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Abstract 

In 2018, 48% of young people in Wales engaged in sport ≥3 times a week. However, 

questions remain regarding the influence of sex and maturation on aerobic and 

anaerobic trainability. Indeed, many earlier studies failed to appropriately account for 

physical activity (PA), confounding the interpretation of training per se. Moreover, 

there is a paucity of literature examining the long-term effects of training.  

Chapter 4 revealed that, irrespective of maturity, trained youth had a higher maximal 

oxygen uptake (V̇O2max) than their untrained counterparts but, importantly, the 

magnitude of training-related difference was higher in girls than boys. Given the well-

established sex-differences in the decline of PA levels with age, Chapter 5 explored 

the role of PA on V̇O2max using compositional analyses. This demonstrated that, for 

the same change in PA, girls had a greater predicted change in absolute, and scaled, 

V̇O2max. As the trainability, and kinetic determinants, of sprint performance have 

received little attention compared to aerobic fitness in youth, this was explored in 

Chapters 6 and 7. In Chapter 6, training was associated with a greater peak power 

and force, depending on maturity, with only post-pubertal participants demonstrating 

significant increases in performance. Using a repeated sprint protocol, mechanical 

efficiency was found to be more important than absolute force production for 

performance in Chapter 7, highlighting key training targets. Finally, using a narrative 

review and meta-analytical approach, Chapter 8 found significant inter-sport 

differences in all-cause, cardiovascular disease, and cancer mortality in former elite 

athletes, suggesting that sport type influences the long-term effects of training. 

Overall, this thesis highlights the distinct determinants of aerobic and anaerobic 

performance, with sex and maturity exerting different, and independent, effects. 

Moreover, the paucity of data available in girls was highlighted, with conclusions 

regarding the long-term effects of training in females largely precluded. 
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Chapter 1 - Introduction 

Exercise is paramount for the current health and well-being, irrespective of age, 

though arguably more important during childhood and adolescence given that exercise 

habits in children are strongly associated with exercise levels in adulthood 

(Armstrong, 2007; Armstrong & Welsman, 2020c; Baquet, Van Praagh, & Berthoin, 

2003; Matos & Winsley, 2007). Exercise is associated with numerous health-related 

benefits, including, but not limited to, improved physical (Armstrong & Welsman, 

2020c; McNarry et al., 2014a; McNarry, Mackintosh, & Stoedefalke, 2014b) and 

mental health (Eddolls, McNarry, Stratton, Winn, & Mackintosh, 2017; Sabato, 

Walch, & Caine, 2016), enhanced social well-being (Mountjoy, 2008; Pene & 

Touitou, 2009), and a reduced risk of cardiovascular disease (CVD; Coombes, Law, 

Lancashire, & Fassett, 2015; Kaminsky et al., 2019) and all-cause mortality 

(Garatachea et al., 2014; Lemez & Baker, 2015). Creating a more active nation has 

been at the forefront of governmental policies for decades (UK Government, 2015), 

with the latest available data indicating that almost half of children and adolescents 

under 17 years of age in England and Wales participate in extra-curricular sport at 

least three times a week (Sport England, 2019; Sport Wales, 2018). Driven by this 

increase in participation, young athletes are increasingly being enrolled in long-term 

athlete development (LTAD) to ensure the continuation of elite athlete sporting 

success (Till, Emmonds, & Jones, 2019). Consequently, young athletes are now 

training earlier, longer, and at a greater intensity than ever before (Till et al., 2019). 

Despite this, fundamental questions remain regarding the influence of training during 

youth, the factors that influence it and its long-term implications on health.  

The effect of different training methodologies on various components of fitness has 

received substantial attention (Armstrong & Welsman, 2020c; Baquet et al., 2003; 

Cao, Quan, & Zhuang, 2019; Costigan, Eather, Plotnikoff, Taaffe, & Lubans, 2015; 

McNarry & Jones, 2014) but, despite decades of research, there remains little 

consensus as to whether endurance training or high-intensity interval training (HIIT) 

is more effective at obtaining favourable training-related adaptations (Cao et al., 

2019). Such discrepancies can be largely attributed to inter-study methodological 

inconsistencies, including a failure to appropriately account for the pubertal status of 

the participants within training studies (Kobayashi et al., 1978; Stojmenović et al., 
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2018) or failing to include no-exercise comparator groups to enable the concomitant 

effects of growth and maturation to be accounted for (Faude, Schnittker, Schulte-

Zurhasen, Muller, & Meyer, 2013; Sperlich et al., 2011). Indeed, accounting for 

puberty, the process of growth and sexual maturation in the transition from childhood 

into adulthood (Rogol, Roemmich, & Clark, 2002), is imperative, as pubertal status 

has been purported to be strongly linked to improvements in athletic performance for 

nearly 40 years.  

In a seminal paper, Katch (1983) theorised that pubertal adolescents experience a 

period of accelerated adaptation to training, mediated by increases in circulating 

androgenic hormones, with negligible adaptations to training observed prior to this 

point, termed the ‘maturational threshold’. Whilst a strong theoretical argument can 

be made for the presence of the maturational threshold, recent empirical evidence 

refutes the hypothesis, with pre-pubertal children demonstrating similar trainability to 

pubertal and post-pubertal adolescents (Armstrong, 2015; Cahill et al., 2020; McNarry 

et al., 2014b; McNarry, Welsman, & Jones, 2011b; Moran, Sandercock, Rumpf, & 

Parry, 2016). However, there are a few methodological limitations which may 

contribute to our lack of understanding regarding the optimal training methodology, 

and how this interacts with sex and maturation. More specifically, discrepancies 

between training and intervention exercise modalities (Stoedefalke, Armstrong, Kirby, 

& Welsman, 2000) likely mask meaningful performance differences. Additionally 

early training intervention studies in girls were of insufficient intensity (Welsman, 

Armstrong, Chedzoy, & Withers, 1996; Welsman, Armstrong, & Withers, 1997; 

Williams, Armstrong, & Powell, 2000), with later research suggesting children and 

adolescents require a vigorous exercise stimulus to elicit a significant response in peak 

V̇O2 (Baquet et al., 2003; Cao et al., 2019; Carazo-Vargas & Moncada-Jiménez, 2015; 

Foster et al., 2015; Sperlich et al., 2011). Furthermore, a major limitation with much 

of the training literature, which is often overlooked, is the failure to consider habitual 

physical activity (PA) levels. Indeed, the most common definition of a control group 

within training studies is that the participants were not engaged in a formal exercise 

program (Mahon & Vaccaro, 1989; Mandigout, Lecoq, Courteix, Guenon, & Obert, 

2000; Rowland & Boyajian, 1995), but this does not preclude the participants from 



 

 

 

19 

 

being highly physically active, thus potentially confounding the interpretation of the 

effect of training per se. 

The effect of habitual PA and sedentary time (SED) on peak V̇O2 levels in children 

and adolescents is equivocal (Armstrong, 2013; Armstrong, Tomkinson, & Ekelund, 

2011; Dencker & Andersen, 2011; Dencker et al., 2006; Ekelund et al., 2001; Fenster, 

Freedson, Washburn, & Ellison, 1989), but paradoxically they are the two single most 

researched parameters in paediatric exercise science. Whilst accelerometers have 

enhanced our understanding of PA and SED in youth, the vast majority of research 

has focused solely on moderate-to-vigorous physical activity (MVPA), which 

typically encompasses just 4% of the 24-hour day (Chastin, Palarea-Albaladejo, 

Dontje, & Skelton, 2015). Interpretation of this data is further compounded by the 

reliance on conventional statistics which typically assume independence between 

variables (Pearson, 1896), potentially leading to spurious associations with health 

outcomes (Chastin et al., 2015). In order to account for the constrained and co-

dependent nature of PA and SED, a compositional approach may be more appropriate 

as it considers each movement behaviour (i.e. SED, light physical activity, MPA, 

VPA, and sleep) relative to the remaining composition (Carson, Tremblay, Chaput, & 

Chastin, 2016; Carson, Tremblay, Chaput, McGregor, & Chastin, 2019; Dumuid et 

al., 2018a). Therefore, compositional analysis allows for the constrained, and co-

dependent, nature of movement data, enabling the exploration of the independent and 

interactive effects of movement behaviours on outcome variables (Chastin et al., 2015; 

Dumuid et al., 2018a). The relationship between PA, SED, and peak V̇O2 was 

examined using compositional analyses in a large sample of Canadian children (n = 

4,169), revealing that whilst the overall PA composition was significantly related to 

peak V̇O2, the reallocation of time from one movement behaviour to another had 

negligible effect on predicted peak V̇O2 (Carson et al., 2016). However, it is pertinent 

to note that peak V̇O2 in the study of Carson et al. (2016) was assessed using a field-

based measure which has questionable reliability (Armstrong & Welsman, 2020b). 

Moreover, there was a lack of training and maturity status assessment, both of which 

significantly influence peak V̇O2 (McNarry & Jones, 2014), along with the pooling of 

data from boys and girls, potentially confounding the interpretation of the results. 
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Therefore, future research is warranted to address these limitations and to provide 

more generalisable, and impactful, insights. 

The effect of maturity upon peak V̇O2 is well established, but key questions still 

remain regarding the influence of sex on training responses to exercise stimuli 

(Armstrong & McNarry, 2016). More specifically, girls and boys differ greatly in 

maturation timing, tempo and duration (Rogol et al., 2002) and have increasingly 

different body compositions which may potentially alter the response to training 

stimuli during adolescence (Armstrong & McNarry, 2016; Armstrong & Welsman, 

2019b, 2020a). Tentative comparisons suggest that pre-pubertal girls experience a 

similar degree of improvement in peak V̇O2 to boys in response to a training stimuli, 

irrespective of modality (7.8% - 9.1%; McManus, Armstrong, & Williams, 1997; 

McNarry et al., 2011b). Interestingly, despite their seemingly similar trainability, girls 

have a lower peak V̇O2 compared to their male counterparts, even when allometrically 

scaled for body mass (Armstrong & Welsman, 2019a; Armstrong & Welsman, 2019b; 

Winsley, Fulford, Roberts, Welsman, & Armstrong, 2009). This sex-related 

divergence in peak V̇O2 increases with maturity, with sex differences in absolute peak 

V̇O2 increasing form ~12.8% in pre-pubertal children (Winsley et al., 2009) to ~30% 

in post-pubertal adolescents and adults (Armstrong & Welsman, 2019b). Although 

there are sex differences in body composition and PA levels, especially during the 

mid-teenage years (Bitar, Vernet, Coudert, & Vermorel, 2000; Ekelund et al., 2001), 

these sex differences are unlikely to explain the sexual dimorphism of peak V̇O2 in its 

entirety, and more insight could be gained by examining the mechanistic basis for peak 

V̇O2 development (Armstrong & Welsman, 2019a; Armstrong & Welsman, 2020a; 

McNarry et al., 2015; McNarry et al., 2014b; Winsley et al., 2009).  

Fick (1870b) highlighted that both oxygen delivery and extraction are important 

cardiovascular components for peak V̇O2 development. Oxygen delivery is mediated 

through central mechanisms, namely stroke volume (SV, the amount of blood ejected 

from the heart with every beat) and cardiac output (Q̇, the amount of blood ejected 

from the heart every minute). Evidence indicates that boys typically have a larger SV 

and Q̇ than girls, irrespective of maturity or training status, but that this sex difference 

is ameliorated when appropriately normalised for body size (Armstrong & Welsman, 

2019a; Armstrong & Welsman, 2020a; Nottin et al., 2002; Obert et al., 2003; Vinet et 
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al., 2003; Winsley et al., 2009). Consequently, differences in peripheral oxygen 

extraction at the level of the muscle seem more influential, with evidence derived from 

near infra-red spectroscopy (NIRS) suggesting that differences in muscle oxygen 

extraction can explain up to 12% of the variance in peak V̇O2 in pre-pubertal children 

(McNarry et al., 2015). However, the majority of research examining sex differences 

in oxygen delivery and extraction, have been conducted in pre-pubertal children 

(McNarry et al., 2015; Obert et al., 2005; Obert et al., 2003; Winsley et al., 2009) and 

thus whether these differences are evident in circa- and post-pubertal adolescents 

remains to be elucidated.  

Whilst the mechanisms underpinning sex and maturity differences in peak V̇O2 are 

starting to be elucidated, sex differences in the anaerobic performance capacity of 

children and adolescents has received substantially less attention (Doré et al., 2005; 

Van Praagh, 2000; Van Praagh & Doré, 2002). This may be due, at least in part, to a 

lack of ‘gold standard’ measure (Ingle & Tolfrey, 2013; Watt, Hopkins, & Snow, 

2002) and researchers considering anaerobic performance a performance as opposed 

to a health-related outcome. Nevertheless, over-ground sprint running has become an 

increasingly popular performance assessment measure over the last decade and is 

commonly incorporated into LTAD programs and talent identification batteries 

(Meyers, Oliver, Hughes, Cronin, & Lloyd, 2015; Meyers, Oliver, Hughes, Lloyd, & 

Cronin, 2016, 2017a; Nagahara et al., 2019; Papaiakovou et al., 2009; Philippaerts et 

al., 2006). Nonetheless, there remains debate regarding the most appropriate sprint 

protocol, with suggestions that repeated-sprint protocols may be more ecologically 

valid and may offer more insight into the fatiguing mechanisms of anaerobic 

performances (Mendez-Villanueva et al., 2010; Mendez-Villanueva, Hamer, & 

Bishop, 2007; Mujika, Spencer, Santisteban, Gioriena, & Bishop, 2009; Philippaerts 

et al., 2006; Rommers et al., 2018). The evidence from both singular and repeated 

sprints indicates that sprint speed during adolescence is also sexually dimorphic, with 

girls displaying an almost linear increase in sprint speed until the age of 15 years 

(Nagahara et al., 2019; Papaiakovou et al., 2009), whereas boys experience an 

accelerated rate of adaptation in the six months surrounding peak height velocity 

(Philippaerts et al., 2006). 
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The majority of research investigating anaerobic sprint performance in youth to date 

has focused on the influence of internal and external stimuli on a single, summative, 

outcome variable in the form of maximal sprint speed (Morin, 2018; Morin, Jeannin, 

Chevallier, & Belli, 2006; Rossi, Slotala, Samozino, Morin, & Edouard, 2017) but this 

provides little insight to the development or maintenance of speed throughout a 

sprinting bout. Furthermore, in those studies that have explored the kinetic 

determinants of sprint performance, this has largely been derived using non-motorised 

treadmills (Rumpf et al., 2015a; Rumpf, Cronin, Oliver, & Hughes, 2013; Rumpf, 

Cronin, Oliver, & Hughes, 2015b) or force platforms (Nagahara et al., 2019) which 

have limited ecological validity. Recent developments in technology now enable for 

the near instantaneous (> 46 Hz) quantification of velocity data from which the 

underlying kinetics can be modelled using macroscopic biomechanical models (Rossi 

et al., 2017; Samozino et al., 2016; Simperingham, Cronin, & Ross, 2016). However, 

these techniques have not been used in a paediatric population and thus evidence 

regarding sprint kinetics are sparse (Meyers, Oliver, Hughes, Lloyd, & Cronin, 

2017b). A greater understanding of the kinetic determinants of single and repeated 

sprint performance may enhance our understanding of fatiguing mechanisms, allowing 

greater specificity in training interventions. Moreover, more insight into the 

underlying kinetics in field-based settings may increase the success of talent 

identification batteries. 

The effects of training during childhood and adolescence on long-term health in 

adulthood has received limited attention, at least in part, due to the difficulty in 

conducting longitudinal studies and controlling for all confounding factors. Therefore, 

future research is needed to establish the long-term effects of exercise in children. 

Nevertheless, in adults, a linear dose-response relationship has traditionally been 

assumed between the amount of exercise performed and all-cause mortality, CVD and 

cancer related mortality (Blair et al., 1989; Lee, Hseih, & Paffenbarger Jr, 1995; 

Paffenbarger & Lee, 1998). However, recent large-scale epidemiological studies have 

challenged this assumption, suggesting that the exercise-longevity relationship may 

be ‘J’ shaped, with exercise above a certain volume and/or intensity deleterious to 

long-term health (M. Armstrong, Green, Reeves, Beral, & Cairns, 2015a; Merghani, 

Malhotra, & Sharma, 2016; O'Keefe et al., 2012; Schnohr, O'Keefe, Marott, Lange, & 
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Jensen, 2015). Of concern, elite athletes often train at levels far exceeding those 

reported in epidemiological studies (Antero-Jacquemin et al., 2014; Bianco et al., 

2007), raising questions regarding the long-term health implications of such training. 

Whilst the most recent systematic reviews and meta-analyses concluded that former 

elite athletes live longer and have a lower incidence of CVD and cancer mortality than 

the general population (Garatachea et al., 2014; Lemez & Baker, 2015; Teramoto & 

Bungum, 2010b), it is pertinent to note that these reviews did not account for potential 

between sport differences in all-cause, CVD and cancer mortality. Controlling for 

sport, and thus training types, is crucial given the significant variations in training 

methodologies used and their potentially divergent effects on health. 

Therefore, this thesis sought to investigate the influence of sex, maturity, training 

status, and physical activity levels, using novel methods and analysis techniques, on 

aerobic and sprint performance parameters during childhood and adolescence. 
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1.1 Experimental Study Aims 

 

Study 1 (Chapter 4): 

To investigate the influence of sex on aerobic fitness, and the underpinning 

mechanisms, in youth.  

Study 2 (Chapter 5): 

To examine independent, and interactive, effects of five movement behaviours (i.e. 

SED, LPA, MPA, VPA, and sleep) on absolute and allometrically scaled V̇O2max, 

accounting for sex, maturity, and training status. 

Study 3 (Chapter 6): 

To determine whether the kinetics associated with maximal sprint performance differ 

according to sex, maturity, and training status. 

Study 4 (Chapter 7): 

To investigate the mechanisms of fatigue during repeated over-ground sprints using a 

combination of radar technology and macroscopic biomechanical modelling in trained 

children and adolescents. 

Study 5 (Chapter 8): 

To examine the relationship between chronic intensive exercise training and all-cause, 

CVD and cancer mortality in former elite athletes, according to sport type, in 

comparison to their non-elite counterparts.  
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Chapter 2 - Literature Review 

Exercise is strongly associated with numerous short- and long-term health-related 

parameters (Armstrong, 2007; Armstrong & Welsman, 2020c; Väistö et al., 2019). 

Specifically, regular exercise has been associated with an improved aerobic fitness 

(Armstrong, 2007; Cao et al., 2019), mental health (Eddolls et al., 2017), and a reduced 

risk of cardiovascular disease (CVD), cancer, and all-cause mortality (Garatachea et 

al., 2014; Imboden et al., 2018; Lemez & Baker, 2015). Engaging children and 

adolescents in regular sports participation has therefore been a long-term target for 

governing authorities for many years (UK Government, 2015). Encouragingly, the 

latest available statistics indicate that youth sports participation within the UK is 

increasing, with 47% of children and adolescents under 17 years in England and Wales 

now participating in extra-curricular sport at least three times per week (Sport 

England, 2019; Sport Wales, 2018). As a consequence of this increase in participation, 

more children and adolescents are being enrolled into long-term athlete development 

(LTAD) programs to facilitate the continuation of international sporting success (Till 

et al., 2019). Indeed, elite junior athletes are training longer, more intensively, and 

more specifically, than ever before (Green, 2006; Till et al., 2019; Williams, 2016), 

despite fundamental questions remaining regarding the influence of sex (Armstrong 

& McNarry, 2016; McNarry et al., 2015; Winsley et al., 2009) and the optimal training 

methodology to engender favourable adaptations (Armstrong & McNarry, 2016; 

Katch, 1983; McNarry et al., 2014a; Rowland, 1997). 

2.1 Influence of training on aerobic fitness in youth 

The optimal training method to elicit the most favourable performance adaptations 

remains to be elucidated (Cao et al., 2019; Carazo-Vargas & Moncada-Jiménez, 2015; 

Sperlich et al., 2011; Stoedefalke et al., 2000). The most researched parameter in 

paediatric exercise science is aerobic fitness and, specifically, peak oxygen uptake 

(V̇O2) which is defined as the highest oxygen uptake that can be achieved despite 

further increases in work rate (Hill & Lupton, 1923). Peak V̇O2 is the term most 

accepted within the paediatric literature due to the absence of a plateau in V̇O2 in 

approximately 60 - 80% of children and adolescents (Armstrong & Welsman, 2020c; 

Barker, Williams, Jones, & Armstrong, 2009). Peak V̇O2 is strongly associated with 

athletic performance, particularly in endurance and team sports (Armstrong et al., 
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2011; Armstrong & Welsman, 2020c; Sperlich et al., 2011; Sperlich et al., 2010),  as 

well as with both current and long-term health. It is therefore imperative to promote 

peak V̇O2 during childhood and adolescence (Carson et al., 2016; Hurtig-Wennlof, 

Ruiz, Harro, & Sjostrom, 2007; Mintjens et al., 2018).  

The most widely used training method to enhance peak V̇O2 has been endurance 

exercise, characterised by periods of constant-intensity exercise (typically ≤ 75% 

maximal heart rate; HRmax) maintained for at least 30 minutes, three times a week 

(Baquet et al., 2003). Early studies in young children (9 – 10 years) reported 

conflicting results regarding the influence of such training in children, with some 

(Massicotte & Macnab, 1974; McManus et al., 1997; Tolfrey, Campbell, & Batterham, 

1998), but not all (Stoedefalke et al., 2000; Welsman et al., 1996; Welsman et al., 

1997; Williams et al., 2000), studies reporting significant differences in peak V̇O2 to 

be elicited by endurance training. Indeed, Welsman et al. (1997) and Williams et al. 

(2000) compared the effectiveness of two different aerobic interventions in young girls 

and boys, respectively, compared to no exercise control groups. Both studies reported 

minimal increases in peak V̇O2 after the eight-week interventions (0.03 l⋅min-1 to 0.13 

l⋅min-1), which may be due, at least in part, to discordant intervention and testing 

exercise modalities used in these studies. Specificity of exercise modalities is 

important when conducting training interventions as different exercise modalities may 

mask physiologically meaningful changes in performance. Alternatively, it could also 

be postulated that the exercise stimuli were not intense enough to elicit a significant 

physiological response (Costigan et al., 2015; Massicotte & Macnab, 1974). Indeed, it 

was demonstrated by Massicotte and Macnab (1974) that an intensity of at least 180 

beats⋅min-1 was required to significantly improve peak V̇O2 in young boys. Of 

importance, lower intensities matched for total workload did not elicit any significant 

improvements in peak V̇O2 (Massicotte & Macnab, 1974). This is supported by a 

review of endurance training interventions which suggested that whilst endurance 

training elicits a 5 – 6% improvement in peak V̇O2 over eight weeks, a greater 

magnitude of change (8 – 10%) was associated with an intensity of ≥ 180 beats⋅min-1 

(Baquet et al., 2003). Nevertheless, Baquet et al. (2003) only identified eight studies 

in girls, and thus few conclusions could be drawn regarding the effect of sex on the 

responses to endurance training.  
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Given the potential importance of training intensity, more recent studies have 

investigated the relative effectiveness of endurance and high-intensity interval training 

(HIIT) interventions. Typically, HIIT is characterised by periods of high-intensity 

exercise (≥ 85% HRmax) interspersed with periods of low-intensity recovery (Laursen 

& Jenkins, 2002). Sperlich et al (2011), one of the first studies to directly compare a 

HIIT and endurance intervention, found that peak V̇O2 and 1,000 m running time only 

significantly improved (both +11%) after a five-week HIIT intervention in male youth 

footballers (13.5 ± 0.4 years). Similar results were also reported following an eight-

week HIIT intervention in trained adolescent footballers, independent of sex (Foster 

et al., 2015). Contrastingly, Faude et al. (2013) reported that peak V̇O2 increased 

similarly regardless of training modality in a unique randomised cross-over design 

trial in elite German footballers (15.9 ± 0.8 years), though these findings must be 

interpreted with caution given the relatively small sample size (n = 20) who also 

completed all arms of the study. Of note, all paediatric research exploring the differing 

effects of training interventions is limited to footballers, thus whether the same effects 

are manifest according to training type in different sports remains to be elucidated.  

A common limitation amongst studies comparing training interventions is a lack of 

account for maturational status. This is crucial when assessing the effectiveness of 

training interventions due to the potential for androgenic hormones to exaggerate the 

response to training stimuli (Armstrong, 2007; Katch, 1983; Massicotte & Macnab, 

1974; Rowland, 1997). Moreover, the onset and duration of puberty can vary 

significantly between children, even if they are of the same sex and ethnic background 

(Marshall & Tanner, 1969, 1970; Rogol et al., 2002; Tanner, Whitehouse, Marshall, 

& Carter, 1975). Therefore, participants of the same chronological age may not be of 

the same maturational status, potentially leading to erroneous conclusions regarding 

the effect of training.  

2.1.1 Influence of maturity on the responses to training stimuli 

Puberty refers to the process of growth and sexual maturation during the transition 

from child to adulthood, and is characterised by periods of rapid growth and 

exponential increases in circulating androgenic hormones, namely testosterone 

(males) and oestrogen (females; Rogol, 2002). Puberty is a hugely dynamic time, with 

rapid, sex-dependent, changes in body size and composition occurring over relatively 
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short periods (Rogol, 1994, 2002; Rogol et al., 2002). An area within paediatric 

research which has received renewed interest over the last decade is the concept of a 

maturational threshold, first proposed by Katch (1983). The maturational threshold 

hypothesis suggests that at the onset of puberty the trainability of children and 

adolescents is significantly increased beyond those seen pre-puberty (Katch, 1983). 

This ‘threshold’ or ‘trigger point’ is purported to be mediated by the influx of 

androgenic hormones in the years surrounding peak height velocity (PHV), 

accelerating adaptations to training stimuli (Katch, 1983). This potential increased 

trainability presents a theoretical ‘window of opportunity’ for one to three years 

surrounding PHV in which greater performance benefits may be engendered 

(Rowland, 1997). Whilst a strong theoretical argument can be made for the existence 

of a maturational threshold for peak V̇O2 (Boisseau & Delamarche, 2000; Mero, 

Jaakkola, & Komi, 1990; Metaxas et al., 2014; Van Praagh, 2000), there is very little 

empirical evidence to support it for aerobic parameters (Armstrong & McNarry, 2016; 

McNarry & Jones, 2014; McNarry et al., 2014b; Rowland, 1997).  

Baquet et al. (2002) examined the influence of a seven-week HIIT intervention in 33 

(20 girls) pre-pubertal children, determined using tanner staging, compared to a no-

exercise control group (n = 20, 10 girls). The HIIT group significantly improved their 

absolute and relative peak V̇O2 by 9.2% and 8.2%, respectively, though these results 

should be interpreted with caution given their prediction from a field-based 20 m 

shuttle run test, shown to have questionable validity (Armstrong & Welsman, 2020b). 

Similarly, Barker et al. (2014) reported that just two weeks of HIIT can elicit a 5% 

increase in peak V̇O2 in post-pubertal adolescents. Of note, the magnitude of training 

response in Barker et al. (2014) was similar to, or in some cases exceeded, the 

magnitude of response observed over eight weeks of running-based interval training 

interventions in pre-pubertal children (Baquet, Gamelin, Mucci, Thevent, & van 

Praagh, 2010; Williams et al., 2000). However, whether these observations are due to 

training intensity, or suggest that participants have to be post-pubertal to be 

physiologically able to respond to training stimuli, remains to be established. McNarry 

et al. (2011b) reported the peak V̇O2 of habitually trained swimmers (n = 23) compared 

to maturity- and sex-matched untrained girls (n = 36) and concluded that the 

magnitude of difference was similar between pre-, circa- and post-pubertal 
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participants, despite increases in training volume with age. Moreover, these results 

provide evidence that the maturational threshold hypothesis may be refuted in girls as 

pre-pubertal girls demonstrated similar degrees of trainability to their more mature 

peers (McNarry et al., 2011b).  

Although cross-sectional, Weber et al. (1976) and Danis et al. (2003) utilised case-

control study designs using monozygotic twins, thereby accounting for the genetic 

influence on peak V̇O2 (Stratton & Williams, 2006). Both studies examined the effects 

of an endurance training intervention on peak V̇O2 in one twin whilst the other acted 

as a control. Interestingly, both studies reported that during the pubertal years, boy’s 

trainability was blunted when compared to younger children or older adolescents 

(Danis et al., 2003; Weber et al., 1976). Potential reasons for this ‘dampened 

trainability’ included the suppression of certain genes during puberty in the presence 

of growth hormones (GH), but this highly speculative. Alternatively, it may also be 

possible that the control twins engaged in a similar amount of physical activity (PA), 

and thus experienced concomitant increases in peak V̇O2 compared to their trained 

twin. However, habitual PA was not assessed in either study and is often overlooked 

in training studies, potentially due to the equivocal evidence in the pediatric literature 

surrounding PA levels and peak V̇O2 (Armstrong et al., 2011; Carson et al., 2016; 

Dencker & Andersen, 2011; Dencker et al., 2007; Ekelund et al., 2001). The reliance 

on ratio scaling could have also produced spurious associations between training and 

maturity, especially during puberty where increases in body mass often occur at a 

greater rate than improvements in peak V̇O2, potentially masking the effect of training 

(Nevill, Bate, & Holder, 2006; Nevill, Holder, Baxter-Jones, Round, & Jones, 1998; 

Tanner, 1949; Welsman & Armstrong, 2019).  

The continued use of ratio scaling, despite its recognised limitations, may be one of 

the key reasons why the effect of training during maturity still remains debated 

(Armstrong & McNarry, 2016). Specifically, a number of prominent studies, dating as 

far back as Tanner (1949), infer that the use of ratio scaling peak V̇O2 (i.e. dividing 

peak V̇O2 (ml⋅min-1) by body mass (kg; units: ml⋅kg-1⋅min-1) is not sufficiently 

statistically robust to fully account for growth and maturation (Armstrong, 2007; 

Armstrong & Welsman, 2019b; Cunha et al., 2011; Cunha et al., 2016; Welsman & 

Armstrong, 2019). The fallacy of ratio scaling was demonstrated by Welsman and 
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Armstrong (2019) who indicated a negative relationship between body mass and ratio-

scaled peak V̇O2 in a data set including over 1,700 incremental ramp tests. Moreover, 

simply dividing peak V̇O2 by body mass assumes that body mass and peak V̇O2 are 

directly proportional, which is not the case, especially during maturation (Katch, 1983; 

Tanner, 1949; Welsman & Armstrong, 2019). Allometric scaling seeks to alleviate 

some of these limitations by utilising log-linear regressions to remove the influence of 

body mass (Nevill et al., 2006; Nevill et al., 1998), and allows a population- specific 

exponent to be calculated which accurately describes the relationship between peak 

V̇O2 and body mass.  

Allometric scaling was first used by Nevill et al. (1998) who reported allometrically 

scaled peak V̇O2 increased with age and maturity in boys, but not in girls, contrary to 

research at the time utilising ratio scaled data (Cunningham, Paterson, Blimkie, & 

Donner, 1984; Kobayashi et al., 1978; Paterson, McLellan, Stella, & Cunningham, 

1987; Rowland, Vanderburgh, & Cunningham, 1997b). Contrastingly, Cunha et al. 

(2016) calculated lower-limb muscle volume (LLMV) using ultrasound and reported 

no significant difference between pre- (100.1 ± 7.9 ml⋅kg-b(LLMV)⋅min-1), circa- (107.5 

± 9.6 ml⋅kg-b(LLMV)⋅min-1) or post-pubertal (108.0 ± 10.3 ml⋅kg-b(LLMV)⋅min-1) 

adolescents after peak V̇O2 was scaled to LLMV. However, it may be pertinent to note 

that the biggest change in allometrically scaled peak V̇O2 occurred between pre- and 

circa-pubertal adolescents. Similar observations in male youth footballers have been 

reported by Doncaster et al. (2018) and dos Santos and colleagues (2012; 2014) when 

allometrically scaling by lean body mass. However, without the use of a control group 

it is unclear whether the increases from pre-pubertal to pubertal children is training or 

maturity related (Armstrong & Welsman, 2019b; Armstrong & Welsman, 2019d). 

Runacres, Mackintosh & McNarry (2019b) investigated the influence of a three-month 

training cycle on peak V̇O2 in a group of male trained footballers and endurance 

runners, compared to a no-exercise control group. Pre- and post-intervention trained 

participants had a significantly higher peak V̇O2 than their untrained counterparts, 

even after allometrically scaling for body mass (Runacres et al., 2019b), but there was 

no significant difference in the magnitude of change between maturity groups. 

Nevertheless, akin to all cross-sectional and intervention study designs, Runacres et 

al. (2019b) only offers a glimpse into the influence of maturity on responses to training 
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stimuli, and thus greater insights may be gained from longitudinal studies assessing 

the same participants over successive years.  

Early longitudinal studies on peak V̇O2 were conflicting, with Kobayashi et al. (1978) 

reporting that peak V̇O2 did not significantly increase before PHV in fifty untrained 

controls and six highly-trained long-distance runners, measured annually for five-

years between the ages of 9 – 13 years. However, it is pertinent to note that Kobayashi 

et al. (1978) did not appropriately account for maturity status, missing the age of PHV 

for most participants. Similarly, in a ten-year longitudinal study of Canadian children, 

Mirwald et al. (1981) reported that training differences in peak V̇O2 were not apparent 

until approximately 14 years of age, coinciding with PHV. Contrastingly, Baxter-

Jones et al. (1993) assessed peak V̇O2 in 271 youth athletes (126 girls) annually for 

three years, reporting only boy’s peak V̇O2 increased with maturity, and training 

adaptations were evident in pre-pubertal children, contradicting previous studies 

(Cunningham et al., 1984; Kobayashi et al., 1978; Mirwald et al., 1981). Whilst 

Baxter-Jones et al. (1993) was novel in its longitudinal design, the reliance on ratio 

scaling potentially confounds any meaningful interpretation (Tanner, 1949; Welsman 

& Armstrong, 2019), and the omission of a control group precludes inferences as to 

whether increases in peak V̇O2 were training or maturity related. Additionally, and 

perhaps most importantly, the results of Baxter-Jones et al. (1993) must be interpreted 

with caution due to the reliance on secondary criteria to determine a maximal peak 

V̇O2 (Barker et al., 2009). Traditional secondary criteria used to validate a maximal 

effort in adults, including a blood lactate ≥ 6 mmol, HR within 95% age predicted 

max, and an RER ≥ 1.15, have been found to underestimate peak V̇O2 by as much as 

20%, if they are achieved at all (Barker et al., 2009). Therefore, reliance on secondary 

criteria to validate a maximal effort could lead to the acceptance of sub-maximal peak 

V̇O2 values, resulting in erroneous conclusions regarding fitness, intervention 

effectiveness and/or maturational influences on trainability. To circumvent these 

issues, it is recommend that participants are asked to complete a supramaximal 

validation bout but, despite its recommendation, high reliability, and validity (Barker 

et al., 2009; Poole & Jones, 2017; Schaun, 2017), this technique remains underutilised 

in paediatric research and therefore the accuracy of many peak V̇O2 measurements 

may be questionable. 
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McNarry et al. (2014b) incorporated a allometric scaling in their three-year 

longitudinal study involving 19 trained swimmers and 15 untrained controls. McNarry 

et al. (2014b) reported trained pre-pubertal children demonstrated a higher 

allometrically scaled peak V̇O2 at all time-points, suggesting maturity does not need 

to occur before a significant training response is observed. However, a maturational 

threshold may have occurred post-PHV, given that even at the endpoint of the study 

all children were still pre- or early pubertal (year 3 maturity offset: swimmers: -0.7 ± 

0.5 years and controls: -1.2 ± 1.0 years). Moreover, the data from boys and girls were 

pooled for analysis, precluding any sex differences in training responses being 

elucidated (McNarry et al., 2014b). Nevertheless, McNarry et al. (2014b) provide 

evidence, utilising robust methodological and statistical measures, that refutes the 

maturational threshold hypothesis. However, one common limitation with all training 

studies discussed so far is the lack of consideration of habitual PA levels on peak V̇O2. 

Indeed, the inclusion criteria for the control, or untrained, groups in training studies is 

that participants are not involved within formal exercise programs (Baquet, Berthonin, 

Gerbeaux, & Van Praagh, 2001; Milanović, Sporiš, & Weston, 2015; Runacres et al., 

2019b), but that does not preclude them being physically active. Indeed, this could 

help explain, at least in part, the variance between different training studies and the 

different effects of maturity reported. 

2.2 Potential effect of Physical Activity on V̇O2max 

Physical activity is defined as any bodily movement that results in energy expenditure 

above resting (Ekelund et al., 2001), with movement intensity quantified in relation to 

rest by using the metric of metabolic equivalents (METs; Ainsworth et al., 2000). 

Although PA and peak V̇O2 are the two most researched parameters in paediatric 

exercise science over the last 30 years, their relationship remains contentious 

(Armstrong, 2013; Dencker et al., 2006; Fenster et al., 1989; Latt et al., 2013). The 

interaction between PA and peak V̇O2 in children and adolescents was first 

investigated by Fenster et al. (1989) who assessed PA using accelerometery and peak 

V̇O2 using an incremental treadmill test to exhaustion in 6- to 8-year old children. 

Fenster et al. (1989) reported a significant positive correlation (r2 = 0.59, p < 0.05) 

between PA and peak V̇O2. However, Fenster et al. (1989) only measured PA for one 

day and thus the reliability is highly questionable. Armstrong et al. (1991a) measured 
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peak V̇O2 and habitual PA, using HR monitoring over three school days, in 253 

children (199 boys; 13.2 ± 1.3 years) and reported no significant correlations between 

habitual PA and peak V̇O2. Similarly, Ekelund et al. (2001) reported no relationship 

between habitual PA, quantified using three-day HR monitoring, and treadmill-

determined peak V̇O2 after accounting for maturational and body fat differences 

between participants. Nevertheless, it is pertinent to note that whilst the quantification 

of PA based on HR is highly reliable for determining resting energy expenditure, 

higher intensities are less accurate (Schutz, Weinsier, & Hunter, 2001). Indeed, 

training has been consistently reported to lower submaximal HR values, therefore the 

use of fixed HR thresholds could over/under estimate exercise intensities in diverse 

populations (Schutz et al., 2001). 

A consistent finding within the paediatric literature when using accelerometery to 

quantify PA, sedentary time (SED) and sleep is that vigorous intensity PA (VPA) is 

more strongly associated with peak V̇O2 than any other movement behaviour (Dencker 

& Andersen, 2011; Dencker et al., 2007; Dencker et al., 2006; Gutin, Yin, Humphries, 

& Barbeau, 2005; Latt et al., 2013). Indeed, measuring PA in 421 adolescents (16 

years) using a hip-worn accelerometer over five consecutive days, Gutin et al. (2005) 

found that whilst peak V̇O2 was correlated with MPA (r2 = 0.30, p < 0.01), the 

association with VPA was stronger (r2 = 0.43, p < 0.01). Similarly, Dencker et al. 

(2006) and Latt et al. (2013) reported that time spent in VPA explained approximately 

9.0% and 15.8% of the variance in peak V̇O2 and relative peak V̇O2, respectively. 

However, these results must be interpreted with caution given the relatively small 

amount of VPA engaged in by the participants across the studies (5.0 – 35.0 mins⋅day-

1), equating to just 0.3 – 2.5% of the 24-hour period. Consequently, a compositional 

approach which utilises all available PA data (Chastin et al., 2015; Dumuid et al., 

2018a) may be more appropriate to delineate this relationship. 

Compositional analysis techniques have recently been introduced and utilised in PA 

research, providing a new perspective on the influence of PA, SED and sleep on health 

parameters in children (Carson et al., 2016; Carson et al., 2019; Dumuid et al., 2018b; 

Väistö et al., 2019). Compositional analysis techniques alleviate many of the 

limitations of traditional statistical methods such as correlational statistics, which can 

not infer causality (Hopkins, Marshall, Batterham, & Hanin, 2009), and the use of 
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predictive linear regressions which assume independence between variables (Chastin 

et al., 2015). More specifically, the assumption of independence is violated when 

working with movement data (i.e. SED, LPA, MPA,VPA, sleep) as increases in one 

behaviour must come at the detriment of another, given that there is only a finite 

amount of time (1,440 minutes) within a day (Dumuid et al., 2018a). Compositional 

analysis techniques overcome this using isometric log transformations of the PA data 

(Chastin et al., 2015; Dumuid et al., 2018a), allowing for the individual and combined 

effects of movement behaviours to be explored. Additionally, compositional analysis 

techniques have the ability to predict an ‘optimal’ movement composition for outcome 

variables (Chastin et al., 2015), thus it could be used in a performance setting to 

improve athletic parameters, although this remains unexplored. 

The first study to use compositional analyses in a large sample of children (n = 4,169; 

11.4 ± 0.1 years) reported that the overall PA composition explained ~38% of the 

variance in estimated aerobic fitness (Carson et al., 2016). Moreover, SED was 

negatively associated with predicted peak V̇O2 (β = -32.8, p > 0.01), whilst, 

conversely, MVPA was positively associated with predicted aerobic capacity (β = 

22.0, p > 0.01). Nevertheless, when predictive modelling was employed to explore the 

effects of 10 minutes re-allocation of time to or from MVPA to one of the other 

movement behaviours (SED, LPA, sleep), there were negligible effects on predicted 

aerobic capacity (0.01 – 0.05%; Carson et al., 2016). The authors postulated this 

negligible change indicated the powerful influence of SED on this critical health and 

performance indicator (Carson et al., 2016) but, alternatively, it could reflect certain 

methodological limitations. More specifically, aerobic fitness was estimated using a 

field-based measure (the Canadian Aerobic Fitness Test), which has questionable 

validity, and the maturity and training status were not determined. Furthermore, the 

pooling of data from boys and girls potentially confounds the  results (Armstrong, 

2007; Carson et al., 2016; Carson et al., 2019; Chastin et al., 2015; Lynch et al., 2019; 

McNarry & Jones, 2014). However, perhaps the biggest limitation, was the pooling of 

MPA and VPA into MVPA, thereby potentially masking the importance of intensity 

in the relationship between PA and  peak V̇O2  (Dencker & Andersen, 2011; Dencker 

et al., 2006; Gutin et al., 2005; Latt et al., 2013).  
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Future research is urgently needed to examine the influence of PA on peak V̇O2 

development in children and adolescents. More specifically, PA and training both 

exert powerful influences on physiological parameters (Al-Mallah, Sakr, & Al-

Qunaibet, 2018; Carson et al., 2016; Carson et al., 2019; Chastin et al., 2015; Imboden 

et al., 2018; Pollock, Duggal, Lazarus, Lord, & Harridge, 2018), thus without the 

consideration of PA it is impossible to delineate whether increases in performance are 

training or PA related. Indeed, using a four-part composition of waking hours (i.e. 

SED, LPA, MPA, VPA) in 2,500 children and adolescents, Carson et al. (2019) 

reported that increased levels of VPA were more strongly associated with a favourable 

BMI z-score, waist circumference, diastolic blood pressure, and HDL-cholesterol, 

than MPA. Consequently, it could be postulated that VPA specifically could be more 

important than MVPA for the development of peak V̇O2 in youth given the meaningful 

associations with cardiovascular risk factors in youth (Carson et al., 2019; Väistö et 

al., 2019). However, research has not explored the effect of MPA and VPA separately 

on rigorously determined peak V̇O2 using compositional analyses techniques, 

accounting for sex, maturity and training status.  

 

2.3 Influence of sex on the trainability of V̇O2max 

Whilst the effects of maturity on the trainability of peak V̇O2 are starting to be 

elucidated, a key area where substantial questions remain is the effect of sex on the 

interaction between training and maturity (Armstrong & McNarry, 2016). Indeed, 

there is a clear male bias within the literature, with a paucity of well-designed studies 

comparing the trainability of boys and girls across the maturational spectrum 

(Armstrong & McNarry, 2016; Armstrong & Welsman, 2019b). Consequently, it 

remains unclear whether the findings in boys can be applied to girls given their distinct 

physiological differences, not least in the timing and tempo of maturity (Rogol, 2002; 

Rogol et al., 2002). Specifically, puberty typically begins around the ages of 11 and 

13 in girls and boys, respectively, but boys experience a two-year longer growth period 

than girls (Rogol, 1994, 2002). Moreover, body composition changes are highly 

sexually dimorphic; whilst pre-pubertal boys and girls display similar fat free mass 

(FFM) accrual rates between the ages of 5 to 10 years, thereafter boys gain FFM at a 

greater rate (He et al., 2004; Rogol et al., 2002). This difference in FFM accrual is 



 

 

 

37 

 

thought to be mediated by boy’s higher concentration of circulating testosterone, but 

may also be a consequence of boys’ higher habitual PA levels (Bitar et al., 2000; 

Dumith, Gigante, Domingues, & Kohl III, 2011), especially in the teenage years 

(Dumith et al., 2011), which may potentially exaggerate the sexual dimorphism in 

peak V̇O2 during adolescence. Thus, it could be postulated that training responses in 

girls may be higher in girls due to the comparatively lower baseline peak V̇O2 and 

habitual PA levels (McNarry & Jones, 2014). Therefore, whether the sex differences 

in anthropometrics and PA translate to differences in aerobic fitness, and modulate the 

responses to training stimuli, remains to be determined. 

Tentative comparisons regarding the effect of training suggest that pre-pubertal girls 

experience a similar level of improvement in peak V̇O2 in response to a training stimuli 

(7.8% - 9.1%; McManus et al., 1997; McNarry et al., 2011b) as those reported 

elsewhere in pre-pubertal boys (4.1 - 11.1%; Baquet et al., 2002; McManus, Cheng, 

Leung, Yung, & MacFarlane, 2005), irrespective or exercise type or modality. 

However, research is equivocal on the trainability of young girls, with other studies 

reporting no significant response to training stimuli when compared to age-, sex- and 

maturity-matched controls (Stoedefalke et al., 2000; Welsman et al., 1996; Welsman 

et al., 1997). These contradictory findings could be explained, at least in part, by the 

varying baseline fitness levels of the participants across the studies (McNarry & Jones, 

2014), the volume of training conducted and/or a discordant training and testing 

exercise modality (Stoedefalke et al., 2000). Indeed, when peak V̇O2 is rigorously 

determined, evidence in girls suggests that training differences remain fairly consistent 

across maturity stages (14.4% - 17.9%; McNarry et al., 2014b), increasing in an almost 

linear manner as has been observed in boys (19.6% - 20.1%; Bitar et al., 2000; 

Paterson et al., 1987). Taken together, emerging evidence refutes the maturational 

threshold hypothesis in both boys and girls, although this evidence is inconsistent.  

In 118 active children (40 girls, 11.5 ± 0.5 years) assessed annually for three years, 

Malina et al. (1997) found that only boys demonstrated maturity-associated variations 

in absolute peak V̇O2 after co-varying for body mass. However, it is pertinent to note 

the different methods of maturity assessment between boys and girls, with boys 

grouped by growth rates and girls grouped by age at menarche (Malina et al., 1997). 

