
Chapter 1

Formal Methods

Markus Roggenbach, Bernd-Holger Schlinglo↵, and Gerardo Schneider

Abstract Formal Methods are one means in software engineering that can
help to ensure that a computer system meets its requirements. Using exam-
ples from space industry and every programmer’s daily life, we carefully de-
velop an understanding of what constitutes a Formal Method. Formal Meth-
ods can play multiple roles in the software design process. Some software
development standards actually require the use of Formal Methods for high
integrity levels. Mostly, Formal Methods help to make system descriptions
precise and to support system analysis. However, their application is feasible
only when they are supported by tools. Consequently, tool qualification and
certification play a significant role in standards. Formal Methods at work can
be seen in the many (academic) surveys, but also in numerous published in-
dustrial success stories. Hints on how to study Formal Methods in academia
and on how to apply Formal Methods in industry conclude the chapter.

1.1 What Is a Formal Method?

You have just bought a book on Formal Methods and are making holiday
plans in the Caribbean to read it on the beach. In order to guarantee the
reservation, your travel agent requires a deposit. You decide to pay electron-
ically via credit card.

When performing such a transaction, obviously you have certain expec-
tations on the electronic payment system. You don’t want the agent to be

Markus Roggenbach
Swansea University, Wales, United Kingdom

Bernd-Holger Schlinglo↵
Humboldt University and Fraunhofer FOKUS, Berlin, Germany

Gerardo Schneider
University of Gothenburg, Sweden

1



2 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider

able to withdraw more than required. The agent wants at least the amount
which was asked for. Thus, both you and the agent expect that the payment
system gets its numbers right. The payment should go through – as, clearly,
your credit card is a valid one. Also, you don’t want too much information
to be disclosed, e.g., your PIN should stay secret. The transaction should
solely concern the holiday reservation, no further contracts shall follow from
this. Finally, you want to be able to use the system without the need to
consult a user manual of hundreds of pages. All these points are typical re-
quirements for an electronic payment system. Formal Methods are one way
how software engineering can help to ensure that a computer system meets
such requirements.

So, what is a Formal Method? Instead of trying to start with a compre-
hensive definition of the term, we give two motivating examples.

1.1.1 An Application in Space Technologies

Formal Methods are often used in safety-critical areas, where human life
or health or a large sum of money depends on the correctness of software.
We start with an example from the largest aerospace project mankind has
endeavored so far.

Example 1: ISS Fault Tolerant Computer

The International Space Station (ISS) which was docked on Novem-
ber 2nd, 2000 (ISS-Expedition 1), has provided a platform to conduct
scientific research that cannot be performed in any other way.

At the heart of the ISS is a fault tolerant computer (FTC) “to be
used in the ISS to control space station assembly, reboost operations for
flight control and data management for experiments carried out in the
space station” [BKPS97].

In outer space, the probability of hardware faults due to radiation
is much higher than on earth. Thus, in the ISS-FTC there are four
identical interconnected hardware boards, which perform essentially the
same computation. A software fault management layer is responsible for
detecting, isolating, rebooting and reintegrating malfunctioning boards.

One problem in the design of this layer is the recognition of a faulty
board, since it not only can generate wrong messages, but also modify
messages of the other (correct) boards. To overcome this problem, a so-
called Byzantine agreement protocol is used, which abstractly models
the problem of distributed consensus in the presence of faults.

Lamport et al. use the following story to exemplify the distributed consensus
problem [LSP82]:



1 Formal Methods 3

We imagine that several divisions of the Byzantine army are camped outside an
enemy city, each division commanded by its own general. The generals can com-
municate with one another only by messenger. After observing the enemy, they
must decide upon a common plan of action. However, some of the generals may be
traitors, trying to prevent the loyal generals from reaching agreement. The generals
must have an algorithm to guarantee that

• A. All loyal generals decide upon the same plan of action.

The loyal generals will all do what the algorithm says they should, but the traitors
may do anything they wish. The algorithm must guarantee condition A regardless
of what the traitors do. The loyal generals should not only reach agreement, but
should agree upon a reasonable plan. We therefore also want to ensure that

• B. A small number of traitors cannot cause the loyal generals to adopt a bad
plan.

In Lamport’s paper, various pseudocode algorithms for this problem are
given and proven to be correct. For these proofs, certain assumptions about
the possible actions of the generals are made, e.g., that a traitorous general
may send di↵erent, contradicting messages (attack and retreat) to di↵erent
other divisions.

Even though Lamport et al. prove their algorithms to be correct, the ques-
tions on whether the communication by messengers can block (deadlock) or
the exchange of a message can lead to infinite internal chatter (livelock) in
the communication system are not in the scope of his consideration.

Example 1.1: ISS Fault Tolerant Computer – Findings

For the implementation of the fault management layer in the FTC, one
of the algorithms presented by Lamport et al. [LSP82] was coded in the
programming language Occam.

As mentioned above, the algorithm is proven to be correct, and
great care was taken to assure that the actual code matches the
pseudocode as closely as possible. However, this still did not guaran-
tee that the software worked as expected: in a series of publications
[BKPS97, BPS98, PB99], Buth et al. report that using code abstraction
into the process algebra Csp,
• “seven deadlock situations were uncovered”, and
• “about five livelocks were detected”
in the software of the FTC fault management layer.

The language Occam uses synchronous communication between tasks: the
sender of a message is blocked until the receiver is willing to pick up this
message. With such a communication paradigm, a deadlock can occur if two
actors send each other messages at the same time. Thus, even though the al-
gorithm on which the code is based was proven to be correct on the conceptual



4 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider

layer, there still was the possibility of errors in the underlying communication
layer.

In Ch. 3, which is devoted to the process algebra Csp, we will give pre-
cise definitions of deadlock and livelock. Furthermore, we will provide proof
techniques to show their absence.

Problem
Statement

Algorithm in
Pseudocode

Properties in CSP

Abstraction in CSP

Implementation in
OCCAM

“invent &
verify”

manual
implementation

manual abstraction

automated
refinement
check with

FDR2

Fig. 1.1 The overall verification approach [BKPS97, BPS98, PB99].

Example 1.2: ISS Fault Tolerant Computer – Reflections

The programming language Occam has been designed as an implemen-
tation language for the process algebra Csp. Thus, it is rather easy to
abstract an Occam program, e.g., the fault management layer of the
FTC, into Csp. Compared to the original Occam program, the Csp ab-
straction has a significantly reduced state space, since all computations
that have nothing to do with the Byzantine agreement protocol can be
omitted. However, it still preserves the deadlocks and livelocks of the
original program.

Csp has a formal semantics and proof methods to verify properties.
In this example, the FDR tool was used to automatically analyse the
Csp code and thus – indirectly – the Occam program. If a deadlock or
livelock is found in the Csp abstraction, FDR generates a sequence of
events which exhibits the problem. Fig. 1.1 shows the overall verification
approach. The sequence generated by FDR can be used to trace the
problem in the original code, which then can be analysed and corrected.



1 Formal Methods 5

Interestingly, most of the observed issues concerned the message exchange,
i.e., the layer which was not in the scope of the formal correctness proof of
the algorithm. This situation is rather typical in such a context. In Sect. 3.3,
we will discuss in more detail how to avoid such problems.

In Example 1, Formal Methods were used for quality assurance rather than
in the design and implementation phase. For the process algebra Csp, we will
discuss a di↵erent approach in Sect. 3.3. There, the idea is to automatically
translate a Csp model into a C++ program. Before translation, the model
can first be analysed using a model checker such as FDR. The C++ program
can then be enriched with additional functionality without compromising the
properties established earlier for the Csp model.

1.1.2 An Everyday Application

Our second example is from the area of formal languages and text processing.
It shows the importance of having a precise formal semantics even in common-
day tools such as text processing.

Example 2: Text Processing

Assume that we want to replace all occurrences of certain patterns in a
text, e.g., remove all comments from an HTML document. In HTML,
comments are marked beginning with ‘<!--’ and ending with ‘-->’.
Most editors o↵er a facility for replacement based on regular expressions,
that is, you may specify the symbol ‘*’ as a wildcard in the search. With
this, replacing ‘<!--*-->’ by an empty string yields the desired result.

Regular replacements are a convenient tool for text processing. However,
the semantics (meaning) is not always easy to understand.

The wildcard sign is explained in the documentation of Word 2007 as

matching any string of characters. Word does not limit the number of characters
that the asterisk can match, and it does not require that characters or spaces reside
between the literal characters that you use with the asterisk.

For GNU Emacs, it is defined by the following explanation:

The matcher processes a ‘*’ construct by matching, immediately, as many repeti-
tions as can be found. Then it continues with the rest of the pattern. If that fails,
backtracking occurs, discarding some of the matches of the ‘*’-modified construct
in case that makes it possible to match the rest of the pattern.

These descriptions might or might not be intelligible to the ordinary
reader. However, if the text processing component is used as part of a safety-
critical tool chain, it is important that it has a clear semantics. Imagine that
the regular replacement is used for macro expansion as part of a compiler. In



6 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider

this case, it is essential that the result of any replacement command is unique
and predictable.

Example 2.1: Tool Experiments for Text Processing

What happens if we replace the wildcard sign ‘*’ by the single character
‘x’? As original text we take the string ‘abc’.
• In Word, the result of replacing ‘*’ by ‘x’ in ‘abc’ is ‘xxxx’;
• in Word, the same result is returned when taking the wildcard symbol

‘?@’;
• in Emacs, replacing ‘*’ by ‘x’ in ‘abc’ gives ‘abc’;
• in Emacs, replacing ‘.*’ by ‘x’ in ‘abc’ gives ‘x’.
This might come as a surprise.

The problem is that both for Word and Emacs, there is no formal semantics
of “replacement of regular expressions”. Whereas the syntax of admissible
regular expressions is (more or less) fixed in the documentation, the semantics
is only informally explained.

This example allows us to show the key ingredients of a Formal Method:
syntax, semantics and method.

Syntax

Syntactically, each Formal Method deals with objects from a formal lan-
guage. A formal language is a well-defined set of words from a given alphabet.
Usually it is defined by a grammar, which is a set of rules determining the
membership of the language.

There are also Formal Methods dealing with graphical objects (e.g., Petri
nets). In most of these cases, there is a textual description of these objects
as well (e.g., in XML). For such models, the syntax is fixed by a metamodel,
which determines membership of the class of graphical objects under consid-
eration.

Example 2.2: Syntax of Regular Expressions

Given an alphabet A, the language of regular expressions is given by
the following grammar:
• every letter from the alphabet is a regular expression.
• ; is a regular expression.
• if ' and  are regular expressions, then ('  ) and ('+ ) are regular

expressions.
• if ' is a regular expression, then '⇤ is a regular expression.

The same definition can be written in so-called Backus-Naur-Form
[Bac59]:



1 Formal Methods 7

RegexpA ::= A | ; | (RegexpA RegexpA) |
(RegexpA + RegexpA) | Regexp⇤

A

According to this definition, each regular expression is a string which
contains only letters of the alphabet and the symbols ‘;’, ‘(’, ‘)’, ‘+’
and ‘⇤’ (the so-called Kleene-star).a Of course, for such a definition to
make sense, these symbols themselves must not be letters.b Backus-
Naur-Form (BNF) notation will be used also for several other formal
languages in this book.

a If the alphabet contains letters composed of several characters, there might be
several ways to parse a given string into a regular expression. For example, if A =
{a, aa}, then (aaa) could be read as (a aa) and (aa a). A solution to this problem
is to require appropriate white spaces in strings.
b To allow the use of special symbols in the alphabet, some tools use a ‘quoting’
mechanism: ‘\+’ refers to the letter of the alphabet, whereas ‘+’ denotes the symbol.

The benefit of having a ‘minimal’ syntax is that the definition of semantics
and proofs are simplified. For practical applications, often the core of a formal
language is extended by suitable definitions.

Example 2.3: Extended Syntax of Regular Expressions

Assume that the alphabet A = {a1, a2, . . . , an} is finite.
Most text processing systems allow the following abbreviations, in-

cluding the above mentioned ‘*’ and ‘.*’ notation of Word and GNU
Emacs. In this book, the symbol “,” stands for “equal by definition”
or “is defined as”.
• " , ;⇤ (‘the empty word’),
• '

+ , (' '
⇤) (‘one or more repetitions of '’)

• ⇧ , (((a1 + a2) + . . .) + an) (‘any letter’),
• ⇤ , ⇧⇤ (‘any word’),
• '? , ("+ ') (‘maybe one '’),
• '

0 , " and 'n , (''n�1) for any n > 0 (‘exactly n times '’),
• '

n
m

, ('m
'?n�m) for 0  m  n (‘at least m and at most n '’)

(Here we assume that {;,+,
⇤
, (, ), ", +

, ⇧, ⇤, ?, n
,

n
m
} \A = ;).

