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Abstract

Let X be the (reflecting) diffusion process generated by L := A+VV on a complete
connected Riemannian manifold M possibly with a boundary M, where V € C'(M)
such that p(dz) := ¢"(#)dz is a probability measure. We estimate the convergence rate
for the empirical measure u; := % fg 0x.ds under the Wasserstein distance. As a typical
example, when M = R¢ and V(z) = ¢; — co|z|P for some constants ¢; € R, ¢y > 0 and
p > 1, the explicit upper and lower bounds are present for the convergence rate, which
are of sharp order when either d < @ ord>4and p— oo.
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Keywords: Eempirical measure, diffusion process, Wasserstein distance, Riemannian mani-

fold.

1 Introduction

Let M be a d-dimensional complete connected Riemannian manifold, possibly with a bound-
ary OM. Let V € C'(M) such that Zy = [, e"®)ds < oo, where dz := vol(dz) stands for
the Riemannian volume measure. Then p(dz) := Z;,'eV(®dx is a probability measure, and
the (reflecting if OM exists) diffusion process X; generated by L := A 4+ VV is reversible
with stationary distribution p. When M is compact, the convergence rate of the empirical
measure

1 t
Ht = —/ (SXSCLS, t>0
13 0

*Supported in part by NNSFC (11771326, 11831014, 11921001).



under the Wasserstein distance is investigated in [17]. More precisely, let p be the Riemannian
distance on M, and let

Wa(un,pp) = inf - o0l 2y

be the associated L2-Warsserstein distance for probability measures on M, where € (i1, ji2)
is the class of all couplings of p; and py. For two positive functions &, 71 of ¢, we denote
Et) ~nt)if et < % < ¢ holds for some constant ¢ > 1 and large ¢ > 0. According to
[17], for large ¢ > 0 we have

=1 if d <3,
E[Ws(ps, 1)°] ~ St ogt, if d =4,
Tz, ifd> 5,

where the lower bound estimate on E[Wy(uy, 1)?] for d = 4 is only derived for a typical
example that M is the 4-dimensional torus and V' = 0. Moreover, when OM is either convex
or empty, we have

: = 2
(1.1) Lim tE[W(pu, p)?] = Z 2

where {\; }i>1 are all non-trivial eigenvalues of —L (with Neumann boundary condition if M
exists) listed in the increasing order counting multiplicities. See [15, 16] for further studies
on the conditional empirical measure of the L-diffusion process with absorbing boundary.

In this note, we investigate the convergence rate of E[Wy(uy, 11)?] for non-compact Rie-
mannian manifold M.

1.1 Upper bound estimate

We first present a result on the upper bound estimate of EY[Wy(uy, i1)?], where E” is the
expectation for the diffusion process with initial distribution v. When v = ¢, is a Dirac
measure, we simply denote E* = E% .

Let pi(x,y) be the heat kernel of the (Neumann) Markov semigroup P, generated by L.
We will assume

(1.2) v(t) = /Mpt(x,x),u(dx) < oo, t>0.

By [10, Theorem 3.3] (see also [12, Theorem 3.3.19]) and the spectral representation of heat
kernel, (1.2) holds if and only if L has discrete spectrum such that all non-trivial eigenvalues
{)\i}i21 of —L satisfy

[e.o]

Ze‘m < oo, t>0.
i=1
In particular, this is true if P, is ultracontractive, i.e.

sup pe(x,y) = || Pl L1 () poo(uy) < 00, t>0.
z,yeM



Since v(t) is deceasing in ¢, (1.2) implies

(1.3) —1+/ ds/ t)dt < oo, €€ (0,1].

Moreover, let

BDO| (1.4) a(e) = E*[p(Xo, X.)?] = /Mp(x,y)ng(x,y)u(d:v),u(dy), e > 0.

