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Definition of general constants, variables 
and common materials 
 

symbol name value units 

Constants    

h Planck's constant 6.63 E-34 m2 kg s-1 

c velocity of light 3 E8 m s-1 

k Boltzmann constant  1.38 E-23 m2 kg s-2 K-1 

q elementary charge of an electron/hole 1.6 E-19 coulombs 

ε0 permittivity of vacuum 8.85 E-12 m-3 kg-1 s4 A2 

μ0 permeability of vacuum 1.26 E-6 m kg s-2 A-2 

e Euler’s constant 2.72  

π Pi 3.14  

    

Common 
variables    

T temperature  °K 
v / f frequency  s-1 (Hz) 

J current density  mA cm-2 

V voltage  V 

EQE external quantum efficiency  arbitrary units (%) 

IQE internal quantum efficiency  arbitrary units (%) 

ε Dielectric constant / relative permittivity  F m-1 

    

Common 
materials Full name   

PCDTBT 
Poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-
(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]   

PC61/71BM Phenyl-C61/71-butyric acid methyl ester   

PDINO 

2,9-Bis[3-
(dimethyloxidoamino)propyl]anthra[2,1,9-

def:6,5,10-d'e'f']diisoquinoline-1,3,8,10(2H,9H)-
tetrone   

ITO indium tin oxide   

PEDOT:PSS 
poly(3,4-ethylenedioxythiophene) polystyrene 

sulfonate   

FTO Fluoride tin oxide   

MaPbI3 
Methylammonium Lead Iodide (a type of 

perovskite)   

Y6 

2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-
diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-
e]thieno[2",3’':4’,5']thieno[2',3':4,5]pyrrolo[3,2

-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-
diyl)bis(methanylylidene))bis(5,6-difluoro-3-   
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oxo-2,3-dihydro-1H-indene-2,1-
diylidene))dimalononitrile 

PM6 

Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-
fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-

b’]dithiophene))-alt-(5,5-(1’,3’-di-2-thienyl-
5’,7’-bis(2-ethylhexyl)benzo[1’,2’-c:4’,5’-

c’]dithiophene-4,8-dione)]   

P3HT Poly(3-hexylthiophene-2,5-diyl)   

PCE10 
(PTB7-Th) 

Poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-
yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-

(4-(2-ethylhexyl)-3-fluorothieno[3,4-
b]thiophene-)-2-carboxylate-2-6-diyl)]   

PCE12 
(PBDB-T) 

Poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-
yl)-benzo[1,2-b:4,5-b’]dithiophene))-alt-(5,5-

(1’,3’-di-2-thienyl-5’,7’-bis(2-
ethylhexyl)benzo[1’,2’-c:4’,5’-c’]dithiophene-

4,8-dione)]   

IT4F (ITIC-
2F) 

3,9-bis(2-methylene-((3-(1,1-
dicyanomethylene)-6,7-difluoro)-indanone))-

5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-
d:2’,3’-d’]-s-indaceno[1,2-b:5,6-b’]dithiophene   

ITIC 

3,9-bis(2-methylene-(3-(1,1-
dicyanomethylene)-indanone))-5,5,11,11-

tetrakis(4-hexylphenyl)-dithieno[2,3-d:2’,3’-d’]-
s-indaceno[1,2-b:5,6-b’]dithiophene   
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Abstract 

The processes by which optical and electrical energies are transduced are at the heart of many 

modern technologies such as solar cells, light emitting diodes, photodetectors, imaging 

systems and displays. The basic functional element of these ‘opto-electrical’ devices are 

semiconductors, and the underpinning physics of how they transduce light and electricity is 

well understood for conventional inorganic materials such as silicon and gallium arsenide. 

However, new semiconductors such as the organics and the organohalide perovskites present 

additional opto-electrical questions and challenges since they are molecular solids with 

varying degrees of disorder and crystallinity. 

The work described in this thesis addresses these new questions and challenges, particularly 

in relation to how existing solid-state physics concepts must be adapted to reliably predict 

and model material-and-device-level structure-property relationships and performance. Two 

basic technology platforms are examined in detail – solar cells and light emitting diodes, with 

particular reference to so-called reciprocity. A second focus of the discussion is accurate 

determination of optical constants for these new semiconductors – a challenging endeavour 

due to factors such as morphological heterogeneity. Transfer matrix and drift diffusion 

formalisms are relied heavily upon to model, simulate and explain multi-layer device 

performance, and ellipsometry and spectrophotometry are utilised as the primary analysis 

and characterisation methodologies. 

A new approach to optical constant determination is presented and validated, as is an 

adapted reciprocity framework for the linking of absorption, emission and charge transfer 

state characterisation in the presence of cavity interference. Several ‘difficult’ solar cell 

systems are analysed in detail – in particular the previously mysterious working principles of 

the so-called carbon-stack perovskite system are elucidated for the first time. These findings 

explain how an electrically non-selective contact can still function as an effective photovoltaic 

electrode dependent upon the local minority and majority carrier concentration profile. 

The research described herein advances our understanding of next generation semiconductor 

opto-electrical physics and provides more practical means for the community to analyse 

optical constants.    
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I. Introduction 

This Chapter will discuss the motivation of the work described in this thesis, providing the 

context of the research as well as the general outline, introducing organic semiconductors, 

excitons, and the concept of second-generation and third-generation opto-electronic devices. 

