002) and increased cost of breathing (Bell et al., 1996; Frankenfield et al., 

2017). Conversely, children with certain types of CP have a reduced RMR due to a lower 

energetic requirement at rest and altered body composition (e.g., reduced fat free mass and lean 

body mass) (Bandini et al., 1995; Bandini et al., 1991; Stallings et al., 1993). Consequently, 

condition-specific calibration protocols adopting EE as the criterion should measure RMR. 

Despite using indirect calorimetry in their protocols, some of the included studies utilised 

Schofield and Oxford equations (Clanchy et al., 2011) to determine RMR. Whilst such 

equations may provide a low-cost estimation of RMR, they are based on chronological, rather 

than biological, age (McMurray et al., 2015), and do not account for sex or health status. This 

may lead to an inaccurate estimation of RMR, and consequently of EE, in clinical populations 

(De Wit et al., 2010; Fuster et al., 2007). Therefore, the measurement of oxygen uptake at rest 

should be utilised to provide a precise estimation of RMR, and consequently enhance the 

accuracy of the disease-specific cut-points in youth with chronic conditions (Stephens et al., 

2016). 

It is also important to consider the influence of disease severity within a condition, 

which is likely to affect the relative energetic demand, as might differences in the treatment 

and medication strategies between patients (Walker et al., 2015). Indeed, Ryan et al. (2014) 

and Clanchy et al. (2011) did not stratify their sample by the GMFCS scale, resulting in large 

heterogeneity of CP-severity across participants, with some children not able to finish the 

protocol. In contrast, Trost et al. (2015) demonstrated that the relationship between EE and 

activity counts changed significantly according to GMFCS level, with children classified as 

level III having greater EE during locomotion when compared to levels I and II. 

 

4.4.2 Statistical Approach 

 

The statistical approach chosen is highly influential in the translation of the 

physiological criterion into cut-points. Linear regression, which was initially one of the most 

commonly used methods for calibration, cannot account for the non-linear relationship between 



73 

 

 

 

PA and EE (Freedson et al., 2005; Welk, 2005). Consequently, most of the studies included in 

this review utilised ROC analyses to develop their cut-points. Whilst ROC is more accurate 

than linear regression (Welk, 2005), it is dependent on the number of participants and does not 

allow adjustment of disease-specific factors (Staudenmayer et al., 2009).  

Alternatively, mixed regression modelling is an exploratory analysis, particularly 

useful due to its flexible nature that allows the inclusion of disease-specific factors (Freedson 

et al., 2005; Welk, 2005). Stephens et al. (2016) utilised mixed regression modelling to control 

for disease-specific factors to generate predictive equations for children and adolescents with 

CF, HE, JIA, CHD and IDM (Aadland & Steene-Johannessen, 2012; Lopes et al., 2009), 

reporting that heart rate improved the model and lowered the standard error associated with the 

prediction. These findings agree with those in healthy populations (Altini et al., 2014), with the 

improvements in standard error likely to be attributable to the reduction of the inter-individual 

variability caused by the adjustment of physiological signals. It is noteworthy that whilst a 

certain degree of accuracy can be achieved with cut-points, recent PA research has moved 

towards using machine learning. Indeed, more complex machine learning analysis have 

provided a higher degree of accuracy in comparison with traditional cut-points (Bonomi, 

Plasqui, et al., 2009; Staudenmayer et al., 2015; Staudenmayer et al., 2009; Welk, 2005). 

Despite this, a calibration protocol is still required even when using those techniques. Indeed, 

machine learning can also be used to develop cut-points, for example, Trost et al. (2015) used 

Binary Decision Trees to generate CP-specific cut-points. Whilst machine learning provides 

high accuracy, evidence suggests that considerable bias can arise from using a small sample 

size (Combrisson & Jerbi, 2015). Alternatively, approaches such as using different testing and 

training data sets, and testing algorithm performance (i.e. nested cross-validation), can provide 

unbiased performance estimates even with small sample sizes (Vabalas et al., 2019). 

A cross-validation analysis of the cut-points evaluates the predictive models to ensure 

validity and avoid over-fitting, and it can be performed through different methods such as the 

k-fold or leave-one-out cross-validation. Specifically, considering that the developed cut-points 

might be biased to the sample characteristics or to the calibration protocol design, the use of an 

independent sample with a different set of activities for cross-validating the cut-points is 

recommended (Welk, 2005). Stephens et al. (2016) and Trost et al. (2015) applied a leave-one-

out cross-validation, identified as the most appropriate approach when working with smaller 

samples (Welk et al., 2003), or to lessen the burden on the participants. It is further 

recommended that the disease-specific cut-points should also be validated against a healthy 
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matched control group to ensure that potential cut-point discrepancies are a result of the 

pathophysiology rather than from the protocol design. Further to the cross-validation, 

agreement measures, such as Kappa score and Bland-Altman, indicate whether two methods 

can be used concomitantly or interchangeably, thereby facilitating inter-study comparisons 

(Bland & Altman, 1986). Alternatively, recent research has used a statistical equivalence test 

to measure agreement, which has been shown to be more appropriate for highlighting 

similarities between methods (Dixon et al., 2018; Kim et al., 2016). Particularly, the 

performance of agreement measures between activity counts and the criterion measures in a 

calibration protocol ensures that both measurements are comparable, and therefore, it prevents 

potential errors when developing cut-points (Welk, 2005).  

 

4.4.3 Outcome: Cut-points  

 

Cross-validation identified moderate to excellent accuracy for most of the disease-

specific cut-points. Considerable inter-study discrepancies were found when comparisons were 

made between the disease-specific and previously established healthy population cut-points. 

For example, whilst Trost et al. (2015) found that applying cut-points developed for healthy 

populations (Evenson et al., 2006) to CP children resulted in poor accuracy and 

misclassification, Ryan et al. (2014) and Clanchy et al. (2011) demonstrated fair to moderate 

accuracy (Rowlands et al., 2004; Vanhelst et al., 2010). Indeed, converse to Ryan et al. (2014) 

and Clanchy et al. (2011), Trost et al. (2015) calibrated for each level of the GMFCS instead 

of performing an overall calibration, and applied machine learning techniques to generate the 

CP cut-points, presenting higher specificity than the cut-points developed for healthy 

populations. Furthermore, Stephens et al. (2016) also found that their disease-specific cut-

points (CF, CHD, HE, JIA and IMD) had improved accuracy when compared with standard 

cut-points, thereby supporting the notion that specific cut-points are necessary for clinical 

populations.  

Given that SED is mainly classified based on stationary activities and therefore does 

not consider musculoskeletal disabilities, it is unsurprising that some studies (Clanchy et al., 

2011; Ryan et al., 2014; Trost et al., 2015) demonstrated fair to excellent accuracy when 

utilising healthy population-based SED cut-points for children with less severe CP. Despite 

this, poor classification of LPA may affect specific clinical populations, such as CP 
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(Verschuren et al., 2014), who may not be able to engage in MVPA activities, and would 

therefore greatly benefit from a reduction in SED (Ryan et al., 2015). Specifically, considering 

that daily PA is a composite measure, an increase in LPA could be associated with a reduction 

in SED and enhancement on the total volume of PA (Bassett et al., 2017). Indeed, estimation 

of LPA for children with CP through standard cut-points, such as Evenson et al. (2006) and 

Vanhelst et al. (2010), presented poor to fair classification accuracy (Clanchy et al., 2011; Ryan 

et al., 2014; Trost et al., 2015). Additionally, the lack of standardisation regarding protocol 

design and statistical approach hinders the applicability of the cut-points, which might explain 

the variability found between cut-points developed for the same clinical condition. 

Consequently, age- and sex-matched healthy control groups are essential to elucidate whether 

the differences observed in the disease-specific protocol are due to the disease severity or to 

protocol discrepancies. However, only one study (Stephens et al., 2016) included a control 

group although this was only used for baseline comparisons. 

 

4.4.4 Strengths and Limitations  

 

The present systematic review is associated with numerous strengths. Firstly, an 

experienced librarian was consulted to revise the initial protocol and a pilot search was 

conducted to minimise errors, leading to changes in the eligibility of participants, outcomes, 

risk of bias assessment and analysis. Moreover, the initial search terms were adapted following 

advice from the librarian. The pilot search generated a large number of studies for participants 

across the lifespan and health continuum, therefore, the inclusion criteria for participants were 

limited to only children and adolescents with clinical conditions. Nevertheless, the literature 

was initially screened to capture all calibration studies for healthy and clinical populations. 

Whilst this strategy resulted in an extensive search, it also minimised the possibility of missing 

studies calibrating for a clinical condition. However, this strategy is not without limitations, as 

it required having only one author screen all the titles and abstracts. Nonetheless, different 

approaches were adopted to minimise error. Specifically, an EndNote library was created, and 

the same search strategy was used for all databases. Whilst double data entry was not 

performed, a data extraction sheet was created and checked by two authors, and subsequently 

made available to all authors during the extraction process.  
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A qualitative data synthesis was performed due the heterogeneity of calibration 

protocols and the calculation of cut-point effect sizes not being possible, thereby precluding a 

meta-analysis from being performed. The heterogeneity of the protocols can partially be 

explained by the inclusion of a broad range of clinical conditions. However, whilst the 

comparison of numerous clinical conditions of a different nature may be questioned, the 

primary aim of the review was to investigate the structure of different calibration protocols and 

how they accounted for the pathophysiology of the respective conditions. Despite the varying 

nature of the conditions included, only a small range of studies calibrated accelerometry in 

clinical populations, which hinders further conclusions regarding the optimal protocol.  

 

4.5 Conclusion 

 

Overall, this systematic review highlights the broad range of protocol designs and 

accelerometer settings of studies developing MVPA cut-points for children and adolescents 

with clinical conditions. Research seeking to develop disease-specific paediatric cut-points 

should consider the pathophysiology of the disease and seek to include a measure of EE, an 

accurately assessed RMR and a healthy comparison group. Moreover, all cut-points developed 

should be cross-validated. In summary, studies calibrating accelerometry in paediatric clinical 

populations are urgently required to establish an optimal calibration protocol. Subsequently, 

the enhancement in the assessment and surveillance of PA for clinical populations could lead 

to the development of more informed clinically specific PA guidelines. 

 

4.6 Practical Implications 

 

A systematic review of the literature resulted in five studies which generated PA cut-points 

for seven conditions in youth. Specific recommendations for future studies calibrating 

accelerometry in paediatric clinical groups were developed:  

• To account for the pathophysiology of the disease in the calibration protocol.  

• To integrate a measurement of energy expenditure to the calibration protocol. 

• To move towards using machine learning techniques.  
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• To include a control group. 

• To cross-validate the cut-points. 
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CHAPTER 5 

Study Two: Developing and Evaluating Raw Acceleration Thresholds for Children and 

Adolescents with Cystic Fibrosis compared to Healthy Youth 

 

Abstract 

Introduction: Regular physical activity (PA) is recommended as part of Cystic Fibrosis (CF) 

treatment. Currently, available cut-points to classify PA intensity have primarily been 

generated and validated in healthy populations and are likely to misclassify PA in this those 

with CF. Therefore, the aim of this study was to develop raw acceleration, condition-specific 

PA cut-points for children and adolescents with CF and to investigate how these cut-points 

vary according to accelerometer placement and brand and compared to healthy controls.  

Methods: Thirty-five children and adolescents with CF (15 girls; 11.6 ± 2.8 years) and 28 

healthy controls (16 girls; 12.2 ± 2.7 years) participated. Energy expenditure and triaxial 

acceleration were measured during six typical daily activities of varying intensities and a 

cardiopulmonary exercise test to exhaustion. The metrics Euclidean Norm Minus One (ENMO) 

and Mean Amplitude Deviation (MAD) were extracted from the raw acceleration data 

measured using a GENEActiv (both wrists) and ActiGraph GT9X (both wrists and right waist) 

accelerometers. Receiver Operator Characteristic (ROC) curves were used to determine healthy 

and CF-specific cut-points for sedentary time (SED), moderate physical activity (MPA) and 

vigorous physical activity (VPA).  

Results: Irrespective of intensity, the cut-points were generally lower in those with CF than 

their healthy peers for both ENMO (60.2 – 73.1 vs. 63.5 – 86.8) and MAD (58.9 – 85.2 vs. 

75.9 – 93.7). The accuracy of the CF-specific ENMO and MAD cut-points varied from fair to 

excellent for both brands and across all placements, with the leave-one-out cross-validation 

demonstrating greater accuracy for SED (73 – 98%) and VPA (66 – 99%), than MPA (66 – 

87%). A significant difference in raw acceleration data was observed between placements 

within a device brand, with waist and non-dominant wrist showing lower outputs particularly 

during VPA. A three-way interaction between accelerometer brand, placement and activity was 

found for ENMO, independent of health status (p < 0.0001). Waist-worn ActiGraph GT9X 

yielded lower outputs, whereas the dominant wrist-worn GENEActiv produced higher outputs 

during free-games, stairs and playing on a handheld device.  
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Conclusion: Whilst this study found significant inconsistencies between placements and 

accelerometer brands, the non-dominant wrist placement is recommended to ensure 

standardisation across studies. It is pertinent to note the substantial differences observed 

between the cut-points developed for those with CF and healthy populations, raising questions 

regarding the accuracy of previous studies comparing PA levels between those with CF and 

their healthy counterparts using generic cut-points. Therefore, the current cut-points have the 

potential to greatly influence our understanding of PA levels in children and adolescents with 

CF and their association with physical and mental health and wellbeing.  

 

5.1 Introduction 

 

Physical activity (PA) reduces exacerbations, improves life expectancy and enhances 

quality of life in those with Cystic Fibrosis (CF; Hebestreit et al., 2014; Savi, Di Paolo, et al., 

2015). Structured PA is associated with enhanced aerobic capacity, bone mineral density, and 

a reduced decline in lung function in children and adolescents with CF (Hebestreit et al., 2006; 

Schneiderman et al., 2013; Tejero et al., 2016). PA is also associated with improved regulation 

of chloride secretion and reduced sodium conductance, which leads to lower sputum viscosity 

(Hebestreit et al., 2001; Wheatley et al., 2015).  

Accelerometry is used as a device-based measure of PA levels in children, providing 

accurate estimates of PA (Brage et al., 2019; De Vries et al., 2009; Lynch et al., 2019; Trost et 

al., 2005) with a higher validity and reliability compared to self-report approaches (Hidding et 

al., 2018; LeBlanc & Janssen, 2010; Trost et al., 2005). Accelerometers measure velocity over 

time, which can subsequently be translated into PA intensities by using prediction equations, 

cut-points, and, more recently, machine learning models (Arvidsson, Fridolfsson, & Börjesson, 

2019). However, the inappropriate selection of cut-points or prediction equations, such as the 

application of cut-points developed for healthy populations to those with chronic conditions, 

such as CF, may lead to inaccurate PA estimations (Gába et al., 2016; Mackintosh et al., 2018). 

Indeed, previous research using moderate-to-vigorous physical activity (MVPA) cut-points 

developed for healthy populations were found to underestimate PA in youth with CF (Stephens 

et al., 2016). Such discrepancies may be related to the pathophysiology of the disease itself, 

with children and adolescents with CF shown to have a higher resting metabolic rate (RMR) 

and energy expenditure (EE) for a given task compared to their healthy peers (Moudiou et al., 
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2007; O'Rawe et al., 1992). Consequently, the cut-points used to assess PA in children with CF 

may need to be specifically tailored to account for these alterations in EE in order to provide 

accurate estimations of PA levels, and thus enable the appropriate delineation of the dose-

response relationship.    

To develop CF-specific cut-points, accelerometers need to be calibrated using a 

protocol comprising of a range of activities that span the intensity spectrum and are 

representative of daily life (Trost et al., 2005; Welk, 2005). In healthy populations, calibration 

studies have typically utilised either laboratory-based or free-living protocols (Welk, 2005). 

Whilst highly structured activities, such as walking or running on a treadmill, included in 

laboratory-based protocols are generally associated with superior predictive accuracy, they 

lack ecological validity (Farrahi et al., 2019; Freedson et al., 2005; Welk, 2005). Consequently, 

free-living protocols are widely recommended to generate cut-points reflecting the unique, 

sporadic nature of children’s PA patterns (Mackintosh et al., 2012). However, despite the 

associated advantages, a free-living protocol precludes the measurement of a biological 

reference criteria, such as EE, which is pivotal when calibrating accelerometry, especially in 

clinical populations (Mackintosh et al., 2012). Indeed, Chapter 4 found that while the type of 

protocol greatly impacts PA classification, studies calibrating accelerometry in paediatric 

clinical cohorts should account for the pathophysiology of the disease and integrate EE 

measurements, including an appropriate estimation of RMR, in the protocol.  

Earlier studies developing cut-points in healthy children have utilised waist-worn 

accelerometers due to the proximity of this location to the body’s centre of gravity (Freedson 

et al., 2005). Whilst the waist is known to provide accurate estimations of whole-body 

movement, this placement is associated with poor compliance during habitual assessments, 

which can lead to misclassification and bias (Fairclough et al., 2016; Rowlands et al., 2014). 

Consequently, research has increasingly adopted the wrist as the placement site to improve 

participant compliance (Rowlands et al., 2014). However, although recent evidence suggests 

that accelerometer measures derived from the waist and wrist are similar in healthy children 

(Mackintosh et al., 2016; Rowlands et al., 2014), the optimal accelerometer placement to 

estimate PA in children with CF remains to be elucidated. Similarly, there is no consensus 

regarding the ideal accelerometer brand to derive PA levels in children and adolescents with 

CF, though recent studies developing cut-points for healthy children have relied on brands that 

provide raw, unfiltered acceleration data, such as the GENEActiv and ActiGraph (GT3X+ and 

GT9X; Aittasalo et al., 2015; Hildebrand et al., 2014; Hurter et al., 2018).  
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The aims of this study were to develop healthy and disease-specific cut-points for 

children and adolescents with CF and to consider how these cut-points vary according to health 

status, and accelerometer placement (wrist and waist) and brand (GENEActiv and ActiGraph).  

 

5.2 Methods 

 

5.2.1 Participants 

 

Thirty-five children with CF (15 girls) and 28 healthy controls (16 girls), aged 7 – 17 

years participated in the study. Those with CF were recruited from Paediatric CF Clinics in 

South Wales and had been diagnosed as having CF according to a newborn screening test, 

and/or presenting with CF-typical symptoms and either two pathological sweat tests or the 

identification of two CF-relevant mutations. Those with multi-resistant bacteria (Burkholderia 

Cepacia and nontuberculous mycobacteria), an acute exacerbation at the time of the 

assessments, co-morbidities such as cardiovascular or musculoskeletal issues that compromise 

exercise performance, or who were less than two weeks post antibiotic treatment for an 

exacerbation or awaiting a transplant, were excluded from the study. The majority of the CF 

participants were homozygous (55%) for the ΔF508 mutation and had a relatively mild disease 

severity, with an average forced expiratory volume in the first second (FEV1) of 94 ± 19% 

predicted (FEV1%predicted; range 50 - 130%). More specifically, amongst the participants in the 

CF group, 28 presented with mild and 7 with moderate lung disease. On average, those with 

CF were taking 10 ± 3 (range 5 - 16) medications, daily. Healthy participants were recruited 

through a University in Wales and from the friends and families of the CF participants. The 

health status of the healthy control group was confirmed by a short clinical anamnesis in which 

the participants were asked if they have any clinical conditions or diseases and whether they 

were taking any medication(s) for health purposes. During the clinical anamnesis, 

parents/guardians were consulted whenever necessary. Written informed consent was obtained 

from parent/guardians and assent from the participants prior to the study commencement. 

Ethics approval was obtained from the National Health Service (NHS) Research Ethics 

Committee (18/WS/0032; Appendix D2).  
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5.2.2 Protocol 

 

Participants were asked to attend the laboratory on three occasions, with the first two 

visits separated by seven days. The first visit involved baseline measures of anthropometry, 

RMR and lung function. The second and third visits consisted of the daily-life activity protocol 

and a treadmill-based exercise test, respectively. Participants were asked to arrive at least two 

hours postprandial and to have avoided caffeine and vigorous exercise for 24-hours. For 

participants with CF, information regarding medication, any associated comorbidities, and the 

frequency of exacerbations was extracted from their medical records. 

 

5.2.3 Measurements 

 

a. Anthropometry 

Body mass (Seca 876, Hamberg, Germany), stature (Holtain Stadiomerter 603VR, 

Holtain Ltd, UK) and sitting height (Holtain Sitting Height Stadiometer 607VR, Holtain Ltd, 

UK) were measured to the nearest 0.1 kg, 0.1 cm and 0.1 cm, respectively. Body mass index 

(BMI) and age- and sex-specific z-scores were determined according to the World Health 

Organisation reference data (de Onis et al., 2004). Finally, pubertal stage was estimated 

according to time pre or post peak height velocity (PHV; Mirwald et al., 2002), with pre-

pubertal considered > -1 years from PHV, pubertal as -1 to +1 years and post-pubertal as > +1 

years post PHV.  

 

b. Resting Metabolic Rate 

Following at least 10 minutes at rest, participants were instructed to lie in the supine 

position for 20 minutes for the assessment of RMR via indirect calorimetry using a facemask 

(MetaMax Cortex 3B, CORTEX Biophysik GmbH, Germany). This measure was performed 

in a quiet room and all participants were instructed to remain in the supine position for the 

duration of the test, avoiding talking and/or sleeping. Prior to this analysis, the analyser was 

calibrated with gases of known concentration and the volume calibrated using a three-litre 

syringe (5530 series, Hans Rudolph, Inc., USA). Concentration and volume signals were time-

aligned to account for the delay in the capillary gas transit and analyser rise time (McNarry et 
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al., 2017). To calculate RMR, the first five minutes and the last two and a half minutes were 

removed from the analysis, with the remaining values of oxygen uptake (V O2) and carbon 

dioxide output (V CO2) averaged (Cooper et al., 2009; Jackson et al., 2007). Subsequently, RMR 

was calculated according to the Weir equation (Weir, 1949). 

 

c. Aerobic Capacity 

A standard Bruce protocol involving incremental three-minute stages to volitional 

exhaustion was used to assess peak oxygen uptake (V O2peak). Gas exchange variables were 

measured on a breath-by-breath basis (Metamax 3B, Cortex Biophysik GmbH, Germany). 

Oxygen saturation and heart rate were measured throughout using a pulse oximeter (Nonin® 

WristOx® Model 3150, Nonin® Medical Inc., USA) and a three-lead electrocardiogram (ECG; 

Custo Guard ECG, custo med GmbH, Germany), respectively. During the final 30-s of each 

exercise stage, the participant's rating of perceived exertion and breathlessness were assessed 

using the modified Borg scale of perceived exertion (0 - 10; Borg, 1982). Peak oxygen uptake 

was defined as the highest 10-s moving average during the exercise test.  

 

d. Lung Function 

All participants were asked to complete a standard spirometry assessment, at the start 

of the session, using a forced vital capacity manoeuvre to determine FEV1 (Metamax 3B, 

Cortex Biophysik GmbH, Germany). The manoeuvre was performed with the participant 

sitting in an upright position whilst maintaining the neck in a fixed neutral position 

(McCormack et al., 2019). Participants were asked to repeat the manoeuvre until three 

consistent (< 5% variability) measures were obtained. Participants were allowed to repeat the 

test for a maximum of eight times (Jat, 2013). In order to be accepted, curves had to display a 

rapid and clear rise reaching the peak flow and a prolonged expiratory curve which gradually 

decreased in flow. A face mask, which provides similar validity and intra-class reliability in 

comparison with a cylindrical mouthpiece, was used to complete the manoeuvres as it is easier 

to use, particularly in children (McCormack et al., 2019; Wohlgemuth et al., 2003). For those 

with CF who were prescribed a salbutamol inhaler, spirometry was completed prior to and 

following at least 10 minutes of bronchodilator administration to determine the reversibility of 

airway obstruction (Sim et al. 2015). The FEV1%predicted was estimated using a reference 
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equation (Quanjer et al., 2012) for age, sex and body weight, and used to categorise disease 

severity as mild (> 70%), moderate (40 – 69%) or severe (< 40%; Davies & Alton, 2009). 

 

e. Accelerometry 

The ActiGraph GT9X Link (ActiGraph, Pensacola, FL) and GENEActiv (ActivInsights 

Ltd., Cambridge, UK) were used to measure raw acceleration. In total, five monitors were used, 

including three ActiGraph GT9X Link monitors placed on both wrists and the right waist, and 

two GENEActiv placed on both wrists. Specifically, the wrist monitors were placed beside one 

another and varied in position in a randomised order across participants. All monitors were 

initialised to sample at 100 Hz, with the ActiGraph filter (low frequency extension) activated, 

when available.  

 

5.2.4 Daily-life Calibration Protocol 

 

The daily-life calibration protocol consisted of activities mimicking the participant's 

daily lives. During their first laboratory visit, participants were given a spreadsheet of common 

activities from the compendium of physical activities (Ainsworth et al., 2011) and asked to 

select any that they would typically do at least once a day. Suggestions of additional activities 

were also integrated, with the six most commonly selected activities, stratified by behaviour 

type (i.e., sedentary), chosen to be integrated into the daily-life protocol (Table 5.1). Over a 

duration of 50 minutes, participants performed the six activities for three to ten minutes each, 

in a randomised order, interspersed by three minutes rest, whilst wearing the accelerometers, 

metabolic system and the pulse oximeter. All accelerometers and the metabolic system were 

synchronised to an external clock.  
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Table 5.1 Six Activities Included in the Daily-life Protocol 

Activity  Description 

Video Watching a video in a seated position for ten minutes 

Colouring/writing Colouring or writing in a seated position for six minutes 

Playing on a 

handheld device 

Playing games on a handheld device on a seated position for six 

minutes 

Free-games Playing a variety of games, including football, tennis, badminton, 

rugby, skipping and mini-bowling for five minutes 

Walking Walking continuously at a self-selected comfortable pace for five 

minutes 

Stairs Climbing and descending stairs continuously at a self-selected 

comfortable pace for three minutes 

 

5.2.5 Data Reduction 

 

 The raw acceleration data were extracted as .gt3x files and .bin files at 100 Hz using 

ActiLife V 6.10.2, and GENEActiv PC software V2.2, respectively. All .gt3x files were 

converted to time-stamp free .csv files and subsequently exported along with the .bin files into 

R statistical software (V3.1.2; R Foundation for Statistical Computing, Vienna, Austria) for the 

extraction of raw acceleration data. Specifically, the GGIR package (V 1.2 – 0; Migueles, 

Rowlands, et al., 2019) was used to auto-calibrate and extract the Euclidean Norm Minus One 

(ENMO) and Mean Amplitude Deviation (MAD) metrics  (Migueles, Rowlands, et al., 2019; 

van Hees et al., 2014). The values resulting from the signal processing in R are expressed in 

gravity-based acceleration units (g = 9.81 m·s-2), which were subsequently converted to 

milligravitational (mg) units and calculated over 5-s epochs, according to previous 

recommendations (Matthews et al., 2012; Vähä-Ypyä et al., 2015).  

Metabolic equivalent of task (MET) values for each activity were calculated by dividing 

the V O2 (ml·min-1·kg-1) for each activity by the measured resting V O2 in accord with previous 

recommendations (McMurray et al., 2015). Data from the first and last minute of each activity 

were excluded to avoid transitional movements, resulting in the inclusion of at least one (i.e. 

stairs) to two minutes of data for each activity in the final analysis. Subsequently, MET values 

were paired with the ENMO and MAD metrics for each activity. MET values were then used 
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to code the corresponding 5 s raw accelerometer data as sedentary (≤ 1.5 MET), moderate (4 - 

6.9 METS) or vigorous (≥ 7 METS; Troiano et al., 2008).  

 

5.2.6 Statistical Analyses 

 

Descriptive analyses were performed with data presented as mean ± standard deviation 

(SD) or frequencies for continuous and categorical variables, respectively. Data was tested for 

normality using the Shapiro-Wilk test, and sphericity using the Mauchly's test of sphericity. A 

two-way ANOVA and Kruskal-Wallis test were utilised for parametric and non-parametric 

data, respectively, to investigate inter-group comparisons of participant demographics, 

accelerometer outputs and EE data. A three-factorial, repeated-measures ANOVA test was 

used to investigate the effect of activity type, accelerometer placement and accelerometer 

brand, and their interaction in two distinct steps. Initially, this analysis was applied to healthy 

and CF participants separately, and subsequently included health status as one of the factors. 

The conservative Greenhouse-Geisser-corrected values were used whenever the assumption of 

sphericity was violated. Finally, a Bonferroni post hoc was utilised to further explore and 

interpret the findings from the multifactorial repeated-measures ANOVA.  

Cut-points for SED, MPA and VPA were generated using the receiver operating 

characteristics analysis (ROC) with its respective area under the curve (AUC). The ROC 

analyses were interpreted according to the sensitivity (the number of true positives), and 

specificity (the number of false positives). For the ROC-AUC, a value of 1 represents a perfect 

classification, whereas an area of 0.5 represents a complete absence of classification accuracy; 

ROC-AUC values of ≥ 0.90 were considered excellent, 0.80 – 0.90 good, 0.70 – 0.80 fair, and 

< 0.70 poor. Separate cut-points were generated for SED, MPA and VPA for the healthy and 

CF groups. The code generated from the MET (view section 5.5) values, for each intensity, 

was used as the dependent variable for the ROC curve, with the cut-points generated selected 

to optimise both sensitivity and specificity. An iterative leave-one-out approach was used to 

cross-validate the cut-points. Specifically, cut-points were generated on a loop using data from 

n-1 participants (until data from all participants were used) and the mean squared error (MSE) 

was determined by subtracting the cut-points and the final result was produced by averaging 

all the MSE values (Unal, 2017). Bland-Altman plots were used to assess the mean bias and 

limits of agreement between monitors for each placement in both groups (Bland & Altman, 
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1986). Significance was accepted at p ≤ 0.05. The descriptive statistics and inter-group 

comparisons were performed using SPSS Statistics, version 23.0 (IBM Corp., USA), whereas 

the ROC analyses and the leave-one-out cross-validation were performed using MedCalc, 

version 19.2.1 (MedCalc Software, Ostend, Belgium) and R, respectively. 

 

5.3 Results 

 

From the initial 64 participants that were screened, one participant was unable to attend 

the second visit and was therefore excluded from further analysis.  Therefore, in total, the study 

included 63 children, 35 with CF and 28 healthy controls (Table 5.2).  The two-way ANOVA 

revealed that those with CF had significantly lower body mass (p = 0.02) and lower zBMI (p 

= 0.006) than the healthy participants. No significant differences were encountered between 

the CF and healthy groups in terms of age, stature, RMR, lung function or V O2peak. The majority 

of the participants (38 participants; 23 CF) were classified as pre-pubertal, with 10 (8 CF) 

pubertal and 15 (4 CF) post-pubertal. 
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Data are presented as mean ± SD 

CF: Cystic Fibrosis, RMR: resting metabolic rate, V O2peak: peak oxygen uptake, FEV1: forced expiratory volume in one second, 

FEV1%predicted: forced expiratory volume in one second, BMI: body mass index, zBMI: z-scores body mass index. +indicates 

significant difference between healthy and CF participant; ˟ indicates significant difference between boys and girls in the 

healthy group; *indicates significant difference between boys and girls in the CF group (p ≤ 0.05). 

 

Participants with CF had a higher EE than the healthy group whilst watching television, 

with the healthy group expending more energy during the free-games, although both failed to 

reach significance (p = 0.052 and 0.055, respectively). Furthermore, during walking at a 

comfortable pace, the CF group had significantly higher accelerometer outputs in comparison 

to the healthy group for both ENMO (p = 0.04) and MAD (p = 0.05), but no difference in EE 

(Table 5.3). Tables 5.4 and 5.5 present the cut-points derived from ENMO and MAD, 

respectively. The cross-validation data for each cut-point are presented in Appendix G2. 

 

Table 5.2 Participant Characteristics 

 Cystic Fibrosis Healthy 

 Total (n = 35) Girls (n = 15) Boys (n = 20) Total (n = 28) Girls (n = 16) Boys (n = 12) 

Age (years)  11.6 ± 2.8 11.3 ± 2.7 11.8 ± 2.9 12.2 ± 2.7 12.6 ± 2.6 11.5 ± 2.8 

Height (cm)  1.46 ± 0.15 1.44 ± 0.12 1.47 ± 0.17 1.53 ± 0.16 1.54 ± 0.10 1.50 ± 0.21˟ 

Body mass (kg)  39.13 ± 12.0+ 37.3 ± 10.2 40.4 ± 14.2 47.1 ± 15.0 50.1 ± 12.7 43.0 ± 12.2 

BMI (kg·m-2) 18.0 ± 4.2 17.5 ± 18.2 18.4 ± 5.3 19.6 ± 3.5 20.6 ± 3.3 18.2 ± 3.5 

zBMI -0.31 ± 1.10+ -0.12 ± 0.78  -0.47 ± 1.28   0.41 ± 0.80 0.57 ± 0.62 0.19 ± 1.00 

RMR (ml·kg-1·min-1) 6.21 ± 1.31 5.86 ± 1.26 6.45 ± 1.24 5.35 ± 1.54 4.51 ± 0.89 6.47 ± 1.51 

V O2peak (ml·kg-1·min-1) 41.23 ± 11.61 37.22 ± 10.81 44.76 ± 10.47 41.62 ± 12.33 36.42 ± 9.24 47.68 ± 13.56 

FEV1 (L) 2.0 ± 0.7 1.9 ± 0.4 2.2 ± 0.9* 2.4 ± 0.8 2.4 ± 0.8 2.4 ± 0.9 

FEV1%predicted (%) 94 ± 19 92 ± 20 94 ± 19 99 ± 21 99 ± 22 100 ± 14 

FEV1 (z-score) -0.21 ± 1.44 -0.07 ± 1.46 -0.21 ± 1.44 0.14 ± 1.88 0.14 ± 1.93 0.03 ± 1.26 
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Data are presented as median (range) 

CF: Cystic Fibrosis, MET: metabolic equivalent. *indicates significant difference between groups (p ≤ 0.05). 

 

Table 5.3 Mean Energy Expenditure (METs) and ENMO and MAD (mg) During each Activity within the 

Daily-life protocol 

 METs  ENMO  MAD  

 CF Healthy CF Healthy CF Healthy 

Video 1.20 (0.66 - 2.03) 1.03 (0.51 - 2.06) 9 (3 - 150) 10 (2 - 60) 10 (2 - 190) 10 (1 - 80) 

Colouring 1.32 (0.85 - 2.86) 1.27 (0.58 - 2.47) 10 (0.08 - 50) 10 (1 - 50) 20 (3 - 81) 20 (7 - 80) 

Handheld 

Device 

1.13 (0.72 - 2.47) 1.00 (0.44 - 2.13) 5 (0. 02 - 34) 7 (0. 08 - 34) 10 (4 - 50) 10 (6 - 50) 

Free-games 3.86 (1.46 - 10.27) 3.81 (1.46 - 10.13) 150 (30 - 740) 140 (1 - 360) 220 (60 - 700) 200 (10 - 400) 

Walking 2.35 (1.80 - 4.32) 2.34 (1.13 - 9.43) 110* (30 - 330) 80 (10 - 530) 170* (50 - 380) 140 (40 - 306) 

Stairs 4.49 (3.11 - 9.93) 4.97 (3.71 - 7.41) 180 (50 - 630) 180 (50 - 600) 250 (60 - 590) 270 (90 - 590) 
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Table 5.4 Cut-points Derived from ENMO Accelerometer Raw data in mg 

  CF  Healthy 

Placement Intensity ENMO  

cut-point 

AUC (95%CI) Sensitivity 

(%) 

Specificity 

(%) 

 ENMO  

cut-point 

AUC (95%CI) Sensitivity 

(%) 

Specificity 

(%) 

 ActiGraph 

Dominant wrist SED 55.5 85.8 (84.6 – 86.9) 93.6 69.9  51.4 81.3 (79.9 – 82.7) 91.4 60.9 

MPA 63.0 83.2 (86.6 – 89.1) 87.8 68.7  63.5 87.9 (86.6 – 89.1) 94.2 71.9 

VPA 177.9 90.8 (89.8 – 91.7) 83.6 86.3  103.3 87.0 (85.7 – 88.2) 99.0 72.1 

Non-dominant 

wrist 

SED 38.4 88.5 (87.4 – 89.6) 89.7 76.2  30.8 82.3 (80.8 – 83.8) 80.8 74.1 

MPA 60.2 81.4 (80.1 – 82.7) 85.4 66.6  65.9 86.2 (84.7 – 87.5) 84.2 73.5 

VPA 115.3 88.0 (86.8 – 89.0) 90.0 74.2  128.4 82.1 (80.6 – 83.6) 86.5 57.6 

Waist SED 61.3 82.3 (81.0 – 83.6) 97.5 59.7  37.3 83.3 (81.7 – 84.8) 89.4 69.6 

MPA 73.1 83.4 (82.1 – 84.7) 81.8 75.0  66.8 90.0 (88.7 – 91.1) 95.4 74.7 

VPA 133.1 92.3 (91.3 – 93.2) 89.3 84.7  83.6 87.5 (86.1 – 88.8) 93.6 70.0 

 GENEActiv 

Dominant wrist SED 44.8 87.7 (86.7 – 88.7) 94.5 72.3  38.3 87.4 (85.9 – 88.7) 92.9 73.1 

MPA 74.8 81.2 (80.0 – 82.4) 82.2 71.7  86.8 88.8 (87.5 – 90.1) 86.3 78.1 
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CF: Cystic Fibrosis, ENMO: Euclidean norm minus one, AUC: area under the curve, CI: confidence interval; SED: sedentary; MPA: moderate activity; VPA: vigorous 

activity. 

 

 

VPA 156.8 93.9 (93.2 – 94.6) 92.0 84.7  127.8 88.4 (87.0 – 89.7) 96.6 74.4 

Non-dominant 

wrist 

SED 43.9 87.2 (86.2 – 88.2) 96.8 71.8  39.0 86.9 (85.4 – 88.3) 91.3 75.3 

MPA 64.3 88.0 (87.0 – 88.9) 96.2 72.3  84.7 91.0 (89.7 – 92.2) 89.3 78.9 

VPA 165.6 94.0 (93.2 – 94.7) 92.5 86.2  100.2 84.6 (83.1 – 86.1) 98.0 70.8 
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Table 5.5 Cut-points Derived from MAD Accelerometer raw data in mg   

  CF  Healthy 

Placement Intensity MAD  

cut-point 

AUC (95%CI) Sensitivity 

(%) 

Specificity 

(%) 

 MAD  

cut-point 

AUC (95%CI) Sensitivity 

(%) 

Specificity 

(%) 

 ActiGraph 

Dominant wrist SED 74.2 89.0 (88.0 – 90.1) 92.0 75.6  76.1 83.2 (81.7 – 84.5) 89.0 65.1 

MPA 82.5 83.5 (82.2 – 84.7) 92.3 63.5  113.5 87.6 (86.3 – 88.8) 93.7 72.3 

VPA 262.7 90.5 (89.5 – 91.5) 83.6 86.6  220.4 90.0 (88.8 – 91.1) 97.5 79.1 

Non-dominant 

wrist 

SED 51.2 87.3 (86.1 – 88.4) 89.4 77.0  73.4 82.9 (81.3 – 84.4) 86.3 71.9 

MPA 73.1 82.1 (80.8 – 83.4) 90.1 63.3  149 84.0 (82.5 – 85.4) 75.8 79.2 

VPA 260.8 87.2 (86.1 – 88.3) 76.5 85.4  214.2 81.2 (79.6 – 82.7) 76.1 80.4 

Waist SED 55.3 88.9 (87.7 – 89.9) 92.0 75.8  43.5 86.9 (85.5 – 88.3) 95.4 70.2 

MPA 58.9 85.8 (84.5 – 86.9) 92.9 66.7  109.2 90.3 (89.0 – 91.5) 95.9 76.2 

VPA 92.4 92.4 (91.4 – 93.3) 92.0 80.9  170 88.9 (87.6 – 90.2) 93.3 73.5 

 GENEActiv 

Dominant wrist SED 74.6 87.7 (86.7 – 88.6) 94.0 72.1  61.5 88.8 (87.4 – 90.0) 91.6 74.4 

MPA 85.3 83.8 (82.6 – 84.8) 91.7 66.8  94.5 88.6 (87.2 – 89.8) 92.3 70.7 
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CF: Cystic Fibrosis, AUC: area under the curve, CI: confidence interval, MAD: mean amplitude deviation, SED: sedentary; MPA: moderate activity; VPA: vigorous activity. 

 

VPA 222.5 94.0 (93.2 – 94.6) 94.1 83.3  186.4 88.1 (86.7 – 89.4) 93.5 73.6 

Non-dominant 

wrist 

SED 70.9 86.2 (85.2 – 87.2) 96.6  71.4  73.5 86.6 (85.1 – 88.0) 92.8 74.1 

MPA 85.2 88.1 (87.1 – 89.1) 98.0 70.7  129.4 91.0 (89.8 – 92.2) 90.8 76.7 

VPA 224.5 94.1 (93.4 – 94.8) 93.6 84.4  186.9 84.8 (83.3 – 86.3) 95.4 77.6 
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The factorial ANOVA analysis including health status as one of the factors only showed 

a significant effect of activity type on both ENMO and MAD (F5,8 = 107.75, F5,8 = 141.54, 

respectively, both p < 0.0001), with the highest outputs from free-games and stairs. The 

factorial ANOVA considering the groups separately, also showed a significant effect of activity 

type on both ENMO and MAD (F2.58,82.74 = 64.30, F3.24,103.77 = 161.96, respectively, both p < 

0.0001) with similar activity results as the four-factorial model. Whilst no significant main 

effect was observed for placement (F1,32 = 0.30, p = 0.58), there was a significant effect of 

brand for MAD metrics in both CF (F1,32 = 6.17, p < 0.05) and healthy participants (F1,32 = 

6.17, p < 0.05), with significantly higher outputs from GENEActiv. Significant two-way 

interactions were observed for activity*brand (F2.53,81.18 = 5.47, p < 0.0001) and 

brand*placement (F1,32 = 4.35, p < 0.05) for ENMO. Specifically, the ENMO output from the 

wrist-worn GENEActiv was higher in comparison with the waist-worn ActiGraph GT9X, 

particularly during vigorous activities. Furthermore, there was a significant interaction between 

activity*placement for both ENMO and MAD (F3.04,97.41 = 11.51, F1,120 = 7.13, respectively, 

both p < 0.05), with significantly lower outputs for waist-worn monitors during intense 

activities.  

A significant three-way interaction of activity*placement*accelerometer brand was 

observed for ENMO (F2.49,79.72 = 15.27, p < 0.0001). Post hoc analyses showed a significant 

effect of brand during stairs and colouring, with GENEActiv producing higher outputs than the 

ActiGraph GT9X for both ENMO and MAD (F1,32 = 14.51, F1,32 = 5.96, respectively, both p < 

0.05). Finally, wrist- and waist-worn monitors showed a significant effect for playing on a 

handheld device (F5,28 = 31.66; F5,28 = 98.24, p < 0.0001), free-games (F5,28 = 98.24; F5,28 = 

43.30, p < 0.0001) and stairs (F5,28 = 52.99; F5,28 = 75.23, p < 0.0001) for ENMO and MAD, 

respectively. Specifically, ActiGraph GT9X yielded lower outputs when placed at the waist, 

whilst GENEActiv produced higher outputs when placed on the dominant wrist, particularly 

during these three activities. 

A visual inspection of the Bland-Altman plots showed heteroscedasticity for ENMO 

and MAD metrics, irrespective of placement, in the CF group (Figure 5.1). Similarly, 

heteroscedasticity was found, regardless of placement, for MAD in the healthy group, but only 

in the dominant wrist for ENMO. A visual analysis of dispersion of the plots indicated high 

agreement between the dominant wrist and waist for MAD in the CF group. In the healthy 

children, ENMO from the non-dominant wrist and waist displayed the best agreement. A 

negative correlation was found between the average ENMO values and the difference in values 
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for waist-worn devices (-0.24, p = 0.003) in the CF group. Moreover, a negative correlation 

was found between the average raw acceleration values and the difference in values for both 

ENMO and MAD from the dominant wrist in the healthy group (-0.42, -0.45, respectively, both 

p < 0.0001). 
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Figure 5.1 Bland-Altman Plots Assessing Agreement between Raw Accelerometer Output by Placement 

Green lines represent 95% limits of agreement (±1.96 SD). CF: Cystic Fibrosis, ENMO: Euclidean norm minus one, MAD: mean amplitude deviation, AG: ActiGraph, GE: GENEActiv
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5.4 Discussion 

 

This study developed raw acceleration SED, MPA and VPA cut-points from ActiGraph 

GT9X and GENEActiv accelerometers placed at the waist and wrist in children and adolescents 

with and without CF. All cut-points demonstrated fair to excellent accuracy, sensitivity and 

specificity, and low error. Overall, the GENEActiv provided significantly higher outputs, in 

comparison with ActiGraph, irrespective of placement and condition.  