Finally, for any £ > 1, let Z, ={v € & :v = h,u, ||h, || < k}.
Theorem 1.1. Assume (1.2).
(1) For any k> 1,
8
(1.5) lim sup {t sup EY[Woy(pug, p } Z =

t—o00 VEPy, P

If P, is ultracontractive, then

— 8

A0’ | (1.6 lim su {tE Wo (1, } —

(1.6) m sup | LB [Wa (p, Z ¥

holds for v € & satisfying

: : v )2 —
a01| (1.7) l;igl E” [u(p(Xs,)?)]ds = 0.
(2) There exists a constant ¢ > 0 such that

(1.8) sup E"Wy (puy, pt)? <ck mf {04 )+t B(e)}, tk=>1.

vePy,

If P, is ultracontravtive, then there exists a constant ¢ > 0 such that for any v € &
andt > 1,

B3’| (1.9) E”[szt,u)Q]Sc{%/o E” [u(p(Xs,)?)]ds + inf {a(e)+t7'5(e )}}-

€€(0,1]

Since the conditions (1.2) and (1.4) are less explicit, for the convenience of applications
we present the following consequence of Theorem 1.1.

Corollary 1.2. Assume that OM = 0 or OM is conver outside a compact set. Let V =
Vi + Vs for some functions Vi, Vo € CY(M) such that

(1.10) Ricy, := Ric — Hessy, > — K, |[|[Vh]e < K

holds for some constant K > 0, where Ric is the Ricci curvature and Hess denotes the
Hessian tensor. For any t,e > 0, let

(1) ::/M%’ B(e) ::1+/€1ds/sli(r)dr



(1) There exists a constant ¢ > 0 such that

(1.11) sup B [Wo(py, 1)*] < ck inf {e+¢~ 18(e )}, k>

vePy 5601]
(2) If || Pe??||os < 00 for At >0, then for anyt > 1 and v € 2,

(1.12) B [Wa(pu 1)?] < et (| 9V ) + nf {e+ 13}

1.2 Lower bound estimate

Consider the modified L'-Warsserstein distance

Wi, pi2) :=  sup / {1 A p(x,y)}r(de, dy) < Wa(p, pa).
MxM

TEE (p1,12)

The operator L (with Neumann condition if M exists) is said to have a spectral gap, if

(1.13) A= inf {u(VFP) : £ € CHM) u(f) = 0.p(f?) = 1} > 0.

We have the following result.
Theorem 1.3. (1) In general, there exists a constant ¢ > 0 such that

(1.14) EA W, (g, )% > ct™t, > 1.
If (1.13) holds, then

(1.15) hgg}f {t]E (W1 (az, 1) ]} >0, ve 2.
(2) Let OM be empty or convex, and let d > 3. If u(|VV|) < oo and
(1.16) Ric > -K, V<K
holds for some constant K > 0, then there exists a constant ¢ > 0 such that
(42] (1.17) gEWMJQmmﬁhQL
and moreover
(1.18) htrggjlf {td 2B W1 (e, )]} >0, d>4,ve 2.

(3) Assume that P, is ultracontractive, OM is either empty or convex, and Ric—Hessy > K
for some constant K € R. Then

t—oo vED

= 2
(1.19) limin inf {6 B [Wa(u 1))} > Z—Q
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Remark 1.1. According to Theorem 1.1(1) and Theorem 1.3(3), when P, is ultracontrac-
tive, M is either empty or convex, and Ric — Hessy > K for some constant K € R, we
have

- 2 fn ] -1l 2 : -1l 2 - 8
ZA— < timinf {¢7'E"(Wa(n, p)?] | < lim sup {1~ B (Wl p)?] } < ZA— ve .
Beacuse of (1.1) derived in [17] in the compact setting, we may hope that the same limit
formula holds for the present non-compact setting. In particular, for the one-dimensional

Ornstein-Uhlenck process where M =R,V (z) = —1[z|? and A; = i,i > 1, we would guess
lim { ¢tEX[W oy 2
i 3 AW (g, )7 ¢ = 2

However, there is essential difficulty to prove the exact upper bound estimate as the cor-

. . : : : d
responding calculations in [17] heavily depend on the estimate || Pi||p1(u)—roe( < ct™2 for
some constant ¢ > 0 and all ¢ € (0, 1], which is available only when M is compact.