1.1 Motivation and general overview 
The main focus of the work described in this thesis will be to the use of novel, organic and 

hybrid inorganic-organic (perovskite) semiconductors as the main active material in opto-

electrical devices. The exploration of these materials is justified by certain salient features 

inherent to these systems such as elemental abundancy, suitability for flexible form factors, 

tuneable band gaps, and certain environmental and efficiency considerations 1 2 3 4.  

The rise of atmospheric CO2 levels and the resultant effect on global warming 5 has prompted 

scientists across the globe to look for more sustainable, alternative and renewable energy 

sources. One of the most promising candidates for additional energy sources is solar power, 

the conversion of solar radiation into useful electrical power. Much of the work discussed in 

this thesis will focus on next generation semiconductor use in solar cells, though it is also 

applicable to other opto-electrical semiconductor devices such as LEDs 6, light emitting field 

effect transistors7, photodiodes and other optical sensors; indeed any device where the 

conversion of photons to charge carriers (or the reverse) is relevant. 

The focus will be on certain organic and perovskite semiconductors (collectively next 

generation semiconductors) – quite different material systems but sharing some common 

features. Currently, the most widespread and used semiconductor materials are purely 

inorganic, most prominently silicon and gallium arsenide. Relatively abundant, tuneable by 

doping8 and with efficient opto-electronics9, it is easy to see why these are dominant 

commercial materials. However, inorganic semiconductors do not come without their 

limitations, such as the weight and rigidity, the energy-intensive manufacturing process 10, 

and the importance of the type of crystallinity when it comes to efficiency 11. Many of these 

limitations in comparison to organics arise from the inorganic materials’ crystalline nature. 

Next generation semiconductor materials (which can be purely organic or hybrid materials 

which incorporate properties from both) tend to be more structurally disordered, though they 
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sometimes exhibit low degrees of short-range crystallinity. This makes them excellent 

candidates for light or flexible devices 12 13, which have garnered increasing interest due to 

the increasing digitization and abundance of sensors and interactive elements in our everyday 

living space, a phenomenon which some are already calling the fourth industrial revolution 

14. Concrete examples include solar cells on clothing 15, organic sensors 16 and visible light 

transparent solar cells for use as windows 17. 

Another consequence of the disordered nature of these next generation semiconductor 

materials is a significant alteration in the electronic energetic structure on the molecular level. 

Rather than forming bands for charge carriers, which appear in crystalline materials due to 

the periodicity of the lattice (see for example the work of Kittel 18 for a comprehensive 

explanation), disordered materials consist energetically of more separate, localized molecular 

orbitals. See Figure 1.1 for a visualization of the difference between the two situations – 

banded semiconductors and so called molecular semiconductors. 

 

Figure 1.1 Band Structure and HOMO/LUMO 

Figure 1.1. Left: Solid crystal with quasi infinite periodicity and electron wave function 

extending over the entire crystal. Ec and Ev are the energy levels delineating the conduction 

and valence band. Right: localized molecular orbitals such as in fullerene molecules (C60). 

HOMO and LUMO are the highest occupied and lowest unoccupied molecular levels. The 

additional available levels for the HOMO and LUMO are vibrational states. 

Charge transport in organic semiconductors in particular (more molecular in nature than the 

perovskites) therefore happens mainly through a mechanism called “hopping” 19, where a 

charge carrier moves from orbital to orbital by energetic jumps. These jumps are usually well 

within the average energy available due to ambient temperature (E = kT) at room 

temperature, which means they can be thermally assisted at a significantly high rate. Due to 

this high transfer rate from molecule to molecule, disordered semiconductors can still be 
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practically treated as having a pseudo energetic band structure, by treating the highest 

occupied molecular orbital (HOMO) as if it were a conduction band, and the lowest 

unoccupied molecular orbital (LUMO) as a valence band 20. 

At this point it becomes important to discuss the charge carriers themselves. When a photon 

of sufficient energy impinges on a semiconductor material, an electron will be excited to a 

higher available energy level and take on the form of an “exciton”, a quasi-particle that 

consists of an electron and a hole (the absence left by the electron). These two will be 

attracted to each other by the Coulomb force21, and behave as one neutral particle. To have 

net charge transport, it is therefore a requirement that the exciton is separated into its non-

neutral components. 

In the exciton dissociation process, the electron and hole must generally overcome their 

mutual Coulomb attraction, determined by the energy 21: 

𝐸𝑐 =
𝑞2

4𝜋𝜀𝑟𝜀𝑜𝑟
                                                                      (1.1) 

Where 𝑞 is the elementary charge, 𝜀𝑟 the dielectric constant (also called relative permittivity, 

this will be discussed more in-depth in chapter 3), and 𝑟 the average space between the 

electron and hole.  

Excitons can be classified as two types, which can be considered edge cases depending on the 

dielectric constant of the semiconductor. If the dielectric constant is low, the electron and 

hole will be strongly attracted to each other and hard to separate. This is the so-called Frenkel 

exciton, which occurs for example in fullerenes, with a typical 𝜀𝑟 of 2-3 F/m. However, if the 

dielectric constant is high, as in crystalline silicon (around 11.7 F/m), the electric screening of 

the material will make the coulomb interaction between the hole and electron weak, and the 

majority of excitons will spontaneously dissociate at room temperature. This type of exciton 

is called a Wannier–Mott exciton and is more delocalized. 

Since organic semiconductors tend to possess a low-degree crystallinity and are generally 

made up of lighter elements compared to crystalline semiconductors, their dielectric 

constants 𝜀𝑟 are lower. Because of this, transport in organic semiconductors is often excitonic 

(that is, charge will be transferred in the neat organic material as an exciton after generation). 