Whilst somatic and sexual maturity are highly correlated, they are independent 
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measures of maturity (Roemmich et al., 1998; Rogol, 2002) and are therefore not 

directly comparable. Nonetheless, Baxter-Jones et al. (1993) reported that the 

significant increase in peak V̇O2 in the post-pubertal maturity stage was only observed 

in boys, with girls experiencing a plateau, suggesting that the development of peak 

V̇O2 may be sex dependent. Contrastingly, Armstrong and Welsman (2001) reported 

a significant maturational influence on peak V̇O2, after accounting for FFM, in a 

sample of 132 children (49 girls) followed annually from 11 – 13 years, with a subset 

(n = 63) followed-up at 17 years. Interestingly, both age and maturity were significant 

predictors of peak V̇O2, suggesting that maturity alone cannot explain the development 

of peak V̇O2. Additionally, when haemoglobin concentration was introduced into the 

predictive model, this was not significant indicating that oxygen carrying capacity 

does not limit the development of peak V̇O2 in girls.  

One of the key considerations when assessing the sex differences in peak V̇O2 is body 

composition (Armstrong & Welsman, 2019b; Armstrong & Welsman, 2020c; 

McNarry et al., 2015; Winsley et al., 2009). Greater insights may therefore be gained 

by scaling peak V̇O2 by lean body mass (LBM) or FFM. Recognising this, Winsley et 

al. (2009) determined peak V̇O2 in 18 (9 boys) pre-pubertal children and found that 

boys still displayed a ~12.8% higher peak V̇O2, even after allometrically scaling for 

LBM. Similarly, McNarry et al. (2015) reported a sex difference of ~18% in absolute 

peak V̇O2 in 52 recreationally active pre-pubertal children, with the sex difference 

persisting even after allometrically scaling for body mass (~16.2%) and FFM 

(~11.7%). However, sex differences in LBM and FFM are not typically manifest until 

the pubertal or post-pubertal maturational stages (He et al., 2004; Rogol et al., 2002), 

and thus it would have been interesting if pubertal or post-pubertal boys and girls were 

also included within McNarry et al. (2015) and Winsley et al.(2009).  

Armstrong and Welsman (2019b) recently published data from over 1,000 peak V̇O2 

tests on 372 (181 girls) children and adolescents, assessed annually for three 

consecutive years, and reported that boys had a 10% – 15% higher peak V̇O2 than girls 

after accounting for age, body mass and FFM, similar to the sex difference reported 

elsewhere in pre-pubertal children (McNarry et al., 2015; Winsley et al., 2009). 

However, Armstrong and Welsman (2019b) utilised sex-specific longitudinal 

modelling, which relies heavily on the completeness of the dataset, thus the lack of 
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detail provided on the dataset completeness by the authors means applicability of these 

results to other populations remains to be elucidated. Despite the limitations of 

Armstrong and Welsman (2019b), longitudinal data analysis facilitates greater insights 

into the interaction between training and maturity, and offers the strongest evidence 

regarding the influence of training and maturity on peak V̇O2 development. Overall, 

given that sex differences appear to persist beyond LBM, it seems unlikely that the 

sexually dimorphic development of peak V̇O2 is exclusively attributable to differences 

in body composition. Research is therefore warranted investigating the underpinning 

mechanisms, namely haemodynamic and muscle deoxygenation parameters, to 

potentially allow for a greater insight into the sex-specific development of peak V̇O2, 

and how this interacts with training and maturity.  

2.4 Mechanisms underpinning training-, sex- and maturity-related differences 

in V̇O2max 

Peak V̇O2 reflects the coordinated response of numerous physiological processes, two 

of the most important of which are oxygen delivery and oxygen extraction at local 

muscle sites as reflected by the Fick equation. The balance between oxygen delivery 

and extraction was first described by Adolf Fick (1855, 1870b) who described peak 

V̇O2 as the product of cardiac output (Q̇) and arteriovenous difference (a-𝑣O2diff), 

where Q̇ is defined as the amount of blood leaving the left ventricle per minute (l⋅min-

1) and a-𝑣O2diff is the difference in the oxygen concentration of the blood in the arteries 

and veins, providing an insight into peripheral oxygen extraction (Fick, 1870b). Given 

the rapid and sexually-dimorphic development of peak V̇O2 during growth and 

maturation, the relative determinants of peak V̇O2 may also differ with sex, training, 

and maturity status. Therefore, a greater understanding of children’s oxygen delivery 

and extraction capabilities could further our understanding of the mechanisms 

underpinning peak V̇O2 development, and reveal which mechanism, if any, is the main 

driver behind sex-, training- and maturity-related differences.  

Oxygen delivery to the working muscles during exercise is determined by both the 

pulmonary and haemodynamic response to stimuli (Kohzuki, 2018). Concomitant 

with the growth and maturation of skeletal muscle, the size of the lungs increases from 

child to adulthood, with young adults lung capacity on average three-to-four times 

greater than a pre-pubertal child (Piccioni et al., 2015). Lung development during 



 

 

 

40 

 

childhood and adolescence is directly proportional to chest dimensions but lung 

function is dependent on numerous factors including age, sex, stature, and ethnicity 

(Miller et al. 2005). The two most commonly measured pulmonary factors are forced 

vital capacity (FVC), the amount of air that can be forcibly exhaled from the lungs 

measured using spirometry, and the forced expiratory volume in one second (FEV1). 

During puberty, FVC almost quadruples in healthy individuals (Lum et al. 2010), 

facilitated by increases in muscular strength, changes in the shape and stiffness of the 

thorax, and the number and size of alveoli in the lungs (Miller et al. 2005). Airflow, 

measured using FEV1, is influenced by the calibre of the airways and in some 

pulmonary diseases such as asthma and cystic fibrosis this can lead to arterial 

hypoxaemia (DiDario & Becker, 2005). Arterial hypoxaemia is defined as a partial 

pressure in arterial blood pressure (PaO2) less than 80 mmHg while breathing ambient 

air (DiDario & Becker, 2005). The lack of circulating oxygen severely limits exercise 

tolerance with arterial hypoxaemia limiting the transfer of oxygen to the working 

muscles leading to a greater reliance on anaerobic metabolism to sustain exercise 

demands.  

Arterial hypoxaemia can also be a consequence of poor diffusion rates of oxygen 

across the alveoli to the haemoglobin in the blood as described by Ficks Law (1873). 

Ficks law states that oxygen diffusion is dependent upon the difference in pressure 

between the oxygen in the lungs and blood, the area of the lungs, the diffusion 

constant, and alveolar wall thickness (Fick, 1873; Hopper et al. 1991). With age, the 

surface area of the lungs increases by 150% from 8 – 18 years and the alveolar wall 

thickness decreases, making oxygen diffusion more efficient (Hopper et al. 1991). 

Indeed, the maximum diffusion rate increases from 1.80 l⋅min-1 at 9 years to 3.77  

l⋅min-1 in young adulthood (Hancox & Rasmussen, 2018) and the minimum capillary 

transfer time for one molecule of oxygen is 0.45 s. Moreover, these adaptations which 

occur with growth and maturation also increase the perfusion rate, allowing greater 

expiration of carbon dioxide and waste products from exercise (DiDario & Becker, 

2005). As lung size, capacity, and air flow increases, resting ventilation rate also 

decreases, with adults typically breathing 10-15 times⋅minute-1 compared to 20-30 

times⋅minute-1 for a pre-pubertal child (Piccioni et al., 2015). This lower resting 

ventilation rate allows for a greater response to exercise as maximal ventilation rate 
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remains unchanged between children and adults (Piccioni et al. 2015). However, the 

importance of pulmonary determinants of V̇O2max has been disputed in recent years; 

without sufficient diffusion into the blood, and transport to the working muscles, 

V̇O2max would not be achieved. Therefore, the haemodynamic mechanisms 

underpinning V̇O2max may allow greater insights to be made on the influence of sex, 

and maturity. 

2.4.1 Haemodynamic mechanisms 

Cardiac output, the product of stroke volume (SV; the amount of blood ejected from 

the left ventricle per beat) and HR, increases almost linearly with age, mediated by 

increases in cardiac size and change in cardiac morphology (Obert et al., 2003; Vinet 

et al., 2003). Both cross-sectional and longitudinal studies have demonstrated that 

HRmax is independent of sex, training or maturity status (Armstrong & Welsman, 

2020a; Armstrong & Welsman, 2020c; McNarry et al., 2015; McNarry et al., 2014b), 

and therefore SV is suggested to be the primary factor underpinning the increases in 

Q̇ typically observed with age. Increases in SV with age are purported to be mediated 

by morphological changes to the myocardium, including increases in left ventricular 

mass (LVM) and posterior and septal wall thickness (mm; Eisenmann et al., 2000; 

Milicevic, Fabecic-Sabadi, Rudan, Kokos, & Lukanovic, 1997). Indeed, LVM has 

been reported to increase by 8.6% and 15.3% per year between the ages of 11 and 14 

in girls and boys, respectively, in a three-year longitudinal study of Croatian 

adolescents (Milicevic et al., 1997). Moreover, posterior wall thickness and septal wall 

thickness increased by 21.5% and 15.9%, respectively, between 9 – 18 years old in 

boys, with girls experiencing a lesser magnitude of change in posterior wall thickness 

(13.9%) and septal wall thickness (6.5%) over the same time-period (Eisenmann et al., 

2000). Consequently, these sexually-dimorphic changes in the structural properties of 

the myocardium may partly explain the sex differences in SVmax and Q̇max reported 

with growth and maturity.  

The apparent sex differences in the structural adaptations that occur during growth and 

maturation are suggested to be attributable to differences in FFM, stature and resting 

blood pressure according to sex (Eisenmann et al., 2000; Milicevic et al., 1997). 

Increases in resting blood pressure enhance LVM through an increased pre-loading 

capacity and shearing stress, facilitating hypertrophy of the myocardium (Eisenmann 
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et al., 2000; Rowland & Green, 1988). Additionally, FFM is highly correlated with 

cardiac size in children (r2 = 0.77, p < 0.01), with a greater FFM and stature not only 

eliciting a greater oxygen delivery, but also augmenting the venous return to the 

myocardium, thereby increasing the pre- and after-load conditions of the heart 

(Eisenmann et al., 2000; Vinet et al., 2003). Indeed, when expressed relative to LBM, 

sex differences in the SVmax and Q̇max of children and adolescents are ameliorated 

(Armstrong & Welsman, 2019a; Vinet et al., 2003; Winsley et al., 2009). Moreover, 

body dimensional differences seem to explain child-adult differences in SVmax and 

Q̇max (l⋅min-1⋅m-2; Marwood, Roche, Rowland, Garrard, & Unnithan, 2010; Rowland, 

1997; Rowland & Green, 1988). Specifically, when allometrically scaling by body 

surface area, neither SVmax  nor Q̇max (10.5 vs 10.1 l⋅min-b, p > 0.05; Rowland et al., 

2000b) were significantly different in pre-pubertal girls (11.7 ± 0.7 years) and young 

adult women (27.4 ± 2.3 years). It is pertinent to note the interstudy discrepancies in 

the scaling parameter used, with some allometrically scaling SVmax and Q̇max by body 

surface area (McNarry et al., 2014b; McNarry et al., 2011b; Rowland et al., 1997b) 

and others by LBM (Obert et al., 2003; Vinet et al., 2003). Scaling SVmax by LBM 

allows for a greater control of body composition differences compared to body surface 

area, and therefore direct comparisons between these two scaling methods are not 

advisable (Armstrong & Welsman, 2020a). 

The absence of significant differences in the SVmax and Q̇max of pre-pubertal could be 

attributable to a lack of cardiac growth (Eisenmann et al., 2000; Milicevic et al., 

1997)and/or to an absence of circulating testosterone in pre-pubertal children which is 

needed to stimulate hypertrophy in cardiac cells (Hayward, Webb, & Collins, 2001), 

and thus support the maturational threshold hypothesis (Rowland & Boyajian, 1995; 

Rowland & Obert, 2012; Rowland, Popowski, & Ferrone, 1997a). Alternatively, the 

small difference in SVmax and Q̇max between trained and untrained pre-pubertal 

children may be suggestive that oxygen delivery is not limiting exercise and therefore 

there is no stimulus to increase cardiac capacity in pre-pubertal children (Rowland & 

Green, 1988; Rowland et al., 2000b). Whilst the influence of training, sex and maturity 

is questionable once SVmax and Q̇max appropriately scaled, training status does appear 

to exert a significant impact on the SV response profile during exercise (McNarry et 

al., 2014b; McNarry et al., 2011b). Specifically, studies have reported untrained 
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children and adolescents to demonstrate a SV plateau at 40-50% peak V̇O2, whereas 

trained adolescents demonstrate a near-linear increase in SV with V̇O2 until 

exhaustion (Armstrong & Welsman, 2019a; Armstrong & Welsman, 2020a; McNarry 

et al., 2014b; McNarry et al., 2011b), irrespective of maturity.  

In untrained children, it is postulated that SV may rise to an ‘optimal’ level in 

untrained children with HR facilitating any further increase in Q̇ required to match the 

metabolic demand (Armstrong & Welsman, 2020a; Rowland, Goff, Martel, & 

Ferrone, 2000a; Rowland & Unnithan, 2013). The mechanistic basis for the near-linear 

increase in SV in trained youth is unclear, however, an enhanced diastolic filling 

capacity, coupled with an increased venous return, an increased left ventricular 

dimension, and an increased muscular O2 extraction have all been suggested 

(D'Ascenzi et al., 2019; McNarry et al., 2014b; McNarry et al., 2011b). . However, 

given Obert et al. (2003) and Nottin et al. (2002) reported no influence of training on 

the SV pattern in less intensively endurance-trained children, there may be a training 

volume and/or intensity threshold above which the SV response pattern is altered. 

Specifically, the participants in Obert et al. (2003) and Nottin et al. (2002) were only 

recreationally active compared to the trained swimmers in McNarry et al (2014b; 

2011b) who were training at least six hours a week for the preceding two years prior 

to study entry. Therefore, a more intensive and/or chronic training stimuli may be 

necessary to engender differing SV response profiles to exercise.  

Given that absolute SVmax and Q̇max increase naturally with growth and maturation, a 

control group is necessary to differentiate any functional training adaptations in youth 

athletes (Armstrong, 2007). Obert et al. (2003) reported increases in SVmax after a 13-

week endurance training intervention in both girls and boys, although it may be worth 

noting that the SVmax in boys increased to a greater extent than observed in the girls 

(15% vs 11%, respectively). The rise in SVmax in both sexes was mediated by an 

increase in left ventricular end diastolic diameter (LVEDd) and LVM, suggesting that 

training-induced adaptations are independent of sex (Obert et al., 2003). However, one 

limitation associated with Obert et al. (2003) is the failure to account for maturity, 

with the age of 10 – 11 years associated with the transition to pubertal status in many 

girls (Marshall & Tanner, 1969; Roemmich et al., 1998). Consequently, whether the 

cardiovascular determinants of training are independent of sex, or girls experienced 
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maturity-, not training-, related increases in SVmax and the myocardium is not possible 

to delineate. McNarry et al. (2011b) reported significantly higher scaled SVmax and 

Q̇max in trained pubertal and post-pubertal girls compared to their untrained 

counterparts, however, interestingly, there was no significant difference between 

trained and untrained pre-pubertal girls. Similarly, trained and untrained pre-pubertal 

boys demonstrate small differences in SVmax and Q̇max once scaled by LBM or body 

surface area (Armstrong & Welsman, 2019a; Bossone, Vriz, Bodini, & Rubenfire, 

2004; Fellmann & Coudert, 1994b; Forbregd, Aloyseus, Berg, & Greve, 2019). 

Moreover, McNarry et al. (2014b) reported no significant differences over time in 

SVmax and Q̇max in either trained or untrained children over the course of a three-year 

longitudinal study. Similarly, Winsley et al. (2009) reported pre-pubertal boys to have 

a 12.8% higher peak V̇O2 than pre-pubertal girls when scaled by LBM but no sex 

differences for either SVmax or Q̇max. Therefore, sex and maturity differences in peak 

V̇O2 seem unlikely to be mediated through central mechanisms and peripheral 

adaptations facilitating enhanced oxygen extraction may be of greater importance.  

2.4.2 Muscle Deoxygenation kinetics 

Recent advances in technology have allowed paediatric researchers to non-invasively 

examine muscle deoxygenation kinetics using near infrared spectroscopy (NIRS), 

typically examined at the m. vastus lateralis (Barstow, 2019; Breese, Saynor, Barker, 

Armstrong, & Williams, 2019; Marwood et al., 2010; Willcocks, Williams, Barker, 

Fulford, & Armstrong, 2010). The infrared light utilised is typically within the 700 – 

900 nanometre (nm) wavelength (Barstow, 2019), which allows the detection of light-

absorbing chromospheres, namely haemoglobin (HHb) and myoglobin (Mb; Barstow, 

2019; Boone, Koppo, Barstow, & Bouckaert, 2009; La Mantia, Neidert, & Kluess, 

2018; Ryan, Southern, Reynolds, & McCully, 2013). NIRS therefore has the potential 

to offer insights into physiological differences in local muscle microvasculature 

associated with sex, training and/or maturity status (Barstow, 2019; Boone et al., 

2009). NIRS devices have a high measurement resolution, allowing for real-time 

quantification of muscle deoxygenation kinetics that can be normalised to end-

exercise values and modelled against work rate and V̇O2 to enable comparisons 

between populations (Barstow, 2019; Boone et al., 2009; McNarry et al., 2015). 

Consequently, if muscle deoxygenation kinetics are assessed alongside SV, Q̇, and the 
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a-𝑣O2diff, a holistic assessment can be obtained of the balance between oxygen delivery 

(SV, Q̇) and extraction (a-𝑣O2diff and muscle deoxygenation) during exercise. 

Willcocks et al. (2010) reported no significant differences between 13 year-old 

children and adults in the concentration of deoxyhemoglobin ([HHb]) or 

phosphocreatine (PCr) response at the onset of heavy-intensity constant work rate 

exercise, assessed via NIRS and 31P-magnetic resonance spectroscopy (31P-MRS), 

respectively. However, despite an initial matching of oxidative capacity in children 

and adults, the mean response time (MRT) of muscle deoxygenation was significantly 

faster in children (22 ± 4 s vs 27 ± 7 s, respectively). This was attributed to an impaired 

oxygen delivery in children, indicating a poorer matching of oxygen delivery to 

extraction which is thought to improve with age due to androgenic hormones 

increasing haemoglobin levels within the blood (Thomsen, Riis, Krabbe, & 

Christiansen, 1986; Vinet et al., 2003). Nevertheless, the association between 

circulating androgens and haemoglobin is weak (Armstrong & Welsman, 2001; Vinet 

et al., 2003), and is therefore unlikely to contribute significantly to the age-related 

differences in localised muscle oxygen extraction (Ratel, Tonson, Cozzone, & 

Bendahan, 2010; Ratel, Tonson, Le Fur, Cozzone, & Bendahan, 2008).  

The results of Willcocks et al. (2010) are supported by those of Breese et al. (2019) 

who reported a decrease in the MRT of the tissue oxygenation index (TOI, %) during 

transitions to moderate and very-heavy cycling transitions in children and adolescents. 

The slowing of the [HHb] response with advancing age was attributed to a greater 

muscle mass in the older participants, facilitating a greater local O2 extraction, thus 

initiating a right-ward shift of the [HHb] response (Breese et al., 2019). However, the 

novel finding of Breese et al. (2019) was that during the transition from moderate to 

very-heavy intensity exercise the slower pulmonary V̇O2 kinetics were a result of a 

slower microvascular blood flow, not oxygen delivery (Breese et al., 2019). Endurance 

training augments this relationship, engendering a right-ward shift in both children 

(McNarry et al., 2011b) and young adults (Boone et al., 2009), which has been 

attributed to an increased abundance of type I muscle fibres and an increased SVmax 

and Q̇max increasing oxygen delivery capacity (McNarry et al., 2014b; McNarry, 

Welsman, & Jones, 2011c). More specifically, at low-to-moderate work rates, blood 

flow is primarily distributed to slow twitch muscle fibres (R. Armstrong & Laughlin, 
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1984), with this response enhanced by training (R. Armstrong & Laughlin, 1984). 

Therefore, the rightward-shift in the [HHb] response with training is likely mediated 

by differences in muscle fibre types and increases in regional blood flow.  

In one of the few studies to use NIRS in children during incremental exercise, 

McNarry et al. (2015) examined the acute muscle deoxygenation response of the m. 

vastus lateralis in 52 (21 girls; 9.9 ± 0.6 years) pre-pubertal children during a ramp 

test to exhaustion. The primary finding was that muscle deoxygenation kinetics 

explained ~12% of the variance in peak V̇O2 between boys and girls after accounting 

for FFM, GET and percentage of body fat in pre-pubertal children (McNarry et al., 

2015). Interestingly, utilising multi-level modelling techniques, Armstrong et al. 

(2019a) reported that after accounting for LBM and SVmax there was still an ~4% sex 

difference in peak V̇O2, with a similar discrepancy in peak V̇O2 (~5%) when LBM, 

Q̇max and a-𝑣O2diff were controlled for (Armstrong & Welsman, 2020a). Consequently, 

it could be postulated that the remaining unexplored variance in these studies (4 – 5%) 

may have been explained if a more sensitive measure of muscular deoxygenation 

kinetics was utilised, as opposed to the a-𝑣O2diff. However, given that McNarry et al. 

(2015) only included pre-pubertal children, whether a divergent [HHb] response 

persists in pubertal and post-pubertal children remains to be determined.  

 

2.5 Influence of sex and maturity on anaerobic responses to training in youth 

Anaerobic performances offer an indication of the body’s ability to generate energy 

production through non-oxidative pathways to meet the metabolic demands of 

strenuous exercise (Armstrong & Welsman, 2020c). Anaerobic trainability has 

received substantially less attention in the paediatric literature than aerobic fitness 

(Armstrong & Welsman, 2020c; Van Praagh, 2000; Van Praagh & Doré, 2002), 

despite the observation that children’s PA is often short and sporadic, and therefore 

may be anaerobic by nature (Holman, Carson, & Janssen, 2011; Whooten, Kerem, & 

Stanley, 2019). 

The potential for a maturational threshold in anaerobic performance is arguably 

stronger than for aerobic parameters. Specifically, surrounding PHV, boys and girls 

experience a ten- and five-fold increase in circulating testosterone, respectively 
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(Fellmann & Coudert, 1994a), which has been demonstrated to be a potent stimulant 

for LBM accrual and muscular hypertrophy in children (Campbell & Mbizo, 2006; 

Fellmann & Coudert, 1994a; Thomsen et al., 1986; Vingren et al., 2010). Additionally, 

it is now accepted that the glycolytic energy system matures with age during 

childhood, facilitating a greater anaerobic capacity (Armstrong & Welsman, 2019b; 

Van Praagh, 2000; Van Praagh & Doré, 2002). The main driver behind the 

development of the glycolytic energy system during maturation is an increase in the 

number, and distribution of, type II muscle fibres (Fournier et al., 1982; Van Praagh, 

2000). Additionally, the increase in muscle mass with maturity enhances the storage 

capacity for intramuscular adenosine triphosphate and creatine phosphate, two of the 

rate-limiting compounds in anaerobic glycolysis (Eriksson, 1972, 1980; Van Praagh, 

2000). Given these marked changes associated with growth and maturation, it 

therefore seems plausible that a maturational threshold may be manifest in any 

response to exercise reliant on these systems. 

Strength development during growth and maturation increases linearly in boys until 

the age of 12 – 13 years, after which a rapid development in explosive (i.e. jumping 

activities) and isokinetic (i.e. handgrip strength) strength is apparent in both the lower 

and upper extremities (Buenen & Thomis, 2000; Van Praagh, 2000; Van Praagh & 

Doré, 2002). Specifically, the greatest strength gains in boys are evident from – 1.5 to 

+ 0.5 years PHV, suggestive of a strong maturational effect thought to be mediated by 

increases in androgenic sex hormones that facilitate muscular hypertrophy by enabling 

intramuscular protein synthesis (Buenen & Thomis, 2000; Rogol, 2002; Rogol et al., 

2002; Van Praagh & Doré, 2002). Indeed, early-maturing boys have consistently been 

reported to outperform ‘normal’ and late-maturing boys in a variety of strength-based 

protocols, with maturity remaining a significant predictor of strength even after 

accounting for stature, body mass and age differences between participants (Buenen 

et al., 1998; Buenen & Thomis, 2000; Malina & Bouchard, 1991). Alongside 

developments in strength, peak power (Ppeak), the product of force and velocity 

(Armstrong & Welsman, 2019c), has also been shown to increase non-linearly, with 

periods of accelerated adaptation evident around the time of PHV (Armstrong & 

Welsman, 2019c; Doré et al., 2005; Martin et al., 2003). Specifically, Doré et al. 

(2005) reported a significant increase in Ppeak from 14 years in boys, coinciding with 
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PHV and facilitated by a significantly greater lower leg muscle volume (LLMV) 

compared to pre-pubertal children, although changes in muscle metabolism may also 

have contributed (Armstrong, Barker, & McManus, 2015b; Armstrong & Barker, 

2012b).  

Given the potential maturational influence on strength performance in boys, resistance 

training interventions have been utilised to accentuate these changes, although 

resistance training still remains somewhat controversial in children and adolescents 

(Behringer, von Heede, & Mester, 2010). Resistance training is a type of exercise that 

requires the musculature to contract against an opposing force generated by some form 

of additional resistance (Behringer et al., 2010). Forty two studies were pooled in a 

meta-analysis by Behringer et al. (2010), demonstrating a large effect of resistance 

training on multiple strength parameters in pubertal and post-pubertal adolescents 

(effect sizes (ES) both 1.91). Interestingly, sub-analyses revealed that the effect size 

in pre-pubertal children was ~50% less for the same relative exercise stimulus (ES: 

0.81). This suggests that pre-pubertal children are less trainable from resistance 

exercise than their more mature peers, supporting the maturational threshold 

hypothesis. Moreover, there were no significant trainability differences between boys 

and girls, irrespective of maturity, suggesting they are equally trainable, although this 

should be interpreted with caution given the scant literature on girls (Behringer et al., 

2010).  

Whilst there is limited evidence, research indicates that strength increases almost 

linearly until the age of 15 years after which it plateaus, with no empirical evidence 

for an adolescent growth spurt or ‘boost’ in performance (Behringer et al., 2010; Doré, 

Bedu, & Van Praagh, 2008; Doré et al., 2005; Van Praagh & Doré, 2002). In one of 

the only large scale studies examining sex differences, Doré et al. (2005) determined 

peak power (Ppeak) in 1,113 participants (583 girls) during a cycling Wingate (WnT) 

test. No sex differences were observed until the age of 13 years, after which Ppeak was 

consistently higher in boys than girls. These sex differences persisted even after Ppeak 

was allometrically scaled to LLMV and were attributed to differences in the number 

of, and the ability to recruit, type II muscle fibres. However, it is pertinent to note that 

the evidence regarding sex differences in muscle fibre types, beyond those associated 

with training, are contentious and sparse due to the highly-invasive nature of muscle 



 

 

 

49 

 

biopsies (Eriksson, 1980). Additionally, in a study of early, late and on-time maturing 

girls, there was no significant difference between any group for shoulder press or 

handgrip strength performance (Malina & Bouchard, 1991), further suggesting that 

the development of anaerobic performance may also be sexually dimorphic. 

Potential reasons for the scare research on anaerobic performance in children and 

adolescents may be a lack of ‘gold-standard’ measure and that anaerobic parameters 

are predominantly considered a performance measure, as opposed to a health-related 

outcome (McNarry & Jones, 2014; Van Praagh, 2000). The most common method of 

anaerobic performance assessment is the cycling WnT, which traditionally involves 

participants cycling maximally against a set resistance of 7.5% of their body mass for 

30 s (Grodjinovsky, Inbar, Dotan, & Bar-Or, 1980). However, concerns have been 

raised regarding the optimal flywheel resistance needed to generate maximal power 

outputs (Doré et al., 2003; Watt et al., 2002), with numerous modifications utilised 

(Armstrong & Welsman, 2019b; Armstrong & Welsman, 2020c), which preclude 

direct inter-study comparisons (Hopkins et al., 2009; Watt et al., 2002). Perhaps the 

largest limitation of the cycling WnT test, however, is the large contribution of 

oxidative phosphorylation to adenosine triphosphate (ATP) resynthesis during the 

cycling WnT test in children and adolescents (Chia, 2006). Specifically, Chia et al. 

(2006) reported that aerobic metabolism contributed significantly to total energy 

metabolism (~70%) during a 30 s cycling WnT, questioning whether this is truly a test 

of ‘anaerobic’ performance.  

Given the associated limitations with jumping test batteries and the cycling WnT test, 

over-ground sprint running has becoming an increasingly popular method of anaerobic 

performance assessment over the last decade (Abbasian, Gholamian, Attarzadeh, 

Khabazan, & Khodadadi, 2011; Gist, Fedewa, Dishman, & Cureton, 2013; Low, 

Harsley, Shaw, & Peart, 2015; Mendez-Villanueva et al., 2010; Meyers et al., 2015; 

Meyers et al., 2017a, 2017b; Mujika et al., 2009; Papaiakovou et al., 2009). Indeed, 

sprint performance is highly correlated to sports performance, particularly in team 

sports (Abbasian et al., 2011; Mujika et al., 2009; Papaiakovou et al., 2009), and is 

routinely assessed as part of training programs and as talent identification test batteries 

(Lloyd & Oliver, 2012; Lloyd et al., 2015; Unnithan, White, Georgiou, Iga, & Drust, 

2012). Additionally, sprint performances are easily comparable between populations 
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and studies, are highly reliable (ICC: 0.96 - 0.99, CV: 0.7 - 1.9%; Ingle & Tolfrey, 

2013; Runacres, Bezodis, Mackintosh, & McNarry, 2019a), and the simple data 

collection methods facilitate large-scale cross-sectional (Mendez-Villanueva et al., 

2010; Meyers et al., 2015; Meyers et al., 2017a; Morin, Edouard, & Samozino, 2011) 

and longitudinal studies (Meyers et al., 2016). However, evidence regarding the 

determinants of sprint performance and its progression with respect to training, sex, 

and maturity remains in its infancy.  

2.5.1 Over-ground sprint running 

Catley and Tomkinson (2013) reported 50 m sprint-performance reference ranges 

derived from a pooled sample of 85,347  Australian boys and girls aged 11-15 years, 

highlighting an almost linear increase with age. Such findings indicate a minimal 

influence of maturity on sprint performance. However, no insight was provided into 

the potential underlying mechanisms of sprint performance, which may change with 

age and maturity (Rumpf et al., 2015b; Rumpf, Cronin, Pinder, Oliver, & Hughes, 

2012). Indeed, Meyers and colleagues (Meyers et al., 2015; Meyers et al., 2016, 2017a, 

2017b) have investigated the development of sprint performance in boys, accounting 

for age, maturity and potential spatio-temporal determinants, namely stride frequency 

and step length. Maximal sprint speed was faster in pubertal adolescents compared to 

pre-pubertal children (Pre-Pubertal peak speed: ~6.3 m⋅s-1 vs 6.7 m⋅s-1 in pubertal 

group; Meyers et al., 2015), with the increase in maximal sprint speed attributed to 

increases in stride length due to increases in leg length, thereby reducing the reliance 

on step frequency with age and maturity (Meyers et al., 2015). Stepwise linear 

regressions showed that step frequency explained ~58% of the variance in maximal 

sprint speed in pre-pubertal boys, whereas step length explained the largest portion of 

variance in post-pubertal boys (~54%; Meyers et al., 2017a). It is pertinent to note that 

stride length is highly dependent on leg length, thus if not normalised to stature, 

spurious associations may be observed that could mask the importance of stride length 

(Rumpf et al., 2015b). Nevertheless, when stride length was normalised, significant 

differences were still evident between pre-pubertal children, pubertal and post-

pubertal adolescents (Rumpf et al., 2015b), potentially suggesting that other factors 

may also impact sprint performance during growth and maturation in boys.  
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The majority of research on spatio-temporal and kinematic sprint variables has 

focused exclusively on boys and thus the determinants of sprint performance in girls 

remain unclear (Nagahara et al., 2019; Papaiakovou et al., 2009; Vanderka & 

Kampmiller, 2013). In one of the few studies investigating sex differences in sprint 

performance, Papaiakovou et al. (2009) found that boys outperformed girls at all ages, 

with girls displaying a plateau in peak velocity (Vpeak) from the age of ~13 years. The 

results of Papaiakovou et al. (2009) are remarkably similar to those of other studies 

assessing the development of sprint performance in untrained girls, which similarly 

report a plateau in performance from the ages of 12.7 years (Nagahara et al., 2019) 

and 13.5 years (Vanderka & Kampmiller, 2013). In contrast, a plateau in Vpeak is not 

observed in boys until the age of 15 years (Meyers et al., 2015; Meyers et al., 2017a). 

This later plateau in boys has been attributed to a greater increase in muscle size and 

cross-sectional area in boys, compared to girls, with concomitant neuromuscular 

adaptations facilitating increased recruitment of type II muscle fibres (Armstrong, 

2007; Doré et al., 2005; Dotan et al., 2012; Van Praagh & Doré, 2002). However, it is 

noteworthy that the respective ages of 13 and 15 years in girls and boys coincide with 

the transition to post-pubertal status and, consequently, these observations could 

therefore be maturity related. 

Given the potential maturational influence on sprint performance, training during this 

time could be postulated to accelerate the natural increases in sprint performance. 

Rumpf et al. (2015a) observed a significant reduction in sprint times after six weeks 

of resistance training in mid- to post-pubertal, but not pre-pubertal, children. This 

increased velocity was associated with an increase of 15.2% and 14.1% in Ppeak and 

peak force (Fpeak), respectively. More recently, Cahill et al. (2020) found that greater 

training-related gains in 20 m sprint time (20mT) were observed in a heavy-resistance 

training group (enough load to elicit a 75% reduction in Vpeak) compared to a moderate 

(50% Vmax decrement), light (25% Vmax decrement) or an unresisted training group, 

irrespective of maturational status. Whilst these findings appear to indicate that a 

greater stimulus is necessary to significantly improve 20mT, irrespective of maturity, 

it is worth highlighting that neither of these studies specifically explored the effect of 

maturity, with the pooling of participants in Rumpf et al. (2015a) and the omission of 

a circa-pubertal group in Cahill et al. (2020) precluding further interpretation. 
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Moreover, neither study considered the effect of training in girls and thus the potential 

interaction of sex with training and maturity on the anaerobic response to training in 

youth remains to be elucidated.  

Rumpf et al. (2012) conducted a review into the most effective training methods to 

improve maximal sprint speed, concluding similar performance gains were elicited in 

pre- and post-pubertal boys irrespective of training methodology. In contrast, the 

magnitude of training gains were ~50% lower in pubertal compared to pre- or post-

pubertal adolescents, which the authors suggested was likely to reflect the 

phenomenon of adolescent awkwardness (Buenen et al., 1998; Lloyd et al., 2015). 

Adolescent awkwardness is a period of plateaus, or declines, in performance attributed 

to temporary disruptions in motor co-ordination and neural pathways (Buenen et al., 

1998). Whilst the mechanisms underpinning adolescent awkwardness remain to be 

fully elucidated, differences in segmental growth rates in relation to the trunk seem 

likely to explain at least some of the variance (Buenen et al., 1998; Rumpf et al., 

2015b). Other researchers argue that impairments in motor co-ordination during 

adolescence are a consequence of impaired and/or delayed sensorimotor function, 

including neurocognitive processing and the regulation of postural control (Quatman-

Yates, Quatman, Meszaros, Paterno, & Hewett, 2012). Nevertheless, it seems 

plausible that it is a combination of both these hypotheses, with differing growth rates 

causing sensorimotor impairment, but a causal relationship is yet to be established. 

However, adolescent awkwardness is only reported in some (Buenen et al., 1998; 

Papaiakovou et al., 2009; Rumpf et al., 2012) and not all (Abbasian et al., 2011; 

Mendez-Villanueva et al., 2010; Meyers et al., 2016, 2017a; Philippaerts et al., 2006) 

studies examining sprint performance, and thus more research is warranted.  

The majority of research to date has only considered maximal sprint speed, thereby 

providing little insight into the underlying kinetics (i.e. force and power) of sprint 

performance; understanding the kinetic determinants of sprint performance may 

enhance our understanding of the development of sprint performance with training, 

and the effects of sex and maturity. One possible reason for the lack of clarity on the 

underlying kinetics of sprint performance is the poor measurement resolution in field-

based methodologies (i.e. photocells and timing gates). Studies utilising these 

methodologies have relied on averaging over sections of, if not the whole, sprint 
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(Fitzsimons, Dawson, Ward, & Wilkinson, 1993; Mendez-Villanueva et al., 2010; 

Meyers et al., 2015; Papaiakovou et al., 2009). This lack of measurement resolution 

has increased the reliance on laboratory-based assessments, including non-motorised 

treadmills (Rumpf et al., 2015a; Rumpf et al., 2013; Rumpf et al., 2015b) and force 

platform (Nagahara et al., 2019) derived data, which have questionable ecological 

validity and applicability (Turley, Rogers, Harper, Kujawa, & Wilmore, 1995).  

Recent developments in technology, in combination with advances in macroscopic 

biomechanical models (Samozino et al., 2016), now enable near-instantaneous 

quantification of the velocity-time trace from which the underlying kinetics can be 

modelled (Rossi et al., 2017; Samozino et al., 2016). This enhanced measurement 

resolution, coupled with simple field-based data collection methods, potentially 

facilitates large cohort studies. Therefore, the combination of both these 

methodologies has the ability to enhance our understanding of the underlying kinetics, 

and the interactive effects of sex, training and maturation on sprint development. 

Indeed, Rossi et al. (2017), the only study utilising the combination of both these 

methods in children and adolescents to date, reported that Ppeak, and 30 m time 

increases with age, but Fpeak was similar between children and adolescents. 

Interestingly, however, the mechanical efficiency of force application (DRF) was 

significantly improved in adolescents compared to children, and is a greater predictor 

of sprint performance than total force production in adults (Morin et al., 2011). 

However, the lack of maturity assessment, the pooling of boys and girls despite their 

distinctly different physiology, and the ambiguous quantification of training, 

precludes further interpretations. Nevertheless, Rossi et al. (2017) demonstrates the 

potential of these methods to enhance our understanding of sprint development with 

respect to training, sex and maturity and warrants further investigation.  

2.5.2 Repeated Sprint Performance 

Whilst singular, over-ground sprints are reliable (Runacres et al., 2019a) and familiar 

to youth athletes, some researchers argue that repeated sprint ability is more indicative 

of real-world match-play performances, especially in team sports (Mendez-Villanueva 

et al., 2010; Mujika et al., 2009; Philippaerts et al., 2006; Spencer, Pyne, & Mujika, 

2011). Moreover, repeated sprint performance provides the ability to explore the 

determinants of fatigue which is not possible from a single sprint.  
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When repeated sprint ability (RSA) was assessed in a sample of 61 highly-trained 

footballers over ten 30 m sprints, interspersed with 30 s passive recovery, the mean 

sprint time significantly decreased with advancing age (Mendez-Villanueva et al., 

2010). Sub-analyses revealed that there was a similar magnitude of change between 

age-groups, indicating that RSA  may increase in a near-linear fashion with age, in 

direct contrast to single-sprint performance (Mendez-Villanueva et al., 2010). This 

conclusion is supported by the findings of Spencer et al. (2011) who used six, 30 m 

sprints in 119 highly-trained footballers and found that total sprint time decreased from 

33.1 ± 1.8 s to 28.7 ± 0.6 s and 26.2 ± 0.8 s in children under 11, 14 and 18 years, 

respectively. It must be noted however, that the absence of a corresponding control 

group in Mendez-Villanueva et al. (2010) or Spencer et al. (2011) means it is not 

possible to discern whether the observed increases in RSA are specifically training 

related or may reflect a concomitant effect of growth and maturation.  

Philippaerts et al. (2006) reported that the mean yearly improvements in RSA in 

trained footballers deemed pre- and post-pubertal were 0.1 s and 0.2 s per year, 

respectively, whereas the mean improvement for pubertal footballers was 0.9 s. 

Interestingly, whilst Philippaerts et al. (2006) reported a greater magnitude of change 

in pubertal adolescents, Mujika et al. (2009) found that the decrement in performance 

over repeated sprints, quantified by fatigue index (FI), remained relatively constant 

(4.0 – 5.5%). Nonetheless, the findings of Mujika et al. (2009) should be interpreted 

with caution as FI has repeatedly demonstrated moderate-to-poor reliability (CV: 20 

– 30%; Girard, Mendez-Villanueva, & Bishop, 2011; Spencer, Fitzsimons, Dawson, 

Bishop, & Goodman, 2006). This is perhaps unsurprising given the commonly applied 

method for quantifying performance decrements in is ((total sprint time / ideal sprint 

time) x 100) – 100, which offers, at best, a limited insight into the magnitude of fatigue 

during repeated sprint efforts (Mujika et al., 2009; Spencer et al., 2006; Spencer et al., 

2011). Indeed, the FI provides no indication as to the changes in the underlying 

kinetics that lead to these performance decrements which therefore precludes specific 

interventions being implemented to improve RSA in youth athletes. However, there is 

no available literature examining the RSA of girls, and so the effect of sex on training, 

and maturity, remain unclear. Therefore, due to this lack of clarity, the underlying 
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mechanisms contributing to fatigue during repeated bouts of over-ground sprints, and 

how this may differ by training, sex, and maturity status, remain unexplored. 

 

2.6 Long-term consequences of training 

Whilst the immediate adaptations to training stimuli in children are starting to be 

elucidated, one area which has received little attention is the long-term effect of 

intensive training in childhood on adult health. Nonetheless, the scarce literature 

generally denotes a linear dose-response relationship between exercise and future 

health (Attard, Hering, Howard, & Gorden-Larsen, 2013; Mika & Fleshner, 2016; 

Riner & Sellhorst, 2013). Conversely, others have reported that the effect of training 

during childhood on adult health is weak, with the maintenance of physical fitness a 

stronger predictor than prior training history (Hasselstrøm, Hansen, Froberg, & 

Andersen, 2002). With conflicting evidence in children it may be prudent to examine 

the literature on the long-term health consequences of an elite sporting career. Indeed, 

many elite athletes engage in intensive training from very young ages (Gonzalez, 

Johnson, Fedoruk, Posner, & Bowers, 2018; Green, 2006; Williams, 2016), and, with 

careers spanning over 40 years in some cases they may be a more appropriate 

population to study long-term impact. Given that the aim of LTAD programmes is to 

prepare young athletes for an elite sporting career, understanding the consequences of 

these exercise behaviours is of paramount importance for coaches, NGB’s, and policy 

makers alike.  

2.6.1 Adult Literature 

Traditionally, the dose-response relationship between exercise and all-cause mortality 

was assumed to be linear in adults, with higher levels of exercise associated with a 

more favourable all-cause, CVD and cancer mortality risk (Blair et al., 1989; Lee et 

al., 1995; Paffenbarger & Lee, 1998). Indeed, in17,815 Harvard alumni tracked for an 

average of 15 years, it was found that former college athletes were less likely to die 

from CVD before the age of 50 years compared to their previously sedentary 

counterparts (Blair et al., 1989; Lee et al., 1995; Paffenbarger & Lee, 1998). Moreover, 

Harvard alumni who engaged in ‘regular exercise’ and expended ≥ 2,000 active 

calories a week gained a 1.5-year survival benefit by the age of 80 years and a 25% 
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reduction in CVD incidence (Blair et al., 1989; Lee et al., 1995; Paffenbarger & Lee, 

1998).  

More recent epidemiological studies have challenged the findings of the Harvard 

alumni studies, suggesting there may be an upper limit beyond which exercise and 

physical activity become deleterious to health (M. Armstrong et al., 2015a; 

Mohlenkamp, Lehman, & Breuckmann, 2008; Schnohr et al., 2015). Specifically, the 

Copenhagen Heart study, in which 1,098 joggers and 3,950 non-joggers were followed 

over 12 years (48.8 ± 13.8 years at baseline), reported that strenuous joggers were at 

a two-fold higher risk of all-cause mortality compared to non-joggers (Hazard Ratio: 

1.97, 95% Confidence Intervals (CI): 0.48 – 8.14), with these findings further 

exaggerated when expressed in relation to light joggers (Hazard Ratio: 9.08 95% CI: 

1.87 – 44.01; Schnohr et al., 2015). However, it is pertinent to note that the small 

number of deaths in both groups (28 joggers, 128 non-joggers) may have skewed the 

associations reported. Nonetheless, the results of the Copenhagen Heart Study (2015) 

were corroborated by a large prospective study of 1.1 million females (55.8 ± 4.7 

years) in the UK who were tracked for 9 years. Specifically, Armstrong et al. (2015a) 

reported that women who engaged in daily strenuous (exercise intensity ≥ 6 METs) 

exercise had no significant reduction in the incidence of coronary heart disease (Risk 

Ratio (RR): 0.89, 95% CI: 0.84-0.93) when compared to women who rarely or never 

engaged in exercise, even after accounting for BMI, smoking, alcohol intake, and 

socioeconomic status. Furthermore, recreational German marathon runners aged 57.2 

± 5.7 years followed over a two-year period had a similar incidence of cardiovascular 

(CV) events compared to a group with established coronary heart disease 

(Mohlenkamp et al., 2008). Taken together, these studies suggest that the exercise-

health relationship may be ‘J’ shaped, with exercise intensities, and volumes, above a 

certain threshold becoming deleterious to health. It is therefore potentially important 

to consider that elite athletes generally train at levels far in excess of those reported in 

epidemiological studies, thereby raising the question as to the effects of such volumes 

and/or intensities of exercise on longevity in former athletes. 

Whilst there is extensive research regarding the health consequences of an elite 

sporting career, two systematic reviews (Lemez & Baker, 2015; Teramoto & Bungum, 

2010a) and a meta-analysis (Garatachea et al., 2014) have sought to assimilate this 
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evidence. Collectively, these reviews conclude that elite male athletes live longer than 

the general male population and have a lower incidence of both CVD and cancer 

mortality (Garatachea et al., 2014; Lemez & Baker, 2015; Teramoto & Bungum, 

2010a). However, there is a paucity of literature in former female athletes, precluding 

inferences as to whether males and females experience similar long-term benefits. 