1.3 Example

To illustrate Corollary 1.2 and Theorem 1.3, we consider a class of specific models, where
the convergence rate is sharp when d < 2= as both upper and lower bounds behave as ¢!,
and is asymptotically sharp when d > 4 and p — oo for which both upper and lower bounds
are of order ¢~ 2. The assertions will be proved in Section 4.

Example 1.4. Let M = R? and V(x) = —x|z|P + W(x) for some constants k > 0,p > 1,
and some function W € C*(M) with |[VW s < o00.

(1) There exists a constant ¢ > 0 such that for any t,k > 1, we have

cht~TEBnE if 4(p — 1) < dp,

(1.20) sup B [Wy (i, 11)?] < < ckt~'log(1 +t), if 4(p — 1) = dp,
VEP

ckt=1, if 4(p— 1) > dp.

(2) If p > 2, then there exists a constant ¢ > 0 such that for any t > 1,

2(p—1)
ct” @242 if 4(p — 1) < dp,
E=[Wo (p1e, 11)?] |
(1.21) Seuﬂg T+ [2P@ D < ct7tlog(l+1t), if4(p—1)=dp,
’ ct 1, if 4(p— 1) > dp.

(3) For any probability measure v, there exists a constant ¢ > 0 such that for large t > 0,

o -2
EV[WQ(/J%’ /J“)Q] Z ]EV[Wl (H’ta H’)z] 2 ct 2v=2),
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2 Proofs of Theorem 1.1 and Corollary 1.2

By the spectral representation, the heat kernel of P, is formulated as
(2.1) pe(x,y) —1—1—26_“@ )0i(y), t>0,2,ye M,

where {¢;};>1 are the associated unit eigenfunctions with respect to the non-trivial eigen-
values {\;};>1 of —L, with the Neumann boundary condition if 9M exists.
We will use the following inequality due to [7, Theorem 2]

(2:2) Wa(fu, ) < 4p(IV(=D)'(f = D), f=0,u(f)=1,

which is proved using an idea due to [1], see Theorem A.1 below for an extension to the
upper bound on W, (fip, fopr). To apply (2.2), we consider the modified empirical measures

(23) Het = fs,tﬂa e>0,t> 07

where, according to (2.1),

2 fu= g [ 5000 —1+Z g &(0=7 [ 60X

Proof of Theorem 1.1. (1) It suffices to prove for Y oo, A\;? < oco. In this case, by [17, (2.19)]
whose proof works under the condition (1.2), we find a constant ¢ > 0 such that

ck > 1
= 7 Z \2e2eN:
i=1 "'t

o0

tEY [u(|(—L )7%<fet —1)] Z )\2625>\

sup
vEPy,

This together with (2.2) yields

8k 4
v 2
£ sup EY [Wo (e, 10)7] < Zp t4 2 5 €20
k =1 "7 =1 "
Since . s — g as € | 0, by Fatou’s lemma we derive
8 k= 4
v 2
(2.5) t sup E*[Wa(pu, 1)°] < Z R PEc]
k =1 " ? i=1 "1
and hence prove (1.5).
Next, when P; is ultracontractive, we have
d(e) = sup plr,y) <oo, €>0.

t>e,x,ycM

Then the distribution v, of X, starting at v is in the class &5). For any ¢ € (0, 1], let

1 t+e
ﬁ57t = - / 5)(5 ds.
t €

6
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By the Markov property and (2.5), we obtain

(2.6) lim sup {tE”[Wg(ﬂg,t, ,u)z]} = lim sup{ tE"= [Wo (g, po } Z %

t—o00 t—o00

On the other hand, since

1

€ 1 t
= ;/ 5(Xs,Xs+t)ds + ;/ 5(XS7XS)dS < Cg(’ut’ ﬁs’t)’
0 €

and since the conditional distribution of X, given X is bounded above by §(1)u for ¢ > 1,
we have

(B [ W (s, fie)?] < (B / plz,y)*m(dz, dy)

MxM

- /E]E”[p(XS,XS+t)2}ds < 5(1) / E [u((X,,)?)]ds = ..