However, Wannier–Mott excitons (with spontaneous dissociation) can still exist in certain 
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hybrid materials, provided the dielectric constant is high enough. This is for example the case 

with the hybrid organic-inorganic material the organohalide  perovskites, which can have non-

excitonic charge photogeneration and transport22.  

Therefore, from here on, an important distinction will be made: conventional organic 

semiconductor devices, with excitonic opto-electrical physics, will often rely on a blend 

containing fullerene to promote photogenerated charge dissociation. These will be called 

second-generation opto-electronic materials and related devices 23. Any organic or hybrid 

semiconductor materials or devices deviating from this excitonic picture or with opto-

electrical physics that we do not quite as yet understand (such as perovskites, non-fullerenes, 

or quantum dot devices) will be classified as third-generation 23. 

 

Figure 1.2 Blended Organic Structure 

Figure 1.2. An example of an organic opto-electronic device with a bulk-heterojunction, 

containing a blend of two organic materials in the active layer, a fullerene acceptor and 

polymer donor. The hole transport layer (HTL) is selective to holes, and the electron transport 

layer (ETL) to electrons. 

Because exciton dissociation is a requirement for net charge transport, second-generation 

devices usually have two (or more) different organic semiconductors blended together at the 

nanoscale in the active layer – a pseudo p-type material called the donor and equivalent n-

type called the acceptor (see Figure 1.2). This two component system is called a blend while 

the individual components are referred to as neat. The specific case of a donor-acceptor blend 

of organic semiconductors in a photovoltaic diode is called a Bulk-Heterojunction or BHJ. In a 

BHJ, the energetic transport levels are lower for the electron acceptor material, or higher for 

the hole acceptor (or electron donor) material, in order to separate the excitons spatially 

(Figure 1.2). The contact area of two different organic materials leads to a unique energetic 
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state known as the Charge Transfer state (CT state), which is an energetically stable state 

where the carriers of the exciton are partly occupying the donor molecular orbital and partly 

occupying the acceptor molecular orbital. It is assumed that the entropically larger amount 

of states available to the hole and electron will then lead to them diffusing apart spatially 24. 

An energetic depiction of a CT state in a classic second-generation organic blend, 

PCDTBT:PCBM, is given in Figure 1.3.  

 

Figure 1.3 Charge Transfer State 

Figure 1.3. Depiction of CT state in a solar cell with PC60BM:PCDTBT active layer material. 

HOMO/LUMO levels of PCDTBT (donor material) and PCBM (acceptor material) are defined 

levels at the top and bottom. CT state is shown in blue. 

While second-generation opto-electrical devices that rely on fullerene materials are still a 

growing field under much investigation, the true growth over the last few years has taken 

place in so-called third generation materials and devices 23, where the highest recent 

breakthroughs in organic and hybrid device efficiency have taken place. These devices come 

with new challenges when trying to model and improve them, because of the exceptional 

properties of the novel semiconductor materials involved. The two materials that will be 

examined in detail in this work are perovskites and non-fullerenes.  

Perovskites are a broad class of materials with a crystal structure identical to that of calcium 

titanium oxide (CaTiO3). The exact perovskite crystal structure is depicted in Figure 1.4. When 

talking about perovskite in opto-electrical devices, we often refer to perovskites which 
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incorporate some organic component in the structure, usually Formamidinium (FA) or Methyl 

Ammonium (MA). In other words, it is a hybrid organic-inorganic semiconductor material. 

Perovskites have a particular stoichiometry where a unit cell can be chemically denoted as 

ABX3. In the case of the organic hybrid perovskites, the organic component will be the central 

molecule of the unit cell, A. The result is a semi-crystalline material, with a somewhat mobile 

organic molecule in the centre of a slightly more stable inorganic crystal. 

 

Figure 1.4 Perovskite Crystal 

Figure 1.4. Typical depiction of the perovskite crystalline structure. The most widely 

recognized example for third-generation devices is MAPbI3, where A is MA, B=Pb, X=I. 

Depending on what ions or molecules are used, the crystal can become more or less 

energetically stable and absorb different wavelengths of light (i.e. have different bandgaps) 

25. Stability is a key property for perovskites, and indeed while the energetic conversion 

efficiency (from incident photons to collected carriers) has been improving significantly over 

the recent years, claiming much higher numbers than conventional organics of the second 

generation, it is this key property of stability 26 that still requires significant investigation. Most 

perovskites degrade when in contact with water and oxygen, and various attempts have been 

made to account for this 25, 27-29. 

It is the semi-crystalline nature of perovskites that simultaneously may account for the high 

efficiencies 30, and for the stability issues. Recent studies have shown the additional 
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complication of ionic mobility within the perovskite structure 31, where interstitial ions can 

move through the lattice when an external electric field is applied. This may explain why many 

perovskite devices exhibit light soaking effects 32, where the response to an applied 

illumination (or voltage) changes gradually over time. 

Aside from these unusual ionic movement and stability complications, perovskites are also 

not excitonic, unlike most of their second-generation counterparts. Due to the high dielectric 

constant of perovskites, the exciton dissociation energy is low enough for near spontaneous 

dissociation at or near room temperature 33. The carrier mobility of perovskites is also much 

higher than in organic semiconductors, again most likely due to this semi-crystalline structure. 