Semantics

In the context of Formal Methods, a formal language comes with a formal
semantics which explains the meaning of the syntactical objects (words or
graphs) under consideration by interpreting it in some domain.

The semantics identifies for each syntactical object a unique object in the
chosen interpretation domain. Probably the fundamental question which can



8 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider

be answered by a semantics is: when can two di↵erent syntactical objects
be considered equal? For our regular expression case study this means to
determine when two di↵erent expressions are to be the same. As another
example from computer science, we would like to know whether two di↵erent
programs compute the same result.

Other questions include whether one object entails another one. For in-
stance, we would like to know whether one regular expression includes another
one, one program extends another one, or one specification refines another
one.

In contrast to syntax, the semantics of Formal Methods is not always
decidable. That is, membership of a word or model in the formal language
defined by a grammar or metamodel is usually trivial to decide. Semantical
equality, however, is often undecidable as can be seen by the example of
program equivalence.

There are three main ways of defining a semantics for formal languages:
denotational, operational, and axiomatic.

In denotational semantics the denotation of an object is defined. That is,
a denotational semantics is a function defining for each syntactic object an
object in some semantical domain. For example, a regular expression denotes
a language (a set of words) over the alphabet. That is, the semantical domain
for regular expressions is the set of all languages. As another example, a
program in a functional language denotes a function (set of tuples) from the
input parameters to the output type. In Ch. 3 we will discuss three di↵erent
denotational semantics for the process algebra Csp.

Example 2.4: Denotational Semantics of Regular Expressions

For any regular expression ', we define the denoted language [[']] by the
following clauses:
• [[a]] , {a} for any a 2 A. That is, the regular expression ‘a’ defines

the language consisting solely of the one-letter word ‘a’.
• [[;]] , {}. That is, ; denotes the empty language.
• [[('  )]] , {xy | x 2 [[']], y 2 [[ ]]}. That is, ('  ) denotes the

language of all words which can be split into two parts, such that the
first part is in the denotation of ' and the second in the denotation
of  .

• [[(' +  )]] , [[']] [ [[ ]]. That is, (' +  ) denotes the union of the
denotations of ' and  .

• [['⇤]] , {x1 . . . xn | n � 0, and for all i  n, xi 2 [[']]}.
That is, '⇤ denotes the language of all words which can be split into
a finite number of n parts, such that each part is in the denotation
of '.
With the special case n = 0, this definitions entails that for any ',
the empty word (consisting of zero letters) is in [['⇤]] .



1 Formal Methods 9

Operational semantics describes the execution of the syntactic object by
some virtual machine. In our example, from each regular expression we can
construct an automaton accepting its language. For an imperative or object-
oriented programming language, the operational semantics defines, for in-
stance, the change of the memory content induced by an assignment. In
Ch. 3 we will discuss an operational semantics for the process algebra Csp.

Example 2.5: Operational Semantics of Regular Expressions

For any regular expression ', we define an automaton A('), that is, a
graph (N,E, s0, SF ), where N is a nonempty set of nodes, E ✓ (N ⇥
A⇥N)[ (N ⇥N) is a set of (labelled) edges, s0 2 N is the initial node
and SF ✓ N is the set of final nodes.
• A(a) , ({s0, s1}, {(s0, a, s1)}, s0, {s1}) for any letter a 2 A.
• A(;) , ({s0}, {}, s0, {}).
• If A(') = (N', E', s0,', SF,') and A( ) = (N , E , s0, , SF, )

(where we assume all elements to be disjoint), then A(('  )) ,
(N' [N , E' [ E [ {(s, s0, ) | s 2 SF,'}), s0,', SF, ).

• A((' +  )) is constructed from A(') and A( ) by A((' +  )) ,
(N' [ N [ {s0}, E' [ E [ {(s0, s0,'), (s0, s0, )}, s0, SF,' [ SF, ),
where s0 is a new node not appearing in N' or N .

• If A(') = (N,E, s0,', SF ), then A('⇤) , (N[{s0}, E[{(s0, s0,')}[
{(s, s0) | s 2 SF }, s0, {s0}), where again s0 is a new node not appear-
ing in N'.
A word w is generated or accepted by an automaton, if there is a path

from the initial node to some final node which is labelled by w. It is
not hard to see that for every regular expression ' the automaton A(')
accepts exactly [[']]. That is, denotational and operational semantics
coincide.

An axiomatic semantics gives a set of proof rules from which certain prop-
erties of the syntactical object can be derived. For example, for regular ex-
pressions an axiomatic semantics might consist of a list of rules allowing to
prove that two expressions are equal. For logic programming languages, the
axiomatic semantics allows to check if a query is a consequence of the facts
stated in the program. In Ch. 2 we will discuss a Hilbert-style proof system
for propositional logic, which – thanks to its correctness and completeness –
can also serve as axiomatic semantics of propositional logic.

Example 2.6: Axiomatic Semantics of Regular Expressions

Axiomatic systems for equality of regular expressions were given by var-
ious authors [Sal66, Koz94, KS12]. We call an equation ↵ = � derivable
and write ` ↵ = �, if it is either an instance of one of the axioms below



10 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider

or follows from a set of such instances by a finite number of applications
of the below rules. Salomaa gives the following axioms
• ` (↵+ (� + �)) = ((↵+ �) + �) , ` (↵ (� �)) = ((↵ �) �)
• ` (↵ (� + �)) = ((↵ �) + (↵ �)) , ` ((↵+ �) � = ((↵ �) + (� �))
• ` (↵+ �) = (� + ↵) , ` (↵+ ↵) = ↵ , ` (" ↵) = ↵

• ` (; ↵) = ; , ` (↵+ ;) = ↵

• ` ↵⇤ = ("+ (↵⇤
↵)) , ` ↵⇤ = ("+ ↵)⇤

and derivation rules

• If ` ↵ = � and ` � = �, then ` �[↵ := �] = � and ` �[↵ := �] = �

• If ` ↵ = ((↵�) + �) and not " 2 �, then ` ↵ = (��⇤)

Here, �[↵ := �] means � with one or more occurrences of ↵ replaced
by �. For the second rule, " 2 � means that

1. � is of form ⇢
⇤ for some regular expression ⇢, or

2. � is of form (⇢1 + ⇢2) where " 2 ⇢1 or " 2 ⇢2, or
3. � is of form (⇢1 ⇢2) where " 2 ⇢1 and " 2 ⇢2.

Without the restriction “not " 2 �” the rule would not be correct:
a
⇤ = (a⇤a⇤) + ;, but not a⇤ = (; a

⇤⇤), since (; a
⇤⇤) = ;

It can be easily proven that [[↵]] = [[�]] if ` ↵ = �, that is, the system is
correct with respect to the denotational semantics. The proof proceeds
by showing that all axioms are correct, and that the rules allow only to
derive correct equations from correct ones. In passing we mention that
the system also can be proven to be complete, that is, if [[↵]] = [[�]] then
` ↵ = �. Completeness usually is much harder to show than correctness.

Methods

A formal language is described by an unambiguous syntax and a mathe-
matical semantics. For a Formal Method (as opposed to a formal language)
it is essential that there are some algorithms or procedures which describe
what can be done with the syntactic objects in practice. According to the
Oxford dictionary, a method is a particular procedure for accomplishing or
approaching something, especially a systematic or established one. A For-
mal Method describes how to ‘work with the language’, that is, perform
some activity on its elements in order to achieve certain results. In general,
this information processing is some form of transformation (metamorphosis,
Gestaltwandlung), where the syntactic objects are modified from one form to
another.

Usually, a formal language is designed for a specific purpose. For example,
a logical language is supposed to formalise human reasoning. A specification
language should allow to describe the functionality of a system. A program
formulated in a programming language should be executable on a machine.



1 Formal Methods 11

A model expressed in some modelling language should help humans to un-
derstand a concept or design.

The methods associated with a formal language usually are constructed
to support this purpose. For a logical language, the transformation can be
a calculus with which to derive theorems from axioms. For a specification
language, it can be a set of rules to transform a specification into an imple-
mentation. For programs written in any programming language, the execution
on a virtual machine can be seen as a form of transformation. For modelling
languages, model transformations allow to change between di↵erent levels of
abstraction.

In a Formal Method, the transformation must be according to fixed rules;
these rules operate on syntactical objects of the formal language under dis-
cussion, and result in some ‘insight’ about them. Such an insight might be
the result of the transformation, or the realisation that the (repeated) trans-
formation does not come to an end. Other insights we might want to achieve
are whether a program is correct with respect to its specification, or whether
one model refines another one.

Continuing our example, we show how regular expressions can be used in
everyday text processing.

Example 2.7: Regular Replacements

A frequent task while writing scientific articles is to consistently replace
certain text passages by others in the whole text. A replacement [↵ := �]
consists of a regular expression ↵ and a word � over A. The word � is the
result of the replacement [↵ := �] on a word �, denoted as � = �[↵ := �]
if one of the following holds:
1. either there exist �1, �2 and �3 such that

1.1. � = �1�2�3,
1.2. �2 2 [[↵]] \ [["]],
1.3. �1 is of minimal length, that is, there are no �01, �

0
2 and �

0
3 such

that � = �
0
1�

0
2�

0
3, �

0
2 2 [[↵]] \ [["]] and |�01| < |�1|,

1.4. �2 is of maximal length, that is, there are no �02 and �03 such that
� = �1�

0
2�

0
3, �

0
2 2 [[↵]] \ [["]] and |�02| > |�2|,

and � = �1�(�3[↵ := �]), or
2. there are no �1, �2 and �3 satisfying the above 1.1–1.4., and � = �.

The definition of the first case is recursive; it is well-defined because
condition 2. requires that �2 is a nonempty string. Therefore, |�3| < |�|,
and the recursion must terminate.

As an application of regular replacement, we note that
(p ) (q ) p))[(p+ q) := (p ) q)] = ((p ) q) ) ((p ) q) ) (p ) q))).

Coming back to our introductory tool experiments in Example 2.1 on
page 6, the above definition determines:



12 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider

• if the wildcard sign ‘*’ has been defined to express the iteration of the
empty word, then (abc)["⇤ := x] = abc as condition 1.2 of Example 2.7 can
not be fulfilled;

• if the wildcard sign ‘*’ stands for ‘any word’, then (abc)[⇤ := x] = x,
because the wildcard sign matches exactly ‘abc’ and therefore condition 1
of Example 2.7 is fulfilled with �1 = ", �2 =0

abc
0
, and �3 = ".

Thus, the formal treatment allows to calculate a reliable result which is
independent from the particular text editor being used, and against which
the tools can be verified.

We now have discussed all ingredients of what constitutes a Formal
Method, and thus are in a position to give a definition.

Definition 1. A Formal Method M consists of three components:

• syntax,
• semantics, and
• method.

The syntax gives a precise description of the form of objects (strings or
graphs) belonging to M. The semantics describes the ‘meaning’ of the syntac-
tic objects of M, in general by a mapping into some mathematical structure.
The method describes algorithmic ways of transforming syntactic objects, in
order to gain some insight about them.

1.2 Formal Methods in Software Development

Having developed an understanding of what Formal Methods are, we now
consider their role in software development. To this end, we briefly recall
the notion of the software life cycle, describe how this cycle is realised, and
discuss where to use Formal Methods in the life cycles. While life cycle mod-
els describe development activities and their order, software development
standards give a legal framework prescribing which activities have to be per-
formed, including Formal Methods. This leads to a discussion of the main
purposes for the use of Formal Methods in systems development.

1.2.1 The Software Life Cycle

A software life cycle (SLC) (also referred to as “software development life
cycle”, “software development process”, and “software process”) is a struc-
ture describing development, deployment, maintenance, and dismantling of
a software product. There are several models for such processes, describing



1 Formal Methods 13

di↵erent approaches on how to develop software (waterfall, spiral, iterative,
agile development, etc.).

Our objective is to discuss the use of Formal Methods in the software
development process, independently of the model used, rather than to provide
a survey on such di↵erent models. For that reason we concentrate on the V-
model, and the general ideas behind agile methodologies.

The V-model

Models of software development often describe the development process as be-
ing composed of separate phases. For example, there usually are a project def-
inition phase, an architectural and software design phase, a coding phase and
a testing phase. Traditionally, these phases are ordered sequentially, which
leads to the so-called waterfall model. In this model, the results of one phase
are starting points for the subsequent phase, like water falls from one level
to the next in a cascade. The waterfall model has several deficits and today
is considered to be archaic. Mainly, it does not pay respect to the fact that
quality assurance takes place on several levels. For instance, system testing is
considered with the systems specification, whereas in unit testing individual
units (methods, procedures, functions etc.) rather than the overall system
are checked.