0 0

Combining this with (1.7), (2.6), and applying the triangle inequality of Wy, we arrive at

lim sup {tE” (W (fie, )] }

t—o0
< lim < (1+ 7“5% lim sup {tE”[Wg(ﬂ&t, ,u)2]} +(1+ 7’5%)@)

el0 t—o0

— 8

<23

(2) Since A; > 0, we have
2 Pf - dp < et — “dp, t> L?
(2.7) |Pof = p(f)IPdp < e |f = u(f)Fdu, t=0,f € L ().
M M

By (2.1)-(2.3), and noting that L¢; = —\;¢; with {¢;};>1 being orthonormal in L*(u), we
obtain

(2.8) Wa (e 11)* < Ap(|V(=L) " (fer —

Below we prove the desired assertions respectively.
Since for v € ), we have E¥ < EE*, it suffices to prove for v = u. Since p is Pi-invariant
and p(¢?) = 1, we have

(2.9) EMi( X, )] = ul(e) =
Next, the Markov property yields
Eu(qbi(XSQ)‘Xsl) = PS2—S1¢Z'(X81) = e_)\i(SQ_Sl)QSi(XSl% 89 > S1.

7



Combining this with (2.9) and the definition of ;(t), we obtain

B & (1) / sy / 16:(X0)1(X.) 52

t/o a5 /Sl E[¢i(X,,)*le (=70 ds, < K

Substituting into (2.8) gives

(2.10) EH W (pte s, %i A Ze e = 52 Z/ ds/ —2hitdt,
Noting that (2.7) and the semigroup property imply
paaa) = [ Inte) = 1Putn) = [ 1Py (o)) = 1Pn)
[ sl = 1Puldy) = e (o) - 1),
we deduce from (2.1) that
S = [ o) - thulde) <o [ {piloa) - Da(da) < 0,
-1

Therefore, by (2.10) and that ~y(¢) is decreasing in ¢, we find a constant ¢; > 0 such that

BA (W (jteg, 1)?] < 2 / s / Nt (1)t
2 1 (o.9] [0.9]
(2.11) < 37/ (/ t)dt + (1 )/ ‘Altdt)d 42 :( )/ ds/ e Mtdt
1 1 s
Cl
L Ble)

< (0,1].

On the other hand, (2.3) and (2.8) imply that the measure

r(dr, dy) : / {6, (dw)po (X, y)p(dy) }ds
is a coupling of p; and pi.;. Combining this with the fact that ;1 is Pi-invariant, we obtain
1 t
B Wa(, 1] < 1B [ (X0 0Pp. (Xesy)i(d) = ae).
0

By (2.11) and the triangle inequality of Wy, this yields

EX[Wa (g, )]<2 mf {a + et B(e )}
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Therefore, (1.8) holds for some constant ¢ > 0 and v = p.
Finally, let P, be ultracontractive. Then there exists a constant ¢; > 0 such that

(2.12) sup p(z,y) < c1, x,y € M.
t>1

So, the distribution of X; has a distribution v; < c;pu. Let iy = %fot 0x,,,ds. It is easy to
see that

I I
(2.13) = ;/ 5(XS,X5+t)d5 + g/ 5(X,S,Xs)d5 € (g(ut,ﬂt),
0 1

so that (2.12) yields

(2.14) EY (W (e, fir)?] < %E”/Ol |1 X, — Xopef?ds < %E” /01 pn(p(Xs,-)?)ds.

On the other hand, by the Markov property and (1.8), we find a constant ¢y > 0 such that
B [Wo(fir, 1)) = " [Wa(py, 0)°] < c2 nf, {ale) +t7'8(e)}

Combining this with (2.14) and using the triangle inequality of Wy, we prove (1.9) for some

constant ¢ > 0. O

Proof of Corollary 1.2. (1) By [14, Lemma 3.5.6] and comparing P, with the semigroup
generated by A + V'V, see for instance [4, (2.8)], (1.10) implies that the Harnack inequality

(2.15) (Pof(2))? < {P.f2(y)}eCrC p@w)?® 2y e Mt € (0,1]

holds for some constant C' > 0. Therefore, by [13, Theorem 1.4.1] with ®(r) = r? and
U(z,y) = C+ Ct 'p(x,y)? we obtain

1 e2C
pu(z,2) = sup (P.f(x))? < — > < , te(0,1],x € M.
ulee) = Sp ) = ey = ey Y
This implies
(2.16) 1(t) < e*5(t), te(0,1].