Evidence shows that the use of count-based cut-points is responsible for misclassifying 

PA intensities approximately 33 - 68% of the time (Trost et al., 2010). Consequently, more 

recent calibration studies have utilised raw acceleration metrics, such as ENMO and MAD (de 

Almeida Mendes et al., 2018). However, the majority of studies developing cut-points from 

raw acceleration metrics have focused on adults, with few generating thresholds for children 

(Bakrania et al., 2016; Hildebrand et al., 2014; Migueles, Cadenas-Sanchez, et al., 2019). 

Hildebrand et al. (2014) developed ENMO cut-points for MPA and VPA from wrist-worn 

ActiGraph and GENEActiv monitors in healthy children using a protocol composed of eight 

structured activities, whilst Aittasalo et al. (2015) developed MAD MPA and VPA cut-points 

from waist-worn ActiGraph GT3X monitors in healthy adolescents (13 to 15 years). 

Importantly, whilst our study found that the MPA and VPA cut-points developed for healthy 

children were largely comparable to these earlier studies, the MPA and VPA CF-specific cut-

points were substantially lower. Such discrepancies may be due to the ventilatory and muscular 

impairments associated with the pathophysiology of CF (Stephens et al., 2016). Specifically, 

given the enhanced cost of breathing and the pathologic exercise intolerance associated with 

the condition, daily-life activities are likely to be more energetically costly for those with CF 

in comparison with their healthy counterparts (Matel & Milla, 2009). As such, it is expected 

that those with CF will have higher EE at lower raw accelerations than healthy participants 

during given activities. Notably, participants in the CF group expended more energy during all 

the sedentary tasks (colouring, watching TV, and playing on a handheld device), and had 

significantly higher accelerometer outputs and EE during walking, in comparison to those 

without CF. It is also noteworthy that the healthy participants in the present study had, on 

average, lower aerobic capacity in comparison to normal age-specific reference data (Takken 

et al., 2017). As such, these differences observed during walking might be related to the altered 

muscle function and metabolic adaptations observed even in children and adolescents with mild 
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CF (Erickson et al., 2015; Johnson et al., 2006), therefore reinforcing the crucial need for 

condition-specific cut-points in these populations.  

Whilst this study corroborates previous research indicating the need for CF-specific 

MVPA cut-points (Mackintosh et al., 2018; Stephens et al., 2016), our SED thresholds were 

generally comparable to those developed in earlier studies in healthy youth. For example, 

Hurter et al. (2018) developed ENMO cut-points from wrist- and waist-worn ActiGraph (GT9X 

and GT3X) and GENEActiv accelerometers that were similar to the CF-specific thresholds, 

except for the waist-worn threshold which was higher in the present study. Furthermore, the 

SED cut-point for wrist-worn ActiGraph GT3X+ reported by Hildebrand et al. (2017) is also 

similar to the healthy participants and CF-specific thresholds developed in the current study 

for the same brand and placement. Interestingly, the authors acknowledged that the wrist-worn 

ActiGraph cut-points were the only ones that did not over-estimate SED across placements and 

brands (Hildebrand et al., 2017). Similarly, the SED cut-points that were developed in this 

study for the CF and healthy children and adolescents were generally comparable, except for 

the waist-worn cut-points, which were lower in the healthy group. However, it is noteworthy 

that participants with CF demonstrated higher EE during sedentary activities, without 

substantially impacting on the associated cut-points. Whilst the increased EE at rest is expected 

given the CF airway disease, the performance of sedentary activities is not greatly affected as 

it is comprised of stationary activities. Thus, this explains the similarities between the newly 

developed CF-specific SED cut-points with those previously developed in healthy children 

despite the pathophysiological alterations. 

 A unique aspect of this study was the comparison of outputs from two different 

accelerometer brands, across wrist and waist placements. Overall, GENEActiv generated 

higher values for both ENMO and MAD across all placements and participants, in accord with 

previous studies (Ekblom et al., 2012; Hildebrand et al., 2014; Hurter et al., 2018; Phillips et 

al., 2013). Such inter-brand differences could be attributed to multiple factors including, but 

not limited to, a difference in the magnitude of acceleration signals, proprietary filters, signal 

to noise ratios, and data resolution (Hildebrand et al., 2014). It is well known that ActiGraph 

has an inbuilt low-pass filter of an unknown cut-off frequency, which is considered proprietary 

information (John et al., 2012). Moreover, research using an orbital shaker has identified a 

lower magnitude of acceleration from the ActiGraph in comparison with another commercially 

available accelerometer (John et al., 2013). Nonetheless, it is important to reiterate that both 
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brands performed equally well, regardless of health status, and are suitable to be used in future 

studies assessing PA levels in youth with CF.  

Intra-brand comparisons showed that the dominant wrist-worn GENEActiv yielded 

higher ENMO and MAD values, particularly during free-games. This is particularly important 

considering that this activity was designed to replicate the free-living environment, and 

therefore may be more representative of the children’s normal daily-life routines. Moreover, 

only marginal differences were observed between the outputs from both wrist-worn ActiGraph 

accelerometers, though the waist-worn ActiGraph generated significantly lower outcomes 

overall. It is, however, pertinent to note that there was no significant effect of placement, 

irrespective of population, across brands. In contrast, significant interactions between 

placement, accelerometer brand and activities were identified for both groups. Indeed, in 

accord with research in healthy children (Hildebrand et al., 2014), the agreement between 

placements across brands varied greatly by activity, with more pronounced differences shown 

for colouring, playing on a handheld device, free-games and stairs. Interestingly, Hildebrand 

et al. (2014) did not find such differences in adults, which could be indicative of the sporadic 

nature of children’s PA. Notably, cut-point performance also varied according to placement, 

with ENMO cut-points developed from the waist and non-dominant wrist-worn accelerometers 

performing better than the ones developed from the dominant wrist, irrespective of population. 

Of importance, accelerometer placement impacted performance differently according to health 

status, with MPA cut-points from the dominant wrist performing slightly better amongst all 

placements in CF. In contrast, MPA cut-points from the non-dominant wrist and waist 

performed better in healthy participants. Indeed, research in healthy children recommended 

that the non-dominant wrist should be the placement of choice in order to prioritise compliance 

(Chandler et al., 2018; Fairclough et al., 2016; Hildebrand et al., 2014; Lisa et al., 2013). Given 

that, in general, both wrists performed well, and in order to allow for greater standardisation 

across studies, the non-dominant wrist placement is also the recommended option in youth with 

CF. 

The cross-validation found that the cut-points developed in children and adolescents 

accurately classified SED, MVPA and VPA most of the time, irrespective of condition, brand 

and placement. In particular, cut-points derived from ENMO achieved superior accuracy for 

all placements and brands, in comparison with MAD, independent of health status. 

Nonetheless, further validation of the CF-specific cut-points is warranted to ensure validity in 

free-living conditions (Mackintosh et al., 2012). Another important consideration is that 
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research developing cut-points from raw acceleration metrics in children is still in its infancy, 

and, therefore, it is of paramount importance to ensure a certain degree of standardisation to 

allow inter-study comparisons in the future. It is noteworthy that new evidence has emerged 

challenging whether the estimation of EE from indirect calorimetry provides sufficient rigour 

to serve as the criterion measure for accelerometry calibration (Arvidsson, Fridolfsson, Buck, 

et al., 2019). Indeed, the limitations associated with the normalisation of EE for body mass, 

such as the ratio scaling of V O2, are well known and may contribute to bias in the cut-points 

(McMurray et al., 2015). In light of that, McMurray et al. (2015) compared different 

approaches to normalise the EE of children and adolescents, concluding that, whilst all metrics 

had limitations, the most favourable for the estimation of PA intensities was derived by 

dividing the V O2 of the activity by the estimated RMR converted to V O2 (Harrell et al., 2005). 

This approach is particularly important in clinical populations, such as CF, given the 

pathological alterations in RMR as a result of pulmonary impairment (Dorlöchter et al., 2002).  

Overall, the disparity in the cut-points developed for youth with CF, relative to an 

apparently healthy population, both in the present study and in previous literature (Stephens et 

al., 2016), further supports the contention that cut-points developed in healthy children and 

adolescents are not suitable to estimate PA levels in youth with CF (Bianchim et al., 2020). 

Most importantly, earlier studies estimating PA levels in paediatric CF cohorts from non-

specific cut-points have potentially underestimated total MVPA in these populations. Further 

research comparing the use of healthy and CF-specific cut-points is warranted in order to 

evaluate the practical implications of such discrepancy. Indeed, previous research using 

accelerometry in children and adolescents have reported that those with CF spent less time in 

MVPA and more in LPA when compared with healthy participants (Aznar et al., 2014; Nixon 

et al., 2001; Selvadurai et al., 2004). As such, whilst previous research found that children with 

CF do not engage in as much strenuous PA as their healthy peers (Jantzen et al., 2016; 

Mackintosh et al., 2018), the present research suggests that such findings may have been due 

to the cut-points applied, and subsequently a misclassification of PA. Therefore, the potential 

implications of utilising these CF-specific cut-points cannot be understated.  

There are several strengths to this study. This was the first study to develop CF-specific 

cut-points, using raw acceleration data, for three different placements across two popular 

brands of accelerometers. More specifically, EE was used as a criterion measure to calibrate 

the raw accelerometer data, akin to previous recommendations for both healthy (Welk et al., 
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2019) and clinical (Bianchim et al., 2019) populations. In accord with previous 

recommendations, EE was calculated from resting V O2 (McMurray et al., 2015). This study 

advances previous research, using a leave-one-out cross-validation of the cut-points, which is 

particularly important to ensure the applicability of the thresholds. Indeed, only one 

(Hildebrand et al., 2014) amongst the three (Aittasalo et al., 2015; Hildebrand et al., 2014; 

Hurter et al., 2018) most recent studies developing raw acceleration metrics have utilised this 

approach. Furthermore, individual measures of RMR were used to accurately estimate MET 

values for all the activities. Finally, it is pertinent to note that participants selected the activities 

that were involved in the daily-life protocol, leading to a more ecologically valid approach.  

It is important to acknowledge the complexity of developing cut-points for a 

progressive chronic condition, such as CF (Ratjen et al., 2015). In addition, CF manifestations 

vary considerably according to the type of mutation and treatment. Most importantly, this might 

raise questions regarding the applicability of methods such as cut-points rather than individual 

assessment. Whilst individual assessment might be ideal in the clinical environment, it is not 

feasible in research, particularly when working with large cohorts, such as in epidemiological 

studies. Specifically, individual assessment in a research scenario would imply that 

accelerometers should be continuously re-calibrate for each individual and as the condition 

progresses. Alternatively, the cross-validation of the thresholds allows greater 

generalisability to samples other than the one from which they were derived and might help to 

overcome this issue. In addition, research also requires a certain degree of standardisation in 

order to ensure reliability and validity of the method.  

Despite numerous strengths, this study is not without its limitations. Our sample 

consisted of children and adolescents with mild CF and might not represent those with a more 

severe condition. Additionally, due to the COVID-19 lockdown, it was not possible to recruit 

as many healthy volunteers as in the CF group. Finally, it is paramount to recognise that the 

statistical approach used to develop the cut-points can greatly impact the prediction accuracy 

(Bassett, 2012; Bassett et al., 2012; Welk et al., 2019). Specifically, whilst ROC curve analyses 

presents advantages in relation to linear-models (Bianchim et al., 2020), it may not be optimal 

for clinical populations, where adjusting for  health-related confounding factors may enhance 

accuracy and account for inter-patient variability. Given the complexity and non-linear nature 

of PA, future research should consider using machine learning to further enhance the accuracy 

for PA classification in those with CF (Farrahi et al., 2019).   
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5.5 Conclusion 

 

This is the first study to calibrate and cross-validate cut-points from raw accelerometer 

data for children and adolescents with CF. The newly developed CF-specific cut-points 

demonstrated high sensitivity and specificity, fair to excellent accuracy, and a low error. Most 

importantly, the majority of the CF-specific cut-points, particularly MPA and VPA, were lower 

than those developed for healthy controls and previously reported cut-points. This disparity 

might originate from PA misclassification, and explain previous evidence showing that those 

with CF do not engage in as much strenuous PA as their healthy peers. Therefore, the newly 

developed CF-specific cut-points have the potential to greatly re-evaluate research 

investigating PA levels and associated health outcomes in children and adolescents with CF.  

 

5.6 Practical Implications 

 

A calibration protocol was performed in order to develop CF-specific cut-points for the 

assessment of PA. Specifically, this Chapter found that:   

 

• GENEActiv monitors provided higher values for both ENMO and MAD in comparison 

to ActiGraph GT9X monitors. 

• The non-dominant wrist placement is recommended in order to maintain consistency 

between studies calibrating clinical and healthy populations.  

• The CF-specific cut-points varied greatly from previous thresholds developed in 

healthy populations, except for the SED cut-point. 

 

 

 

 

 



105 

 

 

CHAPTER 6 

Study Three: Comparing Condition-specific and Generic Cut-points to Assess Sleep, 

Sedentary Time and Physical Activity Levels in Children and Adolescents with Cystic 

Fibrosis 

 

Abstract 

Introduction: Regular physical activity (PA) is recognised as an essential part of Cystic 

Fibrosis (CF) care. Pivotal to identifying the dose-response relationship in those with CF is the 

accurate classification of time spent in PA intensities. However, previous research reporting 

PA levels in CF have relied on cut-points developed for healthy populations, and few studies 

have accounted for key factors such as sex and type of day. Therefore, the aim of this study 

was to compare the use of generic and condition-specific cut-points to assess PA levels in 

children and adolescents with CF.  

Methods: Physical activity was assessed for seven consecutive days using a non-dominant 

wrist-worn ActiGraph GT9X in 71 children and adolescents (36 girls; 13.5 ± 2.9 years) with 

mild CF. Subsequently, CF-specific and generic Euclidean Norm Minus One (ENMO) cut-

points were used to determine sedentary time (SED), time spent asleep, and in moderate 

physical activity (MPA) and vigorous physical activity (VPA). The effect of threshold selection 

on the relationship between PA intensities and lung function was subsequently determined. 

Results: Physical activity levels differed significantly according to the cut-point used, with the 

CF-specific cut-points resulting in more SED (p < 0.0001) and MVPA (p < 0.0001) and less 

LPA (p < 0.0001) than the generic thresholds. Lung function and LPA were only related when 

using the CF-specific cut-points (p = 0.04). Irrespective of the thresholds used, the type of day 

and sex were found to significantly affect sleep and PA intensities, with male sex and weekdays 

generally associated with higher MVPA and lower LPA.  

Conclusion: The present study demonstrated that thresholds developed for healthy populations 

misclassified PA levels and SED in children and adolescents with CF. This discrepancy 

affected the relationship between lung function and PA, which was only apparent when using 

the CF-specific cut-points. Promoting LPA seems a promising strategy to enhance lung 

function in children and adolescents with CF, though future interventions should stratify by 

week and weekend days, and target girls and boys separately. 



106 

 

 

6.1 Introduction 

 

Cystic Fibrosis (CF) is the most common autosomal inherited condition in the Caucasian 

population, affecting 70,000 people worldwide (CF Trust, 2018). Progressive lung impairment 

is one of the most important features of this systemic condition, which often culminates in 

respiratory failure. Whilst exercise intolerance in CF is multifactorial, involving chronic 

inflammation, poor nutritional status and muscle weakness, the main factor is the progressive 

airway disease with subsequent abnormal ventilatory response to exercise (Gruet et al., 2017; 

Pastré et al., 2014; van de Weert-van Leeuwen et al., 2013; van de Weert-van Leeuwen et al., 

2012). Limited exercise tolerance often leads to physical inactivity and the adoption of a 

sedentary lifestyle, which is associated with negative health implications (González et al., 

2017; Owen et al., 2010; Troosters et al., 2009). In contrast, physical activity (PA), particularly 

moderate-to-vigorous physical activity (MVPA), is considered a key element in CF care, and 

is associated with multiple benefits. Specifically, regular MVPA has been shown to slow lung 

function decline and improve aerobic fitness, both of which are correlated with survival in CF 

(Hebestreit et al., 2006; Kriemler S, 2013). Moreover, evidence suggests that habitual PA is 

also beneficial in terms of enhancing quality of life, reducing hospital admissions and 

improving nutritional and bone density statuses in those with CF (Cox et al., 2016; Dwyer et 

al., 2011; Hebestreit et al., 2014; Neri et al., 2008; Schneiderman-Walker et al., 2000; 

Selvadurai et al., 2004; Tejero et al., 2016).    

There is still a dearth of research assessing PA in children and adolescents with CF using 

accelerometers (Aznar et al., 2014; Jantzen et al., 2016; Kilbride et al., 2012; Mackintosh et 

al., 2018; Selvadurai et al., 2004). Indeed, in addition to contradictory findings regarding the 

total volume of PA in those with CF compared to their healthy peers, there is also no consensus 

regarding the intensity distribution, with some studies reporting that children and adolescents 

with CF accumulated less vigorous activities in relation to their healthy peers (Aznar et al., 

2014; Nixon et al., 2001; Troosters et al., 2009), whereas Selvadurai et al. (2004) and 

Mackintosh et al. (2018) reported no significant difference in vigorous PA. The equivocal 

findings regarding PA levels in youth with CF may be related to inter-study differences in the 

composition of the study population and protocols. Specifically, evidence suggests that age 

(Shei et al., 2019; Swisher & Erickson, 2008), sex (Selvadurai et al., 2004) and type of day (i.e. 

weekdays and weekend days; Mackintosh et al., 2018) all affect the PA levels of children and 
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adolescents with CF but the majority of previous studies have not accounted for these factors 

(Jantzen et al., 2016; Nixon et al., 2001). 

The lack of consensus regarding PA levels in those with CF may also be due to 

methodological limitations associated with earlier studies, such as the use of generic cut-points 

(Mackintosh et al., 2018). Specifically, the use of cut-points previously developed for healthy 

populations might be associated with the misclassification of PA intensities when applied to 

clinical populations, such as CF (Mackintosh et al., 2018; Stephens et al., 2016). Indeed, 

children with CF expend more energy for a given activity than their healthy peers due to 

impaired metabolic and ventilatory response (Hirsch et al., 1989; Johnson et al., 2006). 

Research to date is therefore likely to have misclassified PA intensities in those with CF, 

potentially over-estimating time spent in LPA and underestimating time spent in MVPA, which 

is likely to have led to erroneous conclusions regarding the relationship of PA with health. Such 

misclassifications of PA intensities may therefore explain the higher LPA and lower MVPA 

that has been reported in children with CF relative to their healthy counterparts (Aznar et al., 

2014; Nixon et al., 2001). Potential misclassifications may have been further compounded by 

the reliance on count-based cut-points in previous studies assessing PA in children and 

adolescents with CF, the limitations of which are widely recognised. Specifically, Schmiedek 

et al. (2016) highlighted that vital information for classifying PA may be lost during the data 

reduction process involved in converting raw accelerometer data to counts. In accord with this, 

the use of cut-points developed from raw acceleration metrics, such as Euclidean Norm Minus 

One (ENMO), provides superior accuracy in comparison to counts (Schmiedek et al., 2016). 

Therefore, the use of CF-specific raw acceleration cut-points has significant potential to 

advance our current knowledge of the PA levels of children and adolescents with CF, and, 

importantly, the impact of these PA levels on associated health outcomes.  

The relationship between PA levels and health in those with CF largely remains to be 

elucidated; whilst adherence to the Chief Medical Officer guidelines (Chief Medical Officers, 

2019) is generally promoted by multidisciplinary care teams, there is little evidence regarding 

the applicability of these guidelines to those with CF. Although higher PA levels are generally 

accepted to be associated with a slower decline in lung function in children with CF 

(Schneiderman et al., 2013), the evidence regarding the optimal intensity remains equivocal. 

Specifically, Mackintosh et al. (2018) reported that ‘high’ light physical activity (LPA) was 

the only predictor of lung function but, in stark contrast, others reported that vigorous physical 

activity (VPA) was primarily associated with lung function in children with CF (Jantzen et al., 
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2016; Nixon et al., 2001). The aim of this study was therefore to ascertain whether these 

discrepancies are attributable to the misclassification of PA and/or to a failure to account for 

key factors such as age, sex and type of day. The secondary aim of this study was to determine 

the influence of threshold selection on the relationship between PA and health in those with 

CF. 

 

6.2 Methods 

 

6.2.1 Participants 

 

A total of 93 participants with CF (36 girls; 13.5 ± 2.9 years) participated in the study, of 

which 42% were homozygous for ΔF508 mutation [p.Phe508del (c.1521_1523delCTT)] and 

20% had Cystic Fibrosis Related Diabetes. Participants were recruited from hospitals in 

Australia (n = 58) and from Paediatric CF Clinics in South Wales (n = 35). Participants from 

Australia constituted the baseline of a randomised controlled trial intervention, more details of 

this sample are provided elsewhere (Cox et al., 2019).  Participants aged 7 – 18 years previously 

diagnosed as having CF through a new-born screening test, and/or those presenting CF-typical 

symptoms and either two pathological sweat tests or the identification of two CF-relevant 

mutations, were included. Exclusion criteria were the presence of multi-resistant bacteria 

(Burkholderia Cepacia and nontuberculous mycobacteria), an acute exacerbation at the time 

of the assessments, having received less than two weeks of antibiotic treatment following an 

exacerbation, or being on the transplant list. Written informed assent and consent were obtained 

from all the participants and their parents/guardians, respectively. Ethics approval was obtained 

from the National Health Service (NHS) Research Ethics Committee (18/WS/0032; Appendix 

D2) and from the Human Research Ethics Committee at Alfred Health in Australia 

(HREC/16/Alfred/188; Project 7/17).     

 

6.2.2 Measurements 

 

Lung function was assessed through standard spirometry (Metamax 3B, Cortex 

Biophysik GmbH, Germany) using a forced vital capacity manoeuvre. Participants were 
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instructed to repeat the manoeuvre until three repeatable measures were achieved (< 5% 

variability), and the best among those three was recorded. Criteria for acceptance of the curve 

included: a rapid and clear rise reaching peak flow and a gradual, prolonged expiratory curve 

decreasing in flow. The forced expiratory volume in the first second (FEV1) was determined 

(McCormack et al., 2019) and percentage of predicted values (FEV1%predicted)  estimated using 

age, sex and weight-specific equations (Quanjer et al., 2012), which were subsequently used to 

classify disease severity as mild (> 70%), moderate (40 – 69%), or severe (< 40%; Davies & 

Alton, 2009). Body mass (Seca 876, Hamberg, Germany) and stature (Holtain Stadiomerter 

603VR, Holtain Ltd, UK) were measured to the nearest 0.1 kg and 0.1 cm, respectively, and 

body mass index (BMI) was calculated, with BMI z-scores determined using the World Health 

Organisation reference data (de Onis et al., 2004).  

 

d. Acceletometry 

Habitual PA was measured using the ActiGraph GT9X Link (ActiGraph, Pensacola, FL) 

worn on the non-dominant wrist for seven consecutive days. Participants were instructed to 

wear the monitors at all times, including during sleep. Accelerometer data were downloaded 

as 100 Hz .gt3x files using ActiLife V 6.10.2 software, and subsequently converted to time-

stamp free .csv files for data processing using the GGIR package (V 1.2 – 0; van Hees et al., 

2013) in R statistical software (R V3.1.2 Foundation for Statistical Computing, Vienna, 

Austria). The GGIR package was designed to auto-calibrate the data, detect abnormal values 

and non-wear time, and extract the ENMO. Specifically, the ENMO was calculated from the 

vector magnitude (VM) and adjusted for gravity by subtracting one. Subsequently, the ENMO 

values, expressed as mg, were further reduced to 5-s epochs over the monitoring period 

(Matthews et al., 2012; Vähä-Ypyä et al., 2015). 

All files with a post-calibration error greater than 0.02 g or less than three valid days, 

including one weekend day, were excluded from subsequent analyses (da Silva et al., 2014). 

At least 16-hours of wear-time per day was required to be considered valid (van Hees et al., 

2013; van Hees et al., 2011). The non-wear detection is described in detail in Van Hees et al. 

(2013), but briefly, the estimation was calculated according to the standard deviation and range 

of each axis over a 60-minute sliding window with 15-minute increments. Time accumulated 

in sedentary, MPA and VPA was calculated using CF-specific ENMO cut-points developed 

for ActiGraph GT9X Link monitors (38.4 mg, 60.2 mg and 115.3 mg, respectively; Bianchim 
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et al., 2020) and a generic cut-point (35.6 mg; 201.4 mg, 707.0 mg; Hildebrand et al., 2017; 

Hildebrand et al., 2014). 

The integrated algorithm for sleep analysis developed by van Hees et al. (2015) and 

incorporated into GGIR was used to estimate sleep. Essentially, sleep time was estimated as 

any period of sustained inactivity with no change of more than five degrees in the monitor 

angle during a nocturnal sleep window, identified using the van Hees et al. (2018) heuristic 

algorithm for wrist-worn accelerometers. Briefly, the algorithm estimates the z-angle from the 

raw acceleration signal over a 5-s epoch, and the rolling variance over time within these epochs 

(van Hees et al., 2018). The sleep period time window was identified as the longest block of 

time (i.e. over 30 minutes from noon to noon) that included few postural changes. Any awake 

period in the nocturnal window lasting longer than 60 minutes was treated as a sleep episode. 

The data were then visually inspected to confirm that the nocturnal sleep pattern was correctly 

estimated (van Hees et al., 2015).    

 

6.2.3 Statistical Analysis 

 

 Descriptive statistics (mean ± SD) and Shapiro-Wilks were utilised to confirm gaussian 

distribution. An ANOVA was used to assess sex differences in descriptive characteristics. A 

three-factorial, repeated-measures ANOVA was employed to investigate the effect of cut-

point, sex and type of day (week and weekend days), and their interaction, on PA levels. The 

conservative Greenhouse-Geisser-corrected values were used whenever the assumption of 

sphericity was violated. A Bonferroni post hoc test was subsequently performed as necessary 

to identify the specific location of significant differences. A stepwise linear regression explored 

the association between FEV1 and time spent in different PA intensities, adjusting for key 

cofounding factors (age, sex, BMI, genotype, wear-time). Finally, a chi-square test was 

conducted to compare the impact of the cut-points in determining whether participants met the 

PA guidelines. All analyses were performed using SPSS version 23.0 (IBM Corp., USA). 

Statistical significance was accepted when p ≤ 0.05.  

 

6.3 Results 
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In total, 71 participants (Table 6.1) were included in the final analysis after excluding those 

that did not meet the wear-time criteria. No significant differences were found in demographic, 

anthropometric or lung function characteristics for those included or excluded from the 

analysis. Shapiro-Wilk revealed that most of the data did not follow the normal gaussian 

distribution, except for the descriptive data (demographic, anthropometric and lung function). 

According to the ANOVA, boys were taller and had a higher absolute FEV1 than girls (p = 

0.02).  

 

Data are presented as mean ± SD 

FEV1: forced expiratory volume in one second, FEV1%predicted: forced expiratory volume in one second predicted, BMI: body 

mass index, zBMI: z-scores body mass index.   

*Significant sex difference (p ≤ 0.05). 

 

The PA levels according to sex and cut-points are presented in Table 6.2. Children 

achieved 4.5 ± 0.9 valid weekdays and 1.8 ± 0.4 valid weekend days. The factorial ANOVA 

revealed a significant main effect for type of day (F2,64 = 26.78, p < 0.0001), cut-point (F1,65 = 

50.50, p < 0.0001) and intensity (F5,61 = 148.3, p < 0.0001) on PA levels across all intensities. 

A comparison between PA intensities across thresholds demonstrated that the CF-specific cut-

points (Bianchim et al. 2020) elicited significantly higher SED (p < 0.0001), MPA (p < 0.0001), 

VPA (p = 0.002) and MVPA (p < 0.0001) than Hildebrand et al. (2014) thresholds, independent 

of type of day. There was an interaction between intensity and sex (F5,61 = 3.11, p = 0.01), with 

higher SED, MPA and VPA levels in boys but lower LPA and sleep. A significant three-way 

interaction was also observed between cut-point, intensity and sex (F5,61 = 2.60, p = 0.03), 

indicating that this difference varied according to cut-points used. Specifically, according to 

the CF-specific cut-points (Bianchim et al. 2020), boys spent significantly more time asleep (p 

 Table 6.1 Participants Characteristics and Lung Function by Sex 

Characteristics Total (n = 71) Girls (n = 36) Boys (n = 35) 

Age (years) 13.5 ± 2.9 13.5 ± 2.9 13.5 ± 2.8 

Height (cm) 154.1 ± 14.9 151.7 ± 14.0 156.5 ± 15.7* 

Body mass (kg) 46.2 ± 14.6 44.9 ± 12.9 47.5 ± 16.2 

BMI (kg·m-2) 19.0 ± 3.9 19.1 ± 2.9 18.9 ± 4.7 

zBMI -0.2 ± 1.0 -0.04 ± 0.8 -0.4 ± 1.14 

FEV1 (L) 2.3 ± 0.8 2.1 ± 0.7 2.5 ± 0.8* 

FEV1%predicted (%) 84 ± 21 83 ± 25 86 ± 18 
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= 0.01), and in VPA (p = 0.009) and MVPA (p = 0.007), and less in LPA than girls (p = 0.02). 

Similarly, Hildebrand et al. (2014) thresholds showed that boys spent significantly more time 

asleep (p = 0.05), but, in contrast, no differences were found across PA intensities between 

boys and girls. Additionally, an interaction between type of day and sex was found (F2,64 = 

4.12, p = 0.02), along with an interaction between type of day, cut-point and intensity (F10,56 = 

3.91, p < 0.0001). This interaction reflected the greater accumulation of MPA and MVPA 

during week than weekend days in boys when using CF-specific cut-points (Bianchim et al. 

2020), whilst girls spent less time asleep and more time sedentary on week days, in comparison 

to weekend days according to the Hildebrand et al. (2014) thresholds. Finally, a significant 

interaction between type of day and cut-point (F2,64 = 7.23, p = 0.01) indicated that each set of 

cut-points yielded different PA levels across week and weekend days.  

 

Table 6.2 Physical Activity Levels Across Week Days, Weekend Days and Overall by Sex and Cut-point 

 Generic 

Hildebrand et al. (2014) 

CF-Specific 

Bianchim et al. (2020) 

Overall Overall Boys Girls Overall Boys Girls 

Sleep  529.8 ± 86.9 525.8 ± 102.2 533.5 ± 69.5 501.6 ± 94.1 590.2 ± 117.05 507.4 ± 60.2 

SED  384.8 ± 213.1 395.5 ± 223.8 375.0 ± 202.5 555.3 ± 150.8# 576.4 ± 176.5# 533.2 ± 129.3# 

LPA  414.8 ± 259.2 407.0 ± 273.4 422.1 ± 245.6 206.4 ± 73.5# 188.1 ± 76.7#+ 226.2 ± 65.3# 

MPA  74.6 ± 59.6 75.8 ± 58.7 73.5 ± 60.4 126.3 ± 47.6# 121.4 ± 50.3# 131.7 ± 47.3# 

VPA  31.6 ± 37.9 35.7 ± 43.5 27.8 ± 31.4 50.2 ± 31.6# 59.0 ± 36.2#+ 41.2 ± 25.4# 

MVPA  105.9 ± 91.5 111.5 ± 94.9 100.6 ± 88.4 176.5 ± 66.3# 180.4 ± 73.1# 172.9 ± 63.1# 

       

Week days       

Sleep  521.3 ± 153.2 556.9 ± 195.7  486.3 ± 93.1+* 554.8 ± 129.4 594.5 ± 157.7+ 514.9 ± 88.5 

SED  451.6 ± 148.7 428.9 ± 136.5 474.1 ± 163.0+* 543.6 ± 144.6# 532.5 ± 161.4# 554.4 ± 136.6# 

LPA  387.7 ± 221.1 373.6 ± 240.7 400.5 ± 206.9 215.5 ± 82.9# 194.5 ± 87.0#+ 236.7 ± 78.7# 

MPA  77.5 ± 59.4 78.4 ± 57.1 77.7 ± 63.6 127.3 ± 49.6# 124.2 ± 50.2#* 130.9 ± 51.7# 

VPA  30.1 ± 36.7 35.6 ± 41.3 25.0 ± 29.6 49.1 ± 31.6# 59.2 ± 36.3+ 38.9 ± 24.8# 

MVPA  107.7 ± 92.3 114.0 ± 96.2 102.8 ± 91.2 176.5 ± 72.1# 183.5 ± 77.4*+ 169.8 ± 70.8# 

       

Weekend days       

Sleep  579.4 ± 133.4 563.0 ± 153.7 594.1 ± 110.9 580.5 ± 157.5 590.2 ± 182.6 569.9 ± 120.7 

SED  354.6 ± 197.5* 380.2 ± 208.0 329.1 ± 191.2 509.3 ± 151.4#* 525.0 ± 173.2# 492.0 ± 133.4# 
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LPA  405.5 ± 265.0* 399.9 ± 293.8 405.7 ± 241.2 192.3 ± 98.4#* 176.7 ± 105.7# 206.2 ± 70.8# 

MPA  73.0 ± 60.9* 70.3 ± 51.1 76.9 ± 70.8 114.9 ± 51.5#* 97.9 ± 47.4#+ 131.8 ± 52.7# 

VPA  27.2 ± 35.5* 26.3 ± 35.4 27.4 ± 34.8 44.1 ± 32.2#* 45.3 ± 34.4# 41.9 ± 29.9# 

MVPA  98.9 ± 91.5* 93.8 ± 82.1 104.4 ± 101.0 159.1 ± 72.9#* 143.2 ± 73.1# 173.8 ± 72.8# 

Data are presented as mean ± SD 

CF: Cystic Fibrosis, SED: sedentary time, LPA: light physical activity, MPA: moderate physical activity, VPA: vigorous 

physical activity, MVPA: moderate-to-vigorous physical activity.  *Significant difference between week and weekend days. 

#Significant difference between cut-points (p ≤ 0.05). +Significant sex difference (p ≤ 0.05). 

 

In total, 33 (46.5%) met the PA guidelines (WHO, 2020), when using Hildebrand et al. 

(2014) cut-points, whereas 64 (90%) participants met the recommendations when using CF-

specific cut-points (Bianchim et al 2020). Age emerged as an important predictor of FEV1 

across regression models, independent of the cut-points utilised. When using CF-specific cut-

points, only LPA was associated with FEV1 (r = 0.52, β = -0.25, p = 0.04) after adjusting for 

key cofounders. In the unadjusted model, SED was associated with FEV1 (r = 0.41, β = 0.41, p 

= 0.03), but this relationship was ameliorated when age, BMI, wear-time, genotype and sex 

were accounted for. No significant association was found between FEV1 and PA when using 

Hildebrand et al. (2014) cut-points. Finally, an association between FEV1 and sleep (r = 0.29, 

β = -0.29, P < 0.038) was found for both thresholds, but it was not sustained after adjusting the 

model.  

 

6.4 Discussion 

 

This study sought to compare the use of generic raw accelerometry cut-points and CF-

specific cut-points on the PA levels of children and adolescents with CF. The CF-specific cut-

points yielded significantly different PA levels in comparison to the generic thresholds; the 

condition-specific thresholds resulted in significantly more time spent in MPA, VPA, MVPA 

and sedentary and less time asleep and in LPA. The relationship between lung function and PA 

was only apparent with the condition-specific thresholds, whereby FEV1 was dependent on 

LPA. The current findings also highlight that sex and type of day significantly influence PA 

levels in youth with CF. 

The significant discrepancies observed between cut-points has important implications 

regarding the interpretation of previous research that utilised generic thresholds to estimate PA 
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levels in children and adolescents with CF. Specifically, the use of a generic cut-point appears 

to underestimate SED and MPA and VPA levels, whilst over-estimating LPA. These findings 

are in agreement with the hypothesis proposed by Mackintosh et al. (2018), suggesting that 

divergences in PA levels previously reported in CF resulted, at least in part, from the 

inappropriate use of generic cut-points and subsequent misclassification of MVPA as LPA. It 

is noteworthy that such misclassification may have affected previous comparisons between the 

relative PA levels of those with CF and healthy populations. Indeed, whilst some evidence 

showed that children with CF did not accumulate as much MVPA as their healthy peers (Aznar 

et al., 2014; Jantzen et al., 2016; Nixon et al., 2001), others found no differences (Mackintosh 

et al., 2018). The misclassification of MVPA also impacts research that seeks to identify 

whether children and adolescents are meeting the recommended PA guidelines. Indeed, the 

present study demonstrated that only 46.5% of children met the guidelines when using the 

generic thresholds, in comparison to 90% when using the CF-specific cut-points. However, the 

present study challenges the applicability of current PA guidelines that were developed based 

on healthy populations to those with CF (Department of Health and Social Care, 2019; WHO, 

2015). This is a critical question that remains to be addressed, given the pivotal role of PA in 

CF care and it highlights the need for CF-specific recommendations regarding the optimal 

combination of PA intensities, frequency and duration.  

The children with CF included in the present study were substantially more active in 

comparison with healthy UK and Australian counterparts, independent of the cut-points used 

(Gomes et al., 2017). Specifically, Gomes et al. (2017) showed that compliance with the PA 

guidelines in Australia and the UK varied from 10 and 39% in healthy children. It is noteworthy 

that the percentage of children and adolescents meeting the current PA guidelines is 

significantly impacted by the method used to process and analyse the accelerometer data 

(Ekelund et al., 2011). For example, Kim et al. (2017) found that 0% of children achieved the  

60-minute target of MVPA when using GGIR,  irrespective of age and sex. In contrast, Kim et 

al. (2017) also demonstrated that using other methods of analyses instead of GGIR significantly 

increased the percentage of children meeting the guidelines, for both boys and girls, to 43.5% 

to 69.0% using the Crouter method (Crouter et al., 2015) and 6.2% to 23.2% using the Chandler 

method (Chandler et al., 2016b). In addition, the reactivity to accelerometer measurement is 

associated with an overestimation of children and adolescents PA levels of approximately 5% 

on the first day of measurement (Dössegger et al., 2014), which may have contributed to the 

high level of PA observed in the present study. 
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Whilst the appropriate selection of cut-points is a major factor for accurately assessing PA 

in CF, this study also highlighted the importance of sex and type of day. Selvadurai et al. (2004) 

similarly found that PA levels in CF are affected by sex and maturation, with girls significantly 

decreasing their PA levels after the onset of puberty. In accord, the present study showed that 

age is a key predictor across all PA intensities, and it should be considered when assessing PA 

levels in CF. It is important to acknowledge, however, that chronological and biological age 

are not equivalent, and consequently, individuals with the same chronological age can 

significantly differ regarding biological maturity (Lloyd et al., 2014). Therefore, further work 

is warranted to estimate the impact of biological age on PA levels in youth with CF. 

Furthermore, in accord with the current findings, previous studies have reported differences in 

how children and adolescents with CF accumulate PA levels during week and weekend days 

(Aznar et al., 2014; Mackintosh et al., 2018). However, discordant with the present study, 

Mackintosh et al. (2018) reported that children spent more time being sedentary and less time 

in MPA and LPA on weekend days. In contrast, but in agreement with the present study, Aznar 

et al. (2014) found that children and adolescents with CF accumulated more SED and MVPA 

during week days than weekend days. This discrepancy could be attributed to cut-point 

misclassification or a failure to account for sex in earlier studies. More specifically, the present 

study showed that the amount of time accrued during week and weekend days varied according 

to sex and cut-points, with boys accumulating more MPA and MVPA during the week with 

CF-specific thresholds (Bianchim et al. 2020), and girls accumulating less sleep and more SED 

during the week for Hildebrand et al. (2014) cut-points. In addition to highlighting the 

importance of the population-specific cut-points, these findings also indicate that PA 

interventions should be stratified by sex and type of day, given that boys and girls had 

significantly different PA across week and weekend days. 

 This study confirmed that the use of generic thresholds significantly misclassifies PA 

levels in children and adolescents with CF. It is therefore postulated that previously reported 

associations between PA and lung function may subsequently be inaccurate. Whilst some 

evidence suggested, to a certain extent, a relationship between MVPA and FEV1 in children 

with CF (Jantzen et al., 2016; Nixon et al., 2001), such findings were not corroborated by others 

(Boucher et al., 1997; Selvadurai et al., 2004). It is noteworthy that the majority of previous 

research has not investigated the full spectrum of PA intensities, focusing solely on the 

relationship between MVPA and health (Boucher et al., 1997; Britto et al., 2000; Nixon et al., 
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2001). Additionally, the use of self-reported measures, as commonly utilised in studies 

investigating PA levels in those with CF, is also likely to affect the association with health 

outcomes. The limited research that has investigated the relationship between health and PA 

across the intensity spectrum similarly reported that LPA was significantly associated with 

FEV1 in children with CF (Mackintosh et al., 2018), although it is important to acknowledge 

that these previous findings were based on count-based cut-points developed in healthy 

populations. While the present study findings endorse that LPA was the most influential 

behaviour in terms of lung function, there is a growing body of evidence showing that both 

volume and intensity of weekly PA are important for health (Saint-Maurice et al., 2018). 

Therefore, despite the abundant evidence associating LPA with health (Füzéki et al., 2017; 

Kwon et al., 2011; Poitras et al., 2016), further work investigating the optimal weekly volume, 

frequency and duration that is associated with such benefits in CF is warranted.   

The finding that CF-specific thresholds (Bianchim et al. 2020) yielded significantly 

higher levels of SED in comparison with Hildebrand et al. (2014) cut-points warrants attention 

given the important role of this behaviour as an independent risk factor of all-cause mortality 

(Patterson et al., 2018). Specifically, this finding reflects the higher energetic demands for a 

given sedentary task that is associated with the pathophysiological alterations in CF, as 

described in Chapter 5, and it raises relevant questions regarding the definition of sedentary 

behaviour in this population. In particular, since the definition of sedentary behaviour is centred 

around an energetic cost threshold (i.e. < 1.5 MET; Tremblay et al., 2017), it could be 

hypothesised that this threshold should be higher in those with CF to account for the 

physiological limitations of this condition. Whilst it is beyond the scope of the present study to 

explore this contention, future research focused on SED in those with CF is warranted. Indeed, 

there is a concerning lack of research investigating the relationship between SED and disease 

severity in those with CF, with the limited evidence available demonstrating contradictory 

findings (Aznar et al., 2014; Mackintosh et al., 2018). Specifically, Aznar et al. (2014) reported 

that children with CF spent less time sedentary than their healthy peers, whereas Mackintosh 

et al. (2018) found no differences. Interestingly, despite the challenges associated with inter-

study comparisons, the SED reported by Aznar et al. (2014) in those with CF was comparable 

to those elicited with Hildebrand et al. (2014) cut-points in the present study, despite the 

different processing choices. Specifically, whilst Aznar et al. (2014) used count-based cut-

points and a 15-s epoch, the present study utilised raw accelerometer data at 5-s epochs. The 

present study demonstrated that SED was associated with FEV1, although this relationship was 
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not sustained following adjustment for sex, BMI, genotype and wear-time. Future research 

should investigate the relationship between SED and lung function, stratifying their samples 

by sex and disease severity, whilst accounting for accelerometer wear-time. Indeed, the 

detrimental effects of prolonged SED to health are well documented in healthy children  (Bélair 

et al., 2018; Carson, Hunter, et al., 2016; Tremblay et al., 2011), although some evidence 

suggests that not all types of SED are associated with such risks (Shakir et al., 2018). Finally, 

recent research using compositional analyses to investigate the interactions between SED and 

PA intensities and their impact on lung function (Chapter 7), found that populations with CF 

may benefit from interventions targeting the reduction of SED whilst increasing MVPA and 

LPA.   

It is important to acknowledge that inter-study discrepancies in PA levels could be 

attributed to methodological differences, such as the use of count-based cut-points and epoch 

length. Specifically, the use of counts is known to hinder PA classification given that the 

process to transform raw acceleration to counts is associated with loss of vital information 

(Kühnhausen et al., 2017). For example, the use of generic raw acceleration cut-points 

(Hildebrand et al., 2014) yielded higher levels of LPA and MVPA in comparison with previous 

research using count-based thresholds in children and adolescents with CF (Aznar et al., 2014). 

Another key factor contributing to error and bias in PA assessment is the use of inappropriate 

epochs, with shorter durations being more indicative of the sporadic nature of children and 

adolescents PA. Future studies are therefore advised to utilise raw acceleration thresholds with 

a 5-s epoch, akin to previous recommendations (Matthews et al., 2012; Vähä-Ypyä et al., 

2015), in order to ensure inter-study comparability. 

The present study had numerous strengths. This is the first study to assess PA using 

raw acceleration, CF-specific, cut-points. Furthermore, given that previous research indicated 

that PA is likely to differ across the week, the present study investigated total PA and SED 

across the week, as well as on week and weekend days (Aznar et al., 2014). However, it is 

important to acknowledge the limitations, not least the lack of an age- and sex-matched healthy 

control group, which precluded inter-study comparisons. It is also pertinent to note that the 

children and adolescents included in this study were categorised as having mild CF and are 

unlikely to represent those with a more severe form of the condition. Moreover, this study 

adopted a cross-sectional design, and therefore, no causal inferences can be established.  
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6.5 Conclusions  

 

In conclusion, the present study revealed that previous research is likely to have 

misclassified PA levels in children and adolescents with CF, resulting in an underestimation of 

the percentage of those with CF who meet the current PA guidelines. This misrepresentation 

of PA levels in children with CF could have affected condition-specific PA recommendations 

and the design of interventions for this population. Future interventions should seek to promote 

LPA to increase lung function through a stratified approach according to sex and type of day.  