Traditionally, the V-model usually has been depicted like the waterfall
model, however in the shape of a big V. The V-model has been developed
over many years in various versions. A newer version is the V-model XT
(for “eXtreme Tailoring”) [dBfI12], see Fig. 1.2. In particular, the German
federate o�ce for information security (BSI) was a driving force in its elabora-
tion. In Germany, the V-model is mandatory for safety-critical governmental
projects. Instead of describing phases, the V-model XT describes states in
the development process. It refrains from prescribing a specific order to these
states.

Fig. 1.3 hints at where and how validation and verification could be used in
the software development process according to the V-model XT. It shows four
design levels (from top to bottom: requirements, design specification, archi-
tecture, and implementation). At each level, the realisation and integration
artefacts (on the right) should comply with the corresponding specification
and subdivision artefacts (on the left).

Many researchers and practitioners in software engineering di↵erentiate
between ‘validation’ and ‘verification’ in the following way: validation tries
to answer the question

“Are we building the right product?”,

whereas verification is concerned with the question

“Are we building the product right?”



14 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider
3 Basic Concepts of the V-Modell 1-19

Figure 8: Decision Gates of the Project Execution Strategies 

3.8 Overview of Basic Concepts

An important principle of the V-Modell is its target-oriented and result-oriented practicing. This ba-
sic philosophy is visible in numerous aspects of the V-Modell:

● Products are in the focus of the V-Modell. They are the central project results.

V-Modell® XT, Version 1.3

Fig. 1.2 V-model XT [dBfI12].



1 Formal Methods 15

5 Project Execution 1-31

Figure 15: Acquirer/Supplier Interface 

If the system development project of the acquirer exceeds a certain magnitude, it should be subdivi-
ded into appropriate sub-projects. Even if these projects are executed within one company, this sub-
division should also be conducted in accordance with the described acquirer/supplier interface. This 
is the only way to control the coordination between the projects adequately and to make corrections 
if required.

5.2 System Development

The system development includes the development of the »System to be prepared and the develop-
ment of the »Enabling System required in various system life cycles. For the development, the sys-
tem is subdivided hierarchically into smaller units until finally a realization is possible. It is subdivi-
ded hierarchically into »Segments, »Hardware Units, »Software Unit, »External Units, »Hardware
Component, »Software Components, »Hardware Module, »Software Modules, »External Hardware 
Modules, and »External Software Modules (see »V-Modell Reference Work Products, see Chapter 
»Structural Product Dependencies).

In accordance with this hierarchical system structure, the system is specified and subdivided into 
smaller units during the system development. The »Decision Gates depicted in Figure 16 are the ba-
sic steps for the refinement of the specification and the subdivision into smaller units.

There is an accurate procedure for every subdivision step, which is based on a uniform pattern and 
permits a complete tracing of the requirements. During every step, the requirements of the higher 
»System Elements are taken into account, the subdivision is designed, the realization of the »Sys-
tem Elements is specified, and finally, the requirements are assigned to the next level of »System
Elements.

The realization and integration of the system is conducted in reverse order as compared to the speci-
fication and subdivision. Based on the realized  »Hardware Modules and  »Software Module, the 
more complex »System Elements, and finally the system are integrated. As shown in Figure 16, ve-
rification and validation are ensured at every design level.

Figure 16: System Development Structure 

5.3 Introduction and Maintenance of an Organization-Specific V-Modell

The  »Process Module »Introduction and Maintenance of an Organization-Specific Process Model 
describes a procedure for introducing and continually improving an »Organization-Specific Process
Model. The procedures and guidelines of this process module have to be applied during the organi-

V-Modell® XT, Version 1.3

Fig. 1.3 Verification and Validation in the V-model XT [dBfI12].

Thus, validation refers to the user’s needs according to the requests, while
verification checks that the specification is correctly implemented. In Fig. 1.3
this means that validation could be associated with the compliance between
‘contract awarded’ and ‘acceptance completed’, whereas verification concerns
the other compliances.

Note, however, that many researchers use a slightly di↵erent definition,
where validation is a general term covering all activities for checking that
the product is correct, while verification is used for the process of formally
proving that a program meets its specification. Since such a formal proof
requires formal languages, verification is only applicable at the three lower
levels of Fig. 1.3. This can be for establishing the horizontal compliances, for
refinement between di↵erent levels, or for proving properties about formal
artefacts.

Agile Development

Phase-based models of software development, such as the waterfall model,
have been criticised for a number of reasons. A main point is that each new
phase has to wait until the previous one is completed. This can lead to delays
in the project. Moreover, if an error is detected it might be necessary to go
back to an earlier phase, causing further delays. Finally, the waterfall model
assumes that all system requirements are known from the very beginning of
the development. There is no provision to modify or extend requirements
during the process. This can be a severe restriction.

Therefore, many other process models have been proposed. A current trend
is to develop software in a manner where teams are small, the phases are not



16 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider

clearly identified, and the user is represented in the whole process of software
development. This procedure has been called agile development [Coc00]. De-
sign, development and testing are done almost simultaneously and in short
iterations.

In an agile development process, a natural way to work is to follow a test-
driven development approach [Bec02]. That is, before starting to write code,
tests for the system are produced. These tests represent user scenarios and
requirements for the system. As long as the code is non-existent or erroneous,
the tests will fail. Then the code is written in order to make the tests pass.
When all tests pass, one system development cycle is completed.

The Scrum management methodology identifies roles and responsibilities
in an agile development process [SB01]. It also defines activities like daily and
weekly meetings, where the basic unit of development is organised in project
time slots (sprints). Each time slot should produce a potentially deliverable
result (e.g., a piece of software).

In an agile process, roles (manager, analyst, programmer, tester, verifier
etc.) are frequently swapped amongst group members. Therefore, each de-
veloper should in principle have knowledge of all development activities in
the project. In particular, if Formal Methods are used, the group members
should know the capabilities and limitations of the available formal develop-
ment tools.

1.2.2 Formal Methods: When and Where

While process models describe development phases and their order, software
development standards give a legal framework prescribing which activities
have to be performed. For example, a standard might prescribe that “for
each phase of the overall . . .system and software safety lifecycles, a plan for
the verification shall be established concurrently with the development for the
phase. The verification plan shall document or refer to the criteria, techniques,
tools to be used in the verification activities.” [IEC10].

There are various standards on the development of software, e.g., EN-
50128, IEC-61508 and DO-178 B/C. Some of these standards prescribe
that Formal Methods are being used for high integrity levels. For example,
IEC 61508, the international standard on functional safety of electrical/elec-
tronic/programmable electronic safety-related systems, is a ‘meta-standard’,
from which several other domain-specific standards are derived. In Part 7
(2010), section C.2.4.1 it defines the aim of Formal Methods as “the develop-
ment of software in a way that is based on mathematics. This includes formal
design and formal coding techniques. . . . A Formal Method will generally of-
fer a notation (generally some form of discrete mathematics being used), a
technique for deriving a description in that notation, and various forms of
analysis for checking a description for di↵erent correctness properties.” In



1 Formal Methods 17

Section B.2.2. it states that “Formal Methods . . . increase the completeness,
consistency or correctness of a specification or implementation”.

However, the IEC 61508 standard also states that there can be disadvan-
tages of Formal Methods, namely: “fixed level of abstraction; limitations to
capture all functionality that is relevant at the given stage; di�culty that
implementation engineers have to understand the model; high e↵orts to de-
velop, analyse and maintain model over the lifecycle of system; availability of
e�cient tools which support the building and analysis of model; availability
of sta↵ capable to develop and analyse model.”

Several Formal Methods are described in the standard (CCS, CSP, HOL,
LOTOS, OBJ, temporal logic, VDM and Z). The use of Formal Methods is
recommended for achieving the highest safety integrity level (SIL 4), where
the average frequency of a dangerous failure of the safety function must be
provably less than 10�8

/h, i.e., a failure may occur on average at most once
in 10,000 years of operation.

DO-333 is the Formal Methods supplement to DO-178C and DO-278A for
safety-critical avionics software. It defines Formal Methods as “mathemati-
cally based techniques for the specification, development and verification of
software aspects of digital systems”. Formal Methods can be used to “im-
prove requirements, reduce error introduction, improve error detection, and
reduce e↵ort”. The supplement further states that “the extent to which For-
mal Methods are used [in the software development] can vary according to
aspects such as preferences of the program management, choice of technolo-
gies, and availability of specialised resources”.

Use of Formal Methods

The use of Formal Methods in software development is not constrained to a
specific process and life cycle model followed by a company. That is, Formal
Methods can be used with traditional as well as agile models. Moreover,
Formal Methods should not constitute separate phases or sprints, but should
rather be integrated as part of the general verification activities.

Mishra and Schlinglo↵ [MS08] evaluate the compliance of Formal Methods
with process areas identified in CMMI-DEV, the capability maturity model
integration for development. Their result is that out of 22 process areas from
CMMI, six can be satisfied fully or largely with a formal specification-based
development approach. Notably, the process areas requirements management,
product integration, requirements development, technical solutions, valida-
tion and verification are supported to a large extent. They also show the
possibility of automation in process compliance, which reduces the e↵ort for
the implementation of a process model.

Formal Methods are used in system development for two main purposes:

1. as a means to make descriptions precise, and
2. to help in di↵erent kinds of analysis.



18 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider

Concerning the first purpose, descriptions of interest include requirements,
specifications, and models, which appear at di↵erent levels and moments in
the life cycle. It is common practice to write software descriptions in natural
language. In spite of the apparent advantage of being written in a language
understandable to everybody, its inherent ambiguity and lack of precision
makes the realisation of such descriptions problematic.

The literature distinguishes between linguistic and domain-specific ambi-
guities. Kamsties et al. [KBP+01] provide the following examples: the 500
most used words in English have on average 23 meanings; the sentence “The
product shall show the weather for the next 24 hours” exhibits the linguistic
ambiguity if the phrase ‘for the next twenty-four hours’ is attached to the
verb ‘show’ or to the noun ‘weather’; the sentence “Shut o↵ the pumps if the
water level remains above 100 meters for more than 4 seconds” is ambigu-
ous as in the given domain the term ‘water level’ can refer to the mean, the
median, the root mean square, or the minimum water level. An attempt to
address such problems is the use of controlled natural language. Here, the
grammar and vocabulary of natural language is restricted in order to avoid
or reduce ambiguity of sentences. Present day controlled languages, however,
are often felt to be either too restrictive or too informal to be practical. In
this book we advocate formal languages, which have a well-defined syntax
and semantics. They may be used to resolve such ambiguities and to achieve
the required level of precision.

To illustrate such a process of removing ambiguities, consider the regular
replacements discussed in Example 2 on page 5. We showed that the informal
description is ambiguous and can lead to unexpected results. In contrast, in
Example 2.7 on page 11 we formally defined �[↵ := �] to be the word resulting
from the word � by the replacement of a regular expression ↵ with the word �.
The formal definition cares for all special cases; there is no need for explaining
what, e.g., the replacement of the empty language by the empty string in a
one-letter word is. a[; := "] has a well-defined meaning which can be derived
from the definition.

This book focuses largely on using Formal Methods in the second way,
i.e., to assist with analysis. The use of Formal Methods in Verification and
Validation (often abbreviated as V&V) is wide and includes techniques such
as static analysis, formal testing, model checking, runtime verification, and
theorem proving. All the above are complementary techniques to standard
methods such as code review, testing and debugging. They increase the con-
fidence in the correctness of the software under consideration.

This is shown in the software development for the ISS as described in
Example 1. It illustrates how Formal Methods can help to analyse a system.
Given a system model, the model checker FDR could prove the presence of
several deadlocks and livelocks. This helped to improve the quality of the
safety-critical system.

Aligned with current practices in software development, Formal Methods
may be used from the very beginning (when a system is initially conceived) up



1 Formal Methods 19

to the end (when the final product is shipped). Model checking, for instance,
does not require that a single line of code has been written: it may already be
used when the first formal specifications and high-level models are available.
As another example, runtime verification can be used in a pre-deployment
phase, when (part of) the code is ready to run, and even after deployment to
control/enforce desirable properties at runtime.

1.2.3 A Classification Scheme for Formal Methods

In Def. 1 on page 12, we said that a Formal Method consists of syntax, seman-
tics and specific methods or algorithms. Thus, e.g., “CTL model checking”
or “Z theorem proving with HOL” are particular Formal Methods.

Although there has been quite a debate in the Formal Methods community
on the ‘right’ syntax, the ‘best’ semantics and the ‘most e↵ective’ algorithms,
these aspects can be subsumed within other categories in a taxonomy of
Formal Methods.