On the other hand, by (1.10) and It6’s formula due to [5], there exists constant C; > 0
such that

dp(z, X,)? < [01(1 + oz, X0)?) + ]VV(x)|2] dt + 2v/2p(, X,)dby,

where b, is a one-dimensional Brownian motion. So, there exists a constant Cy > 0 such that
(2.17)  E’[p(x, X1)%] < (Cy + v([VVNte“ < Cy(1 4+ v(|VVIP)t, t€0,1],2 € M.
Then there exists a constant ¢ > 0 such that

a(e) = sup [ E'ple, X.Pp(de) <k [ B'pla, X, pldo)

veEZL J M M

< Cok(1+ pu(|VV|*)e < cke, € (0,1),k > 1.

Combining this with (2.16), we prove the first assertion by Theorem 1.1(2). The second

assertion follows from (2.17) and Theorem 1.1(2), since P, is ultracontractive provided
| PeMs || s < 00 for At > 0, see for instance [14, Theorem 3.5.5]. O
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3 Proof of Theorem 1.3

(1) We first prove that for any 0 # f € L*(u),

‘/f } 1 [ ulps>o

As shown in [2, Lemma 2.8] that the Markov property and the symmetry of P, in L?(u)
imply
t
—E“[ / F(X.)d } / s, / EA(f (Xa, Prayey (X, )]sy

(3.2) /dsl/ (Peszcs £)?)dsy = / w((P.f)?)d / dr

:_/ (t — 28)u((Pof)?)ds, t> 0,

t Jo

where we have used the variable transform (s,r) = (%252, 222 This implies (3.1). On the
other hand, we take 0 # f € L?(u) with u(f) =0 and || fle V |V f]loe < 1. Then

[ s _

Combining this with (3.1), we prove (A.1) for some constant ¢ > 0.
If (1.13) holds, then

(3.3) 1P f = 1Dz < e F = p(F)llzgys t20,f € L2 (n).
Let v = h,u € & with h, € L?(u). Similarly to (3.2), for any f € L*(u) with u(f) = 0, we

have
e ]+ )
1 [ o - | [ x| Juan
— E/t ds, /tu({h,, — 1}P {fPsy—s, [})ds2
/ / ({Par by = D)} - { Py f}) s

2
= H / dsl/ HP81 v ||L2 ||P52_31fHL2(“)d82'

Taking 0 # f € L?(p) with u(f) =0 and || f|ls V ||V f||lec < 1, by combining this with (3.1)

and (3.3), we derive
t 2
)
0

> 4/ w(|Psf?)ds >0, v = h,pu with h, € L*(p).
0

(3.1) lim E“[

t—oo t

- 1
tE (W (s, 11)?) > ;E“{

t—o0

1
lim inf [t]E”[Wl(ut, n) ]} > li{g(i)?f {EEV[

(3.4)

10



Next, let gy = %flﬁrl dx.ds, t > 0. By (2.13) we have

1
(3.5) Wi (e, ) < / 1{x¢y}ﬂ(dx,dy) = .
MxM

Noting that for any # € M we have v, := py(z,-)u with pi(z,-) € L?(u), by the Markov
property and (3.4), we obtain

lim inf {tEx[Wl(ﬂt,u)Q]} = lim inf [ﬂE"I (W1 (s, u)Q]} > 0.
—00 —00
Combining this with (3.5) and the triangle inequality leads to

lim inf {tEI[Wl(ut,u)Q]} >0, z€ M.