 

6.6 Practical Implications 

 

This Chapter investigated the impact of using a CF-specific cut-points in comparison with 

generic cut-points on PA outcomes in children and adolescents with CF. Some highlights and 

recommendations are:  

 

• CF-specific cut-points elicited significantly more time in MVPA and SED and 

significantly less time in LPA in comparison to generic thresholds. 

• LPA was associated with lung function, independent of age, sex, BMI, genotype and 

accelerometer wear-time. 

• Future PA interventions should stratify approaches by sex and type of day (i.e., week 

or weekend day). 

• Future studies should target interventions to reduce SED and increase LPA in children 

with CF. 
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CHAPTER 7 

Study Four: A Compositional Analysis of Movement Behaviours and Associated Health 

Outcomes in Children and Adults with Cystic Fibrosis 

 

Abstract 

Introduction: Regular physical activity (PA), sedentary time (SED) and sleep are associated 

with lung function and other health markers in those with Cystic Fibrosis (CF). Previous 

research has investigated the association between these movement behaviours and health in 

isolation, without accounting for their collinear and interactive nature. Therefore, this study 

sought to use compositional analysis to investigate the association between sleep, SED, light 

physical activity (LPA) and moderate-to-vigorous physical activity (MVPA) with lung 

function in children and adults with CF.  

Methods: In total, 147 people with CF participated, with a final sample of 86 children (41 

girls; 13.6 ± 2.8 years) and 43 adults (21 females CF; 13.5 ± 2.8 years; 24.6 ± 4.7 years) with 

CF included in the analyses. Spirometry using a forced vital capacity manoeuvre yielded a 

forced expiratory volume in the first second predicted (FEV1%predicted) of 86 ± 21% and 63 ± 

21% for children and adults, respectively. Seven-day wrist-worn accelerometry was used to 

assess PA, SED and sleep. Compositional linear regression models were conducted following 

normalisation via isometric log-ratio transformations. Subsequently, sequential binary 

partitioning was applied for all possible combinations of behaviours (including sleep, SED, 

LPA and MVPA) to investigate the impact of reallocating 10 to 30 minutes of each behaviour 

to FEV1%predicted. 

Results: Compositional analyses, adjusting for age, sex and genotype, revealed that an 

estimated decline in lung function was observed with the reallocation of 30 minutes from 

MVPA to SED and LPA (-0.01 – -2.22%) or sleep to any other behaviour (-1.03 – -3.58%). 

Conversely, favourable improvements in lung function were observed when increasing 30 

minutes in MVPA from LPA and SED (0.12 – 2.10%) and sleep from any other behaviour 

(0.23 – 3.58%). Finally, reallocating 30 minutes of SED to LPA also estimated a modest 

improvement in lung function (0.35 – 1.29%).   

Conclusion: This study further supports the importance of MVPA and sleep for lung function 

in people with CF, irrespective of age, sex and genotype. Additionally, increments in LPA with 
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time reallocated from SED was also beneficial to FEV1%predicted. Finally, these findings 

reinforce the inclusion of sleep and PA across the intensity spectrum as promising strategies to 

maintain, improve or slow the rate of decline of estimated FEV1%predicted.  

 

7.1 Introduction 

 

Cystic fibrosis (CF) is the most prevalent life-shortening inherited disorder affecting 

over 10,500 people in the United Kingdom (UK ; Cystic Fibrosis Trust, 2018). The condition 

originates from a mutation in the Cystic Fibrosis Transmembrane Conductance Regulator 

(CFTR) gene, resulting in malfunctioning or absent CFTR proteins and ultimately leading to 

the dysfunctional regulation of electrolytes and water content at the mucosal surfaces (Cutting, 

2005). Cystic Fibrosis is characterised by a systemic accumulation of viscous sticky mucus, 

particularly detrimental to the lungs and the digestive system (Davies et al., 2007). Respiratory 

dysfunction manifests in early childhood and recurrent infections lead to the development of 

bronchiectasis, culminating into progressive lung function impairment (Hulzebos et al., 2013). 

Regular physical activity (PA) is an important component of CF care and is associated with 

multiple benefits, such as a reduction in lung function decline and improved nutritional status 

and bone mineral density (Beekman et al., 2013; Hebestreit et al., 2014; Ratjen et al., 2014). 

Importantly, PA is associated with better quality of life and prolonged life expectancy 

(Hebestreit et al., 2006; Reimers et al., 2012; Wilkes et al., 2009).  

Research investigating the association between PA and health outcomes in people with 

CF have reported equivocal findings (Collaco et al., 2014; Cox et al., 2016; Mackintosh et al., 

2018; Savi, Simmonds, et al., 2015). Specifically, whilst a few studies reported that vigorous 

physical activity (VPA) was associated with forced expiratory volume in the first second, in 

both absolute (FEV1) and predicted (FEV1%predicted) terms, in children with CF (Jantzen et al., 

2016; Mackintosh et al., 2018; Nixon et al., 2001) found that light physical activity (LPA), but 

not VPA, was shown to predict FEV1 in this population. Similar discrepancies were also 

observed in adults with CF (Cox et al., 2016; Savi, Di Paolo, et al., 2015). For example, whilst 

a few studies (Cox et al., 2016; Savi, Simmonds, et al., 2015)  found that regular moderate-to-

vigorous physical activity (MVPA) was associated with lung function in adults with CF, such 

an association was not found by Savi, Di Paolo, et al. (2015). Furthermore, longitudinal studies 

have shown that higher self-reported PA levels are positively associated with a slower decline 
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in lung function in both children and adults with CF (Collaco et al., 2014; Schneiderman et al., 

2013). Such discrepancies may be due to, at least in part, the failure to account for the 

compositional nature of PA. Specifically, movement behaviours, such as sleep, sedentary time 

(SED), LPA and MVPA, are relative portions of a complete day, and should therefore not be 

analysed as independent entities. Thus, health outcomes may not be attributed to one behaviour 

in isolation (i.e. MVPA), but as a product of the overall composition of PA and the interactions 

between behaviours. Indeed, this is reflected in more recent PA recommendations, which 

considers all movement behaviours over a 24-hour period (Kuzik et al., 2017; Waters et al., 

2017; WHO, 2020).  

Recent improvements in accelerometer devices and processing techniques, such as 

machine learning, have substantially advanced the field of PA research (Farrahi et al., 2019). 

However, the majority of statistical analyses of PA data still employ traditional linear 

approaches (i.e. linear regression), therefore failing to account for the collinearity between the 

PA behaviours (Cox et al., 2018; Radtke et al., 2017; Ratjen et al., 2014). PA data are inherently 

compositional by nature; each intensity represents a proportion of the total waking time 

(Carson, Hunter, et al., 2016). Thus, the amount of time allocated to one daily behaviour will 

directly affect the time available for all others, with any change in time in one behaviour 

requiring a concomitant change in other behaviour(s) (Chastin et al., 2015). Ideally, analyses 

of PA should not be conducted on intensities in isolation (Carson, Tremblay, et al., 2016). PA 

research has increasingly recognised the value of integrating all movement behaviours, 

including sleep, through the use of compositional analyses (Carson, Hunter, et al., 2016; 

Chastin et al., 2015; Dumuid et al., 2018). Compositional data analysis accounts for the 

collinearity of PA data by expressing the relative information as a set of log-ratios (Chastin et 

al., 2015), which can be transposed from the compositional sample space (d-simplex), and 

analysed with traditional models (i.e., linear regression). The use of compositional analysis has 

enabled researchers to explore the effects of increasing MVPA at the expense of SED to reduce 

mortality risk (McGregor, Palarea-Albaladejo, Dall, Del Pozo Cruz, et al., 2019), 

cardiometabolic biomarkers (McGregor, Palarea-Albaladejo, Dall, Stamatakis, et al., 2019) 

and diabetes (Swindell et al., 2020). Such findings are crucial to inform the design of 

interventions and clinical guidelines, providing an indication of the amount of time that needs 

to be displaced from each behaviour in order to elicit CF health outcomes. However, to date, 

no research has utilised compositional analysis to ascertain the relationship between PA and 

the primary CF-associated health outcome, FEV1%predicted.   
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For people with CF, it remains unclear how the displacement of time in different 

movement behaviours, including sleep, SED, LPA, and MVPA, might impact health outcomes. 

Therefore, the aim of this study was to use compositional analysis to investigate the association 

between time spent in sleep, sedentary, LPA, MVPA and FEV1%predicted in children and adults 

with CF.  

 

7.2 Methods  

 

7.1.1 Participants  

 

In total, 147 individuals (93 children, 48 girls, 13.5 ± 2.8 years; 54 adults, 27 females, 21.4 

± 3.4 years) with a confirmed diagnosis of CF aged 7 to 35 years participated in the study, with 

adulthood being defined as 18+ years. Amongst these, 42% were homozygous for ΔF508 

mutation [p.Phe508del (c.1521_1523delCTT)] and 25% had Cystic Fibrosis Related Diabetes 

(CFRD). Participants were recruited from Paediatric CF Clinics in South Wales (n = 35) and 

from those admitted to hospital for a respiratory cause in Australia (n = 112). Participants from 

Australia constituted the baseline of a randomised controlled trial intervention, more details of 

this sample are provided elsewhere (Cox et al., 2019). Individuals had to have a CF diagnosis 

through new-born screening, and/or be presenting CF-typical symptoms and either two 

pathological sweat tests or two CF-relevant mutations to be included. Those with multi-

resistant bacteria (Burkholderia Cepacia and nontuberculous mycobacteria), co-morbidities 

that might compromise being physically active (i.e. cardiovascular and musculoskeletal), an 

acute exacerbation at the time of the assessments or were awaiting a transplant, were excluded 

from the study. Prior to study commencement, parents/guardians and participants signed a 

written informed consent and assent, respectively. Ethics approval was obtained from the 

National Health Service (NHS) Research Ethics Committee (18/WS/0032; Appendix D2) in 

the United Kingdom and from the Human Research Ethics Committee at Alfred Health in 

Australia (HREC/16/Alfred/188; Project 7/17; Appendix D4). 

 

7.2.1 Measurements 
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Movement Behaviours: Physical Activity, Sedentary Time and Sleep 

Habitual PA was assessed by two different accelerometers, ActiGraph GT9X Link (n = 

105; ActiGraph, Pensacola, FL) and GENEActiv (n = 42; ActivInsights Ltd., Cambridge, UK), 

secured on the non-dominant wrist for seven consecutive days. Participants were instructed to 

wear the monitors at all times. Raw accelerometer data were extracted at 100 Hz as .gt3x and 

.bin files using ActiLife V 6.10.2 and GENEActiv PC software V2.2, for ActiGraph GT9X 

Link and GENEActiv monitors, respectively. All .gt3x files were converted to time-stamp free 

.csv files and then imported along with the .bin files into R statistical software (V3.1.2; R 

Foundation for Statistical Computing, Vienna, Austria). The GGIR package (V1.2–0; 

http://cran.r-project.org; Migueles, Rowlands, et al., 2019) was used to auto-calibrate the data, 

detect abnormal values, and detect non-wear time. Subsequently, the Euclidean Norm Minus 

One (ENMO) was determined from the vector magnitude by subtracting one gravitational unit 

from the three raw acceleration signals at each time-stamp. Only those with at least four days 

and three nights of valid accelerometer data, with ≥ 16-hours of wear-time in each day, were 

included in the final analyses (Haszard et al., 2020). The procedure utilised to detect non-wear 

time is described in detail elsewhere (van Hees et al., 2013). Briefly, the procedure of non-wear 

detection developed by van Hees et al. (2013) used a 60-minute time overlapping windows. 

Were classified as non-wear any periods of less than 30% of the combined duration of their 

bordering non-wear periods within less than six hours. Additionally, periods which formed less 

than 80% of their bordering non-wear periods within less than three hours were also classified 

as non-wear. Hildebrand et al. (2014) age- and brand-specific cut-points were used to estimate 

time accumulated in sedentary, LPA and MVPA in 5-s epochs (Hildebrand et al., 2014).  

Sleep was assessed using a validated algorithm, which is integrated within the GGIR 

package (van Hees et al., 2015; van Hees et al., 2018). Briefly, the algorithm detects sleep time 

as any period of sustained inactivity that is defined as no change of more than five degrees in 

the monitor angle during a nocturnal sleep window  (van Hees et al., 2015). For the present 

study, the nocturnal window was identified using the heuristic algorithm developed by van 

Hees et al. (2018) for wrist-worn accelerometers. Essentially, this algorithm calculates the z-

angle over a 5-s epoch from the raw acceleration signal. Subsequently, the algorithm estimates 

the rolling variance over time within these epochs, and the 10th percentile of this output, over 

the period of an individual day, is multiplied by 15 and used as an individual night threshold. 

This individual night threshold is used to differentiate between periods of time containing 

according to the frequency of postural changes. The sleep period time window is then identified 
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as the longest block of time (from noon to noon) including few postural changes over periods 

longer than 30 minutes. Additionally, any awake period (in the nocturnal window) lasting 

longer than 60 minutes is treated as two distinct sleep episodes. Finally, all data were visually 

inspected to ensure that this was in accord with the nocturnal sleep pattern for this specific 

sample population (van Hees et al., 2015).    

Body mass (Seca 876, Hamberg, Germany) and stature (Holtain Stadiomerter 603VR, 

Holtain Ltd, UK) were measured to the nearest 0.1 kg and 0.1 cm, respectively, and body mass 

index (BMI) was calculated. Subsequently, BMI z-scores were calculated for children and 

adolescents according to the World Health Organisation reference data (de Onis et al., 2004). 

A standard spirometry (Metamax 3B, Cortex Biophysik GmbH, Germany) assessment using a 

forced vital capacity manoeuvre was performed to determine lung function (McCormack et al., 

2019). Spirometry was assessed in accordance with American Thoracic Society and European 

Respiratory Society standards (Graham et al., 2019; Moore, 2012). Forced expiratory volume 

in one second was obtained, and FEV1%predicted was estimated using a reference equation 

(Quanjer et al., 2012), and subsequently utilised to indicate disease severity as mild (> 70%), 

moderate (40 – 69%) or severe (< 40%; Davies & Alton, 2009). Genotype and the presence of 

CFRD were extracted from the medical records.  

 

7.2.2 Statistical Analysis 

 

Descriptive statistics (mean ± standard deviation (SD)) and frequencies (%) were calculated 

for continuous and categorical variables, respectively, and an independent t-test was utilised 

for inter- and intra-group comparisons, using SPSS Statistics, version 23.0 (IBM Corp., USA). 

Statistical significance was accepted at p ≤ 0.05. Compositional analysis was performed in R 

using the ‘compositions’ and ‘robCompositions’ packages (Chastin et al., 2015). Initially, all 

data sets were screened to ensure that no zero values would be included in the composition, 

given that the presence of zeros impairs the process of normalisation of the time-use data. No 

zero values were encountered in our data set. Subsequently, the compositional mean of each 

behaviour (sleep, SED, LPA, MVPA) was computed across an average of all valid days. Then, 

a variation matrix was calculated for logs of all possible pair-wise ratios between the movement 

behaviours, with all pairs achieving values close to zero considered as presenting high 

proportionality. The relative data including all movement behaviours were presented as 
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isometric log-ratio (ilr) coordinates. This is important as compositional data consists of vectors 

of positive components in a constrained unit-sum (Aitchison, 1982; van de Boogaart & 

Tolosana-Delgado, 2008). It is generally accepted that the standard simplex (d-simplex) is the 

sample space designated for compositional data, which was previously described (Pawlowsky-

Glahn et al., 2015) as:  

Equation 6.1             

{(𝑋1, … , 𝑋𝐷)  ∈  ℝ𝐷 : ∑ 𝑋𝑗 = 1, 𝑋𝑗 > 0 𝑓𝑜𝑟 𝑗 = 1, … , 𝐷

𝐷

𝑗=1

} 

where 

                                      𝐷 = 𝑑 + 1 

This definition describes the d-simplex for a composition of D parts, which lies within a (D 

– 2) sample space, for which the sums of its proportions must result in one (i.e. one day; 

Pawlowsky-Glahn et al., 2015). As such, a crucial step in compositional analysis is the 

normalisation of the compositional data using methods such as ilr transformation. These 

methods allow the transposition of compositional data from the d-simplex into the real sample 

space, where it is unconstrained and traditional statistics can be performed (Aitchison, 1982; 

Dumuid et al., 2018; Pawlowsky-Glahn et al., 2015). A detailed description of different 

approaches to normalise compositional data have been described elsewhere (Pawlowsky-Glahn 

et al., 2015), but the most common method is the family of one-to-one log-ratio transformation, 

as described by Aitchison et al (1986). Whilst Aitchison’s additive log-ratio co-ordinate 

brought advancements to compositional computations, this approach is asymmetric and non-

isometric, hence, inappropriate for compositional analysis of PA data (Dumuid et al., 2018). 

Alternatively, the present study utilised the ilr transformation described by Egozcue et al. 

(2005), as follows for a D-part composition x, with a transformation of z = (z1, …, zD-1)= ilr(x):  

 Equation 6.2              

𝑧𝑖 =  √
𝐷 − 𝑖

𝐷 − 𝑖 + 1 
 𝑙𝑛

𝑥𝑖

√Π𝑗
𝐷 = 𝑖 + 1𝑥𝑗  

𝐷−𝑖
, 𝑓𝑜𝑟 𝑖 = 1, … , 𝐷 − 1 

Egozcue et al. (2005) also introduced the use of ilr coordination under a construct of 

sequential binary partitions, which has been broadly adopted by research employing 
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compositional analysis to analyse PA behaviours (Dumuid et al., 2018; Stevens et al., 2020). 

Indeed, the use of binary partitions is particularly useful to investigate the nature of different 

behaviour components. Specifically, by splitting the full composition into two sub-groups 

comprised of a numerator and a denominator, it can then be further split to include the 

remaining coordinates. In order to investigate the relationship of all movement behaviours 

(sleep, SED, LPA and MVPA) with lung function, this study initially designed the numerator 

to comprise of inactivity-related components, such as sleep and SED, and the denominators of 

activity-related components, such as LPA and MVPA. Subsequently, a partition including 

sleep as the numerator and SED as the denominator was created. Finally, LPA was designated 

as a numerator and MVPA as the denominator, thereby composing the last partition (Carson, 

Tremblay, et al., 2016; Chastin et al., 2015; Dumuid et al., 2018).  

Multiple linear regression, with the ilr coordinates as the explanatory variables, was used 

to explore the relationship between each behaviour and FEV1%predicted (Dumuid et al., 2018). 

Specifically, this study used four sets of ilr-coordinate systems, sleep, SED, LPA and MVPA. 

Initially, a model consisting of the four behaviours as ilr coordinates and FEV1%predicted as the 

continuous dependent variable was performed. A second model to predict FEV1%predicted was 

then performed adjusting for age, sex and genotype. As such, sex and genotype were inputted 

to the model as categorical variables using binary code. All covariates were selected according 

to clinical relevance and relevance to PA levels (Stevens et al., 2020). In order to estimate how 

the reallocation of each behaviour impacts FEV1%predicted, the difference between each 

estimated outcome at the reference composition and at a new composition was estimated as 

described by Dumuid et al. (2017). The reference composition comprised of the averages of all 

behaviours linearly scaled to add to one (i.e. one day, 24-hours in terms of the behaviour data), 

and the reallocation of time between different behaviours from the reference constituted the 

new composition (i.e. LPA to MVPA; Dumuid et al., 2018). Lastly, the approach of binary 

partitioning, described above, was applied to estimate how the reallocation of time from each 

behaviour, in relation to the reference composition, affects FEV1%predicted (Dumuid et al., 2018; 

Pawlowsky-Glahn et al., 2015). This approach was repeated until all possible combinations of 

behaviours were analysed, with time reallocation ranging between increments of 10 to 30 

minutes from the averages for each PA intensity (Carson, Hunter, et al., 2016; Chastin et al., 

2015; Dumuid et al., 2018; Pawlowsky-Glahn et al., 2015). Specifically, increments of 10, 20 

and 30 minutes from the averages were applied to each PA intensity in the non-adjusted models, 

whilst increments of 30 minutes were applied to each PA intensity in the adjusted models. 
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Finally, ternary plots displaying the relationship between all movement behaviours were 

created to allow the visualisation of the d-simplex. 

 

7.3 Results 

 

Following the exclusion of 18 participants who did not meet the inclusion wear-time 

criteria, 129 participants, including 43 adults (21 females; 24.6 ± 4.7 years) and 86 children 

(41 girls; 13.6 ± 2.8 years), were included in the analyses. Descriptive characteristics and lung 

function data are presented in Table 7.1. Seventy-one participants had mild lung disease, 53 

had moderate lung disease and a minority had severe lung disease (n = 5). Independent t-tests 

revealed significant inter-group differences in BMI (p = 0.007), stature and FEV1%predicted (p = 

0.004) with children having significantly lower MVPA (p < 0.0001) and longer sleep (p = 

0.04), in comparison with adults. Intra-group comparisons identified that girls and females had 

lower FEV1 than boys and males (p = 0.01), respectively. In addition, girls accumulated less 

MVPA than boys (p = 0.02); and females accrued less LPA (p = 0.04) and more SED (p = 0.05) 

than males. There were no significant differences in demographic and anthropometric 

characteristics and lung function for those included and excluded from the analysis (p > 0.05). 

 

 
Table 7.1 Participants Characteristics, Physical Activity Levels and Lung Function for Children and 

Adults by Sex 

 Children 

 (n = 86) 

Girls  

(n = 41) 

Boys  

(n = 45) 

Adults  

(n = 43) 

Females  

(n = 21) 

Males  

(n = 22) 

Age (years)  13.6 ± 2.8 13.7 ± 2.7 13.5 ± 2.8 24.6 ± 4.7 23.6 ± 3.5 25.5 ± 5.5 

 

Height (cm)  154.2 ± 14.9* 152.5 ± 13.1 155. ± 16.13 166.0 ± 28.7 153.2 ± 35.6+ 178.1 ± 10.0 

Body Mass (kg)  46.5 ± 14.3* 45.2 ± 12.0 47.7 ± 16. 1 61.8 ± 17.2 51.6 ± 14.3 71.5 ± 13.8 

BMI (kg·m-2)  18.7 ± 3.4* 18.8 ± 2.5 18.6 ± 4.1 21.2 ± 4.4 20.0 ± 5.3 22.4 ± 2.9 

zBMI -0.2 ± 0.9 -0.1 ± 0.8  -0.3 ± 1.1 - - - 

FEV1 (L) 2.3 ± 0.8 2.1 ± 0.7+ 2.5 ± 0. 7 2.4 ± 1.0 1.9 ± 0.7+ 2.9 ± 1.0 

FEV1%predicted (%) 86 ± 21* 84 ± 24 88 ± 18 63 ± 21 62 ± 1 64 ± 21 

Sleep (min) 479.3 ± 70.6* 471.2 ± 63.4  487.0 ± 77.5 453. 3 ± 64.5 
452.1 ± 68.0 

454.5 ± 62.6 

SED (min) 344.8 ± 165.7 382.1 ± 196.0 313.7 ± 123.1 341.5 ± 116.0 
381.3 ± 122.9+ 

303 ± 97.1 
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Data are presented as mean ± SD 

FEV1: forced expiratory volume in one second, FEV1%predicted: Forced expiratory volume in the first second predicted, BMI: 

body mass index. *Significant difference between children and adults (p ≤ 0.05). +Significant difference between sex within 

the age groups (p ≤ 0.05). 

 

The standard and compositional means describing the accumulation of time spent in 

each behaviour, along with the variation matrix of movement, are shown in Table 7.2. The 

results from the variation matrix indicated SED and LPA were the most highly co-dependent 

pairs, whilst SED and MVPA represented the least co-dependent pair. 

 

SED: sedentary time, LPA: light physical activity, MVPA: moderate-to-vigorous physical activity 

 

The linear regression models including the ilr-coordinates as explanatory variables to 

predict lung function are presented in Table 7.3. All adjusted models resulted in a multiple R2 

of 0.25, an adjusted R2 of 0.20 and a p value of < 0.001. For non-adjusted models, the multiple 

R2 was 0.09, with an adjusted R2 of 0.06, and a p value of 0.01. In the adjusted analyses, age 

was significant across all models (p < 0.001), whereas sex was only significant in the model 

retaining LPA (p < 0.01). In addition, the adjusted models designed to retain MVPA and SED 

were positively associated with sleep and negatively associated with all other behaviours. In 

contrast, the non-adjusted analyses showed that both models retaining sleep and SED as ilr-

coordinates were negatively related with MVPA. Interestingly, the adjusted model retaining 

LPA was positively associated with both MPVA and sleep, and negatively associated with 

SED. In contrast, the model retaining LPA did not elicit similar positive associations with 

MVPA in the non-adjusted analyses.  

LPA (min) 562.0 ± 140.5 543.7 ± 167.9 574.6 ± 105.5 529.6 ± 121.1 
491.3 ± 125.7+ 

566.3 ± 

106.8 

MVPA (min) 53.7 ± 115.3* 42.8 ± 32.0+ 64.5 ± 53.0 115.3 ± 83.6 
115.1 ± 68.6 

115.5 ± 97.5 

 
Table 7.2 Unadjusted (mean ± SD) and Compositional Means and Variation Matrix of Movement 

Behaviours in Children and Adults with Cystic Fibrosis 

 Sleep SED LPA MVPA 

Unadjusted (min)  470.6 ± 69.2 343.7 ± 149.8 551.1 ± 134.2 74.4 ± 66.8 

Compositional 0.34 0.23 0.38 0.03 
     

Sleep  0.06 0.04 -0.19 

SED 0.06  -0.02 -0.32 

LPA 0.04 -0.02  -0.15 

MVPA -0.19 -0.32 -0.15  
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Table 7.3 Regression Coefficients, Standard Errors, and p-values for each Retained ilr-coordinate for 

FEV1%predicted 

  Non-adjusted Adjusted 

Retained ilr-

coordinate 

Clinical 

Covariates 

Regression 

Coefficient  

Standard 

Error 

p-value Regression 

Coefficient  

Standard 

Error 

p-value 

 Sleep 11.36 4.41 0.01* 8.53 4.31 < 0.001* 

 SED -3.78 1.75 0.03* -3.42 1.17 0.05* 

MVPA LPA -0.20 2.12 0.92 -1.86 2.09 0.05* 

 Sex NA NA NA 3.25 4.43 0.42 

 Age NA NA NA 23.36 5.08 < 0.001* 

 Genotype NA NA NA 3.07 4.42 0.46 

        

 SED -7.35 2.38 0.002* -6.07 2.35 0.01* 

 LPA -4.89 3.56 0.17 -5.06 3.44 0.14 

Sleep MVPA -8.08 2.93 0.006* -5.05 2.92 0.08 

 Sex NA NA NA 3.25 4.43 0.46 

 Age NA NA NA 23.36 5.08 < 0.001* 

 Genotype NA NA NA 3.07 4.42 0.48 

        

 LPA -2.16 3.11 0.48 -2.75 3.01 0.36 

 MVPA -2.71 1.47 0.06* -0.66 1.49 0.65 

SED Sleep 11.46 3.89 0.003* 8.94 3.82 0.02* 

 Sex NA NA NA 3.25 4.43 0.42 

 Age NA NA NA 23.36 5.08 < 0.001* 

 Genotype NA NA NA 3.07 4.42 0.46 

        

 MVPA -1.84 1.10 0.09 0.28 1.17 0.80 

 Sleep 11.40 4.59 0.01* 9.10 4.47 0.04* 

LPA SED -3.17 2.16 0.14 -2.03 2.13 0.34 

 Sex NA NA NA -8.93 3.50 < 0.01* 
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 FEV1%predicted: forced expiratory volume in the first second predicted, SED: sedentary time, LPA: light physical activity, 

MVPA: moderate-to-vigorous physical activity. *Statistically significant (p ≤ 0.05). 

 

7.3.1 Sequential binary partitioning  

 

The estimated changes in FEV1%predicted with the non-adjusted and adjusted analyses 

are shown in Table 7.4 and 7.5, respectively. Children and heterozygous males had 

significantly higher FEV1%predicted (p < 0.05) in comparison to the rest of the sample. For both 

non-adjusted and adjusted analyses, all reallocations from sleep to other behaviours (i.e. SED, 

LPA and MVPA) resulted in a reduction in estimated lung function, whilst time displaced from 

all movement behaviours to sleep increased the estimated lung function. In the non-adjusted 

analyses, LPA displaced to SED and MVPA resulted in a reduced FEV1%predicted. In contrast, 

the adjusted analyses showed that LPA displaced to MVPA resulted in an increased 

FEV1%predicted, whilst the displacement of LPA to SED resulted in reduced FEV1%predicted. In 

addition, whilst the non-adjusted analyses indicated that time displaced from SED to LPA, but 

not MVPA, increased FEV1%predicted, the adjusted model showed estimated increments in 

FEV1%predicted with time displaced from SED to all movement behaviours, including MVPA. 

Finally, stratifying groups according to age, sex and genotype revealed that time reallocated 

from MVPA to SED and LPA reduced lung function, irrespective of age, genotype or sex.  

 

 Age NA NA NA 23.70 3.72 < 0.001* 

 Genotype NA NA NA -2.67 3.29 0.41 
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SED: sedentary time, LPA: light physical activity, MVPA: moderate-to-vigorous physical activity, FEV1%predicted: Forced 

expiratory volume in the first second predicted 

 

Table 7.4 Percentage Changes Values of FEV1%predicted when Reallocating Time Amongst 

Different Movement Behaviours in Children and Adults with Cystic Fibrosis 

 Non-adjusted Model 

Reallocation 10 min 20 min 30 min 

Sleep to SED -1.17  -2.32  -3.47  

Sleep to LPA -0.83  -1.55  -2.30  

Sleep to MVPA -1.22  -2.38  -3.49  

SED to Sleep 1.16  2.31  3.48  

SED to LPA 0.45  0.92  1.40  

SED to MVPA -0.04  0.00  0.12  

LPA to Sleep 0.70  1.40  2.09  

LPA to SED -0.45  -0.85  -1.26  

LPA to MVPA -0.50  -0.92  -1.29  

MVPA to Sleep 1.27  2.66  4.19  

MVPA to SED 0.13  0.41  0.84  

MVPA to LPA 0.56  1.26  2.11  
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SED: sedentary time, LPA: light physical activity, MVPA: moderate-to-vigorous physical activity, FEV1%predicted: forced expiratory volume in the first second predicted 

 

 

Table 7.5 Percentage Change Values of FEV1%predicted when Reallocating 30 minutes Amongst Different Movement Behaviours, Stratified by Sex, 

Genotype and Age 

 Children Adults 

 

Reallocation 

Homozygous Heterozygous Homozygous Heterozygous 

Girls (n = 27) Boys (n = 22) Girls (n = 14) Boys (n = 23) Females (n = 9) Males (n = 11) Females (n = 12) Males (n = 11) 

Sleep to SED  -2.44  -2.46  -3.04  -2.38  -3.58  -3.24  -3.40  -3.24  

Sleep to LPA  -1.59  -1.64  1.29  -1.59  -2.39  -2.10  -2.27  -2.16  

Sleep to MVPA  -1.11  -1.07  -1.66  -1.03  -1.56  -1.98  -1.48  -1.41  

SED to Sleep  2.56  2.46  1.87  2.38  3.58  3.40  3.24  3.24  

SED to LPA  0.98  0.94  0.35  0.91  1.37  1.29  1.13  1.23  

SED to MVPA  0.73  0.59  0.12  0.57  0.85  0.97  0.81  0.77  

LPA to Sleep  1.71  1.53  0.94 1.47  2.22  2.10  2.11  2.00  

LPA to SED  -0.73  -0.82 -1.40  -0.79  -1.19 -1.13  -1.13  -1.08 

LPA to MVPA  1.59  1.53  0.94  1.36  2.05  2.10  1.94  2.00  

MVPA to Sleep  0.98  0.82  0.23  0.79  1.19  1.29  1.13  1.08  

MVPA to SED  -1.47  -1.53  -2.11  -1.47  -2.22  -1.94  -2.11  -2.00  

MVPA to LPA  -0.005  -0.006  -0.011  -0.006  -0.006  -0.005  -0.006  -0.006  
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Ternary diagrams to visualise the d-simplex sample space for all movement behaviours 

have been produced for the distribution of the sample compositions showing 75%, 95% and 

99% probability regions (Figure 7.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 Ternary Plots Displaying the Composition of Movement Behaviours in Children 

and Adults with Cystic Fibrosis 

Each plot displays the relationship between three behaviours. a) Sedentary time, light physical activity and moderate-to-

vigorous activity. b) Sleep, sedentary time and moderate-to-vigorous physical activity. c) Sleep, light physical activity and 

moderate-to-vigorous physical activity. d) sedentary time, light physical activity and sleep. Probability regions structured as 

75%, 95% and 99%, are represented as circles (i.e. smaller circle: 75% and larger circle: 99%) around the composition centre. 

SED: sedentary time, LPA: light physical activity, MVPA: moderate-to-vigorous physical activity. 

 

a) 

c) 

b) 

d) 

MVPA MVPA 

MVPA SLEEP 
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   Figures 7.2 and 7.3 display ternary diagrams accounting for FEV1%predicted in children 

and adults, respectively. Specifically, the accumulation of MVPA and sleep favoured 

FEV1%predicted in both children and adults. In addition, the accumulation of LPA and SED are 

associated with lower FEV1%predicted in children, whereas only more SED was associated with 

reduced lung function in adults.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 Ternary Plots displaying how the Movement Behaviours are Associated with 

FEV1%predicted in Children with Cystic Fibrosis 

Each plot displays the relationship between three behaviours. The heat map represents the distribution of data points, with 

difference in colours indicating changes in FEV1%predicted. a) Sedentary time, sleep and moderate-to-vigorous activity. b) 

sedentary time, light physical activity and moderate-to-vigorous physical activity. c) light physical activity, sleep and 

moderate-to-vigorous physical activity. d) light physical activity, sleep and sedentary time. SED: sedentary time, LPA: light 

physical activity, MVPA: moderate-to-vigorous physical activity, FEV1%predicted: forced expiratory volume in the first second 

predicted 

a) b) 

d) 
c) 

FEV1%predicted FEV1%predicted 

FEV1%predicted FEV1%predicted 
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Figure 7.3 Ternary Plots displaying how the Movement Behaviours are Associated with 

FEV1%predicted in Adults with Cystic Fibrosis 

Each plot displays the relationship between three behaviours. The heat map represents the distribution of data points, with 

difference in colours indicating changes in FEV1%predicted. A. Sedentary time, sleep and moderate-to-vigorous activity. B. 

sedentary time, light physical activity and moderate-to-vigorous physical activity. C. light physical activity, sleep and 

moderate-to-vigorous physical activity. D. light physical activity, sleep and sedentary time. SED: sedentary time, LPA: light 

physical activity, MVPA: moderate-to-vigorous physical activity, FEV1%predicted forced expiratory volume in the first second 

predicted 

 

 

 

 

FEV1%predicted 

FEV1% 
FEV1%predicted 

 a) b) 

FEV1%predicted 

 

c) d) 

FEV1%predicted 
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7.4 Discussion 

 

This study sought to investigate the association between time spent in sleep, sedentary, 

LPA, MVPA and FEV1%predicted in children and adults with CF. Overall, this study found that 

SED and LPA demonstrated the greatest co-dependency, which is in accordance with research 

in healthy populations (Carson, Hunter, et al., 2016; Štefelová et al., 2018). Specifically, this 

indicates that individuals who accumulated high amounts of SED also accrued a high 

proportion of time in LPA. Age was the only factor associated with all movement behaviours; 

children had high levels of LPA while older participants spent more time in MVPA. There was 

a significant positive association between MVPA and sleep with lung function (FEV1%predicted), 

irrespective of age. The reallocation of 30 minutes of SED to sleep was associated with the 

greatest increase in percentage in lung function after adjusting for sex, age and genotype. The 

second greatest increase in percentage in lung function was associated with the reallocation of 

30 minutes of LPA to MVPA, after adjusting for sex, age and genotype.  

The present study found that the reallocation of 30 minutes from LPA and SED to MVPA, 

and from all movement behaviours to sleep, estimated an improvement of up to 3.66% in 

FEV1%predicted. It is noteworthy that the clinical significance of a change in FEV1 might vary 

according to disease severity, with more severe cases benefiting greatly from even small 

improvements. Despite this, it is also important to note that the mean error associated with the 

FEV1%predicted measurement is reported to range between 1.7% to 3.1% in spirometers utilised 

in primary care (Hegewald et al., 2016). However, it is noteworthy that, in the present study, 

the spirometers were carefully calibrated prior to the assessments and all the ATS/ERS 

(Graham et al., 2019; Moore, 2012) recommendations were strictly followed to minimise error. 

Nonetheless, given that FEV1%predicted declines from 1.0 to 3.1% per year in children and adults 

with CF (De Boeck & Zolin, 2017; Liou et al., 2010), achieving up to 3.6% increase in 

FEV1%predicted from the reallocation of different movement behaviours may have substantial 

clinical benefit. In addition, the magnitude of change in FEV1%predicted with increasing MVPA 

and sleep, shown in the present analysis is akin to the percentage changes reported in studies 

evaluating the effect of medications for maintenance of lung health in CF (Elkins et al., 2006; 

Mogayzel et al., 2013; Wainwright et al., 2015). For example, results from a large randomised 

trial including children and adults with CF, indicated that the mean absolute improvement in 

the percentage of FEV1%predicted ranged from 2.6 to 4.0% with the use of a Cystic Fibrosis 

transmembrane conductance regulator corrector (lumacaftor) in combination with a potentiator 
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(ivacaftor; Wainwright et al., 2015). The present study, therefore, contributes to the emerging 

literature suggesting that an integrated approach to PA promotion and behaviour change may 

be more beneficial than emphasis on isolated PA behaviours (Carson et al., 2019).  

Congruent with earlier studies investigating different health markers (Carson, Hunter, et 

al., 2016; Carson et al., 2019; Dumuid et al., 2018), the present study demonstrated that 

prioritising sleep, in comparison to SED, LPA and MVPA, was associated with the best 

estimated outcome. More specifically, the present study found that even a 30-minute reduction 

in sleep was associated with detrimental effects on lung function (-1.03 – -3.58%). A recent 

systematic review and meta-analysis reported a direct correlation between FEV1%predicted and 

fragmentation of sleep in children and adults with CF, suggesting such disturbances were also 

associated with an increased frequency of exacerbation and a deterioration in nutritional status 

and quality of life (Shakkottai et al., 2018). Moreover, Shakkottai et al. (2018) found that sleep 

disorders and nocturnal hypoxemia are prevalent in children and adolescents with CF, and are 

associated with worse clinical score and higher morbidity in this population. Sleep disorders 

are also associated with exercise intolerance and increased SED in children with CF (Barbosa, 

Coelho, et al., 2020). Additionally, research utilising traditional statistical methods (non-

compositional) reported that sleep fragmentation is related to reduced MVPA in adults with 

CF (Cox et al., 2019). Similarly, habitual PA, particularly at higher intensities, is associated 

with better sleep in children and adults with CF (Dietz-Terjung et al., 2020). These findings 

suggest that whilst sleep and PA seem to influence each other, they also mutually affect lung 

function, and disease progression. As such, future studies developing PA recommendations or 

interventions in people with CF are strongly advised to account for sleep, in line with the 

Canadian 24-hour movement guidelines (Tremblay et al., 2016). 

Research investigating the relationship between PA and clinical outcomes in CF remains 

sparse and has mainly focused on individual movement behaviours (Cox et al., 2019). 

Nonetheless, longitudinal investigations have reported a slower decline in FEV1 with regular 

PA in paediatric (Schneiderman et al., 2013) and adult cohorts (Collaco et al., 2014; Cox et al., 

2018). Amongst these studies, the only one that used accelerometry to measure PA showed that 

accumulating 30 minutes of MVPA daily is associated with slower FEV1 decline in adults with 

CF (Cox et al., 2018). However, whilst MVPA is well recognised as fundamental to health 

promotion and maintenance, particularly in people with CF, evidence regarding the association 

between lung function and PA remains controversial (Radtke et al., 2017; Shelley et al., 2019). 

Specifically, Cox et al. (2016) found that adults with CF that accumulated more than 30 minutes 
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of MVPA per day had better lung function than their peers. In accord, Savi, Simmonds, et al. 

(2015) found that MVPA was associated with FEV1%predicted but not with the frequency of 

pulmonary exacerbations in adults with CF. In contrast, in another study by Savi, Di Paolo, et 

al. (2015), that included a smaller sample of adults with CF,  no associations between 

FEV1%predicted and MVPA were found. Furthermore, Mackintosh et al. (2018) found that LPA, 

but not MVPA, was related to FEV1 in children with CF. These discordant findings may have 

emerged from the confounding effect of the collinear nature of movement behaviours. 

Importantly, the use of compositional analysis demonstrated that MVPA only resulted in 

enhanced estimates of lung function when the time was reallocated from LPA and SED, but 

not from sleep. Additionally, the association between MVPA and FEV1%predicted was only 

evident after stratifying by age, sex and genotype. These findings clearly illustrate the 

importance of accounting for all relative movement behaviours.  

An important consideration is that lung function predictions, resulting from reallocating the 

composition, were asymmetrical for all movement behaviours, with the exception of sleep 

(except for heterozygous girls). Previous studies utilising compositional analysis have also 

found asymmetrical relationships between movement behaviours and other outcomes in 

healthy (Biddle et al., 2018; Štefelová et al., 2018; Tlučáková et al., 2020) and pre-diabetic 

(Swindell et al., 2020) populations. Essentially, asymmetry is observed when the alteration in 

a certain movement behaviour does not predict the exact same magnitude of change with the 

reverse reallocation. For example, reductions in MVPA in the present study were associated 

with a greater magnitude of deleterious change in FEV1%predicted (-0.01 – -2.22%) than to the 

estimated benefit following the proportional increase in MVPA. This finding has important 

clinical implications given that FEV1%predicted is related to survival in CF (Diggle et al., 2012). 

Therefore, encouraging the maintenance of daily MVPA while reducing SED is paramount, 

irrespective of age, sex or genotype. Finally, whilst the finding that sleep was symmetrical for 

most PA reallocations has not been previously reported in the literature, it is congruent with 

evidence suggesting that those behaviours are mutually correlated (Cox et al., 2019; Dietz-

Terjung et al., 2020).   

Despite previous research showing that LPA is associated with reduced inflammatory 

markers (Carson, Hunter, et al., 2016), there is still a lack of research investigating the clinical 

benefits of LPA in people with CF. Mackintosh et al. (2018) reported that FEV1 was associated 

with LPA in children with CF. In agreement, the present study demonstrated that the 

reallocation of 30 minutes of SED to LPA resulted in improved estimations of lung function in 
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both children and adults with CF (0.35 – 1.37%). This finding holds important clinical 

implications, even if those improvements were modest in comparison to the benefits associated 

with increasing sleep or MVPA. Specifically, those with CF spend less time in MVPA in 

relation to their healthy peers (Aznar et al., 2014; Troosters et al., 2009), which has been 

attributed to exercise intolerance associated with the condition (Arikan et al., 2015). Therefore, 

large reallocations of time to LPA from SED are particularly important in moderate and severe 

cases of the condition, which are characterised by exercise intolerance and muscle weakness 

(Troosters et al., 2009). It is also noteworthy that LPA was the only behaviour affected by sex 

in the adjusted model, with males, irrespective of age, demonstrating higher levels of LPA and 

higher FEV1%predicted than females. This finding corroborates previous research, reinforcing the 

importance of accounting for sex when investigating PA and its relationship with lung function 

in CF (Schneiderman-Walker et al., 2005; Selvadurai et al., 2004). 

This study demonstrated that the displacement of SED resulted in improved estimates of 

FEV1%predicted, regardless of the behaviour being reallocated to. Specifically, the reallocation 

of 30 minutes of SED to sleep resulted in the greatest increase in FEV1%predicted (1.87 – 3.58%), 

whilst the reallocation to MVPA resulted in the lowest (0.12 – 0.97%). Surprisingly, the 

displacement of 30 minutes from SED to LPA resulted in marginally greater estimates of 

FEV1%predicted (0.35 – 1.37%) in comparison to the same amount of time reallocated to MVPA. 