Moreover, neither of the reviews (Lemez & Baker, 2015; Teramoto & Bungum, 

2010a) sought to elucidate the potential influence of sport type on mortality 

differences. Sport type may moderate the relationship between intensive training and 

long-term health outcomes for many reasons, not least the considerable inter-sport 

differences in the type and volume of training, and the physiological and 

anthropometric characteristics associated with success (Castanheira et al., 2017; 

McKendry, Breen, Shad, & Greig, 2018; Venckunas, Simonavicius, & 

Marcinkeviciene, 2016; Williams, 2016). For example, there are considerable 

differences in physique according to sport, with power sports generally associated with 

a higher BMI, which is independently related to an increased risk of CVD and all-

cause mortality (Baron, Hein, Lehman, & Gersic, 2012; Keller, 2019; U. M. Kujala, 

Kaprio, Taimela, & Sarna, 1994b; Lehman, Hein, Baron, & Gersic, 2012; Wang et al., 

1994). Indeed, American footballers who had a playing BMI of ≥ 30 kg⋅m-2 were 

reported to be at a two-fold higher risk of CVD mortality compared to those players 

with a BMI of ≤ 25 kg⋅m-2 (Baron et al., 2012). Nevertheless, it is pertinent to note 

that the literature reporting inter-sport health outcomes is inconsistent, with some 

studies reporting no differences (Kettunen et al., 2015; Kontro, Sarna, Kaprio, & 

Kujala, 2018) and others only reporting a survival benefit up to a certain age (Gajda, 

Smigielski, Smigielski, Pakos, & Drygas, 2018; Mackay et al., 2019; Schnohr, 1971a). 

Determining the long-term health consequences of intensive exercise training is of 

paramount importance given the increased sports participation in youth (Sport 

England, 2019; Sport Wales, 2018). Such findings can not only inform training 

schedules and contribute to ongoing debate surrounding early specialisation 

(Mostafavifar, Best, & Myer, 2012; Till et al., 2019; Williams, 2016) but also inform 

strategies to enhance the long-term health of those athletes. 
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2.7 Overall Conclusions 

Overall, fundamental questions persist regarding the influence of sex, maturity, and 

training status and how they interact to improve performance parameters in both the 

short- and long-term. Moreover, the effect of PA, SED, and sleep on V̇O2max still 

remains to be elucidated, with the majority of the literature confounded by 

methodological and statistical inconsistencies unable to account for the constrained, 

and co-dependent, nature of PA data.  

Evidence suggests that both training and maturation independently increase aerobic 

and anaerobic parameters during adolescence, but, after appropriate scaling techniques 

are employed, pre-pubertal children demonstrate similar levels of aerobic and 

anaerobic trainability to pubertal and post-pubertal adolescents, refuting the 

maturational threshold hypothesis. However, what remains less clear is the mediating 

effect of sex on the maturity and training interaction during childhood and 

adolescence. Physical activity levels are unequivocally related to an improved health 

and quality of life in all populations, however, the relationship between physical 

activity and V̇O2max remains contentious despite being two of the most researched 

topics in paediatric exercise science. This could be due to the reliance on correlations, 

which only infer causality, and use of inappropriate predictive modelling techniques, 

which fail to appropriately account for the high co-dependency between movement 

activity behaviours. Compositional analyses have the ability to overcome these 

limitations and provide new insights into the relationships between PA, SED, and 

sleep on V̇O2max in trained and untrained youth. Additionally, there is a clear lack of 

understanding on the sport-specific long-term effects of chronic intensive training, 

especially in women, which needs addressing urgently so interventions can be 

implemented, if necessary, to improve the long-term health of former elite athletes.   
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Chapter 3 – General Methodology 

The experimental investigations within this thesis comprise of five experimental 

chapters. Chapters 4 and 5 were comprised of the same V̇O2max and seven-day 

physical activity (PA) data. Data collection took place either in the Swansea University 

Applied Sports Technology Exercise and Medicine (A-STEM) research laboratories 

or at athlete training sessions at various locations across Wales. Prior to any contact 

with potential participants, all studies were approved by the institutional ethics 

committee at Swansea University and all experimental procedures were conducted in 

accord with the Declaration of Helsinki. 

3.1 Participants 

The trained group in Chapters 4, 5, 6 and 7 was comprised of national standard 

athletes involved within long-term athlete development (LTAD) programs overseen 

by their sport’s national governing body (NGB). All trained participants were recruited 

through the NGB sending emails with participants and parent information sheets to all 

national squad players and parents with interested parents and athletes then contacting 

the research team. The trained group was formed of Hockey players, Gymnasts, 

Cyclists, and Soccer players. All athletes were training an average of 10 ± 2 

hours⋅week-1 over four sessions and competed in a competition/match most weekends 

throughout the competitive season. More specifically, the hockey and football players 

predominantly engaged in a mixture of endurance and high intensity interval training 

prior to the commencement of sessions and moving into small-sided games and/or 

tactical-awareness elements. The gymnasts were all < 10 years old and training in 

excess of 16 hours⋅week-1 which involved a mixture of strength, technique, and 

conditioning sessions. Finally, the cyclists and triathletes were engaged in endurance-

based training sessions 3 days⋅week-1, with the fourth day consisting of high intensity 

repetitions (< 30 s) with periods of active recovery. All participants had been training 

for an average of 3.5 ± 1.5 years before entry into the studies. Participants were 

recruited via emails circulated by the NGB inviting the young athletes to be involved 

within the respective study. Interested parents/guardians and participants were 

subsequently sent respective information sheets. The inclusion criteria for the trained 

group were i) part of a national training group, ii) were training in excess of 8 
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hours⋅week-1 and iii) had been training for at least a year. Trained participants were 

excluded if they had any injury or illness or they had been in the NGB set up for less 

than a year.  

All untrained participants were recruited from local schools across South Wales, or 

through the university, and were not regularly physically active. Control participants 

were recruited through local schools through letters being distributed to all school 

pupils, with control participants also recruited via university emails and word of 

mouth. The inclusion for control group participants were i) were not habitually active 

and ii) were aged between 8-18 years old. Control participants were excluded from the 

study if they i) were part of any formal training regime and ii) they had a pre-existing 

injury or illness which would stop them from any part of the study. The breakdown of 

all participants across these four experimental chapters is displayed in Table 3.1. 

Table 3.1 – Distribution of participants included within Chapters 4, 5, 6 and 7  

 Total Number 

Recruited per Group 

Chapter 

4 (n) 

Chapter 5 

(n) 

Chapter 

6 (n) 

Chapter  

7 (n)  

All athlete data 

was collected 

during 2017-2020 

at regular intervals 

throughout the 

year 

Hockey Players (n = 147) 56 56 147 20 

Football Players (n = 42) 42 42 - - 

Triathletes (n = 4) 4 4 - - 

Welsh Gymnasts (n = 3) 3 3 - - 

Welsh Cyclist (n = 5) 5 5 - - 

All control data 

was collected 

during 2018-2019 

in line with athlete 

time- points  

Controls - GCSE PE 

Students (n = 47) 

 

41 47 - - 

Controls – Other (n = 

113) 

40 83 113 - 

n = Number of participants recruited into each chapter before exclusion criteria were applied.  

Prior to participants being accepted into the studies, parent/guardian consent (for those 

under 16 years) and child assent or participant consent (those over 16 years) were 

obtained and a pre-screening medical questionnaire completed. Parent/guardian 

consent was obtained either online (using a custom-built consent form on Survey 

Monkey, Chapters 6 and 7) or in person prior to data collection (Chapters 4 and 5). 

Participants were excluded from the experimental studies within this thesis if they had 

any known cardiovascular, metabolic or kidney disease, or any other condition that 

would have prevented them from completing all aspects of the experimental protocol. 
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Written participant assent was obtained on the day of testing prior to data collection. 

Participants were asked to arrive to all testing sessions having refrained from 

performing strenuous exercise in the preceding 24 hours, having had no caffeine in the 

past 12 hours, and having not eaten a large meal in the last two hours. These criteria 

were implemented to standardise experimental procedures across studies.  

3.2 Experimental Procedures  

3.2.1 Anthropometric Measurements 

Prior to any other measures being taken, all anthropometric variables were assessed. 

The participant’s stature was measured with shoes off using a Holtain Stadiometer 

(Holtain, Crymych, Dyfed, UK) to the nearest 0.1 cm. The participant was instructed 

to stand tall, keep the chin level and look straight ahead. Sitting stature was measured 

to the nearest 0.1 cm using a Harpenden sitting height table (Holtain, Crymych, Dyfed, 

UK), adjusted to ensure a 90° flexion of the knee with feet rested on the foot bar. 

Participants were encouraged to sit up straight, with the chin flat looking straight 

ahead, and a measure of sitting height recorded after the participant had inhaled and 

exhaled forcefully. If a sitting height table was not available (i.e. in field testing), 

sitting height was measured using a portable Holtain stadiometer (Holtain Ltd, 

Crymych, Dyfed, Wales). Body mass was recorded using electronic scales (Seca 803, 

Seca, Chino, CA, USA), accurate to the nearest 0.1 kg. Body mass was recorded bare 

foot and with all heavy items removed from pockets and any excess clothing (i.e. 

tracksuit trousers) removed. Additionally, date of birth was collected, with decimal 

age calculated from the day of the assessment.  

Given the importance of accounting for sexual maturation within this thesis several 

different options were considered. A popular method of assessing maturity within 

children and adolescents is the tanner stages of pubic hair and development of the 

sexual organs (Marshall & Tanner, 1969, 1970). Tanner stages have been shown to be 

both valid and reliable in assessing young people’s maturity, with Leone and Comtois 

(2007) reporting high reliability and validity in a group of elite junior athletes 

(spearman rank ≥ 0.86, p < 0.05; ≥ 75% agreement with a qualified physician). 

However, some researchers have questioned the applicability of this method given that 

these pubertal indices were created from longitudinal data in Caucasian children in the 
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1950’s and therefore may not be representative of today’s population or other 

ethnicities (Coleman & Coleman, 2002). Bone age, and thus skeletal age, is another, 

less common and more invasive method of maturity assessment which involves the 

bones of the hand and wrist being measured using dual x-ray absorptiometry (DEXA) 

scans. The two most common methods are the Greulich-Pyle (GP; Greulich & Pyle, 

1959) method and the Tanner-Whitehouse 2 (TW2; Tanner et al., 1983) assessments. 

However, each of these equations are associated with certain limitations and, 

irrespective of the equation used, the standard error of estimate (SEE) is approximately 

one year for girls from 5 – 14 years and boys from 5 – 16 years. Additionally, the 

radiation exposure rendered DEXA scans for the assessment of maturity in healthy 

children unfeasible. Consequently, maturity stage was estimated using the 

anthropometric-based, sex-specific maturity offset equations of Mirwald et al. 

(2002b), which predict the time in years a child is from their peak height velocity 

(PHV), to the nearest 0.1 years. The sex-specific maturity offset equations are as 

follows:  

𝐵𝑜𝑦𝑠 𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦 𝑂𝑓𝑓𝑠𝑒𝑡 (𝑦𝑒𝑎𝑟𝑠) =  −9.236 + (0.0002708 ∙ (𝐿𝐿 ∙ 𝑆𝐻)) −

(0.001663 ∙ (𝐴𝐺 ∙ 𝐿𝐿)) + (0.007216 ∙ (𝐴𝐺 ∙ 𝑆𝐻)) + (0.2292 ∙ (𝑊𝑇 ÷ 𝐻𝑇)) (1) 

 

𝐺𝑖𝑟𝑙𝑠 𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦 𝑂𝑓𝑓𝑠𝑒𝑡 (𝑦𝑒𝑎𝑟𝑠) =  −9.376 + (0.0001882 ∙ (𝐿𝐿 ∙ 𝑆𝐻)) +

(0.0022 ∙ (𝐴𝐺 ∙ 𝐿𝐿)) + (0.005841 ∙ (𝐴𝐺 ∙ 𝑆𝐻)) − (0.002658 ∙ (𝐴𝐺 ∙ 𝑊𝑇)) +

(0.07693 ∙ (𝑊𝑇 ÷ 𝐻𝑇))   (2) 

with  

𝐿𝐿 = 𝐻𝑇 − 𝑆𝐻 (3) 

where LL is leg length (cm), SH is sitting height (cm), AG is decimal age, WT is body 

mass (kg) and HT is height (cm). Participants were subsequently classified as pre-PHV 

if more than one-year away from PHV, circa-PHV if within a year of PHV and post-

PHV if more than one-year post PHV. It is pertinent to note that both sex-specific 

equations have a standard error (SE) of ± 0.59 years and ± 0.57 years for boys and 

girls, respectively (R. L. Mirwald et al., 2002b). 
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3.2 V̇O2max Assessment 

V̇O2max was measured using an incremental ramp test to volitional exhaustion using a 

Lode cycle ergometer (Lode Excalibur Sport, Groningen, Netherlands) in Chapters 4 

and 7. Specifically, following a three-minute warm-up at 10 watts (W), the work rate 

then increased by 20 – 25 W∙min-1, depending on the participant’s age (≤ 11 years = 

20 W∙min-1, ≥ 11.1 years = 25 W∙min-1). All participants were instructed to maintain 

a cadence between 60 and 80 revolutions per minute (rpm), with volitional exhaustion 

defined as when the cadence consistently fell below 50 rpm, despite strong verbal 

encouragement.  

Exercise modality significantly influences peak V̇O2 achieved, with a higher peak V̇O2 

in children and adolescents reported using a treadmill when compared to cycle 

ergometry (Loftin, Sothern, Warren, & Udall, 2004; Turley et al., 1995). Nevertheless, 

Loftin et al. (2004) reported peak V̇O2 derived from cycle ergometry to be equally 

reliable to that derived from a treadmill (intraclass correlation coefficient 0.98 versus 

0.97, respectively), and Turley et al. (1995) reported a higher reliability, and less 

variability, using a stationary bike peak V̇O2 protocol, in comparison to a treadmill 

equivalent (coefficient of variation 4.4% versus 5.6%, respectively; p < 0.05). 

Therefore, given the lower upper body movement artefact associated with cycle 

exercise, this was deemed the most appropriate modality.  

Inspired and expired air were collected on a breath-by-breath basis throughout the 

incremental ramp protocol using a Vyntus metabolic cart (VYAIRE medical Ltd, 

Mettawa, IL, USA). It is pertinent to note that Kantaras (2018) reported a high standard 

error of measurement (SEM)  for V̇O2 and carbon dioxide production (V̇CO2) values 

both equating to 1.3%, with questionable test-retest reliability also reported (ICC: 0.70 

– 0.80). However, the assumption of normality, fundamental to the calculation of 

SEM, was violated, and therefore these findings should be interpreted with caution. 

To mitigate any potential reliability issues, the volume calibration was re-run after 

every test, with gas calibration run every four hours, in line with manufacturer 

recommendations. Furthermore, the reliability of the Vyntus gas analyser is superior 

to other commercially available models, including the MetaMax (CV ≥ 2.8%; 
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Macfarlane & Wong, 2012) and the Oxycon mobile (CV ≥ 4.1%; Rosdahl, Gullstrand, 

Sailer-Eriksson, Johansson, & Schantz, 2010).  

A V̇O2max was accepted to reflect a maximal effort when there was a visible V̇O2 

plateau (< 150 ml⋅min-1 increase in V̇O2 despite an increasing work rate; Rowland, 

Lee, & Cunningham, 1992). Heart rate (HR) and the respiratory exchange ratio (RER) 

were monitored, but not used to determine a maximal effort due to the issues 

highlighted by Barker et al. (2009). More specifically, reliance on secondary criteria 

to determine a maximal effort in paediatric populations can underestimate V̇O2max by 

as much as 20%, if they are reached at all (Barker et al., 2009) Therefore, after five 

minutes of active recovery and 10 minutes of passive rest, a supramaximal validation 

bout was performed to verify whether a maximal effort had been provided. Workloads 

ranging from 105-130% of peak power have previously been used for supramaximal 

bouts, though no significant differences have been reported to be elicited by different 

supramaximal protocols (Schaun, 2017). In accord with the majority of previous 

studies, a step-transition to 105% of peak power was utilised in the current studies 

(Barker et al., 2009; Poole & Jones, 2017; Rossiter, Kowalchuk, & Whipp, 1985). 

Breath-by-breath gas exchange variables were measured throughout the supramaximal 

validation bout, with participants instructed to maintain a cadence of ≥ 50 rpm for as 

long as possible. V̇O2max was validated if there was ≤ 2.5% difference between the 

maximum 10s stationary V̇O2 recorded between the incremental ramp test and the 

supramaximal validation bout (Figure 3.1). In situations where there was a ≥ 2.5% 

difference the participants were excluded from further analysis.   
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To aid comparisons between training, maturity, and sex groups, V̇O2max was expressed 

relative to body mass. Specifically, V̇O2max underwent two forms of scaling, ratio 

(ml⋅kg⋅min-1; equation 4) and allometric (ml⋅kg-b⋅min-1; equation 5). Allometric 

scaling is considered more robust than traditional ratio scaling, which assumes a linear 

relationship between body mass and V̇O2max, thereby potentially creating spurious 

associations (Nevill et al., 2006; Tanner, 1949; Welsman & Armstrong, 2019). 

Moreover, a negative association may still exist between body mass and V̇O2max 

following ratio scaling, with heavier, more mature individuals often unfairly penalised 

(Cunha et al., 2011; Nevill et al., 2006; Nevill et al., 1998), which may mask 

physiologically meaningful findings. Conversely, allometric scaling calculates a 

population-specific exponent, removing any association with body mass, and 

subsequently enabling inter-population comparisons (Cunha et al., 2011; Cunha et al., 

2016; McNarry et al., 2014b; Nevill et al., 2006; Nevill et al., 1998; Runacres et al., 

2019b). Allometrically scaled V̇O2max was determined by log transforming body mass 

(kg) and peak V̇O2 (ml⋅min-1). Subsequently, a log-linear regression model was 

generated, and the resulting beta coefficients used as allometric exponents (b) when 

the data was back-transformed into original units.  

𝑅𝑎𝑡𝑖𝑜 𝑆𝑐𝑎𝑙𝑒𝑑 𝑉̇𝑂2𝑚𝑎𝑥 (𝑚𝑙 ∙ 𝑘𝑔 ∙ 𝑚𝑖𝑛−1) = 𝑉̇𝑂2𝑚𝑎𝑥 (𝑚𝑙 ⋅ 𝑚𝑖𝑛−1)  ÷ 𝐵𝑀 (4) 

Figure 3.1: Schematic diagram for the determination of V̇O2max from an incremental ramp test and the supramaximal validation 

bout. If the difference in V̇O2 values between the incremental test and supramaximal validation bout was < 2.5% then a ‘true’ 

V̇O2max was obtained. 
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𝐴𝑙𝑙𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙𝑙𝑦 𝑆𝑐𝑎𝑙𝑒𝑑 𝑉̇𝑂2𝑚𝑎𝑥 (𝑚𝑙 ∙ 𝑘𝑔−𝑏 ∙ 𝑚𝑖𝑛−1) =  𝑉̇𝑂2𝑚𝑎𝑥 (𝑚𝑙 ⋅ 𝑚𝑖𝑛−1)  ÷

𝐵𝑀𝑏 (5) 

where BM is the body mass of the participant and b is the scaling coefficient derived 

from the logarithmic linear regression. To check that the b coefficient successfully 

controlled for the effect of body mass, the data went through two quality check phases. 

Firstly, the data was graphed to visually inspect the relationship (Figure 3.2) and 

secondly Pearson’s correlations were run to ensure that the relationship between body 

mass and V̇O2max were no longer significant.  

The gas exchange threshold (GET), defined as the point where V̇CO2 begins to rise 

disproportionally to V̇O2, was calculated using the V-slope method first described by 

Beaver, Wasserman and Whipp (1986). The raw V̇O2 and V̇CO2 data were averaged 

into 10-second bins prior to any analysis taking place. The V-slope method uses basic 

linear regression analysis techniques to identify the point at which V̇CO2 begins to 

increase exponentially compared to V̇O2 (Figure 3.3). This rise in V̇CO2 is triggered 

by the buffering of hydrogen (H+) ions as a consequence of incomplete glycolysis 

(Meyer, Lucia, Earnest, & Kindermann, 2005; Spurway, 1992), thus the GET can 

provide valuable information, non-invasively, on the sub-maximal threshold 

associated with the transition from moderate- to heavy-intensity exercise. Whilst the 

gas exchange and lactate thresholds are two well recognised physiological parameters, 

there remains debate as to whether they are equivalent (Hebestreit, Staschen, & 

Hebestreit, 2000; Mucci et al., 2013; Pfitzinger & Freedson, 1997; Ratel & Martin, 

2012). To aid comparisons between populations, the relative GET was also calculated 

by expressing the GET as a percentage of V̇O2max.  
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The mean response time (MRT) was calculated from the incremental ramp test using 

the methods described by Barstow and colleagues (Barstow, Jones, Nguyen, & 

Casaburi, 1999) to estimate the kinetic V̇O2 response to exercise. Mean response time 

was defined as the point of intersection between baseline V̇O2 (average of the final 

minute of the warm-up) and a backwards extrapolation of the V̇O2 – time (s) slope 

from one minute into the ramp-forcing function to steady state V̇O2 (Figure 3.3b). The 

a 

b 

Figure 3.2 The relationship between a) V̇O2max and body mass and b)  allometrically scaled V̇O2max and 

body mass 
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response gain was also calculated according to the average change in V̇O2 per Watt 

increase from one minute into the ramp-forcing function to the GET (s1), and from 

the GET to V̇O2max (s2), and across the whole incremental ramp slope (sT).  
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Figure 3.3 The calculation of a) the V-Slope method used to determine the gas exchange threshold (GET) during 
the incremental ramp test and b) The calculation of the mean response time (MRT) and Gain 
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3.2.3 Haemodynamic Parameters 

Haemodynamic parameters were assessed to gain an insight into the functional 

properties of the myocardium and whether these were affected by training status, sex 

or maturity in Chapter 4. Whilst haemodynamic parameters have been suggested to 

positively correlate with V̇O2max (Armstrong, 2007; Armstrong & McNarry, 2016; 

Logan, Harris, Duncan, & Schofield, 2014), the mechanisms underpinning changes in 

peak V̇O2 remain poorly understood in children and adolescents. Traditionally, 

electrocardiograms (ECG) were considered the most reliable method to assess stroke 

volume (SV), HR, and cardiac output (Q̇). However, the accuracy of using ECGs 

during stress tests has been questioned in recent years (Siegler et al., 2011). 

Specifically, ECG traces are extremely sensitive to movement artefacts as ECGs 

measure the electrical signal from the brain to the heart and therefore muscle 

contractions (Odman & Oberg, 1982) or, indeed, movement of the electrodes in 

relation to the skin (Odman & Oberg, 1982), can influence the ECG trace if not filtered 

appropriately (Lollgen, 2012; Odman & Oberg, 1982; Siegler et al., 2011). Whilst 

numerous filtering algorithms have been developed (Khambete, Brown, & 

Smallwood, 2000; Klijn & Kloprogge, 1974; Nagai, Anzai, & Wang, 2017; Wiklund 

et al., 2007), there is little consensus as to the most appropriate algorithm for use in 

paediatric populations (Luo & Johnston, 2010). This lack of clarity, coupled with the 

high expense and time-intensive set-up, suggest that ECGs are not appropriate for 

measuring hemodynamic parameters during exercise in a paediatric population.  

Doppler echocardiography has been used to measure cardiac variables during 

paediatric exercise tests, with CV’s as low as 5.6% reported for inter-trial variation 

(Moulinier et al., 1991). However, as noted by Rowland and Obert (2012), there are a 

number of potential sources of error associated with the Doppler technique, including 

aortic diameter changes during exercise. This is crucial given that SV is calculated 

from the aortic cross-sectional diameter (Rowland & Obert, 2012), therefore any 

changes during exercise will lead to spurious results and an under- or over-estimation 

of the true SV (Rowland & Obert, 2012). Moreover, a failure to map the full blood 

flow velocity profile, as well as the relatively expensive equipment, suggests that 

Doppler echocardiography may not be appropriate for quantifying haemodynamic 

parameters during exercise in children and adolescents. Conversely, bioelectrical 
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impedance devices are relatively cheap, as well as being non-invasive, and have been 

frequently utilised to estimate beat-to-beat changes in cardiac output since the 1960’s 

in paediatric populations (Charloux et al., 2000; Kubicek, Karnegis, Patterson, Witsoe, 

& Mattson, 1966; J Welsman, Bywater, Farr, Welford, & Armstrong, 2005). However, 

the widespread use of these devices has been limited due to variable accuracy and 

reliability of thoracic bioelectrical impedance devices (Charloux et al., 2000; J 

Welsman et al., 2005). Nonetheless, the PhysioFlow (Mantec, Paris, France) utilises 

more sophisticated predictive algorithms to minimise such methodological 

inaccuracies (Charloux et al., 2000), demonstrating highly reliable and accurate 

estimates of HR, SV and predicted Q̇ in children (ICC ≥ 0.86, CV ≤ 9.3%; J Welsman 

et al., 2005). Overall, the PhysioFlow is a relatively simple, non-invasive and cost-

effective system that provides automated measurement of beat-by-beat haemodynamic 

variables.  

A six-electrode PhysioFlow was used throughout the peak V̇O2 protocol in Chapters 

4 and 5 and  to estimate HR and SV, thereby enabling Q̇ to be calculated. The 

electrodes were placed on the forehead, left side of the neck, the xiphoid process, the 

left side of the ribs on the fourth intercostal space, with the final two electrodes placed 

on the centre of the back. These placements were in accord with the recommendations 

of Welsman et al. (2005). 

The automatic calibration process of the PhysioFlow was recorded over 60 heart beats, 

in a rested state to attain the highest impedance during systole (Zmax – Zmin), and the 

rate of variation at rest (Zmax – Zmin / dtmax), also known as the contractility index (CTI; 

Charloux et al., 2000). This enabled the calculation of the thoracic flow inversion time 

(TFIT) which is the derivative of the raw impedance signal and defined as the time 

interval between the start of the cardiac cycle (QRS complex) and the lowest velocity 

of blood ejected from the heart, after the peak ejection velocity (Charloux et al., 2000). 

The TFIT was subsequently weighted using the algorithm: 

𝑊(𝑇𝐹𝐼𝑇) = 𝑇𝐹𝐼𝑇 + 𝐻𝑅 + 𝑃𝑃 (6) 

where PP is pulse pressure (systolic blood pressure – diastolic blood pressure). Aortic 

compliance contributes to the signal waveform and a linear relationship has been 

established according to the SV:PP ratio. Pulse pressure was calculated by manually 
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entering the resting systolic and diastolic blood pressure values derived following five 

minutes passive rest using an automated blood pressure monitor (Omron MX3, Milton 

Keynes, UK). The Omron MX3 blood pressure monitor has been demonstrated to be 

accurate in adolescents to within 2 and 1 mmHg for systolic and diastolic blood 

pressure, respectively (Christofaro et al., 2009). Two blood pressure measurements 

were taken, with the mean systolic/diastolic pressure calculated and utilised in 

subsequent analyses. The SV index for calibration (SVical) was subsequently 

computed by:  

𝑆𝑉𝑖𝑐𝑎𝑙 = 𝑘 ∗ [
𝑑𝑍

𝑑𝑡𝑚𝑎𝑥
 ÷  

𝑍𝑚𝑎𝑥

𝑍𝑚𝑖𝑛
] ∗ 𝑊(𝑇𝐹𝐼𝑇𝑐𝑎𝑙) (7) 

where k is a constant and cal indicates the parameters measured during the calibration 

phase. Thereafter, during the data acquisition phase, SV index was calculated using: 

𝑆𝑉𝑖 = 𝑆𝑉𝑖𝑐𝑎𝑙 ∗  √
𝐶𝑇𝐼

𝐶𝑇𝐼𝑚𝑎𝑥

3
∗  

𝑇𝐹𝐼𝑇𝑐𝑎𝑙

𝑇𝐹𝐼𝑇
  (8) 

Beat-by-beat Q̇ could therefore be calculated according to:  

𝑄̇ =  𝐻𝑅 ∗ 𝑆𝑉𝑖 ∗ 𝐵𝑆𝐴  (9)  

with  

𝐵𝑆𝐴 = 0.024265 ∗ 𝐵𝑀0.5378 ∗ 𝐻0.3964 (10) 

𝑆𝑉𝑖 =  
𝑆𝑉

𝐵𝑆𝐴
  (11) 

where Q̇ is cardiac output (l⋅min-1), HR is heart rate (bpm), SVi is the SV index (ml⋅m-

2), BSA is body surface area (kg⋅m-2), BM is body mass (kg) and H is height (cm). The 

BSA equation was proposed by Haycock et al. (1978) and has been validated in 

infants, children and adults. Maximum stroke volume (SVmax), maximum cardiac 

output (Q̇max) and maximum heart rate (HRmax) were defined as the highest 10-second 

mean value recorded during the incremental ramp test.  Additionally, the peak 

arteriovenous difference (a-vO2 diff) was calculated to estimate the balance between 

oxygen delivery and extraction by rearrangement of the Fick (1870a) equation: 

Peak a − vO2 difference =  
Peak V̇O2

Peak Q̇
  (12) 
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3.2.4 Muscle Deoxygenation Characteristics 

Muscle deoxygenation, utilised in Chapter 4, reflects the balance of oxygen delivery 

and extraction, potentially allowing for training, sex and maturational differences in 

the ability to match oxygen delivery to demand to be elucidated (Barstow, 2019; 

Boone et al., 2009; Eriksson, 1972; Eriksson, Gollnick, & Saltin, 1973; Gurley, Shang, 

& Yu, 2012). A plethora of techniques have been utilised to quantify muscle V̇O2 

(mV̇O2), at both rest and during exercise, including arterial-venous catheterisation 

(Gurley et al., 2012) and doppler ultrasound (Sako, Hamaoka, Higuchi, Kurosawa, & 

Katsumura, 2001). However, a major limitation with arterial-venous catheterisation is 

the reliance on highly invasive techniques. Moreover, catheterisation techniques only 

offer a regional overview of oxygen delivery and extraction as numerous muscles are 

often supplied via the specific artery/vein (Gurley et al., 2012). Thus, it is not possible 

to delineate microvascular level changes, which may be critical in furthering our 

understanding of the mechanisms underpinning changes in peak V̇O2 during growth 

and maturation. Similarly, whilst doppler ultrasound has the ability to penetrate deep 

into muscular tissue (Gurley et al., 2012; Sako et al., 2001), it is limited to detecting 

larger vessels, consequently providing little information on a microvascular level 

(Gurley et al., 2012). Therefore, catheterisation and doppler ultrasound were deemed 

inappropriate for paediatric populations given their inability to elucidate 

microvascular changes at specific muscle sites during exercise.  

One method of mV̇O2 assessment, which has been increasingly utilised over the last 

decade in paediatric exercise science due to being non-invasive and relatively 

inexpensive in comparison to other techniques, is near infrared spectroscopy (NIRS; 

Barstow, 2019; Breese et al., 2019; McNarry et al., 2015). NIRS can estimate mV̇O2 

by utilising near infrared light in the 700-900 nanometre (nm) wavelength, calculated 

using the diffusion approximation of the transport theory of light, expressed as: 

𝜑 =  𝜑0 exp (−
𝑥

𝛿
) , 𝜑 =  ∫ 𝐿 𝑑 ∩

4𝜋

0
  (13) 

where 𝜑 is the influence rate and is indicative of the flux of energy over a sphere 

divided by its cross-section (Stolik, Delgado, Pérez, & Anasagasti, 2000), x is the 
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distance from the light emitting surface, 𝛿 is the optical penetration depth, L is the 

radiance of the light (Stolik et al., 2000) and ∩ represents the solid angle. 

Subsequently, the use of this formula enables the detection of light-absorbing 

chromospheres in biological tissues (Barstow, 2019). NIRS can therefore provide 

valuable insights into the local microvasculature of muscles at rest, and during 

exercise, by using the Beer-Lambert Laws of light attenuation (equations 16 and 17). 

Moreover, in children and adolescents, NIRS has been demonstrated to have excellent 

intra- (ICC: 0.83 – 0.99, CV ≤ 9.8%; Leclair et al., 2010; Ryan et al., 2013) and inter-

day reliability (CV = 4.4%; Mantia, Neidert, & Kluess, 2018).  

Throughout the incremental ramp test protocol, muscle oxygenation was measured 

using a commercially available NIRS device (PortaMon, Artinis Medical Systems, 

Einsteinweg, Netherlands), placed on the m. vastus lateralis of the dominant leg, in 

accord with previous studies (Breese et al., 2019; McNarry et al., 2015). The m. vastus 

lateralis is the dominant muscle utilised during cycling (Kordi et al., 2020), thus more 

subtle changes in mV̇O2 may be evident than at other muscular sites. The NIRS device 

was secured to the leg using sports tape, with a black cloth placed over the NIRS 

device to attenuate the penetration of ambient light, thereby improving signal quality. 

Prior to the commencement of the incremental ramp protocol, the NIRS device was 

zeroed with the participant seated in a stationary position on the cycle ergometer. The 

intensity of incident and transmitted light was recorded at 10 Hz throughout the 

protocol, and was used to estimate the relative concentrations, compared to baseline, 

of oxygenated, deoxygenated and total haemoglobin (HHb).  

3.2.4.1 NIRS variables and data processing 

Under resting conditions, delivery of O2 to the muscle, and its relationship to mV̇O2, 

is described by integration of the Fick (1855, 1870a) equations of perfusive (equation 

14) and diffusive (equation 15) O2 delivery. 

𝑉̇𝑂2 = 𝐵̇ ∗ (𝐶𝑎 − 𝐶𝑣)𝑂2 (14) 

𝑉̇𝑂2 = 𝐷𝑂2 ∗ (𝑃𝑚𝑣𝑉𝑂2 −  𝑃𝑚𝑖𝑡𝑜𝑂2) (15) 

where 𝐵̇ is blood flow, Ca is the O2 concentration in the arteries, Cv is the 

concentration of O2 in the veins, DO2 is the diffusivity of O2, and PmvV̇O2 and PmitoO2 
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represent the partial pressure of O2 in the microvasculature and the mitochondria, 

respectively. Previous studies have suggested that NIRS devices can detect the three 

main light-absorbing chromospheres: haemoglobin (HHb), myoglobin (Mb) and 

cytochrome oxidase (cytoox; Balaban, Mootha, & Arai, 1996; Barstow, 2019). 

However, the concentration of [cytoox] is only thought to be approximately 5% the 

concentration of HHb and Mb and, therefore, its impact upon the NIRS signal is 

deemed negligible (Balaban et al., 1996). Moreover, both HHb and Mb contain iron, 

which influences the amount of light absorbed/reflected depending on their O2 content, 

consequently their relative concentrations cannot be distinguished, thus the NIRS 

signal is interpreted as a combination of HHb and Mb. The NIRS signal allows three 

main variables of interest to be determined, namely, the concentration of oxygenated 

haemoglobin and myoglobin (oxy[HHb+Mb]), deoxygenated haemoglobin and 

myoglobin (deoxy[HHb+Mb]) and total [HHb+Mb] (calculated as the sum of 

oxy[HHb+Mb] and deoxy[HHb+Mb]). When at rest with the m. vastus lateralis 

stationary, all light emitted by the NIRS device is either reflected back to the light 

emitting device or it is absorbed. This relationship can be described by the Beer-

Lambert Law of light attenuation:  

𝐴(𝑂𝐷) = log (
𝐼

𝐼0
) = ∈ ∗ [𝑐] ∗ 𝐿  (16) 

where A is light attenuation, I is the amount of emergent light, Io is the light source, ∈ 

is the specific extinction coefficient, [c] is concentration of chromospheres, and L is 

the distance the light has to travel. However, one critical limitation of the Beer-

Lambert law is the assumption that all light is contained, and no light is lost due to 

scattering. This is particularly important when measuring mV̇O2 during exercise as the 

muscle is constantly changing shape, length and width and thus light is scattered away 

from the source (Barstow, 2019; Ferreira, Koga, & Barstow, 2007). Subsequently, the 

Beer-Lambert Law was modified to account for situations where scattering occurs and 

is described as: 

𝐴 = log (
𝐼

𝐼0
) = ∈ ∗ [𝑐] ∗ 𝐿 ∗ 𝐷𝑃𝐹 + 𝐺 (17) 

with: 
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𝐷𝑃𝐹 =  
√3𝜇𝑠

√𝜇𝑎
  (18) 

where DPF is the differential pathlength factor, G is the amount of light lost due to 

scattering, µs is the scattering coefficient and µa is the absorption coefficient. The DPF 

of the PortaMon (Artinis Medical Systems, Einsteinweg, Netherlands) NIRS device 

was 4.00, allowing the infra-red light to penetrate ~3 millimetres below the surface of 

the skin.  

Prior to further analyses, the raw NIRS signal was averaged into five-second bins and 

then scaled from 0% (average of the three-minute warm up at 10 W) to 100% (the 

highest five second value achieved during the ramp test), in accord with previous 

studies (McNarry et al., 2015). The [HHb] response was modelled against absolute 

work rate (W), relative work rate (% of max power achieved during the ramp test), 

absolute V̇O2 (l⋅min-1) and relative V̇O2 (% of peak V̇O2; McNarry et al., 2015). In 

line with previous recommendations, the V̇O2 response was back-shifted by 20 

seconds to account for the lung to muscle transit time (McNarry et al., 2015). 

Subsequently, the profile of the % change (∆) in [HHb] was modelled using a 

sigmoidal function, as outlined in McNarry et al. (2015). The sigmoidal model was 

fitted using:  

𝑌 =
𝑎

(1+ 𝑒−(−𝑐+𝑑𝑥))
 (19) 

where a is the amplitude of the sigmoid function, c is a constant which is dependent 

upon the slope of the sigmoid function (d), where c/d yields the x value at which 50% 

of the amplitude is reached. Additionally, the plateau was also reported, which was 

defined as the x value at the lower 95% confidence limit of a (McNarry et al., 2015). 

A graphical representation of the sigmoidal response profile when expressed against 

absolute and relative work rate is shown in Figure 3.4.  
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3.2.5 Anaerobic Parameters 

The lack of a ‘gold-standard’ anaerobic measure has resulted in a plethora of anaerobic 

tests being utilised in paediatric populations, limiting inter-study comparisons due to 

the different performance outcomes they provide (Ingle & Tolfrey, 2013; Van Praagh, 

2000; Van Praagh & Doré, 2002). Athletic performance has been assessed using a 

variety of different jumping methodologies, namely vertical jumps (VJs), standing 

broad jumps (SBJs), squat jumps (SJs) and counter-movement jumps (CMJs; Doré et 

al., 2008; Ingle & Tolfrey, 2013). Whilst these jumping batteries have demonstrated 

high reliability (ICC: 0.93-0.95, CV: 4.0 – 5.3%; Fernandez-Santos, Ruiz, Cohen, 

Gonzalez-Montesinos, & Castro-Piñero, 2015; Ingle & Tolfrey, 2013), they only offer 

a snap-shot of short-term explosive muscular power, and their application to real-

world athletic performances is disputed. Indeed, only moderate correlations have been 

established between SBJ and VJ performance and 30 m sprint performance (r2 = 0.48) 

in 84 male adolescents (14 ± 1 years; Hammami, Makhlouf, Chtara, Padulo, & 

Chaouachi, 2015).  

The most cited measurement of anaerobic performance is the 30-second cycling 

Wingate (WnT) test which allows for the quantification of peak power (Ppeak), mean 

power (Pmean), and fatigue index (FI) over the test duration (Abbasian et al., 2011; 

Beneke, Hutler, & Leithauser, 2007; Naughton, Carlson, & Fairweather, 1992). The 

cycling WnT remains a popular method of anaerobic assessment due to the ability to 

account for differences in body mass, which is accumulated rapidly and differentially 

Figure 3.4 – Representative sigmoidal [HHb] responses when expressed against work rate (W; Left 

graph),and b) relative work rate (% Max) 

Relative work rate (% Max) 
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during puberty according to sex (Fellmann & Coudert, 1994b; Rogol et al., 2002). 

However, reliability and practical issues have been raised regarding the 

implementation of the WnT in children and adolescents (Doré et al., 2003; Hopkins et 

al., 2009; Hopkins, Schabort, & Hawley, 2001; Ingle & Tolfrey, 2013; Van Praagh & 

Doré, 2002; Watt et al., 2002). Specifically, the optimal flywheel resistance for peak 

power generation (Watt et al., 2002) and the applicability of the WnT to real-world 

sporting contexts remains debated (Chia, 2006). Perhaps the biggest limitation, 

however, is the large aerobic energy system contribution throughout the 30-second 

test. Indeed, Chia (2006) reported 73% and 67% of the total energy consumption to be 

derived from oxidative phosphorylation during the WnT in girls and boys, respectively 

and, therefore, the WnT’s ability to measure anaerobic performance remains debated.  

Given the associated limitations with jumping batteries and the cycling WnT, 

anaerobic performance was assessed in Chapter 5 using a 30 m sprint. Over-ground 

sprinting was chosen as the primary measure of anaerobic performance as it has been 

reported to be the most reliable anaerobic assessment method currently available (ICC: 

0.99, CV: 1.3%; Ingle & Tolfrey, 2013). Moreover, sprinting, with the use of 

biomechanical modelling, allows for quantification of power and force parameters, 

giving a more holistic measure of anaerobic performance, whilst retaining high 

ecological validity (Runacres et al., 2019a). Furthermore, the data collection methods 

are quick, easy, inexpensive, and can be conducted in field settings, thereby facilitating 

large cohort studies. Velocity was recorded using a STALKER ATS II (STALKER 

radar, Plano, Texas, USA) radar gun in Chapter 5, which measured velocity over the 

entirety of the sprint at 46.875 Hz. The radar gun was chosen over the more widely 

used photocells primarily due to the increased measurement resolution provided 

meaning that data did not have to be averaged over sections of, or the entire, sprint 

(Mendez-Villanueva et al., 2010; Meyers et al., 2015; Mujika et al., 2009; 

Papaiakovou et al., 2009). Instead, a near-instantaneous velocity-time curve was 

created from which power and velocity could be modelled.  

Prior to the undertaking of the maximal 30 m sprint, all participants completed a five-

minute warm-up, terminating with a 30 m sprint which simultaneously served as a 

familiarisation trial. All participants started from a two-point standing start to 

minimise vertical displacement during the early phase of the sprint and were instructed 
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to start sprinting using auditory cues (‘3….2…1…GO’). All participants completed 

two maximal sprints over a distance of 35 m, with at least two-minutes rest in between 

each sprint. The finish line was placed at 35 m to avoid premature deceleration at 30 

m, as utilised in previous studies (Meyers et al., 2015; Meyers et al., 2017a), enhancing 

the fit of the mono-exponential velocity-time curve.  

Radar technology has the ability to measure both inbound and outbound velocities, 

lending itself to potentially determine kinetic differences between repeated sprints, 

which could enhance our understanding of fatigue mechanisms during sprint running 

as explored in Chapter 7. Repeated sprint ability was assessed using a 5 x 20m shuttle 

sprint protocol, commonly used within the literature as part of talent identification test 

batteries (Philippaerts et al., 2006).Repeated sprints, irrespective of protocol, are 

deemed highly reliable (ICC: 0.98, CV: 0.7 - 2.7%; Oliver, Williams, & Armstrong, 

2006; Temfemo et al., 2011). The standardised five-minute warm-up used for the 

repeated sprint assessment (Chapter 7) mirrored that of Chapter 6, except it ended 

with 3 x 10 m sprints by means of a relative familiarisation trial. Participants were 

instructed to complete 5 x 20 m shuttle runs continuously, completing all repetitions 

without rest and at maximum effort. Whilst it could be argued that incorporating 

periods of rest between repeated sprints is more indicative of team sport performances 

(Mendez-Villanueva et al., 2010; Mujika et al., 2009; Philippaerts et al., 2006), the 

incorporation of rest periods allows for aerobic recovery, potentially questioning 

whether protocols of this type are wholly anaerobic. Although participants completed 

repeated shuttles over a distance of 20 m, velocity, power and force properties were 

only modelled over 15 m in each direction to minimise deceleration influencing the fit 

of the velocity-time curve. 

3.2.6 Force-velocity-Power Profiling 

The raw velocity data was analysed using the novel analysis method of Force-velocity-

Power (F-v-P) profiling which allows the computation of power (W) and force 

properties (N) from a basic velocity (vh) – time (t) trace and basic anthropometric 

measures of height (m) and body mass (kg; Samozino et al., 2016). F-v-P profiling 

was validated in the original study against force plate data (Samozino et al., 2016), 

currently the gold standard for assessing ground reaction forces and power complexes 
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during over-ground running, in nine elite sprinters (23.9 ± 3.4 years). The model 

demonstrated a high correlation for all variables (r2 ≥ 0.95; p > 0.01), with a small 

standard error of measurement (SEM; all variables ≤ 5%). It must be noted that the 

current biomechanical model has not been validated in children and adolescents, 

however, the validity of this measure should be maintained as it has been previously 

demonstrated that when a maximal acceleration is performed, the vH(t) curve follows 

a mono-exponential profile regardless of age or running proficiency (Morin et al., 

2011; Morin et al., 2006). One limitation which must be acknowledged is that the 

mono-exponential fitting of the vH(t) curve does not account for deceleration once 

peak velocity (vpeak) has been achieved. Therefore, techniques must be implemented 

to maintain a maximal sprint over the entire distance to ensure an accurate 

representation of the kinetics can be modelled, such as asking participants to sprint a 

longer distance than that over which the kinetic profiles are modelled (Meyers et al., 

2015; Runacres et al., 2019a). However, no study to date has compared the differences 

in reliability between different finishing line distances, so each trial was visually 

checked for deceleration before data processing commenced.  

Despite its strong theoretical validity underpinning F-v-P profiling, Simperingham et 

al. (2017) reported only moderate intra-day reliability in a group of recreationally 

active young adults (18.6 ± 0.6 years). This was postulated to be due to the lack of 

training specificity to block starts, with more competent athletes able to successfully 

replicate the co-ordination of a large number of degrees of freedom. This seems 

plausible as all variables derived from F-v-P profiling in trained and untrained children 

and adolescents (14.1 ± 2.6 years) were deemed highly reliable (ICC ≥ 0.75, CV ≤ 

10%) when sprint accelerations were performed from a two-point standing start 

(Runacres et al., 2019a). Therefore, this method was deemed appropriate given its high 

reliability and the ease of comparison between populations, potentially allowing a 

maturational and training effects to be identified.  

3.2.7 F-v-P Mathematical Modelling 

The raw velocity data was fitted with a mono-exponential curve to produce a smooth 

vh(t) curve expressed as:  

𝑣ℎ(𝑡) = 𝑣ℎ𝑚𝑎𝑥  ∙ (1 − 𝑒
−𝑡

𝜏 ) (20)  
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where vhmax is the maximal acceleration reached at the end of the acceleration and 𝜏 is 

the acceleration time constant (s). Following integration and differentiation of 

equation 20, the horizontal position (displacement, Xh(t)) and the acceleration (αh(t)) 

of the bodies centre of mass (COM) can be obtained using equations 21 and 22, 

respectively. One fundamental assumption associated with F-v-P profiling is that the 

velocity data is representative of COM motion, and that the human body can be 

modelled as a complete system represented by its COM. 