This allows the fabrication of optically thicker devices and also means that unlike for 

conventional organics, most of the recombination occurs at the interface with other layers, 

where lattice mismatch can create trap states, rather than within the bulk 34. There exist 

several variations where different kinds of perovskites are mixed, or where the crystalline 

structure is manipulated, or where mesoporous blends are again created. This will be 

discussed in Chapter 4. 

The so-called Non-Fullerene electron Acceptors or NFAs are a family of n-type organic 

semiconductors that have emerged relatively recently and delivered a step change in organic 

solar cell performance. They differ from second-generation organics in the fact that they do 

not use fullerene based acceptor materials. Some of the common materials that have recently 

come under investigation are ITIC, Y6 and related families that work in combination with 

blend partners such as PM6, PCE10 and PCE12 35. A key difference for non-fullerenes is that 

the acceptor can also absorb on the low-energy part of the spectrum and can thus be coupled 

with different kinds of donor materials, which absorb mostly in the high-energy regime 

instead. The NFA element of the blend in organic solar cells is often the narrowest gap 

component and thus defines the effective optical gap of the system. 

Perhaps even more importantly, for some NFA blends the energy off-set between levels in 

the CT state (either ΔHOMO or ΔLUMO) can be quite small, on the order of less than 0.3 meV 

(see Figure 1.5). Initially this energy offset was thought to be vital for CT state charge 

separation, yet these materials still have a high charge separation efficiencies36. While in 

fullerenes, excitons excited in the fullerene usually have a low CT state charge separation 

efficiency and thus contribute little to the collected charge, NFA blends can have significant 
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contributions from both materials. Moreover, non-fullerenes may also exclude triplet exciton 

loss pathways in certain materials37. 

 

Figure 1.5 Non-Fullerene HOMO/LUMO 

Figure 1.5. a) Example modified and taken from 38, showing the unusual HOMO/LUMO energy 

off-sets of non-fullerene materials (PM6 and PM7 are donors, IT-4F and Y6 acceptors), 

compared to fullerene (PCBM) HOMO/LUMO levels. b) absorption spectra of the materials. 

Another important property which applies to both non-fullerenes and perovskites, is that the 

optical constants of these materials tend to be significantly higher than with second-

generation organic materials. This is due to the fact that fullerenes have the buckyball 

molecular structure and thus stack at lower density than the planar non-fullerenes and 

perovskites. A significant consequence of this is that the dielectric constants within these 

materials are also usually much higher, making the exciton dissociation energy in NFAs is 

much lower (see Eq. 1.1), though not so low as to facilitate spontaneous separation at room 

temperature in the neat material as with perovskites 33. In that sense NFAs are still excitonic 

materials but we still classify them as third generation since they seem to have some new 

intermediate properties. 

The typically high optical constants also make the use of conventional experimental methods 

such as ellipsometry problematic. The fitting solution space in ellipsometry becomes smaller 

with higher optical constants, making a good fit more challenging to find. A first key challenge 

in characterizing these third-generation materials is therefore that additional methods need 

to be found to determine the optical constants. Two additional methods were developed 

during the work described in this thesis precisely for this purpose: a spectroscopic 

transmittance method, which will be discussed in the Chapter 3, and dynamic infiltration 
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ellipsometry, which will be discussed in Chapter 4. This work is an example of the clear 

motivation of the research, and an attempt to shed more light on these exciting new 

semiconductors. 

1.2 Conclusion 

This chapter introduced the concept of second-generation and third-generation 

semiconductor materials, and their use in photovoltaic devices. These materials are being 

investigated because of their elemental abundancy, flexibility, light weight and tuneable 

absorption properties. The general concept of photovoltaic charge generation as a key subset 

of opto-electrical devices that utilize semiconductor materials was introduced: firstly, the 

concept of excitons and a basic description of the types of excitons, the Frenkel and Wannier-

Mott types. A basic overview of the energetic structure of crystalline and amorphous 

semiconductors was also outlined, showing how next generation more disordered 

semiconductors have localized, molecular orbitals rather than the delocalized band structures 

of crystalline semiconductors. This different energy structure was then shown to require the 

use of blends for improved exciton dissociation, at least in the case of Frenkel excitons and 

resulting excitonic transport in the neat material. This gives rise to a new type of state for the 

charge carriers called the charge transfer state. Finally, the general class of organic 

semiconductors utilizing fullerenes was extrapolated to a class of so-called third-generation 

materials, including the hybrid class of perovskite materials, and non-fullerenes. These 

materials specifically will be the focus of the work described in this thesis. We will slowly work 

our way up to the opto-electronics of these materials and related devices and their 

challenges, starting from the reciprocity principle for regular, inorganic semiconductors, to 

organic blend devices, and finally to the perovskites and non-fullerenes. 

  



22 
 

II. Theory of opto-electrical devices 

This chapter will present a theoretical framework for characterizing opto-electrical 

interactions in devices which utilize new, emerging types of semiconducting materials. It is 

therefore useful to first consider the theory for conventional, inorganic opto-electrical 

materials and devices. The main part of this will be based on the reciprocity principle. 

Afterwards we will discuss how this theory diverges for second-generation organic 

semiconductors. Additional theory will be supplemented to deal with these challenges, most 

notably the transfer matrix method. 