In order to give an orientation, we provide a classification scheme which
allows to categorise each Formal Method along the following dimensions.

• Method definition – syntax, semantics and procedures as described
above.

– Syntactic aspects, e.g., whether the language allows user-defined mixfix
operators, linear or non-linear visibility, graphical or textual notation,
etc., are related to the usability-aspect of a Formal Method.

– Semantic aspects – which semantic domains are employed and how they
are characterised (denotational, operational, axiomatic semantics) – de-
termine the application range and underlying technology.

– Algorithmic aspects (describing what can be done with the method)
dominate the underlying technology and properties of concern. Typical
procedures include simulation and symbolic execution, model checking,
automated or interactive theorem proving, static analysis, refinement
checking, etc.

• Application range – this dimension determines the application domain
(e.g., avionics, railway, finance) and the specific needs of this domain
(whether the systems are mainly reactive, interactive, real time, spatial,
mobile, service oriented, etc. )

• Underlying technology – this dimension notes how the method can be
realised. Technologies are, for example, SAT solving, logical resolution,
term rewriting, symbolic representation, etc.

• Properties of concern – This dimension categorises properties of the sys-
tems which are the subject of the Formal Method and which are supported



20 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider

by the method (safety, liveness, fairness, security, consistency, functional
correctness, etc.)

• Maturity and applicability – this dimension describes how fit the
method is for actual use (universality, expressivity, usability, learning-
curve, intuitive level, tool support, etc.)

Each particular application of Formal Methods can be located within the
space that these dimensions span. For illustration, consider Example 1 on
page 2: the language used in this example is the process algebra Csp, with
its failures semantics, and automated refinement checking as a procedure
(see Fig. 1.1). The application domain is that of fault-tolerant algorithms in
aerospace. The technology used in the FDR tool is the hierarchical compres-
sion of the state space, a technique specific for this tool. Properties of concern
are livelock and deadlock. The case study was conducted in a collaboration
between industry and academia, since the abstraction process from Occam to
Csp and the use of FDR was outside the standard routine of the aeronautic
engineers.

The second example from this chapter, regular replacement, can be clas-
sified as follows: the syntax is the language of regular expressions, with the
usual denotational (set-theoretic) semantics, and text transformation as a
procedure. Application domain are text editors or macro processors. There
is no specific technology involved with this example, as we refrain from giv-
ing an implementation; one possibility would be to use list processing in a
functional programming language. The property to be achieved is to give a
well-defined transformation, open to formal argument about the correctness
of any implementation. The Formal Method of regular expressions belongs
to the standard knowledge of computer science and is accessible at an under-
graduate level.

Of course, there are other dimensions which could be added to this clas-
sification scheme. These include specification focussed vs. analysis focussed,
correctness-by-construction vs. design-and-proof-methodology, lightweight vs.
heavyweight Formal Methods, etc.

1.2.4 Tool Support for Formal Methods

Formal Methods usually start on the ‘blackboard’: toy examples are treated
in an exemplary way. With paper and pen one checks if a method works
out. In the long run, however, Formal Methods need tool support in order
to become applicable. This is the case as software systems are fundamentally
di↵erent compared to mathematical theories:

Numbers of axioms involved. In Ch. 4, we will formalise and verify
control programs written in Ladder Logic. Here, each line of code is rep-
resented by one logic axiom in the specification language Casl. The toy



1 Formal Methods 21

example presented, a tra�c light controller, cf. Example 44, has about
10 lines of code, i.e., the model consists of about 10 Casl axioms. Our
approach scales up to actual railway interlockings. Such interlockings de-
scribe for a railway station how to position the points and how to light the
signals in such a way that trains can move safely. A typical interlocking
program written in Ladder Logic consist out of 500–1500 lines of code, i.e.,
its model has 500–1500 Casl axioms in its formalisation.
In contrast, the whole realm of group theory is based on three axioms only,
namely that the operation + is associative (axiom 1), that + has the unit
0 (axiom 2), and, finally, that every element has an inverse (axiom 3).
These example indicate that the number of axioms when applying Formal
Methods is by magnitudes larger than the number of axioms involved in
mathematical theories. Consequently, tool support is needed in Formal
Methods for sheer book keeping.

Ownership and interest. The interlocking program for a railway station
is commissioned by a rail operator. Intellectual property rights ensure that,
besides the rail operator, only the company writing the code and the rail-
way authorities have access to design documents, code, and verification
documentation, etc. These artefacts are studied only when the software
lifecycle dictates it:

• during production by the company programming it,
• for acceptance by the company running the train station,
• for approval by the railway authorities, and
• when maintaining the code by a possibly di↵erent company hired for

the task.

Thus, any verification of a ladder logic program, say in Casl, will be
studied only at few occasions.
In contrast, group theory is public, its theorems and their proofs are pub-
lished in books and journals, everyone has access to them. The proofs of
group theory are taught for educational purposes at universities. Every
year, the fundamental theorems of group theory are proven and checked
in lecture halls all over the world.
Many software systems are the intellectual property of a company. This
restricts access to the actual code; interest in their design is limited. Math-
ematical theories are part of the scientific process and publicly available.
There is scientific interest in them. Therefore, proofs related to a specific
software system are studied by few people only, and only when necessary
– while mathematical proofs are studied by many, over and over again.
Consequently, tools play the role of ‘proof checkers’ for quality control in
Formal Methods.

Change of axiomatic basis. Every ten to fifteen years, the design of a
railway station changes. New safety regulations have to be implemented,
the station shall deal with more trains, new technology shall be introduced



22 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider

such as the European Train Control System (ETCS). This requires changes
to the interlocking program and, consequently, to the proofs on it.
In contrast, mathematical theories are stable. Already in the 1830s Galois
worked with the axioms of group theory, which have not changed ever
since.
Requirements of software systems are bound to change in small time in-
tervals. This means that design steps involving Formal Methods need to
be repeated several times, sometimes already during the design phase, cer-
tainly when maintaining the system. Mathematical theories, however, are
stable over centuries. Consequently, tools are needed to help with manage-
ment of change in Formal Methods.

The technology underlying tools for Formal Methods is generic. The Het-
erogeneous Tool Set HeTS – to be discussed in Ch. 4 “Algebraic Specification
in Casl” – for example is a ‘broker’ which o↵ers, amongst other functional-
ities, translations from the language Casl to various tools. Yet another ex-
ample is the Process Analysis Toolkit PAT, which supports reasoning about
concurrent and real-time systems. Other tools have been built specifically for
one Formal Language. An example is the model checker FDR which has been
designed specifically for the process algebra CSP – see Ch. 3 “The process
algebra CSP”. The current trend in Formal Methods is to o↵er (integrated)
work environments for di↵erent Formal Languages and Methods, e.g., HeTS.

Tool Qualification

When software tools are used to validate software, the questions is, who is
validating the tools? In other words, for highly safety-critical systems there
needs to be evidence why the tools which are used in their development
should be trusted. There are two kinds of tools: for artefact generation and
for artefact validation. This holds for all artefacts occurring in the software
design cycle, e.g., binary code, program text, formal model, specification, or
even the user manual. In industry, there are contradicting views concerning
the importance of these tool classes. In some areas, generating tools are con-
sidered to be more critical than validating tools, since they directly a↵ect the
behaviour of the system. In other areas it is argued that faulty behaviour of
a generator can anyway be found by the validation tools, which therefore are
more critical.

If a generating tool is faulty, then the generated artefact will not corre-
spond to its source. In the case of executable code, e.g., this may mean that
the runtime behaviour is not as expected. In the case of a model transforma-
tion, the generated model might miss out on properties already established
for the source model.



1 Formal Methods 23

Example 3: Public-Domain C Compilers

Yang et al. [YCER11] found more than 325 errors in public-domain C
compilers using a specialised compiler testing tool. They report:

“Every compiler we tested was found to crash and also to silently
generate wrong code when presented with valid input.”

“A version of GCC miscompiled this function:

1 int x = 4;
2 int y;
3
4 void foo (void) {
5 for (y = 1; y < 8; y += 7) {
6 int *p = &y;
7 *p = x;
8 }
9 }

When foo returns, y should be 11. A loop-optimisation pass de-
termined that a temporary variable representing *p was invariant
with value x+7 and hoisted it in front of the loop, while retain-
ing a dataflow fact indicating that x+7==y+7, a relationship that
no longer held after code motion. This incorrect fact led GCC to
generate code leaving 8 in y, instead of 11.”

If a validation tool is inaccurate or faulty, there are two cases: the tool
might report an error where there is none (false positive), or the tool might
miss to report an error where there is one (false negative). For example,
an erroneous program verifier might fail to verify a correct program (false
positive), or it might claim to have found a proof for an incorrect program
(false negative). Often, false negatives are more critical than false positives
since they convey a deceptive certainty. False positives are a hassle, because
they need to be dealt with manually.

To make this more concrete, consider the tool Cppcheck for static analysis
of C programs:

Example 4: Static Analysis of C Programs

When Cppcheck (Version 1.59) checks the following program, it issues
for line 5 the error message

Array ’x[7]’ accessed at index 13, which is out of bounds.
1 int main() {
2 int x[7];
3 int i = 13;



24 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider

4 int flag; if (i<7) flag = 1; else flag = 0;
5 if (flag) x[i] = 0;
6 x[3] = 33; x[x[3]] = 0;
7 }
Since the assignment in line 5 is never executed, this is a false positive.

Surprisingly, this false positive disappears when we replace line 4 by the
equivalent

4 int flag = (i<7)?1:0;

Cppcheck does not issue an out-of-bounds warning for line 6. This is
a false negative, since the assignment x[33] = 0; clearly might cause
problems.

What are now the possibilities for the validation of tools? The usual ap-
proach is to resort on tools which are proven-in-use, i.e., where experience
from many previous projects suggests that the tool is ‘correct’. This is es-
pecially the case for certain public-domain tools which have been applied by
many users for a long period of time. In order to claim that a tool is proven-
in-use, it is necessary to provide evidence in which comparable projects it was
used. As the above example of the GCC compiler error shows, proven-in-use
is no guarantee against subtle, hidden errors.

For new or newly introduced methods and tools, the proven-in-use prin-
ciple poses the problem of how to begin such a chain of trust. So, what to
do when proven-is-use is not applicable? In order to be allowed to use tools
which are not proven-in-use in a safety-oriented development, at least one
has to perform a tool qualification. That is, the tool has to be applied to a
number of selected examples under controlled conditions, where the tool’s
behaviour must be analysed and documented in detail. Tool certification is
the process of confirming the qualification by a designated authority. Usually
this is done only for tools to be applied in several di↵erent projects. The soft-
ware development standard DO-333, e.g., prescribes in detail how to qualify
and certify tools for di↵erent safety integrity levels in aerospace.

Of course there is still a possibility that even certified tools might contain
errors. There are further methods that can improve the reliability of Formal
Methods tools.

In the case of generating tools, one possibility is to verify the genera-
tor itself. For instance, there are a number of research projects and results
dealing with compiler verification. One challenge here is that the correctness
argument needs to deal with several di↵erent languages: the language the
generator is written in, the source language, and the target language. Due
to the sheer size of the problem, often compiler verification is supported by
automated tools. Yet another possibility is to generate, besides the code, also
certain proof conditions from program annotations, which can be checked
automatically in the generated code with a suitable verification tool. This



1 Formal Methods 25

way, if the compiler is faulty in its code generation part, this will be detected
by the following verification tool.

Both these suggestions to improve the dependability of generating tools
rely on the existence of correct verification tools. In order to increase the
trust in the correctness of verification tools themselves, one can run several
di↵erent provers on the same problem and compare their results. If at least
two of them agree, then, under the assumption that di↵erent tools do not
make the same mistake, the result is as given. If one prover claims to have
found a proof, while another one claims that the property is not valid, one
of them must be faulty.

Another approach to increase the trust in theorem provers is to augment
them with a proof checking component. For this, the prover must not only
give a boolean result but also produce some term which allows to check
whether the proof is a valid one.

1.3 Formal Methods in Practice

We present various case studies on the application of Formal Methods. These
come in two flavours: comparative case studies compiled by academics, and
the application of Formal Methods in industry.

1.3.1 Comparative Surveys and Case Studies

The Formal Methods community has compiled several surveys with the aim
of comparing di↵erent approaches for the application of Formal Methods in
various areas. The characteristic of these surveys is to discuss one coherent
example in the context of several Formal Methods.

• Lewerentz and Lindner [LL95] discuss a production cell. This cell is con-
sidered to be safety critical, i.e., a number of properties must be enforced
in order to avoid injuries of people. The system is reactive, i.e., it has to
react permanently to changes of the environment. In principle this is a
real-time problem, as the reaction of the control software must be guaran-
teed within a certain interval of time.