𝑋ℎ(𝑡) =  𝑉ℎ𝑚𝑎𝑥  ∙ (𝑡 +  τ ∙  𝑒−
𝑡

τ) − 𝑣ℎ𝑚𝑎𝑥  ∙  τ (21) 

αℎ(𝑡) = (
𝑣𝑚𝑎𝑥

τ
) ∙  𝑒−

𝑡

τ (22) 

When the fundamental laws of dynamics are applied, the antero-posterior ground 

reaction force (GRF) applied to the COM in the horizontal direction (Fh) can be 

modelled over time as:  

𝐹ℎ(𝑡) = 𝑚 ∙  αℎ(𝑡) + 𝐹𝑎𝑒𝑟𝑜(𝑡) (23) 

where m is body mass (kg) and Faero(t) is the aerodynamic drag the runner must 

overcome. Aerodynamic drag is directly proportional to the square of the air velocity 

relative to the participant: 

𝐹𝑎𝑒𝑟𝑜(𝑡) = 𝑘 ∙ (𝑣ℎ(𝑡) − 𝑣𝑤)2 (24) 

where vw is the wind velocity and k is the aerodynamic friction coefficient. This can 

be estimated from values of air density (p, kg∙m-3), the frontal area of the runner (Af, 

m-2) and a drag coefficient (Cd = 0.9; Samozino et al., 2016; van Ingen-Schenau, 

Jacobs, & de Koning, 1991): 

𝑘 = 0.5 ∙ 𝑝 ∙ 𝐴𝑓 ∙ 𝐶𝑑 (25) 

with  

𝑝 =  𝑝0  ∙  
𝑃𝑏

760
 ∙  

273

273+𝑇°
 (26) 

𝐴𝑓 = (0.2025 ∙  ℎ0.725  ∙  𝑚0.425) ∙ 0.266 (27) 

where p0 = 1.293 kg∙m-3 is the air density at 760 Torr and 273°K, Pb is the barometric 

pressure (in Torr), T° is the ambient air temperature in which the sprint took place (in 
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°C), h and m are the stature (m) and the body mass (kg) of the sprinter, respectively. 

Consequently, the power applied to the COM in the horizontal direction can be 

modelled as:  

𝑃ℎ =  𝐹ℎ  ∙ 𝑣ℎ (28) 

Given that all participants started sprinting using a standing start, the mean net vertical 

acceleration of the COM is quasi-null throughout the acceleration phase of the sprint 

(Morin et al., 2006). Therefore, if the fundamental laws of dynamics are applied, the 

average GRF in the vertical direction (Fv, N) can be modelled over time equal to body 

mass (Morin et al., 2006): 

𝐹𝑣(t) = 𝑚 ∙ 𝑔 (29) 

where g is gravitational acceleration (9.81 m∙s-1). The mechanical effectiveness of 

force application (DRF) of the runner can be quantified over the entire acceleration 

phase by the slope of the linear decrease in the ratio of forces (equation 30) with 

increasing velocity. 

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝐹𝑜𝑟𝑐𝑒𝑠 =  
𝐹𝐻

√(𝐹𝐻∙𝐹𝑣)2
 (30) 

To date, DRF values have been modelled for t > 0.3 seconds so only the second step 

onwards is analysed to remove the initial flight-time from push-off (Samozino, 

2018).It is pertinent to note that the 0.3 seconds was derived from block starts. Given 

that the participants within this thesis started from standing starts, t > 0.3 seconds may 

not be optimal but was adopted in the absence of evidence-based alternatives. A 

graphical schematic of the mono-exponential vh(t) curve from which the variables 

were calculated is shown in Figure 3.5. 
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In Chapter 6, vpeak (m∙s-1) was interpolated to 0.1s intervals then determined from the 

mono-exponential vH(t) curve, with mean velocity (vmean; m∙s-1) determined as the 

average velocity across the duration of the sprint defined as the point at which xh(t) 

first exceeded 30 m, which also provided the 30 m sprint time (30mT). All power 

variables were also interpolated to 0.1 second intervals and Ppeak (W) determined as 

the highest power output during the sprint, with the time at which Ppeak occurred 

determining the time to peak power (t_Ppeak; s). Mean power (Pmean; W) was 

determined as the average power output from the start of the vH(t) curve until 30mT 

was reached. Peak horizontal force (Fpeak; N) underwent the same interpolation as 

velocity and power, with Fpeak and Fmean denoting the highest and mean force 

production during the sprint, respectively. Fatigue rate (FR; W∙s-1) was calculated by 

averaging the power decline every second from Ppeak until 30mT. Relative peak power 

(R_Ppeak; W∙Kg-1), relative mean power (R_Pmean; W∙Kg-1) and relative peak horizontal 

force (R_Fpeak; N∙Kg-1) were obtained by dividing the values of Ppeak, Pmean and Fpeak 

by the participants body mass (kg). Finally, Ppeak and Fpeak were allometrically scaled 

by body mass using methods reported elsewhere and described above (Nevill et al., 

2006; Nevill et al., 1998). 

The repeated sprint data collected in Chapter 6 was split into five sections, with the 

end of each sprint determined as when xh(t) first exceeded 20 m. Subsequently, the 

start of each new sprint was assigned time 0 and the same procedures listed above 

Figure 3.5 – A graphical representation of the vh(t) curve modelled for each sprint repetition  
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employed to calculate all variables, with the exception that all variables were averaged 

from the sprint start until xh(t) = 15m, which also gave 15 m sprint time (15mT).  

3.2.8 Physical Activity Monitoring  

Habitual physical activity (PA) and sedentary time (SED) were assessed in Chapters 

4 and 5. The currently accepted ‘gold standard’ for habitual PA assessment is doubly 

labelled water which assesses energy expenditure engendered by bodily movements 

(Goran, Poehlman, & Danforth-Jr, 1994). However, the doubly labelled water 

technique was developed for use in adults (Goran et al., 1994) and has yet to be 

robustly validated in paediatric populations. Moreover, doubly labelled water uses 

radioactive isotopes, raising ethical concerns when working with paediatric 

populations (Plasqui & Westerterp, 2007), is very expensive, and limited to four days 

recording time (Goran et al., 1994). Much like subjective measures of PA assessment, 

doubly labelled water only offers a macroscopic overview of energy expenditure 

(Ottevaere et al., 2011; Plasqui & Westerterp, 2007), with no information provided 

regarding the pattern or composition of PA which could be crucial for performance 

and health (Carson et al., 2016; Chastin et al., 2015; Dumuid et al., 2018a). 

Accelerometers allow for second-by-second quantification of PA over a finite period, 

allowing for the exploration of differences in the composition, and pattern, of physical 

activity accrual between populations (Carson et al., 2016; Rowlands et al., 2018b). 

Whilst the optimal accelerometer wear location  is still debated, the wrist and hip 

placements are the most common (Fairclough et al., 2016; Herrmann, Barreira, Kang, 

& Ainsworth, 2014; Rich et al., 2013). Wrist-worn placements have been shown to 

increase overall wear-time compared to hip-mounted accelerometers (Fairclough et 

al., 2016; McLellan, Arthur, & Buchan, 2018; Scott et al., 2017). Conversely, hip-

worn accelerometers have been reported to offer superior accuracy in quantifying SED 

due to their ability to differentiate between sitting, lying and reclining positions (Lynch 

et al., 2019). Despite these differences, PA studies comparing wrist and hip wear 

locations have shown good agreement between sites (r2: 0.81 – 0.88; Fairclough et al., 

2016; McLellan et al., 2018; Scott et al., 2017) irrespective of intensity and total 

activity accumulated. Consequently, given the superior accuracy of hip-worn 
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accelerometers in quantifying SED, a hip-worn triaxial GT3X+ (ActiGraph, 

Pensacola, Florida, USA) was utilised to measure PA and ST levels.  

The ActiGraph GT3X+ accelerometer was initialised using ActiLife v6.13.4 

(ActiLife, ActiGraph, Pensacola, Florida, USA) at 100 Hz for seven consecutive days 

and nights to gather an indication of PA, SED, and sleep patterns. The start time for 

each accelerometer recording was set to midnight the day after the testing session to 

ensure start and end time standardisation between participants. Potential seasonal 

variation associated with accelerometery data collection (Carson & Spence, 2010) was 

accounted for by spreading the data collection periods for Chapters 4 and 5 were 

evenly throughout the year, for both athletes and controls. Consequently, all potential 

seasonal variation in PA and SED data was alleviated and accounted for within the 

subsequent analyses. Whilst it could be argued that a compensation effect following a 

vigorous exercise stimulus may be evident in PA behaviours (Goodman, Mackett, & 

Paskins, 2011), there is scant empirical evidence in children to support this notion. 

Nevertheless, all data on the first day was compared to the following six-days of 

accelerometery and removed from analyses if significantly less PA, and more SED, 

was evident in order to gain a representative overview of PA and SED levels. The 

significance of the data was tested using a repeated t-test of day one and the aggregate 

PA and SED levels of the remaining six days that met the wear-time criteria. Of the 

250 participants involved within Chapters 4 and 5 this happened on five occasions.  

A wear-time log was provided to participants along with the accelerometer, with 

participants asked to record the time, and reason why, they removed the monitor over 

the course of the seven-day measurement period on wear-time log. Accelerometers 

were collected after the seven-day recording and the raw data was then downloaded 

using ActiLife into one-second epochs and the wear-time determined. Wear-time is 

defined as the minimum amount of time participants are required to wear the monitor 

for to provide a representative insight of PA and SED on each day and across the week 

(Fairclough et al., 2016; Kristensen et al., 2010; Rowlands et al., 2018b; Scott et al., 

2017; Trost, Pate, Freedson, Sallis, & Taylor, 2000). Trost et al. (2000) suggested that 

only three days of habitual PA monitoring are needed to achieve an ICC of 0.80. 

Moreover, a wear-time of ≥ 8 hours⋅day-1 on any three recording days has 

demonstrated excellent reliability (ICC: 0.90; Couto et al., 2014; Herrmann et al., 
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2014; Rich et al., 2013) in large scale PA studies in children. Whilst it could be argued 

that a compensatory effect following a vigorous exercise stimulus may be evident in 

PA behaviours (Goodman, Mackett, & Paskins, 2011), there is scant empirical 

evidence in children to support this notion. Nevertheless, a repeated measures 

ANOVA was conducted to ascertain whether there were any significant differences in 

PA and SED between the first day, and all subsequent days. In the instances where 

this was present (7% of participants in Chapters 4 and 5), day one was removed and 

the wear-time criteria applied to the remaining six-days. As such, a wear-time criteria 

of ≥ 8 hours per day on any three-days was used, with non-wear time defined as any 

period ≥ 20 minutes of consecutive zeroes (Couto et al., 2014; Herrmann et al., 2014; 

Love, Adams, Atkin, & van Sluijs, 2019a). 

Cut-points are a means of classifying movement intensity that allow for the 

quantification of time spent in sleep, SED, light intensity PA (LPA), moderate 

intensity PA (MPA) and vigorous intensity PA (VPA; Trost, Loprinzi, Moore, & 

Pfeiffer, 2011). Despite the need for a consensus to ensure studies are comparable, 

there are currently multiple different cut-points for children and adolescents using hip-

worn accelerometers(Evenson, Catellier, Gill, Ondrak, & McMurray, 2008; Freedson, 

Pober, & Janz, 2005; Mattocks et al., 2007; Puyau, Adolph, Vohra, & Butte, 2002; 

Treuth et al., 2004). Trost et al. (2011) compared five of these cut-points against 

indirect calorimetry, concluding that only the Evenson cut-points (2008) displayed 

good agreement across all intensities, which have therefore been applied within this 

thesis. The Evenson cut-points are defined as: SED: ≤ 100 counts per 15 seconds;  

MPA: ≥ 2,296 counts per 15 seconds; and VPA: ≥ 4,012 counts per 15 seconds. LPA 

is defined as the time spent between the SED and MPA cut points. Sleep was identified 

using the Sadeh et al. (1994a) sleep algorithm which has been shown to be the most 

reliable and valid sleep algorithm for quantifying sleep from GT3X+ data in children 

and adolescents (Kinder et al., 2012). 
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3.3 Statistical Analyses  

3.3.1 Compositional Analysis of Physical Activity Data 

All compositional analyses, performed in Chapter 7, were conducted in R 

(https://cran.r-project.org/) using the compositions package (version 1.40-2) and its 

dependencies (Chastin et al., 2015). First, time in all PA behaviours was normalised 

into a proportion of the total time (1,440 minutes = 1 day), following which the 

geometric mean was calculated and the variation matrix determined (Carson et al., 

2016; Chastin et al., 2015). The variance matrix is a measure of distribution, derived 

by quantifying the variation between pair-wise log ratios (i.e. ln(LPA/MPA); Carson 

et al., 2016; Dumuid et al., 2018a). Values can range from -1 to 1, with the ratios 

tending towards 0 indicating high co-dependency (Carson et al., 2016; Chastin et al., 

2015). The composition model of the five components derived from the accelerometer 

data were then expressed in isolation and relative to all other behaviours using 

isometric log ratio (ILR) transformations (Dumuid et al., 2018a). Isometric log ratios 

were chosen over additive or centred log ratio approaches as the latter do not allow for 

the quantification of singular movement behaviours in relation to each other or for the 

assumption of independence between variables to be met, respectively (Dumuid et al., 

2018a). Therefore, ILR transformations were conducted according to the following 

formula:  

 

with rearrangement of the equation showing: 

𝑐1 =  √
𝐷−1

𝐷
𝑧1 

2
 (32) 

where D is the number of components, z a dimensional real vector, and x is the minutes 

per day spent in that behaviour (Dumuid et al., 2018a). Each ILR composition 

demonstrates the relative effect of a singular movement behaviour in relation to all 

other movement behaviours (Dumuid et al., 2018a). Moreover, the additional 

(31) 

https://cran.r-project.org/
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compositions (C2, C3, ……, Cn-1) contain no relative information about the previous 

composition (Dumuid et al., 2018a). Thus, all compositions can be considered 

independent and their individual associations, and influences, on outcome variables 

can be measured using multiple linear regression techniques (Chastin et al., 2015). The 

ILR multiple linear regression for n compositions can be expressed as: 

 

𝑖 = 1, 2, … … … … , 𝑛, where 𝑋𝑖 =  [𝑋𝑖1, 𝑋𝑖2, … … … … , 𝑋𝑖𝐷] 𝑤𝑖𝑡ℎ ∑ 𝑋𝑖𝑗
𝐷
𝑗=1 = 1  

𝑦𝑖 =  𝛽0 +  ∑ 𝛽𝑗
𝐷−1
𝑗=1 𝑧𝑖𝑗 + 𝜖𝑖 (33) 

where  

𝑍𝑖𝑗 =  √
𝐷−𝑗

𝐷−𝑗+1
ln (

𝑋𝑖𝑗

√∏𝑘=𝑗+1
𝐷𝐷−1

𝑋𝑖𝑘 
)  𝑓𝑜𝑟 𝑗 = 1, 2, … … … . . , 𝐷 − 1 (34) 

 

where β0 represents the intercept, with the regression coefficient (β1) representing the 

change in y (outcome variable) when the first ILR co-ordinate is changed, and the 

remaining co-ordinates kept constant to ensure that ∑ 𝑋𝑖𝑗
𝐷
𝑗=1 = 1 remains true 

(Dumuid et al., 2018a). Therefore, when this is applied to physical activity and sleep 

data, the five-part composition becomes:  

𝑖𝑙𝑟1 =  √
4

5
ln (

𝑆𝑙𝑒𝑒𝑝

√(𝑆𝐸𝐷,𝐿𝑃𝐴,𝑀𝑃𝐴,𝑉𝑃𝐴)4  ⋅  
1+𝑟

1−𝑠
)  

𝑖𝑙𝑟2 =  √
3

4
ln (

𝑆𝐸𝐷

√(𝐿𝑃𝐴,𝑀𝑃𝐴,𝑉𝑃𝐴)3  ⋅  
1−𝑠

1−𝑠
) ,  

𝑖𝑙𝑟3 = =  √
2

3
ln (

𝐿𝑃𝐴

√(𝑀𝑃𝐴,𝑉𝑃𝐴)2  ⋅  
1−𝑠

1−𝑠
)  

𝑖𝑙𝑟4 =  √
1

2
ln (

𝑀𝑃𝐴

𝑉𝑃𝐴
 ⋅  

1−𝑠

1−𝑠
) (35) 

However, the example in equation 35 only gives information for when sleep is the 

numerator on the first ILR co-ordinate, thus all models underwent sequential rotation 

to allow all movement behaviours to be expressed against all other movement 
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behaviours (Carson et al., 2016; Chastin et al., 2015; Dumuid et al., 2018a). All model 

coefficients were reported, with positive and negative coefficients indicating a positive 

or negative effect on the outcome variable (y) when time in that behaviour was 

increased (Dumuid et al., 2018a). Moreover, sex, maturity and training status were 

entered as covariates in each ILR model to account for differences in PA compositions 

between groups, improving the accuracy of the predictive models. The predicted 

change in the outcome variable of interest (∆ y) when the numerator of the first part 

of the composition (X1) increases (i.e. 10 minutes extra sleep) can be modelled using 

equations 36 and 37 when time spent in another movement behaviour is decreased by 

the same magnitude (i.e. 10 minutes less LPA). This is necessary to ensure that the 

finite whole (i.e. 1,440 minutes) is kept constant. 

∆ŷ =  𝛽1  ∙  √
𝐷−1

𝐷
 ∙ ln (

1+𝑟

1−𝑠
) (36) 

where  

−1 < 𝑟 <  
1− 𝑋1

𝑋1
 𝑎𝑛𝑑 𝑠 = 𝑟 ∙  

𝑋1

1− 𝑋1
 (37) 

where r is the magnitude of increase in the composition numerator and s is the 

magnitude of decline in subsequent denominators. Thus, compositional analysis 

allows for the absolute and percentage change in y to be determined when time is 

allocated to, and from, that behaviour and re-allocated to other physical activity 

behaviours or sleep. Change matrices were produced to illustrate the predictive 

changes in absolute and scaled peak V̇O2 when systematically re-allocating 10 minutes 

from one movement behaviour to all other movement behaviours (Carson et al., 2016; 

Chastin et al., 2015). All predictive changes were presented as percentage changes 

relative to the compositional mean, with significant changes defined as any change 

greater than the group-specific smallest worthwhile change (Hopkins, 2000; Hopkins 

et al., 2009), calculated as:  

𝑆𝑊𝐶(%) =
𝐺𝑟𝑜𝑢𝑝 𝑀𝑒𝑎𝑛

(0.2∗𝐺𝑟𝑜𝑢𝑝 𝑆𝐷)
 (38) 
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Chapter 4 (Study 1) – Effects of sex and training status on 

the cardiopulmonary responses and muscle deoxygenation 

kinetics during incremental exercise in children and 

adolescents 

 

4.1 Introduction  

In 2018, 48% of children and adolescents in Wales participated in extra-curricular 

sport three or more times a week, an increase of 4% compared to 2015 (Sport Wales, 

2018). The upward trend in sport participation is encouraging given the health benefits 

associated with exercise during childhood and adolescence (Armstrong, 2007; Eddolls 

et al., 2017; Imboden et al., 2018; Lemez & Baker, 2015). However, despite this 

widespread participation in sport, and the training associated with it, fundamental 

questions remain regarding the physiological responses to training in youth 

(Armstrong & McNarry, 2016). Indeed, one area that has received renewed interest 

over the last decade is the concept of a maturational threshold which suggests that 

pubertal children may experience an accelerated adaptation to training stimuli relative 

to their pre-pubertal counterparts, mediated by increases in circulating androgenic 

hormones (Katch, 1983). The existence of a maturational threshold remains highly 

debated (Armstrong & Welsman, 2019a; Armstrong & Welsman, 2019b; Cunha et al., 

2011; McNarry et al., 2014b; Runacres et al., 2019b), with suggestions that it may be 

dependent on the specific parameter in question (Van Praagh, 2000) or, possibly sex.  

Despite the research and practical interest in the influence of maturity on the training 

responses in youth (Armstrong, 2015, 2017; Doncaster et al., 2018; Rowland, 1997), 

few studies have considered the interaction of training with the concomitant effects of 

growth and maturation according to sex. Puberty is highly sexually dimorphic, with 

significant differences in the timing and tempo of maturity onset and hormonal milieus 

(Rogol, 2002; Rogol et al., 2002). Whilst no studies have specifically sought to 

compare the influence of training in boys and girls, marked differences were apparent 

in the early literature which suggested that, in contrast to boys (Baxter-Jones et al., 

1993; Cunningham et al., 1984; Kobayashi et al., 1978; Rowland et al., 1997b), 



 

 

 

92 

 

training was not associated with significant gains in pre-pubertal girls (Stoedefalke et 

al., 2000; Welsman et al., 1996; Welsman et al., 1997).  

More recent studies have suggested these findings are more likely to reflect 

methodological factors, such as differences in training and testing modalities and an 

insufficient training stimulus, rather than a physiological inability to respond to 

training (Armstrong, 2007, 2015; Massicotte & Macnab, 1974; McNarry & Jones, 

2014). Indeed, when peak V̇O2 is rigorously determined, studies report that girls 

experience a similar degree of trainability to their male counterparts (Armstrong & 

Welsman, 2019b; McNarry et al., 2014b; McNarry et al., 2011b). Specifically, 

McNarry et al. (2011b) found trained pre-pubertal girls to have a 17.5% greater peak 

V̇O2 than their untrained counterparts, with similar training differences in absolute 

peak V̇O2 in pubertal (21.5%) and post-pubertal (17.5%) adolescents. These observed 

improvements were proposed to be mediated by an increased gas exchange threshold 

(GET), an absence of a plateau in the stroke volume (SV) response and a rightward 

shift of the deoxygenated [HHb] response during ramp exercise (McNarry et al., 

2011b). Whether similar mechanisms are responsible for the training related increases 

in peak V̇O2 reported in boys largely remains to be established. Whilst morphological 

and functional myocardial adaptations have been reported in boys (Obert et al., 2003; 

Rowland et al., 1997a; Rowland & Unnithan, 2013; Vinet et al., 2003), no studies have 

investigated the influence of training on the peripheral oxygen extraction during 

incremental ramp exercise.  

Studies investigating the effect of sex on the development of peak V̇O2 suggest that 

sexual dimorphism is evident even in pre-pubertal children (Winsley et al., 2009). 

Specifically, when peak V̇O2 is normalised for body mass, pre-pubertal boys have 

been shown to have a 10-15% greater peak V̇O2 than girls (Armstrong & Welsman, 

2020c), which may be attributable to a higher oxygen delivery capacity mediated by a 

greater maximal stroke volume (SVmax) and, consequently, cardiac output (Q̇max). 

However, one of the key considerations when comparing boys and girls is the differing 

body compositions, with girls having a higher percentage body fat than boys from 10 

years of age (J. Wells, 2007), which questions the utility of ratio scaling by body mass 

(Tanner, 1949; Welsman & Armstrong, 2019). Nonetheless, even when pre-pubertal 

boys and girls are matched for lean body mass, boys are still reported to demonstrate 
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an ~15% higher peak V̇O2 (Winsley et al., 2009). Interestingly, Winsley et al. (2009) 

also reported no sex differences in SVmax, Qmax, or the structural properties of the 

myocardium, with a similar left ventricular mass and left ventricular end diastolic 

volume in both sexes. This therefore contradicts previous suggestions that the sex 

differences may be related to differences in oxygen delivery, with Winsley et al. 

(2009) suggesting that these sex differences may be attributable to sexual dimorphism 

in the ability to extract O2 at the working muscles. More specifically, a greater 

maximal arteriovenous difference (a-𝑣O2diff), an indicator of peripheral oxygen 

extraction, was observed in boys. However, the a-𝑣O2diff only offers a macroscopic 

overview of peripheral oxygen extraction in contrast to the microvasculature insights 

afforded by near infra-red spectroscopy (NIRS; Barstow, 2019). Nonetheless, these 

findings were corroborated by McNarry et al. (2015) who reported that the plateau of 

the deoxygenated haemoglobin ([HHb]) response during ramp exercise explained 

~12% of the variance in peak V̇O2 between sexes after accounting for fat free mass 

(FFM), the GET and body fatness. However, it is pertinent to note that the majority of 

the participants in both of these studies were pre-pubertal, precluding inferences as to 

the relative contribution of the oxygen delivery and extraction to potential sex 

differences in peak V̇O2 in pubertal and post-pubertal adolescents (McNarry et al., 

2015).  

Therefore, the aim of this study was to investigate the influence of training on the 

aerobic fitness of youth and whether this, or the mechanisms underpinning it, differ 

according to sex.  

 

4.2 Methods  

Ethics approval was granted by the institutional research ethics committee, with all 

research practices conforming to the Declaration of Helsinki. Written parent/guardian 

consent and participant assent were obtained, and a pre-screening medical 

questionnaire was completed prior to any testing. Participants were excluded if they 

had any known pre-existing cardiovascular, metabolic, kidney, or other condition that 

would prevent them from completing the experimental procedures.  
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Trained children and adolescents were recruited through the respective sport’s 

National Governing Body, with all of the trained children and adolescents’ part of a 

long-term athlete development programme for Hockey or Football. All trained 

participants completed an average of 10 ± 5 hours of training per week and had been 

training for at least two years prior to study entry. Untrained participants were 

recruited from local schools across south Wales and were not engaged in any formal 

sports. The final sample consisted of 187 participants, of which 108 were trained (43 

girls; age: 14.3 ± 1.8 years) and 79 were untrained (36 girls; age: 14.7 ± 1.7 years). 

4.2.1 Experimental Procedures  

All participants were required to attend the research labs at Swansea University Bay 

Campus once to complete the study. On arrival, blood pressure was recorded after five 

minutes of rest using an automated blood pressure monitor (Omron MX3, Milton 

Keynes, UK). Stature and sitting stature were then measured to the nearest 0.1 cm 

using a Holtain Stadiometer (Holtain, Crymych, Dyfed, UK), and body mass recorded 

to the nearest 0.1 kg using electronic scales (Seca 803, Seca, Chino, CA, USA). 

Maturity status was estimated using the equations of Mirwald et al. (2002b), with 

participants ≥ 1 year from, between -0.99 and 0.99 years from, and ≥ 1 years post peak 

height velocity classified as pre-, circa-  and post-pubertal, respectively.  

V̇O2max was assessed using an incremental ramp test to volitional exhaustion on a cycle 

ergometer (Lode Excalibur Sport, Groningen, Netherlands). Specifically, following a 

three-minute warm-up at 10 W, the resistance increased by 20 - 25 W⋅min-1, depending 

on the participant’s age. All participants were instructed to maintain a cadence of 60 

– 80 revolutions per minute (rpm) throughout the test, with volitional exhaustion 

defined as when participants could not maintain a cadence above 50 rpm, despite 

strong verbal encouragement. Inspired and expired air were collected on a breath-by-

breath basis using a Vyntus Metabolic Cart (VYAIRE medical Ltd, Mettawa, IL, 

USA), with beat-by-beat heart rate (HR), stroke volume (SV) and estimated cardiac 

output (Q̇) assessed using a thoracic bioelectrical impedance device (Physioflow, 

Paris, France). The six electrodes were placed according to the recommendations of 

Welsman et al. (2005), which has been demonstrated to provide accurate and reliable 

results during exercise in children. Finally, muscle deoxygenation was assessed 

throughout the exercise protocol using a portable near-infrared spectroscopy (NIRS) 
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device (PortaMon, Artinis Medical Systems, Einsteinweg, Netherlands), placed on the 

m. vastus lateralis of the dominant leg, as per previous studies (Breese et al., 2019; 

McNarry et al., 2015). The NIRS device was secured to the m. vastus lateralis using 

sports tape, with blackout cloths also used to prevent ambient light from distorting the 

NIRS signal. The NIRS device was zeroed whilst the participant was seated and 

relaxed on the cycle ergometer, prior to data acquisition. The Vyntus, PhysioFlow and 

Portamon were all calibrated in line with manufacturer instructions prior to each peak 

V̇O2 test. 

To verify a maximal effort during the incremental ramp test, all participants completed 

a supramaximal validation bout after 15 minutes of rest. This bout involved 

participants completing three minutes at 10 W before undergoing a near instantaneous 

transition to 105% of the peak power achieved during the incremental ramp test. 

Participants were instructed to maintain a cadence > 50 rpm for as long as possible, 

with gas exchange continuously measured. For the subsequent seven days, 

participant’s habitual physical activity was assessed at 100 Hz using a GT3X 

accelerometer (ActiGraph, Pensacola, Florida, USA) worn on the right hip. All 

participants were instructed to wear the accelerometer for 24 hours a day. Participants 

were also asked to complete a sleep log detailing periods of monitor removal, waking 

time, and bedtime. This aided with further analysis and minimised the 

misclassification of non-wear time as sedentary time (SED) or sleep.  

4.2.2 Data Analysis  

The raw V̇O2 data from the incremental ramp test and supramaximal validation bout 

were averaged into 10 s bins, with V̇O2max defined as the highest 10 s moving average 

during the incremental ramp test or the supramaximal validation bout. If there was ≤ 

2.5% difference between the two tests V̇O2max was deemed to have been reached. In 

instances where this was violated the highest 10 s V̇O2 recording was carried forward 

for analysis. To aid comparisons according to sex, maturity and training status, V̇O2max 

was allometrically scaled by body mass, using methods detailed elsewhere (Nevill et 

al., 2006; Nevill et al., 1998). Allometric scaling was chosen over the more commonly 

utilised ratio scaling, which has been consistently shown to penalise heavier, more 

mature children, thus creating spurious results (Welsman & Armstrong, 2019). The 

GET was determined using the V-slope method (Beaver et al., 1986) and defined as 
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the point at which carbon dioxide output (V̇CO2) rose disproportionally to V̇O2. The 

GET was expressed in absolute terms (l⋅min-1) and as a percentage of peak V̇O2. The 

kinetics of the initial V̇O2 response were quantified using the mean response time 

(MRT). This was determined as the time from the onset of the ramp forcing function 

to the intersection point of the baseline V̇O2 and a backwards extrapolation of the slope 

of V̇O2 as a function of time (Barstow et al., 1999). Finally, the O2 cost of exercise 

was quantified according to the gain, calculated as the average change in VO2 per W 

over the entire ramp forcing function (Barstow et al., 1999).  

The data obtained from the PhysioFlow were averaged into 15 s bins and maximum 

heart rate (HRmax), stroke volume (SVmax) and cardiac output (Q̇max) defined as the 

highest 15 s moving average throughout the incremental ramp test. SVmax and Q̇max 

were subsequently allometrically scaled to body surface area (BSA), estimated 

according to the predictive equations of Haycock et al. (1978). Additionally, to 

estimate the balance between O2 delivery and extraction, the peak a-vO2diff  was 

calculated by rearrangement of the Fick equation (Peak V̇O2 / Q̇max; Fick, 1870a). 

Prior to analysis, the NIRS-derived [HHb] was averaged into 5 s bins, baseline 

corrected and normalised to end-exercise values. A sigmoidal function was then used 

to ascertain the relationship between [HHb] and peak V̇O2 and work rate in both 

absolute and relative terms. A sigmoidal function was used to determine the [HHb] 

relationship with work rate and V̇O2 as it provided a superior fit compared to a double-

linear model, as reported previously (McNarry et al., 2015).  

The accelerometer data was downloaded into 15 s epochs using ActiLife (v6.13.4.0, 

ActiGraph, Pensacola, Florida, USA) to allow the Evenson (2008) cut-points to be 

applied which have been consistently demonstrated to accurately quantify sedentary 

time (SED) and moderate-to-vigorous physical activities (MVPA; Migueles et al., 

2017; Trost et al., 2011). Wear-time was set to > 8 hours⋅day-1 on any three days, 

shown to provide an accurate and reliable estimation of children’s physical activity 

(Herrmann et al., 2014; Rich et al., 2013), with non-wear time defined as > 20 minutes 

of consecutive zeroes.  
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4.2.3 Statistical Analyses  

All statistical analyses were conducted in SPSS (version 26, IBM, Portsmouth, UK), 

with values presented as mean ± SD. An ANCOVA, covarying for maturity status and 

physical activity level, was used to establish the effect of sex and training status, and 

any interactions. Cohens d was also calculated, with ≤ 0.20, ≥ 0.21 – ≤ 0.60, ≥ 0.61 – 

≤ 0.80, and ≥ 0.81 considered a trivial, moderate, large, and very large effect, 

respectively.  

 

4.3 Results  

Of the 187 participants, 169 reached V̇O2max during the incremental ramp test with the 

remaining 18 participants, evenly distributed across sex and training groups, achieving 

a higher V̇O2 value during the supramaximal validation bout, and excluded from 

subsequent analyses. The b exponent for allometrically scaling V̇O2max by body mass 

was 0.67 (95%CI: 0.65 – 0.69). There were no significant sex- or training-related 

differences in any anthropometric variable when accounting for maturity (Table 4.1). 

However, boys engaged in significantly more MVPA than girls, irrespective of 

training status (F(1,186) = 6.8, p > 0.05, d = 0.23), with no significant differences in 

SED.  

4.3.1 Influence of training status  

Trained children and adolescents had a higher V̇O2max than their untrained counterparts 

(F(1, 168) = 16.0, p < 0.01, d = 0.32), which persisted even after allometrically scaling 

V̇O2max for body mass (F(1,168) = 15.2, p < 0.01, d = 0.81; Table 4.2). Furthermore, 

trained athletes had a higher maximal power (F(1,168) = 26.4, p < 0.01, d = 0.25), SVmax 

(F(1,168) = 1.8, p < 0.05, d = 0.04) and Q̇max (F(1,168) = 2.4, p < 0.05, d = 0.01), and a 

faster MRT (F(1,168) = 7.9, p < 0.01, d = 0.83), than their untrained counterparts. 

Contrastingly, there was no significant difference in the absolute or relative GET, gain, 

HRmax, maximal a-𝑣O2diff  or allometrically scaled SVmax or Q̇max (all p > 0.05). 

Trained youth had a less steep [HHb] slope when expressed against absolute V̇O2 

(F(1,168) = 8.6, p < 0.01, d = 0.54). However, when expressed against work rate 

(absolute and relative) or relative V̇O2, no significant differences were evident (Table 

4.3). Trained children and adolescents had a higher c/d and plateau than untrained 
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children and adolescents, irrespective of whether [HHb] was expressed against 

absolute work rate (p < 0.01) or V̇O2 (p < 0.01). However, when [HHb] was expressed 

against relative V̇O2, these differences were ameliorated. Contrastingly, both the c/d 

and plateau remained higher in the trained than untrained participants when expressed 

against relative work rate (c/d: F(1,168) = 13.5, p < 0.01, d = 0.92; plateau: F(1,168) = 

14.3, p < 0.01, d = 0.30). 

4.3.2 Influence of sex  

Boys had a higher absolute (F(1,168) = 11.7, p < 0.01, d = 0.81) and allometrically scaled 

V̇O2max (F(1,168) = 9.4, p < 0.01, d = 1.09) and absolute GET (F(1,158) = 7.8, p < 0.01, d 

= 0.65; Table 4.2) than girls. However, when the GET was expressed relative to peak 

V̇O2, no sex difference was evident (p > 0.83). Boys were also characterised by a 

slower MRT (F(1,168) = 6.5, p < 0.01, d = 0.54), a greater gain (F(1,168) = 5.7, p < 0.01, 

d = 0.55), peak power (F(1,168) = 5.2, p < 0.05, d = 0.28) and maximal a-𝑣O2diff  (F(1,168) 

= 4.6, p < 0.05, d = 0.65). However, no sex differences were found for either absolute 

or scaled Q̇max (p > 0.45), SVmax (p > 0.22), or HRmax (p > 0.24). 

When [HHb] was expressed against absolute V̇O2, boys had a higher c/d (F(1,168) = 4.3, 

p < 0.05, d = 0.55) and plateau (F(1,168) = 4.9, p < 0.05, d = 0.44). However, when 

[HHb] was a function of relative V̇O2, no sex differences were found (Table 4.3). 

Similarly, when [HHb] was expressed against absolute work rate, boys had a higher 

c/d (F(1,168) = 2.9, p < 0.05, d = 0.33) and plateau (F(1,158) = 2.8, p < 0.05, d = 0.19) 

compared to girls, but no differences were evident when [HHb] was expressed against 

relative work rate. There were no significant differences in the amplitude or slope of 

the [HHb] response expressed against any variable between boys and girls. 

4.3.3 Interaction effects  

Significant sex and training interactions were found for allometrically scaled V̇O2max 

(F(1,168) = 8.0, p < 0.01), SVmax (F(1,168) = 2.9, p < 0.05) and Q̇max (F(1,168) = 5.4, p < 

0.05). More specifically, there was a greater difference between trained and untrained 

boys than girls for allometrically scaled V̇O2max (18.4% vs 6.9%). Contrastingly, there 

was a greater difference between trained and untrained girls than observed in boys for 

SVmax (20.0% vs 9.3%) and Q̇max (13.5% vs 9.0%). None of the haemodynamic 

interaction effects persisted when allometrically scaled variables were considered. A 
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significant sex and training interaction was evident when [HHb] was expressed against 

absolute V̇O2, with a greater difference was found in the c/d (20.6% vs 44.8%) and 

plateau (11.4% vs 15.9%) of trained and untrained girls than boys, respectively. 

However, when expressed against relative V̇O2 no interaction effects persisted. 

 

Table 4.1 – Descriptive characteristics  

 Trained (n = 90) Untrained (n = 79) 

 

 

Boys (n = 47) Girls (n = 43) Boys (n = 43) Girls (n = 36) 

Age (years) 

 

14.2 ± 1.9 14.4 ± 1.7 14.8 ± 1.4 14.8 ± 1.4 

Height (m) 

 

1.64 ± 0.15 1.62 ± 0.09 1.68 ± 0.11 1.61 ± 0.08 

Weight (kg) 

 

52.4 ± 12.9 53.2 ± 9.3 60.0 ± 12.4 54.3 ± 10.4 

BMI (kg⋅m-2) 

 

19.3 ± 2.4 20.2 ± 2.2 21.0 ± 3.4 20.6 ± 2.9 

Maturity Offset (years) 

 

0.21 ± 1.78 0.54 ± 1.22 0.63 ± 1.31  0.61 ± 1.38 

MVPA (mins⋅day-1) 58.6 ± 24.4 48.2 ± 19.0* 50.1 ± 13.0 42.6 ± 12.8* 

 

SED (mins⋅day-1) 

 

 

554.3 ± 88.6 

 

541.3 ± 74.4 

 

561.3 ± 78.0 

 

578.0 ± 105.4 

All values are presented as mean ± SD, BMI = Body Mass Index, MVPA = Moderate-to-Vigorous 

Physical Activity, SED = Sedentary Time. * Indicates a significant difference compared to boys 



 

 

 

100 

 

Table 4.2 - Pulmonary gas exchange and hemodynamic responses to incremental ramp exercise according to training status and sex 

 

 

Trained  Untrained  

 

 

Boys  Girls Boys  Girls 

Peak V̇O2 (l⋅min-1) 

 

2.64 ± 0.70*# 2.11 ± 0.40* 2.39 ± 0.50# 1.90 ± 0.52 

Allometrically Scaled Peak V̇O2 

(ml⋅kg-b⋅min-1) 

 

192.2 ± 28.6*# 152.5 ± 23.5* 162.3 ± 30.2# 142.6 ± 36.5 

GET (l⋅min-1) 

 

1.55 ± 0.49#  1.25 ± 0.26 1.43 ± 0.34# 1.25 ± 0.36 

Relative GET (% V̇̇O2 peak) 

 

 59.4 ± 10.3 60.2 ± 10.8 60.4 ± 11.7 64.0 ± 12.5 

MRT (s) 

 

32.9 ± 16.2*# 30.7 ± 16.8* 37.3 ± 14.3# 33.8 ± 14.5 

Gain (ml⋅min-1⋅W-1) 

 

8.8 ± 2.1# 7.6 ± 1.5 8.7 ± 2.2# 7.8 ± 1.9 

Peak Power (W) 

 

219 ± 66*# 205 ± 43* 200 ± 45# 181 ± 43 

Cardiac Variables  

HRmax (beats⋅min-1) 

 

199 ± 11 194 ± 11 193 ± 13 192 ± 13 

SVmax (ml) 

 

134.5 ± 53.9*#  130.1 ± 35.3* 123.0 ± 47.4# 108.4 ± 29.3 

Allometrically Scaled SVmax  

(ml⋅m-b) 

 

74.9 ± 26.9 72.6 ± 22.2 73.8 ± 22.2 71.9 ± 19.8 

Q̇max (l⋅min-1) 

 

21.9 ± 8.5* 20.5 ± 6.6* 19.3 ± 6.8 18.8 ± 5.1 

Allometrically Scaled Q̇max  

(l⋅m-b⋅min-1) 

 

12.5 ± 4.0 12.0 ± 4.2 12.3 ± 3.6 11.8 ± 3.9 

a-𝑣O2 diff (ml⋅dl-1) 

 

14.6 ± 6.7# 10.3 ± 2.4 12.9 ± 4.7# 10.8 ± 2.6 

GET = Gas Exchange Threshold, MRT = Mean Response Time, HRmax = Maximum Heart Rate, SVmax = Maximum Stroke Volume, Q̇max = Maximum Cardiac 

Output, a-𝑣O2 diff = arteriovenous difference. All values presented as mean ± SD, * Indicates a significant difference between training groups within a sex. # Indicates 

a significant difference between sexes within a training group. 
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Table 4.3 – Muscle deoxygenation variables from the incremental ramp exercise according to training status and sex 

  Trained Untrained 

  Boys Girls Boys Girls 

[HHb] vs 

absolute V̇O2 

 

a (%) 95.9 ± 10.6 97.9 ± 9.5 94.8 ± 6.8 95.0 ± 8.6 

d 2.80 ± 1.50* 2.67 ± 1.55* 3.28 ± 2.45 4.10 ± 3.56 

c/d 1.58 ± 0.49*# 1.39 ± 0.45* 1.31 ± 0.58 0.96 ± 0.42 

Plateau 2.05 ± 0.44*# 1.68 ± 0.56* 1.84 ± 0.50 1.45 ± 0.34 

[HHb] vs relative 

V̇O2 

(% Peak V̇O2) 

a (%) 95.9 ± 10.6 97.9 ± 29.5 94.8 ± 6.8 95.0 ± 8.6 

d 0.07 ± 0.05 0.05 ± 0.03 0.09 ± 0.07 0.06 ± 0.05 

c/d 63.4 ± 15.5 58.4 ± 9.4 54.8 ± 19.0 46.0 ± 13.7 

Plateau 78.1 ± 12.6 71.4 ± 15.5 76.9 ± 16.9 74.9 ± 18.0 

 

[HHb] vs Watts 

(W) 

a (%) 98.5 ± 36.7 95.4 ± 30.2 94.9 ± 11.6 93.6 ± 15.4 

d 0.02 ± 0.02* 0.02 ± 0.01* 0.01 ± 0.01 0.03 ± 0.01 

c/d 100 ± 29*# 91 ± 25* 81 ± 41 70 ± 30 

Plateau 162 ± 64*# 151 ± 63* 131 ± 53 110 ± 31 

 

[HHb] vs Watts  

(% Peak Power) 

a (%) 98.5 ± 36.7 95.4 ± 30.2 94.9 ± 11.6 93.6 ± 15.4 

d 0.03 ± 0.02 0.04 ± 0.02  0.02 ± 0.01 0.04 ± 0.03 

c/d 49.8 ± 17.2 47.8 ± 16.8 36.5 ± 17.0 40.0 ± 16.8 

Plateau 80.8 ± 16.4* 70.6 ± 19.7* 68.8 ± 22.0 60.7 ± 20.3 

[HHb] = concentration of haemoglobin, a = sigmoidal amplitude, d = sigmoidal slope, c/d = Value at the mid-point of the sigmoidal response, Plateau 

= Value at the lower 95% confidence interval of the amplitude. All values presented as mean ± SD, * Indicates a significant difference between trained 

and untrained within a sex. # Indicates a significant sex difference within the same training group. 
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4.4 Discussion  

The primary aim of this study was to explore the role of sex in determining the effect 

of training on V̇O2max, haemodynamic variables and oxygen extraction parameters, 

accounting for maturity. The key finding was that the influence of training during 

youth was dependent on sex, with greater training-related differences in allometrically 

scaled V̇O2max of girls compared to their male counterparts. Despite this increased 

magnitude of training-related differences, boys still demonstrated a greater absolute, 

and scaled, V̇O2max than girls, irrespective of training status. The mechanisms 

underpinning this greater aerobic capacity in boys appear to be related to differences 

in oxygen extraction, as there was no difference between any haemodynamic (SVmax 

and Q̇max) response to exercise according to training status once normalised to account 

for body size. However, boys had a significantly higher [HHb] plateau when expressed 

against absolute V̇O2 and work rate although these sex differences were ameliorated 

when expressed as a function of relative V̇O2 and work rate. This therefore suggests 

that boys and girls have similar levels of oxygen extraction for the same relative sub-

maximal work rate and V̇O2. These findings therefore provide novel insights into the 

comparative trainability of youth according to sex which should be considered in long-

term athlete development plans. 

Training is associated with a significantly higher V̇O2max in youth, irrespective of 

maturity status, and therefore represents a potent stimulus to aerobic fitness 

(Armstrong, 2015; Baquet et al., 2003; Cao et al., 2019; McNarry et al., 2014b; 

McNarry et al., 2011b). In accord with previous studies (Cunha et al., 2011; Cunha et 

al., 2016; McNarry et al., 2014b; McNarry et al., 2011b). Whilst the difference in 

V̇O2max between the training groups is smaller than observed in many training studies 

(Armstrong, 2015; Cunha et al., 2011; McNarry et al., 2015; Sperlich et al., 2010), the 

V̇O2max values of the untrained group are similar to normative data reported elsewhere 

for youth in the United Kingdom (Armstrong & Welsman, 2019b; Armstrong, 

Williams, Balding, Gentle, & Kirby, 1991b). More specifically, Armstrong et al. 

(1991b) reported male adolescents (13.9 ± 0.3 years) with no formal exercise training 

had a V̇O2max of 2.26 ± 0.59 l⋅min-1, with adolescent girls (14.0 ± 0.3 years) achieved 

a V̇O2max of  1.78 ± 0.29 l⋅min-1, similar to the untrained values in the present study 

(boys: 2.39 ± 0.50 l⋅min-1; girls: 1.90 ± 0.52 l⋅min-1). Whilst the VO2max values in the 
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present study are slightly higher than those reported by Armstrong et al. (1991b) it is 

worth noting that no supramaximal validation bout was performed and so the 

discontinuous incremental ramp protocol used may have underestimated participants 

‘true’ V̇O2max. Given the similarities to previous untrained children and adolescents, 

the results of this study should be interpreted as a reflection of the effect of sex in 

moderately trained athletes, as oppose to elite level junior athletes.  