t—o0

Therefore, by Fatou’s lemma, for any v € & we have

lim inf {tE”[Wl(ut,uf]} = litm inf/M {tEx[Wl(ut,u)Q]}l/(dx)

t—o00 —00

> /M (hminf {tEm[Wl(ut,uf]})V(dx) > 0,

t—o00

which implies (1.15).
(2) Let d > 3, and let OM be empty or convex. By Ric > —K in (1.16), the Laplacian
comparison theorem implies

Ap(z,)(y) < C{p(z,y) + plz,y) "'}, (z,y) € M

for some constant C' > 0, where M := {(z,y) : z,y € M,z # y,z ¢ cut(y)}, and cut(y) is
the cut-locus of y. So,

~

Lp(z,)(y) < [VV ()| + C{p(z,y) + plz,y) "'}, (z,y) € M.
Combining this with the It6’s formula due to [5], we obtain
dp(Xo, X;) < V2dby + {|VV (X)) + Cp(x,y) + Cplx,y) "' }dt + di;,

where b; is a one-dimensional Brownian motion, and /; is the local time of X; at the initial
value X, which is an increasing process supported on {t > 0 : X; = Xy}. Thus, we find a
constant C'; > 0 such that

{ p(Xo, Xy)?
1 + p(X07 Xt)2

} < Oy(1+ |VV(X)|dt + dM,

for some martingale M;. Since p is P-invariant, this implies

B p(Xo, X)) A1V < Co{ 1+ p(IVV) I, t>0,0€ M

11
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for some constant Cy > 0. Therefore, for any N € N and ¢; := (i — 1)t/N, the probability
measure

satisfies

for some constant C3 > 0. So,

(3.6) sup B [Wi (fin, 11)?] < KE* Wy (i, pe)?] < ;
veEPy, N

On the other hand, by Ric > —K and V < K in (1.16) and using the volume comparison
theorem, we find a constant Cy > 1 such that

u(B(z,r)) < Cyr?, ze M,re [0, 1],

where B(z,r) :={y € M : p(xz,y) A1 <r}. Since u is a probability measure, this inequality
holds for all » > 0. Therefore, by [6, Proposition 4.2], there exists a constant C5 > 0 such
that

Wi fin, p) > CsN™a, N > 1.

Combining this with (3.6) and using the triangle inequality for W;, we obtain

sup E”[Wy (s, )] > CsN~d — \/C5ktN™2, N,k > 1.

veEPy

maximizing in N > 1, we find a constant ¢ > 0 such that (1.17) holds.
Now, let d > 4. To prove (1.18) for general probability measure v, we consider the shift
empirical measure

and the probability measures
Vg = 5xP1 :pl(l‘a ),LL, Vg1 = y
By the Markov property, we obtain

B2 (W (i 1]) = B [ (s, )] = / EY (W (e, )l (2, ) a(dly)

M

12



= /B o EY[W (e, 1)1 (2, ) p(dy) = va( B, 1) B Wy (fie, )

Noting that h(z) := sup,ep (1) p1(z,y) < 0o, this and (1.17) yield

1

B2 (W (fie, )] > g(x)tfd%?, g(x) == cvy(B(x,1))h(x) 72,2 € M,t > 1.

Consequently, for any probability measure v,

B WG] = | B0 )lv(do) 2 (o)t 75, 021

Combining this with (3.5) and noting that d > 4 implies ¢~ 72 >t t=3 for t > 1, we find a
constant ¢, > 0 such that when ¢ is large enough,

1

B [Wh (e, 12)] = B [Wa (i, 1) — W (fig, pue)| > e(v)t™ 7.

(3) According to [17, Theorem 2.1], for any € € (0, 1] we have

*Q1| (3.7) lim inf {t inf E*[Waq(puet, 1 } Z /\2e25/\

t—o00

On the other hand, by [14, Theorem 3.3.2], the conditions that Ric — Hessy > K and OM
is empty or convex imply

WQ(ME,taH)Q S e_26KW2(Mt7M)27 € Z 0.

Combining this with (3.7), we derive

lim inf {t inf E*[Wo(pu, 1) } o2k Z )\2625/\ , €€ (0,1].

t—o00

By letting € | 0 we finish the proof.