Example 5: Production Cell

“The production cell is composed of two conveyor belts, a positioning
table, a two-armed robot, a press, and a travelling crane. Metal plates
inserted in the cell via the feed belt are moved to the press. There,



26 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider

they are forged and then brought out of the cell via the other belt
and the crane.” [LL95].

This case study reflects a typical scenario as it arises in industrial automa-
tion. For this case study, various safety and liveness requirements are to be
established. E�ciency (w.r.t. production time) and flexibility (w.r.t. the
e↵ort it takes to adapt a solution to changed requirements) should also be
taken into account. Besides presenting 18 contributions, the book includes
a summary and evaluation of the di↵erent solutions.

• Broy et al. [BMS96] study a memory cell which can be accessed by remote
procedure calls. Such a call is an indivisible action. A return is an atomic
action issued in response to a call. There are two kind of returns, normal
and exceptional. A return is issued only in response to a call.

Example 6: RPC Memory Cell

“The component to be specified is a memory that maintains the con-
tents of a set MemLocs of locations. The content of a location is an
element of a set MemVals. This component has two procedures. . .
[Procedure] Read returns the value stored in address loc. [Proce-
dure] Write stores the value val in address loc. The memory must
eventually issue a return for every Read and Write call.” [BMS96].

Broy et al. [BMS96] collect fifteen solutions in various Formal Methods,
including Petri nets, temporal and higher-order logics, various forms of
transition systems or automata, and stream-based approaches.

• Abrial et al. [ABL96] study a classical control problem:

Example 7: Steam-Boiler Controller

“[The steam-boiler control program] serves to control the level of wa-
ter in a steam-boiler. The program communicates with the physical
units through messages which are transmitted over a number of ded-
icated lines connecting each physical unit with the control unit. . . .
The program follows a cycle and a priori does not terminate. This
cycle takes place each five seconds and consists of the following ac-
tions:
– Reception of message coming from the physical units.
– Analysis of informations which have been received.
– Transmission of messages to the physical units.” [Abr94].



1 Formal Methods 27

Abrial et al. [ABL96], use Formal Methods for various purposes: formal
requirement specifications, intermediate refined models, analysis of system
properties, proofs, automated synthesis of conditions implying safety for
parameters of the controller, design or generation of executable code. The
overall twenty-one contributions used algebraic, logical, and operational
languages similar to those treated in the subsequent chapters of this book.

• Frappier and Habrias [FH01] discuss a classical commercial software ap-
plication:

Example 8: Invoicing Software

“To invoice is to change the state of an order (to change it from
the state “pending” to “invoiced”). On an order, we have one and
one only reference to an ordered product of a certain quantity. The
quantity can be di↵erent to other orders. The same reference can be
ordered on several di↵erent orders. The state of the order will be
changed into “invoiced” if the ordered quantity is either less or equal
to the quantity which is in stock according to the reference of the
ordered product.” [FH01].

The volume collects specifications in the state-based methods Z and B, in
the event-based methods Action Systems, UML with a behaviour-driven
method, VHDL, Estelle, SDL, and E-Lotos, and in other formal approaches
as CASL, Coq, and Petri Nets.

• Jones and Woodcock [JW08] collect approaches to mechanise the proof of
correctness of the Mondex smart-card for electronic finance. This was one
of the first comparative case studies dealing with security issues.

Example 9: Electronic Purse Mondex

“The system consists of a number of electronic purses that carry fi-
nancial value, each hosted on a Smartcard. The purses interact with
each other via a communication device to exchange value. Once re-
leased into the field, each purse is on its own: it has to ensure the
security of all its transactions without recourse to a central controller.
All security measures have to be implemented on the card, with no
real-time external audit logging or monitoring.” [SCW00].

The methods applied to the Mondex case study are the Alloy model-finding
method, the KIV system, Event-B, UML and OCL, RAISE, and Z/Eves.



28 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider

• Rausch et al. [RRMP08] document a competition on the so called Common
Component Modelling Example (CoCoME). Given a prescribed architec-
ture, the challenge lies in using a specific formalism for modelling and
analysing the CoCoME according to this architecture.

Example 10: CoCoME Trading System

The CoCoMe case study concerns a trading system as it can be ob-
served in a supermarket handling sales. At a Cash Desk the Cashier
scans the goods the Customer wants to buy and the paying (either by
credit card or cash) is executed. The central unit of each Cash Desk is
the Cash Desk PC which wires all other components with each other.
Also the software which is responsible for handling the sale process
and amongst others for the communication with the Bank is running
on that machine. A Store itself consists of several Cash Desks organ-
ised in Cash Desk Lines. A Cash Desk Line is connected to a Store
Server which itself is also connected to a Store Client. A set of Stores
is organised as an Enterprise where an Enterprise Server exists to
which all Stores are connected. (Formulated closely following Herold
et al. [HKW+07].)

Rausch et al. [RRMP08] documents more than ten formal component mod-
els and their use in verification and quality prediction. A jury evaluation
concludes the volume. We discuss similar examples in Ch. 6 on “Specifi-
cation and Verification of Electronic Contracts”.

• Cortier and Kremer [CK11] collect several popular symbolic approaches
to formal security. Di↵erent research groups demonstrate their techniques,
taking a flawed public key protocol (and its correction) as a common ex-
ample:

Example 11: Handshake Security Protocol

“The aim of the protocol is that A and B share a secret key s at the
end. Participant A generates a fresh session key k, signs it with his
secret key sk(A) and encrypts it using B’s public key pk(B). Upon
receipt B decrypts this message using the private secret key, verifies
the digital signature and extracts the session key k. B uses this key
to symmetrically encrypt the secret s.” [CK11].

This protocol shall provide secrecy: the secret s shall only be known to A

and B. The above handshake protocol, however, is vulnerable to a ‘man
in the middle’ attack. Various techniques are used to (automatically) find
this flaw and to prove that adding the identities of the intended participant



1 Formal Methods 29

changes the protocol into a correct one. These techniques include rewrite
rules, Horn clauses, strand spaces, constraint systems, process algebra, and
Floyd-Hoare style logics. Further protocols are consider in order to demon-
strate the strengths of individual techniques. In Chapter 8 on the “Formal
Verification of Security Protocols” we verify a protocol for authentication.

For good reason, the above compilations refrain from giving a concrete
recommendation which method is ‘the best’. Similar to the problem of select-
ing a suitable programming language for a particular project, the suitability
of a method strongly depends on the context. For example, a method for
analysing functional correctness might not be suitable for deadlock analysis
of protocols.

1.3.2 Industrial Practice

Formal Methods play an increasing role in industrial practice: “yesterday’s
Formal Methods are today’s best practice”. For example, the theory of static
program analysis and abstract interpretation has been developed since the
mid-1970’s. A first tool, Lint, for checking source code of C programs has
been released in 1979. Subsequently, more specialised tools for safety-critical
applications based on this theory were developed. Today, more than one hun-
dred tools for static code analysis exist, with varying strengths and applica-
tion ranges. However, static analysis is also performed in ordinary compilers:
the Java specification (for version 7 in section 14.21.) requires that “it is a
compile-time error if a statement cannot be executed because it is unreach-
able” [GJBB13]. There are detailed instructions in the language definition on
how to figure out whether a statement is reachable; in general, this is a static
analysis task which is performed by the Java compiler.

In hardware design, modelling a chip lay out and checking it with model
checking and theorem proving (both techniques were developed during the
1990s) is an established practice today. Graph grammars originated in the late
1960s; the theory of graph transformation provides the mathematical founda-
tion for code generators in current model-based development environments.
Existing standards, such as DO-333 (see Sect. 1.2.2), which was released in
2012, allow to replace informal validation steps such as code inspections, code
reviews, and testing by Formal Methods.

Knowledge transfer from academia, however, is a slow process in general.
The Formal Methods community itself reflects on this topic. We document
this reflection within the last twenty years. In 1990, Hall [Hal90] identifies
“Seven Myths of Formal Methods”: he argues that unrealistic expectations
can lead to the rejection of Formal Methods in industry, and presents a
more realistic picture of what Formal Methods can achieve. Five years later,
Bowen and Hinchey [BH95a] formulate “Seven more myths of Formal Meth-
ods”, identify them as misconceptions, and conclude that “Formal Methods



30 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider

are not a panacea, but one approach among many that can help to improve
system reliability”. Complementing this work, Bowen et al. [BH95b] formu-
late “Ten Commandments of Formal Methods” which give guidelines of how
to make good use of Formal Methods. Ten years later, Bowen and Hinchey
[BH06] observe that the “application of formal methods has been slower than
hoped by many in the Formal Methods community” and conclude that, at
least for highly safety-critical systems, Formal Methods have found a niche.
Over the years, the perception of Formal Methods has become more positive.
In 2011, e.g., Barnes states that “the application of Formal Methods is a cost
e↵ective route to the development of high integrity software” [Bar11]. The
2020 white paper “Rooting Formal Methods within Higher Education Cur-
ricula for Computer Science and Software Engineering” [CRD+20] argues:

• Current software engineering practices fail to deliver dependable software.

• Formal Methods are capable of improving this situation, and are beneficial and
cost-e↵ective for mainstream software development.

• Education in Formal Methods is key to progress things.

• Education in Formal Methods needs to be transformed.

The “2020 Expert Survey on Formal Methods” [GBP20] compiles a collective
vision on the past, present, and future of FMs with respect to research,
industry, and education. They report:“A huge majority of 90% thinks the
use of Formal Methods will likely become more widespread in industry, while
only nine experts [out of 130] doubt this and four have no opinion.”

Success Stories

In order to support positive views on Formal Methods, we report on a number
of industrial experiments and experiences.

Example 12: Model Checking at Intel

In 1993, Intel released the first Pentiumr processor. Shortly afterwards,
a bug in the floating point arithmetic was detected, which caused wrong
computation results with certain division operations. As a consequence,
Intel had to exchange more than one million faulty processors, with cost
of more than 475 million dollars. Subsequently, Intel initiated major
changes in its validation technology and methodology. “Since 1995 Intel
engineers have been using formal verification tools to verify properties
of hardware designs” [Fix08]. In hardware design, bugs have tradition-
ally been detected by extensive testing, including pre-silicon simulation.
However, this procedure is rather slow, and there are too many input
combinations for an exhaustive testing. Therefore, Intel now employs
temporal logic model checking for this task. Here, a model of the sys-
tem (i.e., the hardware design) is compared with a formal specification



1 Formal Methods 31

of system properties (see Ch. 2 on Logics). For describing hardware
properties, Intel developed the specification language ForSpec, which
was later made into the IEEE 1850 standard PSL (property specifica-
tion language). In this language, properties of floating point arithmetic
as required by the relevant IEEE 754 standard were formulated. As a
model, the register transfer level description of the design is used. Thus,
the verification is done with the same gate-level design that is used
for traditional dynamic validation. Given suitable model checking tools,
the verification is fast and can be easily done within the development
timeframe. Therefore, such a full formal verification of floating-point
processing units is now standard practice at Intel, see also the work of
Harrison [Har03b].

Regarding this case study, L. Fix [Fix08] of Intel remarks:

The barrier to moving from a limited deployment to wide spread deployment of
formal property verification in Intel was crossed mainly due to two developments: the
first was the introduction of ForSpec assertions inside the Verilog code, thus allowing
the designers to easily code and maintain the properties (assertions). The second
was the integration of the formal verification activity with other validation e↵orts.
In particular, the RTL designer had two reasons to annotate his/her code with
assertions. The assertions were always checked during simulation and in addition
the assertions served as assumptions and properties for formal verification. In case
an assertion was too complex to be verified formally it was still very useful as a
checker in simulation.

Example 13: Microsoft’s Protocol Documentation Program

Due to legal negotiation with the U.S. Department of Justice and the
EU, Microsoft decided to make available to competitors the interfaces
of certain client-server and server-server communication protocols used
in the Windows operating system. In order not to disclose the source
code of the implementation, a series of technical documents were written
describing the relevant protocols. This documentation was quite exten-
sive, consisting of more than 250 documents with approximately 30,000
pages in all. The actual implementation of the protocols had previously
been released on millions of servers, as part of the Windows operating
system. To ensure that the informal specifications conform to the ac-
tual code, in the Winterop project a formal model of the specification
was produced [GKB11]. For this, the specification language Spec# was
used, which is based on the notion of abstract state machine, with C#
syntax. The e↵ort took more than 50 person-years to complete. From
these specifications, test cases were automatically generated by the tool
SpecExplorer. These test cases could be executed with the existing im-
plementation, exposing over 10,000 “Technical Document Issues” in the
specification [GKSB10]. The endeavour was such a big success, that
SpecExplorer was turned into a product which is now distributed as



32 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider

a ‘power-tool’ add-on to the software development environment Visual
Studio.