Nonetheless, it is notable that the reduction of SED might have meaningful implications for 

people with CF. For example, Polito et al. (2019) reported that adults with CF who spent longer 

being sedentary had an increase in inflammatory markers, in comparison to those who engaged 

in more PA. In addition, SED is broadly recognised as a major risk factor for disease and is 

associated with metabolic markers in healthy children (Owen et al., 2010) and adults (González 

et al., 2017). This is especially relevant given that SED increases with age (Ortega et al., 2013), 

in parallel with the complexity of the exercise intolerance and airway disease due to the 

progressive nature of CF (Shei et al., 2019). Therefore, it is not surprising that age had a 

fundamental role as predictor of all movement behaviours in the present study, akin to previous 

research (de Gracia et al., 2005; Harness-Brumley et al., 2014; Schneiderman-Walker et al., 

2005; Shei et al., 2019). Finally, the use of compositional analysis indicated that while 

increasing MVPA appears to be one of the most optimal stimuli to enhance lung function, this 

should not be achieved at the expense of sleep. However, in scenarios where it is not possible 

to increase MVPA, due to disease severity for example, large increments in LPA with time 

reallocated from SED may provide similar benefit to FEV1%predicted. 
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It is noteworthy that even those with mild CF lung disease have higher metabolic demands 

to perform the same activities as their healthy peers (Bell et al., 2001). This is particularly 

challenging for studies using accelerometry reliant on cut-points to assess PA. Specifically, the 

use of cut-points that were developed based on healthy populations might underestimate the 

relative intensity of a count rate or raw metric when applied to CF (Bianchim et al. 2020). It 

could therefore be postulated that the high LPA levels previously reported in those with CF, 

and confirmed in this study, might be the result of misclassification. Furthermore, the lack of 

CF-specific cut-points, and consequently, misclassification of MVPA as LPA (Mackintosh et 

al., 2018), might help to explain some of the contradictory findings in the present study. For 

example, this study found that reallocations from SED to LPA, but not MVPA, and to MVPA 

from LPA, but not SED, resulted in marginally greater estimates of FEV1%predicted in the 

adjusted model. Therefore, further research is required to investigate the relative intensity for 

those with CF, as well as the associated implications on health, and specifically lung function.  

Overall, this study was associated with numerous strengths, not least the use of 

compositional analysis using device-measured SED and PA, whilst accounting for factors such 

as age, sex and genotype. The utilisation of cut-points from raw metrics, as opposed to count-

based cut-points, is important given that count-based thresholds have been associated with low 

accuracy and high error (Kühnhausen et al., 2017). Finally, a large sample was utilised, 

including a broad range of age and disease severity. 

Regardless of the strengths, there are limitations that need to be considered. First, this study 

utilised a cross-sectional approach, precluding causality to be established. As such, any changes 

observed in FEV1%predicted arising from the reallocation of each behaviour warrants careful 

interpretation. Future longitudinal research is warranted to confirm these findings. In addition, 

two different monitor brands were utilised in this study which might generate some variability 

in the PA estimations. Moreover, whilst CF-specific cut-points for children and adolescents 

were recently developed, similar condition-specific thresholds are not currently available for 

adults. Therefore, age- and accelerometer brand-specific cut-points (Hildebrand et al., 2014) 

were utilised for children and adults in order to maintain consistence across age groups, despite 

the potential bias associated with this approach. Another important consideration is the 

heterogeneity of the sample. This study included participants across the age and disease 

severity spectrum from two different countries. Whilst this heterogeneity might help to 

generalise the study findings, it also might affect the estimation of PA. The implementation of 

30-minute reallocations, particularly the increment of 30 minutes of MVPA from LPA and 
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SED in future interventions, or indeed recommending in standard clinical care, might not be 

feasible and inherently challenging. Finally, it is noteworthy that the participants included in 

the present study had relatively high MVPA, which might have affected the results, and 

consequently, the generalisability of these findings to less physically active people with CF.  

 

7.5 Conclusion 

 

This was the first study to use compositional analysis to investigate the impact of 

reallocating different movement behaviours on lung function in children and adults with CF. 

The estimated improvements in FEV1%predicted of 1.87 – 3.58% and 0.94 – 2.10% were 

associated with reallocating 30 minutes from SED to sleep, and from LPA to MVPA, 

respectively. Importantly, these results were irrespective of age, sex and genotype, though age 

was an important factor for all movement behaviours. Overall, these findings reinforce the 

importance of accounting for the full spectrum of movement behaviours, and are imperative to 

inform future studies tailoring PA interventions, providing important information regarding the 

amount of time and the direction of the reallocation warranted to enhance lung function for 

people with CF. 

 

7.6 Practical Implications 

 

The development of a compositional approach to assess PA in CF populations resulted in 

the following outcomes and recommendations: 

 

• Increasing 30 minutes of either MVPA (from SED and LPA) and sleep (from all other 

behaviours) can benefit FEV1%predicted in people with CF when accounting for age, sex 

and genotype. 

• Reducing SED by largely increasing LPA can benefit FEV1%predicted in people with CF. 

• The maintenance of MVPA is as important as its promotion. 

• Age was associated with all movement behaviours (sleep, SED, LPA and MVPA). 
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• Future research promoting PA in those with CF should consider accounting for age, sex 

and genotype. 
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CHAPTER 8 

Study Five: A Machine Learning Approach for Activity Recognition in Children and 

Adolescents with Cystic Fibrosis 

 

Abstract 

Introduction: Habitual physical activity (PA) is associated with a slower rate of decline in 

lung function and better quality of life in youth with CF. Whilst the current threshold-reliant 

methods to assess PA are associated with significant error, machine learning models are able 

to classify complex PA patterns with minimal accuracy loss. Therefore, this study aimed to 

develop and validate machine learning models to predict PA types and intensities in children 

and adolescents with CF across different accelerometer brands and placements.  

Methods: Thirty-five CF (11.6 ± 2.8 years; 15 girls) and 28 healthy (12.2 ± 2.7 years; 16 girls) 

children and adolescents participated in the study. Participants performed six activities varying 

in intensity and a cardiopulmonary exercise test whilst wearing two GENEActivs (both wrists), 

three ActiGraphs GT9X (both wrists and waist) and a portable metabolic system. Three 

supervised learning classifiers (K-Nearest Neighbour, Random Forest and eXtreme Gradient 

Boosted Decision Tree) were used to identify the input signal pattern for each physical activity 

type and intensity. A 10-fold cross-validation was utilised to assess the performance of the 

classifiers. 

Results: ActiGraph GT9X on the dominant wrist and waist and GENEActiv on the dominant 

wrist failed to classify vigorous activities. All other models, for all activity types and intensities, 

exceeded 97% accuracy, with a sensitivity and specificity of greater than 99%, irrespective of 

accelerometer brand, placement or health status.  

Conclusion: Machine learning provided an accurate method to identify different types and 

intensities of PA from ActiGraph GT9X and GENEActiv accelerometers in children and 

adolescents with CF. The models developed in this study demonstrated excellent accuracy 

which was comparable to or higher than previous algorithms applied in healthy children and 

adolescents. These highly accurate newly developed machine learning models will impact 

future studies investigating PA patterns in those with CF and advance our understanding of PA 

and health outcomes in these populations.    
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8.1 Introduction 

 

Cystic Fibrosis (CF) is the most common life-limiting autosomal recessive disorder, 

affecting over 10,500 individuals in the United Kingdom (UK; CF Trust, 2018). CF is a multi-

systemic condition characterised by pronounced progressive lung function impairment that 

ultimately culminates in respiratory failure. Habitual physical activity (PA) has been associated 

with a slower rate of decline in lung function, prolonged life expectancy and a better quality of 

life in children and adolescents with CF (Beekman et al., 2013; Hebestreit et al., 2014; Ratjen 

et al., 2014). More specifically, moderate-to-vigorous physical activity (MVPA) is associated 

with the prevention of CF-related diabetes and bone disease, and has been recommended as 

part of CF care (Rand & Prasad, 2012). However, it is important to note that the traditionally 

derived cut points on which these conclusions are based are associated with limited predictive 

accuracy and are prone to the misclassification of PA intensities, particularly in clinical 

populations (Bianchim et al., 2020).  

Previous research has relied on accelerometer cut-points or prediction equations to assess 

PA intensities due, at least in part, to the practicality and simplicity of this method (Trost, 

2007). However, cut-points and equations are highly specific to the population, activities, and 

accelerometer device and settings on which they were developed (Bassett, 2012; Bassett et al., 

2012). Indeed, it is speculated that cut-points developed in healthy children and adolescents 

are likely to underestimate PA levels in those with CF (Mackintosh et al., 2018; Stephens et 

al., 2016).  

Traditionally, cut-points have been developed using linear methods, resulting in poor 

predictions when applied to estimate non-linear data, such as PA (Bassett, 2012; Trost et al., 

2012). Recent technological advances have facilitated the application of machine learning to 

non-linear accelerometer data, enabling the analysis of complex accelerometer patterns to 

identify activity types or PA intensities. Machine learning is increasingly used in healthy 

children due to its enhanced prediction accuracy (de Vries et al., 2011; Ruch et al., 2011; Trost 

et al., 2018). For example, Trost et al. (2012) applied artificial neural networks to count-based 

data, achieving an overall activity classification accuracy of 80 - 86% in healthy children. 

However, whether machine learning approaches can also enhance the prediction of PA and 

sedentary time (SED) in children and adolescents with clinical conditions, such as CF in which 
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a higher energy expenditure (EE) is likely to be engendered for a given activity relative to their 

healthy peers, largely remains to be elucidated.  

Whilst machine learning has improved the accuracy of estimating PA, the impact of 

different methodological approaches, such as accelerometer brand and placement, on EE 

prediction remains unclear, particularly in clinical populations. Research investigating the 

optimal accelerometer placement for PA assessment remains equivocal, with some evidence 

that machine learning enhances the prediction of EE compared to previous traditional 

approaches (i.e. cut-points), irrespective of placement (Mackintosh et al., 2016; Trost et al., 

2014). Other research has found that the wrist placement provides higher accuracy when using 

machine learning to assess PA in healthy children (Mackintosh et al., 2016; Montoye, Bradford, 

et al., 2018; Trost et al., 2014). In addition, Fairclough et al. (2016) demonstrated that PA 

predictions varied significantly across accelerometer brands. Indeed, brands such as 

GENEActiv and ActiGraph (GT3X+ and GT9X) enable the use of raw unfiltered acceleration 

data, which may further enhance the accuracy of PA prediction (Schmiedek et al., 2016; Trost 

et al., 2020; Trost et al., 2018). More recently, Ahmadi, Pfeiffer, et al. (2020) demonstrated 

that two machine learning classifiers derived from raw accelerometer data achieved an overall 

accuracy of 87.5 - 99.6%, and were superior to the models trained using accelerometer counts. 

However, the majority of studies in healthy children using different classifiers to predict PA 

types still rely on count-based data despite the low accuracy associated with this approach (57 

- 86%; de Vries et al., 2011; Ruch et al., 2011; Trost et al., 2012).  

Therefore, the primary aim of this study was to develop and validate machine learning 

models to predict PA types and intensities (SED, light physical activity (LPA), moderate 

physical activity (MPA) and vigorous physical activity (VPA)) in children and adolescents 

with CF. The secondary aim was to investigate how these predictions vary according to 

accelerometer brand and placement.  

 

8.2 Methods 

 

8.2.1 Participants 
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Sixty-four children and adolescents (35 with CF) participated in the study. Participants 

with CF were mainly homozygous (55%) for ΔF508 mutation and had an average intake of 10 

 3 medications daily. Participants were classified as having CF through newborn screening, 

or/and if they presented with CF-typical symptoms and had either two pathological sweat tests 

or the identification of two CF-relevant mutations. Exclusion criteria were: infection with 

multi-resistant bacteria (Burkholderia Cepacia and nontuberculous mycobacteria), an acute 

exacerbation at the time of the tests, participants being less than two weeks post antibiotic 

treatment following an exacerbation, those with cardiovascular or musculoskeletal issues that 

would compromise exercise performance, or those currently awaiting a transplant. Participants 

in the apparently healthy group had their health status confirmed by a short clinical evaluation 

to identify the presence of any clinical conditions or medications. Written parental consent and 

child assent were obtained from all parents/guardians and participants, respectively. This study 

received ethics approval through the National Health Service (NHS) Research Ethics 

Committee (18/WS/0032).  

 

8.2.2 Protocol 

 

Participants completed six activities across three separate visits, with the first two visits 

separated by seven days. The first visit consisted of the assessment of anthropometric outcomes 

and health indicators. The second and third visits comprised of a simulated free-living protocol 

performed in a laboratory setting, and a treadmill-based exercise test, respectively. Participants 

were advised to avoid caffeine and vigorous exercise 24-hours prior to all visits and to arrive 

at least two hours post-postprandial.   

 

8.2.3 Measurements 

 

a. Anthropometry 

Body mass (Seca 876, Hamberg, Germany), stature (Holtain Stadiomerter 603VR, Holtain 

Ltd, UK) and sitting stature (Holtain Sitting Height Stadiometer 607VR, Holtain Ltd, UK) were 

determined to the nearest 0.1 kg, 0.1 cm and 0.1 cm, respectively. Subsequently, body mass 

index (BMI) was calculated, and z-scores for BMI were estimated according to the World 
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Health Organisation reference data (de Onis et al., 2004). Finally, the age at peak height 

velocity was used to estimate pubertal stages as pre-pubertal, pubertal or post-pubertal 

(Mirwald et al., 2002). 

 

b. Resting Metabolic Rate 

Resting metabolic rate (RMR) was assessed with participants lying down and remaining in 

the supine position for 20 minutes using an online gas analyser (MetaMax Cortex 3B, 

CORTEX Biophysik GmbH, Germany). All participants were instructed to avoid talking 

and/or sleeping for the duration of the test, which was performed in a quiet room following at 

least 10 minutes of rest. The analyser was calibrated according to the manufacture’s guidelines 

prior to each measurement. Specifically, the flow volume was calibrated using a three-litre 

syringe (5530 series, Hans Rudolph, Inc., USA) and gas calibration was performed using gases 

of known concentrations. The first five minutes and the last two and a half minutes of the 

recording were discarded, with  remaining breath by breath values of oxygen uptake (V O2) and 

carbon dioxide production (V CO2) included in the analyses (Cooper et al., 2009). The Weir 

equation was then used to calculate the RMR (Weir, 1949). 

 

c. Lung Function 

Lung function was assessed by standard spirometry (MetaMax 3B, Cortex Biophysik 

GmbH, Germany) using a forced vital capacity manoeuvre. During the test, participants were 

in an upright sitting position maintaining their neck in a neutral fixed position (McCormack et 

al., 2019). A face mask was used for the manoeuvre as it is easier to use, particularly in children, 

and provides a similar validity and intra-class reliability in comparison with a cylindrical 

mouthpiece (McCormack et al., 2019; Wohlgemuth et al., 2003). The manoeuvre was repeated 

a maximum of seven times until three consistent (i.e. repeatable) measures were obtained (Sim 

et al., 2017). Acceptable curves displayed a rapid and clear rise reaching the peak flow and a 

prolonged expiratory curve that gradually decreased in flow (Sim et al., 2017). Lung function 

was assessed according to forced expiratory volume in one second (FEV1) in absolute and 

relative (FEV1%predicted) to age, sex and weight specific reference data (Quanjer et al., 2012). 

Disease severity was subsequently classed according to FEV1%predicted as mild (> 70%), 

moderate (40 – 69%), or severe (< 40%; Davies & Alton, 2009). 
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d. Aerobic Capacity 

A standard or modified Bruce protocol composed of three minutes stages to volitional 

exhaustion was used to assess exercise capacity (Mead, 1979). An online gas analyser 

(MetaMax 3B, CORTEX Biophysik GmbH, Germany) was utilised to measure gas exchange 

on a breath-by-breath basis and oxygen saturation (Nonin® WristOx® Model 3150, Nonin® 

Medical Inc., USA) and heart rate and rhythm (Custo Guard electrocardiogram, custo med 

GmbH, Germany) were assessed throughout the test. Participants’ perceived exertion and 

breathlessness were assessed using the modified Borg scale of perceived exertion during the 

final 30 s of each exercise stage (0 - 10; Borg, 1982). Finally, the highest 10 s stationary average 

during the exercise test was used to determine the peak oxygen uptake (V O2peak). 

 

e. Accelerometry 

In total, five monitors were used during the activities; three ActiGraph GT9X monitors 

positioned on both wrists and the right hip, and two GENEActiv monitors, one on each wrist. 

A sampling frequency of 100 Hz was used, with a low-frequency extension activated when 

available.  

 

8.2.4 Activity protocol 

 

The protocol included six activities of daily living selected by participants from a survey 

based on the PA compendium (Ainsworth et al., 2011). Each activity was conducted for three 

to ten minutes (see Table 8.1), with at least three minutes rest separating activities. All activities 

were performed in a randomised order whilst wearing the accelerometers, a metabolic analyser 

and a pulse oximeter. The online gas analyser and all accelerometers were synchronised to an 

external clock.  

 

Table 8.1 Activities Included in The Activity Protocol 

Activity  Duration 

(min) 

Description 

Video 10 Watching a video whist sitting  
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Colouring/ 

writing 

6 Colouring or writing whist sitting 

Handheld device 6 Playing games on the handheld device whist sitting 

Games 6 Playing a variety of self-selected games including football, tennis, 

badminton, rugby, skipping and mini bowling 

Walking 5 Walking continuously at a self-selected comfortable pace  

Stairs 3 Climbing and descending stairs continuously at a self-selected 

comfortable pace  

 

8.2.5 Data Processing and Feature Extraction 

 

Data from all five accelerometers were processed in the same manner. The raw 

accelerometer data was extracted at 100 Hz as .gt3x files and .bin files for ActiGraph GT9X 

(ActiLife V 6.10.2) and GENEActiv (GENEActiv PC software V2.2), respectively. All .gt3x 

files were converted to time-stamp-free .csv files using the ActiLife software, and then 

imported with the .bin files into R statistical software (V3.1.2; R Foundation for Statistical 

Computing, Vienna, Austria), which was used for all subsequent analyses. Raw accelerometer 

data were then auto-calibrated and the x, y and z axes extracted in 5-s epochs using the GGIR 

package (V 1.2 – 0;  Matthews et al., 2012; Migueles, Rowlands, et al., 2019; Vähä-Ypyä et 

al., 2015). Visual screening tools, such as plots and histograms, were utilised to identify any 

traits or missing data, and features were extracted from the vector magnitude. Specifically, 

sliding windows of 1.5 s were created and the components were split into low- and high-

frequency using a cut-off of 6 Hz, according to previous recommendations (Zalewski et al., 

2020). This is particularly important given the dynamic nature of the signal extracted from the 

accelerometer. Subsequently, nine time-domain components were calculated for each window 

using data from the three axes. The features extracted were: mean, standard deviation, peak-

to-peak value, root mean squared value, kurtosis, skewness, crest factor, root mean square 

velocity and signal entropy. Metabolic equivalent of task (MET) values were calculated for 

each activity by dividing the mean relative V O2 (ml·kg-1·min-1) by the resting V O2 derived from 

the RMR assessment. The first and last minutes of each activity were excluded to avoid 

transitional movements. MET values were subsequently aligned with the raw accelerometer 
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data and used to classify PA intensities as sedentary (≤ 1.5 MET), moderate (4 - 6.9 METS) or 

vigorous (≥ 7 METS; Troiano et al., 2008).  

 

8.2.6 Machine Learning Modelling 

 

Three supervised learning classifiers, K-Nearest Neighbour (k-NN), Random Forest 

and eXtreme Gradient Boosted Decision Tree (XGBoost Decision Trees), were used to identify 

the input signal pattern for each PA type and intensity (Friedman, 2001; Kuhn et al., 2013; 

Patrick & Fischer, 1970; Zertuche, 2014). All models were trained and cross-validated using 

the following packages within R: “caret”, “randomForest”, “xboost”, “entropy”, “signal” and 

“knn”. Initially, models were used to classify different activities and, subsequently, to identify 

different PA intensities from EE (METs).  

The random forest classifier of 500 trees was trained using the data from all nine 

features. Specifically, the features were randomly sampled into training and test sets and the 

whole process was repeated 1,000 times. An internal out of bag approach (Winham et al., 2013) 

was then used to test the accuracy of the model. Specifically, (Breiman, 1996) defined as “out-

of-bag” sample the 1/3 of the instances in the original training set that are not part of a single 

bootstrap sample in bagging (i.e. bootstrap sampling theory). The out of bag approach is 

commonly applied to measure model performance given its advantage of also utilising the 

complete original sample for constructing the classifier and for error estimation (Zhang et al., 

2010). Indeed, a decision tree learns from a subset of the data, enabling the remaining data to 

be used to evaluate the performance of the model (Winham et al., 2013). For the XGBoost 

model, the data set was randomly split into two, with 80% of data used for training and 20% 

for testing. XGBoost is a type of boosting algorithm designed to learn from previous poor 

predictions in order to use this information to enhance future predictions (Chen & Guestrin, 

2016). Specifically, each new tree is generated whilst reducing the residual (differences 

between the actual and predicted values) of the previous model. As such, this model evaluates 

the performance of each round of classification instead of assessing the overall performance of 

the training set (Chen & Guestrin, 2016). For this model, 15 consecutive rounds of 

classification decline were determined prior to halting the learning, with the last best score used 

as the final outcome. Finally, the weighted k-NN was performed using a kernel function to 

weight the neighbours of a data point using the distance as a parameter (Zhang, 2016).  
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A 10-fold cross-validation was utilised to assess the performance of the classifiers. 

Specifically, the original data set was randomly split into 10 subsamples of the same size, with 

one of the sections used to validate the model and the remaining nine as training data. 

Subsequently, the process was repeated 10 times until all subsamples served as validation data. 

The average of the results was then used to indicate the accuracy of the model. In addition, the 

percentage agreement with 95% confidence intervals were also calculated and Kappa scores 

were determined for each classifier. The sensitivity and specificity, along with the balanced 

accuracy (calculated as the average of the proportion corrects of each class individually), were 

also calculated for each model.  

 

8.2.7       Statistical Analyses 

 

Descriptive data were presented as mean ± standard deviation (SD), and a two-way 

ANOVA test was performed to identify inter-group differences, between CF and healthy 

participants, and intra-group differences between boys and girls. 

 

8.3 Results 

 

One participant was excluded from the analysis for not attending visit two, resulting in 

a total of 63 (35 CF) participants being included in the analyses. Cystic Fibrosis was classified 

as mild for all participants, with an FEV1%predicted of 94  19%. According to the age at peak 

height velocity, 38 (23 CF) of the participants were pre-pubertal, 15 (4 CF) were post-pubertal, 

and 10 were (8 CF) pubertal (Table 8.2; Mirwald et al., 2002). Participants with CF had 

significantly lower body mass (p = 0.02) and lower zBMI (p = 0.006) than the healthy group. 

Despite this, no significant differences in age, height, RMR or V O2peak were encountered 

between the mild CF and healthy participants.  

XGBoost and k-NN algorithms were reported as one outcome; they both achieved the 

same performance and provided the same classification values. Confusion matrices for 

classification (rows are indicating actual observations and columns represent predicted 

classifications using the time-domain features selected by each model), according to activity 
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types and intensities are provided as supplementary material for Random Forest (Appendix H, 

see Tables H8.1 and H8.2) and XGBoost/k-NN models (Appendix H, see Tables H8.3 and 

H8.4), respectively. Models using features extracted from ActiGraph GT9X worn on the 

dominant wrist and waist and GENEActiv worn on the dominant wrist failed to classify VPA 

in those with CF, whilst the GENEActiv on the non-dominant wrist also failed to recognise 

patterns related to vigorous intensity in healthy children. Visual inspection of the data indicated 

that that the models failed to classify VPA in healthy participants due to the scarcity of data 

points associated with this intensity. In contrast, participants with CF had a considerable 

amount of data points associated with VPA.  

Table 8.3 shows the differences in EE between CF and healthy participants. 

Specifically, t-tests identified that those with CF had higher EE than healthy participants while 

watching television and stairs. The healthy group did not reach vigorous intensity (≥ 7 METs) 

for any activity.  

 

 
Table 8.2 Participants Characteristics 

 CF  Healthy 

 Total (n = 35) Girls (n = 15) Boys (n = 20) Total (n = 28) Girls (n = 16) Boys (n = 12) 

Age (years)  11.6 ± 2.8 11.3 ± 2.7 11.8 ± 2.9 12.2 ± 2.7 12.6 ± 2.6 11.5 ± 2.8 

Height (cm)  1.46 ± 0.15 1.44 ± 0.12 1.47 ± 0.17 1.53 ± 0.16 1.54 ± 0.10 1.50 ± 0.21˟ 

Body mass (kg)  39.1 ± 12.0+ 37.3 ± 10.2 40.4 ± 14.2 47.1 ± 15.0 50.1 ± 12.7 43.0 ± 12.2 

BMI (kg·m-2)  18.0 ± 4.2 17.5 ± 2.0 18.4 ± 5.3 19.6 ± 3.5 20.6 ± 3.3 18.2 ± 3.5 

zBMI -0.31 ± 1.10+ -0.12 ± 0.78  -0.47 ± 1.28   0.41 ± 0.8 0.57 ± 0.62 0.19 ± 1.00 

RMR (ml·kg-1·min-1) 6.21 ± 1.31 5.86 ± 1.26 6.45 ± 1.24 5.35 ± 1.54 4.51 ± 0.89 6.47 ± 1.51 

V O2peak (ml·kg-1·min-1) 
41.2 ± 11.6 37.2 ± 10.8 44.7 ± 10.4 41.6 ± 12.3 36.4 ± 9.2 47.6 ± 13.5 

FVC (L)  2.5 ± 1.0 2.5 ± 1.0 2.5 ± 1.0* 2.8 ± 1.0 2.8 ± 1.0 2.9 ± 1.2˟ 

FVC predicted (%)  99 ± 21 97 ± 20 99 ± 21 105 ± 26 105 ± 26 106 ± 18 

FEV1 (L) 2.0 ± 0.7 1.9 ± 0.4 2.2 ± 0.9* 2.4 ± 0.8 2.4 ± 0.8 2.4 ± 0.9 

FEV1%predicted 94 ± 19 92 ± 20 94 ± 19 99 ± 21 99 ± 22 100 ± 14 



153 

 

 

Data are presented as mean ± SD 

CF: Cystic Fibrosis, BMI: body mass index, zBMI: z-score BMI, RMR: resting metabolic rate, V O2peak: peak oxygen uptake, 

FVC: forced vital capacity, FEV1: forced expiratory volume in one second. *indicates significant difference between boys and 

girls in the CF group and ˟ indicates significant difference between boys and girls in the healthy group (p ≤ 0.05). 

 

Table 8.3 Mean Energy Expenditure (METs) During each Activity 

 METs  

 CF (n = 35) Healthy (n = 28) 

Video 1.3* ± 0.9 1.0 ± 0.3 

Colouring/writing 1.3 ± 0.3 1.2 ± 0.5 

Handheld device 1.1 ± 0.3 1.1 ± 0.4 

Free-games 4.1 ± 2.0 4.2 ± 1.8 

Walking 2.9 ± 1.3 2.5 ± 1.1 

Stairs 5.1* ± 2.0 4.7 ± 0.7 

Data are presented as mean ± SD. 

CF: Cystic Fibrosis, MET: metabolic equivalent. *indicates significant difference between groups (p ≤ 0.05). 

 

Details regarding the cross-validation are provided in the appendix for Random Forest) 

and XGBoost/k-NN, respectively. All models provided excellent accuracy (97 - 100%) and 

low error to classify activities types and intensities (Appendix H, Tables H8.5 and H8.6). The 

highest accuracy was observed for XGBoost and k-NN in both CF and healthy participants. 

Overall, GENEActiv achieved marginally higher (100%) accuracy in comparison with 

ActiGraph (99%) in both groups. Finally, all classifications presented a sensitivity and 

specificity higher than 97%, independent of accelerometer brand, placement and health status 

for all models performed in this study. 

 

8.4 Discussion 

 

This study sought to ascertain the suitability of using three machine learning classifiers 

with raw accelerometer data to classify PA types and intensities in children and adolescents 

with CF. Overall, the use of machine learning seems to yield high accuracy (> 97%) to classify 

different PA types and intensities when trained on time-domain features, irrespective of 

accelerometer brand or placement. Indeed, the current overall classification accuracy is 
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superior to traditional approaches used to predict PA in children with CF (Chapter V; Stephens 

et al., 2016). Therefore, based on this study, it is recommended that future research evaluating 

PA levels in CF use raw accelerometer data with machine learning algorithms.  

Despite major limitations, such as the lack of generalisability across different 

accelerometer brands, previous research using pattern recognition to predict PA has relied on 

accelerometer counts (Kühnhausen et al., 2017). Specifically, previous studies in children using 

different classifiers to predict PA types from accelerometer counts have achieved an accuracy 

of 57 - 86% (de Vries et al., 2011; Ruch et al., 2011; Trost et al., 2012). Of importance, and 

akin to previous studies using machine learning on raw accelerometer data (Ahmadi, Pfeiffer, 

et al., 2020; Kühnhausen et al., 2017), all three classifiers trained and tested in this study 

outperformed previous models trained on accelerometer counts. For example, using Random 

Forest and regularised logistic regression classifiers to predict activity type from waist-worn 

ActiGraph raw data in children, Ahmadi et al. (2020) achieved an overall accuracy of 90% and 

87 - 99%, respectively. Although it is well known that differences in the protocol, such as 

activity types and accelerometer brand and settings, can impact the classifiers performance, the 

use of accelerometer counts seems to be associated with low PA classification accuracy, 

irrespective of such factors. Indeed, Kühnhausen et al. (2017) found a significantly higher 

accuracy (92%) for predicting PA in healthy children using machine learning models (support 

vector machines) developed from raw accelerometer data in comparison to those using counts 

(70 – 71%). Such discrepancies may be due to the elimination of vital information during the 

data reduction process to transform raw accelerometer data into counts (Schmiedek et al., 

2016).  

Whilst the three activity classifiers tested in the present study demonstrated similar 

overall performance, the XGBoost and k-NN achieved marginally higher classification 

accuracy. Specifically, the Random Forest demonstrated slightly low accuracy to predict four 

of the activities (TV, colouring/writing, walk and stairs) and sedentary and LPA intensities, 

independent of health status. This is contradictory to previous studies in healthy children which 

found that Random Forest performed marginally better to predict ambulatory activities in 

comparison with SED and LPA (Ahmadi, Pfeiffer, et al., 2020). This discrepancy during 

ambulatory activities may reflect pathological metabolic and muscle function adaptations that 

could impact the predictions of EE in those with CF (Erickson et al., 2015; Johnson et al., 

2006). Indeed, higher accelerometer raw outputs were observed for those with CF in 

comparison with healthy participants during walking (Chapter 5). In the current study, Random 
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Forest models were enhanced by XGBoost, independent of activity type or intensity. This 

finding is corroborated by previous research demonstrating that Gradient Boosting classifiers 

perform better compared to other types of boosting classifiers for PA classification (Rahman 

et al., 2020). However, the differences between all three classifiers utilised in this study were 

not significant, suggesting that any of these models could be used to predict PA in children 

with CF, or indeed, healthy children. Similar findings were reported in studies using different 

activity classifiers in both healthy children (Ahmadi, Pfeiffer, et al., 2020; Park, 2013; Trost et 

al., 2018)  and youth with cerebral palsy (Ahmadi et al., 2018), with only marginal differences 

found between different machine learning models.  

All three placements yielded comparable overall accuracy across classifiers, in line with 

previous research in healthy children (Mackintosh et al., 2016). Nonetheless, the ActiGraph 

GT9X placed on the dominant wrist and waist and the GENEActiv placed on the dominant 

wrist failed to classify VPA in those with CF. Similar results were found for models using 

features extracted from the GENEActiv placed on the non-dominant wrist in healthy children. 

Visual inspection of the data suggested that whilst the models failed to classify VPA in healthy 

participants due to the scarcity of data points associated with this intensity, a similar 

explanation is not applicable to those with CF. Irrespective, this discrepancy indicates that 

although intended vigorous components of the protocol, such as the activity of stairs, were 

classified as moderate intensity for healthy participants, this was classified as vigorous for the 

majority of the CF group. This not only reiterates the need for CF-specific approaches to 

evaluate PA, but questions the ability of the machine learning models to predict VPA from 

ActiGraph GT9X and GENEActiv placed on the dominant-wrist and waist in children and 

adolescents with CF.  

Amongst all models developed to classify PA intensities, waist-worn ActiGraph GT9X 

monitors achieved marginally less accuracy for both SED and LPA, in contrast to other 

placements in the CF group. One possible explanation is that the metabolic demand did not 

match the intensity of the waist-worn accelerometer signals for both SED and LPA, which 

comprised of seated activities (i.e. video, colouring). Indeed, children and adolescents with CF 

are known to require higher EE during rest due to the enhanced cost of breathing and higher 

RMR in comparison with their healthy peers (Tomezsko et al., 1994). Despite this, it is 

noteworthy that no differences regarding RMR and V O2peak were found between mild CF and 

healthy participants in the present study. While this might raise the question of whether a 
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specific model is warranted in mild CF, it is important to acknowledge that other factors 

associated with exercise intolerance, such as chronic inflammation and impaired muscle 

metabolism, were not controlled for.  

Whilst waist-worn ActiGraph GT9X provided marginally lower accuracy to classify 

activity intensities in CF, this site yielded excellent accuracy across all placements in healthy 

participants. This finding corroborates previous research (Ellis et al., 2016; Trost et al., 2018) 

reporting that Random Forest models achieved marginally higher activity classification 

accuracy when the ActiGraph GT3X+ was placed at the waist in comparison with wrist in 

healthy children and adults. Interestingly, the waist-worn ActiGraph GT9X also performed 

marginally better than the wrist to classify PA in children with cerebral palsy using different 

machine learning models (Binary Decision Trees, Random Forest and Support Vector 

Machine; Ahmadi et al., 2018). Converse to CF, those with cerebral palsy are likely to present 

normal EE levels during rest, with increases only anticipated during activities (Bell et al., 

2020). However, it is important to highlight that all placements demonstrated excellent 

accuracy to predict PA types and intensities. Nevertheless, wrist-worn accelerometer protocols 

are associated with enhanced compliance (Fairclough et al., 2016), which is extremely 

important in studies assessing PA in free-living conditions.  

This study demonstrated the feasibility of using machine learning models to accurately 

predict SED, LPA, MPA and VPA from EE in youth with CF. Notably, these findings have 

significant importance for clinical practice, not least because PA guidelines are tailored around 

intensities. Specifically, clinicians and health professionals could receive better guidance 

regarding which exercise or PA intensity would be most suitable to generate health outcomes 

in different circumstances such as, exacerbations and varies disease severities. It is well known 

that PA, particularly of moderate intensity, is recognised as a valued component of CF 

treatment (Rand & Prasad, 2012). Despite this, few studies have used machine learning to 

develop models to predict PA intensities from EE (Staudenmayer et al., 2009; Trost et al., 

2012), with the vast majority classifying different activities types instead (Kühnhausen et al., 

2016; Trost et al., 2014). Alternatively, machine learning algorithms could be used to identify 

daily patterns of PA in children and adolescents with CF. For example, Willetts et al. (2018) 

developed a balanced Random Forest with a Hidden Markov Model to assess free-living 

accelerometer data in healthy adults, achieving an 87% accuracy to classify PA and sleep 

behaviours. This could significantly advance research investigating the association between 

daily behaviours (PA and sleep patterns) and health outcomes (Doherty et al., 2018). This 
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study, therefore, has the potential to contribute to further advancements in research 

investigating the PA profiles of children and adolescents with CF, which is paramount to the 

design of PA interventions and specific recommendations for this population. 

This study has numerous strengths. Specifically, this is the first study to utilise machine 

learning models to identify PA types and intensities using raw accelerometer data from both 

wrist- and waist-worn accelerometers in children and adolescents with CF. Moreover, all 

activities incorporated in the study protocol were selected by the participants through an initial 

survey. This provided a more ecologically valid approach, including activities that were 

representative of the participants’ daily routine. In addition, this study included participants 

with a broad age range (7 – 17 years) in accord with previous recommendations (Freedson et 

al., 2005). Given that previous research has suggested that the leave-one-out cross-validation 

approach may not be appropriate to determine the accuracy of machine learning models 

developed for activity classification (Montoye, Bradford, et al., 2018), this study employed a 

10-fold cross-validation. Additionally, comparisons between models and features across 

multiple accelerometer placements and brands were made.  

There were, however, limitations to this study. First, all models were trained using data 

collected from activities performed in a structured laboratory setting and might not be 

representative of free-living conditions. Second, this study has not sought to investigate how 

other processing choices might affect the accuracy of the PA prediction, such as employing 

different windowing techniques or the use of different filtering approaches. Third, it was not 

possible to develop a model to classify sleep due to the design of the current study. This is 

particularly important for future studies given the recent shift towards 24-hour movement 

guidelines (Kuzik et al., 2017; Waters et al., 2017; WHO, 2020). As such, future research 

evaluating the performance of machine learning models in free-living conditions should 

account for sleep as one of the key daily behaviours. Fourth, whilst this study has not included 

frequency domain features in accord with previous recommendations (Ellis et al., 2016; 

Montoye, Bradford, et al., 2018), this omission might arguably hinder inter-study comparisons. 

Despite that, previous research has demonstrated that the inclusion of frequency domain 

features in the activity models does not improve the overall accuracy of the predictions and can 

lead to overfitting (Ellis et al., 2016; Montoye, Bradford, et al., 2018). Another important 

consideration is regarding the sensitivity and specificity values, which were high for all models, 

and might indicate a degree of overtraining. Future studies could use nested cross-validation 

(Vabalas et al., 2019) to identify the optimal features that should be included in the models, 
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thereby reducing the total number of features included and, consequently, diminishing the issue 

of dimensionality. However, it is noteworthy that any correlated features were excluded from 

the models and cross-validation was performed to minimise overfitting. Finally, this study 

included children and adolescents with mild CF and, therefore, might not be representative of 

those with more severe forms of the condition.  

 

8.5  Conclusion 

 

In conclusion, this study demonstrated the feasibility of using three different machine 

learning classifiers to estimate different types of PA and intensities from waist- and wrist-

mounted ActiGraph GT9X and GENEActiv accelerometers in children and adolescents with 

CF. The accuracy achieved in this study was comparable or higher than studies in healthy 

children and adolescents using various machine learning classifiers. Thus, this study provides 

support for the use of machine learning to predict complex pattern variables such as PA in 

children and adolescents with CF. Future studies assessing PA levels in those with CF are 

advised to use raw accelerometer data with machine learning algorithms to enhance prediction 

accuracy. 

 

8.6 Practical Implications 

 

Overall, Chapter 8 developed and validated machine learning models to recognise activity 

type and intensities in children and adolescents with and without CF. The key findings were: 

 

• All predictions achieved excellent accuracy, irrespective of accelerometer model or 

placement. 

• Models can be applied to research investigating PA patterns and its association with 

health outcomes in those with and without CF. 
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CHAPTER 9 

Synthesis 

 

The primary aim of this thesis was to investigate the measurement and analysis of 

physical activity (PA) in individuals with Cystic Fibrosis (CF) and to thereby provide more 

accurate insights into the PA levels of those with CF and the relationship of PA with key health 

outcomes. The experimental chapters within this thesis provide key information for the future 

development of PA interventions and recommendations in CF. This chapter provides a 

synthesis of the overall findings and identifies future research directions whilst acknowledging 

the overarching strengths and limitations of the current work.       

 

9.1 Overview 

 

9.1.1 Physical Activity Assessment in Children and Adolescents with Cystic Fibrosis 

 

 Whilst accelerometry has been broadly used in clinical and epidemiological research, 

the methods used to investigate the association between PA and health to date are associated 

with significant limitations. Specifically, a reliance on accelerometer counts and linear 

statistical approaches in many earlier studies is now well accepted to be associated with error 

and low accuracy in PA prediction (Arvidsson, Fridolfsson, & Börjesson, 2019). Furthermore, 

accelerometry in clinical contexts warrants specific calibration and validation in order to reflect 

the characteristics of that particular population (Chapter 4; Bianchim et al., 2020). Indeed, the 

systematic review provided in Chapter 4 highlighted that protocols developed to calibrate 

accelerometry in paediatric clinical populations should be specifically tailored to account for 

the pathophysiology of the condition and include a control group. The importance of this 

tailored approach was supported by the findings of Chapters 5 and 8 in which the superiority 

of CF-specific raw acceleration thresholds and algorithms was clearly demonstrated. 

Furthermore, the findings from Chapter 6 revealed that the use of generic cut-points 

previously developed in healthy populations significantly underestimated PA predictions when 

applied to assess PA in children and adolescents with CF. These findings therefore question 

the validity of the PA levels reported in previous studies that have used such generic thresholds 
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but also the applicability of the current PA recommendations proposing that children should 

accrue 60 minutes of daily moderate-to-vigorous activities to those with CF (MVPA; 

Department of Health and Social Care, 2019).  

Overall, the findings from Chapters 5 and 6 highlight that cut-points tailored 

specifically for children and adolescents with CF improved the assessment of PA levels, and 

might be fundamental to advance our understanding of the relationship between PA and health. 

For example, the use of CF-specific cut-points to estimate PA revealed that light physical 

activity (LPA) was the only predictor of lung function, across the full spectrum of PA 

intensities, after adjusting for sex, age, genotype, BMI and accelerometer wear-time (Chapter 

6). This is in accord with previous research utilising generic count-based cut-points to evaluate 

PA in children with CF (Mackintosh et al., 2018). Whilst this finding emphasises the potential 

importance of LPA in CF care, it is important to acknowledge that all PA behaviours are 

inherently inter-related, highly collinear and, ultimately, constrained within a 24-hour period 

(Carson, Tremblay, et al., 2016; Dumuid et al., 2019; Dumuid et al., 2018; Tlučáková et al., 

2020), such that any increases in LPA occur at a cost to another PA or sleep behaviour. It is 

therefore vital that the optimal composition of daily PA for health is considered rather than 

continuing to pursue the traditional, isolated approach.  

Of interest, and contrasting findings described in Chapter 6, the use of a compositional 

approach in Chapter 7 found that LPA was not the most relevant movement behaviour for 

lung function. Instead, Chapter 7 showed that sleep and MVPA elicited greater estimated 

increments in lung function amongst all movement behaviours across the lifespan in CF. Whilst 

these findings may have only been revealed as a result of the compositional approach, this 

discrepancy may have also arisen from the large volume of LPA observed in children and 

adolescents in previous research (Mackintosh et al., 2018). Specifically, recent studies 

highlighted the importance of accounting for the contribution of a given intensity (i.e. LPA) to 

total PA volume when investigating associated health outcomes (Carlson et al., 2019; Hnatiuk 

et al., 2019; Saint-Maurice et al., 2018; Verswijveren et al., 2018). As such, the promotion of 

a greater increase in LPA amongst those accumulating less MVPA might be a more feasible 

and achievable approach for future PA interventions in CF. Additionally, Chapter 7 showed 

that the reallocation of sedentary time (SED) to other PA intensities and sleep also increased 

lung function. Although this is the first study to utilise compositional analyses in CF 

populations, these findings are congruent with previous research in healthy and clinical 

populations that also report favourable associations between MVPA and sleep for 
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cardiometabolic risk markers (Carson, Tremblay, et al., 2016; Carson et al., 2019), and obesity 

indicators (Dumuid et al., 2018).  

Whilst spirometry-assessed forced expiratory volume in one second (FEV1) is the most 

commonly used indicator of disease progression and lung function (Jantzen et al., 2016; 

Mackintosh et al., 2018; Schneiderman-Walker et al., 2005; Szczesniak et al., 2017), it is 

important to acknowledge the limitations associated with this approach. Specifically, evidence 

suggests that spirometry cannot assess damage in small airways (Fretzayas et al., 2019), which 

are an important indicator of early lung impairment. This is particularly important since new 

therapies have considerably attenuated lung damage (Edmondson & Davies, 2016; Ridley & 

Condren, 2020), which implies that spirometry might no longer provide sufficient sensitivity 

to monitor and detect disease progression. Indeed, individuals with CF seem to present stable 

FEV1 throughout childhood and early adulthood (Chapters 5 to 8), despite robust evidence of 

structural damage (Horsley et al., 2013). Research suggests that the lung clearance index (LCI) 

is more sensitive to detect airway disease than spirometry (Singer et al., 2013), and might be a 

better alternative to indicate lung function and disease progression. Although it was not 

possible to implement this approach in this thesis due to feasibility given the multi-site design, 

future research is advised to integrate a measure of LCI when investigating the impact of PA 

levels to lung function in CF.    

 

9.1.2 Condition-specific Approaches to Assess Physical Activity Levels in Children and 

Adolescents with Cystic Fibrosis 

 

Chapter 5 sought to develop CF-specific cut-points in order to enhance the accuracy 

of PA assessment for children and adolescents with CF. The use of metrics directly extracted 

from raw accelerometer data demonstrated excellent accuracy and low error in comparison 

with CF-specific cut-points previously developed from accelerometer counts (Stephens et al., 

2016). Given the disease aetiology of CF, Chapter 5 theorised that the newly developed CF-

specific cut-points would vary significantly from those previously developed from healthy 

children. Indeed, the CF-specific moderate physical activity (MPA) cut-points were lower in 

comparison to those developed for the healthy controls and those previously published for 

healthy children (Aittasalo et al., 2015; Hildebrand et al., 2014). These findings are also in 

accordance with Chapter 4, which suggests that cut-points developed in healthy children and 
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adolescents are not suitable for youth with chronic conditions. Such findings have significant 

implications, not least as previous research assessing PA levels in CF have utilised cut-points 

that were developed in healthy populations, therefore potentially hindering our understanding 

of the association between PA levels and clinical outcomes in youth with CF. Most importantly, 

Chapter 5 theorised that the discrepancy in condition-specific and generic cut-points, may 

have potentially led to previous studies underestimating the amount of MVPA in children and 

adolescents with CF. Notably, there is no consensus regarding overall PA levels in children 

and adolescents with CF, with a few studies reporting that children with CF spend less time in 

MPVA and more time in LPA (Aznar et al., 2014; Nixon et al., 2001), whilst others found no 

difference in comparison to healthy counterparts (Boucher et al., 1997; Selvadurai et al., 2004). 