2.1 Inorganic semiconductor devices 

2.1.1 Shockley-Queisser limit 

In any opto-electrical device, the fundamental process that must be characterized is the 

conversion between photonic and electrical energy or vice versa as defined in Chapter 1. As 

with all conversions of energy, the equilibrium of this process can be determined through 

thermodynamics. In particular, a thermodynamic principle called “Detailed Balance” can be 

applied to gain a fundamental basis for the electro-optical dynamics within a semiconductor 

material and related devices. The Detailed Balance principle states that if a system is in 

thermal equilibrium with its environment, then all microscopic processes within the system 

are exactly counterbalanced by their inverse microscopic process, a phenomenon that follows 

directly from the Second Law of Thermodynamics 39. There are alternative ways of stating the 

principle of Detailed Balance, but for the scope of our considerations this will be the most 

practical one.  

As described in Chapter 1, all opto-electrical devices, such as light emitting transistors, 

photodetectors, light-emitting diodes and solar cells, make use of semiconductor materials 

as the functional component(s). These materials have a conductivity that can be tuned via 

various parameters, such as temperature, ion doping, impurities, and crystallinity. In 

conventional, inorganic semiconductor materials (such as Silicon or Gallium Arsenide), the 

key characteristic that determines the optical properties of the material is the band gap, the 

energetic difference between valence and conduction band. 
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Let us consider the example of a semiconductor material within a solar cell (photovoltaic 

diode) and assume this diode to be in thermal equilibrium with its environment (see Figure 

2.1a). Application of Detailed Balance implies that, in the dark, all blackbody radiation which 

is going into the cell and generating charge, will be equally counter-acted by recombination 

and emission of light out of the cell, within each photon energy interval 𝑑ℎ𝑣 (where h is 

Planck’s constant and 𝑣 the frequency). Blackbody radiation is here simply described by 

Planck’s Law. In this simplified radiative limit, where we do not consider non-radiative 

recombination within the cell, it then becomes possible to quantify the generation rate in 

terms of the blackbody radiation: 

𝐺 = 𝑅 =
2𝜋

ℎ3𝑐2
∫

𝛼(ℎ𝑣)(ℎ𝑣)2

exp (
ℎ𝑣
𝑘𝑇

) − 1
𝑑ℎ𝑣

∞

0

,                                    (2.1) 

where G and R are the generation rate and recombination rate per unit area and per solid 

angle within the cell. A more detailed derivation of this is given in the work of Würfel 40.  

Commonly, we assume that the absorption probability term α(ℎ𝑣) equals 1 for photons above 

bandgap energy and zero for photons below it. We can then derive a formula for the dark 

current density J0 in the cell within this radiative limit, by considering that this photon flow 

formula is valid at every energy 𝑑ℎ𝑣 (or dE), due to Detailed Balance: 

𝐽0
𝑟𝑎𝑑 = 𝑞

2𝜋

ℎ3𝑐2
∫

𝐸2

exp (
𝐸
𝑘𝑇

) − 1
𝑑𝐸.

∞

𝐸𝑔

                                     (2.2) 

Note that Eg here denotes the bandgap energy. Eq. 2.2 can also be approximated as 

𝐽0
𝑟𝑎𝑑 = 𝑞

2𝜋

ℎ3𝑐2
∫ 𝐸2 exp (

−𝐸

𝑘𝑇
)𝑑𝐸.

∞

𝐸𝑔

                                      (2.3) 

The dark current density in this equation is generated by blackbody radiation and will be equal 

and opposite to the recombination current density, as per the principle of Detailed Balance.  
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Figure 2.1 Blackbody Radiation Scheme 

Figure 2.1 Diagram of a simplified solar cell device, a semiconductor sandwiched between 

two electrodes, a) under dark conditions when only blackbody radiation acts upon the cell 

and b) in illuminated conditions. 

Let us now consider a second case where the cell is illuminated by the sun (Figure 2.1b). This 

is the case discussed in the seminal work by Shockley and Queisser 41, which presented  a 

fundamental, radiative limit for energy conversion in solar cells. In this work, an efficiency 

limit is calculated for solar cells, only using the principle of Detailed Balance and certain, 

fundamental parameters such as the temperature of the sun, temperature of the 

environment, and most importantly the bandgap of the semiconductor. Under solar 

illumination, extra charge will be generated in the active layer of the solar cell and build up a 

solar cell voltage V, which can be measured over the contacts of the cell. This voltage can be 

seen as a pseudo chemical potential, which is added to the energetic band potential felt by 

the free charge carriers. Shockley and Queisser even note in their work that every form of 

energy acting upon the carriers in the cell can be expressed in terms of such a voltage41: 

𝐸𝑔 = 𝑞𝑉𝑔 = ℎ𝑣𝑔                                                                 (2.4) 

𝑘𝑇𝑐 = 𝑞𝑉𝑐                                                                     (2.5) 

Where the variables Eg and Tc denote the bandgap energy and the cell temperature, 

respectively. When considering a modified energy which includes the chemical potential from 

the cell voltage V, the Boltzmann factor in Planck’s Law will be modified to arrive at a new 

equation for the generation and recombination rates. The voltage-modified version of Eq. 2.1 

then becomes: 
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𝐺 = 𝑅 =
2𝜋

ℎ3𝑐2
∫

𝛼(𝐸)(𝐸)2

exp (
𝐸 − 𝑞𝑉

𝑘𝑇
) − 1

𝑑𝐸
∞

0

.                                       (2.6) 

This modification can also be applied in terms of Fermi energy levels, which are virtual, 

modified band levels as a function of carrier concentration and (in the case of quasi Fermi 

levels) voltage. This is particularly useful when dealing with doped active materials, where the 

free carrier concentration is doped to be higher or lower than equilibrium, or when 

considering an internal electric field that varies with position in the active layer. A more in-

depth look at the effects and uses of modifying the Fermi level within the cell can be found in 

Würfel 40, however for now it will suffice to simply consider Eq. 2.6. 