The present study refutes suggestions that there may be a maturational threshold below 

which significant responses to training stimuli do not occur (Katch, 1983). However, 

it is pertinent to note that some studies have failed to find a significant influence of 

training in pre-pubertal children (Stoedefalke et al., 2000; Welsman et al., 1996; 

Welsman et al., 1997; Williams et al., 2000). Whilst these contradictory findings are 

likely attributable to methodological factors, such as a lack of adequate training 

stimulus (Stoedefalke et al., 2000; Welsman et al., 1996; Welsman et al., 1997) or 

inappropriate testing modalities for a given training type (Stoedefalke et al., 2000), the 

contradictory findings may also be related to the influence of sex. Indeed, the majority 

of early studies reporting no training effects were in girls (Stoedefalke et al., 2000; 

Welsman et al., 1996; Welsman et al., 1997), with a paucity of studies available 

directly comparing the trainability of pre-pubertal boys and girls, precluding further 

interpretations. In the current study, a significant training and sex interaction was 

observed for allometrically scaled V̇O2max, suggesting that girls may display a greater 

magnitude of change in response to a training stimulus compared to boys. This could 

be due to girls lower baseline fitness levels as higher initial levels are known to 

attenuate the response to training (McNarry & Jones, 2014). However, this seems 

unlikely to fully explain such an interaction given the habitually trained nature of these 

participants and differences in physical activity levels were covaried for in all 

analyses.  

In the current study, boys had a significantly higher V̇O2max compared to girls (20.2%), 

even after allometrically scaling for body mass (16.8%). These findings are congruent 

with previous research in which boys of varying training statuses had a 12.8 – 22.5% 

higher peak V̇O2 whether expressed in absolute terms (Bitar et al., 2000; Winsley et 

al., 2009) or allometrically scaled to body mass (Rowland, 1997; Winsley et al., 2009). 

The mechanisms underpinning these sex differences in peak V̇O2 still remain to be 
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fully elucidated (Armstrong & Welsman, 2019b). Specifically, Rowland et al. (2000a) 

and Vinet et al. (2003) found a higher SVmax when quantified by Doppler 

echocardiography in boys, whereas, in accord with the current study, Winsley et al. 

(2009) reported no significant differences in SVmax or Q̇max when assessed using 

bioelectrical thoracic impedance in pre-pubertal children matched for lean body mass. 

Furthermore, there was no difference in the SV response profile between any group in 

the present study. Such findings corroborate those of Obert et al. (2003) and Nottin et 

al. (2002), but contradict those of McNarry et al. (2014b) and may reflect the lower 

training volume and history of the present participants compared to those in McNarry 

et al. (2014b) and Rowland et al. (2000b). Alternatively, they may also be attributable 

a greater change in the peripheral vasculature, as opposed to central oxygen delivery, 

in response to training, as suggested by Obert et al. (2003). 

Extending the findings of Winsley et al. (2009), the present study suggests that 

changes in oxygen extraction may be more important to the development of peak V̇O2 

and the sexual dimorphism demonstrated. In accord with this conclusion, McNarry et 

al. (2015) reported sex differences in muscle deoxygenation kinetics, with pre-pubertal 

girls demonstrating a greater rate of change in the [HHb] response compared to boys. 

The results of the current study corroborate these results and extend them across the 

maturational range, with boys, irrespective of training, demonstrating a higher c/d and 

plateau when [HHb] was expressed against absolute V̇O2 or work rate. These observed 

sex differences may be related to a lower muscle oxidative capacity in girls or to a 

lower ability to redistribute blood to the metabolically active myocytes at working 

muscles (Barstow, 2019; Boone et al., 2009; Harper, Ferreira, Lutjemeier, Townsend, 

& Barstow, 2006). More specifically, research has reported that a greater proportion 

of blood flow in women is directed to the respiratory muscles (Smith, Hageman, 

Harms, Poole, & Musch, 2017). Moreover, women have been reported to have a higher 

cost of breathing compared to men and consequently may have less of a reserve to 

redistribute blood, and subsequently oxygen, to the peripheral vasculature (Smith et 

al., 2017), but there is scant research investigating whether this is also true in children. 

Despite sex differences in the [HHb] response when expressed against absolute work 

rate and V̇O2, when the [HHb] response was expressed against relative V̇O2 or work 

rate, the sex difference was ameliorated. This therefore suggests that for the same 
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relative sub-maximal work rate, boys and girls have a similar response pattern 

(Barstow, 2019; Boone et al., 2009), but the normalisation of V̇O2 and work rate to 

peak values does not necessarily indicate boys and girls experience the same relative 

intensity of exercise. Indeed, the intensity of exercise is dependent upon the GET and 

critical power thresholds (Anderson & Mahon, 2007; Beaver et al., 1986; Mahon & 

Cheatham, 2002), which should be considered in future work. Nevertheless, given the 

similarity in the GET between boys and girls, irrespective of training status, this study 

tentatively suggests that oxygen extraction capacity at sub-maximal intensities 

remains similar throughout maturity in boys and girls. Therefore, further research is 

required to determine the mechanistic basis for the sex differences in peak V̇O2. 

Few studies have considered the effect of sex, or its interaction with training, on the 

sub-maximal parameters of aerobic fitness, with the exception of the GET for which 

evidence consistently reports that, when normalised to peak V̇O2, no sex differences 

are manifest (Mahon & Cheatham, 2002; McNarry et al., 2011b; Obert et al., 2000; 

Reybrouck, Weymans, Stijns, Knops, & Van der Hauwaert, 1985). Given the sex 

differences evident in peak V̇O2, the absence of sex-related differences in the GET is 

interesting and suggests that the mechanisms for the greater peak V̇O2 in boys are 

unrelated to those that determine the GET. The current findings that the GET was not 

affected by training status agree with the findings of McNarry et al. (2011b) who 

similarly reported that the relative GET was similar during lower body exercise 

irrespective of maturity status. Similarly, the MRT of the trained participants was 

significantly faster than their untrained counterparts in accordance with the majority 

of evidence available regarding the influence of training on the dynamic V̇O2 response 

to constant work rate exercise (Breese et al., 2019; Breese et al., 2010; Marwood et 

al., 2010; Willcocks et al., 2010), although it is pertinent to note that the V̇O2 response 

to incremental ramp and constant work rate exercise, and its determinants, could be 

dissociated. Whilst the mechanistic basis of training related adaptations on V̇O2 

kinetics remain largely to be resolved (McNarry, 2019) purported mechanisms include 

a faster O2 delivery (Marwood et al., 2010) and an increased muscular oxidative 

enzyme and mitochondrial volume (Eriksson, 1980; McNarry, 2019). 

The similar gain in the trained youth is however counter-intuitive, with previous 

studies in adults suggesting that the proportion of type I fibres and possibly fitness are 
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associated with a greater gain (Barstow et al. 1999). It is therefore interesting to note 

the greater gain reported in the boys in the current study irrespective of training status, 

compared to girls. This finding is in accord with the suggestions of van Praagh et al. 

(2000) and Doré et al. (2005) that boys are generally characterised by a greater 

proportion of type I muscle fibres. Given the discordance in the present training and 

testing modality, the discrepant findings with regard to the influence of training on the 

submaximal parameters of aerobic fitness may also be methodological, rather than 

physiological, but further research is needed before further conclusions can be drawn. 

Whilst there are strengths associated with the present study, including a large sample 

of trained and untrained children and adolescents, the attainment of a true V̇O2max, and 

the use of appropriate scaling techniques, there are some limitations that must be 

acknowledged. First, given the sex differences in body composition, more insight may 

have been gained by scaling by fat free mass or lean body mass. Further, all trained 

children and adolescents were part of similar training regimes, namely football and 

hockey, precluding any inferences being drawn regarding the effect of different 

training types on the magnitude of responses. Additionally, the interpretation of the 

[HHb] signal has specific methodological limitations, including the generalisability of 

response dynamics from a singular localised area to the whole muscle (Barstow, 

2019), and variations in adiposity between boys and girls possibly contributing to 

signal differences (Gurley et al., 2012; La Mantia et al., 2018). Moreover, whilst 

research has suggested that a seven-day measurement period is indicative of children 

and adolescents habitual physical activity levels, others have suggested they may not 

reflect habitual physical levels appropriately (Trost et al. 2015) and therefore these 

results should be interpreted with caution. Finally, not splitting sex and training groups 

by maturity precludes inferences as to whether the observed differences are consistent 

across maturity, or whether there are periods of divergence.  

In conclusion, boys had a greater peak V̇O2 than girls, irrespective of training status, 

which does not appear to be related to differences in oxygen delivery as SVmax and 

Q̇max were similar between sexes when appropriately normalised to body surface area. 

This study indicates that the sex and training differences in peak V̇O2 may rather be 

due to an enhanced oxygen extraction at the working muscles in boys, irrespective of 

training status. Future research should seek to establish sex differences across 
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individual maturational stages, and investigate the potential mechanisms underpinning 

peak V̇O2 development in youth.  
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Chapter 5 (Study 2) - The combined associations of physical 

activity, sedentary time and sleep on V̇O2max in trained and 

untrained children and adolescents: A novel five-part 

compositional analysis approach 

 

5.1 Introduction 

Poor maximal oxygen uptake (V̇O2max) has been associated with an increased risk of 

cardiovascular and metabolic disease, leading to an increased likelihood of premature 

mortality across the lifespan (Hallal et al., 2012; Laukkanen et al., 2016; Lee et al., 

1995; Paffenbarger & Lee, 1998). V̇O2max, defined as the highest rate of oxygen 

consumption despite further increases in work rate (Hill & Lupton, 1923), is also key 

to athletic performance, with youth athletes consistently reported to have a greater 

V̇O2max than their untrained counterparts (Armstrong, 2017; Carazo-Vargas & 

Moncada-Jiménez, 2015; McNarry et al., 2014b; McNarry, Welshman, & Jones, 

2011a). Whilst training is well-established to improve V̇O2max in youth athletes 

(Armstrong, 2015; Armstrong & Barker, 2011; Baquet et al., 2003; Carazo-Vargas & 

Moncada-Jiménez, 2015), what remains less clear is the influence of habitual physical 

activity (PA) and sedentary time (SED) on V̇O2max. More specifically, some studies 

have reported a significant association between PA and V̇O2max (Dencker & Andersen, 

2011; Dencker et al., 2007; Dencker et al., 2006; Gutin et al., 2005; Latt et al., 2013), 

whereas others argue that children and adolescents rarely experience PA of a sufficient 

duration and intensity to significantly influence V̇O2max (Armstrong et al., 2011; 

Armstrong & Welsman, 2019d).  

Moderate-to-vigorous PA (MVPA) is perhaps the most widely used PA metric in 

children and adolescents (Carson et al., 2019; Chastin et al., 2015; Ekelund et al., 

2001; Lynch et al., 2019). However, combining MPA and VPA may potentially mask 

the importance of the intensity of physical activity for improving V̇O2max. Indeed, 

training studies consistently show that significant improvements in absolute, and 

allometrically scaled, V̇O2max only occur when the intensity is sufficiently vigorous 

(Baquet et al., 2003; Cao et al., 2019; Milanović et al., 2015), with Gutin et al. (2005) 

reporting a stronger association between VPA and V̇O2max (r
2 = 0.43, p < 0.01) than 
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MPA (r2 = 0.30, p < 0.01) in adolescents. These findings have subsequently been 

corroborated by both Dencker et al. (2006) and Latt et al. (2013) who reported that the 

amount of time spent in VPA explained 9.0 – 15.8% of the variance in V̇O2max in 

children and adolescents. However, the use of ratio scaling to account for the effect of 

body mass on V̇O2max in these earlier studies largely precludes meaningful 

interpretations, especially with regard to the influence of maturity and/or sex, given 

the consistent evidence that ratio scaling V̇O2max penalises heavier, more mature, 

individuals (Nevill et al., 2006; Tanner, 1949; Welsman & Armstrong, 2019). 

Additionally, the reliance on correlational statistics, which cannot infer causality 

(Hopkins et al., 2009; Pearson, 1896), and the use of predictive linear regressions, 

which assume independence between variables (Chastin et al., 2015), are 

inappropriate to account for the constrained and co-dependent nature of PA data, 

potentially creating spurious associations.  

Compositional analysis allows all movement behaviours to be expressed as a 

proportion of a finite period, enabling the individual, and combined, effects of 

movement behaviours on outcome variables to be established (Carson et al., 2016; 

Carson et al., 2019; Chastin et al., 2015). Thus, compositional analysis could provide 

novel insights into the influence of movement behaviour intensity and volume on peak 

V̇O2. Carson et al. (2016) found that the overall PA composition explained ~38% of 

the variance in the V̇O2max of 4,169 Canadian children and adolescents (8 – 17 years). 

Despite this, when 10 minutes of time was allocated to, or removed from, MVPA, 

there was a negligible effect on V̇O2max, with predicted changes ranging from 0.03% - 

0.05% (Carson et al., 2016). These insignificant changes in aerobic fitness could be 

attributed to the independent effect of SED, highlighting the need for an integrated, as 

opposed to segregated, approach to fully examine the relationship between PA, SED 

and V̇O2max (Carson et al., 2016). However, whilst Carson et al. (2016) provided the 

first insights using a compositional approach to the relationship between PA and 

V̇O2max, certain methodological limitations mean further research is warranted to 

establish the relationship between PA and V̇O2max. Specifically, the estimation of 

V̇O2max from a field-based test which is likely to misrepresent true cardiorespiratory 

fitness (Armstrong & Welsman, 2020b), the pooling of data from boys and girls 

despite the well-established physiological differences (Armstrong, 2007; Bitar et al., 
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2000; Rogol, 2002), and the failure to account for maturity or training status 

differences between participants limit the interpretation of these earlier results.  

Therefore, the aim of this study was to examine the independent, and interactive, 

effects of the five movement behaviours on V̇O2max. The second aim was to explore 

the effect of baseline fitness, sex, and maturity on the predicted changes in V̇O2max 

elicited by changing PA compositions. 

 

5.2 Methods  

Ethics approval was granted by the institutional research ethics committee prior to the 

commencement of data collection and the study conformed to the Declaration of 

Helsinki. Before participants were accepted into the study, written informed parental 

consent and participant assent were obtained, along with all parents completing a pre-

screening medical questionnaire on behalf of their child. Participants were excluded if 

they had known cardiovascular, metabolic, kidney, or any other disease that meant 

they would not have been able to complete the exercise protocol. The trained children 

and adolescents were all national level athletes who were part of a long-term athlete 

development (LTAD) program overseen by the national governing body (NGB) of 

their sport (Hockey, Football and Gymnastics). Untrained participants were recruited 

from local schools across South Wales and were not formally engaged in sport training 

outside of curricular physical education lessons. The final sample consisted of 237 

participants encompassing 108 trained (43 girls; age: 13.5 ± 2.1 years) and 129 

untrained (51 girls; 13.8 ± 1.4 years) children and adolescents.  

5.2.1 Experimental Procedures 

All participants were required to attend one session at which they initially had their 

stature and sitting height measured to the nearest 0.1 cm using a Holtain Stadiometer 

(Holtain, Crymych, Dyfed, UK) and their body mass measured to the nearest 0.1 kg 

using electronic scales (Seca 803, Seca, Chino, CA, USA). Maturity status was 

subsequently estimated using the equations of Mirwald et al. (2002a), with participants 

deemed pre-pubertal, pubertal and post-pubertal if they were more than one year from, 

within one year of, or more than one year post peak height velocity (PHV), 

respectively. 
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V̇O2max was assessed using an incremental ramp test to volitional exhaustion on a cycle 

ergometer (Lode Excalibur Sport, Groningen, Netherlands) which started with a three-

minute warm-up at 10 W before increasing by 20 – 25 W⋅min-1, depending on the 

participant’s age. All participants were instructed to maintain a cadence of 60 – 80 

revolutions per minute (rpm) throughout the test, with volitional exhaustion defined 

as when participants could not maintain a cadence above 50 rpm. Inspired and expired 

air were measured on a breath-by-breath basis throughout the incremental ramp test 

using a Vyntus metabolic cart (VYAIRE medical Ltd, Mettawa, IL, USA). Following 

five minutes active and ten minutes passive rest, a supramaximal validation bout was 

performed (Barker et al., 2009). Specifically, participants warmed up for a further 

three minutes at 10 W before a step-transition to 105% of the peak power achieved 

during the incremental ramp test. Participants were instructed to maintain a cadence 

above 50 rpm for as long as possible, with gas exchange measured continuously on a 

breath-by-breath basis throughout the exercise bout.  

Participant’s habitual physical activity was subsequently measured for seven 

consecutive days using a ActiGraph GT3X (ActiGraph, Pensacola, Florida, USA) 

worn on the right hip, sampling at 100 Hz. Children and adolescents also completed a 

seven-day log to detail periods when the monitor was removed, waking time and time 

going to bed, to minimise the misclassification of non-wear time as sedentary time or 

sleep. 

5.2.2 Data Analyses 

The raw breath-by-breath V̇O2 data from both the V̇O2max and supramaximal bout were 

averaged into 10-second bins, with V̇O2max defined as the highest 10-second moving 

average during the ramp incremental test. To aid comparisons between sex, maturity 

and training sub-groups, V̇O2max was allometrically scaled to account for body mass 

differences between participants (Welsman & Armstrong, 2019). The scaling 

exponent for this study was 0.76 (95%CI: 0.73 – 0.79). Evenson et al. (2008) cut-

points were utilised to determine the time spent in each PA intensity which have been 

shown to be the most reliable for children and adolescents (Trost, 2016; Trost et al., 

2011).Sleep time and efficiency was calculated using the algorithms of Sadeh et al. 

(1994b). Wear-time criteria was set as ≥ 8 hours on any three days (Herrmann et al., 

2014; Rich et al., 2013). The smallest worthwhile change (SWC) in peak V̇O2 (l⋅min-
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1) and allometrically scaled peak V̇O2 (ml⋅kg-b⋅min-1) was calculated for each sex, 

maturity and training sub-group using the formula 0.2*group SD (Hopkins, 2000). The 

SWC was then subsequently presented as a percentage of the group mean to aid 

comparisons between all sub-groups.  

All compositional analyses were conducted in R (http://cran.r-project.org) using the 

compositions package (version 1.40-2) and its dependencies (Chastin et al., 2015). 

Compositional geometric means were computed to indicate the amount of time spent 

in each PA behaviour or sleep each day, by expressing each behaviour, after 

normalisation, as a proportion of the total time (Carson et al., 2016; Chastin et al., 

2015). Variance matrices were calculated to provide an indication as to the dispersion 

and co-dependency of movement behaviours and were calculated by measuring the 

variance between pair-wise log ratios (Carson et al., 2016; Chastin et al., 2015). 

Specifically, a ratio tending towards zero indicates high co-dependency, with the 

numbers further from zero indicating less co-dependency. Sequential linear regression 

models were created by rotating each of the five behaviours via isometric log ratio 

(ILR) transformations to examine the relative effect of all movement behaviours on 

the peak V̇O2 and allometrically scaled peak V̇O2 (Carson et al., 2016; Chastin et al., 

2015). The first coefficient and its p value were reported for each rotation to determine 

whether the individual movement behaviour was associated with the outcome variable 

relative to the other movement behaviours, and its relative significance. Additionally, 

the overall model significance (p value) and R2 value were reported to gain an insight 

into the variance explained by the overall movement composition. All movement 

behaviours were also sequentially mapped against each other, producing ternary heat 

maps displaying the predicted absolute and allometrically scaled peak V̇O2 for each 

sex, training and maturity group. Finally, change matrices were conducted to predict 

the change in absolute and scaled peak V̇O2 by systematically reallocating 10 minutes 

from one movement behaviour to another (Carson et al., 2016; Chastin et al., 2015). 

All predictive changes were presented as a percentage change relative to the 

compositional mean, with significant changes identified as any change greater than 

the SWC (%).  

http://cran.r-project.org/
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5.2.3 Statistical Analyses  

All traditional statistical analyses were conducted in SPSS version 26 (IBM, 

Portsmouth, UK), with significance accepted as p < 0.05. Between group differences 

in anthropometric characteristics and absolute and allometrically scaled peak V̇O2 

were assessed using a MANOVA, with post-hoc tests with Bonferroni correction 

applied to identify the specific location of significant differences as appropriate. 

 

5.3 Results 

Of the original 237 participants, 61 were excluded for failing to meet the wear-time 

criteria, therefore 84 trained (40 girls) and 92 untrained (44 girls) children and 

adolescents were included in the final analyses. There were no significant differences 

in the anthropometrics of those included and excluded (p > 0.05). Post-pubertal 

adolescents were significantly older, taller, heavier, and more mature than the pubertal 

or pre-pubertal children (p < 0.01), with significant differences in the same parameters 

also evident between pubertal adolescents and pre-pubertal children (p < 0.05, Table 

1). The trained children and adolescents were taller (F(1,175) = 12.7, p < 0.01) and had 

a higher V̇O2max (l⋅min-1) than their untrained counterparts (F(1, 175) = 15.3, p < 0.01), 

which persisted even after allometric scaling (F(1,175) = 18.7, p < 0.01). Overall, boys 

had a higher V̇O2max and allometrically scaled V̇O2max than their female counterparts, 

irrespective of training and maturity status (F(1,175) = 19.7, p < 0.01). V̇O2max increased 

with maturity, irrespective of sex and training status (F(1,175) = 16.2, p < 0.01), but there 

was no significant difference between any maturity group for allometrically scaled 

V̇O2max. There were no significant training, sex, or maturity interactions for any 

anthropometric variable or peak V̇O2, regardless of how it was expressed. 

In the trained participants, the geometric means highlight that the biggest portion of 

the day was spent in SED (41.2%), followed by sleep (39.2%), with VPA only 

accounting for 1.6% of the day (Table 2). Similarly, untrained children spent the 

longest periods of the day in SED (44.1%) and sleep (40.0%), with VPA making up 

just 1.3% of the day. Trained athletes completed more LPA (F(1.175) = 38.1, p < 0.01) 

and VPA (F(1,175) = 18.6, p < 0.01), but spent significantly less time sleep (F(1,175) = 

3.8, p = 0.05) compared to untrained participants, irrespective of sex or maturity. LPA 
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and sleep, and SED and LPA, demonstrated the smallest variation and therefore high 

co-dependency, whereas VPA had the largest pair-wise log ratio variances compared 

to all other PA behaviours, indicating less co-dependency (Table 3). The ILR model 

revealed that the composition of PA, SED and sleep significantly predict both V̇O2max 

and allometrically scaled V̇O2max (Table 4). Additionally, the overall movement 

composition explained 48.7% and 37.7% of the variance in peak, and allometrically 

scaled, V̇O2max, respectively. In isolation, when compared against all other PA 

intensities, only VPA significantly predicted allometrically scaled V̇O2max (YVPA = 

6.91, p < 0.02), with no significant individual associations evident for V̇O2max. 

VPA was the most influential PA behaviour for absolute, and allometrically scaled, 

V̇O2max, irrespective of training status and sex, but the influence of PA behaviours was 

less clear in pubertal and post-pubertal adolescents (Figures 1 and 2). VPA continued 

to dominate the heat maps when expressed against SED and sleep (Appendix 11.2.2 – 

11.2.5). Reallocating 10 minutes from any given movement behaviour to any other 

behaviour had minimal effect on absolute V̇O2max in trained children and adolescents, 

with all changes smaller than the percentage SWC (Appendix 11.2.1). The only 

exception was in trained pubertal girls in whom displacing 10 minutes of VPA to any 

other activity behaviour decreased absolute V̇O2max by 6.3 – 8.0% (Table 5). In pre-

pubertal untrained children, displacing VPA to other movement behaviours decreased 

V̇O2max by 3.2 – 10.5% (Table 6). Additionally, V̇O2max was also predicted to increase 

by 5.2% and 5.8% when LPA was re-allocated to MPA and VPA, respectively, in pre-

pubertal untrained girls.  

Allometrically scaled V̇O2max significantly decreased, irrespective of sex, maturity or 

training status, when 10 minutes of VPA was reallocated to any other behaviour 

(Tables 5 and 6). Moreover, allometrically scaled peak V̇O2 tended to increase when 

time spent in other movement behaviours was reallocated to VPA. The effect of 

reallocating time to LPA, SED, or sleep on peak V̇O2 was negligible, irrespective of 

how V̇O2max was expressed, sex, maturity, or training status. 
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Table 5.1 – Participant descriptives 

Training 

Group 

Maturity Sex Age 

(years) 

Stature 

(cm) 

Body Mass 

(kg) 

BMI 

(kg∙m-2) 

Maturity Offset  

(years) 

Peak V̇O2 

(l⋅min-1) 

Scaled Peak V̇O2 

(ml⋅kg-b⋅min-1) 

 
 

 

 
 

 
 

 

Trained 
(n = 84) 

 
 

Pre-Pubertal 

(n = 34) 
 

 
Boys  

(n = 20) 

 
11.8 ± 1.0 

 
146.6 ± 7.5 

 
38.5 ± 7.2 

 

 
17.8 ± 2.2 

 
-2.27 ± 0.69 

 
2.06 ± 0.37 * 

 
194.1 ± 22.2 * 

 
Girls  

(n = 14) 

 
11.4 ± 1.5 

 
151.0 ± 14.2 

 
45.5 ± 13.7 

 
19.4 ± 2.7 

 
-2.37 ± 1.16 

 
1.89 ± 0.46 

 
153.9 ± 23.7 

 
 

Pubertal 

(n = 30) 

 
Boys 

(n = 14) 

 
14.1 ± 1.1 a 

 

 
167.9 ± 8.9 a 

 
53.3 ± 5.8 a 

 
18.9 ± 1.3  

 
+0.01 ± 0.43 a 

 
2.77 ± 0.43 * a 

 
185.7 ± 31.6 * 

 
Girls 

(n = 16) 

 
14.4 ± 1.3 a 

 
164.6 ± 4.4 a 

 

 
56.4 ± 8.1 a 

 
20.7 ± 2.4 

 
+0.02 ± 0.57 a 

 
2.16 ± 0.27 a 

 

 
152.5 ± 15.5 

 
 

Post-Pubertal 

(n = 20) 

 
Boys 

(n = 10) 

 
16.2 ± 1.4 a b 

 
178.9 ± 6.9 a b 

 
65.2 ± 6.1 a b 

 

 
20.4 ± 1.9  

 
+1.96 ± 0.57 a b 

 
3.24 ± 0.71 * a b 

 
205.5 ± 34.0 * 

 
Girls 

(n = 10) 

 
15.8 ± 1.0 a b  

 
165.8 ± 5.7 a b 

 
58.9 ± 7.9 a b 

 
21.5 ± 3.7  

 
+1.91 ± 0.32 a b 

 
2.30 ± 0.45 a b 

 
145.7 ± 31.2 

 
 

 

 
 

 

 

 

Untrained 

(n = 92) 

 
 

Pre-Pubertal 

(n = 22) 
 

 
Boys 

(n = 12) 

 
12.3 ± 1.7  

 
151.5 ± 8.1  

 
44.3 ± 10.2 # 

 
19.2 ± 3.1 # 

 
-1.94 ± 0.94 

 
1.94 ± 0.29 # * 

 
142.6 ± 34.7 # * 

 
Girls 

(n = 10) 

 
12.1 ± 0.7 

 
150.0 ± 10.9  

 
44.9 ± 9.7 # 

 
20.0 ± 1.4 # 

 
-1.12 ± 0.12 

 
1.35 ± 0.33 # 

 
123.9 ± 25.6 # 

 
 

Pubertal 

(n = 40) 

 
Boys 

(n = 26) 

 
14.1 ± 0.9 a 

 
164.8 ± 8.2 a 

 
57.1 ± 11.2 # a 

 
20.9 ± 3.6 # 

 
-0.04 ± 0.66 a 

 
2.31 ± 0.47 # * a 

 
159.5 ± 34.5 # * 

 
Girls 

(n = 14) 

 
13.1 ± 1.0 a 

 
155.8 ± 9.3 a 

 
49.4 ± 11.3 # a 

 
20.6 ± 3.4 # 

 
+0.13 ± 0.38 a 

 
1.65 ± 20.8 # a 

 
130.9 ± 20.8 # 

 
 

Post-Pubertal 

(n = 30) 

 
Boys 

(n = 10) 

 
15.3 ± 0.32 a b 

 
172.0 ± 5.9 a b 

 
70.4 ± 14.1 # a b 

 
23.7 ± 3.7 # 

 
+1.66 ± 0.69 a b 

 
2.91 ± 0.62 # * a b 

 
166.1 ± 22.6 # * 

 
Girls 

(n = 20) 

 
14.9 ± 0.7 a b 

 
162.3 ± 7.6 a b 

 
56.6 ± 10.2 # a b 

 
21.6 ± 3.0 # 

 
+2.10 ± 0.62 a b 

 
1.86 ± 0.38 # a b 

 
143.8 ± 34.2 # 

All values presented as mean ± standard deviation. BMI = Body Mass Index. # highlights a significant difference between training groups of the same sex and 

maturity. a significantly different compared to pre-pubertal children, b Significantly different compared to pubertal adolescents. *significant difference between boys 

and girls of the same training and maturity group
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Table 5.2 – Geometric Means for the whole sample 

Trained Athletes 

 

 Overall Mean 

(minutes⋅day-1) 

Geometric Mean 

(minutes⋅day-1) 

% of 24 hours 

SED  

 

515.6 594.4 41.2 

LPA 

 

186.4 214.9 14.9 

MPA 

 

37.4 43.1 3.0 

VPA 

 

19.9 22.9 1.6 

sleep 

 

489.7 564.5 39.2 

Untrained Controls  

SED  

 

517.2 * 634.5 * 44.1 * 

LPA 

 

134.4 164.9 11.5 

MPA 

 

37.9 46.5 3.2 

VPA 

 

15.2 * 18.6 * 1.3 * 

sleep 

 

469.7 575.5 40.0 

SED = Sedentary Time, LPA = Light Physical Activity, MPA = Moderate Physical Activity, VPA = Vigorous 

Physical Activity, *Indicates significant difference between training groups 

 

 

 

 

Table 5.3 – Pair-wise log ratio variation matrix in the full sample 

 SED LPA MPA VPA sleep 

SED  - -0.018 -0.029 -0.053 0.023 

LPA -0.018 - -0.039 -0.042 -0.016 

MPA -0.029 -0.039 - -0.020 -0.019 

VPA -0.053 -0.042 0.020 - -0.045 

sleep 0.023 -0.016 -0.019 -0.045 - 

SED = Sedentary Time, LPA = Light Physical Activity, MPA = Moderate Physical Activity, VPA = Vigorous 

Physical Activity, 
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Table 5.4 – Model isometric log ratio parameters for V̇O2max and scaled V̇O2max 

 Model p 

value 

Model 

R2 

YSED p YLPA p YMPA p YVPA p YSleep p 

V̇O2max 

(l⋅min-1) 

< 0.001 * 0.486 < 0.001 0.993 -0.070 0.112 0.041 0.483 0.029 0.529 < 0.001 0.997 

Scaled V̇O2max  

(ml⋅kg-b⋅min-1) 

< 0.001 * 0.377 -0.627 0.865 2.390 0.396 -5.606 0.136 6.914 0.019* 1.709 0.668 

All models were covaried for training status, sex and maturity. * indicates a significant predictor of outcome 

variable. V̇O2max = Maximal Oxygen Uptake, SED = Sedentary Time, LPA = Light Physical Activity, MPA = 

Moderate Physical Activity, VPA = Vigorous Physical Activity. 
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Figure 5.1 - Ternary heat plots of all physical actvity behaviours with expected peak V̇O2 values for all 

sub-groups with a) trained athletes; b) untrained controls; c) all boys; d) all girls; e) pre-PHV children; 

f) circa-PHV adolescents; and g) post-PHV adolescents  

 

A B 

D 
C 

F E 

G 



 

 

 

120 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 – Ternary plots of all physical activity behaviours with expected scaled peak V̇O2 values for 

all sub-groups with a) trained athletes; b) untrained controls; c) all boys; d) all girls; e) pre-PHV 

children; f) circa-PHV adolescents; and g) post-PHV adolescents
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Table 5.5 – Change matrices of reallocating 10 minutes from the behaviour in columns to the behaviour in the rows on V̇O2max (l⋅min-1) and scaled V̇O2max 

(ml⋅kg-b⋅min-1) in trained children and adolescents, presented as percentage change 

V̇O2max Scaled V̇O2max 

Pre-Pubertal Boys 

 SED LPA MPA VPA Sleep  SED LPA MPA VPA Sleep 

SED - 0.31 -1.11 -1.59 0.01 SED - 0.11 1.78 -4.58 * -0.06 

LPA -0.31 - -1.42 -1.90 -0.31 LPA -0.11 - 1.67 -4.69 * -0.16 

MPA 0.87 1.12 - -0.72 0.87 MPA -1.39 -1.27 - -5.97 * -1.45 

VPA 1.01 1.33 -0.10 - 1.01 VPA 2.91 * 3.02 * 4.69 * - 2.85 * 

Sleep -0.01 0.32 -1.11 -1.59 - Sleep 0.05 0.17 1.84 -4.52 * - 

Pre-Pubertal Girls 

 SED LPA MPA VPA Sleep  SED LPA MPA VPA Sleep 

SED - 0.49 -1.80 -3.21 0.01 SED - 0.15 2.49 -7.96 * -0.06 

LPA -0.46 - -2.25 -3.67 0.49 LPA -0.14 - 2.35 -8.10 * 0.12 

MPA 1.35 1.84 - -1.86 1.35 MPA -1.88 -1.72 - -9.83 * -1.94 

VPA 1.73 2.21 -0.07 - 1.73 VPA 4.29 * 4.45 * 6.79 * - 4.23 * 

Sleep -0.01 0.49 -1.80 -3.21 - Sleep 0.06 0.22 2.56 -7.90 * - 

Pubertal Boys 

 SED LPA MPA VPA Sleep  SED LPA MPA VPA Sleep 

SED - 0.33 -0.87 -1.28 0.01 SED - 0.15 1.70 -4.47 * -0.05 

LPA -0.31 - -1.18 -1.59 -0.31 LPA -0.13 - 1.56 -4.61 * -0.19 

MPA 0.69 1.02 - -0.59 0.69 MPA -1.34 -1.19 - -5.81 * -1.39 

VPA 0.82 1.15 -0.06 - 0.82 VPA 2.86 3.00 4.56 * - 2.80 

Sleep -0.01 0.33 -0.87 -1.28 - Sleep 0.05 0.20 1.75 -4.41 * - 
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Pubertal Girls 

 SED LPA MPA VPA Sleep  SED LPA MPA VPA Sleep 

SED - 0.45 -1.79 -7.60 * 0.01 SED - 0.19 3.24 * -24.4 * -0.07 

LPA -0.43 - -1.34 -8.03 * -0.43 LPA -0.18 - 3.46 * -24.6 * -0.24 

MPA 1.27 1.72 - -6.33 * 1.27 MPA -2.28 * -2.10 * - -26.7 * -2.35 * 

VPA 1.98 2.44 0.19 - 1.98 VPA 6.38 * 6.57 * 9.62 * - 6.31 * 

Sleep -0.01 0.45 -1.80 -7.60 *  Sleep 0.07 0.25 3.30 * -24.3 * - 

Post-Pubertal Boys 

 SED LPA MPA VPA Sleep  SED LPA MPA VPA Sleep 

SED - 0.32 -0.96 -1.11 0.01 SED - 0.16 2.03 -4.21 * -0.05 

LPA -0.30 - -1.26 -1.41 -0.30 LPA -0.15 - 1.88 -4.36 * -0.20 

MPA 0.71 1.03 - 0.40 0.72 MPA -1.51 -1.35 - -5.72 * -1.56 

VPA 0.71 1.03 -0.25 - 0.71 VPA 2.68 2.84 4.71 * - 2.63 

Sleep -0.01 0.32 -0.96 -1.12 - Sleep 0.05 0.21 2.08 -4.16 * - 

Post-Pubertal Girls 

 SED LPA MPA VPA Sleep  SED LPA MPA VPA Sleep 

SED - 0.41 -1.25 -1.89 0.01 SED - 0.19 2.50 -6.75 * -0.06 

LPA -0.38 - -1.88 -2.27 -0.38 LPA -0.18 - 2.32 -6.93 * 0.23 

MPA 0.92 1.32 - -0.97 0.90 MPA -1.84 -1.65 - -8.59 * -1.90 

VPA 1.05 1.46 -2.27 - 1.05 VPA 3.77 3.96 6.27 * - 3.71 

Sleep -0.01 0.40 -0.97 -1.89 - Sleep 0.06 0.25 2.48 -6.69 * - 

SED = Sedentary time, LPA = Light Intensity Physical Activity, MPA = Moderate Physical Activity, VPA = Vigorous Physical Activity. All figures presented as percentage 

change with * indicating a change above the Smallest Worthwhile Change (%). 
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Table 5.6 – Change matrices of reallocating 10 minutes from the behaviour in columns to the behaviour in the rows on V̇O2max (l⋅min-1) and scaled V̇O2max 

(ml⋅kg-b⋅min-1) in untrained children and adolescents, presented as percentage change 

V̇O2max Scaled V̇O2max 

Pre-Pubertal Boys 

 SED LPA MPA VPA Sleep  SED LPA MPA VPA Sleep 

SED - 0.63 -1.34 -3.17 * 0.01 SED - 0.23 2.11 -8.93 * -0.07 

LPA -0.59 - -1.93 -3.75 * -0.59 LPA -0.22 - 1.90 -9.14 * -0.28 

MPA 1.05 1.69 - -2.11 1.05 MPA -1.66 -1.42 - -10.59 * -1.72 

VPA 1.62 2.25 0.27 - 1.62 VPA 4.58 4.81 6.69 * - 4.51 

Sleep -0.01 0.63 -1.34 -3.17  Sleep 0.07 0.30 2.18 -9.15 * - 

Pre-Pubertal Girls 

 SED LPA MPA VPA Sleep  SED LPA MPA VPA Sleep 

SED - 2.72 -3.93 -8.31 * 0.01 SED - 0.88 5.17 * -19.43 * -0.09 

LPA -2.21 - -6.14 * -10.52 * -2.20 LPA -0.71 - 4.46 * -20.13 * -0.79 

MPA 2.48 5.20 * - -5.84 * 2.48 MPA -3.25 -2.36 - -22.67 * -3.33 

VPA 2.86 5.58 * -1.07 - 2.86 VPA 6.70 * 7.57 * 11.86 * - 6.61 * 

Sleep -0.01 2.72 -3.94 -8.31 *  Sleep 0.06 0.96 5.24 * -19.34 * - 

Pubertal Boys 

 SED LPA MPA VPA Sleep  SED LPA MPA VPA Sleep 

SED - 0.53 -1.12 -3.00 0.01 SED - 0.27 2.22 -10.64 * -0.07 

LPA -0.53 - -1.64 -3.53 -0.53 LPA -0.25 - 1.97 -10.89 * -0.32 

MPA 0.87 1.44 - -2.13 0.87 MPA -1.72 -1.45 - -12.36 * -1.79 

VPA 1.40 1.97 0.28 - 1.40 VPA 4.96 * 5.23 * 7.18 * - 4.89 * 

Sleep -0.01 0.57 -1.12 -3.01 - Sleep 0.07 0.34 2.29 -10.58 * - 
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Pubertal Girls 

 SED LPA MPA VPA Sleep  SED LPA MPA VPA Sleep 

SED - 0.77 -1.43 -3.85 0.01 SED - 0.33 2.58 -12.32 * -0.08 

LPA -0.71 - -2.15 -4.57 -0.71 LPA -0.30 - 2.28 -12.63 * -0.38 

MPA 1.13 1.90 - -2.72 1.13 MPA -2.02 -1.68 - -14.34 * -2.10 

VPA 1.84 2.62 2.72 - 1.84 VPA 5.90 * 6.22 * 4.90 * - 5.81 * 

Sleep -0.01 0.77 -1.44 -3.86  Sleep 0.08 0.41 2.66 -12.25 * - 

Post-Pubertal Boys 

 SED LPA MPA VPA Sleep  SED LPA MPA VPA Sleep 

SED - 0.62 -1.23 -2.30 0.01 SED - 0.32 2.67 -8.89 * -0.06 

LPA -0.56 - -1.79 -2.86 -0.56 LPA -0.29 - 2.38 -9.18 * -0.35 

MPA 0.89 1.51 - -1.41 0.89 MPA -1.93 -1.60 - -10.82 * -1.99 

VPA 1.12 1.74 -0.11 - 1.12 VPA 4.34 * 4.66 * 7.00 * - 4.27 * 

Sleep -0.01 0.62 -1.23 -2.30 - Sleep 0.06 0.38 2.73 * -8.83 * - 

Post-Pubertal Girls 

 SED LPA MPA VPA Sleep  SED LPA MPA VPA Sleep 

SED - 0.44 -1.54 -3.55 0.01 SED - 0.02 3.10 -12.70 * -0.08 

LPA -0.42 - -1.96 -3.96 -0.41 LPA -0.19 - 2.91 -12.89 * -0.27 

MPA 1.14 1.57 - -2.41 1.14 MPA -2.28 -2.07 - -14.98 * -2.36 

VPA 1.59 2.02 1.59 - 1.59 VPA 5.70 * 5.91 * 5.68 * - 5.63 * 

Sleep -0.01 0.44 -1.54 -3.54 - Sleep 0.08 0.28 3.17 -12.62 * - 

SED = Sedentary time, LPA = Light Physical Activity, MPA = Moderate Physical Activity, VPA = Vigorous Physical Activity. All figures presented as percentage change 

with * indicating a change greater than the Smallest Worthwhile Change (%). 
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5.4 Discussion 

This is the first study to examine the effects of changing time spent in various 

movement behaviours (SED, LPA, MPA, VPA and Sleep), using a five-part 

compositional analysis, on absolute and allometrically scaled V̇O2max in trained and 

untrained children and adolescents. The main findings of the present study were that 

allocating time to, and removing time from, VPA significantly increased and 

decreased allometrically scaled V̇O2max, respectively, regardless of sex, training, or 

maturity status. Additionally, the re-allocation of time to MPA from all movement 

behaviours in trained pubertal girls significantly decreased allometrically scaled peak 

V̇O2. These findings therefore highlight that intensity of PA may be of paramount 

importance in determining peak V̇O2, especially in girls.  

Engaging in 10 minutes more VPA, irrespective of which behaviour it displaces, 

significantly increases both absolute and allometrically scaled V̇O2max, regardless of 

training status. Moreover, of importance, untrained children were predicted to have a 

larger magnitude of change for the same 10-minute reallocation, in accord with the 

review of McNarry & Jones (2014) which concluded that baseline fitness significantly 

impacts the magnitude of change experienced to a given stimulus. More specifically, 

Mahon (2008) reported that 52% of the inter-individual variation in participants 

responses to a training stimuli can be explained by baseline V̇O2max. The findings of 

the current study are, however, discordant with Carson et al. (2016), who reported no 

significant differences when reallocating time to, or from, any movement behaviour. 

Such discrepancies may be explained by the use of a proxy measure of V̇O2max and not 

accounting for maturation or training status in the earlier study, which are critical when 

assessing cardiorespiratory fitness in children and adolescents (Armstrong & 

Welsman, 2019b, 2020a).  

The present study supports the notion that children and adolescents require a vigorous 

stimulus to significantly improve absolute and scaled V̇O2max (Massicotte & Macnab, 

1974; McNarry & Jones, 2014). Of concern however, the current findings suggest that 

children and adolescents may need to increase their time spent in VPA by over 50%. 

Indeed, the average time spent in VPA in this study was 17.1 ± 12.7 mins⋅day-1, which 

is in accord with the levels reported in the millennium cohort study (19.9 ± 10.6 

mins⋅day-1). Considering the limited success at increasing PA in the majority of 



 

 

 

126 

 

interventions to date (Love, Adams, & van Sluijs, 2019b; Mannocci et al., 2020), and 

the small magnitude of increases in VPA reported even in those considered successful 

(Goode et al., 2017), the current findings highlight the need to drastically change our 

approach to PA promotion. Indeed, these findings could be speculated to support the 

contention suggested by many authors that HIIT may represent an important public 

health intervention tool (Cao et al., 2019; Eddolls et al., 2017; Garcia-Hermoso et al., 

2016).  

Dencker et al (2006) reported weak, but significant, correlations between VPA and 

V̇O2max (r
2 = 0.32) and allometrically scaled peak V̇O2 (r

2 = 0.27). Furthermore, the 

most recent review of the relationship between PA and V̇O2max in youth concluded 

that, despite decades of research, there was still no overall consensus (Armstrong et 

al., 2011). These equivocal findings may be related to the reliance on techniques that 

fail to account for the inter-related and inherently constrained nature of PA behaviours, 

leading to spurious conclusions (Carson et al., 2016; Chastin et al., 2015; Dumuid et 

al., 2018a). Moreover, the reliance on ratio scaling V̇O2max potentially creates spurious 

associations (Welsman & Armstrong, 2019). Of note, when V̇O2max was allometrically 

scaled by body mass, the overall PA composition explained ~11% less variance 

compared to absolute V̇O2max. This may be due, at least in part, to physically active 

children having a higher lean body mass (LBM) than their sedentary counterparts 

(Bitar et al., 2000; Butte, Puyau, Adolph, Vohra, & Zakeri, 2007), indicating that 

differences in body composition may also be critical when determining the effect of 

re-allocating PA. Nevertheless, the PA composition still explained ~37.7% of the 

variance in allometrically scaled V̇O2max, demonstrating the powerful influence of 

habitual PA on aerobic fitness. 

The finding that allocating time to MPA decreased allometrically scaled V̇O2max was 

surprising. These associations could be due, at least in part, due to the misclassification 

of intensities using population level cut-points which fail to take into account the 

baseline fitness of the individuals which is critical in determining the intensity of 

movement (A. Rowlands et al., 2018a; Trost, 2016; Trost et al., 2011). Alternatively, 

these associations could also be attributable to the fixed time reallocation used within 

compositional analysis studies to date. More specifically, a 10-minute change in VPA 

constitutes a ~50% increase in VPA but only a 1.9% increase in SED time. Therefore, 
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a greater insight into the independent, and interactive, effects of movement behaviours 

on V̇O2max may be gained by investigating the effects of the same percentage change 

in movement behaviours on V̇O2max. Nevertheless, evidence is emerging that the 

intensity of PA may be critical in improving both performance and health-related 

parameters in paediatric populations (Carson et al., 2019; Väistö et al., 2019; Whooten 

et al., 2019) and thus VPA should be encouraged, as opposed to MPA, to engender the 

greatest long-term health benefits 

Compositional analysis techniques have the ability to allow researchers and 

practitioners to design, and implement, personalised, targeted interventions with the 

aim of improving specific health outcomes (Chastin et al., 2015). Consequently, the 

specificity of compositional data analysis could be critical in interventional design and 

implementation in both trained and untrained children to maximise performance and 

health (Love et al., 2019a; Love et al., 2019b). Moreover, such analyses could also 

lead to the development of an ‘optimal’ or ‘idealistic’ composition of PA and enable 

the determination of the minimum amount of daily MPA and VPA to ascertain the 

associated health benefits (Chastin et al., 2015). Consequently, compositional analyses 

have the ability to transform our understanding of PA and each movement inter-

relationship with each other, allowing for a greater specificity in national PA 

guidelines. It must be noted, however, that compositional analysis is not without 

limitations. Indeed, the linear predictive modelling provides no indication of how long 

these habitual PA behaviours need to be maintained for in order to achieve the 

magnitude of change predicted in this study.  