Several other formal specification and verification project within Mi-
crosoft have been done. Hackett et al. [HLQB] use the modular checker
HAVOC to check properties about the synchronisation protocol of a core
Microsoft Windows component in the NT file system with more than
300,000 lines of code and 1500 procedures. The e↵ort found 45 serious
bugs (out of 125 warnings) in the component, with modest annotation
e↵ort.

Das [Das06] writes on Formal Methods at Microsoft:

“Today, formal specifications are a mandated part of the software development pro-
cess in the largest Microsoft product groups. Millions of specifications have been
added, and tens of thousands of bugs have been exposed and fixed in future versions
of products under development. In addition, Windows public interfaces are formally
specified and the Visual Studio compiler understands and enforces these specifica-
tions, meaning that programmers anywhere can now use formal specifications to
make their software more robust.”

Example 14: Electronic Voting

Secure communications have become fundamental to modern life for the
purposes of electronic commerce, online banking and privacy over the
Internet to name but a few applications. As a design problem, security
protocols have inspired the use of Formal Methods for well over two
decades. The distributed and parallel nature of communications facili-
tated by protocols, along with various assurances desired, means that
designing secure message exchange is not straightforward. A good ex-
ample of this problem is electronic voting, which has a complex set of
security and privacy requirements all of which must be guaranteed if
digital democracy is to be truly realised in the modern world.

An electronic voting system subject to formal scrutiny is the Prêt
à Voter system [RBH+09], which is essentially a multi-party crypto-
graphic protocol o↵ering privacy, voter verifiability, coercion-resistance,
and receipt-freeness. Some of these properties have been subject to for-
mal examination, using various methods including process algebra and
refinement checks [HS12], and zero-knowledge proofs [KRT13], with the
ultimate goal to providing a formal proof of the relevant property.

An implementation of the Prêt à Voter system has been demonstrated
for the state of Victoria in Australia [BCH+12].

Undoubtedly some legal [DHR+12] and usability [SSC+12, SLC+11] chal-
lenges exist for such electronic voting systems. However, the above case study
demonstrates considerable progress for providing assurances to the govern-
ment and public to ensure confidence and trust in the election system.



1 Formal Methods 33

Example 15: The Operating Systems seL4 and PikeOS

Formal verification of operating systems remains a di�cult task to
achieve given the scale and complexity of the software involved. One
such attempt stands out to provide a benchmark of how Formal Meth-
ods have been e↵ectively applied towards achieving such a goal. The L4
family of microkernels [Lie96] for embedded systems serves as an oper-
ating system with typical features of concurrency in terms of threading
and inter-process communication, virtual memory, interrupts and pro-
cess authorisation features.

A secured version of such an operating system, known as seL4
[KAE+10], has been established through formal specification and ver-
ification. Formal Methods have been applied at various levels of the
development of seL4. Starting with an abstract specification a proto-
type is generated in Haskell [KDE09], which is a functional and exe-
cutable language. This has the advantage of translating all data struc-
ture and implementation details desired for the final implementation.
The Haskell prototype is formalised using Isabelle/HOL, an interactive-
theorem prover allowing for machine-checking of proofs, and functional
correctness is demonstrated using refinement. A C implementation is
manually achieved from Haskell with a view to optimising the code for
better performance. The implementation is then translated into Isabelle
(using a formal semantics defined for a subset of C) for checking.

The methods used for seL4 have influenced the verification of PikeOS
[BBBB09], which is a commercial microkernel operating system based
on L4. Core parts of the embedded hypervisor, and, in particular, the
memory separation functionalities, have been formally verified using the
VCC verification tool. PikeOS is certified according to various safety
standards and is used in several critical real-time applications, e.g., in
the integrated modular avionics modules of Airbus planes.

The German Verisoft project [Ver07] demonstrates that with present For-
mal Methods it is not only possible to verify an operating system, but that
the systematic use of computer-aided verification tools is possible throughout
all layers of abstractions.

Example 16: Model-Based Design with Certified Code Gener-
ation

Lustre is a synchronous data-flow programming language which evolved
in the 1980s from academic concepts similar to the ones existing in al-
gebraic specification languages (see Ch. 3) [Hal12]. Its main focus was
programming reactive real-time systems such as automatic control and
monitoring devices. From the beginning, it had a strict denotational and
operational semantics. The formalism was very similar to temporal log-



34 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider

ics (see Ch. 2) which allowed the language to be used for both writing
programs and for expressing program properties. In the mid-1980’s, the
company Merlin Gerin (now Schneider Electric) in collaboration with
researchers from VERIMAG developed an industrial version of Lus-
tre for the development of control command software in nuclear power
plants. This version was called SAGA and provided a mixed textual /
graphical syntax for the language as well as a simple code generator. In
order to further industrialise the tool, the company Verilog took over
SAGA, renamed it SCADE (for “Safety Critical Application Environ-
ment Development”) and adapted it to the needs of Aerospatiale (now
part of Airbus). In the aerospace domain, any tool used for the devel-
opment of a critical equipment must have at least the same quality as
the equipment itself. Therefore, the SCADE code generator KCG was
qualified according to the highest criticality level A. (In this qualifica-
tion, it was shown that the development processes for KCG conform
to the requirements of the standard; note that this does not amount
to a full compiler verification!) Verilog itself was acquired in 1999 by
Telelogic, a Swedish telecommunications tool provider (now IBM). In
2001, Esterel Technologies bought SCADE from Telelogic for 1.4 mil-
lion Euro. It extended SCADE by various additional components, e.g.,
the tool IMAGE by Thales for the design of the cockpit of the A380
aircraft, as well as formal verification technology, SysML support, and
software lifecycle management. In 2012, Esterel Technologies was taken
over by Ansys Inc. for the sum of 42 million Euro. Ansys plans to inte-
grate SCADE with its own tool Simplorer for modelling and simulating
physical systems.

Today, more than 230 companies in 27 countries use SCADE to de-
velop safety-critical control components. Success stories include the use
in the primary flight control system of the Airbus A380, the autopilot
for several Eurocopter models, several nuclear power plants as well as
the interlocking and train control system of the Eurostar trains between
London and Paris.

Example 16 demonstrates that tools for Formal Methods not only signifi-
cantly contribute to system safety, but also can have a considerable market.

Example 17: Transportation Systems in France

The Paris Métro line 14 (Est-Ouest Rapide) was opened in 1998. It is
the fastest and most modern line in the Paris subway network, being
operated driverless, with a high train speed and frequency. For ensuring
the correctness of the control and signalling software, it was decided to
use the B method and the associated Atelier B programming tool.

The B method is based on the idea of refinement of abstract machines.
Mathematical specifications written in first-order logic are stepwise re-



1 Formal Methods 35

fined, and it is proven that the refinement is coherent and includes all
the properties of the abstract machine. Throughout all of the develop-
ment steps the same specification language (B notation) is used. The
process of refinement is repeated until a deterministic, fully concrete
implementation is reached, which is then automatically translated into
Ada code.

In the above mentioned Méteor project, over 110,000 lines of B spec-
ifications were written, generating 86,000 lines of safety-critical Ada
code. With this model, 29,000 proofs were conducted. No bugs were de-
tected after the proofs, neither during the functional validation of the
software, during its integration in the train, during the on-site tests, nor
since the metro lines operate. The software is still operated in version
1.0 today, without any bug detected so far [LSGP07].

Other uses of the B method include the automatic train protection
system for the French railway company SNCF, which was installed on
6,000 trains since 1993. For the verification, 60,000 lines of B specifica-
tions and approximately 10,000 proofs have been written. In the Roissy
VAL project, an automatic pilot for a driverless shuttle in the Paris-
Roissy airport has been developed and verified with 180,000 lines of B
specification and 43,000 proofs.

In the report [BA05] of the Roissy VAL project mentioned in Example 17
the authors conclude:

The process described here is suitable for any industrial domains, not only for rail-
ways command/control software. Actually this process deals with designing procedu-
ral software based on logical treatments, not based on real or floating-point numbers.
It is all the more suitable that software specification can be easily formalised into
set-theoretical expressions.

From the management point of view, the project went o↵ according to the initial
schedule, although the software produced is quite large, thanks to a straightforward
process and e�cient tools.

Every verification stage throughout the process was useful and led to early error
detection: analysis of software document specification, type checking, inspections,
proof of abstract model safety properties, refinement proof of correct implementa-
tion.

Section 1.3.4 of Garavel’s report [GG13] provides a collection of further
success stories.

1.3.3 How to Get Started

The previous sections give the right impression that the variety of Formal
Methods is overwhelming. This might leave the beginner or potential user to
be lost in the field. Which method shall be selected in a given context? We
discuss this question in two di↵erent scenarios. One possible scenario is that



36 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider

of a research student learning a Formal Method. The other scenario is that
of a Formal Method to be selected in a specific industrial project.

Learning a Formal Method

For the first scenario, this book provides a good starting point. It o↵ers a
non-representative selection of methods, where each chapter provides a solid
introduction to one method. Specialisation in one method is unproblematic,
as the foundations of Formal Methods are well connected. Concepts studied,
say, in the context of process algebra, are also to be found in temporal logics,
which again are closely connected to automata theory, and are applied, e.g.,
in testing. Within a discipline, there are often attempts to unify structural
insights. In logics, for example, the theory of institutions provides a general
framework in which logical properties can be studied in a uniform way (see
Ch. 2). The methodological approach to di↵erent Formal Methods often is
comparable. Consequently, one should not be afraid of intensively studying
one specific method, even if it is not in the direct line of one’s own research.

The best approach of studying a specific method is by example. One should
select a suitable case study of medium complexity (this book is full of these).
The first step is to formalise the case study, i.e., to transfer it into the language
of the chosen method. Already in this step one might find limitations or
restrictions that one would like to study further. The next step is to check
if the formalisation is an adequate representation of the case study. The
modelling of systems and of proof obligations needs to be faithful.

Now, it is time for reflection: what insight can be gained into the formal
representation with the chosen Formal Method? Here, one can try to derive
properties manually – using a calculus, or even directly applying the seman-
tics. Only in the next step one should reproduce the manual results in tools,
if available. This order of first thinking and then using tools is important
for keeping one’s mind open to the possibilities of a Formal Method. Tools
usually cover only certain aspects, namely those most relevant to their de-
velopers. Experience suggests that such a case study-driven approach creates
good research topics.

Choosing a Formal Method in an Industrial Project

In the industrial scenario, it is often a challenge to choose an appropriate
Formal Method for a particular industrial problem. Factors to be considered
include

• the qualification and availability of sta↵,
• the degree of formalisation of existing documents,
• the development processes and capability maturities within the company,

and



1 Formal Methods 37

• the available budget in relation with the expected benefits.

Moreover, for each Formal Method to be considered, the availability of
industrial strength tools is a decisive factor. In order to be usable for an
industrial project, a tool has to satisfy certain criteria.

• It needs to be supported: that is, during a certain amount of time (usually,
a time period well beyond the lifespan of the product, which can be several
years) there must be a reliable partner o↵ering maintenance, error correc-
tion, adaptation to evolving platforms, further development, and advice
to users.

• It needs to be documented: that is, there must exist user manuals, on-
line help, training material, and coaching resources for the engineers who
shall use the tool. To this end, competences and skills profiles need to be
established.

• It needs to integrate smoothly into the existing development processes.
That is, exchange formats need to be available and translations between
di↵erent representations should exist or be easily implementable.

• Its use should be predictable: there need to be good arguments that the
intended task can be accomplished with the help of the tool, within a time
frame which is allocated in advance.

• In some cases, it even needs to be qualified: for the development of safety-
critical systems, it is not permitted to use an arbitrary tool; at least, an
analysis of capabilities and alternatives must be conducted.

One risk in selecting a Formal Method is that most practitioners tend to
favour their own area of expertise. Other approaches, which actually might
be better suited, are easily overlooked. Thus, it is a good idea to consult
several experts covering di↵erent areas.

Having identified a suitable Formal Method, the next step is to carry out
a pilot project. Here, a small but relevant part of the problem is solved in
an exemplary way using the selected Formal Method. This involves thor-
ough time measurement and documentation for all activities that the Formal
Method incurs: modelling, installing the tools, using the tools, integrating
the tools, interpreting the results, etc. Reflecting upon this allows to check if
the chosen approach is indeed feasible. On the management level, the pilot
project then has to be evaluated as to whether it is an improvement with
respect to current practice. It should be both more e↵ective, in that it allows
to achieve better results than previous methods, and more e�cient, i.e., in
the long run it should o↵er a better cost/result ratio.