Eq. 2.6 can be approximated again and given as the recombination current density, now under 

illumination: 

𝐽𝑟𝑎𝑑 =
2𝜋𝑞

ℎ3𝑐2
∫ 𝐸2 exp (

𝑞𝑉 − 𝐸

𝑘𝑇
)𝑑𝐸

∞

𝐸𝑔

.                                            (2.7) 

 

Note that we can isolate the dark current density in this expression, and the recombination 

current density then becomes 

𝐽𝑅
𝑟𝑎𝑑 = 𝐽0

𝑟𝑎𝑑 exp (
𝑞𝑉

𝑘𝑇
).                                                              (2.8) 

Under standard operation of a solar cell, some voltage is applied across the cell, but some 

current is also allowed to run through the contacts. Under short circuit conditions, where no 

voltage is applied across the cell, all the current generated by (non-blackbody) radiation will 

be siphoned off by the contacts. This is commonly called the short circuit current (Jsc). The full 

current density of the cell under operation will therefore consist of this short-circuit current 

and the current generated by the blackbody radiation, counter-acted by the voltage-

dependent recombination current of Eq. 2.8. 

The full expression for current density then becomes: 

𝐽𝑟𝑎𝑑 = 𝐽0
𝑟𝑎𝑑  (exp (

𝑞𝑉

𝑘𝑇
) − 1) − 𝐽𝑠𝑐                                                (2.9) 
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This is the commonly used JV equation in the radiative limit. Similarly, this equation can be 

reworked to give the open-circuit voltage, where the generation and recombination current 

densities are equal, and the cell is therefore equivalent to an open circuit where no current 

flows: 

𝑉oc =
𝑘𝑇

𝑞
ln (

𝐽sc

𝐽0
𝑟𝑎𝑑 + 1)                                                        (2.10) 

A typical, measured JV curve of a solar cell under artificial 1 sun illumination (Air Mass 1.5 

Global, or AM1.5G) is given in Figure 2.2a. A theoretical JV curve, given by Eq. 2.9, can be seen 

in Figure 2.2b. Some notable differences between the two are that the real Voc is lower than 

predicted (this is where the 0 A/cm2 line is intersected), and that the current starts declining 

sooner than expected (this loss is typically measured in terms of fill factor, the ratio of 

measured power PMP over JscVoc). Both losses can be explained by the fact that we have not 

considered non-radiative forms of recombination. The exact impact of this will be discussed 

later on. 

 

Figure 2.2 JV Curve Theory 

Figure 2.2. Left: A JV curve, measured for a solar cell with a 1.25 eV bandgap under AM1.5G. 

Right: Predicted JV curve in the radiative limit for the same solar cell. Differences are due to 

non-radiative phenomena. 

Using their radiative limit, Shockley and Queisser also showed that an upper limit for the 

quantum yield, the efficiency of extracted electrical energy over incident optical energy, can 

be calculated for any solar cell, depending on the active material’s band gap. This limit was 
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referred to as the Detailed Balance limit, although it is now commonly known as the Shockley-

Queisser limit. The original figure is given in Figure 2.3, predicting a limit to the quantum yield 

η as a function of the active material’s band gap energy. For reference, today’s best efficiency 

for a Silicon solar cell is 26.7% 42, not too far from what they originally predicted. 

However, the theoretical limit considered in the work of Shockley and Queisser is still flawed 

for two main reasons. One is that they did not account fully for all the light in-coupling 

considerations, notably the parasitic absorptance of other layers. The other was the existence 

of non-radiative recombination phenomena. We will now look at both these problems in 

more detailed, modern terms. 

 

Figure 2.3 Shockley-Queisser 

Figure 2.3. Modified and taken from 41: the original depiction of the Shockley-Queisser 

efficiency limit (η) vs the efficiency records at the time, in terms of bandgap energy (xg,Vg, 

where xg = Eg/kT and Vg = Eg/q). Compare to today’s top Si cells of 26.7%. 

2.1.2 Light-coupling considerations 

The “quantum yield” mentioned previously is today referred to in two, more contemporary 

terms, namely External and Internal Quantum Efficiency, and these are some of the key 

metrics when looking at novel types of opto-electrical devices. The distinction between 

External and Internal Quantum Efficiency stems from the fact that, within the scientific 
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community, a need has arisen to separate charge generation and the internal charge 

collection within a device.  

Supposing a number of incident photons on the cell, Nip, a number of photons absorbed in 

the active material, Namp, and a number of collected charge carriers Ncc, the External Quantum 

Efficiency (EQE) can be defined as the ratio between collected charge carriers and the incident 

photons on the cell, and the Internal Quantum Efficiency (IQE) as the ratio of collected charge 

carriers to absorbed photons in the active semiconductor material. 