Future research should seek to implement targeted interventions informed by 

compositional analyses, to ascertain the required duration needed to elicit the changes 

predicted. This is of particular importance as a plethora of research has investigated 

the influence of different training methodologies on both absolute and allometrically 

scaled peak V̇O2, with their effectiveness being reviewed elsewhere (Baquet et al., 

2003; Costigan et al., 2015; Logan et al., 2014; Moro, Bianco, Faigenbaum, & Paoli, 

2014). One major issue with the majority of paediatric training studies to date is the 

lack of accounting for changes in habitual PA levels across the intervention period 

(Carazo-Vargas & Moncada-Jiménez, 2015; Mahon & Vaccaro, 1989; Massicotte & 

Macnab, 1974), and this could help explain the equivocal findings of some 
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intervention types (Becker & Vaccaro, 1983; Carazo-Vargas & Moncada-Jiménez, 

2015). Specifically, most interventions elicit an improvement in V̇O2max of 5-6% 

(Baquet et al., 2003) increasing to ~10.4% when allometrically scaled (Leite, Freitas, 

Campelo, & Maciel, 2016). Thus, if the predicted increases in absolute, scaled, V̇O2max 

can be achieved over 4 – 6 weeks, the typical length of most training interventions 

(Baquet et al., 2003; Carazo-Vargas & Moncada-Jiménez, 2015; Logan et al., 2014), 

then it is not possible to delineate whether the improvements in peak V̇O2 are training-

related or stem from increases in habitual PA.  

Whilst there are numerous strengths associated with this study, such as the use of a 

novel five-part compositional analysis approach, allometrically scaling V̇O2max, and 

accounting for training, maturity and sex differences, there are limitations which must 

be acknowledged. Firstly, a relatively low wear-time criteria was set of any three days 

with at least eight hours of wear-time; a more stringent wear-time criteria could 

potentially influence the relationships established between PA metrics and V̇O2max. 

Nevertheless, this wear-time has been validated in a paediatric population (Trost, 

2016; Trost et al., 2000) and was used to maximise participant inclusion within the 

study. Second, the relatively short recording time (7-days) may not reflect habitual PA 

levels and these results should therefore be interpreted as an estimation of physical 

activities influence on V̇O2max. Additionally, linear predictive models from 

compositional analyses do not indicate the duration over which the habitual changes 

need to be maintained in order to observe the associated changes in V̇O2max. Moreover, 

the applicability of cycle derived V̇O2max to habitual PA levels is contentious, and 

therefore future research should endeavour to establish V̇O2max using treadmills to 

maximise specificity, and to establish whether these findings persist. Finally, the 

physical activity recordings for the trained group did not include their training regimes, 

and therefore these results should be interpreted as the effect of changing leisure time 

physical activity patterns on V̇O2max. Future research, using compositional analyses, is 

required to examine the effect of changing training session make-up on V̇O2max in 

youth. 

In conclusion, VPA is a significant predictor of allometrically scaled V̇O2max in 

children and adolescents, independent of training, sex and maturity status. Moreover, 

reallocating time from VPA in pre-pubertal children significantly predicts a reduced 
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absolute V̇O2max, potentially highlighting the importance of promoting VPA in pre-

pubertal children. Future research should seek to establish the duration of targeted PA 

interventions needed to elicit the significant changes predicted from compositional 

analyses and report the individual levels of MPA and VPA to ascertain the relative 

importance of VPA for current, and future, health in children and adolescents.  
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Chapter 6 (Study 3) – The effect of sex, maturity, and 

training status on maximal sprint performance kinetics 

 

6.1 Introduction 

Over-ground sprint running has become a popular method of performance assessment 

over the past decade (Meyers et al., 2015; Meyers et al., 2017a; Rumpf et al., 2015a; 

Rumpf et al., 2015b), partly due to the importance of speed in many athletic and 

sporting activities (Lloyd & Oliver, 2012; Meylan, Cronin, Oliver, & Hughes, 2010). 

Indeed, over-ground sprinting is commonly used within long-term athlete 

development (LTAD) programs and talent identification test batteries (Meylan et al., 

2010; Unnithan et al., 2012). However, despite this increasingly widespread use, 

fundamental questions remain to be resolved in terms of the development of speed in 

youth, especially with regards to the influences of sex and maturity, and their 

interaction with each other and training status. 

The development of speed during adolescence is a non-linear process in boys, with 

evidence suggesting periods of accelerated development around the age of peak height 

velocity (PHV; Meyers et al., 2015; Meyers et al., 2017a; Philippaerts et al., 2006; 

Rumpf et al., 2012). Specifically, in a mixed-longitudinal study involving youth 

footballers, 30 m sprint time was reported to improve by 0.4 s in the six-months 

surrounding PHV compared to only 0.2 s following PHV (Philippaerts et al., 2006). 

Moreover, early maturing boys demonstrate faster 30 m sprint times than their age-

matched normal and late maturing counterparts (Rommers et al., 2018), with evidence 

from non-motorised treadmills suggesting that sprint kinetics (i.e. force and power) 

only significantly increase from pre- to pubertal maturity statuses, displaying a plateau 

thereafter (Rumpf et al., 2015b). This period of accelerated development is thought to 

be mediated by changes in anthropometric variables, increases in muscle size and cross 

sectional area (CSA) and neuromuscular adaptations, including improved 

synchronisation of motor units and utilisation of type II muscle fibres (Dotan et al., 

2012; Van Praagh, 2000; Van Praagh & Doré, 2002).  

Whether similar periods of non-linear development in sprint speed are evident in girls 

is currently unknown, with little data currently available considering the influence of 
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growth and maturation, and their interaction, on sprint performance in girls. In one of 

the only studies to examine sprint development in untrained girls, a plateau in peak 

velocity (Vpeak) was observed from 12-13 years compared to 15 years in their male 

peers (Papaiakovou et al., 2009). However, with no maturity assessment in this study, 

whether this plateau is attributable to age per se, or rather to concomitant growth and 

maturation related changes, cannot be elucidated. Indeed, Nagahara et al. (2019) 

reported a similar plateau in Vpeak at 12.7 years in girls which was attributed to no 

further increases in step length. No evidence is currently available that considers the 

development of speed throughout the maturational process or in response to training 

compared to untrained controls so further inferences regarding the influences of sex 

and training, and their interaction, are precluded.  

In addition to kinematic factors (i.e. stride length/rate), sprint performance is 

determined by kinetic parameters such as horizontal and vertical force (Morin et al., 

2011; Morin et al., 2006; Rossi et al., 2017; Rumpf et al., 2013; Rumpf et al., 2015b; 

Samozino et al., 2016). However, the evidence exploring the kinetic determinants of 

sprint performance in paediatric populations has predominately been derived from 

non-motorised treadmills which limits its ecological validity (Rumpf et al., 2015b; 

Rumpf et al., 2012). Moreover, the majority of these studies have focused solely on 

the development of maximal velocity (Meyers et al., 2015; Meyers et al., 2017a; 

Rumpf et al., 2015b), thereby considering only a small component of sprint 

performance, or have utilised mean velocity data over a given distance (i.e. 5 meters; 

Mendez-Villanueva et al., 2010; Papaiakovou et al., 2009). These methodological 

limitations may be ameliorated by recent advances in radar technology and 

macroscopic biomechanical modelling techniques which enable velocity, power and 

force to be calculated near instantaneously across an entire sprint (Samozino et al., 

2016; Simperingham et al., 2016). Force-velocity-Power (F-v-P) profiling has been 

validated against force plate data, demonstrating high reliability in elite adult sprinters 

(Samozino et al., 2016). Additionally, the combination of radar technology and F-v-P 

profiling has been deemed highly reliable in both trained and untrained paediatric 

participants (Runacres et al., 2019a). Consequently, such methods could provide 

important insights to the kinetic parameters underpinning differences in sprint 

performance according to sex, maturity and training status.  
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Therefore, the primary aim of this study was to determine whether the kinetics of sprint 

performance differ with respect to sex, maturity and training status. The secondary 

aim was to determine whether the kinetic determinants of sprint performance change 

with maturational status. 

 

6.2 Methods 

Trained children and adolescents were recruited through the national governing body 

for Hockey in Wales and were competing at a national/international level. All of the 

trained children and adolescents had been training for 3.0 ± 1.5 years and were 

currently completing 8 ± 2 hours per week of supervised training. Untrained 

participants were recruited from local schools across South Wales and were required 

to be involved in no formal exercise training outside of curricular physical education. 

The final sample consisted of 260 (133 girls) participants, which consisted of 147 (69 

girls; 14.3 ± 2.1 years) and 113 (64 girls; 13.8 ± 2.7 years) trained and control youth, 

respectively. Online parent/guardian consent and a medical pre-screening 

questionnaire were completed using a custom-built online form (Survey Monkey, 

Dublin, Ireland). Participants were excluded if their parent/guardian reported they had 

any known cardiovascular, kidney, metabolic, or any other condition that would have 

prevented them from completing the study protocol. Written informed assent was 

obtained from each participant prior to data collection. Ethics approval was granted 

by the institutional ethics committee, with all procedures conforming to the 

Declaration of Helsinki. 

6.2.1 Experimental Procedures 

Standing and sitting stature were measured to the nearest 0.1 cm using a portable 

stadiometer (Seca 213, Seca, Chino, CA, USA), with body mass measured to the 

nearest 0.1 kg using electronic scales (Seca 803, Seca, Chino, CA, USA). 

Subsequently, individual maturity offset was estimated using the predictive equations 

devised by Mirwald et al. (2002a), with participants classed as pre-pubertal if more 

than one year away from PHV, pubertal if within a year of PHV, and post-pubertal if 

more one-year post-PHV.  
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Prior to the sprint protocol, all participants completed a standardised five-minute 

warm-up. Specifically, participants completed two minutes of low intensity jogging, 

followed by running based drills including high knees, heel-flicks, sidesteps and 

strides over 40 m, before completing two 30 m sprints at 50% and 75% max effort 

respectively. The warm-up terminated with one maximal 30 m, sprint which acted as 

a familiarisation trial. Subsequently, participants completed two maximal sprints on 

an AstroTurf over a distance of 35 m to avoid premature deceleration. Both sprints 

were conducted from a two-point standing start to minimise vertical displacement 

during the early phases of the sprint (Mero, Komi, & Gregor, 1992), with participants 

instructed to start sprinting using auditory cues (i.e. “3….2…..1…GO”). All sprint 

trials were conducted outside on a surface the participants were comfortable 

performing on, with a mean temperature and wind speed of 13.5 ± 1.9ºC and 2.3 ± 1.0 

m⋅s-1, respectively. Where possible, participants ran with the prevailing wind behind 

them to control the effects this can have on performance (Linthorne, 1994). Velocity 

was measured throughout both sprint trials using a radar gun (STALKER ATS II, 

Plano, Texas, USA), mounted on a tripod positioned 10 m behind the start line, in 

accord with manufacturer instructions. The radar gun recorded velocity at a frequency 

> 46 Hz, allowing near instantaneous power and force to be modelled throughout the 

duration of the sprint.  

6.2.2 Biomechanical Modelling 

The full details of the macroscopic biomechanical model are presented in Samozino 

et al (2016). However, briefly, prior to data processing, the first 0.3 seconds of the trial 

were deleted, in line with previous recommendations (Samozino, 2018), following 

which the raw velocity-time (vh(t)) data were modelled using a mono-exponential 

curve. Following integration of the vh(t) curve, the horizontal displacement (xh(t)) was 

obtained, with further derivation providing the horizontal acceleration (ah(t)) of the 

participant’s centre of mass (COM; Samozino, 2018). According to the fundamental 

laws of dynamics, the horizontal antero-posterior force (Fh(t)) was calculated 

considering aerodynamic drag (Morin et al., 2011; Samozino et al., 2016). 

Subsequently, power output was determined as the product of force and velocity. All 

power and force variables were interpolated to 0.1 seconds intervals, with peak power 

(Ppeak; W) and peak force (Fpeak; N) defined as the highest values recorded during the 
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30 m sprint. Moreover, to allow for the comparison between training, sex, and maturity 

groups, Ppeak and Fpeak were ratio and allometrically scaled by body mass, using 

methods reported elsewhere (Nevill et al., 2006). Time to peak power (t_Ppeak; s) was 

determined as the time from sprint start to Ppeak, with mean power (Pmean; W) and force 

(Fmean; N) defined as the average power and force throughout the sprint. Thirty meter 

sprint time (30mT) was defined as the time elapsed from the start of the sprint until 

xh(t) first exceeded 30 m. Peak velocity (Vpeak; m⋅s-1) was derived from the mono-

exponential vh(t) curve, with the modelled velocities over the same time period as Pmean 

used to determine mean velocity (Vmean; m⋅s-1). Finally, fatigue rate (FR; W⋅s-1) was 

determined as the average rate of power decline per second from Ppeak until 30mT, 

with mechanical efficiency index (DRF) represented by the slope of the linear decline 

of force production with increasing velocity. All variables were calculated for both 

sprints, but only the fastest sprint (as determined by 30mT) was carried forward for 

analysis 

6.2.3 Statistical Analyses 

All values are presented as mean ± SD unless otherwise stated, with all statistical 

analyses conducted in SPSS (version 26.0, IBM, Armonk, NY, USA) and significance 

accepted as p < 0.05. Multivariate ANOVAs were used to identify significant 

differences in performance variables between groups and any interaction effects, with 

Bonferroni corrections to post-hoc tests where appropriate. Cohens d was also 

calculated, with effect sizes considered trivial (≤ 0.20), moderate (0.21 – 0.60), large 

(0.61 – 0.80) or very large (≥ 0.81).  

Hierarchical multiple linear regression was used to ascertain the determinants of 30 m 

sprint time according to maturity group. Specifically, training status and sex were 

initially entered into the model given their strong association with sprint performance 

in children and adolescents (Papaiakovou et al., 2009; Rumpf et al., 2015a; Rumpf et 

al., 2012). Subsequently, predictor variables were entered to ascertain their 

independent association with 30mT, with inclusion into the model only accepted if a 

significant increase in explained variance was observed at the 0.05 level. Collinearity 

between potential predictors was investigated using the variance inflation factor to 

determine trivial (VIF = 1), moderate (1 < VIF ≤ 5) and high (VIF > 5) collinearity 

indicating high collinearity (Daoud, 2017). If high co-linearity was found between 
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variables, the variable explaining the greatest proportion of variance was added to the 

model (Daoud, 2017). The adequacy of the regression model was determined using 

the normality of residual values.  

6.3 Results 

With the exception of BMI (p > 0.05), all anthropometric variables significantly 

increased with maturity stage (p < 0.01), irrespective of sex or training status (Table 

1). Trained children were taller and had a lower BMI than their untrained counterparts 

(p < 0.05). Pre-pubertal hockey players were lighter than their untrained counterparts 

(p < 0.05), whereas pubertal and post-pubertal hockey players were heavier (p < 0.05). 

Boys were significantly taller than girls at all stages of maturity, irrespective of 

training status (p < 0.05), and pre-pubertal and post-pubertal untrained girls were 

significantly lighter than their male counterparts (p < 0.05). 

6.3.1 Influence of training status 

As shown in Table 2 and 3, trained youth had a higher Ppeak than their untrained 

counterparts (F(1,244) = 38.8, p < 0.01, d = 1.05), which persisted even after ratio (F(1,244) 

= 24.6, p < 0.01, d = 0.78) or allometric scaling (F(1,244) = 21.6, p < 0.01, d = 0.71). 

Trained youth also had a higher Fpeak (F(1,244) = 7.4, p < 0.01, d = 0.52), although this 

was ameliorated following ratio and allometric scaling (p > 0.05). Trained participants 

had a higher Vpeak (F(1,244) = 131.0, p < 0.01, d = 1.78), Vmean (F(1,244) = 134.3, p < 0.01, 

d = 1.80) and a faster 30mT (F(1,244) = 121.0, p < 0.01, d = 1.71) when compared to 

their untrained counterparts. Finally, trained children and adolescents had a slower 

t_Ppeak, and a higher Pmean, relative Pmean and FR (p < 0.05), but there was no significant 

difference between athletes and controls for DRF (F(1,244) = 0.95, p > 0.05).  

6.3.2 Influence of Sex 

Boys produced a significantly higher Fpeak and Ppeak than girls (Table 2 and 3, 

respectively), which remained after allometrically scaling for body mass (Scaled Ppeak: 

F(1, 244) = 14.8, p < 0.01, d = 0.57; Scaled Fpeak: F(1,244) = 32.3, p < 0.01, d = 0.27). Boys 

also achieved a higher Pmean (F(1,244) = 33.5, p < 0.01, d = 0.64), relative Pmean (F(1,244) 

= 11.0, p < 0.01, d = 0.51), Vpeak (F(1,244) = 14.0, p < 0.01, d = 0.53), Vmean (F(1,249) = 

19.3, p < 0.01, d = 0.59), a faster 30mT (F(1,244) = 13.7, p < 0.01, d = 0.52) and FR 

(F(1,249) = 22.1, p < 0.01, d = 0.55) than girls, irrespective of training or maturity status. 
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However, there were no significant sex differences for t_Ppeak (F(1,244) = 0.69, p > 0.05) 

or DRF (F(1,244) = 1.51, p > 0.05).  

6.3.3 Influence of Maturity 

As shown in Tables 2 and 3, post-PHV adolescents produced a higher Ppeak and Fpeak 

than circa-PHV adolescents or pre-PHV children (all p < 0.01), with significantly 

higher values similarly observed for circa-PHV adolescents in comparison to pre-PHV 

children (p < 0.05). However, after ratio and allometric scaling for body mass, no 

significant differences persisted between any maturity groups (p > 0.05). Post-PHV 

adolescents also had a significantly higher Vpeak, 30mT, and DRF than all other maturity 

groups (p < 0.05), with no significant differences evident between pre-PHV and circa-

PHV children. There was no significant effect of maturation on any other sprint 

variable (p > 0.05). 

6.3.4 Interaction of sex, maturity, and training status 

There was a significant interaction effect between sex and maturity on t_Ppeak (F(2,244) 

= 4.3, p < 0.05), relative Pmean (F(2,244) = 3.9, p < 0.05), Vpeak (F(2,244) = 5.6, p < 0.01) 

and Fpeak (F(2,244) = 5.0, p < 0.01). Specifically, there was significantly less difference 

in t_Ppeak between post-PHV boys and girls (5%) compared to pre-PHV (14.8%) and 

circa-PHV (17.0%) boys and girls. Conversely, there was a greater sex difference in 

relative Pmean and Vpeak in circa-PHV adolescents (46.9% and 19.8%, respectively) 

compared to pre-PHV (5.4% and 3.2%) or post-PHV youth (11.6% and 5.6%). A 

greater sex difference was also evident in Fpeak for pre-PHV children (53.5%) 

compared that found in circa-PHV (10.6%) or post-PHV adolescents (21.6%).  

A significant sex, maturity and training interaction effect was also apparent on Ppeak 

(F(2,244) = 3.8, p < 0.05), Fpeak (F(2,244) = 5.9, p < 0.01), relative Fpeak (F(2,244) = 3.1, p < 

0.05) and scaled Fpeak (F(2,244) = 3.3, p < 0.05). Specifically, less difference was 

observed in Ppeak and Fpeak between trained and untrained circa-PHV boys and girls 

(Ppeak: 26.7%; Fpeak: 28.3%) compared to those found in pre-PHV (Ppeak: 42.3%; Fpeak: 

36.1%) or post-PHV youth (Ppeak: 38.0%; Fpeak: 33.7%). Conversely, the biggest 

differences in relative Fpeak and scaled Fpeak were observed between trained and 

untrained post-PHV boys and girls (both 24.5%) compared to pre-PHV children 
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(relative Fpeak: 7.8%; scaled Fpeak: 9.1%) and circa-PHV adolescents (relative Fpeak: 

13.3%; scaled Fpeak: 13.9%).  

6.3.5 Determinants of Sprint Performance 

Model 1 in which only training status and sex were entered explained 33%, 53% and 

37% of the variance in 30mT in pre-PHV, circa-PHV and post-PHV children and 

adolescents, respectively (Table 6.4). Subsequently, scaled Ppeak and DRF were found 

to be significant predictors of performance across all maturity groups, explaining 65% 

of the variance in 30mT in pre-PHV children which increased to 75% and 80% in 

circa-PHV and post-PHV adolescents, respectively. No other parameters were found 

to predict sprint performance in youth. 
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Table 6.1 – Anthropometric characteristics for trained and untrained participants 

 

 

Hockey Players (n = 147) Control Participants (n = 113) 

 

 

Pre-PHV 

(n = 34) 

Circa-PHV 

(n = 47) 

Post-PHV 

(n = 68) 

Pre-PHV 

(n = 36) 

Circa-PHV 

(n = 48) 

Post-PHV 

(n = 29) 

 Boys 

(n = 17) 

Girls 

(n = 17) 

Boys 

(n = 32) 

Girls 

(n = 15) 

Boys 

(n = 29) 

Girls 

(n = 37) 

Boys 

(n = 22) 

Girls 

(n = 14) 

Boys 

(n = 14) 

Girls 

(n = 34) 

Boys 

(n = 13) 

Girls 

(n = 16) 

 

Age 

(years) 

 

12.1 ± 0.8 

 

11.2 ± 1.7 

 

14.2 ± 0.8 
a 

 

13.1 ± 0.8 

a 

 

16.7 ± 1.4 

ab 

 

15.8 ± 1.5 

ab 

 

11.5 ± 0.9 

 

11.4 ± 0.3 

 

14.3 ± 0.8 

a 

 

13.6 ± 0.3 

a 

 

16.7 ± 1.0 

ab 

 

15.3 ± 0.7 

ab 

 

Stature 

(m) 

 

 

1.58 ± 

0.07 

 

1.50 ± 

0.10* a 

 

1.68 ± 

0.07 

 

1.58 ± 

0.08* a 

 

1.74 ± 

0.06 

 

1.64 ± 

0.07* a 

 

1.49 ± 

0.08 # 

 

1.41 ± 

0.06 # * 

 

1.57 ± 

0.09 # a 

 

1.52 ± 

0.07 # *ab 

 

1.64 ± 

0.11# ab 

 

1.73 ± 

0.06# *ab 

 

 

Body 

Mass (kg) 

 

47.7 ± 7.1 

 

42.5 ± 8.8 

 

55.5 ± 6.8 

a 

 

51.5 ± 9.3 

a 

 

63.9 ± 5.2 

a 

 

58.5 ± 8.9 

a 

 

52.0 ± 

15.3 # 

 

36.9 ± 

13.5 # * 

 

49.3 ± 

12.0 # 

 

50.9 ± 

13.5 # 

 

61.3 ± 

11.7 # ab 

 

50.9 ± 7.0 
# * 

 

BMI 

(kg∙m-2) 

 

19.0 ± 1.5 

 

18.7 ± 2.1 

 

19.7 ± 1.8 

 

20.5 ± 2.4 

 

21.1 ± 2.0 

 

21.7 ± 2.4 

 

23.0 ± 5.3 
# 

 

18.3 ± 4.6 
# 

 

20.0 ± 3.7 
# 

 

22.0 ± 5.9 
# 

 

22.9 ± 5.3 
# 

 

20.8 ± 2.4 
# 

 

Maturity 

Offset 

(years) 

 

-1.66 ± 

0.45 

 

-1.97 ± 

0.85 

 

-0.05 ± 

0.54 a 

 

+0.30 ± 

0.36 a 

 

+2.44 ± 

0.79 ab 

 

+2.17 ± 

0.89 ab 

 

-2.11 ± 

0.75 

 

-2.31 ± 

0.77 

 

-0.38 ± 

0.54 a 

 

-0.16 ± 

0.50 a 

 

+1.93 ± 

0.92 ab 

 

+1.45 ± 

0.71 ab 

PHV = Peak Height Velocity, BMI = Body Mass Index; # indicate a significant difference between the same maturity and sex between training groups. * 

Significant difference between sex between the same maturity and sport group. a Significant difference compared to pre-pubertal children of the same sport and sex. 
b Significant difference compared to pubertal adolescents of the same sport and sex 
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Table 6.2 – 30m sprint performance variables in boys 

 

 

Hockey Players Control Participants 

 

 

Pre-PHV Circa-PHV Post-PHV Pre-PHV Circa-PHV Post-PHV 

t_Ppeak (s) 

 

0.54 ± 0.11 0.55 ± 0.12 0.61 ± 0.13a 0.43 ± 0.13b 0.55 ± 0.16b 0.50 ± 0.19ab 

Ppeak (W) 

 

685.8 ± 119.2 864.7 ± 200.0* 957.4 ± 251.6*a 620.4 ± 142.3b 596.0 ± 202.8*b 822.5 ± 222.6*ab 

Relative Ppeak (W∙kg-1) 

 

14.3 ± 2.7 15.6 ± 2.9 14.9 ± 3.6 

 

12.6 ± 3.6b 12.4 ± 4.5b 13.8 ± 4.4b 

Scaled Ppeak (W∙kg-b) 

 

9.3 ± 1.8 

 

9.8 ± 1.8 9.2 ± 2.2 8.1 ± 2.5b 8.0 ± 3.0b 8.6 ± 2.8b 

Pmean (W) 

 

219.0 ± 47.7 277.2 ± 61.8* 337.6 ± 106.1*a 157.4 ± 53.8b 188.2 ± 64.7*b 229.5 ± 65.5*ab 

Relative Pmean (W) 

 

4.6 ± 0.9 5.0 ± 0.8 

 

5.2 ± 1.5 * 3.1 ± 0.8b 3.9 ± 1.2b 3.8 ± 1.2*b 

Vpeak (m∙s-1) 

 

6.60 ± 0.56 6.84 ± 0.42 7.06 ± 0.81*a 5.40 ± 0.75b 6.06 ± 0.94b 6.02 ± 0.88*ab 

Vmean (m∙s-1) 

 

5.62 ± 0.36 5.80 ± 0.30 5.87 ± 0.53*a 4.81 ± 0.55b 5.16 ± 0.64b 5.20 ± 0.65*ab 

30mT (s) 

 

5.35 ± 0.35 5.19 ± 0.27 5.15 ± 0.47*a 6.31 ± 0.74b 5.92 ± 0.97b 5.86 ± 0.80*ab 

Fpeak (N) 

 

390.6 ± 69.8 467.9 ± 96.2* 502.4 ± 102.4*a 420.6 ± 95.4b 366.1 ± 113.4*b 502.7 ± 139.3*ab 

Relative Fpeak (N∙kg-1) 

 

8.1 ± 1.2 8.4 ± 1.4 7.8 ± 1.4 8.4 ± 2.0 7.5 ± 2.2 8.3 ± 2.2 

Scaled Fpeak (N∙kg-b) 

 

8.7 ± 1.2 9.0 ± 1.5 8.3 ± 1.5 8.9 ± 2.1 7.9 ± 2.3  8.8 ± 2.3 

FR (W∙s-1) 

 

137.3 ± 34.7 189.0 ± 86.4* 180.6 ± 73.6* 120.0 ± 41.2b 95.4 ± 52.3*b 159.0 ± 65.6*b 

DRF (%∙s∙m-1) 

 

-7.83 ± 1.39 -7.77 ± 1.25 -7.08 ± 1.33*a -8.50 ± 1.59b -7.43 ± 1.08*b -8.10 ± 1.85b 

All variables reported as mean ± SD. t_Ppeak = Time to peak power, Ppeak = Peak Power, Pmean = Mean Power, Vpeak = Peak Velocity, Vmean = Mean Velocity, 30mT = 

30 m Sprint Time, Fpeak = Peak Force, FR = Fatigue Rate, DRF = Mechanical Efficiency Index, PHV = Peak Height Velocity. * significantly different to pre-pubertal 

children within the same training group (p < 0.05) α significantly different to pubertal adolescents within the same training group (p < 0.05); b significant difference 

compared to the trained equivalents (p < 0.05) 

 



 

 

 

141 

 

Table 6.3 –30 m sprint performance variables in girls 

 

 

Hockey Players Control Participants 

 

 

Pre-PHV Circa-PHV Post-PHV Pre-PHV Circa-PHV Post-PHV 

t_Ppeak (s) 

 

0.62 ± 0.11 0.52 ± 0.05 0.59 ± 0.14a 0.48 ± 0.13b 0.44 ± 0.11b 0.61 ± 0.26b 

Ppeak (W) 

 

547.5 ± 179.9 664.7 ± 132.5* 798.6 ± 167.7*a 358.3 ± 73.8b 561.6 ± 233.1*b 517.1 ± 222.5*ab 

Relative Ppeak (W∙kg-1) 

 

13.2 ± 4.8 13.0 ± 2.1 13.8 ± 2.4 10.5 ± 2.3b 11.1 ± 3.4b 10.1 ± 3.9b 

Scaled Ppeak (W∙kg-b) 

 

8.6 ± 3.2 8.3 ± 1.4 8.6 ± 1.5 6.9 ± 1.9b 7.1 ± 2.2b 6.4 ± 2.5b 

Pmean (W) 

 

189.0 ± 56.5 214.3 ± 45.0* 274.9 ± 61.2*a 110.8 ± 26.2b 140.3 ± 36.2*ab 172.5 ± 39.3*ab 

Relative Pmean (W) 

 

4.6 ± 1.5 4.2 ± 0.87 4.7 ± 0.85* 3.2 ± 0.55b 2.8 ± 0.5b 3.4 ± 0.7*b 

Vpeak (m∙s-1) 

 

6.58 ± 0.62 6.31 ± 0.63  6.68 ± 0.56*a 5.51 ± 0.45b 5.16 ± 0.44b 5.70 ± 0.54*ab 

Vmean (m∙s-1) 

 

5.49 ± 0.50  5.43 ± 0.43 5.62 ± 0.33*a 4.79 ± 0.34b 4.61 ± 0.35b 4.84 ± 0.45*b 

30mT (s) 

 

5.50 ± 0.49 5.55 ± 0.44 5.35 ± 0.31*a 6.29 ± 0.45b 6.54 ± 0.52b 6.25 ± 0.62b 

Fpeak (N) 

 

310.8 ± 85.2  393.9 ± 68.7* 447.2 ± 92.1*a 240.9 ± 41.6b 395.5 ± 154.4*b 434.6 ± 130.3*ab 

Relative Fpeak (N∙kg-1) 

 

7.4 ± 2.0 7.7 ± 0.6  7.7 ± 1.2 7.1 ± 1.3 7.8 ± 2.0 6.5 ± 2.3 

Scaled Fpeak (N∙kg-b) 

 

7.8 ± 2.1 8.2 ± 0.7 8.2 ± 1.3 7.3 ± 1.7  8.2 ± 2.1 6.9 ± 2.4 

FR (W∙s-1) 

 

102.4 ± 48.7 143.2 ± 40.5* 171.9 ± 47.8* 56.1 ± 19.4b 98.0 ± 48.0*b 79.3 ± 48.0*b 

DRF (%∙s∙m-1) 

 

-7.45 ± 1.37 -8.07 ± 0.65 -7.20 ± 1.35*a -8.04 ± 1.38b -7.99 ± 1.57b -6.49 ± 1.57*ab 

All variables reported as mean ± SD. t_Ppeak = Time to peak power, Ppeak = Peak Power, Pmean = Mean Power, Vpeak = Peak Velocity, Vmean = Mean Velocity, 30mT = 

30 m Sprint Time, Fpeak = Peak Force, FR = Fatigue Rate, DRF = Mechanical Efficiency Index, PHV = Peak Height Velocity. * significantly different to pre-pubertal 

children within the same training group (p < 0.05); α significantly different to pubertal adolescents within the same training group (p < 0.05), b significant difference 

compared to the trained equivalents (p < 0.05).  
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Table 6.4 – Predictor variables for 30 m time for each maturity group 

 

Group 

 

Predictor 

Variables 

 

β 

 

Standard Error 

 

R2 

Pre-PHV Training Status 0.55 0.13 0.33 ** 

 Sex -0.11 0.10 0.33 ** 

 Scaled Ppeak -0.19 0.03 0.60 ** 

 DRF -0.12 0.04 0.65 ** 

     

Circa-PHV Training Status 0.60 0.09 0.53 ** 

 Sex 0.19 0.10 0.53 ** 

 Scaled Ppeak -0.20 0.02 0.70 ** 

 DRF -0.14 0.04 0.75 ** 

     

Post-PHV Training Status 0.47 0.07 0.37 ** 

 Sex  0.06 0.05 0.37 ** 

 Scaled Ppeak -0.23 0.02 0.73 ** 

 DRF -0.13 0.02 0.80 ** 

PHV = Peak Height Velocity, Scaled Ppeak = Allometrically scaled peak power, DRF = Mechanical 

Efficiency Index. ** p < 0.01 

 

6.4 Discussion 

This was the first study to investigate the influence of sex, maturity and training status, 

and their interaction, on the kinetic profile of a maximal sprint utilising radar 

technology in combination with F-v-P profiling during an ecologically valid sprint. 

Overall, the findings that boys produced a higher Ppeak and Fpeak than girls even after 

allometric scaling and irrespective of maturity suggest potential sex-related 

differences in muscle fibre recruitment. Moreover, given that training and sex account 

for ~20% more variance in 30mT in pubertal adolescents than pre- and post-PHV 

children and adolescents. These findings therefore provide evidence that the 

development of sprint performance is sexually dimorphic which should be considered 

in the design of training programmes in youth. 

A significant interaction between sex, maturity and training status was identified for 

Vpeak, with a greater difference between trained and untrained circa-PHV participants 

(19.8%) compared to their pre- and post-PHV counterparts (< 11.0%). This supports 

the growing body of evidence regarding the non-linear development of sprint 

performance throughout growth and maturation (Meyers et al., 2015; Meyers et al., 

2017a; Moran et al., 2016; Papaiakovou et al., 2009; Rumpf et al., 2015b; Rumpf et 

al., 2012), but also indicates the potential potency of training on sprint performance 

around the time of PHV in boys. Furthermore, this indicates that sprint development 
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during adolescence may be sexually dimorphic, particularly around PHV, which may 

be explained, at least in part, by key differences in the hormonal milieu manifest from 

the onset of puberty. Specifically, close to PHV, boys experience a greater increase in 

androgenic hormones, including testosterone and growth hormone, than girls, which 

is associated with increased fat free mass (Farr, Laddu, & Going, 2014; Fellmann & 

Coudert, 1994a), muscle cross sectional area (Armstrong, 2007; Van Praagh, 2000; 

Van Praagh & Doré, 2002), and proportion of type II muscle fibres in boys (Van 

Praagh, 2000; Van Praagh & Doré, 2002). These hormonal changes led to the ‘trigger’ 

hypothesis being proposed (Katch, 1983) whereby adaptations and performance 

improvements in response to a training stimuli would be enhanced following the onset 

of puberty. Whilst the ‘trigger’ hypothesis is largely refuted in relation to 

cardiorespiratory fitness (Armstrong, 2007; Armstrong & McNarry, 2016; Rowland, 

1997), the present study indicates that sprint performance responses to training may 

be enhanced during puberty in boys.   

Despite the non-linear increases in Vpeak, 30mT was only significantly faster in post-

PHV adolescents compared to pre-PHV and circa-PHV participants, with no 

significant differences between pre-PHV and circa-PHV children. These findings are 

in direct contrast to the Papiakovou et al. (2009) who reported near linear increases in 

maximum velocity with age. Such discrepancies are likely due to Papiakovou et al. 

(2009) not accounting for maturity status, with the timing and tempo of maturity 

varying between individuals, even of the same age, sex and ethnicity (Rogol, 2002; 

Rogol et al., 2002). Therefore, potential maturational differences between participants 

within age categories described in Papiakovou et al. (2009) may have produced 

spurious associations. Nevertheless, the results of the current study are in accord with 

Meyers et al. (2015) and Rumpf et al. (2015b) who attributed the lack of performance 

improvements in pubertal boys to ‘adolescent awkwardness’ (Buenen et al., 1998). 

Adolescent awkwardness is a phenomenon attributed to a period around PHV where 

adolescents experience a decline or plateau in performance, thought to be reflective of 

a temporary disruption in motor control (Buenen et al., 1998). Whilst adolescent 

awkwardness does not affect all adolescents (Lloyd et al., 2015), the present study 

supports this hypothesis, but also suggests girls may be more susceptible to adolescent 

awkwardness than boys. More specifically, pubertal girls, irrespective of training 
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status, had a lower Vpeak and a slower 30mT compared to their pre- or post-PHV 

counterparts. It is, however, pertinent to note that currently no objective maximal 

criteria for anaerobic performances are available and it could therefore be postulated 

that sub-maximal efforts may have been accepted in the pubertal girls, although this 

seems unlikely given the motivation provided during each sprint, the longer sprint 

distance to minimise deceleration, and the consistency of performance decline 

observed in all participants. Nevertheless, future research is warranted to establish 

maximal sprint criteria and to further elucidate the potential underlying mechanisms 

for these apparent sex differences.  

The lack of differences in 30mT between pre-PHV children and circa-PHV 

adolescents in the present study could be explained, at least in part, by the lack of 

significant difference in the technical ability to apply force, indicated by DRF. Indeed, 

DRF was only significantly lower in post-pubertal adolescents, irrespective of sex or 

training status, compared to both pre- and circa-PHV children. A more positive DRF 

indicates a greater ability to maintain a greater horizontal force production at higher 

sprinting velocities (Morin et al., 2011; Rossi et al., 2017), with DRF shown to be more 

important for sprint performance than total force production in a sample of 

recreationally active adults (Morin et al., 2011). These results are congruent with the 

only other study reporting changes in DRF in a paediatric population which reported a 

significant difference in DRF between children and adolescents (Rossi et al., 2017). In 

accord with the present study, these observations were independent of relative Fpeak, 

and allometrically scaled Fpeak, which remained constant between children and 

adolescents. Building on the findings of Rossi et al. (2017), the current study shows 

that maturity-, as well as age-, related, differences in DRF may also be evident and 

explain a significant proportion of variance in sprint performance. Maturity-related 

differences in DRF may be attributable to differences in segmental growth rates in 

relation to the trunk (Rumpf et al., 2015b). However, given the cross-sectional nature 

of this study, no conclusions regarding the impact of differing growth rates can be 

drawn, thus necessitating future research.  

Whilst there are strengths associated with the current study, including the large sample 

size and the quantification of sprint kinetics in field-based settings thus enhancing the 

ecological validity, there are limitations which must be acknowledged. First, no 



 

 

 

145 

 

spatiotemporal variables (i.e. stride length) were assessed which could have provided 

greater insight into the kinetic and spatiotemporal interaction on sprint development 

in youth. Furthermore, whilst all trained participants were part of a LTAD program, 

they were all involved in the same training regime, precluding inferences regarding 

the effectiveness of different training methodologies on the kinetic sprint profile. In 

the absence of no objective criteria of maximal effort, it is possible that some 

participants produced submaximal efforts, potentially producing spurious 

associations. However, motivational techniques were used throughout all tests, which, 

coupled with an extended finish line (35 m), minimised this risk. Additionally, F-v-P 

profiling does not allow the power and force variables of specific muscles to be 

elucidated, precluding the development of specific training interventions. Finally, the 

ecological validity of a single sprint has been questioned, especially in team sports 

(Mendez-Villanueva et al., 2010; Mujika et al., 2009; Rommers et al., 2018), thus 

repeated sprint ability may provide greater insights into fatiguability. 

In conclusion, this was the first study to examine kinetic changes in sprint 

development in a large sample of trained and untrained boys and girls, accounting for 

maturity status. Sprint performance increases may be attributed to increases in power, 

and an improved technical ability to apply force, irrespective of sex. Moreover, this 

study provides evidence that girls may be more susceptible to ‘adolescent 

awkwardness’ than boys though, as the first study to investigate the kinetic sprint 

profile in girls, future research is warranted to establish the underlying mechanisms in 

more detail. Furthermore, studies should seek to establish the kinetic sprint profile 

over repeated sprints to identify the fatiguing mechanisms in paediatric populations. 
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Chapter 7 (Study 4) – Understanding the kinetics of 

repeated sprint ability using radar technology in national 

level adolescent hockey players 

 

7.1 Introduction 

Repeated sprint ability (RSA), defined as the ability to repeatedly reproduce consistent 

maximal efforts (Girard et al., 2011), is fundamental to athletic performance in team 

sports and routinely assessed in long-term athlete development (LTAD) programs and 

talent identification batteries (Girard et al., 2011; Mendez-Villanueva et al., 2010; 

Moran et al., 2016; Papaiakovou et al., 2009). The development of single-sprint 

performance during childhood and adolescence is thought to be a non-linear process, 

with accelerated periods of development around the time of peak height velocity 

(PHV; Mendez-Villanueva et al., 2010; Mujika et al., 2009; Philippaerts et al., 2006; 

Spencer et al., 2011). However, changes in RSA are less well understood; to elucidate 

the development of RSA, further consideration of the determinants of RSA is required.  

The determinants of RSA have been postulated to be both physiological and 

biomechanical in nature (Girard et al., 2011; Morin et al., 2011; Morin et al., 2006; 

Rossi et al., 2017; Rumpf et al., 2013; Rumpf et al., 2015b; Samozino et al., 2016). 

Indeed, from a biomechanical perspective, sprint performance is suggested to be 

directly proportional to peak horizontal force (Fpeak) and peak power (Ppeak) during the 

initial acceleration (Morin et al., 2011; Rabita et al., 2015). An athlete’s capacity to 

produce Fpeak whilst running is well described by the force-velocity relationship 

(Morin et al., 2006; Rossi et al., 2017; Samozino, 2018), which characterises the 

theoretical limits of the entire neuromuscular system and the theoretical exponents of 

Fpeak, Ppeak and maximum velocity (Vmax; Samozino et al. 2016). These mechanical 

variables appear to be the primary determinants of single-sprint performance in 

irrespective of age and maturity (r2: 0.98 - 0.99; Rumpf et al., 2015b). However, the 

relative contribution of performance predictors has been suggested to be dependent on 

maturity stage (Meyers et al., 2015; Meyers et al., 2017a; Papaiakovou et al., 2009; 

Philippaerts et al., 2006), with vertical stiffness, a reflection of the ability to tolerate 

and overcome gravitational forces, being the greatest predictor of sprint performance 
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in pubertal adolescents (Rumpf et al., 2013; Rumpf et al., 2015b). This potential role 

of maturity necessitates the need for a robust, ecologically valid method so that 

repeated sprint determinants, and development, can be monitored. Indeed, the results 

of Rumpf et al. (2015a, 2015b) must be interpreted with caution, due to the use of a 

non-motorised treadmill and derivation of the biomechanical parameters from only the 

four fastest consecutive steps in Rumpf et al. (2015b), limiting their generalisability 

to real-world environments.  

The mechanisms underpinning Fpeak and Ppeak are multifaceted and represent a 

complex interaction between neural, anthropometric and morphological factors, and 

individual muscle properties (Morin et al., 2011; Morin et al., 2006; Rabita et al., 

2015). Interestingly, the technical ability to apply force (DRF) has recently been 

postulated to be more influential than absolute Fpeak (Morin et al., 2011; Rossi et al., 

2017), highlighting that technique and skill proficiency may also be of importance. 

Whilst the influence of DRF has been reported in world-class (Rabita et al., 2015) and 

masters athletes (Slawinski et al., 2017), little is known about its role in sprint 

performance in youth athletes. Indeed, it was recently reported that single-sprint DRF 

improved with age in a sample of 68 children and adolescents using a novel field-

based methodology (Rossi et al., 2017). However, whether DRF is equally important 

for multiple-sprint performance remains largely unknown and thus further research is 

therefore required to delineate the potential effects of age and maturation and their 

interaction with training on the determinants of sprint performance. 

Rossi et al. (2017) used radar technology, enabling near instantaneous measures of 

velocity (> 46 Hz), coupled with macroscopic biomechanical modelling, to estimate 

force and power variables in field-based settings (Samozino, 2018; Samozino et al., 

2016). This radar technology has the ability to measure both inbound and outbound 

velocities (Simperingham et al., 2017; Simperingham et al., 2016), thereby enabling 

the quantification of between sprint differences. Indeed, such high-resolution 

quantification of the kinetics underpinning repeated sprints could not only further our 

understanding of, but also facilitate targeted interventions to improve, RSA during 

childhood and adolescence (Girard et al., 2011; Samozino et al., 2016; Simperingham 

et al., 2017). Therefore, the aim of this pilot study was to assess RSA using radar 
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technology and biomechanical modelling in trained children and adolescents to gain a 

greater understanding of the underlying kinetics during repeated over-ground sprints.  

 

7.2 Methods 

Twenty children and adolescents (n=15 girls; Table 1) involved in international age-

group hockey tournaments and part of a LTAD program overseen by the national 

governing body participated. A pre-screening medical questionnaire and informed 

parent/guardian consent were completed online using a custom-built consent form 

(Survey Monkey, Dublin, Ireland). Written participant assent was obtained on the day 

of testing. Ethics approval was obtained from the institutional ethics committee and 

the study conformed to the Declaration of Helsinki.  

7.2.1 Experimental Procedures 

Standing and sitting stature were measured to the nearest 0.1 cm using a Seca 213 

portable stadiometer (Seca 213, Seca, Chino, CA, USA), with body mass measured to 

the nearest 0.1 kg using a set of electronic scales (Seca 803, Seca, Chino, CA, USA). 

Maturity offset was subsequently calculated using the equations of Mirwald et al. 

(2002a).  

Prior to undertaking the repeated-sprint protocol, participants undertook a 

standardised five-minute low-intensity warm-up, culminating in two 15 m sprints that 

simultaneously served as familiarisation with the sprint protocol. For the repeated-

sprint protocol, participants completed five 20 m shuttle sprints, turning 180° every 

20 m. To minimise the potential confounding effects of differences in turning speed 

between participants and sprints, participants were required to stop for 5 s before 

accelerating into the next maximal sprint. Sprint times and kinetic variables were 

subsequently derived from the initial 15 m to minimise the effects of deceleration. 

Participants started from a two-point standing start to reduce vertical displacement 

during the early phase of the sprint (Mero et al., 1992) and were instructed to start 

using auditory cues (i.e. ‘3…..2…..1…..GO!’).  

All sprints were completed on outdoor AstroTurf pitches, with the mean air 

temperature and wind speed being 15.8 ± 0.8ºC and 1.6 ± 0.8 m⋅s-1, respectively. 

Velocity was measured throughout all sprints using a STALKER ATS II radar gun 
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(STALKER, Plano, Texas, USA) mounted on a tripod positioned 10 m behind the start 

line, in accord with manufacturer recommendations. The STALKER ATS II has a 

recording frequency of 46.875 Hz, allowing for near-instantaneous power and force 

variables to be modelled. The data was first segmented into five sections to represent 

each repeated sprint and, subsequently, the first reading of each new sprint was 

assigned time 0, and the first 0.3 s deleted in line with previous recommendations 

(Samozino, 2018). Using the biomechanical model of Samozino et al. (2016), the 

following parameters were derived for each sprint: time to peak power (t_Ppeak), 

absolute, relative and scaled peak power (Ppeak), mean power (Pmean), relative mean 

power (relative Pmean), peak and mean velocity (Vpeak and Vmean, respectively), 15 m 

sprint time (15mT), absolute, relative, and allometrically scaled peak force (Fpeak), 

fatigue rate (FR) and DRF. Furthermore, to aid comparisons with previous literature, 

the fatigue index (FI) was calculated using the formula reported elsewhere (Mujika et 

al., 2009). 