4 Proof of Example 1.4

(1) Taking V; € C*°(R?) such that Vi (z) = —k|z|P for |z| > 1, and writing Vo =V +W -V,
we see that (1.10) holds for some constant K € R. By Corollary 1.2, it suffices to estimate
F(t). For any x € R? with |2| > 1, and any ¢t € (0,1], let ; = %(m — 1V/t). We find a
constant ¢; > 0 and some point z € B(z, v/t) such that

BM1| (4.1) M(B(J?, \/E)) > / e—“\y|p+W(y)dy > Cli%e_n(m_%t%)p"'w(z)'
B(Itull\/i)

13
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Since |z| > 1, t € (0,1] and p > 1, we find a constant ¢, > 0 such that

) ||
|z|P — (|a:| — t§/4)p :p/ ) rP=dr
(4.2) lel=5¢
Moreover,
W (=) = W(@)| < [VWllz — 2| < VW], £ € (0,1),2 € Bla,th),

Combining this with (4.1) and (4.2), we find a ¢3 > 0 such that

1
1(B(x,Vt)) > cytze el telel I WE@) -y o 1] 2 € R

Noting that —x|z|P + 2|W (z)| is bounded from above, we find constants ¢4, ¢5 > 0 such that

/ _pdy) < c4tg/ rd’le’C”p_lt%dr < c5t7%72<%1> = c5t72(£7i1>, t € (0,1].
jaf>1 ) 1

B(z,vt

On the other hand, there exists a constant ¢ > 0 such that p(B(x,7)) > cerd for |z| < 1
and r € (0,1]. In conclusion, there exists a constant ¢; > 0 such that

o p(dx)
0=, EERYG)

Thus, there exists a constant ¢g > 0 such that for any € € (0, 1],

__pd__ _1,-4d __pd
<t 2D gt <t 20D, te (0,1].

1 1 C8€2_2<§51), if 2 < %,
~ dp
Ble) <1+ 06/ ds/ t2-Ddt < cglog(l+¢e71), if2= %,

Cg, if 2 > %

2(p—1)
By taking e =t~ @2»2 if 4(p—1) < dp,e =t ' ifd(p—1) =dp,and € | 0 if 4(p— 1) > dp,
we derive

= if 4(p — 1) < dp,
(4.3) Eei%fl] {8 + tilﬁ(é?)} < qcttlog(l+1t), if4(p—1)=dp,
’ ot if4(p—1) > dp

for some constant ¢ > 0. Therefore, (1.20) follows from Corollary 1.2(1).
(2) Next, by [8, Corollary 3.3], when p > 2 the Markov semigroup P generated by
A — kV| - |P is ultracontractive with

c —p/(p—2)
(4.4) PP £ o) Lo (o) < €T >0

14



for some constant ¢; > 0, where ug(dz) := Z —Le—rlrl’qg is probability measure with normal-
ized constant Z > 0. According to the correspondence between the ultracontractivity and
the log-Sobolev inequality, see [3], (4.4) holds if and only if there exists a constant ¢y > 0
such that

no(f21og f2) < ruo(IVf1P) + ea(1+7777), 1> 0, puo(f%) = 1.
Replacing f by fe? and using ||[VW||w < co which implies p(e"V) < oo for any ¢ > 0 due
to p > 1, we find constants c3 such that
p(f*log f2) < p(fPW) + 2V ) + 2 VW + a1 +r7772)
1 1 _p_
< ([ VIP) + 3ulf1og )+ 3 log () + 2V + ea(1+1777)

< (V1) + gl log %) es(L+075), 1> 0, (%) = 1.

Hence, for some constant ¢4 > 0 we have

(£ log £2) < rp(IVFI?) + ea(l+77572), 1> 0,u(f?) = 1.

By the above mentioned correspondence of the log-Sobolev inequality and semigroup esti-
mate, this implies

-p/(p—2)
||Pt||Ll(u)_>Loo(#) S 665(1+t p/(p )7 . 0

for some constant ¢; > 0. In particular, this and p(eM!”) < oo imply ||Pe | < oo for
t,A > 0, so that by Corollary 1.2(2), (1.21) follows from (4.3) and the fact that |VV (x)]* <
(1 + |z|>®"=Y) holds for some constant ¢’ > 0.