EQE =
𝑁cc

𝑁ip
                                                                  (2.11) 

IQE =
𝑁cc

𝑁amp
                                                                 (2.12) 

Note that this implies that the IQE is included within the EQE and can be re-obtained from it: 

IQE ∙
𝑁amp

𝑁ip
= EQE.                                                         (2.13) 

This factor 
𝑁amp

𝑁ip
 is effectively the fraction of incident photons absorbed in the active material 

layer, which we can denote as Aam. The main effects causing a loss of incident photons are 

reflectance off the solar cell R, transmittance through the solar cell T, and parasitic 

absorptance by the other materials in the cell, here termed Ap. These are all fractional 

properties, they represent a fraction of the total number of incident photons as following: 

𝑅 =
𝑁rp

𝑁ip
, 𝑇 =

𝑁tp

𝑁ip
, 𝐴p =

𝑁pmp

𝑁ip
,                                            (2.14𝑎) 

Where Nrp is the number of reflected photons, Ntp the number of transmitted photons, and 

Npmp the number of photons absorbed by other layers (parasitic material absorptance). These 

fractions are also commonly given in intensity rather than number of photons. It follows that, 

supposing that all the above-mentioned pathways to photon flow are the only ones, the 

absorptance in the active material is given by: 

𝐴am(𝜆) = 1 − 𝑅(𝜆) − 𝑇(𝜆) − 𝐴p(𝜆)                                        (2.14𝑏) 

And we can write the relation between IQE and EQE in Eq. 2.13 as follows 43: 
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EQE(𝜆) =
1

1 − 𝑅(𝜆) − 𝑇(𝜆) − 𝐴𝑝(𝜆)
∙ IQE(𝜆)                            (2.15) 

This equation allows us to separate the electrical and optical properties of a solar cell, or 

indeed of any opto-electrical device. Thus, the quantum efficiency EQE of an opto-electrical 

device can be separated into an optical and an electrical component, the electrical being 

denoted by IQE. 

The quantum efficiency is usually measured spectrally, and the EQE can be measured directly 

by setting up a lamp with a known Intensity (commonly one that emulates the spectral shape 

of solar radiation, such as AM1.5G), and measuring the collected charges from the cell as a 

functional of incident light wavelength (energy). 

However, the IQE has to be deduced more subtly, for example by measuring more 

components of Eq. 2.15. IQE is a useful property because it characterizes charge collection 

efficiency inside the opto-electrical device and gives an indication of the electrical charge 

transfer processes in our materials. The EQE as a property is more ambiguous since it includes 

both (the charge transfer and the optical generation efficiency). In order to improve the 

device’s efficiency, these electrical and optical processes inside the device must be considered 

separately, so bottlenecks can be found in order to attain higher efficiencies. This is especially 

true for new kinds of opto-electronic devices, where certain aspects of the optical or electrical 

processes may still be unknown.  

The optical properties in Eq. 14 (R, T and Ap) are therefore important in any device 

investigation, since they characterize not only the optical aspects of the used materials, but 

also help to separate the electrical properties.  

Reflectance and transmittance can be measured with an accurate spectrophotometer, but 

the absorptance of different materials within the cell can require more nuance than only a 

measurement. Until recently, many within the scientific community have been satisfied with 

treating the parasitic absorptance from other layers in the device with the Beer-Lambert law 

of absorption (or, indeed, with disregarding the parasitic absorptance altogether). The Beer-

Lambert law can be given comprehensively as follows: 

𝐼abs,𝑖

𝐼0,𝑖
= 𝐴𝑖 = exp(−𝛼𝑖𝑡𝑖) = exp (−

4𝜋𝑘𝑖

𝜆
𝑡𝑖)                                   (2.16) 
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Here, Ai denotes the absorptance of layer i in a stack of materials and I0,i is the light intensity 

incident to that layer. αi is the absorption coefficient and ti the thickness of the layer. In 

alternative writing, ki denotes the imaginary part of the material’s refractive index, the part 

responsible for absorption, and 𝜆 is the wavelength of radiation. Eq. 2.16 assumes that there 

is a plane wave of light traversing our multi-layer structure of absorbing materials. In 

accordance with Maxwell’s Equations, a 1-dimensional plane wave in a material can be given 

as 

𝐸⃗ (𝑥) = 𝐸⃗ (0) exp (𝑖 ∙
2𝜋𝑛𝑖̅

𝜆
𝑥) .                                              (2.17) 

𝐸⃗  denotes the electric field and 𝑛𝑖̅ the full refractive index of the material. The Lambert-Beer 

law can be recovered by assuming a plane wave and by using the proportionality of intensity 

with |E|2 (this will be derived more in-depth in Chapter 3). The problem with the plane wave 

assumption, however, is that in a multi-layer stack (or, in fact, in any single layer that does 

not stretch on infinitely) we are not always dealing with a plane wave. At every material 

boundary, there is a transmission and reflection of waves, and these reflections add new 

waves to the primary plane wave, which can create a completely altered field profile within 

the stack through the phenomenon of wave interference. 

A good measure to consider if the plane wave approximation is valid is to check if the active 

material layer thickness is below twice the absorption length of the considered wave, where 

the absorption length ta,i is defined as the length over which the intensity of the beam will 

have dropped to 1/e, following Beer-Lambert: 

𝐴𝑖 =
1

𝑒
 ⟺ 𝑡𝑎,𝑖 =

1

𝛼𝑖
.                                                          (2.18) 

If the layer is more than twice the absorption length, at least 86% of the initial beam intensity 

will have been absorbed before it can be reflected at the next layer interface, and the 

absorption in the active material can be approximated with Beer-Lambert. This is the case for 

most inorganic semiconductor devices (such as Si and GaAs), since they are characterized by 

high carrier mobilities and can therefore be extended to very thick layers without losing too 

much charge to recombination. In these devices, most of the light is absorbed before it can 

be reflected at the boundary. However, if there is a range of parasitic layers before the active 



31 
 

layer, or if there are several, tuned active layers (such as in a tandem cell), even inorganic, 

conventional devices require a more nuanced model to acquire the correct absorptance in 

each layer. As we shall see later on, for next-generation devices with organic materials, which 

tend to be thinner, it will be absolutely vital to use formalisms which can describe standing 

wave profiles to calculate the generation and parasitic absorptance within the device. 