7.2.2 Statistics  

All statistical analyses were conducted in SPSS (Version 26.0, IBM, Armonk, NY, 

USA), with values presented as mean ± SD. Sex differences in anthropometric 

variables were assessed using an independent samples t-test. A repeated measures 

ANOVA was used to compare performance parameters between sprints, with 

Bonferroni corrections applied where necessary. Cohens d effect sizes were also 

calculated to determine trivial (≤ 0.20), moderate (≥ 0.21 – ≤ 0.60), large (≥ 0.61 – ≤ 

0.80), and very large (≥ 0.81) effects, respectively. Hierarchical linear regressions 

were used to ascertain the biomechanical determinants of each 15 m sprint repetition. 

Allometrically scaled Ppeak was initially added into the model due to the emerging 

associations with single-sprint performance in children and adolescents (Rumpf et al., 

2015a; Rumpf et al., 2015b). Subsequently, predictor variables were entered into the 

models to deterimine the independent association with each repetition’s 15mT, with 

inclusion into the model accepted if a significant increase in explained variance was 

observed at the 0.05 confidence interval. Collinearity checks were conducted using 

the variance inflation factor (VIF), with a VIF < 1, between 1 and 5, and greater than 

5 indicating low, moderate and high collinearity, respectively (Daoud, 2017). If high 

multi-collinearity was found between variables, the variable explaining the greatest 
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proportion of variance was included in the model (Daoud, 2017). The accuracy and 

suitability of the model was assessed using the normality of residual values.  

To assess overall RSA, the mean percentage decline from the first to last sprint was 

calculated for each mechanical variable with a subsequent hierarchical stepwise linear 

regression used to ascertain which variables predicted the decline in performance 

according to the 15mT. Pearson’s correlations were performed to establish the 

relationship between the relative declines in kinetic variables over the repeated sprints.  

 

7.3 Results  

There were no sex differences in any anthropometric or repeated sprint parameter (p 

> 0.05), so data from both sexes were pooled for analysis. The repeated measures 

ANOVA demonstrated a main effect for sprint number, with post-hoc analyses 

demonstrating that, as shown in Figure 1, this was primarily attributable to differences 

between the first two sprints and all subsequent sprints. More specifically, there was 

a main effect for Ppeak regardless of how it was expressed, with post-hoc tests revealing 

Ppeak during sprint 1 was significantly higher than sprint 4 (d = 0.54 – 0.75; Table 2). 

Pmean, relative Pmean, and DRF were significantly higher during sprint 1 compared to all 

other sprints (Pmean: F(4,76) = 23.7, p < 0.01, relative Pmean: F(4,76) = 24.7, p < 0.01, DRF: 

F(4,76) = 2.6, p < 0.01), with Pmean and relative Pmean also significantly higher during 

sprint 2 compared to sprint 4 (p < 0.01, d = 0.45). There was an overall effect sprint 

number on Vpeak (F(4,76) = 29.4, p < 0.01), Vmean (F(4,76) = 17.4, p < 0.01) and 15mT 

(F(4,76) = 17.1, p < 0.01), with post-hoc analyses revealing that Vpeak, Vmean and 15mT 

decreased from sprints 1-4, before increasing slightly in sprint 5 (Table 2). However, 

as shown in Figure 1c, there were no significant differences in Fpeak, irrespective of 

whether it was expressed in absolute, relative, or allometrically scaled units, over the 

five sprint repetitions (all p > 0.05). Additionally, t_Ppeak and FR did not significantly 

change with each sprint repetition. The average FI over the five sprint repetitions was 

11.0 ± 3.9%. 

3.1 Biomechanical determinants of repeated sprints 

In model 1 in which only allometrically scaled Ppeak was entered, 74 – 82% of the 

variance in the 15mT from sprints 1 – 4 was explained, with the explained variance 
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lower for sprint 5 (62%). DRF was found to be a significant additional predictor of 

sprint performance for sprints 1, 2, 3 and 5, increasing the explained variance to 84 – 

92%. Mean allometrically scaled Ppeak across the five-sprints explained a large 

proportion of the variance in the mean 15mT (81%), with the inclusion of mean DRF 

significantly increasing the explained variance to 90%. The hierarchical linear 

regression revealed that percentage declines in Vmax was the strongest predictor of 

15mT (37.9%), followed by DRF (34.7%) and allometrically scaled Fpeak (18.9%). 

Subsequently, the percentage decline in 15mT was described by: 

Percentage decline in 15mT = -0.903 + (0.629 * Vmax) + (0.143 * DRF) + (0.415 * 

allometrically scaled Fpeak) 

A significant correlation was evident between the percentage decline in 15mT and 

allometrically scaled Ppeak (R
2 = 0.76, p < 0.01) but Ppeak was not entered into the 

regression model due to its high collinearity with Vmax and Fpeak. Declines in Fpeak were 

more strongly related to declines in Ppeak during the repeated sprints (R2 = 0.89, p < 

0.01) than changes in Vmax (R
2 = 0.42, p < 0.05).  

 

Table 7.1 – Participant descriptives  

 Mean ± SD 

 

Age (years) 

 

14.4 ± 1.0 

Height (m) 

 

1.66 ± 0.08 

Weight (kg) 

 

58.0 ± 10.4 

BMI (kg⋅m-2) 21.1 ± 3.2 

Maturity Offset (years) 

 

0.75 ± 0.23 

BMI = Body Mass Index 
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a 

 

 

 

 

 

b 

 

 

 

 

 

 

c 

 

Figure 7.1 – Post-processed representative traces from the five sprint repetitions for a 

typical participant showing a) velocity-time profile, b) power-velocity profile and c) 

the force velocity profile. 
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Table 7.2 – Sprint variables from each of the 5 x 15m sprint repetitions across all five sprints 

 

 

Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5 Significant Differences 

t_Ppeak (s) 

 

0.56 ± 0.12 0.52 ± 0.11 0.50 ± 0.12 0.50 ± 0.07 0.53 ± 0.11 - 

Ppeak (W) 

 

732.0 ± 268.3 647.9 ± 190.8 659.7 ± 238.8 606.2 ± 190.7 a 643.3 ± 198.8 1 – 4, d = 0.54 

Relative Ppeak (W⋅kg-1) 

 

12.6 ± 3.7 11.2 ± 2.6 11.2 ± 2.8  10.4 ± 2.2 a 11.0 ± 2.3 1 – 4, d = 0.72 

Scaled Ppeak (W⋅kg-b) 

 

7.9 ± 2.3 7.0 ± 1.7  7.0 ± 1.7 6.5 ± 1.3 a 6.9 ± 1.4 1 – 4, d = 0.75 

Pmean (W) 

 

362.1 ± 95.8 318.0 ± 91.4 a 308.2 ± 102.0 a 287.4 ± 91.4 a b  286.7 ± 77.6 a 1 – All other sprints (d = 0.47 – 0.86) 

2 – 4, d = 0.33 

 

Relative Pmean (W⋅kg-1) 

 

6.3 ± 1.4 5.5 ± 1.4 a 5.3 ± 1.3 a 5.0 ± 1.2 a b 5.0 ± 1.1 a 1 – All other sprints (d = 0.57 - 1.03) 

2 – 4, d = 0.40 

 

Vpeak (m⋅s-1) 

 

5.87 ± 0.51 5.51 ± 0.50 a  5.40 ± 0.48 a e 5.30 ± 0.45 a b e  5.61 ± 0.52 a  1 – All other sprints (d = 0.71 - 1.16) 

2 – 4, d = 0.42 

4 – 5, d = 0.64 

 

Vmean (m⋅s-1) 

 

4.40 ± 0.40 4.15 ± 0.30 a e 4.12 ± 0.30 a e 4.05 ± 0.27 a e 4.35 ± 0.35 1 – Sprints 2,3 and 4 (d = 0.71 - 1.13) 

5 – Sprints 2, 3 and 4 (d = 0.58– 0.96) 

 

T15m (s) 

 

3.43 ± 0.31 3.63 ± 0.29 a e 3.67 ± 0.29 a e 3.73 ± 0.28 a e 3.47 ± 0.29 1 – Sprints 2,3 and 4 (d = 0.71 – 1.13) 

5 – Sprints 2, 3 and 4 (d = 0.58 – 0.96) 

 

Fpeak (N) 

 

445.2 ± 151.7 421.4 ± 112.1 435.3 ± 139.4 411.9 ± 110.3 417.7 ± 118.5 - 

Relative Fpeak (N⋅kg-1) 

 

7.7 ± 2.0 7.3 ± 1.4 7.4 ± 1.5 7.1 ± 1.0 7.2 ± 1.3 - 

Scaled Fpeak (N⋅kg-b) 

 

3.6 ± 0.9 3.5 ± 0.7 3.5 ± 0.7 3.4 ± 0.4 3.4 ± 0.6 - 

FR (W⋅s-1) 

 

272.6 ± 150.8 245.7 ± 99.4 263.9 ± 133.9 243.2 ± 106.1 211.6 ± 90.2 - 

DRF (%⋅s⋅m-1) 

 

-7.64 ± 1.03 -8.63 ± 1.44 a -8.51 ± 1.49 a -8.93 ± 1.19 a -8.34 ± 1.45 a 1 – All other Sprints (d = 0.40 - 0.78) 

All variables presented as mean ± SD. t_Ppeak = Time to Peak Power, Ppeak = Peak power, Pmean = Average power, Vpeak = Peak Velocity, Vmean = Average velocity, T15m = 15m sprint 

time, Fpeak = Peak Force, FR = Fatigue Rate, DRF = Mechanical Efficiency Index. a significantly different compared to sprint 1, b significantly different compared to sprint 2, c 

significantly different compared to sprint 3, d significantly different compared to sprint 4, e significantly different compared to sprint 5. 
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Table 7.3 – Biomechanical determinants of 15 m sprint time for each repetition.  

Scaled Ppeak = Allometrically Scaled Ppeak, DRF = Mechanical Efficiency Index, * p < 0.05, ** p < 0.01 

 

7.4 Discussion 

This study was the first to utilise radar technology in combination with macroscopic 

biomechanical modelling to gain greater insights into the mechanical properties 

underpinning repeated-sprint ability in adolescents. The main findings of the current 

study indicate that declines in allometrically scaled Ppeak are more closely related to 

declines in Fpeak than peak velocity. Moreover, the similar kinetic determinants 

revealed that, irrespective of sprint number, the kinetic determinants of single sprints 

are also key to RSA performance. Finally, DRF was found to be a significant predictor 

of both single- and multiple-sprint kinetics. The results of this study therefore provide 

important insights for designing and implementing training interventions to improve 

RSA in youth athletes.  

Data from non-motorised treadmills in boys (Rumpf et al., 2015b) and force platforms 

in girls (Nagahara et al., 2019) indicate that Ppeak and Fpeak are key determinants of 

single-sprint performance during youth. In contrast, the present study suggests that 

DRF, an indication of mechanical efficiency, is a greater predictor of single-sprint 

performance than Fpeak. This is in agreement with data in trained youth (Rossi et al., 

2017) and adult (Morin et al., 2011) sprinters, which was attributed to Fpeak being the 

sum of both horizontal and vertical forces, with the latter not significantly influencing 

performance (Morin et al., 2011; Morin et al., 2006). However, DRF represents the 

linear decline in the ratio of forces (horizontal: vertical) with increasing velocity, and 

 

Sprint Number 

 

Predictor Variables 

 

β 
 

Standard Error 
 

R2 
1 Scaled Ppeak -0.12 0.02 0.78 ** 

 DRF -0.04 0.02 0.84 * 

     

2 Scaled Ppeak -0.15 0.02 0.74 ** 

 DRF -0.08 0.02 0.88 ** 

     

3 Scaled Ppeak -0.15  0.02 0.82 ** 

 DRF 0.07 0.02 0.92 ** 

     

4 Scaled Ppeak -0.19 0.02 0.79 ** 

     

5 Scaled Ppeak -0.16 0.03 0.62 ** 

 DRF -0.20  0.02 0.84 ** 
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may therefore be more performance-orientated (Samozino et al., 2016; Slawinski et 

al., 2017). Of note, DRF has also been reported to significantly decline in repeated 

cycling sprints, whereby participant’s force-efficiency decreased as pedalling 

frequency increased (Sanderson, 1991). Whilst it is not possible to exert zero vertical 

force (and subsequently have a ratio of forces of 100%) as this would preclude running 

motion (Morin et al., 2011; Morin et al., 2006), future research should seek to establish 

optimal values that could improve both single and repeated sprints.  

Allometrically scaled Ppeak and velocity were significantly higher in sprint 1 compared 

to all other sprints, with the decline in allometrically scaled Ppeak reaching significance 

from sprint 4. In contrast, there were no significant differences between any sprints 

for Fpeak, regardless of how it was expressed. Therefore, it was surprising that declines 

in Fpeak were the primary cause of the reductions in Ppeak over the course of the five 

sprints. Nevertheless, previous research in children has reported that relative Fpeak has 

a very strong relationship with step length and flight length (the distance travelled by 

the COM from toe-off to touchdown; Lloyd, Meyers, Hughes, Cronin, & Oliver, 

2016). Thus, it may be possible that even small changes in relative Fpeak may 

negatively impact upon these crucial kinematic variables, thereby lowering velocity 

(Lloyd et al., 2016; Meyers et al., 2017b). Of note, allometrically scaled Fpeak and Ppeak 

explained significantly more variance in both individual sprint 15mT and the overall 

decline in 15mT across the five sprint repetitions than absolute or relative values. This 

may be due to the near-linear relationship observed between Ppeak, Fpeak and body mass, 

irrespective of sex (Doré et al., 2008; Doré et al., 2005), with ratio-scaling 

consequently penalising heavier, more mature individuals (Nevill et al., 2006; 

Welsman & Armstrong, 2019). Allometric scaling, unlike conventional ratio scaling, 

allows the specific exponent of body mass to be calculated, and is currently the most 

robust statistical method to account for body mass differences in aerobic fitness 

(Nevill et al., 2006; Welsman & Armstrong, 2019). This study therefore recommends 

future research utilises allometric scaling techniques when investigating anaerobic 

performance to provide more meaningful and generalisable results.  

In the present study, similar mechanical determinants of single and repeated sprints 

were evident, therefore suggesting that single- and repeated-sprint ability may be 

governed by the same mechanical properties. From a physiological perspective, 
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declines in Ppeak during repeated cycling sprints have primarily been attributed to 

neuromuscular fatigue, arising from increases in blood lactate concentrations and 

associated reductions in intramuscular pH (Ratel, Duche, Hennegrave, Van Praagh, & 

Bedu, 2002; Ratel, Duche, & Williams, 2006a). Such reductions inhibit the ability to 

recruit type II higher-order muscle fibres, with changes in motor-unit recruitment 

patterns in the quadriceps, measured using an electromyogram, explaining 97% of the 

total work during repeated cycling sprints, interspersed with 30 s rest in untrained 

adults (Girard et al., 2011). Moreover, a reduction in pH may lead to reductions in 

motor co-ordination (Doré et al., 2005; Ratel, Williams, Oliver, & Armstrong, 2006b), 

which may also offer an explanation for DRF as a predictor of fatigue during repeated 

sprints. However, although similar fatiguing pathways seem likely (Ratel et al. 2006), 

whether the same physiological mechanisms are also responsible for the declines in 

running performances remains to be established.  

The trained hockey players in the present study showed a higher decrement in 

performance, as measured using FI (11.9%), to that reported in highly trained 

footballers (4.1 – 5.5%; Girard & Farooq, 2012; Mujika et al., 2009), most likely due 

to differences in the repeated-sprint protocol. Specifically, most repeated-sprint 

studies incorporate 10 – 30 s of rest between repetitions (Meckel, Machnal, & Eliakim, 

2009; Mendez-Villanueva et al., 2010; Mujika et al., 2009; Temfemo et al., 2011), 

whereas this study utilised a near-continuous protocol. Whilst it could be argued that 

incorporating rest between sprints is more indicative of team-sport scenarios (Mendez-

Villanueva et al., 2010), the inclusion of rest periods facilitates aerobic recovery. 

Indeed, previous paediatric research found a significant correlation between aerobic 

capacity and fatigue resistance during repeated-sprint protocols (Mendez-Villanueva 

et al., 2007). Moreover, Dupont et al. (2005) reported that the magnitude of change in 

sprint time was negatively correlated with the speed of the pulmonary V̇O2 kinetics in 

adults (r2 = 0.80, p < 0.01), with faster pulmonary V̇O2 kinetics postulated to spare 

intramuscular phosphocreatine for the later sprints and thereby increasing RSA 

performance (Dupont et al., 2005). Therefore, future research should seek to establish 

physiological determinants of repeated-sprint performance in children and 

adolescents, to further explain the declines in mechanical variables during sprint 

running. 
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It may be pertinent to note that the last sprint (sprint 5) was faster than sprints 2, 3 and 

4, perhaps highlighting that future research should incorporate an increased number 

of sprint repetitions to induce greater fatigue, as well as the potential role of pacing 

resulting in sub-maximal sprints (Bishop & Edge, 2006; Impellizzeri et al., 2008; Ratel 

et al., 2006b). In the absence of criteria to determine a maximal effort, it could be 

postulated that an element of pacing is involved within all repeated-sprint protocols, 

irrespective of recovery period. The present study utilised specific strategies to 

increase and maintain motivation during repeated sprints, including a longer finish line 

distance (Mendez-Villanueva et al., 2010) and verbal encouragement (Mujika et al., 

2009; Philippaerts et al., 2006). However, no studies have examined differences 

between trials with and without motivational techniques so it is unclear whether these 

techniques mitigate the role of pacing.  

Although there are numerous strengths to this study, certain limitations must be noted. 

Data collection was curtailed by COVID-19 resulting in a relatively small sample size, 

thereby limiting generalisability. Furthermore, whilst the macroscopic biomechanical 

model used provides an overview of the kinetics underpinning sprint performance, 

muscle-specific inferences cannot be made. Consequently, the specific muscles 

responsible for the observed power reduction cannot be established, limiting 

intervention specificity. Finally, all participants within this pilot study were circa-PHV 

and therefore no inferences can be made thus far about how the determinants of RSA 

change with respect to PHV.   

In conclusion, radar technology in combination with macroscopic biomechanical 

modelling provides a useful tool for assessing kinetic and kinematic changes in 

repeated-sprint performance. Future studies should seek to establish the RSA 

development in untrained children and adolescents, so the trainability of RSA, and any 

sex, or maturity, differences can be established. 
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Chapter 8 (Study 5) – Health consequences of an elite 

sporting career – long-term detriment or long-term gain? A 

meta-analysis of 165,000 former athletes  

 

8.1 Introduction 

The benefits associated with regular exercise for physical and mental health in the 

general population are well-evidenced, with inactivity strongly correlated with an 

increased risk of premature mortality (Gremeaux et al., 2012; Lee et al., 1995; 

Paffenbarger & Lee, 1998; Sharma, Merghani, & Mont, 2015). Indeed, mortality 

associated with cardiovascular disease (CVD) and cancer, the most prevalent causes 

of mortality worldwide (Roser & Ritchie, 2019), is exacerbated by physical inactivity 

(Al-Mallah et al., 2018; Nystoriak & Bhatnagar, 2018) and decreased by regular 

exercise (Al-Mallah et al., 2018; S Sarna, Kaprio, Kujala, & Koskenvuo, 1997). 

Specifically, it is suggested that for every 1 unit increase in maximal metabolic 

equivalent of task (MET) capacity, the likelihood of CVD mortality is reduced by 15% 

(Al-Mallah et al., 2018). Similarly, cancer incidence and mortality rates were 27% and 

37% lower, in the fittest and least fit group, respectively, in a 16-year longitudinal 

study of Finnish men (Laukkanen et al., 2010). Furthermore, this relationship persisted 

even after accounting for smoking habits, alcohol intake, waist-to-hip ratio, 

socioeconomic status and nutritional intake, highlighting the importance of exercise 

in the prevention of cancer (Laukkanen et al., 2010). 

Despite the benefits associated with regular exercise, there is a body of evidence that 

suggests the exercise-longevity relationship may be ‘J’ shaped, with exercise beyond 

certain volume and intensity thresholds detrimental to health (M. Armstrong et al., 

2015a; Mohlenkamp et al., 2008; O'Keefe, Lavie, & Guazzi, 2015; O'Keefe, O'Keefe, 

& Lavie, 2018; O'Keefe et al., 2012; Schnohr et al., 2015). Specifically, Mohlenkamp 

et al. (2008) reported that, over a two-year observational period, recreational German 

marathon runners had a similar incidence of a cardiovascular (CV) event compared to 

a population with established coronary heart disease (CHD). Furthermore, the 

Copenhagen Heart Study reported light and moderate joggers to demonstrate lower 

mortality hazard ratios (0.22 and 0.66, respectively) compared to strenuous joggers 



 

 

 

161 

 

(HR: 1.97) (Schnohr et al., 2015). Similarly, those who exercised every day in the 

Million Women study were at an increased risk of a CV event compared to women 

who had at least one rest day during the week (M. Armstrong et al., 2015a).  

Elite athletes typically engage in training at levels far exceeding those reported in 

epidemiological studies, raising questions as to whether elite athletes are potentially 

at an elevated risk of premature mortality, CVD and/or cancer (M. Armstrong et al., 

2015a; O'Keefe et al., 2018; O'Keefe et al., 2012). Such a concept has received 

considerable research attention. Indeed, two recent systematic reviews and a meta-

analysis investigated the relationship between long-term intensive training, health, and 

mortality in elite athletes and the general population (Garatachea et al., 2014; Lemez 

& Baker, 2015; Teramoto & Bungum, 2010b). Taken together, these reviews suggest 

that elite athletes live longer than the general population and have a lower mortality 

rate from both CVD and cancer (Garatachea et al., 2014; Lemez & Baker, 2015; 

Teramoto & Bungum, 2010b). However, these reviews did not stratify by sport type 

(i.e. aerobic, power, team sports). Consequently, the importance of training types and 

sporting demands therefore largely remains to be elucidated. For example, in 

comparison to endurance athletes, power (POW) sport athletes have an increased body 

mass index (BMI; Agrotou et al., 2013; Benedettini, 2005), which is an independent 

risk factor for future CVD (Attard et al., 2013). Furthermore, endurance (END) 

training has been shown to lower several key inflammatory markers (Mikkelsen et al., 

2013), which, whilst this remains contentious, could reduce the risk of long-term CVD 

risk (Mohlenkamp et al., 2008; Rosin, 2017).  

Therefore, the aim of this systematic review and meta-analysis was to examine the 

relationship between chronic intensive exercise training and mortality in former elite 

athletes, according to sport type, in comparison to their non-elite counterparts.  

 

8.2 Methods 

8.2.1 Data sources, literature search and inclusion criteria 

This systematic review was registered on PROSPERO (registration number: 

CRD42019130688) and was conducted in accordance with the PRISMA guidelines 

(Moher et al., 2015; Shamseer et al., 2015). The key words were split into three levels 
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to search scientific databases and were compromised of the following i) mortality or 

death or longevity; ii) elite or athletes or Olympic; and iii) excessive or training or 

chronic exercise. All key words were used in combination and different iterations to 

capture all results, with the full search terms available in the supplementary material. 

The inclusion criteria for studies in the meta-analysis was: (i) written in the English 

language; (ii) experimental participants were male or female former athletes of at least 

national standard, with some information on their sporting history provided; (iii) the 

study included a general population reference group; (iv) data were reported on 

mortality, CVD and/or cancer specific mortality in male or female athletes; (v) data 

were reported as a standardised mortality ratio (SMR), or standardised proportional 

mortality ratio (SPMR), with 95% confidence limits, or provided sufficient data 

(observed/expected mortality) to allow either SMR or SPMR to be calculated; and (vi) 

the studies were of a retrospective, or prospective, methodological design. Any non-

peer reviewed grey literature, including conference papers and theses, were excluded. 

Moreover, any studies that had a follow-up of ≤5 years were excluded, along with 

studies which reported the primary outcome of mortality but did not use SMR, or the 

data was not provided to allow this to be calculated. In the case of any disagreements 

regarding the inclusion of a study that were not able to be resolved (between AR and 

MM), KM was consulted which occurred on five occasions.  

Studies were searched for, and identified, through scientific databases and by scanning 

the reference list of identified studies. The search was performed in: Web of Science 

(1970 – 2019), PubMed (1970 - 2019) and SportDiscus (1970 – 2019). All potentially 

relevant studies, including reference lists and abstracts, were compiled in Rayyan 

QCRI software (Ouzzani, Hammady, Fedorowicz, & Elmagarmid, 2016). Two authors 

(AR and MAM) then screened all identified titles and abstracts to identify studies for 

full-text review. From an initial search of 38,047 results, 37,878 were excluded. 

Consequently, 169 were taken forward for full text review of which 43 were finally 

included within the systematic review; 24 of which were also appropriate for the meta-

analysis (Figure 1). 
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8.2.2 Data Extraction 

A data table was created extracting the following information: authors and year of 

publication, number of participants followed, the primary sport of those athletes (if 

available), how long the athletes were followed for, all-cause mortality SMR, CVD-

specific SMR and cancer-specific SMR. When SMR was not directly reported, it was 

calculated from the reported observed and expected deaths as SMR = observed (O) 

death / expected (E) death (Garatachea et al., 2014). If the expected number of deaths 

was not reported from population data, the number in the referent group was used as 

the expected value and the SPMR defined as: (athlete observed death / number in 

athlete population) / (control group death / number in control group). To calculate 95% 

confidence intervals (CI) for both methods, the formula: SMR or SPMR ± (1.96 * 

standard error of estimate; SEE) defined as: √ (O) / E (Morris & Gardner, 1988) was 

used. These two metrics are therefore uniform and can be combined to create a pooled 

SMR. The Newcastle-Ottawa Quality Assessment tool (G. Wells et al., 2019) was used 

to assess the quality of each study included within the meta-analysis.  

Following the overall risk calculations, specific SMR’s were calculated, where 

possible, according to sport. Specifically, in line with other research, END activities 

were defined as any sport requiring more than 10 minutes of continuous effort (Antero-

Jacquemin, Pohar-Perme, Rey, Toussaint, & Latouche, 2018). The END sports in the 

meta-analysis meeting this criterion were: middle- and long-distance runners, rowers, 

cross-country skiers, ice skaters and tour de France cyclists. A ‘team sport’ was 

defined as any sport in which the performance is predominantly made up of repeated 

intermittent efforts (Antero-Jacquemin et al., 2018). Team sports identified in this 

meta-analysis were American footballers, baseball players, footballers, ice hockey 

players and basketball players. Finally, POW sports were defined as any 

predominantly anaerobic sport (S. Sarna, Sahi, Koskenvuo, & Kaprio, 1993). The 

sports in the POW category for this meta-analysis included: boxers, wrestlers, 

weightlifters, and throwing events in track and field.  
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Figure 8.1 – Schematic Flow Diagram of the Systematic Review and Meta-Analysis 

process 

 

8.2.3 Statistics  

All meta-analyses statistics were performed using meta, metagen and metaforest 

packages in R Studio (R Studio v1.2.2019, R Studio, Boston, MA) to calculate the 

pooled SMR and create the subsequent forest plots. Initially, all SMR and SPMR, 

values, and their 95% CI’s, were logged to determine effect sizes on a natural scale 
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and then the SEE was calculated for each study. The resulting data was then run 

through metagen, where the pooled SMR was back-transformed to the original SMR 

scale. The pooled SMR indicates the risk in athletes compared to the general 

population, with a value of < 1 indicating a lowered risk, > 1 indicating a greater risk 

and 1 indicating the same risk. Meta-regressions were also run to establish 

relationships between outcome variables and possible confounding factors using the 

metareg function in R. The pooled SMR was calculated using a random effects model 

with heterogeneity assessed using the I2 and Q statistic. Risk of publication bias 

assessed using a combination of the Egger’s Statistic and funnel plots.  

 

8.3 Results 

The total number of athletes included within the 24 studies was 165,033, with 139,322 

males (84.4%) and 25,711 females (15.6%). There was insufficient data to split the 

females by sport type, so this was only done for male athletes. Of the male sample, 

78,096 (47.3%) were END athletes, 78,689 (47.7%) were team sport athletes, 3,202 

(1.9%) were POW sport athletes, and 5,046 (3.1%) of the athletes were 

Olympians/World Champions where their primary sports could not be established. All 

included studies were of retrospective methodological design. 

The Newcastle-Ottawa scale assesses the methodological quality, and generalisability 

of an individual study, with higher scores indicating high methodological quality. Of 

a possible maximum score of 9 on the Newcastle-Ottawa quality score, five, six, nine 

and four papers scored nine (Baron et al., 2012; Kontro et al., 2018; U. Kujala et al., 

2001; Nguyen, Zafonte, Kponee-Shovein, Paganoni, & Weisskopf, 2019; S. Sarna et 

al., 1993), eight (Antero-Jacquemin et al., 2014; Antero-Jacquemin et al., 2015; 

Kettunen et al., 2015; Lehman et al., 2012; Mackay et al., 2019; Radonic et al., 2017), 

seven (Farahmand et al., 2003; Gajda et al., 2018; Gajewski & Poznanska, 2008; Kalist 

& Peng, 2007; Lincoln et al., 2018; Marijon et al., 2013; Menotti et al., 1990; Schnohr, 

1971b; Taioli, 2007) and six (Belli & Vanacore, 2005; Grimsmo, Maehlum, Moelstad, 

& Arnesen, 2011; van Saase, Noteboom, & Vandenbroucke, 1990; Waterbor, Cole, 

Delzell, & Andjelkovich, 1988), respectively. Funnel plots were used to assess 

publication bias (Appendix 11.5.2) with all-cause, CVD, and cancer mortality 
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demonstrating publication bias, indicated by the wide range of log SMRs reported in 

the included studies. 

Overall, all-cause mortality in male and female athletes was reported in 23 out of 24 

studies (164,833 athletes), creating a pooled SMR of 0.67 (95% CI: 0.59 – 0.75; p < 

0.01), with some evidence of publication bias (p < 0.05; Appendix 11.5.2.1) and 

significant heterogeneity (I2 = 96.9%; Q = 850.7; p < 0.01). Sub-group analyses 

revealed male all-cause mortality was reported in 23 studies (139,122 athletes; 99.7% 

of all male athletes), creating a pooled SMR of 0.66 (95% CI: 0.58 – 0.74; p < 0.01; 

Figure 2), with no evidence of publication bias (p = 0.07) and significant heterogeneity 

(I2 = 97.0%; Q = 730.3; p < 0.01). Female all-cause mortality was reported in four 

studies (25,711 female athletes; 100%) leading to a pooled SMR of 0.51 (95% CI: 0.40 

– 0.65, p < 0.01; Figure 3), with no evidence of bias (p = 0.41) and no significant 

heterogeneity (I2 = 45.1%, Q = 5.5, p > 0.05). There was insufficient data to calculate 

a meta-SMR for either CVD or cancer mortality in females, therefore, this was only 

performed in male athletes. 

Overall, male CVD mortality was reported in 15 studies (118,288 athletes, 84.8%), 

demonstrating a pooled SMR of 0.73 (95% CI: 0.62 – 0.85; p < 0.01, appendix: 

11.5.1.1), with no publication bias (p = 0.26) and significant heterogeneity (I2 = 81.8%, 

Q = 82.6, p < 0.01; Appendix: 11.5.2.2). Overall cancer mortality was reported in 17 

studies (120,782 athletes, 86.7%) with a pooled-SMR of 0.75 (95% CI: 0.63 – 0.89, p 

< 0.05, appendix: 11.5.1.2), no evidence of publication bias (p = 0.28) and significant 

heterogeneity (I2 = 88.1%, Q = 143.1, p < 0.01; Appendix:11.5.2.3).  

Endurance and team sport athlete’s all-cause (END:I2 = 98.7%, p < 0.01; Team: I2 = 

97.0%, p < 0.01) and CVD mortality (END: I2 = 96.3%, p < 0.01; Team: I2 = 78.0%, 

p < 0.01) was significantly lower than the general population, however, POW athletes’ 

all-cause (I2 = 77.8%, p > 0.81) and CVD (I2 = 84.9%, p > 0.46) mortality was not 

significantly different to the general population. For cancer-specific mortality, both 

team (I2 = 86.2%, p < 0.01) and POW (I2 = 53.3%, p < 0.01) athletes pooled-SMR’s 

were significantly lower than the general population, but endurance athlete cancer 

mortality was not (I2 = 96.1%, p > 0.11). All of the sub-analyses were heterogeneous 

(p > 0.05), with the exception of cancer mortality for power athletes (p < 0.05), with 
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no evidence of bias except for team sport all-cause mortality (Eggers test p < 0.05; 

Table 2).  

8.3.1 Meta-Regression and Sensitivity Analyses  

Sensitivity analyses revealed that when i) the four-lowest quality studies were 

removed, ii) only studies incorporating athletes actively competing after 1945, or iii) 

only studies published after 2010 were included, the pooled SMR remained similar to 

the overall SMR (0.64 – 0.68). Indeed, meta-regressions demonstrated no significant 

interaction with SMR for any of the three data constraints. However, when studies 

with ≤ 30 years follow-up were excluded, the pooled SMR increased to 0.74 (95% CI: 

0.65 – 0.84). Moreover, a significant positive association was observed between 

follow-up length and all-cause (β = 0.01, Z = 2.94, p < 0.01) and cancer mortality (β 

= 0.01, Z = 1.93, p > 0.05). However, no significant association was reported between 

follow-up length and CVD mortality SMR (β < 0.01, Z = 0.90, p = 0.36). 

 

Figure 8.2 – Male all-cause mortality forest plot 
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Figure 8.3 – Female all-cause mortality forest plot 
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Table 8.1 – Key information about the studies included within the meta-analysis 

Author & Year 

 

Number of participants Average Follow-

Up  

All-Cause Mortality SMR 

(95% CI) 

CVD Mortality SMR  

(95% CI) 

Cancer Mortality SMR  

(95% CI) 

 

 

Sarna et al. (1993) 

 

2,613 Former Finnish 

Athletes 

 

1,712 Military Control 

Participants 

 

 

 

44.5 years 

 

 

0.92 (0.84 – 1.01) 

 

 

0.95 (0.81 – 1.09) 

 

 

0.96 (0.75 – 1.11) 

 

 

Kettunen et al. (2015) 

2,263 Former Finnish 

Athletes 

 

1,657 Military Control 

Participants 

 

 

 

50 years  

 

 

0.98 (0.91 – 1.05) 

 

 

 

# 

 

 

0.89 (0.76 – 1.03) 

 

Lincoln et al. (2018) 

 

9,778 Former NFL Players 

 

US Reference Values  

 

 

18.5 years 

 

 

0.46 (0.40 – 0.52) ** 

 

0.68 (0.50 – 0.90) ** 

 

0.41 (0.26 – 0.62) ** 

 

 

Antero-Jacquemin et al. 

(2015) 

 

2,403 (601 Female) Former 

French Olympians 

 

French Population Reference 

values  

 

 

 

20.3 years - 43.7 

years  

 

 

M – 0.51 (0.45 – 0.59) ** 

 

F – 0.49 (0.26 – 0.85) ** 

 

M – 0.55 (0.41 – 0.73) ** 

 

Insufficient data to compute F 

SMR 

 

M – 0.55 (0.43 – 0.69) ** 

 

Insufficient data to compute F 

SMR 

 

 

Marijon et al. (2013) 

 

786 former Tour de France 

cyclists 

 

French Population Reference 

Values  

 

 

 

32.5 years 

 

 

0.59 (0.51 – 0.68) ** 

 

 

0.67 (0.50 – 0.88) ** 

 

 

0.56 (0.42 – 0.72) ** 

 

Kontro et al. (2018) 

 

900 Former Finnish Athletes 

 

900 Brothers of the Finnish 

Athletes 

 

77.5 years 

 

1.00 (0.93 – 1.08) 

 

# 

 

 

1.47 (1.22 – 1.73) ** 

 

 

Grimsmo et al. (2011) 

 

 

122 Endurance Skiiers 

 

Norwegian Population 

Reference Values 

 

 

30 years 

 

 

0.78 (0.50 – 1.05) 

 

 

Not Reported 

 

 

Not Reported 
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Antero-Jacquemin et al. 

(2014) 

 

203 French Olympic Rowers 

 

French Population Reference 

Values  

 

 

 

50 years 

 

0.58 (0.43 – 0.78) ** 

 

0.41 (0.16 – 0.84) ** 

 

0.59 (0.29 – 1.07) 

 

 

Menotti et al. (1990) 

 

983 (283 female) former track 

and field athletes 

 

Italian Life Expectancy 

Tables 

 

 

18.6 years  

Overall – 0.70 (0.59 – 0.82) ** 

 

M – 0.73 (0.60 – 0.86) 

 

F – 0.48 (0.20 – 0.76) 

 

 

 

Not Reported 

 

 

Not reported 

 

 

Gajewski & Poznanska, 

(2008) 

 

2,113 (424 Female) Former 

Polish Olympic Athletes 

 

Polish Population Reference 

Values  

 

 

27 years  

Overall – 0.51 (0.48 – 0.54) ** 

 

M – 0.50 (0.44 – 0.56) ** 

 

F – 0.73 (0.48 – 1.05) 

 

 

Not reported 

 

 

Not reported 

 

 

Kujala et al. (2001) 

 

 

2,009 Former Finnish 

Athletes 

 

Finnish Population Reference 

Values 

 

 

47.5 years 

 

 

0.74 (0.69 – 0.79) ** 

 

 

0.72 (0.64 – 0.82) ** 

 

 

## 

 

 

Lehman et al. (2012) 

 

 

3,439 former NFL Players 

 

US Population Reference 

Values 

 

 

33.5 years 

 

 

0.53 (0.48 – 0.59) ** 

 

 

0.68 (0.56 – 0.81) ** 

 

 

0.58 (0.46 – 0.72) ** 

 

 

Waterbor et al. (1988) 

 

  

958 MLB Players 

 

US Population Reference 

Values 

 

 

 

59 years 

 

 

 

0.94 (0.88 – 1.00) 

 

 

# 

 

 

1.05 (0.89 – 1.22) 

 

Taioli, (2007) 

 

5,389 Italian Footballers 

 

Italian Population Reference 

Values  

 

 

28 years  

 

0.68 (0.52 – 0.86) 

 

0.41 (0.20 – 0.73) 

 

0.31 (0.15 – 0.55) 
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Schnohr (1971b) 

 

297 former Danish 

Olympians 

Danish Population Reference 

Values 

 

 

66 years  

 

0.96 (0.79 – 1.12) 

 

0.95 (0.67 – 1.34) 

 

0.94 (0.61 – 1.44) 

 

van Sasse et al. (1990) 

 

2,129 former Dutch 

endurance skaters  

 

Dutch Population Reference 

Population 

 

 

 

32 years  

 

 

0.76 (0.68 – 0.85) 

 

 

Not Reported 

 

 

Not Reported 

 

 

Farahmand et al. (2003) 

 

73,622 (24,403 female) 

endurance ski racers 

 

Swedish Population 

Reference Values  

 

 

 

 

5.5 years 

Overall – 0.48 (0.46 – 0.51)  

 

M – 0.49 (0.44 – 0.54) 

 

F – 0.45 (0.40 – 0.50) 

Overall – 0.43 (0.35 – 0.51) 

 

M – 0.44 (0.36 – 0.54) 

 

F – 0.30 (0.11 – 0.50) 

Overall – 0.61 (0.52 – 0.71) 

 

M – 0.62 (0.52 – 0.74) 

 

F – 0.58 (0.41 – 0.74) 

 

Radonić et al. (2017) 

 

233 Croatian Olympic 

Medalists 

 

Croatian Population 

Reference Values 

 

 

35 years  

 

0.73 (0.56 – 0.94)  

 

0.61 (0.38 – 0.93)  

 

0.70 (0.40 – 1.12) 

 

Baron et al. (2012) 

 

3,439 NFL Players 

 

US Population Reference 

Values  

 

 

34 years  

 

0.53 (0.46 – 0.72) 

 

0.68 (0.56 – 0.81) 

 

0.58 (0.46 – 0.73) 

 

 

Mackay et al. (2019) 

 

7,676 former professional 

footballers 

 

23,028 Control Participants 

 

 

 

18 years  

 

 

0.93 (0.91 – 0.95)  

 

 

# 

 

 

 

## 

 

Nguyen et al. (2019) 

 

16,637 former MLB Players 

 

US Population Reference 

Values 

 

 

36 years 

 

0.76 (0.73 – 0.78)  

 

0.81 (0.77 – 0.85)  

 

 

0.80 (0.75 – 0.86)  

 

Kalist & Peng (2007) 

2,641 former MLB Players 

 

 

20 years  

 

0.31 (0.23 – 0.39) 

 

Not Reported 

 

Not Reported 
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US Population Reference 

Values 

 

 

Belli & Vanacore (2005) 

 

24,000 Italian Footballers 

Italian Population Reference 

Values 

 

18 years  

 

 

1.00 (0.90 – 1.10) 

 

0.83 (0.69 – 1.00) 

 

1.11 (0.97 – 1.28) 

 

 

 

Gadja et al. 2008 (2018) 

 

 

 

455 deceased polish elite 

footballers 

 

Polish population reference 

values  

 

 

 

- 

 

 

 

Not Reported 

 

 

Under 65 – 1.29 (0.90 – 1.68) 

 

Over 65 – 1.17 (0.88 – 1.45) 

 

 

Under 65 – 0.81 (0.45 – 1.16) 

 

Over 65 – 0.94 (0.55 – 1.33) 

CI = Confidence Interval; SMR = Standardised Mortality Ratio; NFL = National Football League; MLB = Major League Baseball, M = Male, F = Female. SMR’s in bold 

indicate a significant difference between the athletes and the control population (p < 0.05). # Kettunen et al. (2015), Kontro et al. (2018), Mackay et al. (2019) all reported 

specific SMR values on Ischemic Heart Disease (IHD) respectively, and Waterbor et al. (1988) reported SMR values for Arteriosclerotic Heart Disease therefore they were 

removed from CVD analyses as overall CVD mortality was assessed. ## Mackay et al. (2019) and Kujala et al. (2001) report SMR’s for lung cancer specifically and so they 

were removed from the overall analysis as overall cancer mortality was assessed.  
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Table 8.2 – Sport-specific all-cause, CVD and cancer pooled-SMR’s  

SMR = Standardised Mortality Ratio, CI = Confidence Interval, Y = Yes, N = No, All SMR’s in bold indicate a significant difference compared to the general 

population (p < 0.05). An analysis was deemed heterogeneous based on a combination of the I2 and Q statistics and if the p value was ≤ 0.05 A analysis was 

deemed not biased if the p value derived from the eggers test was ≥ 0.05.  

 

 

 Endurance Sports 

 

Team Sports Power Sports 

 

 

 

Number of 

athletes  

(%) 

SMR  

(95% CI) 

Heterogenous 

(Y/N) 

Bias 

(Y/N) 

Number 

of athletes 

(%) 

SMR  

(95% CI) 

Heterogenous 

(Y/N) 

Bias 

(Y/N) 

Number of 

athletes 

 (%) 

SMR  

(95% CI) 

Heterogenous 

(Y/N) 

Bias 

(Y/N) 

 

All-Cause 

Mortality 

 

53,476  

(38.4%) 

 

 

0.65 

(0.54 – 

0.77) 

 

Y 

 

N 

 

78,504 

(56.4%) 

 

0.68 

(0.57 – 

0.81) 

 

Y 

 

Y 

 

2,826 

(2.0%) 

 

1.04 

(0.91 – 

1.12) 

 

Y 

 

N 

 

CVD 

Mortality 

 

 

50,788 

(38.4%) 

 

0.63  

(0.44 – 

0.91) 

 

Y 

 

N 

 

65,078  

(55.0%) 

 

0.76  

(0.64 – 

0.92) 

 

Y 

 

N 

 

1885 

(1.6%) 

 

1.10  

(0.86 – 

1.40) 

 

Y 

 

 

N 

 

Cancer 

Mortality 

 

 

50,511 

(38.8%) 

 

0.73 

(0.50 – 

1.07) 

 

Y 

 

N 

 

65,280 

(53.3%) 

 

0.73 

(0.57 – 

0.93) 

 

Y 

 

N 

 

1185 

(1.5%) 

 

0.51 

(0.35 – 

0.75) 

 

N 

 

N 
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8.4 Discussion  

This was the first systematic review and meta-analysis to examine sport-specific all-

cause mortality in former elite athletes and to consider CVD- and cancer-specific 

mortality, the two most prevalent diseases worldwide. The key findings from this 

review are: (i) male and female elite athletes live longer than the general population; 

(ii) male athletes have a lower incidence of CVD and cancer mortality than the general 

population; (iii) power sport athletes all-cause and CVD mortality was not 

significantly different to the general population; (iv) endurance athletes cancer 

mortality was not significantly different to the general population and (v) increased 

follow-up length increased the SMR for all-cause and cancer mortality, but not CVD. 

Furthermore, there is currently insufficient data to allow sport-level comparisons for 

female athletes.  

8.4.1 All-Cause Mortality 

Over recent years, an argument has been made that chronic, intensive exercise may be 

harmful to health (O'Keefe et al., 2015; O'Keefe et al., 2018; O'Keefe et al., 2012) and 

lead to a greater chance of premature mortality, or an increased incidence 

cardiovascular events (Ekelund et al., 2016; Mohlenkamp et al., 2008; Schnohr et al., 

2015). However, the current evidence refutes these arguments; male and female 

athletes had a 31% and 49% lower risk of all-cause mortality than the general 

population, respectively. This seems to indicate that the female survival advantage 

(females are expected to live 6 – 8 years longer than males at birth; World Health 

Organisation, 2019) persists, and is even extended, after a career in elite sport. 

However, female mortality was only explored in 25,711 athletes, 24,403 (94.9%) of 

which were identified from a single study (Farahmand et al., 2003), hence there was 

no significant heterogeneity within the pooled-SMR generated. Therefore, more 

research in female athletes is needed to confirm the survival benefit in highly active 

female athletes. Moreover, more research including a follow-up period of ≥ 30 years 

are needed given the positive association between reduced survival estimates and 

follow-up time.  

Given that the standardised mortality ratio was the most common method of reporting 

the risk of mortality in elite athletes, this method was chosen for the meta-analysis. 

However, life expectancy and age at death in male athletes has also been explored. 



 

 

 

175 

 

Specifically, Clarke et al. (2012) reported an average 2.8 year survival advantage in a 

cohort of 15,174 Olympic athletes from nine countries, with a cohort study of 2,814 

French Olympians gaining an average of 6.5 years (Antero-Jacquemin et al., 2018). 