Indeed, this theory was corroborated in Chapter 6, with the CF-specific cut-points eliciting 

higher SED and MVPA and lower LPA than Hildebrand et al. (2014) cut-points. Therefore, 

future studies are advised to utilise CF-specific approaches to assess PA in children and 

adolescents with CF in order to ensure the validity of their findings, and consequently, inform 

strategies to promote PA in this population. 

Whilst CF-specific cut-points were shown to enhance the prediction of PA (Chapter 

6), more complex computational methods, such as machine learning, have demonstrated higher 

rates of success to classify PA activities and intensities (Farrahi et al., 2019). Therefore, 

Chapter 8 sought to develop machine learning algorithms to classify PA types and intensities 

from raw acceleration data in children and adolescents with CF. More specifically, Chapter 8 

investigated whether the use of pattern recognition approaches could also enhance the 

prediction of PA in those with CF. Indeed, all the algorithms tested achieved excellent accuracy 

for classifying different PA types and intensities when trained on time-domain features 

extracted from raw acceleration data. Machine learning models achieved excellent accuracy to 

predict SED and PA intensities from energy expenditure (EE) in youth with CF, which is 

particularly important given that the pathophysiological alterations associated with the 

condition underpin the need for CF-specific cut-points and algorithms. Indeed, those with CF 

are likely to expend more energy undertaking a certain activity in comparison with their healthy 

peers as a result of the enhanced cost of breathing and exercise intolerance associated with the 

condition (Matel & Milla, 2009). Therefore, the availability of validated machine learning 

models and cut-points is paramount to research assessing PA levels in CF to inform disease-

specific PA guidelines and interventions.  
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9.1.3 Impact of Specific Approaches to Assess Physical Activity in Cystic Fibrosis 

 

 This thesis centred around the concept that the physiological complexity associated 

with CF is likely to affect the measurement of PA, and therefore, the estimation of PA levels 

and any subsequent association with lung function (predicted forced expiratory volume in the 

first second; FEV1%predicted). Indeed, Chapter 6 found that the use of generic cut-points 

significantly underestimated MVPA and SED and over-estimated LPA in children and 

adolescents with CF. This misclassification is associated with CF-specific pathophysiological 

alterations and could explain previous reports that children and adolescents with CF have lower 

MVPA and higher LPA levels than their healthy peers (Aznar et al., 2014; Nixon et al., 2001). 

In addition, another important limitation of previous research investigating PA levels in CF, is 

the failure to account for the composition of the movement behaviours. Indeed, the use of 

compositional analyses in Chapter 7 revealed that improvements in lung function were only 

achieved when accounting for the interaction of movement behaviours. For example, 

increments in MVPA were only beneficial to lung function when LPA and SED were displaced, 

with 30-minute reallocations from sleep to MVPA resulting in up to a 2.0% decrease in 

FEV1%predicted instead. In contrast, reallocating 30 minutes of other movement behaviours to 

MVPA or sleep estimated an improvement of up to 2.1% and 3.6% in FEV1%predicted, 

respectively, after adjusting for age, sex and genotype. Most importantly, given that 

FEV1%predicted declines approximately 1.0 to 3.0% annually, the uninformed reallocation of 

movement behaviours can either delay or accentuate the progressive airway disease in CF. 

Therefore, the abovementioned limitations are particularly concerning given that the accurate 

assessment and analyses of PA and SED in those with CF are fundamental to the appropriate 

development of PA interventions and clinical decisions. 

 It is pertinent to note that no research to date has designed, or indeed implemented, 

interventions targeting the reduction of SED in paediatric populations with CF. This may be 

due, at least in part, to the assumption that children and adolescents with CF spend little time 

being sedentary and a significant portion of their time accruing LPA instead (Aznar et al., 

2014). This misconception, and subsequent lack of research, carries important health 

implications due to the possible independent detrimental effects associated with prolonged 

SED (Bélair et al., 2018; Carson, Hunter, et al., 2016; Tremblay et al., 2011). In accord, the 

results from Chapter 7 indicated that the displacement of SED to sleep resulted in the best 

estimated improvement in FEV1%predicted (3.6%). Whilst this finding suggests that replacing 
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SED with sleep might be a feasible and simple strategy to enhance, or slow the decline in, lung 

function, it is important to highlight that SED and LPA showed the highest co-dependency 

across all the behaviours assessed. Specifically, reductions in SED are likely to be accompanied 

by a decrease in LPA, which might counteract the desired outcomes for lung function. As such, 

future interventions targeting the reduction of SED should account for both LPA and sleep in 

order to obtain the best outcome. It is noteworthy that Chapters 5 and 6 found that those with 

CF have a higher EE for a given sedentary task in comparison to their healthy peers. This 

finding has important repercussions, such as the misclassification of SED as LPA when using 

generic cut-points, as demonstrated in Chapter 6. Additionally, this discrepant energetic 

demand raises even deeper questions regarding the applicability of the definition of sedentary 

behaviour, which is centred around an energetic cost threshold (i.e. <1.5 MET; Tremblay et al., 

2017), to those with CF. Specifically, it seems appropriate that this energetic threshold defining 

sedentary behaviour should be altered to accommodate the physiological alterations associated 

with the condition.  

It is noteworthy that sleep quality, quantity and timing were found to be key 

determinants of PA in healthy populations (Kline, 2014). Although further investigation is 

warranted, research also suggests a bidirectional relationship between those variables in 

children and adults, independent of health status (Ávila-García et al., 2020; Kline, 2014; Master 

et al., 2019). Sleep quality is also crucial to both physical and mental wellbeing, with sleep 

duration recommendations available for the healthy population (Paruthi et al.; Watson et al.). 

Nevertheless, sleep behaviour drastically varies with age and in the presence of clinical 

conditions (Borbely et al., 2017). Research shows that sleep disturbance are particularly 

harmful for those with chronic disorders as it aggravates the condition and hinders treatment 

(Strine & Chapman, 2005). Indeed, recent studies (Barbosa, Coelho, et al., 2020; Shakkottai et 

al., 2018) corroborates findings from Chapters 6 and 7 regarding the important relationship 

between sleep and PA and their impact on associated health outcomes. Specifically in CF, poor 

sleep duration, which is common in children with CF (Jankelowitz et al., 2005), has been 

associated with neurocognitive, cardiovascular and metabolic abnormalities (Hanly et al., 

2002; Katz, 2014), an increase in SED (Barbosa, Coelho, et al., 2020), and nocturnal 

hypoxemia (Shakkottai et al., 2018). Of importance, nocturnal hypoxaemia is considered a 

major cause of chronic sleep loss in CF and it is associated with early mortality (Hanly et al., 

2002; Katz, 2014; Ramos et al., 2013). Therefore, precise guidelines for identifying sleep 
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disturbances earlier is essential for the maintenance of health and promotion of PA in those 

with CF.  

 An important contribution of Chapter 6 was the re-evaluation of the relationship 

between PA, across the intensity spectrum, SED and lung function in CF. One of the major 

implications of the findings from Chapters 4 to 6 is the associated issues of using PA 

recommendations developed based on healthy populations, to those with CF. However, in order 

to tailor CF-specific PA recommendations, it is essential to initially determine what duration 

and direction of change (i.e. the reallocation from one intensity to another) in the spectrum of 

PA intensities that is associated with improved health outcomes. For example, according to 

findings from Chapter 7, it could be postulated that increases in SED, likely displaced from 

MVPA and sleep, might further accelerate the disease progression. Therefore, intervention 

studies are advised to focus on increasing MVPA and sleep, through reducing SED and LPA, 

the latter of which would mean increasing the intensity of activities, in order to slow airway 

disease. In addition, further details regarding the manner in which PA is accumulated (i.e., PA 

patterns) across the activity spectrum are also crucial to designing effective population-specific 

recommendations. For example, Barkin et al. (2018) found sex differences in how children 

accrue the PA recommendations. Specifically, Barkin et al. (2018) found that girls accumulated 

greater spontaneous bursts of MVPA, whilst boys accrued more sustained MVPA. This is 

particularly interesting given that Mackintosh et al. (2016) found no differences in how 

children with and without CF accrued their PA levels regarding frequency or duration of bouts. 

Whilst this thesis did not investigate PA patterns, Chapter 6 did find significant sex differences 

in PA levels in children and adolescents with CF, with boys spending significantly more time 

asleep and in VPA and MVPA, and less in LPA than girls. In addition, Chapter 6 also found 

sex differences in PA levels depending on the type of day, with boys accumulating greater 

MPA and MVPA on week days, in comparison to weekend days. This finding is in accord with 

studies in CF (Aznar et al., 2014; Mackintosh et al., 2018) and healthy children (Fairclough et 

al., 2015), and indicates the importance of investigating both week and weekend day patterns 

of PA to inform more efficient interventions. Therefore, children and adolescents with CF 

might benefit from PA interventions focusing on boys and girls, and weekdays and weekend 

days, separately.  
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9.2 Strengths and Limitations 

 

This thesis has numerous strengths, not least the progressive and novel application of 

PA measurements and analyses. Indeed, Chapters 5, 7 and 8 are the first to develop raw 

accelerometry cut-points, machine learning algorithms and use compositional analyses to 

assess PA in CF, respectively. Additionally, Chapters 5 and 8 were informed by a systematic 

review of the literature, thereby enhancing the robustness of the methodology utilised. 

Specifically, Chapter 4 recommended that accelerometry calibration protocols in paediatric 

clinical cohorts should account for the pathophysiology of the disease and integrate a measure 

of EE into their protocol. To further ensure methodological rigour, metabolic equivalent of task 

(MET) values were determined by dividing the V O2  obtained from the activities by individual 

measures of resting metabolic rate (RMR), which is in accord to previous recommendations in 

clinical (Bianchim et al., 2020) and healthy populations (McMurray et al., 2015). Conversely, 

a limitation of Chapters 5 and 8 was the use of activities performed in a structured laboratory 

setting, which might not be representative of free-living conditions. However, a free-living 

protocol precludes integrating a measure of EE. Therefore, Chapters 5 and 6 consisted of a 

field-based protocol encompassing free-play activities that children and adolescents commonly 

engage in. It is also important to acknowledge that, to maximise ecological validity, the 

protocol utilised in Chapters 5 and 8 was designed based on information extracted from 

randomly selected participants. However, it is pertinent to note that there was not a fully age- 

and sex-matched control group in Chapter 5 and 8, or any age- and sex-matched control group 

in Chapter 6 as the COVID-19 lockdown prematurely curtailed data collection. Nonetheless, 

Chapter 6 included a large CF cohort and was the first study to compare the application of 

CF-specific and generic cut-points to estimate PA levels in CF.    

 A key strength to all current studies was the adoption of raw accelerometer data to 

quantify PA instead of using accelerometer counts. Indeed, Trost et al. (2010) reported that 

count-based cut-points are responsible for 33 to 68% of misclassifications of PA. More 

specifically, Kühnhausen et al. (2017) reported that the bias originates from the loss of vital 

information  during the process of converting accelerometer raw signal to counts. In accord, 

the CF-specific raw cut-points yielded higher accuracy and less error than previous CF-specific 

count-based thresholds (Stephens et al., 2016). In addition, to further reduce misclassification 

and bias, and to ensure the generalisability of the cut-points and algorithms, previous research 

recommended that a cross-validation should be performed (Bianchim et al., 2020; Montoye, 
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Bradford, et al., 2018). Therefore, another strength of Chapters 5 and 8 was the cross-

validation of the newly developed cut-points and algorithms. Further methodological rigour 

was demonstrated in the selection of the cross-validation approach, with the use of a leave-one-

out approach in Chapter 5 and a 10-fold cross-validation in Chapter 8. Whilst previous 

research has suggested that the leave-one-out approach is the most appropriate for the cross-

validation of thresholds generated from a modest number of participants (Bianchim et al., 

2020), this method is not appropriate to assess the accuracy of machine learning models 

(Montoye, Bradford, et al., 2018). Finally, Chapters 5 and 8 generated outcomes for different 

accelerometer brands and placements to enable inter-study comparability and key 

recommendations.    

  A common limitation in Chapters 6 and 7 was the cross-sectional design adopted 

which meant that inferences regarding causality and directionality cannot be made. Despite 

this, both studies included a large number of participants with a broad age range, which 

contributes to the generalisability of the findings. Specifically, Chapter 7 included both 

children and adults, and drew comparisons between the different age groups, according to sex 

and genotype, therefore providing valuable insight regarding how PA impacts lung function in 

CF across the age and severity spectrum. Despite the strengths associated with the inclusion of 

participants across the lifespan, a limitation associated with this design is the lack of CF-

specific cut-points to assess PA in adults. As such, generic cut-points that were age- and 

accelerometer brand-specific (Hildebrand et al., 2014) were utilised to assess PA in children 

and adults in Chapter 7 to ensure consistency across age groups. The implication of applying 

cut-points that were developed based on healthy populations to those with CF was theorised in 

Chapters 4 and 5 and empirically tested in Chapter 6. Specifically, generic cut-points 

underestimated PA in those with CF in comparison with their healthy counterparts given the 

exercise intolerance and consequent elevated metabolic demands associated with the condition 

(Bell et al., 2001).  

  A key strength of the thesis was the development and validation of CF-specific machine 

learning algorithms to classify activity types and intensities in Chapter 8. Indeed, Freedson et 

al. (2012) recommended the use of machine learning with raw acceleration data to estimate PA 

in order to reduce misclassification and prediction error. In accord, Chapter 8 developed 

algorithms from time-domain features extracted from the raw acceleration signal to recognise 

PA intensities in CF. Nonetheless, Chapter 8 did not include frequency-domain features, 

which consequently limits inter-study comparisons. Despite this, Montoye, Bradford, et al. 
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(2018) showed that the inclusion of frequency-domain features can lead to overfitting, in 

addition to not improving the overall accuracy of the predictions. It is also noteworthy that 

Chapter 7 did not assess the impact of different data processing choices, such as windowing 

techniques and filtering approaches, which have been shown to affect PA predictions 

(Allahbakhshi et al., 2019; Preece et al., 2009). Finally, given the protocol design, it was not 

feasible to develop a model or cut-point to classify sleep in Chapters 5 and 8. This is a 

particularly important limitation given the importance of considering the interaction across all 

movement behaviours demonstrated in Chapter 7. In accordance, PA guidelines have recently 

adopted a 24-hour design to account for the interaction between movement behaviours 

including PA, SED and sleep (Kuzik et al., 2017; Waters et al., 2017; WHO, 2020). Therefore, 

future research should fully support the development of more efficient approaches to evaluate 

sleep in children and adolescents with CF. 

 

9.3 Recommendations for Future Research 

 

9.3.1 Informed Decisions for Designing a Calibration Protocol in Cystic Fibrosis 

  

 Chapter 4 made several recommendations for future research calibrating 

accelerometry in paediatric clinical populations. Essentially, a calibration protocol in children 

with chronic conditions should include a broad range of activities seeking to mimic daily-life 

whilst accounting for condition-specific factors, such as exercise intolerance and altered 

physiological response to exercise. Therefore, it is imperative to adopt a physiological 

reference criterion, such as EE, to label the accelerometer data. Also, Chapters 4 and 5 

reinforced the importance of individually estimating RMR in children with CF to account for 

possible pathophysiological alterations from pulmonary impairment and increased cost of 

breathing. Congruent with McMurray et al. (2015), Chapters 4 and 5 indicated that disease-

specific cut-points in children with chronic conditions should be developed with a precise 

measurement of RMR and oxygen uptake to account for pathological alterations. Moreover, 

findings from the systematic search performed in Chapter 4 indicated that the statistical 

approach adopted to generate the cut-points impacts the accuracy of the classification of PA. 

Specifically, the least recommended approach for accelerometry calibration is linear 

regression, with the most desirable being the use of machine learning algorithms. The use of 
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approaches such as receiver operator curve (ROC) and mixed modelling regression might also 

provide alternatives for developing cut-points and have been successfully utilised in paediatric 

clinical cohorts (McGarty AM, 2016; Stephens et al., 2016). 

 The cross-validation of cut-points, to ensure the validity and generalisability, is 

important for future research calibrating accelerometry in paediatric clinical cohorts. This 

recommendation is akin to previous work by Welk (2005), suggesting that cross-validation 

should be performed using a different set of activities and participants than those from which 

the cut-points were derived. Chapter 4 also demonstrated that, when working with smaller 

samples, the use of a leave-one-out cross-validation is also appropriate and reduces the 

participant burden. Despite this, amongst the most recent research developing raw 

accelerometry thresholds (Aittasalo et al., 2015; Hildebrand et al., 2014; Hurter et al., 2018), 

only one (Hildebrand et al., 2014) performed a cross-validation. Therefore, future research 

should ensure a cross-validation strategy is incorporated within their protocol to verify the 

applicability of their outcomes. Another important addition to the calibration protocol is the 

use of a measure of agreement, such as Kappa score or Bland-Altman plots (Bland & Altman, 

1986). Finally, Chapter 4 recommends that, in addition to the cross-validation, all disease-

specific cut-points should be compared against a healthy matched control group. Specifically, 

this practice is essential to ensure that any apparent cut-point discrepancies are associated with 

pathophysiological alterations. 

 

9.3.2 Recommendations for the Measurement of Physical Activity in Children and 

Adolescents with Cystic Fibrosis   

 

 The findings from Chapter 6 clearly illustrate the importance of using a condition-

specific approach when evaluating PA in a CF population, with the use of a generic cut-point 

significantly underestimating SED and MVPA in these populations. Therefore, Chapter 5 

provided CF-specific cut-points that can be used in future research estimating PA levels in CF, 

subsequently minimising PA misclassification. There is increasing recognition regarding the 

impact of the choice of data processing, study design and statistical methods on the accuracy 

of PA measurement and the relationship with health in clinical populations (Arvidsson, 

Fridolfsson, & Börjesson, 2019). Therefore, Chapter 5 generated CF-specific cut-points from 

two different raw acceleration metrics for three placements from two accelerometer brands. 
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This strategy not only ensured comparability across different accelerometer placements and 

brands, but provides future research with a broad range of options for the measurement of PA 

in children and adolescents with CF. No recommendations were made regarding the optimal 

acceleration brand given that both accelerometers utilised (GENEActiv and ActiGraph GT9X) 

performed equally well in both CF and healthy participants. Although waist-worn 

accelerometer cut-points were developed for the ActiGraph GT9X, future studies assessing PA 

levels in CF are advised to adopt the non-dominant wrist placement in order to maintain 

consistency and allow inter-study comparisons across clinical and healthy populations. Indeed, 

wrist-worn accelerometers have become increasingly popular for the assessment of PA given 

the higher compliance achieved with this placement (Fairclough et al., 2016) and following the 

recent integration of 24-hour protocols in PA assessments. In addition, in contrast to hip-worn 

monitors, wrist-worn accelerometers were shown to provide valid measures of sleep against 

the gold standard for sleep assessment (i.e. polysomnography; Full et al., 2018).    

 Whilst the development of condition-specific cut-points is fundamental for the 

perpetuation of PA research in CF, this approach is not without limitations (Freedson et al., 

2005). Alternatively, the use of machine learning algorithms to classify PA has been highly 

recommended due to its ability to generate highly accurate predictions (Freedson et al., 2012; 

Freedson et al., 2005). As such, Chapter 8 machine learning models were developed for 

different accelerometer brand and placements, and therefore, allowing for higher applicability 

and comparison. Future research measuring PA levels in paediatric populations with CF are 

recommended to use raw acceleration data with machine learning algorithms to enhance 

prediction accuracy. Finally, and most importantly, the models developed in Chapter 8 can be 

employed by studies measuring PA, and ultimately, elucidate the association between PA and 

health in those with and without CF. 

 

9.3.3 Physical Activity Guidelines for those with Cystic Fibrosis   

 

This thesis was centred around investigating and developing new approaches to 

improve PA predictions in CF. Essentially, the precise measurement of PA in CF is 

fundamental to inform PA guidelines and interventions specifically tailored to the condition. 

For example, the development (Chapter 5) and application of a CF-specific cut-point 

(Chapter 4) suggests that previous research may have underestimated PA levels in paediatric 
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CF populations, and consequently questions previously identified associations between PA 

levels and lung function in those with CF. Most importantly, the findings of Chapter 4 suggest 

that the current guidelines might need to be revisited in order to elucidate the PA levels 

associated with health benefits in those with CF (Department of Health and Social Care, 2019; 

WHO, 2015). Indeed, Williams and Stevens (2013) questioned the applicability of the PA 

guidelines previously developed for healthy populations to those with CF. Williams and 

Stevens (2013) also highlighted the scarcity of evidence to support the creation of CF-specific 

PA recommendations in paediatric CF populations. Specifically, more research is warranted to 

elucidate the optimal PA duration and intensity to elicit health benefits in children and 

adolescents with CF. It is noteworthy that the pattern of how PA is accumulated seems to be 

more closely related to health outcomes than absolute PA levels (Mark & Janssen, 2009; Stone 

et al., 2009), and therefore, should also be considered when tailoring CF-specific PA 

interventions and recommendations. More specifically, PA is accumulated in bouts of different 

frequencies, durations and intensities (Tremblay et al., 2017), and it varies across the age 

spectrum, with children displaying more intermittent and sporadic bouts than adults (Pangrazi, 

2000). Whilst investigating PA patterns in healthy children, Willis et al. (2015) found that the 

accumulation of higher percentage of short and medium-to-short bouts of MVPA was 

associated with better outcomes. Despite this, the investigation of how those with CF accrue 

their PA patterns and associated implications to health outcomes is a key gap in our 

understanding that needs to be addressed by future research. Finally, there is increasing 

recognition regarding the importance of integrating all movement behaviours, with recent PA 

guidelines tailored over a 24-hour period in healthy children (Kuzik et al., 2017; Waters et al., 

2017; WHO, 2020). Similar guidance would be extremely useful to those with CF given the 

vital implications of PA and sleep on health in this population. As such, this thesis developed 

a compositional framework to analyse the impact of the interaction between movement 

behaviours (sleep, SED, LPA and MVPA) on lung function.      

 

9.3.4 Impact of Physical Activity for Health in Cystic Fibrosis and Associated Factors 

 

 In addition to drawing recommendations regarding the approaches utilised to measure 

PA, this thesis also investigated how we analyse PA data in people with CF. As a result, a key 

recommendation from Chapter 7 is that future research investigating the relationship between 
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PA and lung function should account for all PA intensities, sleep and SED. Specifically, future 

interventions aiming to increase lung function should consider targeting an increase of 30 

minutes MVPA, with time displaced from SED and LPA, and 30 minutes increase in sleep, 

with time displaced from any other behaviour. In addition, Chapter 7 suggested that replacing 

SED with LPA can be a promising strategy to maintain, and/or increase, lung function, though 

future research is warranted to verify this. Notably, Mackintosh et al. (2018) also 

acknowledged the potential of LPA for designing effective strategies to increase PA, and 

thereby lung function. Although previous research corroborated some of these findings (Cox 

et al., 2016), no guidance was available regarding the important interaction between all 

movement behaviours and their effect on lung function. Alternatively, Chapter 7 elucidated 

the importance of maintaining elevated MVPA and LPA levels and reduced SED, given their 

asymmetric relationship with lung function. As such, alterations in MVPA, LPA and SED did 

not elicit the same magnitude of change in lung function when the reallocation was reversed. 

Whilst previous studies have also demonstrated the asymmetrical relationship between PA 

intensities and SED with other outcomes (Biddle et al., 2018; Štefelová et al., 2018; Swindell 

et al., 2020; Tlučáková et al., 2020), Chapter 7 was the first to demonstrate a symmetrical 

relationship between sleep and lung function for most PA reallocations. Recent research has 

suggested that sleep disorders are associated with exercise intolerance, increased SED and 

elevated morbidity in CF (Barbosa, Coelho, et al., 2020; Barbosa, Liberato, et al., 2020). In 

accord, this thesis demonstrated the crucial role of sleep for lung function, with time displaced 

from sleep to any other behaviour costing up to 3.6% FEV1%predicted.  Therefore, sleep should 

be acknowledged as an important component of movement behaviours with valuable impact 

on lung function.   

 

9.3.5 Final Recommendations and Future Research Directions 

 

 This thesis highlighted factors such as age, sex, maturity and genotype as areas for 

careful consideration in future studies investigating PA levels and associated health outcomes 

in children and adolescents with CF. It is well known that lung function decreases with age and 

is dependent on sex, with females showing steeper declines annually (De Boeck & Zolin, 2017; 

Liou et al., 2010). In agreement, Chapters 6 and 8 demonstrated that age was associated with 

all movement behaviours and their relationship with lung function. Interestingly, Chapter 7 

found that, in comparison to children and adolescents, adults with CF had higher magnitudes 
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of change, irrespective of direction, with the reallocation of different behaviours. It is pertinent 

to note that the relationship between MVPA and lung function was only evident after stratifying 

by age, sex and genotype, illustrating the need to account for such factors in future research. 

Of importance, females with CF are expected to live approximately 4 years less than their male 

counterparts, even after adjusting by CF-related comorbidities (Harness-Brumley et al., 2014; 

Keogh & Stanojevic, 2018). It is noteworthy that girls with CF are significantly less active than 

their male peers (Selvadurai et al., 2004), which appears to track into adulthood (Savi, Di Paolo, 

et al., 2015). Indeed, this lower survival rate in females has been attributed to the disparity in 

PA levels between males and females (Schneiderman-Walker et al., 2005). This suggests that 

future research should implement sex-specific interventions and strategies to counteract or/and 

slow the rate annual decline in FEV1%predicted, which is particularly important during early 

adulthood (De Boeck & Zolin, 2017; Liou et al., 2010). Despite this, it is important to 

acknowledge the importance of focussing on biological, rather than chronological age. The 

increase in biological age is associated with a reduction in PA in healthy populations, 

irrespective of sex (Bacil et al., 2015), whereas in CF this association was only observed in 

girls (Selvadurai et al., 2004). This finding might explain, at least in part, the increased rate of 

pulmonary exacerbations in female post-puberty, compared to their male counterparts (Sutton 

et al., 2014). Finally, sex hormones, such as oestrogen and progesterone, which have been 

shown to play a vital role in widening the gender disparities in CF post-puberty, cannot be 

ignored (Sutton et al., 2014). Future research should therefore investigate the effect of 

biological age on PA, and consequently lung function, to enhance CF treatment and survival.  

 The challenges associated with assessing PA and informing strategies and 

recommendations in a condition with broad clinical variability, such as CF, cannot be 

underestimated. This condition can be originated from more than 2,000 mutations generating 

a broad range of clinical manifestations varying in severity (de Gracia et al., 2005). Indeed, 

Chapter 7 demonstrated that males heterozygous for ΔF508 mutation had significantly higher 

FEV1%predicted, in addition to showing a higher increase in lung function with the PA 

reallocations than homozygous participants. Despite this, it is important to acknowledge that 

male heterozygous participants also showed the worst estimated decline in lung function when 

the PA reallocations were inverted. Most importantly, heterozygous for ΔF508 mutation were 

shown to have worst aerobic capacity, anaerobic power and BMI (Selvadurai et al., 2002), and 

develop more severe lung disease than those with homozygous mutations (Geborek & Hjelte, 

2011). Therefore, future studies are advised to further investigate the impact of PA 
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accumulation to health outcomes in heterozygous in order to promote strategies to delay the 

rapid decline in FEV1%predicted observed in this group (Dahl et al., 2001).  

It is important to highlight that some of the breakthrough drug therapies developed to 

treat CF to date are genotype-specific (Thursfield & Jane, 2013). Therefore, we can expect an 

even larger gap across disease severities in individuals with CF, which will require careful 

investigation prior to the formulation of population-specific PA guidelines. For example, the 

triple-combination therapy Kaftrio (tezacaftor*elexacaftor* ivacaftor) is only currently 

available in those older than 12 years with at least one ΔF508 mutation. Despite this, the 

development of the triple-combination therapy represents a monumental advancement in the 

treatment of CF with significant improvements in FEV1%predicted and quality of life (Heijerman 

et al., 2019; Ridley & Condren, 2020). Specifically, robust randomised controlled clinical trials 

demonstrated that the treatment with Kaftrio improved FEV1%predicted in 10% in homozygous 

(Ridley & Condren, 2020) and 14% in heterozygous (Middleton et al., 2019). To highlight the 

significance of this achievement, such increments in lung function have resulted in the removal 

of CF patients from the lung transplant list (Volkova et al., 2020). Of importance, the prolonged 

use of the Kaftrio is likely to have an impact on the survival rates in CF. In particular, 

comorbidities associated with lifestyle, such as cardiometabolic conditions, that were not 

commonly encountered in those with CF might start to arise in this population. Given the 

pathophysiological alterations, people with CF are already prone to the development of 

associated comorbidities including, cardiopathies, osteoporosis and cystic fibrosis related 

diabetes. Most importantly, regular PA is associated with a reduced risk of developing 

noncommunicable diseases (Anderson & Durstine, 2019) and is key to prevent the genesis of 

multi-comorbidities in people with CF. Finally, future PA interventions should focus on 

adopting methods to increase adherence, such as using remote-based approaches, in order to 

ultimately integrate regular PA into CF routine care.  

 

9.4 Final Conclusions 

 

 This thesis investigated and developed novel approaches to measure and analyse PA in 

children and adolescents with CF. The results from Chapter 4 informed and consolidated the 

methodology applied in Chapters 5 and 8, to develop CF-specific cut-points and machine 

learning algorithms, respectively, to assess PA. Notably, findings from Chapter 6 corroborated 

the need for CF-specific cut-points, with the significant misclassification of PA in children and 
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adolescents with CF when generic thresholds were used. It was also highlighted that sex and 

day type were key factors determining PA levels in this population. The compositional 

framework adopted in Chapter 7 to account for the interaction between PA behaviours 

highlighted the potential for PA to delay disease progression across the lifespan in CF, 

highlighting that 30 minutes displaced to MVPA (from SED and LPA) and to sleep (from all 

movement behaviours) was associated with up of up to 2.1% and 3.6% in FEV1%predicted, 

respectively. Overall, the findings of Chapters 4 to 8 provide a foundation for future research 

seeking to design PA interventions and clinical guidelines. Future studies are advised to adopt 

condition-specific approaches to assess PA in CF and to account for the relative nature of 

movement behaviours when drawing associations with health outcomes. Additionally, PA 

interventions in CF should consider the differences in how boys and girls accrue their PA levels 

during the week and weekend days whilst targeting to increase sleep with time reallocated from 

all behaviours and MVPA from time spent sedentary and on LPA. Finally, it is noteworthy that 

PA plays a pivotal role in the lifelong health of people with CF, and it is one of the few lifestyle 

factors which relevance is not likely to be surpassed with the advent of Kaftrio. 
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Appendices 

Appendix A: Calibration and Validation of Accelerometry to Measure Physical Activity 

in Adult Clinical Groups: A Systematic Review 

 

1.1 Introduction 

 

Physical activity (PA) is defined as any bodily movement that requires an energy 

expenditure above resting (Caspersen et al., 1985). Regular PA has been associated with the 

prevention and treatment of a range of diseases, such as cardiovascular disease (Li et al., 2013), 

type II diabetes (Colberg et al., 2010), osteoporosis (McMillan et al., 2017; Senderovich et al., 

2017) and breast cancer (Goncalves et al., 2014). However, 31% of adults are inactive, making 

physical inactivity a major international public health concern (Hallal et al., 2012). 

Although accelerometers are capable of measuring raw acceleration at high sampling 

frequencies, the majority of studies rely on cut-points to classify PA intensities. Consequently, 

a growing body of calibration studies has led to a range of cut-points to classify PA intensities 

in adults (Freedson et al., 1998; Troiano et al., 2008), with little consensus as to the optimal 

cut-points or their applicability to populations other than those in which they were developed. 

Indeed, inter-study comparisons and cut-point generalisability are limited by a lack of 

standardisation of methodologies. Specifically, considerable variation in calibration protocols 

has arisen due, at least in part, to the progression from uniaxial to triaxial accelerometry, the 

growing range of accelerometer models available and the broad range of configuration options 

(e.g., epoch, frequency). Furthermore, inter-study discrepancies in moderate-to-vigorous 

physical activity (MVPA) cut-points may also be attributable to variations in the criterion 

measures adopted and to the specific calibration protocol utilised; calibration protocols may 

range from a laboratory-based treadmill or walking protocol (Freedson et al., 2011) to a field-

based protocol (Payey et al., 2017), or a combination of both (Midorikawa et al., 2017). Finally, 

the statistical approach used to translate activity counts into thresholds aligned with the 

criterion varies considerably between studies, with little evidence currently available regarding 

the comparability of different statistical methods. 
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A key question that remains to be addressed is the applicability of current calibration 

protocols to clinical populations. Specifically, physiological and biomechanical differences, 

common in many chronic conditions such as Chronic Obstructive Pulmonary Disease and 

Parkinson’s Disease (PD), may result in a higher cost of breathing or daily living activities and 

altered resting metabolic rate (RMR) demands (Bell et al., 1996; Goldstein et al., 1987; Levi 

et al., 1990; Psota & Chen, 2013; Sandroff, Klaren, et al., 2014; Serra et al., 2016). 

Subsequently, cut-points developed for healthy populations are unlikely to appropriately reflect 

the activity levels of those with such diseases (McGinley et al., 2015; Serra et al., 2017) and 

population-specific cut-points, accounting for condition-specific energy expenditure (EE), are 

warranted. For example, applying cut-points developed on healthy populations was shown to 

be inappropriate for some clinical conditions, such as chronic stroke (Serra et al., 2017) and 

type II diabetes (McGinley et al., 2015). However, whilst accelerometry seems to be valid for 

some clinical conditions (Clarke, 2016), the development of population-specific cut-points was 

shown to improve the accuracy of the PA measurement in multiple sclerosis (MS) and in obese 

populations (Valenti et al., 2014). Given this lack of consensus, a synthesis of currently 

available cut-points, and calibration protocols, in clinical populations could afford valuable 

information for future clinical physical activity research.   

Therefore, the aim of this systematic review was to describe current protocols utilised 

for the calibration of accelerometry to estimate MVPA thresholds for adult clinical populations. 

Secondly, the purpose was to provide recommendations for future studies seeking to calibrate 

accelerometers for clinical conditions in adults.    

 

2.1  Methods 

 

 This review was performed according to the Preferred Reporting Items for Systematic 

Review and Meta-Analysis statement (Liberati et al., 2009; Moher et al., 2015), and registered 

on the International Prospective Register of Systematic Review (PROSPERO registration ID: 

CRD42016053880).  

 

2.1.1 Search Methods 
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The search was performed between March and July 2017 using six databases (PubMed, 

SPORTDiscus, ScienceDirect, Scopus, ISI Web of Knowledge, Wiley Online Library). Further 

details regarding the full search can be found on the Appendix C. The protocol was revised by 

an experienced librarian and a pilot was performed to assure feasibility. The search terms were 

in accordance with the 2017 Medical Subject Headings and were inserted as keywords to all 

the databases as follows: acceleromet*; acceleromet* AND (validation OR calibration); 

acceleromet* AND physical activity; wearable monitors AND (calibration OR validation); 

physical activity AND (calibration OR validation); acceleromet* thresholds; acceleromet* 

(cut-points OR cut-points); energy expenditure AND acceleromet*; and classification AND 

physical activity intensities. To check for any further studies meeting the inclusion criteria, the 

reference list of all the included studies and any systematic reviews on a similar topic were 

examined.  

 

2.1.2 Eligibility Criteria 

 

In order to be included, studies needed to be published in or after the year 2000 in English 

and generate MVPA cut-points for accelerometry in adults with any chronic clinical condition. 

Chronic conditions were considered any long-term disease with slow progression (Goodman 

et al., 2013). Book chapters, theses, monographs, dissertations, abstracts, non-human, 

unpublished and non-English studies were not included. Studies using accelerometers 

associated with other technologies (e.g. microcontroller), calibrating for healthy population, 

sedentary behaviour or conditions that required a dispositive for gait (e.g. wheelchair), were 

excluded.  

 

2.1.3 Data Extraction and Management  

 

Following the creation of an EndNote X7 (Clarivate Analytics, US) database of 

potential studies, the lead author screened all the studies based on their titles and abstracts. 

Where any discrepancies on paper inclusion arose, a second author was available to consult to 

reach a consensus. All full texts were subsequently independently screened by two authors 

(MAM and KAM) according to the pre-established criteria. Studies that generated more than 
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one MVPA cut-point were analysed as separate studies since protocols using multiple 

accelerometers or calibrations in different populations (e.g., different diseases) might lead to 

different MVPA thresholds. Supplementary information for each study was consulted when 

available or necessary for data extraction. No additional data was provided after consulting the 

authors. Data was extracted by the first author (MSB) and cross-checked by two co-authors 

(KAM and MAM). Further details of the data extraction are presented in Table A1. The risk of 

bias in individual studies was assessed by two authors (MSB and MAM), independently, using 

a checklist that was specifically tailored for calibration of accelerometry protocols (Table A2) 

based on previous literature (Freedson et al., 2005; Lyden et al., 2014; Welk, 2005). This 

checklist rates studies as good, fair or poor for six elements of the calibration protocol (sample 

characteristics, accelerometry settings, criterion, statistical approach for calibration, and 

statistical approach for validation). Studies scoring  poor for all the sections were excluded in 

order to prevent potentially biased and skewed results (Kane et al., 2017). Inter-rater reliability 

was determined by using Kappa scores and 0.8 was the minimum acceptable inter-rater 

agreement (McHugh, 2012). Following the risk assessment, all three authors discussed any 

discrepancies until a consensus had been reached.  

 

Table A1 Summary of the Data Extracted from the Included Studies 

Data extraction 

field 

Information extracted 

Context and 

participants 

The author, year and sample size of the study; participant characteristics such as, age, 

health status, height, weight, BMI, ethnicity; and covariates measured such as, self-

report questionnaire data, health scales related to disease assessments were extracted.  

 

 



219 

 

 

Study design and 

methods used 

Any information related to the accelerometer, such as accelerometer model (e.g., 

number of axes); accelerometer placement (e.g., wrist [dominant/non-dominant], hip, 

chest); accelerometer settings (e.g., epoch, sampling frequency, use of low frequency 

filter); and data processing decisions (e.g., wear-time criteria) were extracted. 

Additionally, any information related to the calibration protocol, such as protocol 

design (e.g., laboratory-based, field-based, daily-life protocol); duration of the 

protocol; adjustment of specific variables (e.g., age, body mass); performance of 

individual calibration; criterion anchoring (e.g., energy expenditure, direct 

observation, heart rate); resting metabolic rate assessment; statistical approach (e.g., 

ROC-curve analyses, linear regression, machine learning); validation method (e.g., 

validation, cross-validation leave-one-out, cross-validation k-fold); and assessment 

for agreement (e.g., Kappa, Bland-Altman) were also extracted.  

Findings The extracted outcomes were protocol design and cut-points. All the extracted 

protocols were classified in four categories: laboratory-based (walking or running, 

over-ground or on a treadmill), free-living (assessment of participant routine), daily-

life (daily-life activities performed at the research site) and mixed (at least two of 

laboratory-based, free-living and daily-life) protocols. 

Quality of the study Checklist rating for performing calibration for accelerometry in clinical adult 

population. 
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ROC: receiver operating characteristic. *The criteria for a valid resting metabolic rate estimation was a minimum of 15 min of steady state, 

preferably adopting the formula of de Weir (Weir, 1948) 

Table A2 Guideline Rating for Performing Calibration for Accelerometry in Clinical Adult Population 

(checklist) 

Standard Poor Fair Good 

1. Sample Characteristics Calibration study that do not 

provide any descriptive 

variables other than age and 

sex. 

Calibration study that 

assess descriptive 

variables such as height, 

weight, body mass index 

and specific to the clinical 

condition.  

Calibration study that assess descriptive 

variables such as height, weight, body 

mass index, ethnicity, resting metabolic 

rate and specific to the clinical 

condition.  

2. Accelerometry Settings Study just describes the 

accelerometer model.  

Study describes the 

accelerometer model, 

number of axes and 

placement.  

Study describes the accelerometer 

model, number of axes, placement, 

wear-time criteria (in case of free-living 

protocols), sampling frequency, epoch 

length and filtering procedures. 

3. Protocol Design Study performs the 

calibration using a 

laboratory-based protocol 

composed only by walking or 

treadmill test. 

Study uses a mixed 

protocol combining 

daily-life activities with a 

laboratory protocol test 

on a treadmill.  

Study uses a mixed protocol combining 

daily-life activities with a laboratory 

protocol test on a treadmill and free-

living assessments. 

4. Criterion  Uses speed or direct 

observation to anchor the 

accelerometer counts. 

Uses heart rate or 

metabolic equivalent to 

anchor the accelerometer 

counts. 

Uses energy expenditure measures, 

considering resting metabolic rate* 

estimation, to anchor the accelerometer 

counts. 

5. Statistical Approach for 

Calibration 

Study uses group linear 

regression or Individual 

linear regression to develop 

the cut-points.  

Study uses ROC curve 

analyses to develop the 

cut-points. 

Study uses machine learning techniques, 

hierarchical models or multilevel 

modelling, adjusting for factors related 

to participants characteristics and to the 

pathophysiology of the clinical 

condition to develop the cut-point. 

6. Statistical Approach for 

Validation 

Study do not perform a 

validation of the cut-points. 

 

Study performs a leave-

one-out cross-validation 

of the cut-points and 

agreement assessment 

using Bland-Altman or 

kappa score. 

 

Study performs a k-fold cross-validation 

using different samples and activities, 

determine agreement assessment using 

Bland-Altman or Kapa score, and 

estimates the intra-class correlation 

coefficient, and / or limits of agreement. 
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A narrative synthesis was performed covering each area of the protocol design: 

participant information; inclusion of disease-specific factors; accelerometer model and 

settings; protocol design; criterion; statistical approach for generating and validating cut-points 

and MVPA cut-points. 