38 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider

1.4 Closing Remarks

In this chapter we developed an understanding of the key ingredients of For-
mal Methods: syntax, semantics and method. The syntax is usually given
in Backus-Naur-Form; the semantics is mostly presented in either opera-
tional, denotational, or axiomatic style; the method says how to work with
the language. Formal Methods are useful in classical as well as in agile soft-
ware development processes. They are used to achieve precision in design
documents and to support various forms of system analysis. International
standards recognise and recommend the use of various Formal Methods. In
practise, Formal Methods require tool support. As several academic and in-
dustrial success stories demonstrate, Formal Methods play an increasing role
in industrial practice.

1.4.1 Current Research Directions

In this section we point out several challenges and current research topics for
Formal Methods.

Advancement. An account of the historical development of Formal Meth-
ods is given in Part IV. In this context, the question is whether there still is
a need for Formal Methods to evolve further. Considering computational
systems, we see that their size and complexity is ever increasing. Also,
computers for executing Formal Methods tools become more powerful.
However, the increase of the problem size often outgrows what tools can
handle. This is due to the fact that most algorithms in Formal Methods
are complex. As a consequence, there is a constant need to improve meth-
ods and tools. Therefore, the questions of how to develop ‘good’ Formal
Methods, i.e., Formal Methods which are e�cient and usable, will stay.

Integration. As was shown above, various formal software modelling tech-
niques have been developed. In systems’ design, these can be used to de-
scribe di↵erent aspects of the very same system. In Example 1 (see page 2)
concerning the ISS, for instance, the correctness of the fault management
layer was analysed using the process algebra Csp. In order to guarantee
a minimal throughput on the station’s MIL bus, Schlinglo↵ performed a
stochastic analysis using Timed Petri-Nets [THSS98]. Generally, in such
circumstances the question arises whether di↵erent models provide a con-
sistent view of the system, and whether analysis results for one aspect can
be re-used and integrated into the analysis of other aspects. Here, UML
provides an integration of various modelling frameworks. However, this
integration is on the syntactical level only. Semantical and methodological
integrations are still being researched [KM18].



1 Formal Methods 39

Industrial Practice. The long standing question of how to turn Formal
Methods into good industrial practice still remains a challenge. For ex-
ample, the aerospace standard DO-333, published in 2012, allows Formal
Methods to replace traditional engineering practice, e.g., in testing, code
inspection, and code review. However, there are not yet su�ciently many
qualified tools available. Moreover, it is not always clear where Formal
Methods o↵er better results than the established processes.

Parallelisation. Another current research trend is that the impending
multi/many core revolution poses the question of how to develop e�cient
parallel algorithms. In Formal Methods, e.g., for model checking, SAT and
SMT solving, and automated theorem proving there are first proposals of
algorithms tailored towards the execution on multi/many core machines.

Re-use. Nowadays, systems are rarely constructed from scratch. New,
functionally increased and more complex software products are built on
top of existing ones. Systems are rather improved than newly developed,
i.e., there is a constant software evolution. Like other industrial products,
also software is designed in product lines. Formal Methods have not yet
come up with adequate techniques to reflect these development processes
by evolutionary modelling and verifying of systems. The main challenge is
how to re-use verification artefacts.

Compositionality. As systems become more and more complex and spa-
tially distributed, there is an increasing need to verify large, parallel sys-
tems. For example, there are Formal Methods being developed to deal
with service-oriented architectures, where autonomous software agents in
the Internet cooperate in order to achieve a certain task. Questions include
the interaction with an unknown, non-predictable environment, functional
correctness, quantitative analysis, verification of service level agreements,
and security (see Ch. 8).

Cyber-physical agents. Yet another challenge concerns the application
of Formal Methods in cyber-physical systems. These are ‘agent-based sys-
tems in the physical world’, i.e., intelligent sensor networks, swarms of
robots, networks of small devices, etc. Part of the problem is the com-
bined physical and logical modelling. For modelling systems which have
both discrete and continuous state changes, hybrid automata have been
suggested as a formal framework. However, current methods are not yet
sophisticated enough to allow the verification of industrial strength appli-
cations. Additionally, cyber-physical systems have to deal with unreliable
communication, imprecise sensors and actors, faulty hardware etc. For each
of these problems, initial individual approaches are being developed, how-
ever, it is an open research topic to develop convincing Formal Methods
tackling them in combination.

Artificial intelligence and machine learning. Techniques based on ar-
tificial intelligence (AI) in general, and machine learning (ML) in partic-
ular, are massively being used in deployed software. Many applications
using AI/ML are safety-critical (e.g., autonomous cars), so correctness is



40 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider

paramount. But the interaction between Formal Methods and AI/ML goes
beyond the standard ‘let us use a Formal Methods technique to prove the
correctness of this algorithm – which happens to use AI/ML.’ Indeed, the
use of AI/ML introduces new challenges for formal verification, in partic-
ular in the area of deep neural networks where sometimes an algorithm
has been learned without a clear understanding of the process of its cre-
ation. This makes it di�cult to assert the correctness of the outcomes of
the algorithm, which might require transparency in the underlying mod-
els and the used techniques and methods for learning algorithms, that is
to get ‘explainable’ AI [Mol19]. Other interesting research directions are
the use of machine learning to improve Formal Methods [ALB18], and the
application of Formal Methods to AI/ML [HKWW17, SKS19, WPW+18].

Finally, we briefly mention further applications of Formal Methods beyond
software engineering, such as biological systems and, more recently, ecology,
economics and social sciences.

Biological systems. Formal Methods started to be used to model bio-
logical systems following 1998 Gheorghe Păun’s definition of P systems
[Pău98, Pău00], a computational model inspired from the way the alive
cells process chemical compounds in their compartmental structure. Vari-
ations of this model led to the birth of a research field known as mem-
brane computing [PRS09]. Although P systems were originally intended
as a biologically-inspired computational model, it was soon understood
that they could provide a modelling language to formally describe biolog-
ical systems and on which to base tools to reason about their evolution.
The Grand Challenge for computing that David Harel proposed in 2002
[Har03a] to model a full multicellular animal, specifically the C. elegans
nematode worm, as a reactive system led to the extension of various Formal
Methods, traditionally used in computer science, to make them suitable to
the modelling of biological systems. For example, the Performance Eval-
uation Process Algebra (PEPA) [GH94] was extended in order to handle
some features of biochemical networks, such as stoichiometry and di↵erent
kinds of kinetic laws, thus resulting in the Bio-PEPA language [CH09a],
whose models can be fed to PRISM [KNP10] for (stochastic) model check-
ing. Another development in this application area has been to move from
the modelling of a single organism to the modelling of population dy-
namics. Some formal notations, such as the process algebra-based BlendX
language [DPR08], have been developed to model ecological systems con-
sisting of various populations (or ecosystems, in a wider context), aiming
at overcoming the technical and cultural gap between life scientists and
computer scientists [CS15]. The final objective of this modelling approach
is not only to understand the functioning of the ecosystem but also to
test possible control interventions on some of the system components aim-
ing at performing adjustments to the system behaviour and evaluate the
impact of such intervention on the entire ecological system [CS15]. Exam-



1 Formal Methods 41

ples are: pest eradication [BCB+10], preservation/reintroduction of species
[CCM+10], disease control [CH09b] and even tumour control (a tumour
can be seen as an ‘ecosystem’ consisting of various populations of normal
and mutant cells) [SBMC15].

Economics. The most successful application of Formal Methods to eco-
nomics is in the area of business process management. Will van der Aalst
has been using variants of Petri nets to model enterprise resource planning
systems, cooperative work, resource allocation and inter-organisational
business processes [VDAS11]. It is in this application area that the two
analytical philosophies of the Formal Methods community and the data
mining / big data community are getting closer and closer. Rozinat and
Van der Aalst developed methodologies to perform conformance checking,
also called conformance analysis, that is, the detection of inconsistencies
between an a priori process model and an a posteriori model produced by
applying process mining to the corresponding execution log [Aal11, RA08].
The future of this approach goes well beyond the specific application to
business process management, in particular in humanities.

Social Sciences. In fact, conformance checking seems appropriate for the
analysis of social networks and peer-production systems, and the first at-
tempts in this direction have being done in the areas of collaborative learn-
ing and OSS (Open Source Software) development [MCT15]. More in gen-
eral, data mining, text mining and process mining, through conformance
checking, can provide appropriate and e↵ective validation tools for formal
models of social systems, opening the application of Formal Methods to
the vast area of social sciences.
Another promising use of Formal Methods in social sciences is the mod-
elling of privacy. For example, privacy is an issue in sociology, politics,
and legislation. Formalising privacy policies and realising enforcing mech-
anisms is not easy. The challenges of privacy for Formal Methods have
been discussed for instance in [TW09]. Also, there is an increasing need for
technology-based solutions to help lawyers to draft and analyse contractual
documents, and citizens to understand the huge amount of di↵erent kinds
of agreements and terms of services on paper and digital devices. Formal
Methods can play a crucial role in providing solutions to help handling
such complex documents (see Ch. 6).

The above items present opportunities for research on topics which are
both scientifically exciting and have a large impact on society. In order to start
such research, one can build upon the material presented in the subsequent
chapters.



42 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider

References

[Aal11] Wil M. P. Van Der Aalst. Process Mining: Discovery, Conformance and
Enhancement of Business Processes. Springer, 2011.

[ABL96] Jean-Raymond Abrial, Egon Börger, and Hans Langmaack, editors. Formal
Methods for Industrial Applications, Specifying and Programming the Steam
Boiler Control (the book grew out of a Dagstuhl Seminar, June 1995), LNCS
1165. Springer, 1996.

[Abr94] Jean-Raymond Abrial. Steam-boiler control specification problem. https:

//www.informatik.uni-kiel.de/~procos/dag9523/dag9523.html, 1994.
[ALB18] Moussa Amrani, Levi Lúcio, and Adrien Bibal. ML + FV = ~? A survey

on the application of machine learning to formal verification, 2018. http:

//arxiv.org/abs/1806.03600.
[BA05] F. Badeau and A. Amelot. Using B as a high level programming language in

an industrial project: Roissy VAL. In ZB 2005, LNCS 3455, pages 334–354.
Springer, 2005.

[Bac59] J. W. Backus. The syntax and semantics of the proposed international al-
gebraic language of the zurich acm-gamm conference. In Proceedings of the
International Conference on Information Processing. UNESCO, 1959. Avail-
able via the web site of the Computer History Museum’s Software Preservation
Group, http://www.softwarepreservation.org.

[Bar11] Janet Elizabeth Barnes. Experiences in the industrial use of formal methods.
In AVoCS’11. Electronic Communications of the EASST, 2011.

[BBBB09] Christoph Baumann, Bernhard Beckert, Holger Blasum, and Thorsten
Bormer. Formal verification of a microkernel used in dependable software
systems. In SAFECOMP 2009, LNCS 5775, pages 187–200. Springer, 2009.

[BCB+10] Thomas Anung Basuki, Antonio Cerone, Roberto Barbuti, Andrea Maggiolo-
Schettini, Paolo Milazzo, and Elisabetta Rossi. Modelling the dynamics of an
aedes albopictus population. In AMCA-POP 2010, volume 33 of Electronic
Proceedings in Theoretical Computer Science, pages 18–36. Open Publishing
Association, 2010.

[BCH+12] Craig Burton, Chris Culnane, James Heather, Thea Peacock, Peter Y. A.
Ryan, Steve Schneider, Sriramkrishnan Srinivasan, Vanessa Teague, Roland
Wen, and Zhe Xia. A supervised verifiable voting protocol for the Victorian
electoral commission. In EVOTE 2012, volume 205 of LNI, pages 81–94. GI,
2012.

[Bec02] Kent Beck. Test Driven Development: By Example. Addison-Wesley, 2002.
[BH95a] Jonathan P. Bowen and Michael G. Hinchey. Seven more myths of formal

methods. IEEE Software, 12(4):34–41, 1995.
[BH95b] Jonathan P. Bowen and Michael G. Hinchey. Ten commandments of formal

methods. IEEE Computer, 28(4):56–63, 1995.
[BH06] Jonathan P. Bowen and Michael G. Hinchey. Ten commandments of formal

methods ... Ten years later. IEEE Computer, 39(1):40–48, 2006.
[BKPS97] Bettina Buth, Michel Kouvaras, Jan Peleska, and Hui Shi. Deadlock analysis

for a fault-tolerant system. In AMAST, LNCS 1349. Springer, 1997.
[BMS96] Manfred Broy, Stephan Merz, and Katharina Spies, editors. Formal Sys-

tems Specification, The RPC-Memory Specification Case Study, LNCS 1169.
Springer, 1996.