These results are therefore largely in accord with those of the current meta-analysis, 

as the lowered SMR risk indicates a longer survival in former elite athletes compared 

to the general population.  

Despite the apparent survival benefit of elite athletes, one common and important 

criticism of the literature is the applicability of comparing former elite athletes to the 

general population. Elite athletes may be characterised by healthier lifestyles post-

retirement than the general population and engage in more leisure-time physical 

activity (LTPA), both of which predict all-cause mortality (Backmand, Kujala, Sarna, 

& Kaprio, 2010; Fogelholm, Kaprio, & Sarna, 1994; Gajewski & Poznanska, 2008; 

Kontro et al., 2018). It is therefore not currently possible to distinguish the influence 

of intensive training per se from overall lifestyle factors. Indeed, it may be worth 

noting that when Sarna et al. (1993) and Kettunen et al. (2015) used a control group 

formed of military fit personnel, the SPMR was not significantly different relative to 

elite athletes (0.92 and 0.98, respectively). Additionally, some studies have only 

reported survival benefits up to a specific age, rather than across the whole lifespan 

(Gajda et al., 2018; Mackay et al., 2019; Schnohr, 1971b). Specifically, Schnohr 

(1971b) found that athletes up to 50 years had a SMR of 0.61, with athletes aged over 

50 and 65 years having SMR’s of 1.08 and 1.02, respectively. Similarly, former 

Scottish footballers only had a survival benefit up to the age of 60 years (Mackay et 

al., 2019), with Polish footballers having a benefit until 75 years (Gajda et al., 2018), 

after which the mortality was the same or greater than the general population. 

Conversely, Antero-Jacquemin (2018) reported an increased longevity in French 

Olympians after 50 years of age, thus, it is unknown why this apparent loss of survival 

advantage occurs, in some, but not all, athletes. Further work is needed to elucidate 

the potential mechanisms.  

8.4.2 Sport-specific Mortality 

Male END athletes had the most favourable all-cause mortality rate and lived 

significantly longer than the general population (SMR: 0.65). Indeed, Clarke et al. 

(2012) reported a 13% greater survival benefit for medallists in endurance sports, with 
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similar benefits reported in marathon runners (+ 4.3 years; Lee-Heidenreich, Lee-

Heidenreich, & Myers, 2017), tour de France cyclists (+ 8 years; Sanchis-Gomar, 

Olaso-Gonzalez, Corella, Gomez-Cabrera, & Vina, 2011) and Olympians involved in 

endurance sports (+ 6.3 years; Antero-Jacquemin et al., 2018). Endurance athletes 

have consistently been shown to have favourable mortality compared to the general 

population, attributed to an increased cardiorespiratory fitness (CRF) and subsequent 

maintenance of CRF throughout the lifespan. Specifically, every 1 MET increase in 

maximal capacity reduces the likelihood of all-cause mortality by 15% (Al-Mallah et 

al., 2018). Furthermore, the difference is unlikely to be explained by genetic factors 

as it has recently been shown that elite athletes who undertake strenuous aerobic 

exercise exhibit similar disease-trait-related genotypes to the general population (Ruiz, 

Moran, Arenas, & Lucia, 2011). Thus, endurance athletes are still predisposed to 

similar levels of disease to the general population.  

Male team sport athletes, the biggest sub-group within the meta-analysis including 

78,504 (56.4%) of all male athletes, also demonstrated a favourable all-cause mortality 

(SMR: 0.68). However, it must be noted that significant bias was evident (Eggers 

statistic p = 0.01) and so these results should be interpreted with caution. This may be 

explained, at least in part, by two studies in the team sport meta-analysis including 

athletes competing before 1915 (Schnohr, 1971b; Waterbor et al., 1988). Specifically, 

sporting practices, training demands, athlete welfare and advances in health care make 

it difficult to directly compare across such a large time-span and gain reliable results. 

Nevertheless, a large body of research in North American sports report a survival 

benefit in former baseballers (+ 4 – 5 years; Abel & Kruger, 2005, 2006a; Saint Onge, 

Rogers, & Krueger, 2008), American football players (+ 6.1 years; Abel & Kruger, 

2006b) and basketballers (+ 4.3 – 5.5 years; Lawler, Lawler, Gibson, & Murray, 2012), 

but the same was not observed in footballers (- 1.9 years; Kuss, Kluttig, & Greiser, 

2011). It should be acknowledged, however, that three of these studies, conducted by 

Abel and Kruger (2005, 2006a, 2006b), also involved athletes who made their 

professional debuts before 1940, so the applicability of their findings to a modern 

population is questionable. Furthermore, Kuss et al. (2011) failed to account for world 

war deaths, confounding conclusions and potentially explaining the reduced survival 

incidence reported. Nevertheless, despite these methodological limitations, they 
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advance our understanding, although the generalisability of their results remains 

questionable and conclusions must be drawn with caution. 

Power sport athlete’s all-cause mortality was not significantly different from that of 

the general population (pooled-SMR: 1.04), however, this analysis was only 

conducted in two studies with participants totalling 2,826, or 2.0%, of the overall 

population. Similar patterns are evident in other studies, with male discus throwers (-

0.6 years) and 100m runners (-0.9 years) experiencing marginal premature mortality 

(Lee-Heidenreich et al., 2017). In contrast, Clarke et al. (2012) reported a modest 

survival benefit in power athletes, albeit of only 5%. Former Olympic male wrestlers 

have also been reported to live 13.0 ± 18.4 years longer, although this must be 

interpreted with caution given that the standard deviation spans 0, indicating some 

have a premature mortality, and the relatively small sample size included within this 

study (n = 341; Keller, 2019). However, contradicting the negative associations of all-

cause mortality and power sports, Antero-Jacquemin et al. (2018) reported power 

athletes gained an average of 7.2 years, suggesting a significantly longer life-span. 

Given the disparity of results across the literature, and the small statistical power 

within this meta-analysis, more research is needed to fully elucidate the long-term 

effects of competing in power sports.  

8.4.3 Cardiovascular Disease Mortality 

Overall, the pooled-SMR risk of CVD mortality (0.73 95% CI: 0.62 – 0.85) was 

significantly lower than the general population. This is not surprising given the long-

established relationship between CRF and CVD mortality (Kaminsky et al., 2019). 

Specifically, men in the highest quintile of fitness, compared to those in the lowest, 

had a relative risk of 0.22 (0.12 – 0.39) for CVD mortality (Blair et al., 1989), and as 

little as 1 ml⋅kg-1⋅min-1 increase in CRF decreased the risk of CVD mortality by 9% 

(Laukkanen et al., 2016). Cardiorespiratory fitness is critical for most END and team 

sports athlete’s performance and, consequently, these athletes occupy the top 

percentile for CRF values and present the lowest risk (SMR: 0.63 and 0.76, 

respectively). Thus, the superior CRF and consequent lower CVD mortality risk in 

team and END athletes, is one of the main reasons suggested for the observed 

increased longevity in END and team athletes (Antero-Jacquemin et al., 2018; Lemez 

& Baker, 2015), and the lack of protective effect in power athletes (SMR: 1.10).  
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Four studies (Kettunen et al., 2015; Kontro et al., 2018; Mackay et al., 2019; Waterbor 

et al., 1988) were not included within the meta-analysis for CVD mortality as they 

reported a SMR value for the specific CVD of ischemic heart disease (IHD; Kettunen 

et al., 2015; Kontro et al., 2018; Mackay et al., 2019) or arteriosclerotic heart disease 

(AHD; Waterbor et al., 1988). Including specific CVD SMR’s, as opposed to overall 

CVD risk, could have induced bias and so the decision was made to remove them. 

However, the SMR for IHD was not significantly different in former Finnish athletes 

(SMR: 0.95 95% CI: 0.81 – 1.14; Kettunen et al., 2015; Kontro et al., 2018) or former 

Scottish footballers (SMR: 0.91, 95% CI: 0.87 – 0.96; Mackay et al., 2019), in relation 

to the general population. Similarly, AHD mortality risk was not significantly different 

in 958 former baseball players (SMR: 1.10, 95% CI: 0.99 – 1.22; Waterbor et al., 

1988). Furthermore, a recent study in French Olympians reported END athletes are at 

an increased risk of mortality due to CVD, cumulating in a loss of 1.6 years (Antero-

Jacquemin et al., 2018). Taken together, these results indicate that END and team 

athletes may be protected against some, but not all, CVDs. This may, at least in part, 

explain the overall protective effect of exercise but the minimal impact on IHD and 

AHD. However, more research is needed to confirm this hypothesis and to establish 

whether intensive training lowers the specific risk profile and aetiologies of individual 

CV diseases. 

Power athletes pooled-SMR was not significantly different to that of the general 

population for CVD (SMR: 1.10), however caution is warranted when interpreting this 

finding as only 1,885 male athletes (1.2%) from two studies (U. Kujala et al., 2001; S. 

Sarna et al., 1993) were included. Nevertheless, American football linemen, who share 

a lot of characteristics with power sport athletes, had a two to three fold increase in 

CVD mortality compared to counterparts in other positions (Baron et al., 2012; 

Lincoln et al., 2018). One possible explanation is the increased likelihood of 

hypertension in power athletes (U. Kujala, Kaprio, Taimela, & Sarna, 1994a; U. 

Kujala et al., 2001; Laine et al., 2015), a long-established independent CVD risk 

factor. Additionally, power sport athletes characteristically have a higher BMI and a 

relationship between playing/competing time BMI and CVD mortality has been 

observed (Baron et al., 2012). Specifically, American football players who had a 

playing time BMI of ≥ 30 kg⋅m2 had twice the risk of CVD mortality (SMRs: 2.02 – 
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2.07), compared to those with a BMI ≤ 29.9 kg⋅m2 (Baron et al., 2012). This risk could 

be further exacerbated as over a 30-year period power athletes reportedly gained an 

average of 12.8 kg (S Sarna et al., 1997). So, a question remains as to whether playing-

time BMI is the primary risk factor of CVD or subsequent weight-gain post-retirement 

is a greater indicator of CVD mortality in power athletes.  

8.4.4 Cancer Mortality  

Cancer mortality (SMR: 0.75) was significantly lower in athletes than the general 

population. Likewise, elite French athletes had a significantly lower incidence of 

cancer mortality, gaining an average of 2.3 (1.9 – 2.6) years (Antero-Jacquemin et al., 

2018). One possible explanation is that former athletes smoke less, drink less, and 

engage in more LTPA than the general population (Backmand et al., 2010; Fogelholm 

et al., 1994; Kontro et al., 2018; Sormunen et al., 2014), all of which significantly 

contribute to cancer risk and mortality. Indeed, Sourmunen et al. (2014) reported that 

when LTPA, smoking status, years of smoking and alcohol consumption were 

accounted for, there was a minimal protective effect on cancer incidence (standardised 

incidence ratio: 0.89, 95% CI: 0.81 – 0.97). Moreover, Pukkala et al. (2000) reported 

that elite athletes had a slightly elevated incidence of non-smoking related cancers 

(SIR: 1.10), with other studies reporting lung cancer mortality was significantly 

reduced in athletes (U. Kujala et al., 2001; Mackay et al., 2019). This confirms the 

importance of accounting for lifestyle-related habits when assessing cancer 

incidence/mortality in this population. This may explain, at least in part, why some 

populations of footballers (Belli & Vanacore, 2005; Fernandes et al., 2019; Gajda et 

al., 2018; Mackay et al., 2019), Olympians (Radonic et al., 2017; Schnohr, 1971b) and 

baseballers (Waterbor et al., 1988) all have similar rates of cancer incidence and 

mortality to the general population, whilst others demonstrate a reduced risk (Baron 

et al., 2012; Marijon et al., 2013; Nguyen et al., 2019; Taioli, 2007).  

Endurance athletes’ risk of cancer mortality was not significantly different to the 

general population (SMR: 0.73, 95% CI: 0.50 – 1.07). Despite this, END athletes have 

consistently been found to have favourable longevity compared to the general 

population and, indeed, other athletes (Antero-Jacquemin et al., 2014; Antero-

Jacquemin et al., 2018; Farahmand et al., 2003; Lincoln et al., 2018; Marijon et al., 

2013; van Saase et al., 1990). Thus, it is worth considering whether the non-protective 
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effect on cancer mortality derives from END training, or simply that athletes are living 

longer and therefore have a greater chance of developing cancer. Whilst distinguishing 

these factors may be challenging, it deserves consideration given that it could alter the 

interpretation of the results presented and future study directions. Regardless of their 

increased longevity, however, END athletes are still at a decreased risk of CVD 

mortality, suggesting the benefit of training is maintained throughout the life-span. 

8.4.5 Limitations and Conclusions 

Whilst there are numerous strengths, there are limitations to this review that require 

consideration. Specifically, not all the athletes within these studies were elite and of 

national standard, although they were all considered to be highly trained. Moreover, 

inferences are not able to be made about the specific training that athletes should 

undertake as such data was rarely reported. As such, conclusions regarding the long-

term effects of participating in specific types of training regimes, such as HIIT, 

resistance or strength training, are precluded. Furthermore, the small number of studies 

included within the POW athlete sub-group, and female athletes, potentially limits the 

generalisability of these results. It is also noteworthy that some sports may have been 

mis-classified in previous research (for example, Sarna et al. (1993) classified boxing 

as a power sport), which could have influenced the meta-analysis results. Finally, no 

inferences can be made as to the relative contribution of lifestyle on overall mortality. 

Thus, it is hard to distinguish whether any survival benefit observed is because of 

training, lifestyle choices, or most likely, a combination of both. 

The main conclusions from this review are: (i) overall, male and female athletes’ all-

cause mortality is significantly lower than the general population; (ii) sub-group 

analyses revealed END and team sport athletes, but not POW athletes, had a reduced 

all-cause mortality; (iii) POW athletes were at a similar risk of CVD mortality 

compared to the general population, and; (iv) END athletes cancer mortality was not 

significantly different to the general population. However, more research is warranted 

in female and power athletes, with a follow-up of ≥ 30 years, to ascertain the long-

term benefits/consequences of chronic intensive exercise training in these populations.
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Chapter 9 – Synthesis 

The importance of exercise training for health, as well as aerobic and anaerobic 

athletic performance, is well-recognised. However, fundamental questions remain 

regarding the influence of sex and maturity on the responses to training during growth 

and maturation. Importantly, many training studies have failed to appropriately 

account for habitual physical activity (PA) levels, confounding interpretation of the 

effectiveness of training interventions, and any potential sex- and maturity-specific 

differences. Finally, there is also a dearth of research investigating the long-term 

effects of sport-specific training, which often starts during childhood. Consequently, 

the aim of this thesis was to explore the effect of sex, maturity and PA on training-

related adaptations during childhood and adolescence and to review the potential long-

term health implications of such training during youth. The current chapter will 

synthesise this research, considering the findings of each experimental chapter relative 

to the other studies and considering their strengths, weaknesses and implications as a 

whole.  

 

9.1 Sex and maturity effects on trainability in youth 

The trained children and adolescents in the current thesis demonstrated a significantly 

higher absolute and allometrically scaled peak V̇O2 than their untrained counterparts 

(Chapters 4 and 5), concordant with the majority of the paediatric literature (Baquet et 

al., 2003; Danis et al., 2003; Matos & Winsley, 2007; McNarry & Jones, 2014; 

McNarry et al., 2014b; McNarry et al., 2011c; Nottin et al., 2002; Obert et al., 2003). 

Furthermore, trained children and adolescents had a significantly faster sprint time 

compared to their untrained counterparts in Chapter 6, suggesting that training has 

the ability to increase both aerobic and anaerobic performance concomitantly. Whilst 

it is important to highlight the overlap of some participants between chapters, and the 

discordance of exercise modalities in Chapters 4 – 6, this simultaneous effect of 

training on aerobic and anaerobic performance outcomes may reflect the type of 

training the participants were engaged in. Specifically, the majority of participants 

(230/237) were engaged in a team sport predominantly involving high-intensity 

intermittent exercise (Cunha et al., 2016; Runacres et al., 2019b; Williams, 2016).  
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The potential potency of high-intensity exercise interventions to concomitantly 

improve sprint times and peak V̇O2 was reported in a recent meta-analysis (Cao et al., 

2019), highlighting that the intensity of exercise may be a key determinant of training 

adaptation. It is therefore interesting to note that team-sport athletes in Chapter 8 were 

predicted to demonstrate the greatest reduction in all-cause, cardiovascular disease 

(CVD) and cancer mortality compared to the general population. Albeit tentatively, 

this may suggest that intensity, and not volume, of exercise may also be crucial for 

long-term health, concordant with previous research (Gormley et al., 2008; Lemez & 

Baker, 2015; Lemez, Wattie, & Baker, 2016; Love et al., 2019a; Schwartz, de Heer, 

& Bea, 2017; Teramoto & Bungum, 2010a). However, the long-term consequences of 

sport-specific training in youth is not well understood (Guo, Lou, Zhang, & Song, 

2015; Guo, Zhang, Wang, Guo, & Xie, 2013; Väistö et al., 2019; Yang, Telama, 

Hirvensalo, Viikari, & Riatakari, 2009), and therefore whether the same long-term 

effects are present throughout the lifespan remains to be established.  

The long-term effects of intensive exercise training in youth on adult health remains 

poorly understood with the literature (Attard et al., 2013; Hasselstrøm et al., 2002; 

Mika & Fleshner, 2016; Riner & Sellhorst, 2013) but Chapter 8 highlights key 

methodological considerations which must be measured, and reported, in any future 

studies seeking to address this question. More specifically, the consideration of 

lifestyle factors alongside training history such as socioeconomic status (SES), body 

mass index (BMI) and alcohol, tobacco, and substance use need to be robustly 

accounted for to establish the true effect of intensive exercise training in youth and 

adult health. Whilst the assessment of mortality in former elite athletes is the most 

appropriate choice in that population (Lemez & Baker, 2015; Teramoto & Bungum, 

2010a), it perhaps is not suitable for establishing the effect of childhood training 

regimes on adult health. Indeed, the likely small number of deaths in young adults 

would either lead to studies being underpowered to make any firm conclusions, or the 

recruitment of extremely large populations. Whilst, all-cause, CVD, and cancer 

mortality could be assessed over the life course (>50 years follow-up) the need to  

answer this pressing question may require a different approach. Indeed, current health 

status and CVD risk factors in adults, with careful consideration of lifestyle factors, 

potentially present a shorter-term exploration of the long-term health effects of 
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intensive training during childhood. Sub-group analyses could then be performed to 

explore those who continue to be physically active compared to those who stopped to 

examine if any protective effect is still evident years after training ceased. Whilst this 

area is still in its infancy, the potential impact of these results could have wide-

reaching impacts for world-wide sporting organisations, public health initiatives, and 

policy makers to protect the welfare of young athletes. 

The present thesis reported similar magnitudes of difference between trained and 

untrained participants in anaerobic (13.9 – 22.4%; Chapter 6) and aerobic (7.5 – 

18.7%; Chapter 4) performances. However, the development of anaerobic and 

aerobic parameters were not consistent across the maturation spectrum, with greater 

training-related differences in post-pubertal adolescents (16.5 - 19.8%) compared to 

pubertal adolescents (9.2 – 13.5%) and pre-pubertal children (7.5 – 12.9%), 

irrespective of sex, thereby refuting the maturational threshold hypothesis (Katch, 

1983; Rowland, 1997). Indeed, the original maturational threshold hypothesis 

proposed by Katch (1983) suggested that there may be a window of opportunity 

surrounding peak height velocity (PHV) during which circulating hormones may 

engender greater training-related gains than observed pre-puberty. The results of this 

thesis, in combination with other studies (Buenen et al., 1998; Buenen & Thomis, 

2000; Danis et al., 2003; Nagahara et al., 2019; Rumpf et al., 2013; Rumpf et al., 

2015b; Weber et al., 1976), may suggest that if a maturational threshold is evident in 

either aerobic or anaerobic parameters it is in the transition from pubertal to post-

pubertal adolescence. Given that little research has been conducted in those aged 16 – 

18 years, this contention requires further investigation but could have significant 

implications in the design of future long-term athlete development models.  

It is interesting to note the markedly smaller differences between maturity stages in 

the anaerobic than aerobic responses of the pubertal participants. Specifically, the 

magnitude of change between pre- and circa-pubertal adolescents for absolute and 

allometrically scaled peak V̇O2 was 19.1 ± 14.6% and 13.2 ± 13.0%, respectively, 

irrespective of training status (Chapter 4). In comparison, 30 m sprint time (30mT) 

and allometrically scaled peak power (Ppeak) only increased by 2.9 ± 1.3% and 2.4 ± 

3.0%, respectively, over the same period, indicating that pubertal adolescents may 

experience declines and/or plateaus in anaerobic parameters during puberty (Chapter 
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6). In accord with previous research, similar magnitudes of change were also observed 

between pubertal stages in peak force (Fpeak), which has been widely attributed to 

‘adolescent awkwardness’ (Buenen et al., 1998; Buenen & Thomis, 2000; Lloyd et al., 

2015; Rumpf et al., 2013; Rumpf et al., 2015b). Potential mechanisms offered for 

adolescent awkwardness include differing growth rates of the limbs in relation to the 

trunk (Buenen et al., 1998; Buenen & Thomis, 2000; Rumpf et al., 2015b), impaired 

sensorimotor and proprioceptive abilities (Quatman-Yates et al., 2012) and declines 

in habitual PA levels during the mid-teenage years (Bitar et al., 2000; Love et al., 

2019a; A. Rowlands & Eston, 2007). Alternatively, it is also possible that rapid 

increases in muscle accrual (Beneke et al., 2007; Buenen & Thomis, 2000; J. Wells, 

2007), a maturation of the glycolytic energy system (Armstrong & Barker, 2012a; 

Barker, Welsman, Fulford, Welford, & Armstrong, 2010; Doré et al., 2005; Van 

Praagh, 2000), and possible changes in muscle fibre type distribution (Eriksson, 1972, 

1980) occur during puberty, masking the influence of training (Danis et al., 2003; 

Tattersall & Pyke, 1973; Weber et al., 1976). The development of aerobic and 

anaerobic performances should be explored simultaneously in future studies by 

considering the anaerobic: aerobic power ratio as suggested by Ratel et al. (2017). 

Indeed, similarities and/or divergences in this relationship may indicate an accelerated 

adaptation, but this was not feasible to calculate in the present thesis due to the 

discordance between exercise modalities used to determine the aerobic (cycle 

ergometry, Chapters 4 and 5) and anaerobic (sprint running, Chapters 6 and 7) 

performances.  

In accord with the notion that training-related differences may be blunted during the 

pubertal maturity phase, case-controlled, homozygous twin studies have reported no 

effect of endurance training on peak V̇O2 around the time of PHV (Danis et al., 2003; 

Weber et al., 1976). During PHV, both boys and girls experience an influx of 

hormones, with a testosterone and oestrogen dominance for boys and girls, 

respectively (Rogol, 2002). Although pubertal adolescents may experience increased 

levels of androgenic hormones, it is estimated that 98.0 – 99.8% of all testosterone is 

bound to protein in the blood, thereby facilitating its uptake by muscles and organs, 

where it is used for various functions related to growth and maturation (Hiort, 2002; 

Rogol, 2002; Vingren et al., 2010). Consequently, this only leaves 0.2 – 2.0% of 
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circulating testosterone ‘free’ to initiate an anabolic response to training stimuli (Reed 

& Meggs, 2017; Vingren et al., 2010), which could explain the blunted training 

response observed in some (Bitar et al., 2000; Danis et al., 2003; Weber et al., 1976), 

but not all (Behringer et al., 2010; Kobayashi et al., 1978; Massicotte & Macnab, 1974; 

Roemmich, Richmond, & Rogol, 2001) studies in pubertal adolescents. Indeed, the 

lack of ‘free’ testosterone may explain why the training-related difference in peak and 

allometrically scaled peak V̇O2 remained relatively constant (within 2.0%) between 

the pre- and circa-pubertal maturity phase.  

Taken together, the results of Chapters 4 and 6 offer evidence in support of a 

maturational threshold for specific parameters, but also refute is the existence of an 

enhanced window of trainability during puberty. On the contrary, this thesis presents 

evidence that anaerobic performance is dampened during puberty with negligible 

increases in performance (Chapter 6). Specifically, a smaller magnitude of training 

related differences in V̇O2max were present between the trained and untrained circa-

PHV adolescents compared the pre-PHV group  (Chapter 4). These results therefore 

question the appropriateness of existing LTAD models that seek to target different 

parameters of fitness dependent upon maturational stage (Lloyd & Oliver, 2012). 

More specifically, coaches, practitioners, and sporting organisations need to be 

cognisant that not all parameters of fitness develop at the same rate during puberty and 

this should be built into existing models to account for individual variability. Whilst 

the optimal training methodology remains to be elucidated in order to establish the 

most favourable performance adaptations in youth (Armstrong & McNarry, 2016), 

this thesis tentatively suggests that developmentally appropriate training should start 

in children pre-PHV, with no evidence to suggest they are less trainable than circa-

PHV adolescents. Indeed, by delaying certain training types (i.e. resistance training) 

during early childhood significant performance advances may not be possible. Future 

research is therefore warranted to re-configure LTAD models based on new and 

emerging evidence refuting the maturational threshold hypothesis.  

 

The effect of sex on aerobic or anaerobic parameters has received little attention, with 

the clear majority of the literature that has examined sex differences focussing on pre-

pubertal children (McNarry et al., 2015; Winsley et al., 2009) at which point the 
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physiological sex differences are unlikely to be fully manifest (Rogol, 1994; Rogol et 

al., 2002). Nevertheless, sex differences have been observed even in pre-pubertal 

children, with boys reported to have a 6.9 – 21.1% greater absolute (Armstrong et al., 

1991b; McNarry et al., 2015; Vinet et al., 2003), and allometrically scaled peak V̇O2 

(McNarry et al., 2015; Obert et al., 2003; Winsley et al., 2009), compared to age- and 

maturity-matched girls, irrespective of exercise modality. The sex difference in peak 

V̇O2 is suggested to be similar across the maturational spectrum (Armstrong & 

Welsman, 2019b, 2020a; Armstrong & Welsman, 2020c; Armstrong et al., 1991b), a 

conclusion supported by Chapter 4 in which reported boys had a greater absolute 

(23.8%) and allometrically scaled (24.9%) peak V̇O2, irrespective of maturity. 

Furthermore, in agreement with Chapter 4, an enhanced peripheral oxygen extraction 

is proposed to be the main driver behind the sexual dimorphism in peak V̇O2 

(Armstrong & Welsman, 2020a; McNarry et al., 2015; Winsley et al., 2009), with no 

sex differences in bulk oxygen delivery parameters (cardiac output and stroke volume) 

once appropriately scaled (Armstrong & Welsman, 2019a; Armstrong & Welsman, 

2020a; Nottin et al., 2002; Obert et al., 2003; Vinet et al., 2003; Winsley et al., 2009). 

The mechanisms underpinning sex-differences in oxygen extraction remain to be fully 

established but a lesser ability to match oxygen perfusion to demand (Smith et al., 

2017) and differences in muscle fibre recruitment patterns during incremental exercise 

(McNarry et al., 2015), have both been suggested. 

One confounding factor in the majority of studies investigating the effect of sex is the 

mismatching of boys and girls with regard to training load, or a lack of detail regarding 

prior training history which precludes training load from being established (Armstrong 

& Welsman, 2019a; Armstrong & Welsman, 2019b; Baxter-Jones et al., 1993; Bitar 

et al., 2000; Winsley et al., 2009). Therefore, it is worth considering whether the sex 

differences are truly present or whether the apparent sex differences reflect an inter-

participant difference in training load, which could confound interpretations of the 

effect of sex. For example, Baxter-Jones et al. (1993) reported that boys had a 

significantly higher peak V̇O2 at every time-point of a three-year longitudinal study, 

but the participants were not matched for training volumes. Indeed, interrogation of 

the data reveals that pre-pubertal boys’ training volume was almost twice that of pre-

pubertal girls (10.6 ± 4.8 hours⋅week-1 vs 5.6 ± 3.2 hours⋅week-1), with similar training 
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discrepancies in pubertal and post-pubertal adolescents. Therefore, whether the main 

effect of sex reported was attributable to physiological sex-differences, or simply a 

reflection of the increased training load, is not possible to discern. This is of particular 

concern given the most recent LTAD model is sex-specific and specifies that different 

parameters of fitness are targeted at certain points throughout maturation (Lloyd & 

Oliver, 2012). However, these recommendations are based on literature with 

fundamental methodological flaws and therefore more high quality, robust, research 

is required in girls to inform LTAD practices and models. 

In the present thesis, sub-analyses revealed there was no significant difference in the 

training volume and/or training history of participants in any experimental chapter, 

thus discrepancies in training loads are unlikely to explain the greater peak V̇O2 

observed in boys compared to maturity- and training-matched girls (Chapters 4 and 

5). Interestingly, an interaction between sex and training on peak V̇O2 was apparent in 

Chapter 4, suggesting that girls may be more responsive to training than maturity-

matched boys. More specifically, the difference in absolute peak V̇O2 between trained 

and untrained boys was only 0.8% compared to 9.3% in girls, irrespective of maturity 

and training status. One potential reason for the apparent increased aerobic trainability 

in girls, regardless of maturity, may be the lower PA levels in untrained girls (Chapter 

5). Indeed, girls have been consistently shown to have lower habitual PA levels when 

compared to age- and maturity-matched boys (Bitar et al., 2000; Ekelund et al., 2001; 

Love et al., 2019a), potentially exaggerating the effect of training on peak V̇O2. 

Similarly, a greater difference in Ppeak was observed between trained and untrained 

girls (28.5%) compared to boys (18.7%; Chapter 6), which may be also be related to 

differences in vigorous physical activity (VPA). Indeed, VPA is often accrued in short 

( > 6 s) sporadic bouts (Holman et al., 2011; Wolfe, Lee, & Laurson, 2020) and thus 

is predominantly anaerobic in nature (Holman et al., 2011; Love et al., 2019a; Väistö 

et al., 2019). Therefore, it is worth considering whether the lower PA levels in 

untrained girls (Chapter 5) may subsequently result in declines in peak V̇O2 and 

anaerobic performances, amplifying the observed training differences between trained 

and untrained girls. This complex relationship urgently requires further research as it 

raises questions as to whether current training practices may be less effective in girls, 
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a conclusion with considerable potential implications for future training programme 

design and performance.  

 

9.2 Experimental Study Strengths  

There are numerous strengths to this thesis. A significant strength was the inclusion 

of a supramaximal validation bout in Chapters 4 and 5 for the determination of peak 

V̇O2 in all participants (Barker et al., 2009; Poole & Jones, 2017; Schaun, 2017), with 

secondary criteria having questionable validity (Barker et al., 2009). Indeed, if the 

secondary criterion of a heart rate > 85% age-predicted maximum was used to verify 

a maximal effort in the current thesis, 20 participants would have been excluded from 

Chapters 4 and 5, with a further 29 and 82 participants excluded on the basis of not 

achieving an RER > 1.1 or HR > 195 beats⋅min-1, respectively. This confirms the work 

of Barker et al. (2009) on the fallacy of utilising secondary criteria in children, thus 

studies that have relied on these secondary criteria, or failed to incorporate a 

supramaximal validation bout, must be interpreted with caution. The absence of 

supramaximal validation bouts in the majority of previous research in children and 

adolescents may explain, at least in part, why significant questions still persist 

(Armstrong & McNarry, 2016). Furthermore, the simultaneous determination of 

haemodynamic and muscle deoxygenation parameters (Chapter 4) allowed for sex-, 

training- and maturity-related differences in the mechanisms underpinning the 

exercise response to be explored.  

Chapters 6 and 7 successfully implemented a novel combination of field-based 

methodologies to quantify single (Chapter 6) and repeated (Chapter 7) sprint 

kinetics. Indeed, sprint running is highly comparable between populations (Morin et 

al., 2011; Rossi et al., 2017), and involves simple data collection methods 

(Simperingham et al., 2017; Simperingham et al., 2016), facilitating large-cohort 

cross-sectional and longitudinal studies in paediatric populations. The quantification 

of the underlying kinetics builds upon existing knowledge, enhancing our 

understanding of sprint-speed development throughout growth and maturation. 

Moreover, the large sample sizes in Chapters 4, 5, 6 and 8 compared to similar studies 

(Cunha et al., 2016; Dencker et al., 2006; Garatachea et al., 2014; McNarry et al., 
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2015; Mujika et al., 2009; Philippaerts et al., 2006), and the inclusion of control groups 

further strengthen the conclusions drawn in this thesis. 

 

9.3 Experimental Study Weaknesses 

Although there are many strengths to the current thesis, it is important to acknowledge 

certain limitations. First, whilst all parameters were allometrically scaled, which is 

currently considered the most robust statistical method to account for differences in 

body size (Welsman & Armstrong, 2019), they were scaled by body mass or body 

surface area which fail to account for differences in body composition. Given the sex- 

and maturity-dependent changes in body composition during childhood, utilising these 

parameters may have led to erroneous conclusions and potentially masked important 

training-related effects. Future research should endeavour to scale peak V̇O2 and 

anaerobic power variables by lean body mass given its strong association with 

performance (Armstrong & Welsman, 2019b; Armstrong & Welsman, 2019c, 2020c; 

Nevill et al., 2006; Rumpf et al., 2015b) and to gain a greater insight into sex- and 

maturity-related training adaptations.  

Whilst all trained participants in Chapters 4 to 7 were part of LTAD programs and 

competed at a national/international level, they were predominantly recruited from 

Hockey and Football (230/237) which largely involves high intensity, intermittent 

type exercise (Cunha et al., 2016; Runacres et al., 2019b; Williams, 2016). Therefore, 

the influence of sex and maturation and their interaction with other training 

methodologies remains to be elucidated. Indeed, different training types have different 

characteristics, target different components of fitness, and have different long-term 

health implications (Chapter 8). Therefore, the results of this thesis can only be 

applied to team sports. Moreover, compared to other similar training studies, the 

trained children and adolescents included within the current thesis were engaging in 

lower training volumes (Baxter-Jones et al., 1993; Cunha et al., 2016; McNarry et al., 

2014b; Metaxas et al., 2014). This may therefore explain the lack of training effect on 

the stroke volume response to exercise in Chapter 4 and consequently the results of 

this thesis should be interpreted to reflect the effect of moderately trained children and 

adolescents.  
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All experimental studies within this thesis were cross-sectional in nature (Chapters 4, 

5, 6 and 7), only offering a glimpse into the influences of sex, maturity and PA levels 

on training responses throughout childhood and adolescence. Rigorously designed 

longitudinal studies including children and adolescents across the maturational 

spectrum are required to fully establish the sex- and maturity-specific development of 

aerobic and anaerobic performance to enhance LTAD models and athlete’s health and 

performance. Another common limitation with early training studies is the 

discordance between training and testing modalities, with suggestions that 

discrepancies in exercise modalities may create spurious associations and mask 

physiologically meaningful changes in variables (Armstrong & McNarry, 2016; 

Armstrong & Welsman, 2020c; Rowland, 1997). It is therefore worth noting that none 

of the participants were trained cyclists in Chapters 4 and 5. Whilst a more 

representative indication of the absolute training-related effects may have been gained 

using a treadmill, cycle ergometry was selected to reduce movement artefact, enabling 

the accurate quantification of haemodynamic and muscle deoxygenation variables 

during exercise, thereby allowing insights into the mechanisms underlying the sex-

specific development of peak V̇O2 (Barstow, 2019; J Welsman et al., 2005).  

Verifying a maximal effort in anaerobic performances is challenging, with no 

universal objective criteria (Van Praagh, 2000; Van Praagh & Doré, 2002). 

Nevertheless, motivational techniques were used in both Chapters 6 and 7 to try and 

mitigate the risk of the acceptance of sub-maximal performances. Specifically, the 

finish lines were set longer than the distance over which the velocity-time curve was 

modelled to minimise deceleration, and verbal encouragement was used throughout 

each sprint, in accord with previous research (Meyers et al., 2015; Meyers et al., 

2017a; Runacres et al., 2019a). However, in the absence of studies comparing trials 

with, and without, motivational techniques, it is not possible to ascertain whether these 

strategies are successful in the attainment of a maximal effort in youth. Additionally, 

a limitation with force-velocity-power profiling, used to estimate kinetic variables in 

Chapters 6 and 7, was the use of an offset derived from block starts (Samozino, 2018; 

Samozino et al., 2016). Therefore, this offset may not accurately represent the offset 

needed from two-point sprint starts (Rossi et al., 2017; Samozino, 2018), but was 

employed in the absence of a standing start equivalent. Future research should seek to 



 

 

 

192 

 

calculate the specific offset required from standing starts to enhance the accuracy and 

reliability of the associated kinetic parameters.  

 

9.4 Future Research Directions  

The present thesis has highlighted a number of areas that warrant further investigation 

to better understand the short- and long-term effects of sex, maturity and PA levels on 

training responses during childhood and adolescence. Evidence regarding the effect of 

sex on both aerobic and anaerobic trainability is scarce, with a clear male dominance 

in the literature, much of which is unlikely to be generalisable to their female 

counterparts. Moreover, when boys and girls have been directly compared, the 

majority of the literature has focused on pre-pubertal children where the 

anthropometric and physiological differences between sexes are yet to be fully 

manifest (Roemmich et al., 2000; Rogol, 1994; Rogol et al., 2002). Indeed, there is no 

significant sex difference in body composition until the age of 13 years (Roemmich et 

al., 2001; Rogol et al., 2002), coinciding with PHV in boys and the transition to post-

pubertal status in girls. Therefore, purposeful research which compares maturity-

matched participants is required to discern the true physiological effect of sex. The 

physiological significance of sex is of paramount importance to the design, and 

implementation, of LTAD programs to ensure the optimal performance of young 

athletes. Additionally, given the potentially different responses to training according 

to sex reported in Chapters 4 and 6, it may be possible that sex influences the long-

term effects of intensive training. However, the only research available investigating 

the influence of training in childhood on health outcomes during adulthood pooled 

data from boys and girls (Yang et al., 2009), therefore this remains to be established.  

A critical element not accounted for in the current thesis was the genetic influence on 

both aerobic and anaerobic trainability. Indeed, genetics have been estimated to 

account for up to 60% of the variance in aerobic (Bouchard, Dionne, Simoneau, & 

Boulay, 1992) and anaerobic performance (Bouchard et al., 1992; Niemi & Majamaa, 

2005; Schutte, Nederend, Hudziak, de Geus, & Bartels, 2016). Monozygotic twin 

studies have the ability to overcome this, allowing for environmental factors (i.e. 

training) to be studied in more detail (Danis et al., 2003; Weber et al., 1976). 
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Moreover, studies in monozygotic twins may allow for greater insights into the 

mechanisms underpinning the development of both aerobic and anaerobic 

performances which are starting to be elucidated (McNarry et al., 2015; Schutte et al., 

2016; Winsley et al., 2009), but remain to be fully established. Given that the 

myocardium and other areas of the body undergo rapid morphological and structural 

changes during growth and maturation, chronic intensive exercise training during 

adolescence could have long-lasting impacts potentially affecting adult health (Farr et 

al., 2014; J. Wells, 2007). Therefore, by controlling for the genetic influence on long-

term health prognosis, it may also be possible to establish the long-term effect of 

chronic intensive training in childhood. Clarity on this fundamental question may 

allow for interventions to be implemented, if necessary, to improve the long-term 

health of elite youth athletes.  

The combination of radar technology and macroscopic biomechanical modelling 

utilised to assess single and repeated sprint ability in Chapters 6 and 7, respectively, 

shows great promise and could enhance our understanding of the kinetic determinants 

of sprint performance and the mechanisms of fatigue. These methods utilise simple 

data collection methods whilst retaining ecologically validity, enabling large cross-

sectional and longitudinal studies. Future research should seek to implement specific 

training interventions to improve sprint performance, based on an initial kinetic 

profile. More specifically, the two kinetic determinants of sprint performance found 

in Chapter 6, irrespective of maturity status, were allometrically scaled Ppeak and the 

efficiency of force application. Therefore, participants identified as power deficient 

could undertake either resistance or plyometric training, both of which can improve 

Ppeak in as little as eight weeks if implemented appropriately (Faigenbaum et al., 2009; 

Girard et al., 2011; Rumpf et al., 2012). Similarly, those with a sub-optimal DRF could 

undergo technique-specific drills to continue effective force application at higher 

sprinting velocities, enabling continued acceleration or a better maintenance of 

maximal velocity (Rossi et al., 2017; Samozino et al., 2016). Such methods facilitate 

a targeted approach and could improve the efficiency of training interventions. Finally, 

given the high repeatability, radar technology and biomechanical modelling can be 

used to monitor athlete performances over the course of season, or indeed many years, 

potentially enhancing talent identification test batteries.  
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Chapter 8 highlighted the potential between-sport differences in long-term health 

outcomes stemming from chronic intensive exercise training, although it may be 

prudent to note that there is a sparsity of literature that has examined the long-term 

effects of training in childhood into adulthood. Whilst it could be assumed that the 

elite athletes included within the studies in the systematic review in Chapter 8 would 

have started training intensively during youth to reach the elite levels they did, the 

study does not allow for the examination of the development of those conditions over 

time. In one of the only studies reporting the long-term effects of training during 

childhood, at least three years of sustained sports participation during adolescence was 

necessary to reduce the development of metabolic syndrome in adulthood (Yang et al., 

2009). However, like with many of the early elite athlete studies, the authors did not 

consider the effects of sport type (Yang et al., 2009), which could have varying long-

term health-related effects as demonstrated in Chapter 8. Therefore, more research is 

urgently required to establish the effects of different training types on the long-term 

health of youth athletes.  

 

9.5 Overall Conclusions 

In conclusion, this thesis investigated the influence of sex and maturity on the aerobic 

and anaerobic trainability of children and adolescents. The development of both 

aerobic and anaerobic parameters were revealed to be sexually dimorphic, supporting 

the consensus that findings from research conducted in boys cannot be directly applied 

to girls, with significant differences present even in pre-pubertal children. Of 

importance, this thesis provides evidence that differences in habitual PA levels 

significantly influence peak V̇O2 in children and adolescents, reinforcing the need for 

future training studies to measure and control for habitual PA levels to determine the 

true effects of training interventions. Finally, sport-specific differences are apparent 

in all-cause, CVD and cancer mortality in men, but more research is needed to 

establish whether these differences also persist in former female athletes.  
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Chapter 11 – Appendices 

Chapters 4 and 5  
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11.1.2 Parental Consent Form 
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11.1.3 Pre-Screening Medical Questionnaire  
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11.1.4 Athlete Participant Information Sheet 
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11.1.5 Control Participants Information Sheet 
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11.1.6 Participant Assent Form 
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Chapter 5 – Additional Material 

11.2.1 Smallest worthwhile change table  

 

Table 5.7 – Smallest worthwhile change in all sub-groups for peak V̇O2 (l⋅min-1) and 

allometrically scaled peak V̇O2 (ml⋅kg-b⋅min-1) 

Training 

Group 

Maturity Sex Peak V̇O2 (l⋅min-1) Scaled peak V̇O2 (ml⋅kg-b⋅min-1) 

  SWC SWC (%) SWC SWC (%) 

 

 

 

Trained 

Pre-Pubertal Boys 0.07 3.6 4.4 2.3 

Girls 0.09 4.9 4.7 3.1 

Pubertal Boys 0.09 3.1 6.3 3.4 

Girls 0.05 2.5 3.1 2.0 

Post-Pubertal Boys 0.14 4.4 6.8 3.3 

Girls 0.09 3.9 6.2 4.3 

 

 

Untrained 

Pre-Pubertal Boys 0.06 3.0 6.9 4.9 

Girls 0.07 4.9 5.1 4.1 

Pubertal Boys 0.09 4.1 6.9 4.3 

Girls 0.10 5.8 4.2 3.2 

Post-Pubertal Boys 0.12 4.3 4.5 2.7 

Girls 0.08 4.1 6.8 4.8 

SWC = Smallest Worthwhile change, SWC (%) = Smallest worthwhile change as a percentage 

of the individual group mean 
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11.2.2. Ternary Plots – SED, LPA, MPA – Scaled V̇O2max 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 5.3 - Ternary heat plots of all PA behaviours with expected V̇O2max values for 

all sub-groups with a) trained athletes; b) untrained participants; c) all boys; d) all 

girls; e) pre-pubertal children; f) pubertal adolescents; and g) post-pubertal adolescents  
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11.2.3 Ternary Plots – SED, LPA, VPA – Scaled V̇O2max 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 - Ternary heat plots of all PA behaviours with expected V̇O2max values for 

all sub-groups with a) trained athletes; b) untrained participants; c) all boys; d) all 

girls; e) pre-pubertal children; f) pubertal adolescents; and g) post-pubertal adolescents  

A B 

D C 

E F 

G 



 

 

 

240 

 

11.2.4 Ternary Plots – SED, LPA, MPA – Absolute V̇O2max 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 - Ternary heat plots of all PA behaviours with expected V̇O2max values for 

all sub-groups with a) trained athletes; b) untrained participants; c) all boys; d) all 

girls; e) pre-pubertal children; f) pubertal adolescents; and g) post-pubertal adolescents  
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11.2.5 Ternary Plots – SED, LPA, VPA – Absolute V̇O2max 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 - Ternary heat plots of all PA behaviours with expected V̇O2max values for 

all sub-groups with a) trained athletes; b) untrained participants; c) all boys; d) all 

girls; e) pre-pubertal children; f) pubertal adolescents; and g) post-pubertal adolescents  
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11.3 Chapter 6 

11.3.1 Parental Information Sheet 
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11.3.2 Parent/Guardian Consent Form  

 

 

 

  

 

 



 

 

 

245 

 

11.3.4 Participant Information Sheet 
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11.3.5 Participant Assent Form  
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11.4 Chapter 7  

11.4.1 Parental Information Sheet 
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11.4.2 Parent/Guardian Consent Form  
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11.4.3 Participant Information Sheet 
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11.4.4 Participant Assent Form  
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11.5 Chapter 8  

11.5.1 Male cardiovascular disease (CVD) mortality forest plot  
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11.5.2 Male cancer mortality forest plot  
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11.5.3 Funnel Plots  

11.5.3.1 All-Cause Mortality Funnel Plot  

 

Figure 8.4 - A funnel plot of the log standard mortality ratio for all-cause mortality 

versus the logged standard error for all 23 studies included. The light grey and dark 

grey areas depict significance of p < 0.05 and p < 0.01, respectively. 
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11.5.2.2 Cardiovascular Disease Mortality Funnel Plot  

Figure 8.5 - A funnel plot of the log standard mortality ratio for cardiovascular disease 

mortality versus the logged standard error for all 15 studies included. The light grey 

and dark grey areas depict significance of p < 0.05 and p < 0.01, respectively. 
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11.5.2.3 Cancer Mortality Funnel Plot 

Figure 8.6 - A funnel plot of the log standard mortality ratio for cancer mortality 

versus the logged standard error for all 17 studies included. The light grey and dark 

grey areas depict significance of p < 0.05 and p < 0.01, respectively. 

 

 

 