 

3.1 Results 

 

A total of 543,741 titles were identified from all databases, with 540,630 titles 

remaining after the removal of duplicates. Subsequently, the main author applied the eligibility 

criteria to all 540,630 titles and abstracts, which resulted in 619 articles remaining for full-text 

assessment. In total, 608 studies were excluded, primarily due the inclusion of healthy 

populations (279 studies), resulting in 11 studies involving a total of 488 participants aged 24 

to 73 years being included in this review. Descriptive characteristics of the study samples are 

provided in Table A3. Twenty-three disease-specific MVPA thresholds for six different clinical 

conditions were identified. For the final synthesis, the six clinical conditions were stratified 

into either metabolic (n = 4; obesity, type II diabetes mellitus) or neuromusculoskeletal diseases 

(n = 7; MS, PD, down syndrome, chronic stroke). 
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Records identified through database 

searching 

(n = 543,741) 

PubMed: 24,556 

SportDiscuss: 4,494 

Science Direct: 19,456 

Scopus: 22,655 

Web of Science: 316,219 

Additional records identified 

through other sources (references) 

(n = 15) 

Records after duplicates removed 

(n = 540,630) 

Records screened 

(n = 540,630) 

Records excluded 

(n = 540,011) 

Full-text articles assessed 

for eligibility 

(n =619) 

Full-text articles excluded, 

with reasons 

(n = 608) 

279 Healthy population 

301 Validation Studies 

15 only validation studies 

1 calibration to detect 

postures 

5 calibrating for children 

2 used additional devices 

1 only classification 

1 Calibrating for SED 

3 Specific thresholds  

1 bone development 

Studies included in 

qualitative synthesis 

(n = 11) 

Metabolic Disease 

(n = 4) 

Neuromusculoskeletal 

Diseases 

(n = 7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1 PRISMA flow  
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Table A3 Summary of the Included Studies Characteristics 

Studies 

 

Author, year 

 

Participants 

 

Sample size (n) 

Sex (male/female) 

Health status 

Control Group 

Age (range or mean ± SD) 

Height (mean ± SD) 

Weight (range or mean ± SD) 

BMI (range or mean ± SD) 

Ethnicity 

Covariates 

Accelerometer 

 

Device Model 

Number of axes 

Placement 

Sampling frequency 

Filter 

Epoch 

Monitoring period 

Wear-time 

Calibration Protocol 

 

Physiological/ 

Observational 

EE estimation 

RMR estimation 

Individual calibration 

Protocol type 

Duration 

 

 

Statistical Approach 

 

Calibration 

Validation 

Agreement   

Outcome 

 

Cut-Points 

Molt et al., 

2009 

n = 48 

40 females and 8 males  

Multiple Sclerosis (n = 24) 

Control (n = 24)  

43.5 ± 12.2 years 

167.0 ± 11.6 cm 

76.7 ±19.2 kg 

Demographic scale 

Patient Determined Disease Steps 

Scale  

 

ActiGraph 

Uniaxial 

Right hip 

Epoch: 30-s 

Physiological: V O2 

RMR:  3.5 ml.kg-1 

Individual calibration: no 

Protocol type: laboratory 

Duration: 30 min 

 

Calibration: linear regression 

Validation: none 

Agreement: none  

Cut-points (counts·min-1):  

Multiple Sclerosis:  

LPA: < 591 

MPA: 591-6,460 

VPA: > 6,460 

Control:  

LPA: < 1,289 

MPA: 1,289-7,694 

VPA: > 7,694 
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Lopes et al., 

2009 

n = 26 

15 females and 11 males 

Overweight/obese/ Type 2 

Diabetes Mellitus 

Control = no 

62.6 ± 6.5 years 

Calibration group (n: 14): 

Male: 168.07 ± 5.18 cm 

Female: 151.49 ± 8.54 cm 

Male: 80.32 ± 7.21 kg Female: 

77.05 ± 21.03 kg 

31 ± 5.17 kg·m-2 

Obese: 57.1% 

Overweight: 42.9 % 

Caucasians 

HBA1c: 7.2 ± 1.8 % 

Insulin: 9.6 ± 4.41 mg·dL-1 

HOMA-IR: 1.59 ± 0.71 

Validation group (n = 12): 

Male: 162.63 ± 3.54 cm 

Female: 155.1 ± 7.99 cm 

Male: 75.9 ± 16.03 kg  

Female: 72.19 ± 17.58 kg 

29.33 ± 4.85 kg·m-2 

Obese: 41.7 % 

Overweight: 58.3 % 

ActiGraph 

Right hip 

Epoch: 60-s 

Physiological: V O2 and 

HR 

RMR: 15 min rest  

Individual calibration: 

none 

Protocol type: laboratory 

Duration: 30 min 

 

Calibration: Hierarchal Model 

for equation and ROC for cut-

points 

Validation: cross-validation for 

the regression 

Agreement: concordance 

correlation coefficient  

Cut-points (counts·min-1):  

SED / LPA: 200 

LPA / MPA: 1,240  

MPA / VPA: 2,400  
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Caucasians 

HBA1c: 7.34 ± 1.81 %  

Insulin: 9.25 ± 4.47 mg·dL-1 

HOMA-IR: 1.53 ± 0.72 

Weikert et 

al., 2011 

N = 24  

20 females and 4 males 

Multiple Sclerosis  

Group with gait disability (n = 10)  

Group without gait disability ( n= 

14) 

Control: no 

42.0 ±11.7 years 

20 Caucasian  

18 graduated from college 

Patient-Determined Disease Steps - 

1 (0-4) 

Multiple Sclerosis Walking Scale  

ActiGraph (7164) 

Uniaxial 

Waist nondominant hip 

10 Hz 

Epoch: 1-s 

Physiological: V O2 

Individual calibration: 

none 

Protocol type: laboratory 

Duration: 16 min 

 

Calibration: linear regression 

Validation: none 

Agreement: none  

Cut-points (counts·min-1):  

Overall:  

MPVA 2371 ± 847 

gait disability: 1,886 ± 739 

without gait disability: 2,717 ± 763 

Aadland 

and 

Anderssen, 

2012 

n = 42 

31 females and 11 males 

Obesity 

Control: no 

43.2 ± 9.2 years 

172.2 ± 9.1 cm 

118.2 ± 18.2 kg 

39.8 ± 5.7 kg·m-2 

ActiGraph (GT1M) 

Uniaxial 

Right hip 

Normal Filtering 

Epoch: 10-s 

Physiological:V O2 

and HR 

RMR: 1 h fast – 10 min 

in rest  

Individual calibration: yes 

Protocol type: laboratory 

Duration: 40 min 

 

Calibration: linear regression, 

linear mixed model and 1. ROC 

curve with high sensitivity and 

specificity and 2. ROC with 

high accuracy. 

Validation: cross-validation 

Agreement: none  

Cut-points (counts·min-1):  

Linear regression:  

3 METS: 720 

Linear mixed model: 

3 METS: 612  

ROC 1:  

3 METS: 1,646  

ROC2:  

3 METS: 1,310 



226 

 

 

Waist circumference: 127.6 ± 13.2 

cm 

Linear regression:  

6 METs: 5,779 

Linear mixed model: 

6 METs:  4,980 

ROC1:  

6 METs: 3,061 

ROC2:  

6 METs: 7,220 

Aadland 

and Steene-

Johannessen  

et al., 2012 

n = 42 

31 females and 11 males 

Obesity 

Control: no 

43.2 ± 9.2 years 

172.2 ± 9.1 cm 

118.2 ± 18.2 kg 

39.8 ± 5.7 kg·m-2 

Waist circumference: 127.6 ± 13.2 

cm 

ActiGraph (GT1M) 

Uniaxial 

Right hip and left hip 

(n: 22) 

Normal Filtering 

Epoch: 10-s 

Physiological: V O2 and 

HR 

RMR: 1 h fast – 10 min 

in rest  

Individual calibration: yes 

Protocol type: laboratory 

Duration: 40 min 

 

Calibration:  Linear regression 

(individual calibration) and 

mixed model (group 

calibration). 

Validation: none 

Agreement: Bland-Altman   

Cut-points (counts·min-1): 

Individual calibration: 

Right hip:  

MPVA: 1,078 Left hip:  

MPVA: 1,095  

Agiovlasitis 

et al., 2012 

n = 38 

21 females and 27 males  

Control  

26.3 ± 5.2 years 

171.1 ± 8.2 cm 

73.4 ± 22.6 kg 

24.9 ± 7.4 kg·m-2 

n= 17 

ActiGraph (7164) 

Uniaxial 

Right wrist 

Epoch: 30-s 

Physiological: V O2 

RMR: 3 h fast – 6 min 

rest in sitting position.  

Individual calibration: 

none 

Protocol type: laboratory 

Duration: 30 min 

Calibration:  multilevel 

modelling. 

Validation: none 

Agreement: Bland-Altman   

Cut-points (counts·min-1): Control: 

self-paced walking: 2,758 ± 1,373 

0.5 m/s: 714 ± 279 

0.75 m/s: 1036 ± 420;  

1 m/s: 1,992 ± 669 

1.25 m/s: 2,743 ± 1,140 

1.5 m/s: 3,185 ± 1568 

3 METs: 1,526  
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Down Syndrome  

9 females 

24.7 ± 6.9 years 

154 ± 79 cm 

76.9 ± 16.8 kg 

32.6 ± 7.7 kg·m-2 

 Down Syndrome: 

self-paced walking: 2888 ± 1468 

0.5 m/s: 862 ± 443 

0.75 m/s: 1,712 ± 747 

1 m/s: 2,708 ± 1,013  

1.25 m/s: 4,052 ± 1862 

1.5 m/s: 5,768 ± 2808 

3 METs: 1,137 

6 METs: 4,525 

Giffuni et 

al., 2012  

n = 29 

17 females and 12 males  

Obese / overweight 

31.9 ± 9.0 years 

169.1 ± 8.3 cm 

100.8 ± 23.3 kg 

35.2 ± 7.6 kg·m-2 

ѴO2: 29.1 ± 11.5   ml·kg-1·min-1 

n= 25 

Control 

13 males 

26.1 ± 9.4 years 

174.3 ± 8.7 cm 

70 ± 10 kg 

23 ±2.2 kg·m-2 

V O2: 40.8 ± 10.2 ml·kg-1·min-1 

Actical 

Uniaxial 

Midline of the right 

tight 

Epoch: 60-s 

 

Physiological: V O2  

RMR: 2 min rest  

Individual calibration: yes 

Protocol type: laboratory 

Duration: 45 min 

 

Calibration:  Linear regression. 

Validation: none 

Agreement: none  

Cut-points (counts·min-1):  

Obese: 

3 METs: 1,923  

6 METs: 4,032 

Control:  

3MET: 1,726 

6MET: 4,117 

 



228 

 

 

Sandroff et 

al., 2012 

n = 86 

76 females and 10 males 

Control 

46.5 ± 10.0 years 

168.5 ± 8.9 cm 

75.4 ± 16.2 kg 

n = 43 

Multiple Sclerosis 

47.2 ± 9.1 years 

168.2 ± 8.3 cm 

75.7 ± 19.4 kg 

Demographic and exercise history 

questionnaires 

7DPAR 

26ft GAITRite mat Patient-

Determined Steps 

12-item MS walking scale 

ActiGraph (7164, 

GT3X) 

Uniaxial and triaxial 

Non-dominant hip 

30 Hz 

Epoch: 15-s 

 

Physiological: V O2 

Individual calibration: yes 

Protocol type: laboratory 

Duration: 20 min 

 

Calibration: linear regression 

Validation: none 

Agreement: none   

Cut-points (counts·min-1):  

Multiple Sclerosis: MVPA: 1,723 

± 732  

Control: 

MVPA: 2,017 ± 801  

GT3X:  

Multiple Sclerosis: MVPA: 1,584 

± 697  

Control: 1,950 ± 852  

Sandroff et 

al., 2014b 

n = 54 

45 females and 9 males 

Multiple Sclerosis 

Control: no 

50.9 ± 9.2 years 

168.3 ± 7.6 cm 

82.3 ± 23 kg 

 

ActiGraph (GT3X+) 

Triaxial 

Filter: Low frequency 

extension 

Epoch: 60-s 

Physiological: V O2 

RMR: 10 – 15 min rest  

Individual calibration: yes 

Protocol type: laboratory 

Duration:  

 

Calibration: individual 

regression 

Validation: none 

Agreement: none   

Cut-points (counts·min-1):  

Vertical axis: 

Overall sample:  

MVPA: 1,754  

Mild and moderate disability: 

MVPA: 1,980  

Severe disability:  

MVPA: 1,185  
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SED: sedentary time, LPA: light physical activity, MPA: moderate physical activity, VPA: vigorous physical activity, MVPA: moderate to vigorous physical activity, RMR: 

resting metabolic rate, V O2: oxygen uptake, HR: heart rate, ROC: receiver operating characteristic, ROC 1: ROC with best sensitivity and specificity, ROC 2: ROC with best 

accuracy definition, MET: metabolic equivalent of Task. 

 

Nero et al., 

2016 

n = 30 

13 females and 17 males 

Parkinson disease 

Control: no 

73.0 ± 5.4 years 

24.6 ± 3.3 kg·m-2 

Unified Parkinson’s Disease 

Rating Scale part II  

Freezing of Gait Questionnaire  

Borg and Perceived Exertion Scale 

ActiGraph (GT3X+) 

Triaxial 

Waist 

30 Hz 

Filter: normal 

Epoch: 15-s 

Physiological: HR and 

speeds 

RMR  

Individual calibration 

Protocol type: laboratory 

Duration: 9 min 

 

Calibration: ROC curve 

Validation:   leave-one-out 

cross-validation  

Agreement:  Cohen’s Kappa   

Cut-points (counts·15 s): 

Vertical Axis:  

< 1 ms: < 328  

 > 1.3 m/s: > 730  

Vector Magnitude: 

< 1 ms: < 470 

> 1.3 m/s: > 851 

Serra et al., 

2017 

n = 28 

10 females and 18 males 

Chronic Stroke - chronic 

hemiparetic gait 

Control: no 

60.4 ± 1.6 (47 – 83) years 

31.5 ± 1.1 (19-48) kg·m-2 

43% Caucasian 

56% African-american 

6MWT 

Lean mass (kg) 

Actical 

Uniaxial 

non-paretic hip 

Physiological: V O2, HR, 

karvonen formula (HR 

reserve). 

RMR: 10 min rest  

Individual calibration: 

none 

Protocol type: mixed 

Duration: 60 min 

 

Calibration: Regression analysis  

Validation: none 

Agreement: non   

Cut-points (counts·min-1):  

SED/LPA: 125 

LPA/MPA: 667 

MPA/VPA: 1,546  
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Initially the reviewers achieved an inter-rater kappa score of 0.716 for the risk of bias 

assessment, with the criteria utilised to define RMR as one of the main reasons for 

disagreement.  Subsequently, MSB and MAM resolved discrepancies by discussing each point 

which resulted in a kappa score of 1. Thus, the criteria to define RMR was specified in the 

checklist. The majority of the studies had high scores for sample characteristics and 

accelerometer settings (Table A4), with 5 studies classified as good, five as fair and two as 

poor for both criteria. Similar results were not found for protocol design, with 10 studies 

scoring as poor and one as fair. For physiological criterion, 9 studies were classified as fair, 1 

as good and 1 as poor. Only two studies scored as good for statistical approach for calibration, 

with the majority classified as poor (n = 5) and fair (n = 4). Almost all studies were poor (n = 

8) for statistical approach for validation, with only 3 studies classified as fair.  

 Table A4 Checklist Risk of Bias Assessment Results  

Study Sample 

Characteristics 

Accelerometer 

Settings 

Protocol 

Design 

Criterion Statistical 

Approach 

for 

Calibrations 

Statistical 

Approach 

for 

Validations 

Molt et al., 2009 Fair 

 

 

Fair 

 

Poor 

 

Fair Poor Poor 

Weikert et al., 2011 Poor 

 

 

Fair 

 

Poor Fair Poor Poor 

Sandroff et al., 2012 Good 

 

Good Poor Fair Poor Poor 
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Sandroff et al., 2014b Fair 

 

Good Poor Fair Poor Poor 

Lopes et al., 2009 Good 

 

Poor 

 

Poor Fair Fair Fair 

Giffuni et al., 2012 Fair 

 

 

Fair Poor Fair Fair Poor 

Aadland & Anderseen 

et al., 2012 

Good 

 

 

Good Poor Fair Good Fair 

Aadland & Steene-

Johannessen et al., 

2012 

Good 

 

Good Poor Fair Fair Poor 

Agiovlasitis et al., 

2012 

Fair 

 

Fair Poor Good Good Poor 

Nero et al., 2016 Fair Good 

 

Poor Poor Fair Fair 
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Indirect calorimetry was the most common method (n = 10) used to estimate the 

physiological criterion (e.g. EE, METs or V O2). Covariates were considered by nine studies, 

five of which utilised disease-specific assessments (e.g., Multiple Sclerosis Walking Scale). 

Among the studies including covariates, four either included disease-related factors in the 

analysis or investigated whether the inclusion of those variables would improve the model 

adopted for calibration. Four studies also included demographic factors in the analysis. Two 

studies investigated the relationship of the covariates through correlations with accelerometer 

derived counts·min-1. 

 

3.1.2 Accelerometers 

 

Thresholds were developed for 6 different accelerometers (Table A5); the majority 

were different models of ActiGraph (n = 9; Aadland & Anderssen, 2012; Aadland & Steene-

Johannessen, 2012; Agiovlasitis et al., 2012; Lopes et al., 2009; Motl et al., 2009; Nero et al., 

2015; Sandroff et al.; Sandroff, Riskin, et al., 2014; Weikert et al., 2011) with the others using 

Actical (Giffuni et al., 2012; Serra et al., 2017). Seventeen of the MVPA cut-points were 

developed using a uniaxial accelerometer and six using a triaxial accelerometer. The hip was 

the most common placement, adopted by nine studies to develop 22 MVPA cut-points. Nine 

of the MVPA cut-points were developed with the accelerometer placed on the right hip 

(Aadland & Anderssen, 2012; Aadland & Steene-Johannessen, 2012; Giffuni et al., 2012; 

Lopes et al., 2009; Motl et al., 2009), seven on non-dominant hip (Sandroff et al.; Sandroff, 

Riskin, et al., 2014), one on non-paretic hip (Serra et al., 2017), one on both hips (Aadland & 

Steene-Johannessen, 2012), two on the left hip (Aadland & Steene-Johannessen, 2012). One 

study placed the accelerometer on the right wrist (Agiovlasitis et al., 2012) and one did not 

specify the side (Nero et al., 2015). Reported sampling frequency varied from 10 Hz (Weikert 

et al., 2011) to 30 Hz (Nero et al., 2015; Sandroff et al.), although eight studies did not report 

Serra et al., 201 

 

 

Good Fair Fair Fair Poor Poor 
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the sampling frequency used (Aadland & Anderssen, 2012; Aadland & Steene-Johannessen, 

2012; Agiovlasitis et al., 2012; Giffuni et al., 2012; Lopes et al., 2009; Motl et al., 2009; 

Sandroff, Riskin, et al., 2014; Serra et al., 2017). Furthermore, only four studies described how 

they filtered the accelerometer data, with three (Aadland & Anderssen, 2012; Aadland & 

Steene-Johannessen, 2012; Nero et al., 2015) using the standard filtering provided by the 

accelerometer software and one (Sandroff, Riskin, et al., 2014) applying the low-filtering 

extension provided by ActiLife software. A wide variety of epoch lengths were used to develop 

the MVPA cut-points, with five studies using 60-s epochs (Giffuni et al., 2012; Lopes et al., 

2009; Sandroff, Riskin, et al., 2014; Serra et al., 2017; Weikert et al., 2011), followed by one 

using 10-s (Aadland & Steene-Johannessen, 2012), two studies using 15-s (Nero et al., 2015; 

Sandroff et al.) and two using 30-s epochs (Agiovlasitis et al., 2012; Motl et al., 2009). The 

epoch length was extracted from MVPA cut-point unit (i.e. counts·min-1, counts per 15-s) when 

not specified in the methodology (Nero et al., 2015).   

 

Table A5 Summary of Accelerometer Models Calibrated in the Included Studies 

Name / Model Manufacturer Dimensions 

(Weight and Size) 

Memory Capacity Axis Frequency 

Sampling 

ActiGraph 7164 

(CSA) 

ActiGraph LLC 

Pensacola, FL 

45,5g 

5.1 x 4.1 x 1.5 cm 

22 days of data with 

60-s epoch 

Uniaxial 10 Hz 

GT1M ActiGraph  ActiGraph LLC 

Pensacola, FL 

27g 

3.8 x 3.7 x 1.8 cm 

378 days using 60-s 

epoch 

Biaxial 30 Hz 

ActiGraph GT3X ActiGraph LLC 

Pensacola, FL 

27g 

3.8 x 3.7 x 1.8 cm 

378 days using 60-s 

epoch 

Triaxial 30 Hz 

ActiGraph GT3X+ ActiGraph LLC 

Pensacola, FL 

19g  

4.6 x 3.3 1.5 cm  

38 days using 100 

Hz 

Triaxial 30 – 100 Hz 

ActiGraph 

wGT3X+  

ActiGraph LLC 

Pensacola, FL 

19g  

4.6 x 3.3 1.5 cm 

38 days 100 Hz Triaxial 30 – 100 Hz 

Actical Mini-Mitter 

Sunriver, OR 

17.5g 2.8 x 2.7 x 1.0 

cm 

45d using 60-s 

epoch 

Uniaxial  32 z 
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3.1.3 Calibration Protocol Settings 

 

Laboratory-based protocols were utilised in 10 studies (Aadland & Anderssen, 2012; 

Aadland & Steene-Johannessen, 2012; Agiovlasitis et al., 2012; Giffuni et al., 2012; Lopes et 

al., 2009; Motl et al., 2009; Sandroff et al.; Sandroff, Riskin, et al., 2014; Weikert et al., 2011), 

with only one study (Lopes et al., 2009) applying a mixed protocol. Indirect calorimetry was 

performed by 10 (Aadland & Anderssen, 2012; Aadland & Steene-Johannessen, 2012; 

Agiovlasitis et al., 2012; Giffuni et al., 2012; Lopes et al., 2009; Motl et al., 2009; Sandroff et 

al.; Sandroff, Riskin, et al., 2014; Serra et al., 2017; Weikert et al., 2011) of the studies, with 

one study (Nero et al., 2015; Serra et al., 2017) using both indirect calorimetry and HR and 

another using speed (Nero et al., 2015) and the duration of the protocol varied from 9 to 60 

minutes. Indirect calorimetry was utilised as the physiological criterion by the majority of 

studies (n =10). Specifically, six studies derived Metabolic Equivalents of Task (MET) from 

oxygen uptake (V O2), whereas four studies used the V O2 itself to determine the relationship 

with accelerometer counts. Four studies performed an individual calibration (Aadland & 

Steene-Johannessen, 2012; Giffuni et al., 2012; Sandroff et al.; Sandroff, Riskin, et al., 2014), 

five performed a group calibration (Lopes et al., 2009; Motl et al., 2009; Nero et al., 2015; 

Serra et al., 2017; Weikert et al., 2011) and one study performed both (Aadland & Steene-

Johannessen, 2012). 

 

3.1.4 Statistical Approach 

 

Linear regression was the most common technique employed to generate eight MVPA 

cut-points in adult clinical populations (Aadland & Anderssen, 2012; Aadland & Steene-

Johannessen, 2012; Motl et al., 2009; Sandroff et al.; Sandroff, Riskin, et al., 2014; Serra et al., 

2017; Weikert et al., 2011; Weikert et al., 2012), followed by hierarchical modelling, 

generating four MVPA cut-points (Aadland & Anderssen, 2012; Aadland & Steene-

Johannessen, 2012; Agiovlasitis et al., 2012; Lopes et al., 2009), and receiver operating 

characteristic (ROC) analysis, developing five MVPA cut-points (Aadland & Anderssen, 2012; 

Giffuni et al., 2012; Nero et al., 2015). Thus, one study (Aadland & Anderssen, 2012) applied 

two different ROC models; the first model prioritized higher sensitivity (true positives/total 

positives) and specificity (true negatives/total negatives), whilst the second model used overall 
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accuracy (true positives and true negatives/total positives and negatives).Ten studies (Aadland 

& Anderssen, 2012; Aadland & Steene-Johannessen, 2012; Agiovlasitis et al., 2012; Giffuni et 

al., 2012; Lopes et al., 2009; Motl et al., 2009; Sandroff et al.; Sandroff, Riskin, et al., 2014; 

Weikert et al., 2011) did not perform any kind of validation and one performed a leave-one-

out cross validation (Nero et al., 2015). Furthermore, most of the studies did not perform any 

agreement assessment (n = 8) (Aadland & Anderssen, 2012; Aadland & Steene-Johannessen, 

2012; Lopes et al., 2009; Motl et al., 2009; Sandroff et al.; Sandroff, Riskin, et al., 2014; Serra 

et al., 2017; Weikert et al., 2011); one study performed Bland-Altman (Agiovlasitis et al., 2012) 

and one calculated the Kappa Score (Nero et al., 2015).  

 

3.1.5 Outcome 

 

All the disease-specific MVPA cut-points extracted from the included studies were 

integrated to a 60-s epoch to allow comparison between thresholds when not available in this 

format (Table A6). Most studies presented their cut-points in counts·min-1, despite using 

different epoch lengths for processing the activity counts. Disease-specific cut-points of MVPA 

varied from a minimum of 612 counts·min-1 to a maximum of 6,460 counts·min-1.  

 

 

Table A6 Summary of Moderate-to-vigorous Disease-specific Cut-points 

Disease (n*) Study Reason for split Cut-points 

MVPA (original) 

Cut-points 

MVPA 

converted to 

counts.min-

1a 

Criterion Validity 

 

 

 

 

 

 

 

 

 

Molt et al., 2009 N/A 6460 (counts.min-1) 

 

N/A N/A 

Weikert et al., 

2011 

No Gait-disability 

Group 

2717 (counts·min-1) N/A N/A 

Weikert et al., 

2011 

Overall Group (gait 

and non-gait-

disability) 

2371 (counts·min-1) N/A N/A 

Weikert et al., 

2011 

Gait-disability 

Group 

1886 (counts·min-1) N/A N/A 
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Multiple Sclerosis (7) 

Sandroff et al., 

2012 

ActiGraph 7164 1723 (counts·min-1) 

 

N/A N/A 

Sandroff et al., 

2012 

ActiGraphGT3X 1584 (counts·min-1) 

 

N/A N/A 

Sandroff et al., 

2014b 

Overall Group (gait 

and non-gait-

disability) 

1745 (counts·min-1) N/A N/A 

Sandroff et al., 

2014b 

Gait-disability 

Group 

1185 (counts·min-1) N/A N/A 

Sandroff et al., 

2014b 

No Gait-disability 

Group 

1980 (counts·min-1) N/A N/A 

 

 

 

 

 

 

 

 

 

 

 

 

Overweight/obesity/ 

Type 2 Diabetes 

Mellitus (10) 

Lopes et al., 2009 N/A 2400 (counts·min-1) N/A Concordance Correlation 

Coefficient: 0.8 

Giffuni et al., 

2012 

N/A 4032 (counts·min-1) N/A N/A 

Aadland and 

Anderssen et al., 

2012 

ROC 1 1646 (counts·min-1) N/A N/A 

Aadland  and 

Anderssen et al., 

2012 

ROC 2 1310 (counts·min-1) N/A N/A 

Aadland and 

Steene-

Johannessen  et 

al., 2012 

Individual 

Calibration / Linear 

Regression 

1151 (counts·min-1) N/A Bland-Altman / LOA 

Aadland and  

Steene-

Johannessen et al., 

2012 

Linear Regression / 

Left Hip 

1095 (counts·min-1) N/A Bland-Altman / LOA 

Aadland and  

Steene-

Johannessen et al., 

2012 

Linear Regression / 

Right Hip 

1078 (counts·min-1) N/A Bland-Altman / LOA 

Aadland  and 

Anderssen et al., 

2012 

OLR / Right Hip 720 (counts·min-1) N/A N/A 

Aadland  and 

Anderssen et al., 

2012 

MIX REG / Left 

Hip 

685 (counts·min-1) N/A Bland-Altman / LOA 
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Down Syndrome (1) Agiovlasitis et al., 

2012 

N/A 1137 (counts·min-1) N/A Bland-Altman / LOA 

 

 

 

Parkinson disease (2) 

Nero et al., 2016 N/A 730 (counts·15 s-1) 2980 Cross-validation: 74% - 

64% of agreement; 

Kappa Score: 0.79 for y 

axis and kappa score: 

0.69 for VM. 

Nero et al., 2016  851  

(counts·15 s-1) 

3404  

Chronic Stroke (1) Serra et al., 2017 N/A 1546 (counts·min-1) N/A N/A 

ROC: receiver operating characteristic, ROC 1: Roc with best sensitivity and specificity, ROC 2: ROC with better 

accuracy definition, OLR: Ordinary Linear Regression, MIX REG: Linear Mixed Model Regression. LOA: limits 

of agreement 

aConverted when not available. 

 

 

4.1 Discussion 

 

In total, 11 studies generating 23 MVPA cut-points in clinical conditions revealed a 

broad range of MVPA cut-points. Key recommendations for future studies are to include a 

variety of free-living activities that are applicable to the specific disease-population, of various 

intensities, and to ensure that a robust measure of EE and precise estimation of RMR are 

included to account for disease related alterations.   

 

4.1.1 Calibration Protocol for Clinical Populations 

 

Numerous factors should be considered in the development of a calibration protocol for 

clinical populations, including the inclusion of participant demographics and disease-related 

factors. Another key consideration in the development of cut-points for clinical populations is 

the addition of a physiological criterion to the calibration protocol, particularly related to 

energetic cost. Specifically, some conditions might be associated with an alteration in the daily 

Aadland  and 

Anderssen et al., 

2012 

MIX REG / Right 

Hip 

612 (counts·min-1) N/A N/A 
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total EE. This variation is likely to occur due to many factors, including impaired biomechanics 

(e.g., neuromusculoskeletal disorders), higher energetic cost of breathing (e.g., respiratory 

conditions) and disease severity and treatments (e.g., medications; (Bell et al., 1996; Psota & 

Chen, 2013; Sandroff, Klaren, et al., 2014; Serra et al., 2016). Thus, numerous factors in 

addition to PA contributes to total EE, such as the thermal effect of food intake and RMR. 

Indeed, indirect calorimetry was shown to overestimate EE when the RMR was not properly 

assessed (Fares et al., 2008). Therefore, RMR estimation is highly recommended to avoid bias, 

particularly as it was shown to be altered in many clinical conditions (Agiovlasitis et al., 2012; 

Alawad et al., 2013; Gajewski et al., 2017; Mahler et al., 2012; Montaurier et al., 2007; Nawata 

et al., 2004; Serra et al., 2015; Wens et al., 2014). Alternatively, MET can be used to estimate 

EE; Serra et al. (Serra et al., 2017) found METs to be the strongest predictor of activity counts, 

despite explaining only 65% of the accelerometer activity counts. Thus, most of the included 

studies derived MET values from a measure of oxygen uptake, which arguably would 

encompass any possible alteration in energetic cost arising from the disease. However, careful 

consideration must be given when using METs due to the controversial nature of this method 

and its failure to represent clinical subgroups (McMurray et al., 2014). Indeed, the standard 

MET value of 3.5 mL·kg-1·min-1 was developed based on healthy populations and therefore 

does not reflect pathological, biomechanical, metabolic and respiratory adaptations which are 

common in many clinical conditions (Byrne et al., 2005).    

 

 

4.1.2 Accelerometer Setting and Analysis Description 

 

Whilst hip was the most popular choice among the included studies (Aadland & 

Anderssen, 2012; Aadland & Steene-Johannessen, 2012; Giffuni et al., 2012; Lopes et al., 

2009; Motl et al., 2009; Sandroff et al.; Sandroff, Riskin, et al., 2014; Serra et al., 2017), the 

best location for monitor placement in clinical populations is unclear. Indeed, comparisons of 

hip- and wrist-generated thresholds demonstrated great variability which may be explained by 

biomechanical differences related to dominance (Aadland & Steene-Johannessen, 2012) or 

functional adaptations due to clinical conditions (Lerner et al., 2014; Ling et al., 2012). For 

example, in PD, freezing of gait can lead to a rapid trembling in the legs, which would be more 

efficiently measured by an accelerometer placed on the lower limb (Suzuki et al., 2017). 

Similarly, other conditions affecting the gait biomechanics might benefit from hip or lower 

https://www.google.co.uk/search?rlz=1C1CHBD_en-GBGB745GB745&q=Neuromusculoskeletal+disease&spell=1&sa=X&ved=0ahUKEwiB7tXtp7TXAhWMA8AKHV8NDS4QvwUIJSgA


239 

 

 

limb placements, as demonstrated under a free-living protocol for chronic stroke and MS 

patients (Rand et al., 2009; Sparaco et al., 2018). 

The choice of accelerometer settings and signal processing should be described in the 

calibration protocol to allow comparability between studies and generalisability of the 

developed cut-points (Brond & Arvidsson, 2016). Nonetheless, five of the included studies did 

not report the sampling frequency and filtering methods used (Agiovlasitis et al., 2012; Giffuni 

et al., 2012; Lopes et al., 2009; Motl et al., 2009; Serra et al., 2017). The most popular choice 

of epoch was 60-s (Giffuni et al., 2012; Lopes et al., 2009; Sandroff et al.; Sandroff, Riskin, et 

al., 2014; Serra et al., 2017; Weikert et al., 2011), with the majority of studies presenting 

MVPA in counts·min-1. Alternatively, the choice of 1 or 5-s epochs is appropriate to capture 

short bursts of activities and could be a suitable choice for free-living protocols or for analyses 

utilising pattern recognition (Gabriel et al., 2010; Staudenmayer et al., 2009).  Whilst 

counts·min-1 are commonly used, the units are somewhat arbitrary and lack direct practical 

meaning and transparency due to their proprietary nature (Kozey et al. 2011; Sievanan et al. 

2017). Indeed, the brand-specific units limit inter-study comparisons. In contrast, the use of 

raw acceleration signals allow more complex analyses and, consequently, higher prediction 

accuracy (Montoye, Nelson, et al., 2018).  

 

4.1.3 Protocol Design 

 

The calibration protocols were classified into four categories: laboratory-based 

protocols that involved walking or running on a treadmill; free-living protocols that assessed 

participants during their daily routines; daily-life protocols that involved daily-life activities in 

the laboratory and mixed protocols that utilised more than one of the previously described 

protocols. A free-living protocol is widely considered the most appropriate for calibration as it 

determines the relationship between EE and PA in an ecologically valid manner (Mackintosh 

et al., 2012). Despite that, almost all the studies in the neuromusculoskeletal disease group 

(Agiovlasitis et al., 2012; Motl et al., 2009; Nero et al., 2015; Sandroff et al.; Sandroff, Riskin, 

et al., 2014; Weikert et al., 2011) utilised over-ground walking protocols. Likewise, almost all 

of the studies in metabolic disease populations (Aadland & Anderssen, 2012; Aadland & 

Steene-Johannessen, 2012; Giffuni et al., 2012; Lopes et al., 2009) performed treadmill 

walking protocols, with only one study encompassing jogging. A limitation of such walking 
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protocols is that they are unlikely to provide a fair classification of activities beyond those of 

locomotion (Crouter et al., 2006). In addition, studies suggest that individuals with chronic 

stroke and PD are more prone to adopt a different strategy to increase gait speed when walking 

on the treadmill (Lamontagne et al., 2016; Warlop et al., 2018). During treadmill ambulation, 

the lack of visual cues and a moving floor results in a cautious gait, with individuals adopting 

slower speeds and increased stride length compared to overground walking (Lamontagne et al., 

2016; Warlop et al., 2018). As such, the use of treadmill to calibrate for such populations may 

result in a misrepresentation of their gait during daily-life and should be considered with 

caution. Alternatively, a free-living protocol would be the ideal framework to provide a more 

ecologically valid measure of PA (Welk, 2005) in clinical populations. 

 

4.1.4  Statistical Approach 

 

The statistical approach adopted to translate activity counts and EE into cut-points 

could substantially impact the derived thresholds. For example, whilst linear regression has 

been most widely used (Aadland & Anderssen, 2012; Aadland & Steene-Johannessen, 2012; 

Motl et al., 2009; Sandroff et al.; Sandroff, Riskin, et al., 2014; Serra et al., 2017; Weikert et 

al., 2011), it assumes that the relationship between activity counts and metabolic data (i.e. V

O2, METs) is linear. To address this issue, recent calibration studies have incorporated more 

flexible statistical methods, such as ROC analysis, hierarchical models, and machine learning 

(Crouter et al., 2011; Freedson et al., 2005; Montoye et al., 2017). However, in the context of 

clinical populations, it is pertinent to note that ROC analysis does not allow adjustment for 

clinical factors and may therefore not be an optimal approach.  

Machine learning and pattern recognition have been identified as the optimal methods 

for classifying PA (Bonomi, Plasqui, et al., 2009; Staudenmayer et al., 2015; Staudenmayer et 

al., 2009; Welk, 2005). A recent systematic review highlighted the high predictive accuracy of 

laboratory-calibrated protocols using machine learning models (Farrahi et al., 2019), with 

Hidden Markov models (Pober et al., 2006), decision trees (Mathie et al., 2004) and artificial 

neural networks (Staudenmayer et al., 2009) the most common models used to estimate PA 

from raw acceleration signals. Indeed, the use of such models improved PA prediction, 

overcoming the inherent limitations of using static epoch lengths (Montoye, Bradford, et al., 

2018). Whilst promising, the use of machine learning to estimate PA from raw accelerations is 
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still in the early phases of development. Specifically, the reproducibility of machine learning 

approaches in free-living settings requires further investigation (Kerr et al., 2016). 

Additionally, machine learning models often require considerably sized training data sets, 

particularly deep learning, which might be a challenge when using indirect calorimetry 

(Mannini & Sabatini, 2010). Future studies calibrating accelerometry for clinical populations 

should consider using machine learning in order to achieve higher prediction accuracy and 

promote advancements in the field. However, it is noteworthy that even complex statistical 

approaches such as pattern recognition would still require an optimised calibration protocol in 

order to ensure high prediction accuracy. In addition, other statistical approaches should also 

be considered, such as probability analysis which has been employed to translate activity 

counts into PA behavioural data in mental illness patients (Chapman et al., 2017).  

Cross-validation establishes the validity of the developed cut-points and verifies that 

the thresholds are applicable across any participant of similar age and health status to the 

sample it was generated from. Whilst it is recommended that a cross-validation should be 

conducted utilising an independent sample and different activities (Welk, 2005), the use of a 

leave-one-out-approach can also be considered. For example, Nero et al. (2015) used a leave-

one-out approach to cross-calibrate the specific PD cut-points. Additionally, a measure of 

agreement should be performed in addition to a cross validation (Lopes et al., 2009), and the 

cross-validation should be applied after developing the thresholds and not as a robustness check 

prior to the analysis (Aadland & Anderssen, 2012). Future studies should continue to cross-

validate the disease-specific thresholds to ensure their reliability and validity across different 

protocols and clinical stages.  

 

4.1.5 Outcome: MVPA Cut-points  

 

Disease-specific cut-points are essential in understanding and promoting PA in clinical 

populations. The majority of the MVPA cut-points developed for clinical populations were 

different to those previously developed for healthy adults (Freedson et al., 1998); disease-

specific MVPA cut-points varied greatly, from 612 counts·min-1 to 6,460 counts·min-1, even 

within the same condition. Indeed, (Serra et al., 2017) developed Actical MVPA cut-points for 

stroke patients that were equivalent to LPA cut-points for general population. This large 

variability can be attributed to the occurrence of gait impairment at advanced stages of the 
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disease, in addition to differences in treatments and medications. However, a control group is 

warranted in order to ascertain whether any variation in the cut-points is caused by the 

pathophysiology of the disease or differences in the calibration protocol. Indeed, whilst a 

control group is highly beneficial in the interpretation of the findings of each study, cut-points 

previously established for general populations could be used when necessary to investigate 

whether the use of the disease-specific cut-points enhances the predictive accuracy (Janssen et 

al., 2015; Trost et al., 2015). 

 

4.1.6 Strengths and Limitations 

 

It is important to acknowledge that the search protocol was developed with a subject-

specific librarian, following a rigorous iterative process. Specifically, initial pilot searches were 

conducted to assess the feasibility of the initial criteria and search terms. Revisions were 

subsequently made to the outcomes, risk of bias assessment and final analyses. Moreover, 

extensive screening was performed by the first author to capture all calibration studies, 

irrespective of healthy or clinical status, to ensure that no clinical calibration studies were 

missed. Whilst this review is associated with numerous strengths, there are, nonetheless, 

limitations. Firstly, only studies generating MVPA cut-points were included; whilst cut-points 

are still widely used in PA research, major limitations associated with this practice should be 

acknowledged. The large variability of intensity-related cut-points also occurs among general 

population (Reilly et al., 2008), causing what Trost et al. (2007) described as the ‘cut-point 

conundrum’. This discrepancy is multifactorial, arising in part from the lack of standardization 

of calibration protocols and broad range of statistical approaches applied to reduce 

accelerometer data to cut-points. It is also important to acknowledge the high risk of bias 

encountered within the included studies which limits our conclusions. Finally, it is noteworthy 

that the present recommendations were based on a relatively small range of clinical conditions, 

further demonstrating the need for more population-specific calibration protocols.  

 

5.1 Conclusion 
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This systematic review highlights the large variability in MVPA cut-points developed 

for clinical populations. Indeed, a lack of standardisation in the protocol design, as well as the 

statistical approach, makes it impossible to compare disease-specific cut-points to those 

generated for healthy populations. To ensure ecological validity, future calibration protocols 

should incorporate a large variety of free-living activities, of various intensities, instead of 

protocols composed predominantly of walking. Moreover, future research should ensure a 

robust measure of EE is adopted as the criterion measure for accelerometry, as well as a precise 

estimation of RMR. Studies incorporating a control group and utilising cross-validation of the 

developed clinical thresholds are warranted. Finally, whilst standardization is necessary, it is 

highly recommended that future studies consider the pathophysiology of the disease when 

designing the protocol.   

 

6.1 Practical Implications 

 

• To incorporate the pathophysiology of the disease to the calibration protocol.  

• To use a daily-life or free-living protocols mimicking the routine of the participants.  

• To include a control group. 

• To shift towards machine learning models as a statistical approach. 

• To cross-validate the cut-points.    
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Appendix B: Chapter 4 - Summary of Included Studies Calibrating Accelerometry in Paediatric Clinical Group 

 

Studies 

 

Author, year 

Participants 

 

Sample size (n) 

Health status 

Control Group 

Sex (boy/girl) 

Age (range or mean ± SD) 

Height (mean ± SD) 

Weight (range or mean ± SD) 

BMI (range or mean ± SD) 

Ethnicity 

Covariates 

Accelerometer 

 

Device Model 

Number of axes 

Placement 

Sampling frequency 

Filter 

Epoch 

Sampling duration 

Wear-time 

Calibration Protocol 

 

Physiological/ 

Observational 

EE estimation 

RMR estimation 

Individual calibration 

Protocol type 

Duration 

 

 

Statistical Approach 

 

Calibration 

Validation 

Agreement   

Outcome 

 

Cut-Points/ 

Equation 

Trost et al. 2015 n = 51 

Cerebral Palsy 

GMFCS I (27) 

GMFCS II (12) 

GMFCS III (12) 

Control: 0 

28 girls 

12.0 ± 3.0 years 

147.0 ± 16.5 cm 

46.8 ± 19.0 kg 

GMFCS 

 

ActiGraph GT3X 

Triaxial 

Right hip 

30 Hz 

Epoch: 1-s 

Physiological: V O2 

Resting V O2:  Schofield 

Individual calibration: no 

Protocol type: Mixed – daily-

life and walking 

Duration: 120 min 

 

Calibration: Binary DT 

Validation: LOOCV 

Agreement: Kappa and ROC   

Cut-points (counts·15 s-1) 

All levels: 

LPA: < 72 

GMFCS I 

MVPA: 724 

GMFSC II 

MVPA: 685 

GMFCS III 

MVPA: 669 
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Ryan et al. 2014 n = 18 

Cerebral Palsy 

Control: no 

11.4 ± 3.2 years 

147.0 ± 18.5 cm 

44.6 ± 16.9 kg 

BMI: 20 ± 4.5 kg·m-2 

GMFCS 

RT3 

Right hip 

Epoch: 60-s 

Physiological: V O2 

RMR: Oxford equation 

Individual calibration: none 

Protocol type: laboratory 

Duration: 36 min 

 

Calibration: 

 ROC curve 

Validation: none 

Agreement: Kappa score 

Cut-points (counts·min-1):  

LPA: 52 

MVPA: 689.3  

Clanchy et al. 

2011 

n = 29 

Cerebral palsy 

Control: no 

13 girls 

12.5 ± 2.0 years 

156.6 ± 11.0 cm 

47.7 ± 16.1 kg 

GMFCS 

ActiGraph (7164) 

Uniaxial 

Least affected hip 

10 Hz 

Epoch: 1-s 

Physiological: V O2   

RMR: Schofield equation 

Individual calibration: none 

Protocol type: laboratory 

Duration: 60 min 

 

Calibration: 

 ROC curve 

Validation: none 

Agreement: none 

Cut-points (counts·min-1):  

LPA: 1627.3 

MVPA: 2942.1 

VPA: 4683.6 
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McGarty et al. 

2016 

n = 50 

Validation: 36   

Intellectual disabilities 

Control: no 

37 girls 

9.5 ± 1.1 years 

143 ± 0.9 cm 

39.33 ± 10.28 kg 

BMI: 19.9 ± 3.8 kg·m-2 

  

ActiGraph Wgt3X+ 

Triaxial 

Right hip 

30 Hz 

Epoch: 10-s 

Physiological: Direct 

Observation 

Individual calibration: none 

Protocol type: Daily-life 

Duration: 45 min 

 

Calibration: ROC 

Validation: LOOCV 

Agreement: Kappa score  

Cut-points (counts·min-1):  

VA: 

SED: 507 

MPA: 1008 – 2300 

VPA: 2301 

MVPA: 1008 

VM: 

SED: 1863 

MPA: 2610 – 4214 

VPA: 4215 

MVPA: 2610 

Stephens et al. 

2016 

n = 195 

Control: n = 29 

13 girls 

13.1 ± 2.8 years 

162 ± 16 cm 

57.6 ± 20 kg 

ActiGraph (7164) and 

Actical 

Uniaxial 

Right hip 

10 HZ / 32 Hz 

Epoch: 15-s 

Physiological: V O2 and HR 

RMR: 2 h fasting – 20 min in 

rest  

Individual calibration: no 

Protocol type: Mixed: 

laboratory and daily-life 

Calibration: Mixed regression 

models for equation, ROC 

curve for cut-points. 