[BPS98] Bettina Buth, Jan Peleska, and Hui Shi. Combining methods for the livelock
analysis of a fault-tolerant system. In AMAST, LNCS 1548. Springer, 1998.

[CCM+10] Mónica Cardona, M. Angels Colomer, Antoni Margalida, Ignacio Pérez-
Hurtado, Mario J. Pérez-Jiménez, and Delf́ı Sanuy. A P system based model
of an ecosystem of some scavenger birds. In WMC 2009, LNCS 5957, pages
182–195. Springer, 2010.



1 Formal Methods 43

[CH09a] Federica Ciocchetta and Jane Hillston. Bio-PEPA: a framework for the mod-
elling and analysis of biochemical networks. Theoretical Computer Science,
410:3065–3084, 2009.

[CH09b] Federica Ciocchetta and Jane Hillston. Bio-PEPA for epidemiological mod-
els. In PASM 2009, volume 261 of Electronic Notes in Theoretical Computer
Science, pages 43–69. Open Publishing Association, 2009.

[CK11] Véronique Cortier and Steve Kremer, editors. Formal Models and Techniques
for Analyzing Security Protocols. IOS Press, 2011.

[Coc00] Alistair Cockburn. Agile Software Development. Addison-Wesley, 2000.
[CRD+20] Antonio Cerone, Markus Roggenbach, James Davenport, Casey Denner, Marie

Farrell, Magne Haveraaen, Faron Moller, Philipp Koerner, Sebastian Krings,
Peter Ölveczky, Bernd-Holger Schlinglo↵, Nikolay Shilov, and Rustam Zhu-
magambetov. Rooting formal methods within higher education curricula for
computer science and software engineering – A White Paper, 2020.
https://arxiv.org/abs/2010.05708.

[CS15] Antonio Cerone and Marco Scotti. Research challenges in modelling ecosys-
tems. In SEFM 2014 Collocated Workshops, LNCS 8938, pages 276–293.
Springer, 2015.

[Das06] Manuvir Das. Formal specifications on industrial-strength code – from myth
to reality. In Computer Aided Verification, LNCS 4144. Springer, 2006.

[dBfI12] Die Beauftragte der Bundesregierung für Informationstechnik. Das V-Modell
XT. http://www.v-modell-xt.de, 2012.

[DHR+12] Denise Demirel, Maria Henning, Peter Y. A. Ryan, Steve Schneider, and
Melanie Volkamer. Feasibility analysis of prêt à voter for german federal
elections. In VoteID 2011, LNCS 7187, pages 158–173. Springer, 2012.

[DPR08] Lorenzo Dematté, Corrado Priami, and Alessandro Romanel. The BlenX lan-
guage: a tutorial. In Formal Methods for Computational Systems Biology,
LNCS 5016, pages 313–365. Springer, 2008.

[FH01] Marc Frappier and Henri Habrias, editors. Software Specification Methods.
Springer, 2001.

[Fix08] Limor Fix. Fifteen years of formal property verification in Intel. In 25 Years
of Model Checking, LNCS 5000, pages 139–144. Springer, 2008.

[GBP20] Hubert Garavel, Maurice H. ter Beek, and Jaco van de Pol. The 2020 expert
survey on formal methods. In Formal Methods for Industrial Critical Systems,
pages 3–69. Springer, 2020.

[GG13] Hubert Garavel and Susanne Graf. Formal Methods for Safe and
Secure Computers Systems. Federal O�ce for Information Secu-
rity, 2013. https://www.bsi.bund.de/DE/Publikationen/Studien/Formal_

Methods_Study_875/study_875.html.
[GH94] Stephen Gilmore and Jane Hillston. The PEPA workbench: A tool to support

a process algebra-based approach to performance modelling. In International
Conference on Modelling Techniques and Tools for Computer Performance
Evaluation, LNCS 794, pages 353–368. Springer, 1994.

[GJBB13] James Gosling, Bill Joy, Guy Steele Gilad Bracha, and Alex Buckley. The
Java language specification, 2013.

[GKB11] Wolfgang Grieskamp, Nico Kicillof, and Bob Binder. Microsoft’s protocol
documentation program: Interoperability testing at scale. Communications of
the ACM, 2011.

[GKSB10] Wolfgang Grieskamp, Nicolas Kicillof, Keith Stobie, and Victor Braberman.
Model-based quality assurance of protocol documentation: tools and method-
ology. Softw. Test. Verif. Reliab., 2010.

[Hal90] Anthony Hall. Seven myths of formal methods. IEEE Software, 7(5):11–19,
1990.

[Hal12] Nicolas Halbwachs. A Synchronous Language at Work: The Story of Lustre,
pages 15–31. Wiley, 2012.



44 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider

[Har03a] David Harel. A grand challenge for computing: Towards full reactive modeling
of a multi-cellular animal. Bull. EATCS, 81:226–235, 2003.

[Har03b] J. Harrison. Formal verification at Intel. In 18th Annual IEEE Symposium of
Logic in Computer Science, pages 45–54, 2003.

[HKW+07] Sebastian Herold, Holger Klus, Yannick Welsch, Constanze Deiters, Andreas
Rausch, Ralf Reussner, Klaus Krogmann, Heiko Koziolek, Ra↵aela Mirandola,
Benjamin Hummel, Michael Meisinger, and Christian Pfaller. CoCoME - the
common component modeling example. In CoCoME, LNCS 5153, pages 16–
53. Springer, 2007.

[HKWW17] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verifica-
tion of deep neural networks. In CAV’17, LNCS 10426, pages 3–29. Springer,
2017.

[HLQB] Brian Hackett, Shuvendu K. Lahiri, Shaz Qadeer, and Thomas Ball. Scalable
modular checking of system-specific properties: Myth or reality?

[HS12] James Heather and Steve Schneider. A formal framework for modelling coer-
cion resistance and receipt freeness. In FM 2012, LNCS 7436, pages 217–231.
Springer, 2012.

[IEC10] IEC. http://www.iec.ch/functionalsafety, 2010.
[JW08] Cli↵ B. Jones and Jim Woodcock, editors. Formal Aspects of Computing,

volume 20, No 1. Springer, 2008.
[KAE+10] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David

Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4:
formal verification of an operating-system kernel. Communications of the
ACM, 53(6):107–115, 2010.

[KBP+01] Erik Kamsties, Daniel M. Berry, Barbara Paech, E. Kamsties, D. M. Berry, and
B. Paech. Detecting ambiguities in requirements documents using inspections.
In First Workshop on Inspection in Software Engineering, 2001.

[KDE09] Gerwin Klein, Philip Derrin, and Kevin Elphinstone. Experience report: seL4:
formally verifying a high-performance microkernel. In ICFP 2009, pages 91–
96. ACM, 2009.

[KM18] Alexander Knapp and Till Mossakowski. Multi-view consistency in UML: A
survey. In Graph Transformation, Specifications, and Nets - In Memory of
Hartmut Ehrig, LNCS 10800, pages 37–60. Springer, 2018.

[KNP10] Marta Kwiatkowska, Gethin Norman, and David Parker. Probabilistic model
checking for systems biology. In Symbolic Systems Biology, pages 31–59. Jones
and Bartlett, May 2010.

[Koz94] Dexter Kozen. A completeness theorem for Kleene algebras and the algebra
of regular events. Information and Computation, 110:366–390, 1994.

[KRT13] Dalia Khader, Peter Y. A. Ryan, and Qiang Tang. Proving prêt à voter
receipt free using computational security models. USENIX Journal of Election
Technology and Systems (JETS), 1(1):62–81, 2013.

[KS12] Dexter Kozen and Alexandra Silva. Left-handed completeness. In Relational
and Algebraic Methods in Computer Science, LNCS 7560, pages 162–178.
Springer, 2012.

[Lie96] Jochen Liedtke. Toward real microkernels. Communications of the ACM,
39(9):70–77, September 1996.

[LL95] Claus Lewerentz and Thomas Lindner, editors. Formal Development of Re-
active Systems – Case Study Production Cell, LNCS 891. Springer, 1995.

[LSGP07] T Lecomte, T Servat, and G G Pouzancre. Formal methods in safety-critical
railway systems. In Brazilian Symposium on Formal Methods: SMBF, 2007.

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine
generals problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.



1 Formal Methods 45

[MCT15] Patrick Mukala, Antonio Cerone, and Franco Turini. Process mining event logs
from floss data: State of the art and perspectives. In SEFM 2014 Collocated
Workshops, LNCS 8938, pages 182–198. Springer, 2015.

[Mol19] Christoph Molnar. Interpretable machine learning, 2019. https://

christophm.github.io/interpretable-ml-book/.
[MS08] Satish Mishra and Bernd-Holger Schlinglo↵. Compliance of CMMI process

area with specification based development. In Conference on Software En-
gineering Research, Management and Applications, SERA ’08, pages 77–84.
IEEE Computer Society, 2008.

[Pău98] Gheorghe Păun. Computing with membranes. Technical Report 208, Turku
Centre for Computer Science, November 1998.

[Pău00] Gheorghe Păun. Computing with membranes. Journal of Computer and
System Science, 61(1):108–143, 2000.

[PB99] Jan Peleska and Bettina Buth. Formal methods for the international space
station ISS. In Correct System Design, LNCS 1710. Springer, 1999.

[PRS09] Gheorghe Păun, Grzegorz Rozemberg, and Arto Salomaa, editors. The Ox-
ford Handbook of Membrane Computing. Oxford Handbooks in Mathematics.
Oxford University Press, December 2009.

[RA08] Anne Rozinat and Wil M. P. Van Der Aalst. Conformance checking of pro-
cesses based on monitoring real behavior. Information Systems, 33(1):64–95,
2008.

[RBH+09] Peter Y. A. Ryan, David Bismark, James Heather, Steve Schneider, and Zhe
Xia. Prêt à voter: a voter-verifiable voting system. IEEE Transactions on
Information Forensics and Security, 4(4):662–673, 2009.

[RRMP08] Andreas Rausch, Ralf Reussner, Ra↵aela Mirandola, and Frantisek Plasil,
editors. The Common Component Modeling Example: Comparing Software
Component Models [result from the Dagstuhl research seminar for CoCoME,
August 1-3, 2007], LNCS 5153. Springer, 2008.

[Sal66] Arto Salomaa. Two complete axiom systems for the algebra of regular events.
J. ACM, 13(1):158–169, January 1966.

[SB01] Ken Schwaber and Mike Beedle. Agile Software Development with Scrum.
Prentice Hall, 2001.

[SBMC15] Sheema Sameen, Roberto Barbuti, Paolo Milazzo, and Antonio Cerone. A
mathematical model for assessing KRAS mutation e↵ect on monoclonal anti-
body treatment of colorectal cancer. In SEFM 2014 Collocated Workshops,
LNCS 8938, pages 243–258. Springer, 2015.

[SCW00] Susan Stepney, David Cooper, and Jim Woodcock. An electronic purse: Spec-
ification, refinement, and proof. Technical monograph PRG-126, Oxford Uni-
versity Computing Laboratory, July 2000.

[SKS19] Xiaowu Sun, Haitham Khedr, and Yasser Shoukry. Formal verification of
neural network controlled autonomous systems. In HSCC 2019, pages 147–
156. ACM, 2019.

[SLC+11] Steve Schneider, Morgan Llewellyn, Chris Culnane, James Heather, Sriramkr-
ishnan Srinivasan, and Zhe Xia. Focus group views on prêt à voter 1.0. In
REVOTE 2011, pages 56–65. IEEE, 2011.

[SSC+12] Steve Schneider, Sriramkrishnan Srinivasan, Chris Culnane, James Heather,
and Zhe Xia. Prêt á voter with write-ins. In VoteID 2011, LNCS 7187, pages
174–189. Springer, 2012.

[THSS98] L. Twele, B-H. H. Schlinglo↵, and H. Szczerbicka. Performability analysis of
an avionics-interface. In Proc. IEEE Conf. on Systems, Man and Cybernetics,
1998.

[TW09] Michael Carl Tschantz and Jeannette M. Wing. Formal methods for privacy.
In FM’09, volume 5850 of LNCS, pages 1–15. Springer, 2009.

[VDAS11] Wil M. P. Van Der Aalst, , and Christian Stahl. Modeling Business Processes:
A Petri Net-Oriented Approach. MIT Press, May 2011.



46 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider

[Ver07] The Verisoft XT Project, 2007. http://www.verisoft.de/StartPage.html.
[WPW+18] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana.

Formal security analysis of neural networks using symbolic intervals. In
USENIX’18, pages 1599–1614. USENIX Association, 2018.

[YCER11] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and under-
standing bugs in C compilers. SIGPLAN Not., 46(6):283–294, June 2011.