(3) By [9, Corollary 1.4], the Poincaré inequality (1.13) holds for some constant A\; > 0.
Moreover, it is trivial that the condition (1.16) holds for some constant K > 0. So, the
desired lower bound estimate is implied by Theorem 1.3.
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A Upper bound estimate on W, (fiu, fou)

For p > 1, let W, be the LP-Wasserstein distance induced by p, i.e.

Wy (1, p2) = inf )||P||Lp(n)-

TEE (11,2
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According to [7, Theorem 2], for any probability density f of u, we have

(A1) W (f, 1) < pPu(IV(=L)~'(f = DIP).

The idea of the proof goes back to [1], in which the following estimate is presented for
probability density functions fi, fo:

(A'Q) (f1N1,f2/~b2 / |V f§f2f2) f1)| du,

where . (a,b) := 1{a/\b>0}w for a # b, and A (a,a) = 1{zs01a” . In general, for p > 1,
denote A, = # if p =2, and when p # 2 let

My(a,b il

= lyoppott
) = K0y =)
In this Appendix, we extend estimates (A.1) and (A.2) as follows, which might be useful for
further studies.

for a #b, My(a,a) = 1{a>0}a1_p.

Theorem A.1. For any probability density functions fi and fs with respect to p such that
JiV fe>0,

WolJip, fopu)” < min {pp2p_1/ |V(_f1 -I- ;f;p_lfl / - — AP dp,

V(=L)'(fo— f1)? }
/ fl,f2> diey-

Proof. 1t suffices to prove for p > 1. Let Lip,(M) be the set of bounded Lipschitz continuous
functions on M. Consider the Hamilton-Jacobi semigroup (Q;):~o on Lip,(M):

Qi = 1nf {¢($) + pti_lp(x7 ~)p}, t > 0,¢ € Lip,(M).

Then for any ¢ € Lip,(M), Qo¢ := limyo Q1 = ¢, [|[VQid||w is locally bounded in ¢ > 0,
and ;¢ solves the Hamilton-Jacobi equation

d p—1 p
A3 — = —— =1 ¢ >0.
(A.3) dtQt¢ » IVQiglrT, t>
Let ¢ = ;2. For any f € Cy(M), and any increasing function 6 € C*((0,1)) such that

0o := limg 05 = 0,0 := lim, ,; 6, = 1, by (A.3) and the integration by parts formula, we
obtain

(@) = a5 = [ (U 0,00 - £01Qu1) Jas
- /O1 ds/M {9;(fz ToN g L 95(qu — ) |Vst|q}dp
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where the last step is due to Young’s inequality ab < a?/p+b?/q for a,b > 0. By Kantorovich
duality formula

W o) = sup {1 (Quf) — (),
p fect(m)

and noting that

h+0(fe—f)=H+fo—0/—-(1—=0,)f

. . esfl . (1_98)f2
_(f1+f2)<1 fi+ fa fi+ fo >
> (f1 + fo) min{1 — 0,,0,},
we derive
p ' A V(= — f2)I?
(A.4) W, (1, pr2)? < o min{f,, 1 — 0,171 / f1+f2 Jp—1 dp.
By taking

0 = 1jp,1(8)2P7's” + L1 y(s){1 = 2771 (1 — )7},

which satisfies
0. = p2’ ' min{s,1 — s}*"', min{f,,1 —6,} = 2" ' min{s, 1 — s}?,

we deduce from (A.4) that

P < 9P— 1 / ’ fl)l du.
Wy (fun o) < =l
Next, (A.4) with 0, =1 — (1 — s)P implies
(flu,fw<pp/| 2= Al
1
Finally, with 65 = s we deduce from (A.4) that
(=L)"2(f2 = f)?
du.
W, (fips fop)? / My(f1, f2) H
Then the proof is finished. ]
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