Validation: LOOCV 

Agreement:  none 

Chronic disease (combined) – 

ActiGraph 

SED: 10 

LPA: 10 – 426 

MVPA: 426 – 785 

Chronic disease (combined) – 

Actical 
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Skinfold: 38 ± 17 

Tanner stages: 30 % (stages 1-

2), 70 % (stage 3) 

CHAQ: 0.15 ± 0,26 

PedsQL: 83 ± 9  

Cystic fibrosis (n = 32) 

14 girls 

12.8 ± 2.9 years 

156 ± 16 cm 

45 ± 14 kg 

Skinfold: 31 ± 13 

Tanner stage: 19 % (stages 1-

2), 81% (stage 3) 

CHAQ: 0.27 ±0.3 

PedsQL: 78 ± 12  

Congenital heart disease (n = 

15) 

5 girls 

Duration: 240 min 

 

SED: 10 

LPA: 17 - 288 

MVPA: 289 - 570 

Cystic fibrosis - ActiGraph 

SED: 10 

LPA: 10 - 487 

MVPA: 487 – 852 

Cystic fibrosis - Actical 

SED: 5 

LPA: 5 – 368 

MVPA: 368 – 1025 

Congenital heart disease - 

ActiGraph 

SED: 10 

LPA: 10 - 349 

MVPA: 349 - 785 

Congenital heart disease - 

Actical 
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13.6 ± 3.3 years 

161 ± 17 cm 

54 ± 17 kg 

Skinfold: 42 ± 15.5 

Tanner Stage: 38 % (stages 1 -

2), 62 % (stage 3) 

CHAQ: 0.17 ± 0.3 

PedsQL: 72 ± 12 

Haemophilia (n= 28) 

0 girls 

12.4 ± 3.3 years 

156 ± 19 cm 

53 ± 20.7 kg 

Skinfold: 40 ± 20 

Tanner Stage: 27 % (stages 1-

2), 73 % (stage 3)  

CHAQ: 0.25 ± 0.4 

PedsQL: 82 ± 16  

SED: 9 

LPA: 9 - 349 

MVPA: 349 – 633 

Haemophilia - ActiGraph 

SED: 17 

LPA: 17 - 432 

MVPA: 432 - 788 

Haemophilia - Actical 

SED: 19 

LPA: 19 - 306 

MVPA: 306 - 1114  

Inherited muscle disease - 

ActiGraph 

SED: 37 

LPA: 37 - 663 

MVPA: 663 - 972 

Inherited muscle disease - 

Actical 
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Idiopathic muscular 

dystrophies (n= 30) 

8 girls 

12.0 ± 3.4 years 

146 ± 22 cm 

41 ± 14 kg 

Skinfold: 41 ± 18 

Tanner stage: 70 % (stages 1-

2) 30 % (stage 3) 

CHAQ: 0.8 ± 0.7 

PedsQL: 68 ± 17 

Juvenile dermatomyositis (n = 

31) 

20 girls 

13.4 ± 2.3 years 

159 ± 11 cm 

52 ± 14 kg 

Skinfold: 48 ± 17 

SED: 14 

LPA: 14 - 297 

MVPA: 297 - 523 

Juvenile dermatomyositis- 

ActiGraph 

SED: 14 

LPA: 14 - 172 

MVPA: 172 - 543 

Juvenile dermatomyositis - 

Actical 

SED: 18 

LPA: 10 -166 

MVPA: 166 - 601 

Juvenile arthritis - ActiGraph 

SED: 25 

LPA: 25 - 255 

MVPA: 255 - 771 

Juvenile arthritis - Actical 
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SD: standard deviation; BMI: body mass index; EE: energy expenditure; RMR: resting metabolic rate; GMFCS: gross motor function classification system; V O2: oxygen uptake, LOOV: leave-

one-out cross-validation; ROC: receiver operating characteristic; SED: sedentary time, LPA: light physical activity; MVPA: moderate-to-vigorous physical activity; VPA: vigorous activity; 

CHAQ: childhood health assessment questionnaire; PedsQL: pediatric quality of life inventory 

 

 

Tanner stage: 27 % (stages 1 -

2), 73 % (stage 3) 

CHAQ: 0.4 ± 0.6 

PedsQL: 77 ± 15 

Juvenile arthritis (n = 31) 

23 girls 

12.7 ± 2.6 years 

154 ± 12 cm 

47 ± 14 kg 

Skinfold: 46 ± 22 

Tanner stage: 32 (stages 1 -2), 

68 % (stage 3) 

CHAQ: 0.5 ± 0.5 

PedQL: 72 ± 13  

SED: 19 

LPA: 19 - 152 

MVPA: 152 - 542 
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Appendix C: Chapter 4 - Literature Search Details 

 

Sources searched: The search was performed between March and July 2017 in four databases 

(PubMed, SPORTDiscus, ScienceDirect, Scopus), the Web of Science platform, which is 

composed of 6 electronic databases (Web of Science Core Collection, BIOSIS Citation Index, 

KCI-Korean Journal Database, MEDLINE, Russian Science Citation Index, SciELO Citation 

Index), and the Wiley Online Library 

 

Dates searched: 2000 onwards 

Criteria: Cross-sectional studies; English language only 

 

One search strategy was adopted for all databases and included the terms: physical activity, 

accelerometry, calibration, wearable monitors, thresholds, cut-points, validation, classification, 

energy expenditure and physical activity intensities. 

 

All findings according to database: 

 

PubMed search 

Searched online 3rd April 2017 

1. acceleromet* 7.365 

2. acceleromet* AND (validation OR calibration): 823 

3. acceleromet* AND physical activity: 5.099 

4. wearable monitors AND (calibration OR validation): 17 

5. physical activity AND (calibration OR validation): 5.026 

6. acceleromet* thresholds: 127 

7. acceleromet* cut-points: 133 

8. energy expenditure AND acceleromet*: 825 

9. classification AND physical activity intensities: 42 
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Science Direct 

Searched online 26 of April 2017 

1. acceleromet*: 37 

2. Acceleromet* AND (validation OR calibration): 1281 

3. Acceleromet* AND physical activity: 2560 

4. wearable monitors AND (calibration OR validation): 685 

5. physical activity AND (calibration OR validation): 5677 

6. acceleromet* thresholds: 3464 

7. acceleromet* cut-points: 955 

8. energy expenditure AND acceleromet*: 2482 

9. classification AND physical activity intensities: 2315 

 

SportDiscuss 

Searched online 05 of May 2017 

 

1. acceleromet*: 1740 

2. Acceleromet* AND (validation OR calibration): 155 

3. Acceleromet* AND physical activity: 1228 

4. wearable monitors AND (calibration OR validation): 3 

5. physical activity AND (calibration OR validation): 374 

6. acceleromet* thresholds: 23 

7. acceleromet* cut-points: 133 

8. energy expenditure AND acceleromet*: 825 

9. classification AND physical activity intensities: 13 

 

Scopus 

Searched online 17 of May 2017 

 

1. acceleromet*: 9569 

2. Acceleromet* AND (validation OR calibration): 1035 

3. Acceleromet* AND physical activity: 5871 

4. wearable monitors AND (calibration OR validation): 54 

5. physical activity AND (calibration OR validation): 3979 
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6. acceleromet* thresholds: 664 

7. acceleromet* cut-points: 196 

8. energy expenditure AND acceleromet*: 949 

9. classification AND physical activity intensities: 338 

 

Wiley 

Searched online 20 of June 2017 

 

1. acceleromet*: 10482 

2. Acceleromet* AND (validation OR calibration): 3955 

3. Acceleromet* AND physical activity: 5393 

4. wearable monitors AND (calibration OR validation): 601 

5. physical activity AND (calibration OR validation): 97285 

6. acceleromet* thresholds: 3836 

7. acceleromet* cut-points: 551 

8. energy expenditure AND acceleromet*: 1792 

9. classification AND physical activity intensities: 32466 

 

ISIS Web of Science 

Searched online 03 of July  

 

1. acceleromet*: 301087  

2. Acceleromet* AND (validation OR calibration): 986  

3. Acceleromet* AND physical activity: 3207  

4. wearable monitors AND (calibration OR validation): 387  

5. physical activity AND (calibration OR validation):  7004  

6. acceleromet* thresholds: 849  

7. acceleromet* cut-points: 249  

8. energy expenditure AND acceleromet*: 2062  

9. classification AND physical activity intensities: 388  
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Database Results Selected papers After deduplication  

PubMed 

 

24,556 671 175 

SportDiscuss 

 

4,494 139 

 

48 

 

Scopus 

 

22,655 207 95 

 

Wiley 

 

156,361 34 

 

14 

Science Direct 

 

19,456 

 

74 30 

 

ISIS Web of 

Science 

 

316,219 692 242 

 

604 results saved to EndNote X7 library 

 

 

 



255 

 

 

Appendix D: Ethics Approval  

1. Chapters 5 to 8 – Joint Study Review Committee Approval Letter 
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2.  Chapters 5 to 8 – NHS Research Ethics Committee Approval 
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3.  Chapters 5 to 8 – Health Research Authority Approval 
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4. Chapters 6 and 7 – Human Research Ethics Committee at Alfred Health 

in Australia 
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5. Chapters 5 to 8 – Human Research Ethics Committee at Alfred Health in 

Australia Approval of Amendments 
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Appendix E: Information Sheets for Participants and Parents/Guardians  

1. Chapters 5 to 8 – Control 12-18 years old Information Sheet 

 

Applied Sports Technology Exercise and Medicine Research Centre (A-STEM) 

School of Sport and Exercise Sciences, College of Engineering  

CONTROL INFORMATION SHEET (12 - 18 YEARS OLD) 

(Version 1.3, Date 07/03/2018) 

 Project Title: Calibration and Cross-Validation of Accelerometry in Youth and Adults with Cystic 

Fibrosis: A cross-sectional Study 

Contact Details: 

Dr Melitta McNarry     Dr Kelly Mackintosh 

Email:    Email:  

Telephone:     Telephone:  

Mayara Silveira Bianchim                                              Dr Jeanette Hewitt (Independent contact) 

Email:                                     Email:  

Telephone:                                             Telephone:      

 

1. Invitation Paragraph 
Thank you for being interested in our project. Please read this information sheet 

very carefully, and think if you are happy to take part. If you are happy to, thank 

you. If you don’t want to take part, that is absolutely fine.  

2. What is the purpose of this study? 

For those with CF, physical activity and exercise are really important to staying 

as well as possible. However, we don’t know how much physical activity should 

be recommended to those with CF. Therefore, the purpose of this study is to see 

how difficult daily tasks like walking and playing games are for those with Cystic 

Fibrosis compared to their healthy friends and family. This will mean we can 

make specific recommendations for those with Cystic Fibrosis about the amount 

of physical activity they should do. 
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3. Why have you been chosen? 

You have been asked if you would like to take part because you are aged 

between 12 and 18 years of age and are free from any injuries or other 

illnesses. 

 

4. What will happen to you if you take part? 

You will be invited to attend 3 sessions that will take place at Swansea University 

(Bay Campus):  

 

 

 

 

Before the visits it would be great if you can avoid any intense physical activities 

(for example: playing sports or running for a long time), and avoid drinking 

caffeine (e.g. tea, coffee, coke) on the day before. Also, please don’t eat in the 

two hours before your sessions.  

 

Visit 1 

 

• Step 1 – First, we will measure your height, sitting height, weight and waist 

size. 

 

• Step 2 – Then, you will answer a questionnaire about your physical 

activity routine. There are no right or wrong answers, we are just 

interested in what you normally do.  

 

Visit 1 (week 1) 

Measure your weight, 

height and waist 

circumference  

Measure how hard you 

can breathe and how 

much energy you use 

lying down 

Fill in questionnaires 

Get physical activity 

monitors 

Visit 2 (week 2) 

Perform a range of 

normal daily activities  

Return Physical Activity 

Monitors 

 

 

Visit 3 (week 2) 

Walking and running on 

the treadmill 
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• Step 3 – We also need to know how mature you are so we will ask you to look 

at some pictures and tick which picture is most like you. You will do this on 

your own and no one else will see what you have ticked until you have 

finished the study when only the researcher will see. There is no right or 

wrong answer and no one minds which picture you tick. If you don’t want to 

do this bit, you don’t have to. 

 

• Step 4 – Next, we will measure your lung function by breathing out as hard 

as possible into a mouthpiece then we will ask you to lie down for 30 mins 

and breathe through a different mouthpiece so we can see how much energy 

you use while you are just lying down. 

 

• Step 5 – After this, we will take a picture of your skeleton and muscles 

using a machine called a DEXA machine. This will take about 5-10 minutes 

and you will be asked to lie on a bed and a very sensitive scan will be taken 

that gives us an image of your skeleton and allows us to see how thick and 

how old your bones are. We will take three different scans, one of your 

hand, one of your spine and another one of your whole skeleton. These 

scans use a very small dose of x-rays but much less than the type of x-ray 

you get at a hospital when they think you have broken a bone. The x-rays 

are the same amount as you get on a short-distance flight. 

 

• Step 6 – Finally, we will give you six physical activity monitors to wear 

continuously for 7 days, even when you sleep. These monitors are Physical 

Activity Trackers. They are like ‘FitBits’, and will record every movement you 

make, they are called accelerometers. This way we will be able to tell exactly 

how active you are. As you can see in the pictures below, four of these will 

be worn on your wrists, one around your waist and one will be stuck to your 

chest using sticky plasters which will also measure your heart rate. We are 

giving you six so we can see how they differ and what effect where you wear 

them has on how good they are at sensing your movements. It’s really 

important that when you are wearing these monitors, you do not do anything 

differently. We just want you to do whatever you would normally do each 

day. You do not need to take them off to do anything in water, like swimming 

or showering, because they are completely water proof. They can stay on all 
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the time. If you do take them off, we will give you a diary to note down when 

you did so and why so we can understand the data when we get the monitors 

back. On this diary, we would also like you to write down what time you went 

to sleep and woke up and how well you think you slept. 

 

 

 

 

 

Visit 2 

 

• Step 7 – One week later, we will ask you to come back and to do a variety 

of activities that you typically do at home, like watching TV, playing 

videogames and playing games outside. You will be asked to do all of the 

activities with a face mask on to measure how much oxygen you are 

breathing in and out, and a small clip on your index finger that will tell us 

how much oxygen you have in your blood. At the end of this visit, we will 

take off all of the physical activity monitors that you have been wearing 

for the last 7 days. 

 

Visit 3 

 

• Step 8 – On this last visit we will ask you to walk and then 

run on a treadmill while wearing the face mask and also 

all six of the monitors again. You will also be asked to wear 

a small clip on your index finger that will tell us how much 

oxygen you have in your blood. This test will only last as 

long as you are happy for it to last and we will not make 
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you run faster than you are happy with or normally do. 

 

We can cover reasonable travel expenses to help you attend these sessions. 

 

5. What are the possible disadvantages of taking part? 
The exercise on the treadmill may make you feel tired and the mask may feel a 

little uncomfortable, but you will soon feel less tired when you stop exercising 

and people generally forget about the mask after the first few minutes. We will 

give you lots of time to rest and make sure there is water if you need a drink. 

We know that we are asking for a lot of your time but we will try and fit these 

sessions in at the best times for you. Finally, the physical activity monitors might 

seem quite bulky when we first give them to you but they are just like wearing 

a watch or a belt and you will soon forget about them. For the one on your chest, 

you might find this itchy so we will give you some spare plasters so you can 

change them if you want to.  

 

6. How much radiation will I receive and what is the associated risk? 
If you take part in this study, we will ask you to do a scan of your bones and all 

the tissues in your body, like your muscles. This will mean you get a very small 

dose of radiation which can harm cells in your body. Lots of radiation can 

increase your risk of diseases later in life. This sounds scary but the amount of 

radiation through this scan is really small, the same as you get every 20 hours by 

just living in the UK. To put it in numbers, we estimate the exposure you will 

receive from the testing to be 2.5µSv which is a lot less than the limit 

recommended for those under 18 years of 10µSv/year. 

 

7. What are the possible benefits of taking part? 
The information gained from this study may mean we can try to help those 

with Cystic Fibrosis by giving them much better advice on how to stay healthy 

for as long as possible. 
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8. What happens if something goes wrong? 
We don’t expect any problems, but, if something does go wrong during the 

study, you will be asked to stop. We will then get doctors to check you to make 

sure you are ok and whether you can continue or not. The study and all the 

protocols within it are covered by Swansea University’s indemnity policy. 

 

9. Will my taking part in the study be kept confidential? 
Your GP will be notified of your participation for safety reasons. However, all 

personal information collected will be kept completely private. That is, only 

members of the research team will have access to it.  You will be given a unique 

number so that no one knows who your results belong to and your name will 

not be linked to your data. After the study is finished, all private information will 

be deleted.  

 

10. What if I have any questions? 
If you have any questions, please contact us on the details at the beginning of 

this sheet. You can also ask one of the researchers when you come in to see us. 

It is never too late to ask more questions. 

 

11. What will happen with all the information collected? 
If you allow it, all the collected data will be used for this research and potentially 

for other studies in the future in an anonymous way, which means that no one 

will know it’s your information. We would also like to take some photos of you 

during the activities if you are ok with that, but you don’t have to agree. These 

photos would be used to show others what the study was like but we can make 

it so no one can recognise you. 
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This study is organised by Swansea University and funded by the Cystic 

Fibrosis Trust. 
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2. Chapters 5 to 8 – 12-18 years old Information Sheet 

 

Applied Sports Technology Exercise and Medicine Research Centre (A-STEM) 

School of Sport and Exercise Sciences, College of Engineering  

INFORMATION SHEET (12 - 18 YEARS OLD) 

(Version 1.4, Date 17/01/2019) 

 Project Title: Calibration and Cross-Validation of Accelerometry in Youth and Adults with Cystic 

Fibrosis: A cross-sectional Study 

Contact Details: 

Dr Melitta McNarry     Dr Kelly Mackintosh 

Email:    Email:  

Telephone:     Telephone:  

Mayara Silveira Bianchim                                              Dr Jeanette Hewitt (Independent contact) 

Email:                                     Email: k 

Telephone:                                             Telephone:      

 

1. Invitation Paragraph 
Thank you for being interested in our project. Please read this information sheet 

very carefully, and think if you are happy to take part. If you are happy to, thank 

you. If you don’t want to take part, that is absolutely fine.  

2. What is the purpose of this study? 

For those with CF, physical activity and exercise are really important to staying 

as well as possible. However, we don’t know how much physical activity should 

be recommended to those with CF. Therefore, the purpose of this study is to see 

how difficult daily tasks like walking and playing games are for those with Cystic 

Fibrosis compared to their healthy friends and family. This will mean we can 

make specific recommendations for those with Cystic Fibrosis about the amount 

of physical activity they should do. 

 

3. Why have you been chosen? 



280 

 

 

You have been asked if you would like to take part because you are aged 

between 12 and 18 years of age, have Cystic Fibrosis, and are free from any 

other injuries or other illnesses. 

 

4. What will happen to you if you take part? 

You will be invited to attend 3 sessions that will take place at Swansea University 

(Bay Campus) or Morriston Hospital 

 

 

 

 

 

Before the visits it would be great if you can avoid any intense physical activities 

(for example: playing sports or running for a long time), and avoid drinking 

caffeine (e.g. tea, coffee, coke) on the day before. Also, please don’t eat in the 

two hours before your sessions.  

 

Visit 1 (Swansea University, Bay Campus) 

 

• Step 1 – First, we will measure your height, sitting height, weight and waist 

size. 

 

• Step 2 – Then, you will answer a questionnaire about your 

physical activity routine. There are no right or wrong answers, 

we are just interested in what you normally do.  

 

• Step 3 – We also need to know how mature you are so we will 

Visit 1 (week 1) 

Measure your weight, 

height and waist 

circumference  

Measure how hard you 

can breathe and how 

much energy you use 

lying down 

Fill in questionnaires 

Get physical activity 

monitors 

Scan your bones. 

Visit 2 (week 2) 

Perform a range of 

normal daily activities  

Return Physical Activity 

Monitors 

 

 

Visit 3 (week 2) 

Walking and running on 

the treadmill 
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ask you to look at some pictures and tick which picture is most like you. You 

will do this on your own and no one else will see what you have ticked until 

you have finished the study when only the researcher will see. There is no 

right or wrong answer and no one minds which picture you tick. If you don’t 

want to do this bit, you don’t have to. 

 

• Step 4 – Next, we will measure your lung function by breathing out as hard 

as possible into a mouthpiece then we will ask you to lie down for 30 mins 

and breathe through a different mouthpiece so we can see how much energy 

you use while you are just lying down. 

 

• Step 5 – After this, we will take a picture of your skeleton and 

muscles using a machine called a DEXA machine. This will take about 

5-10 minutes and you will be asked to lie on a bed and a very 

sensitive scan will be taken that gives us an image of your skeleton 

and allows us to see how thick and how old your bones are. We will 

take three different scans, one of your hand, one of your spine and 

another one of your whole skeleton. These scans use a very small 

dose of x-rays but much less than the type of x-ray you get at a 

hospital when they think you have broken a bone. The x-rays are the 

same amount as you get on a short-distance flight. 

 

• Step 6 – Finally, we will give you six physical activity monitors to wear 

continuously for 7 days, even when you sleep. These monitors are Physical 

Activity Trackers. They are like ‘FitBits’, and will record every movement you 

make, they are called accelerometers. This way we will be able to tell exactly 

how active you are. As you can see in the pictures below, four of these will 

be worn on your wrists, one around your waist and one will be stuck to your 

chest using sticky plasters which will also measure your heart rate. We are 

giving you six so we can see how they differ and what effect where you wear 

them has on how good they are at sensing your movements. It’s really 

important that when you are wearing these monitors, you do not do anything 

differently. We just want you to do whatever you would normally do each 

day. You do not need to take them off to do anything in water, like swimming 
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or showering, because they are completely water proof. They can stay on all 

the time. If you do take them off, we will give you a diary to note down when 

you did so and why so we can understand the data when we get the monitors 

back. On this diary, we would also like you to write down what time you went 

to sleep and woke up and how well you think you slept. 

 

 

 

Visit 2 (Morriston Hospital or Swansea University – Bay Campus) 

 

• Step 7 – For our next session, one week later, you will be able to choose 

whether you would like to attend the visit at Morriston Hospital or at Bay 

Campus to do a variety of activities that you typically do at home, like 

watching TV, playing videogames and playing games outside. You will be 

asked to do all of the activities with a face mask on to measure how much 

oxygen you are breathing in and out, and a small clip on your index finger 

that will tell us how much oxygen you have in your blood. At the end of 

this visit, we will take off all of the physical activity monitors that you have 

been wearing for the last 7 days. 

 

Visit 3 (Morriston Hospital or Swansea University – Bay Campus) 

 

• Step 8 – You also will be able to choose whether you would 

like to attend the last visit at Morriston Hospital or at Bay 

Campus. We will ask you to walk and then run on a treadmill 
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while wearing the face mask and also all six of the monitors again. You will 

also be asked to wear a small clip on your index finger that will tell us how 

much oxygen you have in your blood. This test will only last as long as you 

are happy for it to last and we will not make you run faster than you are 

happy with or normally do. 

 

We can cover reasonable travel expenses to help you attend these sessions. 

 

5. What are the possible disadvantages of taking part? 
The exercise on the treadmill may make you feel tired and the mask may feel a 

little uncomfortable, but you will soon feel less tired when you stop exercising 

and people generally forget about the mask after the first few minutes. We will 

give you lots of time to rest and make sure there is water if you need a drink. 

We know that we are asking for a lot of your time but we will try and fit these 

sessions in at the best times for you. Finally, the physical activity monitors might 

seem quite bulky when we first give them to you but they are just like wearing 

a watch or a belt and you will soon forget about them. For the one on your chest, 

you might find this itchy so we will give you some spare plasters so you can 

change them if you want to.  

 

6. How much radiation will I receive and what is the associated risk? 
If you take part in this study, we will ask you to do a scan of your bones and all 

the tissues in your body, like your muscles. This will mean you get a very small 

dose of radiation which can harm cells in your body. Lots of radiation can 

increase your risk of diseases later in life. This sounds scary but the amount of 

radiation through this scan is really small, the same as you get every 20 hours by 

just living in the UK. To put it in numbers, we estimate the exposure you will 

receive from the testing to be 2.5µSv which is a lot less than the limit 

recommended for those under 18 years of 10µSv/year. 

 

7. What are the possible benefits of taking part? 
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The information gained from this study may mean we can try to help those 

with Cystic Fibrosis by giving them much better advice on how to stay healthy 

for as long as possible. 

 

8. What happens if something goes wrong? 
We don’t expect any problems, but, if something does go wrong during the 

study, you will be asked to stop. We will then get doctors to check you to make 

sure you are ok and whether you can continue or not. The study and all the 

protocols within it are covered by Swansea University’s indemnity policy. 

 

9. Will my taking part in the study be kept confidential? 
Your GP will be notified of your participation for safety reasons. However, all 

personal information collected will be kept completely private. That is, only 

members of the research team will have access to it.  You will be given a unique 

number so that no one knows who your results belong to and your name will 

not be linked to your data. After the study is finished, all private information will 

be deleted.  

 

10. What if I have any questions? 
If you have any questions, please contact us on the details at the beginning of 

this sheet. You can also ask one of the researchers when you come in to see us. 

It is never too late to ask more questions. 

 

11. What will happen with all the information collected? 
If you allow it, all the collected data will be used for this research and potentially 

for other studies in the future in an anonymous way, which means that no one 

will know it’s your information. We would also like to take some photos of you 

during the activities if you are ok with that, but you don’t have to agree. These 
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photos would be used to show others what the study was like but we can make 

it so no one can recognise you. 

 

 

This study is organised by Swansea University and funded by the Cystic 

Fibrosis Trust. 
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3. Chapters 5 to 8 – Control Parent/Guardian Information Sheet 

 

Applied Sports Technology Exercise and Medicine Research Centre (A-STEM) 

School of Sport and Exercise Sciences, College of Engineering  

CONTROL INFORMATION SHEET (PARENT/GUARDIAN) 

(Version 1.3, Date 07/03/2018) 

Project Title: Calibration and Cross-Validation of Accelerometry in Youth and Adults with Cystic 

Fibrosis: A cross-sectional Study 

Contact Details: 

Dr Melitta McNarry     Dr Kelly Mackintosh 

Email:    Email:  

Telephone:     Telephone:  

Mayara Silveira Bianchim                                              Dr Jeanette Hewitt (Independent contact) 

Email: k                                    Email: j  

Telephone:                                                  

 

1. Invitation Paragraph 

Thank you for being interested in your child taking part in our project. Please read this information 

sheet very carefully, and think if you are happy for them to take part. If you are happy for them to, 

thank you! If you don’t want them to take part, that is absolutely fine!  

 

2. What is the purpose of this study? 

For those with CF, physical activity and exercise are key to staying as well as possible. However, we 

don’t know how much physical activity should be recommended to those with CF. Therefore, the 

purpose of this study is to see how difficult daily tasks like walking and playing games are for those 

with CF compared to their healthy friends and family. This will mean we can make specific 

recommendations for those with CF about the amount of physical activity they should do. 

 

3. Why has my child been chosen? 

Your child has been asked if they would like to take part because they are under 18 years of age, and 

are free from any injuries or illnesses. 

 

4. What will happen to my child if they take part? 
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Your child will be invited to attend 3 sessions that will take place at Swansea University (Bay Campus): 

  

 

 

 

 

Before the visits it would be great if your child can avoid any intense physical activities, such as running 

or playing sports, and avoid drinking caffeine (e.g. tea, coffee, coke) on the day before. Also, please 

don’t let them eat in the two hours before their sessions. 

 

Visit 1  

• Step 1 - Take their height, weight and waist circumference measurements. 

 

• Step 2 – Complete a physical activity questionnaire so we can determine their current levels.  

There are no right or wrong answers, we are just interested in what they normally do.  

 

• Step 3 – We will measure their lung function by getting them to breathe out as hard as possible 

into a mouthpiece. Following this, will ask them to lie down for 30 mins and breathe through a 

different mouthpiece so we can see how much energy they use while they are resting. 

 

• Step 4 – We will then ask them to lie down for approximately 5-10 minutes to have a DEXA 

scan of their body. This will allow us to measure the strength of their bones as well as their 

body composition. We will take three different scans, one of their hand, one of their spine and 

another one of their whole skeleton. These scans use a very small dose of x-rays but much less 

than the average x-ray machine. The x-rays are the same amount as they’d get on a short-

distance flight. 

 

• Step 5 – Finally, we will give your child six physical activity monitors to wear continuously for 7 

days, even when they sleep! These are Physical Activity Trackers, also known as accelerometer. It 

works by recording the acceleration and rotational forces when you move. We will use this 

equipment to tell exactly how active your child is. Four of these will be worn on their wrists (two 

on each wrist), one around their waist and one will be attached to their chest using sticky pads 

(electrodes), which will also measure their heart rate. We are giving them six so we can see how 

they differ and what effect where you wear them has on how good they are at sensing their 

movements. It’s really important that when they are wearing these monitors, they do not do 

anything differently. We just want them to do whatever they would normally do each day. All 

Visit 1 (week 1) 

Take height, weight and waist 

circumference measurements  

Measure their lung function 

 Measure their resting energy levels 

Complete questionnaires 

Get physical activity monitors 

Scan their bones and body 

Visit 2 (week 2) 

Perform a range of 

normal daily activities  

Return Physical Activity 

Monitors 

 

 

Visit 3 (week 2) 

Walking and running on 

the treadmill 
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monitors are completely waterproof so they can be worn at all times, even when swimming.  

However, if they do take them off, we will give them a log sheet to note down the time they took 

them off and put them back on. This will help us understand the data once they return the 

monitors.  On the log sheet, we would also like them to write down what time they went to sleep 

and woke up and how well they think they slept. 

 

 

 

 

 

 

 

 

Visit 2  

• Step 6 – One week later, we will ask them to come back and to do a variety of activities that 

they typically do at home, like watching TV or playing games. They will be asked to do all of 

the activities with a face mask on to measure how much oxygen they are breathing in and out, 

and a small clip on their index finger that will tell us how much oxygen they have in their blood. 

At the end of this visit, they will take off all of the physical activity monitors that they have 

been wearing for the last 7 days. 

 

Visit 3  

• Step 7 – On this last visit we will ask them to walk and then run on a 

treadmill while wearing the face mask and all six of the monitors again. 

They will also be asked to wear a small clip on your index finger that will 

tell us how much oxygen they have in your blood. This test will only last 

as long as they are happy for it to last and we will not make them run 

faster than they are happy with or normally do. 

 

We can cover reasonable travel expenses to help you attend these sessions. 

 

5. What are the possible disadvantages of my child taking part? 

The exercise on the treadmill may be tiring and the mask may feel a little uncomfortable, but people 

generally forget about the mask after the first few minutes! We will give your child lots of time to rest 

and make sure there is water if they need a drink. We know that we are asking for a lot of your child’s 

time but we will try and fit these sessions in at the best times for them. Finally, the physical activity 

monitors might seem quite bulky when we first give them to your child, but they are just like wearing 
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a watch or a belt and they will soon forget about them. For the one on their chest, they might find this 

itchy so we will give them some spare electrodes (sticky pads) so they can change them if they want 

to.  

 

6. How much radiation will my child receive and what is the associated risk? 

If your child takes part in this study, we will ask them to do a body scan (bones, muscle and tissue). 

This will mean they get a very small dose of radiation which can harm cells in their body. Lots of 

radiation can increase their risk of diseases later in life. Although this might sound frightening, the 

amount of radiation through this scan is really small, the same as your child would get every 20 hours 

by just living in the UK. To put it in numbers, we estimate the exposure your child will receive from 

the testing to be 2.5µSv, and the radiation exposure in addition to background levels for minors (under 

the age of 18 years) is limited to 10µSv/year. 

 

7. What are the possible benefits of my child taking part? 

The information gained from this study may help us to help those with Cystic Fibrosis by being able 

to give them much better advice on how to stay healthy for as long as possible. 

 

8. What happens if something goes wrong? 

We don’t expect any problems, but, if something does go wrong during the study, your child will be 

asked to stop. We will then get doctors to check you to make sure they are ok and whether they can 

continue or not. The study and all the protocols within it are covered by Swansea University’s 

indemnity policy. 

 

9. Will my child taking part in the study be kept confidential? 

Your child’s GP will be notified of their participation for safety reasons. However, all personal 

information collected will be kept completely confidential. Only members of the research team will 

have access to it.  Your child will be given a unique identification number so that no one knows who 

their results belong to and their name will not be linked to your data. After the study is complete, all 

private information will be deleted.  

 

10. What if my child or I have any questions? 

If you have any questions, please contact us on the details provided above. You can also ask one of 

the researchers when you come in to visit the Clinic. 

 

11. What will happen with all the information collected? 

If you allow it, all the collected data will be used for this research and potentially for other studies in 

the future in an anonymous way, which means that no one will know it’s your child’s information. If 

you allow, we would like to take some photos during the tests to use to promote the study in Science 
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Festivals and Scientific Conferences. These photos will only be taken with your consent and your child 

can be kept anonymous if you prefer. 

 

This study is organised by Swansea University and funded by the Cystic Fibrosis Trust. 
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4. Chapters 5 to 8 – Parent/Guardian Information Sheet 

 

Applied Sports Technology Exercise and Medicine Research Centre (A-STEM) 

School of Sport and Exercise Sciences, College of Engineering  

INFORMATION SHEET (PARENT/GUARDIAN) 

(Version 1.4, Date 17/01/2019) 

 Project Title: Calibration and Cross-Validation of Accelerometry in Youth and Adults with Cystic 

Fibrosis: A cross-sectional Study 

Contact Details: 

Dr Melitta McNarry     Dr Kelly Mackintosh 

Email:    Email:  

Telephone:     Telephone:  

Mayara Silveira Bianchim                                              Dr Jeanette Hewitt (Independent contact) 

Email:                                     Email:  

Telephone:                                             Telephone: (      

 

 

1. Invitation Paragraph 

Thank you for being interested in your child taking part in our project. Please read this information 

sheet very carefully, and think if you are happy for them to take part. If you are happy for them to, 

thank you! If you don’t want them to take part, that is absolutely fine!  

 

2. What is the purpose of this study? 

For those with CF, physical activity and exercise are key to staying as well as possible. However, we 

don’t know how much physical activity should be recommended to those with CF. Therefore, the 

purpose of this study is to see how difficult daily tasks like walking and playing games are for those 

with CF compared to their healthy friends and family. This will mean we can make specific 

recommendations for those with CF about the amount of physical activity they should do. 

 

3. Why has my child been chosen? 

Your child has been asked if they would like to take part because they are under 18 years of age, have 

Cystic Fibrosis, and are free from any injuries or other illnesses. 
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4. What will happen to my child if they take part? 

Your child will be invited to attend 3 sessions that will take place at Swansea University (Bay Campus) 

or Morriston Hospital:  

 

 

 

 

 

Before the visits it would be great if your child can avoid any intense physical activities, such as running 

or playing sports, and avoid drinking caffeine (e.g. tea, coffee, coke) on the day before. Also, please 

don’t let them eat in the two hours before their sessions. 

 

Visit 1 (Swansea University, Bay Campus) 

 

• Step 1 - Take their height, weight and waist circumference measurements. 

 

• Step 2 – Complete a physical activity questionnaire so we can determine their current levels.  

There are no right or wrong answers, we are just interested in what they normally do.  

 

• Step 3 – We will measure their lung function by getting them to breathe out as hard as possible 

into a mouthpiece. Following this, will ask them to lie down for 30 mins and breathe through a 

different mouthpiece so we can see how much energy they use while they are resting. 

 

• Step 4 – We will then ask them to lie down for approximately 5-10 minutes to have a DEXA 

scan of their body. This will allow us to measure the strength of their bones as well as 

their body composition. We will take three different scans, one of their hand, one of their 

spine and another one of their whole skeleton. These scans use a very small dose of x-

rays but much less than the average x-ray machine. The x-rays are the same amount as 

they’d get on a short-distance flight. 

 

• Step 5 – Finally, we will give your child six physical activity monitors to wear continuously for 7 

days, even when they sleep! These are Physical Activity Trackers, also known as accelerometer. It 

works by recording the acceleration and rotational forces when you move. We will use this 

equipment to tell exactly how active your child is. Four of these will be worn on their wrists (two 

on each wrist), one around their waist and one will be attached to their chest using sticky pads 

Visit 1 (week 1) 

Take height, weight and waist 

circumference measurements  

Measure their lung function 

 Measure their resting energy levels 

Complete questionnaires 

Get physical activity monitors 

Scan their bones and body 

Visit 2 (week 2) 

Perform a range of 

normal daily activities  

Return Physical Activity 

Monitors 

 

 

Visit 3 (week 2) 

Walking and running on 

the treadmill 
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(electrodes), which will also measure their heart rate. We are giving them six so we can see how 

they differ and what effect where you wear them has on how good they are at sensing their 

movements. It’s really important that when they are wearing these monitors, they do not do 

anything differently. We just want them to do whatever they would normally do each day. All 

monitors are completely waterproof so they can be worn at all times, even when swimming.  

However, if they do take them off, we will give them a log sheet to note down the time they took 

them off and put them back on. This will help us understand the data once they return the 

monitors.  On the log sheet, we would also like them to write down what time they went to sleep 

and woke up and how well they think they slept. 

 

 

 

 

 

 

 

Visit 2 (Morriston Hospital or Swansea University – Bay Campus) 

 

• Step 6 – For our next session, one week later, they will be able to choose whether they would 

like to attend the visit at Morriston Hospital or at Bay Campus to do a variety of activities that 

they typically do at home, like watching TV or playing games. They will be asked to do all of 

the activities with a face mask on to measure how much oxygen they are breathing in and out, 

and a small clip on their index finger that will tell us how much oxygen they have in their blood. 

At the end of this visit, they will take off all of the physical activity monitors that they have 

been wearing for the last 7 days. 

 

Visit 3 (Morriston Hospital or Swansea University – Bay Campus) 

 

• Step 7 – They will also be able to choose whether they would like to attend 

the last visit at Morriston Hospital or at Bay Campus. We will ask them to 

walk and then run on a treadmill while wearing the face mask and all six 

of the monitors again. They will also be asked to wear a small clip on your 

index finger that will tell us how much oxygen they have in your blood. 

This test will only last as long as they are happy for it to last and we will 

not make them run faster than they are happy with or normally do. 

 

We can cover reasonable travel expenses to help you attend these sessions. 
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5. What are the possible disadvantages of my child taking part? 

The exercise on the treadmill may be tiring and the mask may feel a little uncomfortable, but people 

generally forget about the mask after the first few minutes! We will give your child lots of time to rest 

and make sure there is water if they need a drink. We know that we are asking for a lot of your child’s 

time but we will try and fit these sessions in at the best times for them. Finally, the physical activity 

monitors might seem quite bulky when we first give them to your child, but they are just like wearing 

a watch or a belt and they will soon forget about them. For the one on their chest, they might find this 

itchy so we will give them some spare electrodes (sticky pads) so they can change them if they want 

to.  

 

6. How much radiation will my child receive and what is the associated risk? 

If your child takes part in this study, we will ask them to do a body scan (bones, muscle and tissue). 

This will mean they get a very small dose of radiation which can harm cells in their body. Lots of 

radiation can increase their risk of diseases later in life. Although this might sound frightening, the 

amount of radiation through this scan is really small, the same as your child would get every 20 hours 

by just living in the UK. To put it in numbers, we estimate the exposure your child will receive from 

the testing to be 2.5µSv, and the radiation exposure in addition to background levels for minors (under 

the age of 18 years) is limited to 10µSv/year. 

 

7. What are the possible benefits of my child taking part? 

The information gained from this study will help us to help those with Cystic Fibrosis by being able to 

give them much better advice on how to stay healthy for as long as possible. 

 

 

8. What happens if something goes wrong? 

We don’t expect any problems, but, if something does go wrong during the study, your child will be 

asked to stop. We will then get doctors to check you to make sure they are ok and whether they can 

continue or not. The study and all the protocols within it are covered by Swansea University’s 

indemnity policy. 

 

9. Will my child taking part in the study be kept confidential? 

Your child’s GP will be notified of their participation for safety reasons. However, all personal 

information collected will be kept completely confidential. Only members of the research team will 

have access to it.  Your child will be given a unique identification number so that no one knows who 

their results belong to and their name will not be linked to your data. After the study is complete, all 

private information will be deleted.  

 

10. What if my child or I have any questions? 
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If you have any questions, please contact us on the details provided above. You can also ask one of 

the researchers when you come in to visit the Clinic. 

 

11. What will happen with all the information collected? 

If you allow it, all the collected data will be used for this research and potentially for other studies in 

the future in an anonymous way, which means that no one will know it’s your child’s information. If 

you allow, we would like to take some photos during the tests to use to promote the study in Science 

Festivals and Scientific Conferences. These photos will only be taken with your consent and your child 

can be kept anonymous if you prefer. 

 

 

This study is organised by Swansea University and funded by the Cystic Fibrosis Trust. 
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5. Chapters 5 to 8 – Under 12 years Information Sheet 

 

Applied Sports Technology Exercise and Medicine Research Centre (A-STEM) 

School of Sport and Exercise Sciences, College of Engineering  

INFORMATION SHEET (UNDER 12 YEARS) 

(Version 1.4, Date 17/01/2019) 

 Project Title: Calibration and Cross-Validation of Accelerometry in Youth and Adults with Cystic 

Fibrosis: A cross-sectional Study 

Contact Details: 

Dr Melitta McNarry    Dr Kelly Mackintosh 

Email:   Email:  

Telephone:    Telephone:  

Mayara Silveira Bianchim                                    Dr Jeanette Hewitt (Independent contact) 

Email:                           Email:  

Telephone:                                    Telephone:      

 

1. Invitation Paragraph 

Thank you for being interested in our project. Please read this sheet 

very carefully. If you are happy to take part, thank you. If you don’t 

want to take part, that is no problem.  

 

2. What is the purpose of this study? 

Moving around is good for health. We would like to know more about 

how much you move. To do this, we need to use special little monitors. 

We want to make sure that we are good at measuring your 

movements. 

 

3. Why have you been chosen? 
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You have been asked if you would like to take part because you are 

aged between 8 and 12 years of age, have Cystic Fibrosis, and do not 

have any injuries or other illnesses. 

 

4. What will happen to you if you take part? 

You will be invited to come in 3 times, once to Swansea University (Bay 

Campus) and twice to Morriston Hospital. This will be whenever is 

easy for you. We can pay for you to travel there and back. 

 

 

 

 

 

 

 

 

 

 

 

  

Visit 1  

Ask any questions 

Get to know the equipment 

Take height and weight (Pictures 1 

and 2) 

Answer the questionnaire 

Get to know the mask, and use 

the mask for a few minutes  

Be given monitors to measure 

how much you move (Picture 3). 

Take a picture of your skeleton. 

 

Visit 2  

Play and exercise. (Picture 4) 

Give back the special devices 

Visit 3  

Walk on a treadmill with the mask 

(Picture 5) 

 

 

Picture 1 

Picture 3 

Picture 4 

Picture 5 Picture 2 
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Before the visits we will ask you to have an easy day. Try not to do 

hard physical activities, like running a lot or playing sport with impact. 

 

Each visit will take about 45 minutes to 1.5 hours. We will show you 

all the equipment being used during the project. You can ask any 

questions you have.  

  

The first visit will be at Swansea University (Bay Campus). We will ask 

you not to eat or drink anything 2 hours before arriving. You can only 

have water. First of all we will ask you to lie down for 30 minutes. We 

will use a mask to measure how much you breathe. We will then see 

how tall you are when you are standing and sitting down. Then we will 

see how much you weigh. We will also see how far round your waist 

it is and how your lungs are working. We will also take a picture of 

your bones. Then we will ask you to complete a few questions about 

how much you move and how grown up you are. There are no right or 

wrong answers, we are just interested in what you do on a normal day. 

 

You can see the monitors (special devices) in the pictures. These 

monitors are Physical Activity Trackers. These monitors are similar to 

‘FitBits’, and will record every movement you make. This way we will 

be able to tell exactly how active you are. You will wear them for a 

week. You can wear them all day, every day, even when you sleep or 

go swimming. They can get completely wet. You will wear some on 

your wrists, one on your right hip, and one stuck to your chest using 

sticky patches. The chest monitor can measure your heart beating as 

well. So, you will be wearing six special devices in total. You do not 

have to change anything about your week. Just do what you would 

normally do. We will give you a diary to note down if you do take the 
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monitors off and why. You can also write down when you went to bed 

and woke up each day. We will ask you how well you think you slept. 

‘1’ would be not very well at all. ‘10’ would be really well.  

 

 

 

A week later, you will be asked to come to see us again at Morriston 

Hospital or at Bay Campus, according to your preference. You will then 

do some activities that you normally do at home. This would be things 

like watching TV or playing games. You would be wearing the mask 

again to measure how much you breathe. We will ask you to use a clip 

on your finger. This will tell us about how much oxygen you have in 

your blood. After this, you can take off all six of the special devices.  

 

After two days, we will ask you to come back again to Morriston 

Hospital or at Bay Campus, according to your preference. We will ask 

you to walk and then run on a treadmill. You will be asked to wear the 

mask and monitors again. The walk and run will only last for as long as 

you are happy to. We will not make you run faster than you are want 

to. 

 

12. What are the possible disadvantages of taking part? 
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You may feel tired after doing the activities. The mask may feel a little 

strange, but it won’t make it hard to breath. The sticky pads may be a 

little uncomfortable when taken off. It’s a bit like removing a sticky 

plaster, but they will come off in warm water. 

 

13. How much radiation will I receive from the Bone Scan? 

If you are happy to take part, we will take three pictures of your bones, 

tissues and muscles. First, we will take a picture of your whole 

skeleton. This will look like the picture below (picture 6). Then, we will 

take a picture of the skeleton of your hand and another one of your 

spine. You can use your normal clothes to do this test. This uses an X-

Ray machine, like in hospitals if you think you’ve broken your arm or 

leg, but it is much less strong. This will mean you get a very small dose 

of radiation (X-Rays), which can harm cells in your body. This sounds 

scary but the amount of radiation through this scan is really small. It is 

the same as you get every 20 hours by just living in the UK.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Picture 6 
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14. What are the possible benefits of taking part? 

You will find out how fit you are and how much you move in a week. 

 

15. What happens if something goes wrong? 

We don’t think there will be anything that goes wrong. If it does, we 

will ask you to stop straight away. The doctors will check to see if you 

are OK. They can say if you can keep taking part in the project.  

 

16. Will my taking part in the study be kept secret? 

Your GP will be notified of your participation for safety reasons. 

However, all personal information collected will be kept completely 

secret. That is, only members of the research team will be able to see 

it.  You will be given a special number so that no one knows who your 

results belong to and your name will not be linked to your data. After 

the study is finished, all private information will be deleted.  

 

17. What if I have any questions? 

If you have any questions you can ask an adult to ask us. Our phone 

number and email addresses are at the top of this information. You 

can also ask one of the people on the project when you come in to see 

us. 

 

18. What will happen with all the information collected? 

If you are happy we want to look at all your information to see if we 

can help to measure how much other children move. We can see if it 

will help their health. We will give you a special code so no-one will 

know it is your information. We would also like to take some photos 

of you during the activities if you are ok with that, but you don’t have 
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to agree. These photos would be used to show others what the study 

was like but we can make it so no one can recognise you. 

 

This study is organised by Swansea University and funded by the 

Cystic Fibrosis Trust. 
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6. Chapters 5 to 8 – Control under 12 years Information Sheet 

 

Applied Sports Technology Exercise and Medicine Research Centre (A-STEM) 

School of Sport and Exercise Sciences, College of Engineering  

CONTROL INFORMATION SHEET (UNDER 12 YEARS) 

(Version 1.3, Date 07/03/2018) 

 Project Title: Calibration and Cross-Validation of Accelerometry in Youth and Adults with Cystic 

Fibrosis: A cross-sectional Study 

Contact Details: 

Dr Melitta McNarry    Dr Kelly Mackintosh 

Email:   Email:  

Telephone:    Telephone:  

Mayara Silveira Bianchim                                    Dr Jeanette Hewitt (Independent contact) 

Email:                           Email:  

Telephone:                                    Telephone:      

 

1. Invitation Paragraph 

Thank you for being interested in our project. Please read this sheet 

very carefully. If you are happy to take part, thank you. If you don’t 

want to take part, that is no problem.  

2. What is the purpose of this study? 

Moving around is good for health. We would like to know more about 

how much you move. To do this, we need to use special little monitors. 

We want to make sure that we are good at measuring your 

movements. This will help us see if we can help children with Cystic 

Fibrosis to live life to the full.  

3. Why have you been chosen? 
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You have been asked if you would like to take part because you are 

aged between 8 and 12 years of age, and do not have any injuries or 

illnesses. 

4. What will happen to you if you take part? 

You will be invited to come in 3 times to Swansea University (Bay 

Campus). This will be whenever is easy for you. We can pay for you to 

travel there and back. 

 

 

 

 

 

 

 

 

 

 

 

  

Visit 1  

Ask any questions 

Get to know the equipment 

Take height and weight (Pictures 1 

and 2) 

Answer the questionnaire 

Get to know the mask, and use 

the mask for a few minutes  

Be given monitors to measure 

how much you move (Picture 3). 

Take a picture of your skeleton. 

 

Visit 2  

Play and exercise. (Picture 4) 

Give back the special devices 

Visit 3  

Walk on a treadmill with the mask 

(Picture 5) 

 

 

Picture 1 

Picture 3 

Picture 4 

Picture 5 Picture 2 
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Before the visits we will ask you to have an easy day. Try not to do 

hard physical activities, like running a lot or playing sport with impact. 

 

Each visit will take about 45 minutes to 1.5 hours. We will show you 

all the equipment being used during the project. You can ask any 

questions you have.  

  

For the first visit, we will ask you not to eat or drink anything 2 hours 

before arriving. You can only have water. First of all we will ask you to 

lie down for 30 minutes. We will use a mask to measure how much 

you breathe. We will then see how tall you are when you are standing 

and sitting down. Then we will see how much you weigh. We will also 

see how far round your waist it is and how your lungs are working. We 

will also take a picture of your bones. Then we will ask you to complete 

a few questions about how much you move and how grown up you 

are. There are no right or wrong answers, we are just interested in 

what you do on a normal day. 

 

You can see the monitors (special devices) in the pictures. These 

monitors are Physical Activity Trackers. These monitors are similar to 

‘FitBits’, and will record every movement you make. This way we will 

be able to tell exactly how active you are. You will wear them for a 

week. You can wear them all day, every day, even when you sleep or 

go swimming. They can get completely wet. You will wear some on 

your wrists, one on your right hip, and one stuck to your chest using 

sticky patches. The chest monitor can measure your heart beating as 

well. So, you will be wearing six special devices in total. You do not 

have to change anything about your week. Just do what you would 

normally do. We will give you a diary to note down if you do take the 
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monitors off and why. You can also write down when you went to bed 

and woke up each day. We will ask you how well you think you slept. 

‘1’ would be not very well at all. ‘10’ would be really really well.  

 

 

 

A week later, you will be asked to come to see us again. You will then 

do some activities that you normally do at home. This would be things 

like watching TV or playing games. You would be wearing the mask 

again to measure how much you breathe. We will ask you to use a clip 

on your finger. This will tell us about how much oxygen you have in 

your blood. After this, you can take off all six of the special devices.  

 

After two days, we will ask you to come back again. We will ask you to 

walk and then run on a treadmill. You will be asked to wear the mask 

and monitors again. The walk and run will only last for as long as you 

are happy to. We will not make you run faster than you are want to. 

 

5. What are the possible disadvantages of taking part? 

You may feel tired after doing the activities. The mask may feel a little 

strange, but it won’t make it hard to breath. The sticky pads may be a 
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little uncomfortable when taken off. It’s a bit like removing a sticky 

plaster, but they will come off in warm water. 

 

6. How much radiation will I receive from the Bone Scan? 

If you are happy to take part, we will take three pictures of your bones, 

tissues and muscles. First, we will take a picture of your whole 

skeleton. This will look like the picture below (picture 6). Then, we will 

take a picture of the skeleton of your hand and another one of your 

spine. You can use your normal clothes to do this test. This uses an X-

Ray machine, like in hospitals if you think you’ve broken your arm or 

leg, but it is much less strong. This will mean you get a very small dose 

of radiation (X-Rays), which can harm cells in your body. This sounds 

scary but the amount of radiation through this scan is really small. It is 

the same as you get every 20 hours by just living in the UK.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Picture 6 
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7. What are the possible benefits of taking part? 

You will find out how fit you are and how much you move in a week. 

 

8. What happens if something goes wrong? 

We don’t think there will be anything that goes wrong. If it does, we 

will ask you to stop straight away. The doctors will check to see if you 

are OK. They can say if you can keep taking part in the project.  

 

9. Will my taking part in the study be kept secret? 

Your GP will be notified of your participation for safety reasons. 

However, all personal information collected will be kept completely 

secret. That is, only members of the research team will be able to see 

it.  You will be given a special number so that no one knows who your 

results belong to and your name will not be linked to your data. After 

the study is finished, all private information will be deleted.  

 

10. What if I have any questions? 

If you have any questions you can ask an adult to ask us. Our phone 

number and email addresses are at the top of this information. You 

can also ask one of the people on the project when you come in to see 

us. 

 

11. What will happen with all the information collected? 

If you are happy we want to look at all your information to see if we 

can help to measure how much other children move. We can see if it 

will help their health. We will give you a special code so no-one will 

know it is your information. We would also like to take some photos 

of you during the activities if you are ok with that, but you don’t have 
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to agree. These photos would be used to show others what the study 

was like but we can make it so no one can recognise you. 

 

This study is organised by Swansea University and funded by the 

Cystic Fibrosis Trust. 
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Appendix F: Consent and Assent Forms 

1. Chapters 5 to 8 – Parent/Guardian Consent Form 

 

Applied Sports Technology Exercise and Medicine Research Centre (A-STEM) 

School of Sport and Exercise Sciences, College of Engineering  

PARENT/GUARDIAN CONSENT FORM 

(Version 1.3, Date: 07/03/2018) 

Project Title: Calibration and Cross-Validation of Accelerometry in Youth and Adults with Cystic 

Fibrosis: A cross-sectional Study 

Contact Details: 

Dr Melitta McNarry     Dr Kelly Mackintosh 

Email:    Email:  

Telephone:     Telephone:  

 

Mayara Silveira Bianchim                                              Dr Jeanette Hewitt (Independent contact) 

Email:                                    Email: j  

Telephone:                                            Telephone:      

               

                    Please initial box 

 

1. I confirm that I have read and understood the information sheet dated 
07/03/2018 (version number 1.3) for the above study and  

have had the opportunity to ask questions. 

 

2. I understand that my child’s participation is voluntary and that they are  
free to withdraw at any time, without giving any reason and without their  

medical care, school work or legal rights being affected. 

 

3. I understand that sections of any of data obtained may be looked at by  
responsible individuals from the Swansea University or from regulatory  
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authorities where it is relevant to my child taking part in research.  I give  

permission for these individuals to have access to these records. 

 

4. I am happy for photos of my child to be taken and used to promote the                                         
project and share the findings.  

5. I am happy for my child’s information to be used anonymously in future  
research 

 

 

6. I am happy for my child’s GP to be informed of their participation in this  

study. 
 

7. I agree for my child to take part in the above study. 
 

 

_____________________________ ________________ ________________________ 

Name of Parent/Guardian  Date   Signature  

 

_____________________________ ________________ ________________________ 

Name of Person taking consent  Date   Signature  

 

_____________________________ ________________ ________________________ 

Researcher    Date   Signature  
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2. Chapters 5 to 8 – Participant Assent Form 

 

Applied Sports Technology Exercise and Medicine Research Centre (A-STEM) 

School of Sport and Exercise Sciences, College of Engineering  

PARTICIPANT ASSENT FORM 

(Version 1.3, Date: 07/03/2018) 

Project Title: Calibration and Cross-Validation of Accelerometry in Youth and Adults with Cystic 

Fibrosis: A cross-sectional Study 

 

Contact Details: 

Dr Melitta McNarry     Dr Kelly Mackintosh 

Email:    Email:  

Telephone:     Telephone:  

 

Mayara Silveira Bianchim                                              Dr Jeanette Hewitt (Independent contact) 

Email:                                      

Telephone:                                             Telephone:      

 

                             Please initial box 

 

1. I have read and understood the information sheet for this study and have  

been able to ask any questions I have. 

 

2. I know that it is my choice to take part and that I can stop doing so at any 

 time, without giving any reason, and without any problems. 

 

3. I understand that some of the information I give may be looked at  
by people at Swansea University or the hospital. I am happy for 

these people to see my results.   
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4. I am happy for my photos to be taken and shown to people interested                                            

in the project. 

5. I am happy for my information to be used anonymously in future research 

 

6. I am happy for my GP to be informed that I am doing this study. 

7. I agree to take part in the above study. 
 

 

 

_____________________________ ________________ ________________________ 

Name of Participant  Date   Signature  

 

_____________________________ ________________ ________________________ 

Name of Person taking consent  Date   Signature  

 

_____________________________ ________________ ________________________ 

Researcher    Date   Signature  
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Appendix G: Chapter 5 – Supplementary Material 

1. Activity Survey 

 

Applied Sports Technology Exercise and Medicine Research Centre (A-

STEM) 

 

List of Daily Life Physical Activity  

 

We would like to ask for you to think carefully about the activities you usually do at home, 

school and during transport, and then mark a X on the boxes of those activities you recognize 

that you would usually perform.  

 Continuous running. 

 Walking with a backpack. 

 Arts and crafts. 

 Hopscotch. 

 Wii (or Kinect) games. 

 Board games. 

 Rope Jumping. 

 Climbing stairs. 

 Playground games. 

 Gymnastics. 

 Stretching. 

 Stop and go. 

 Capture the flag. 

 Cleaning your room. 

 Frisbee 

 Basketball. 
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 Football. 

 Tennis. 

 Watching TV / Playing video games 

 Computer use / Mobile phone 

 Another activity: __________________________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



316 

 

 

2. Leave-one-out Cross-validation of Cut-points 

Table G5.1 Leave-one-out Cross-validation of Cut-points   

  CF  Healthy 

Placement Intensity ENMO 

cut-point 

MSE Accuracy 

(%) 

MAD  

cut-point 

MSE Accuracy 

(%) 

 ENMO 

cut-point 

MSE Accuracy 

(%) 

MAD cut-

point 

MSE Accuracy 

(%) 

   ActiGraph   

Dominant 

wrist 

SED 55.5  0.01  73 74.2 0.01 84  51.4 0.05 80 76.1 0.05 67 

MPA 63.0 0.01 87 82.5 0.1 83  63.5 0.04 71 113.5 0.05 67 

VPA 177.9 0.01 82 262.7 0.01 88  103.3 0.03 98 220.4 0.02 77 

Non-

dominant 

wrist 

SED 38.4 0.01 73 51.2 0.01 77  30.8 0.05 78 73.4 0.04 77 

MPA 60.2 0.01 70 73.1 0.02 85  65.9 0.05 81 149 0.03 80 

VPA 115.3 0.01 96 260.8 0.01 86  128.4 0.02 82 214.2 0.02 81 

Waist SED 61.3 0.005 98 55.3 0.009 77  37.3 0.01 78 43.5 0.03 83 

MPA 73.1 0.005 71 58.9 0.02 72  66.8 0.01 91 109.2 0.03 81 

VPA 133.1 0.004 78 92.4 0.008 66  83.6 0.01 94 170 0.01 78 
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CF: Cystic Fibrosis, ENMO: Euclidean norm minus one, MAD: mean amplitude deviation, SED: sedentary; MPA: moderate activity; VPA: vigorous activity, MSE: mean 

squared error. 

 

 

 

 

 

 

 

 

 

   GENEActiv   

Dominant 

wrist 

SED 44.8 0.01 77 74.6 0.009 77  38.3 0.02 93 61.5 0.03 89 

MPA 74.8 0.01 81 85.3 0.01 66  86.8 0.03 91 94.5 0.03 76 

VPA 156.8 0.007 99 222.5 0.006 99  127.8 0.01 98 186.4 0.01 86 

Non-

dominant 

wrist 

SED 43.9 0.01 85 70.9 0.01 98  39.0 0.01 92 73.5 0.01 86 

MPA 64.3 0.01 73 85.2 0.01 66  84.7 0.01 95 129.4 0.01 89 

VPA 165.6 0.01 98 224.5 0.01 99  100.2 0.0008 95 186.9 0.008 99 
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Appendix H: Chapter 8 – Matrices and Cross-Validation  

1. Confusion Matrices of Random Forest to Classify Activity Type 

 

Table H8.1 Confusion Matrices of Random Forest to Classify Different Activities for each Placement and Accelerometer Brand 

  CF  Healthy 

Brand / 

Placement 

Activities TV Colouring/

writing 

Handheld 

device 

Games Walk Stairs  TV Colouring/

writing 

Handheld 

device 

Games Walk Stairs 

GE non-

dominant wrist 

TV 283 0 0 0 0 0  120 0 0 0 0 0 

 Colouring/

writing 

0 239 0 0 0 0  0 120 0 0 0 0 

 Handheld 

device 

0 0 193 0 0 0  0 0 223 0 0 0 

 Games 

 

0 0 0 195 0 0  0 0 0 105 0 0 

 Walk 

 

0 0 0 0 118 0  0 0 0 0 150 0 

 Stairs 0 0 0 0 0 59  0 0 0 0 0 105 

GE dominant 

wrist 

TV 299 0 0 0 0 0  135 0 0 0 0 0 

 Colouring/

writing 

0 312 0 0 0 0  0 45 0 0 0 0 
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 Handheld 

device 

0 0 135 0 0 0  0 0 120 0 0 0 

 Games 

 

0 0 0 165 0 0  0 0 0 105 0 0 

 Walk 

 

0 0 0 0 282 0  0 0 0 0 105 0 

 Stairs 0 0 0 0 0 210  0 0 0 0 0 45 

AG non-

dominant wrist 

TV 388 0 0 0 0 0  299 0 0 0 0 0 

 Colouring/

writing 

0 285 0 0 0 0  0 312 0 0 0 0 

 Handheld 

device 

0 0 405 0 0 0  0 0 135 0 0 0 

 Games 

 

0 0 0 315 0 0  0 0 0 165 0 0 

 Walk 

 

0 0 0 0 375 0  0 0 0 0 282 0 

 Stairs 0 0 0 0 0 409  1 0 0 0 0 210 

AG dominant 

wrist 

TV 313 0 0 0 0 0  253 0 0 0 0 0 

 Colouring/

writing 

0 255 0 0 0 0  0 298 0 0 0 0 
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 Handheld 

device 

0 0 405 0 0 0  0 0 135 0 0 0 

 Games 

 

0 0 0 15 0 0  0 0 0 254 0 0 

 Walk 

 

0 0 0 0 690 0  0 0 0 0 195 0 

 Stairs 0 0 0 0 0 330  0 0 0 0 0 195 

AG waist TV 225 0 0 0 0 0  209 0 0 0 0 0 

 Colouring/

writing 

0 255 0 0 0 0  0 207 0 0 0 0 

 Handheld 

device 

0 0 270 0 0 0  0 0 90 0 0 0 

 Games 

 

0 0 0 300 0 0  0 0 0 180 0 0 

 Walk 0 0 0 0 284 0  0 0 0 0 165 0 

 Stairs 0 0 0 0 0 270  0 0 0 0 0 163 

CF: Cystic Fibrosis, GE: GENEActiv, AG: ActiGraph 
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2. Confusion Matrices of Random Forest to Classify Activity Intensity 

  CF  Healthy 

Brand / 

Placement 

Activities SED LPA MPA VPA  SED LPA MPA VPA 

GE non-dominant 

wrist 

SED 1767 0 0 0  252 0 0 N/A 

 LPA 0 1436 0 0  0 280 0 N/A 

 MPA 0 0 179 0  0 0 60 N/A 

 VPA 0 0 0 15  N/A N/A N/A N/A 

GE dominant 

wrist 

SED 584 1 0 0  685 0 0 0 

 LPA 0 533 0 0  1 823 0 0 

 MPA 0 0 44 0  0 0 118 0 

 VPA 0 0 0 15  0 0 0 15 

AG non-dominant 

wrist 

SED 1185 0 0 0  897 0 0 0 

 LPA 0 1210 0 0  1 583 0 0 

 MPA 0 0 389 0  0 0 298 0 

 

Table H8.2 Confusion Matrices of Random Forest to Classify Physical Activity Intensities for each Placement and Accelerometer Brand 
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 VPA 0 0 0 14  0 0 0 15 

AG dominant 

wrist 

SED 771 0 0 NA  685 0 0 0 

 LPA 0 895 0 NA  1 823 0 0 

 MPA 0 0 186 NA  0 0 118 0 

 VPA NA NA NA NA  0 0 0 15 

AG waist SED 296 0 0 0  928 0 0 0 

 LPA 0 N/A 0 0  1 599 0 0 

 MPA 0 0 580 0  0 0 330 0 

 VPA 0 0 0 45  0 0 0 30 

CF: Cystic Fibrosis, GE: GENEActiv, AG: ActiGraph, SED: sedentary time, LPA: light physical activity, MPA: moderate physical activity, VPA: vigorous physical activity. 
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3. Confusion Matrices of Extreme Gradient Boosting Tree and k-Nearest Neighbour to Classify Activity Type 

 

Table H8.3 Confusion Matrices of XGBoost and k-NN to Classify Different Activities for each Placement and Accelerometer Brand 

  CF  Healthy 

Brand / 

Placement 

Activities TV Colouring/

writing 

Handheld 

device 

Games Walk Stairs  TV Colouring/

writing 

Handheld 

device 

Games Walk Stairs 

GE non-

dominant wrist 

TV 42 0 0 0 0 0  42 0 0 0 0 0 

 Colouring/ 

writing 

0 35 0 0 0 0  0 35 0 0 0 0 

 Handheld 

device 

0 0 28 0 0 0  0 0 28 0 0 0 

 Games 

 

0 0 0 29 0 0  0 0 0 29 0 0 

 Walk 

 

0 0 0 0 17 0  0 0 0 0 17 0 

 Stairs 0 0 0 0 0 8  0 0 0 0 0 8 

GE dominant 

wrist 

TV 44 0 0 0 0 0  20 0 0 0 0 0 

 Colouring/

writing 

0 47 0 0 0 0  0 6 0 0 0 0 
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 Handheld 

device 

0 0 20 0 0 0  0 0 18 0 0 0 

 Games 

 

0 0 0 24 0 0  0 0 0 15 0 0 

 Walk 

 

0 0 0 0 42 0  0 0 0 0 15 0 

 Stairs 0 0 0 0 0 31  0 0 0 0 0 6 

AG non-

dominant wrist 

TV 58 0 0 0 0 0  44 0 0 0 0 0 

 Colouring/

writing 

0 42 0 0 0 0  0 46 0 0 1 0 

 Handheld 

device 

0 0 60 0 0 0  0 0 20 0 0 0 

 Games 

 

0 0 0 47 0 0  0 0 0 24 0 0 

 Walk 

 

0 0 0 0 56 0  0 0 0 0 42 0 

 Stairs 0 0 0 0 0 60  0 0 0 0 0 31 

AG dominant 

wrist 

TV 46 0 0 0 0 0  37 0 0 0 0 0 

 Colouring/

writing 

0 38 0 0 0 0  0 44 0 0 0 0 
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 Handheld 

device 

0 0 60 0 0 0  0 0 20 0 0 0 

 Games 

 

0 0 0 2 0 0  0 0 0 38 0 0 

 Walk 

 

0 0 0 0 103 0  0 0 0 0 29 0 

 Stairs 0 0 0 0 0 49  0 0 0 0 0 29 

AG waist TV 

 

33 0 0 0 0 0  31 0 0 0 0 0 

 Colouring/

writing 

0 38 0 0 0 0  0 31 0 0 0 0 

 Handheld 

device 

0 0 40 0 0 0  0 0 13 0 0 0 

 Games 

 

0 0 0 45 0 0  0 0 0 27 0 0 

 Walk 

 

0 0 0 0 42 0  0 0 0 0 24 0 

 Stairs 0 0 0 0 0 40  0 0 0 0 0 24 

CF: Cystic Fibrosis, GE: GENEActiv, AG: ActiGraph; XGBoost: eXtreme Gradient Boosting Trees; k-NN: k-Nearest Neighbour.  
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4. Confusion Matrices of Extreme Gradient Boosting Tree and k-Nearest Neighbour to Classify Activity Intensity 

 

Table H8.4 Confusion Matrices of XGBoost and k-NN to Classify Physical Activity Intensities for each Placement and Accelerometer Brand 

  CF  Healthy 

Brand / 

Placement 

Activities SED LPA MPA VPA  SED LPA MPA VPA 

GE non-dominant 

wrist 

SED 265 0 0 0  143 0 0 0 

 LPA 

 

0 215 0 0  0 93 0 0 

 MPA 

 

0 0 26 0  0 0 42 0 

 VPA 

 

0 0 0 2  0 0 0 0 

GE dominant 

wrist 

SED 211 0 0 N/A  102 0 0 0 

 LPA 

 

0 212 0 N/A  0 123 0 0 

 MPA 

 

0 0 36 N/A  0 0 17 0 

 VPA 

 

N/A N/A N/A N/A  0 0 0 2 
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AG non-dominant 

wrist 

SED 177 0 0 0  134 0 0 0 

 LPA 

 

0 181 0 0  0 87 0 0 

 MPA 

 

0 0 58 0  0 0 44 0 

 VPA 

 

0 0 0 2  0 0 0 2 

AG dominant 

wrist 

SED 184 0 0 N/A  102 0 0 0 

 LPA 

 

0 172 0 N/A  0 123 0 0 

 MPA 

 

0 0 36 N/A  0 0 17 0 

 VPA 

 

N/A N/A N/A N/A  0 0 0 2 

AG waist SED 

 

179 0 0 N/A  139 0 0 0 

 LPA 

 

0 170 0 N/A  0 89 0 0 

 MPA 

 

0 0 54 N/A  0 0 49 0 

 VPA N/A N/A N/A N/A  0 0 0 4 
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CF: Cystic Fibrosis, GE: GENEActiv, AG: ActiGraph, SED: sedentary time, LPA: light physical activity, MPA: moderate physical activity, VPA: vigorous physical activity. 

XGBoost: eXtreme Gradient Boosting Trees; k-NN: k-Nearest Neighbour.  
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5. Cross-validation Results for Random Forest, Extreme Gradient Boosting and k-Nearest Neighbour to Classify Physical Activity 

Types 

 

Table H8.5 Predictive Accuracy (%) of Different Models to Classify Different Activities 

  CF Healthy 

 Placement Sensitivity Specificity Accuracy Detection 

Rate 

Sensitivity Specificity Accuracy Detection 

Rate 

Random Forest          

TV GE non-dominant wrist 100 100 100 0.26 100 100 100 0.14 

 GE dominant wrist 99.67 100 99.83 0.21 100 100 100 0.24 

 AG non-dominant wrist 100 100 100 0.17 99.67 100 99.83 0.21 

 AG dominant wrist 100 100 100 0.15 100 100 100 0.19 

 AG waist 100 100 100 0.14 100 100 100 0.20 

Colouring/writing GE non-dominant wrist 100 100 100 0.21 100 100 100 0.14 

 GE dominant wrist 100 99.82 99.91 0.22 100 100 100 0.08 

 AG non-dominant wrist 100 100 100 0.13 100 99.82 99.91 0.22 

 AG dominant wrist 100 100 100 0.12 100 100 100 0.22 

 AG waist 100 100 100 0.15 100 100 100 0.20 

Handheld device GE non-dominant wrist 100 100 100 0.17 100 100 100 0.27 

 GE dominant wrist 100 100 100 0.09 100 100 100 0.21 

 AG non-dominant wrist 100 100 100 0.18 100 100 100 0.09 
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 AG dominant wrist 100 100 100 0.20 100 100 100 0.10 

 AG waist 100 100 100 0.16 100 100 100 0.08 

Games GE non-dominant wrist 100 100 100 0.17 100 100 100 0.12 

 GE dominant wrist 100 100 100 0.11 100 100 100 0.18 

 AG non-dominant wrist 100 100 100 0.14 100 100 100 0.11 

 AG dominant wrist 100 100 100 0.007 100 100 100 0.19 

 AG waist 100 100 100 0.18 100 100 100 0.17 

Walk GE non-dominant wrist 100 100 100 0.10 100 100 100 0.18 

 GE dominant wrist 99.30 100 99.65 0.20 100 100 100 0.18 

 AG non-dominant wrist 100 100 100 0.17 99.30 100 99.65 0.20 

 AG dominant wrist 100 100 100 0.34 100 100 100 0.14 

 AG waist 100 100 100 0.17 100 100 100 0.16 

Handheld device GE non-dominant wrist 100 100 100 0.05 100 100 100 0.12 

 GE dominant wrist 100 99.92 99.96 0.14 100 100 100 0.08 

 AG non-dominant wrist 100 100 100 0.18 100 99.92 99.96 0.14 

 AG dominant wrist 100 100 100 0.16 100 100 100 0.14 

 AG waist 100 100 100 0.16 100 100 100 0.16 

XGBoost / k-NN           

TV GE non-dominant wrist 100 100 100 0.26 100 100 100 0.14 

 GE dominant wrist 100 100 100 0.21 100 100 100 0.25 

 AG non-dominant wrist 100 100 100 0.18 100 100 100 0.21 



331 

 

 

 AG dominant wrist 100 100 100 0.15 100 100 100 0.18 

 AG waist 100 100 100 0.13 100 100 100 0.20 

Colouring/writing GE non-dominant wrist 100 100 100 0.22 100 100 100 0.14 

 GE dominant wrist 100 100 100 0.22 100 100 100 0.07 

 AG non-dominant wrist 100 100 100 0.13 100 99.38 99.69 0.22 

 AG dominant wrist 100 100 100 0.12 100 100 100 0.22 

 AG waist 100 100 100 0.13 100 100 100 0.20 

Handheld device GE non-dominant wrist 100 100 100 0.17 100 100 100 0.27 

 GE dominant wrist 100 100 100 0.09 100 100 100 0.22 

 AG non-dominant wrist 100 100 100 0.18 100 100 100 0.09 

 AG dominant wrist 100 100 100 0.20 100 100 100 0.10 

 AG waist 100 100 100 0.13 100 100 100 0.08 

Games GE non-dominant wrist 100 100 100 0.18 100 100 100 0.12 

 GE dominant wrist 100 100 100 0.11 100 100 100 0.18 

 AG non-dominant wrist 100 100 100 0.14 100 100 100 0.11 

 AG dominant wrist 100 100 100 0.006 100 100 100 0.19 

 AG waist 100 100 100 0.13 100 100 100 0.18 

Walk GE non-dominant wrist 100 100 100 0.10 100 100 100 0.18 

 GE dominant wrist 100 100 100 0.20 100 100 100 0.18 

 AG non-dominant wrist 100 100 100 0.17 97.67 100 98.84 0.20 

 AG dominant wrist 100 100 100 0.34 100 100 100 0.14 
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 AG waist 100 100 100 0.13 100 100 100 0.16 

Stairs GE non-dominant wrist 100 100 100 0.05 100 100 100 0.12 

 GE dominant wrist 100 100 100 0.14 100 100 100 0.07 

 AG non-dominant wrist 100 100 100 0.18 100 100 100 0.14 

 AG dominant wrist 100 100 100 0.16 100 100 100 0.14 

 AG waist 100 100 100 0.13 100 100 100 0.16 

CF: Cystic Fibrosis, GE: GENEActiv, AG: ActiGraph, XGBoost: eXtreme Gradient Boosting Trees; k-NN: k-Nearest Neighbour.  
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6. Cross-validation Results for Random Forest, Extreme Gradient Boosting and k-Nearest Neighbour to Classify Physical Activity 

Intensities 

 

Table H8.6 Predictive Accuracy (%) of Different Models to Classify Physical Activity Intensities 

  CF Healthy 

 Placement Sensitivity Specificity Accuracy Detection 

Rate 

Sensitivity Specificity Accuracy Detection 

Rate 

Random Forest          

SED GE non-dominant wrist 100 100 100 0.52 NA NA NA NA 

 GE dominant wrist 100 100 100 0.45 100 100 100 0.41 

 AG non-dominant wrist 100 100 100 0.42 99.89 100 99.94 0.50 

 AG dominant wrist 100 100 100 0.41 100 100 100 0.39 

 AG waist 99.66 100 99.85 0.32 100 100 100 0.49 

LPA GE non-dominant wrist 100 100 100 0.42 NA NA NA NA 

 GE dominant wrist 100 100 100 0.46 100 100 100 0.50 

 AG non-dominant wrist 100 100 100 0.43 100 100 99.96 0.32 

 AG dominant wrist 100 100 100 0.48 100 100 100 0.45 

 AG waist 100 99.82 99.85 0.62 100 100 100 0.31 

MPA GE non-dominant wrist 100 100 100 0.05 NA NA NA NA 

 GE dominant wrist 100 100 100 0.07 100 100 100 0.07 

 AG non-dominant wrist 100 100 100 0.13 100 100 100 0.16 
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 AG dominant wrist 100 100 100 0.10 100 100 100 0.11 

 AG waist 100 100 100 0.04 100 100 100 0.17 

VPA GE non-dominant wrist 100 100 100 0.004 NA NA NA NA 

 GE dominant wrist 100 100 100 0.01 100 100 100 0.009 

 AG non-dominant wrist 100 100 100 0.005 100 100 100 0.008 

 AG dominant wrist NA NA NA NA 100 100 100 0.03 

 AG waist NA NA NA NA 100 100 100 0.01 

XGBoost / k-NN           

SED GE non-dominant wrist 100 100 100 0.52 100 100 100 0.51 

 GE dominant wrist 100 100 100 0.45 100 100 100 0.41 

 AG non-dominant wrist 100 100 100 0.42 100 100 100 0.50 

 AG dominant wrist 100 100 100 0.46 100 100 100 0.39 

 AG waist 100 100 100 0.44      100 100 100 0.49      

LPA GE non-dominant wrist 100 100 100 0.42 100 100 100 0.51 

 GE dominant wrist 100 100 100 0.46 100 100 100 0.50 

 AG non-dominant wrist 100 100 100 0.43 100 100 100 0.32 

 AG dominant wrist 100 100 100 0.43 100 100 100 0.46 

 AG waist 100 100 100 0.42       100 100 100 0.31      

MPA GE non-dominant wrist 100 100 100 0.05 100 100 100 0.33 

 GE dominant wrist 100 100 100 0.07 100 100 100 0.06 

 AG non-dominant wrist 100 100 100 0.13    100 100 100 0.16 
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 AG dominant wrist 100 100 100 0.09           100 100 100 0.11 

 AG waist 100 100 100 0.13           100 100 100 0.17     

VPA GE non-dominant wrist 100 100 100 0.003 100 100 100 0.15 

 GE dominant wrist NA NA NA NA 100 100 100 0.008 

 AG non-dominant wrist 100 100 100 0.004 100 100 100 0.007 

 AG dominant wrist NA NA NA NA 100 100 100 0.03 

 AG waist NA NA NA NA 100 100 100 0.01 

CF: Cystic Fibrosis, GE: GENEActiv, AG: ActiGraph, SED: sedentary time, LPA: light physical activity, MPA: moderate physical activity, VPA: vigorous physical activity, 

XGBoost: eXtreme Gradient Boosting Trees; k-NN: k-Nearest Neighbour.  
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Appendix I: Accelerometry Procedures  

1. Chapters 5 to 8 – Accelerometry Instructions for 12 to 18 years 

 

Applied Sports Technology Exercise and Medicine Research Centre 

(A-STEM) 

School of Sport and Exercise Sciences, College of Engineering 

Instructions on How to Use the Monitors (12 – 18 years)  

(Version 1.2, Date 17/10/2017) 

This is a Physical Activity Tracker! These monitors are like fancier ‘FitBits’, and will 

record every movement you make, they are called accelerometers! This way we will 

be able to tell exactly how active you really are. 

 

All the monitors can get wet and can be worn at all times. You can wear them 

whilst sleeping or for water-based activities, like swimming. You do not need 

to change anything about your week; we want to know how much you usually 

move. 

Wrist Monitors: 

You can wear the monitors on your wrist just like a watch. The monitors will be fully 

charged and the battery will last the full week. Don’t worry if the screens are blank - 

the monitors will be working! The monitors can get wet, so you don’t need to take them 

off, even for swimming or having a shower. Please make sure that they do not move 

around on your wrist, but are not too tight that they are uncomfortable. You can change 

the strap length, just like on a watch. 

 

 

 

 

Hip Monitor: 
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Wear the hip monitor like a belt, just above your right hipbone. You can wear it 

underneath or on top of your clothing. At first the belt may feel slightly funny, but after 

a few hours you will probably forget about it. Please wear the monitor so that the writing 

is facing the right way up (see picture below). The monitor should not move around 

when you are active. You can tighten it by pulling the ends of the straps. To loosen 

it, push more of the strap through the loop. 

 

The hip monitor will be fully charged. You do not need to worry about charging it. Don’t 

worry if the screen doesn’t have anything on it – the monitor will be working! The 

monitor can get wet, but you might want to take it off to go swimming or when having 

a bath or shower so the belt doesn’t get wet. Please make sure you put it back on as 

soon as you can. Make sure you write in the log sheet we have given you the times 

the monitor was taken off and put back on.  

 

 

 

 

 

 

 

 

 

 

  

This way up 
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Chest Monitor: 

The monitor on your chest is attached using two sticky pads (see the picture below). 

You need to make sure that the cable is in a straight line. You might not need to change 

the pads, but will we give you some spare ones if you need to. They might come off if 

you get very hot or do a lot of swimming. The monitor can get wet, so you can wear it 

in the shower or bath, or to go swimming. The monitor will be fully charged, so the 

battery will last the full week. 

 

 

 

 

 

 

 

 

 

What should I do if I need to change the sticky pads on my chest?  

First of all, you need to clean the skin where the sticky pad was. After cleaning the 

skin, make sure it’s dry before you attempt to stick on a new pad. The sticky pad in the 

middle should be placed two palms from your belly button (in the middle of your chest). 

The other one should be placed in line with it, as far round as the monitor will 

comfortably reach. It is best to stick the new pads where the old ones were. To attach 

the monitor to the metal spike on the sticky pads, you will need to press in and hold 

each of the buttons (shown in the picture above). 

 

If you have any trouble replacing the sticky pads, or any kind of problems with the 

monitors, feel free to contact us at any time! 

Please don’t forget to keep a track of every time you take the monitors off and 

put them back. You can do this on the log sheet given to you. 



339 

 

 

 

Please remember to wear the monitors every day (including during the 

weekend and whilst sleeping) for the next week. If you do take them off for any 

reason, please put them back on as soon as you can. Do NOT let anyone else 

wear your monitors.  

 

Please take care of the monitors. Each one broken or damaged will cost us the same 

as an Xbox or PS3 to replace. 

If you have any questions or if something happens to your monitor please contact: 

Mayara Silveira Bianchim 

 

 

Alternatively, you can contact: 

Dr Melitta McNarry 
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2. Chapters 5 to 8 – Accelerometry Instructions for Parents/Guardian 

 

Applied Sports Technology Exercise and Medicine Research Centre 

(A-STEM) 

School of Sport and Exercise Sciences, College of Engineering 

 

Instructions on How to Use the Monitors (Parental/Guardian)  

(Version 1.2, Date 17/10/2017) 

 

This is a Physical Activity Tracker, also known as accelerometer. It works by reading 

and recording the acceleration and rotational forces when you move. We will use this 

equipment to tell exactly how active your child really is. 

 

All monitors are fully waterproof and can be worn at all times, including 

sleeping and water-based activities. Your child does not need to change 

anything about their week; we want to know their usual physical activity levels. 

Wrist Monitors: 

Your child can wear the monitors on their wrist just like a watch. You don’t need to 

worry about charging it. Also, the screen won’t display anything, but it doesn’t mean 

that it’s not working. The monitors are fully waterproof, so your child doesn’t need to 

take them off, even for swimming or showering. The most important thing is to make 

sure that it’s tight enough that it doesn’t move around on their wrist, but not too tight 

that it’s uncomfortable.  
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Hip Monitor: 

Your child should wear the monitor attached to the belt around their waist, just above 

their right hipbone. They can wear it either underneath or on top of their clothing. At 

first the belt may feel slightly awkward, but after a few hours they will probably get 

used to it and forget about it. Your child should wear the monitor so that the writing is 

facing the right way up (see figure below). The monitor should be snug against their 

body. If they need to adjust it, they can tighten it by pulling the end of the strap, or, to 

loosen it, push more of the strap through the loop. Please check that the belt is tight 

enough that the monitor does not move when they are being active.  

 

Like the wrist monitors, you don’t need to worry about charging it. The screen also 

won’t display anything, but this doesn’t mean that it is not working. The monitor is fully 

waterproof, but they may want to remove it if they are going swimming or 

showering/bathing so the belt doesn’t get wet. Please make sure that they put it back 

on as soon as they can and record when they took it off and put it back on in the log 

we have provided them with.  

 

 

 

 

 

 

 

 

 

 

 

Chest Monitor: 

This way up 
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The monitor on your child’s chest is attached using two sticky patches (electrodes) as 

in the picture below. The most important thing is that the cable between the two ends 

is as horizontal as possible. Your child probably won’t need to change the electrodes, 

but we will provide spare patches in case you do want to. This monitor is also 

waterproof so they can wear it for all their daily activities. Just like the other monitors, 

you don’t need to worry about charging this monitor.  

 

 

 

 

 

  

 

 

 

 

What should I do if I need to change the sticker on my child’s chest?  

First of all, your child will need to clean the skin where the sticky pad was. After 

cleaning the skin, they will need to make sure it’s dry before they attempt to stick on a 

new pad. The sticky pad in the middle should be placed two palms from their belly 

button (in the middle of their chest), and the other one should be placed inline 

horizontally and as far round as it reaches comfortably. To attach, or release, the 

monitor to the metal electrode, you, or your child, will need to press in and hold each 

of the buttons as shown in the picture above. 

 

 

If they have any trouble replacing the sticky pads, or any kind of problems with the 

monitors, feel free to contact us at any time! 
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And don’t forget that it is important to keep a track of every time they take off 

the monitors on the log sheet provided! 

 

Please remind them to wear the monitors every day (including during the 

weekend and whilst sleeping) for the next week. If they do take them off for 

any reason, please remind them to put them back on as soon as possible. Do 

NOT let anyone else wear their monitors.  

 

We kindly ask that your child takes care of the monitors. Each one broken or 

damaged will cost us the equivalent of a new iPad to replace. 

If you have any questions or if something happens to your monitor please contact: 

Mayara Silveira Bianchim 

 

 

Alternatively, you can contact: 

Dr Melitta McNarry 
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3. Chapters 5 to 8 – Accelerometry Instructions for under 12 years 

 

Applied Sports Technology Exercise and Medicine Research Centre 

(A-STEM) 

School of Sport and Exercise Sciences, College of Engineering 

 

Instructions on How to Use the Monitors (under 12 years)  

(Version 1.2, Date 17/10/2017) 

 

This is a Physical Activity Tracker! These monitors are like fancier ‘FitBits’, and will 

record every movement you make! This way we will be able to tell exactly how active 

you really are. 

 

All the monitors can be worn in water and when you are sleeping. You can 

wear them without taking them off, even if you go swimming. You can do 

everything you normally do.  

Wrist Monitors: 

The monitors for your wrist can be worn like a watch. Some will tell you the time. Don’t 

worry if there isn’t anything on them, they will still be working. The monitors can be 

worn in water, so you don’t need to take them off. You can even wear them when 

swimming or having a shower. Make sure it doesn’t move around on your wrist when 

you’re running or jumping around. You can make it looser if it’s too tight.  
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Hip Monitor: 

You should wear this monitor a bit like a belt. The monitor should be on your right hand 

side, like in the picture below. You can wear it under your clothes, or on top of them. 

It might feel a little bit funny at first, but you’ll get used to it. Make sure the monitor is 

the right way up, like in the picture below. The belt should be tight enough that it 

doesn’t move when you’re running or jumping around. Make sure it’s not too tight. 

You can make the belt bigger or smaller. To make the belt bigger, you can push more 

of the strap through the loop. To make it smaller, you can pull both ends of the strap. 

 

The monitor will have enough battery to last for the week. Don’t worry if the screen is 

blank, the monitor will be working! The monitor can get wet, but you might not want 

the belt to get wet. Please take the monitor off for swimming or having a shower, but 

put it back on as soon as you can. Remember to fill in your log sheet with the times 

you took the monitor off.  

 

  

 

 

 

 

 

 

 

 

Chest Monitor: 

The monitor on your chest will be stuck to you using two stick pads. Make sure the two 

sticky pads are in a straight line with each other. It should look like the picture below. 

We will give you some spare pads if you want to put new ones on. The monitor can 

This way up 
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get wet, so you can leave it on. It can even be worn when you are swimming or having 

a shower. We will make sure the battery is full for the week. 

 

 

 

How do I change the sticky pads?  

You will need to take off the old sticky pads from your chest and clean your skin it was 

stuck to. Make sure your chest is dry. Stick new pads where the others were before. 

Push the buttons (see picture above) in and place over the metal ‘popper’ and then let 

go. You can do this for the middle and side sticky pad separately. 

 

 

 

 

If you cannot change the sticky pads, ask an adult to ask us! We will be happy to 

help you.  

Please make sure you fill in the log sheet we have given you. You need to write 

down the time you take any monitors on and off.  

 

Buttons to change sticky pads 
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Please wear the monitors every day for the next week. Even at the weekend 

and when you sleep! If you take any off, please put them back on as soon as 

you can. Do not let anyone else wear your monitors.  

 

Please look after the monitors. Each one costs the same as a PS3 or Xbox. 

 

If you have any questions or if something happens to your monitor, an adult can get 

in touch with: 

Mayara Silveira Bianchim 

 

 

Or, they can get in touch with: 

Dr Melitta McNarry  
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4. Chapter 6 – Accelerometry Log Sheet 

 

Applied Sports Technology Exercise and Medicine Research Centre (A-STEM) 

School of Sport and Exercise Sciences, College of Engineering 

Log Sheet 

(Version 1.2, Date: 17/10/2017) 

Your name:                           

 

Day and Date 

 

Time you woke up 
in the morning 

Time periods when 
activity monitor was 

taken off 

Reason activity 
monitor was taken off 

Time you went to 
bed 

Quality of sleep 

(1-10) 

1 = poor            

10 = very good ☺ 

What monitor(s) 
was/were taken 

off 

Example: 

Monday, 01/08/17 

7:15am 8:00am-8:15am 

3:30pm-4:30pm 

Showering 

Swimming 

9:00pm  Hip 

All 

 

 

      

 

 

      

 

 

      



349 

 

 

 

 

      

 

 

Day: 

 

Time you woke up 
in the morning 

Time periods when 
activity monitor was 

taken off 

Reason activity monitor was 
taken off 

Time you went 
to bed 

Quality of sleep 

(1-10) 

1 = poor                

10 = very good ☺  

What 
monitor(s) 
was/were 
taken off 

 

 

      

 

 

      

 

 

      

 

 

      

 

PLEASE RETURN THE ACTIVITY MONITOR AND LOG SHEET ON YOUR NEXT VISIT 
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Appendix J: Rate of Perceived Exertion Scale  

 

 