However, for now we will assume Beer-Lambert is valid for conventional devices. 

This in effect allows us to solve Eq. 2.15 for the IQE if we have measured an experimental EQE. 

Once the IQE is known, we can make a prediction for the short-circuit current Jsc from the 

carrier generation in the active layer. Finally, if the dark current is also measured (or 

calculated from a known material band gap, see Eq. 2.3), we can derive a radiative limit for 

Voc as well, using Eq. 2.10.  

It is in fact possible to reconstruct the entire JV curve, but for this, non-radiative losses must 

also be accounted for, in order to determine the Fill Factor, mentioned before as the ratio of 

maximum power of the cell to the maximum ideal power: 

𝐹𝐹 =
𝑃MP

𝑉oc𝐽SC
                                                                    (2.19) 

However, to quantify these losses, a formalism is required to quantify the charge transfer 

within the device after generation, and the electrical processes at play. 
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2.1.3 Charge collection 

 

Figure 2.4 Recombination Overview 

Figure 2.4. Schematic overview of processes which influence internal charge collection 

efficiency. From left to right: a) radiative recombination and non-radiative recombination, b) 

Shockley-Read-Hall (trap assisted) recombination and interface recombination, c) Auger 

recombination. 

Until now we have mainly discussed the optical side of our devices: the radiative limit, the 

light-coupling phenomena, and the parasitic layer absorptance. Using these considerations, 

we arrived at a way to derive the IQE from Eq. 2.15, which characterizes the charge collection 

efficiency after charge generation. Now it is time to have a more in-depth look into these 

charge collection processes.  

In a steady state, the charge transport within semiconductor materials can be characterized 

through the drift-diffusion current equations and the continuity equations, combined into the 

following form: 

−
δ

δx
∙ (𝜇𝑛 ∙ 𝑛(𝑥) 𝜀 (𝑥) + 𝐷𝑛

𝛿𝑛(𝑥)

𝛿𝑥
) = 𝐺𝑛(𝑥) − 𝑅𝑛(𝑥),                              (2.20𝑎) 

δ

δx
∙ (𝜇𝑝 ∙ 𝑝(𝑥) 𝜀 (𝑥) − 𝐷𝑝

𝛿𝑝(𝑥)

𝛿𝑥
) = 𝐺𝑝(𝑥) − 𝑅𝑝(𝑥),                              (2.20𝑏) 

where q is the elementary charge, n and p the respective carrier concentrations of electrons 

and holes, µ denotes the mobility and 𝜀 (𝑥) is the internal electric field at position x. The 

second term is a diffusion term where D is the diffusion coefficient, and G and R are the 

generation and recombination rates of free carriers. The actual transport of carriers has two 
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main terms, a drift term that depends on the internal field, and a diffusion term that depends 

on the differential in concentration of free carriers.  

From Eq. 2.20 it is also apparent that there is only one term preventing collection (and 

therefore impacting the IQE: R(x), or recombination.  

A schematic overview of all possible forms of recombination is given in Figure 2.4. The first is 

simple radiative recombination from the conduction band to the valence band, which re-

emits the absorbed light (the so-called band-to-band recombination). This also includes a non-

radiative component of relaxation within the band, where energy levels are closely packed, 

and thermal relaxation is more viable. The second process makes use of available trap energy 

states within the band. Trap states may arise within the bulk material due to impurities, or at 

different material interfaces, due to lattice mismatch. Typically, at an interface there are more 

trap states. Both examples are shown, they can be radiative or non-radiative. Finally, there is 

Augur recombination, a non-radiative-type process where instead of radiating the 

recombination energy, energy is transferred to a free carrier which is propelled to a higher 

energy level.  

Note that all the forms of radiative recombination can still be accounted for in the already 

considered radiative limit. We can take the previously derived Eq. 2.6 and insert a more 

nuanced absorption coefficient α(E), which also considers the additional available states 

within the bandgap (see Figure 5). However, the Detailed Balance principle used to derive Eq. 

2.6 still only considers radiative absorption and emission between these levels to affect the 

charges. In reality there are also non-radiative energetic transfer processes, converting 

energy in the form of vibrational phenomena (i.e. thermal energy states or phonons). Most 

charges that are excited to available states above the bandgap will relax vibrationally to the 

lowest energy level of that band before being collected or recombining, since this non-

radiative relaxation occurs much faster (this can be explained by the Franck-Condon principle 

44). This is not accounted for in the radiative Shockley-Queisser limit. 

These vibrionic processes can however be incorporated as microscopic processes in Detailed 

Balance considerations, to derive a more complete theory, and an in-depth consideration of 

this can be found in the work of Kirchartz 45. However, for this work, it will suffice to know 
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some of these mechanisms exist and cause additional, non-radiative losses, which will also be 

contained within the IQE derived through Eq. 2.15.  

The mobile charge carrier concentration in the semiconductor (that is, holes in the valence 

band and free electrons in the conduction band) will at all times have a certain average, 

probabilistic energy level, the Fermi level. For an intrinsic semiconductor with intrinsic 

conduction/valence band carrier concentration this is approximately in the middle of the two 

bands, however usually one or both of the bands are doped to form an extrinsic 

semiconductor, in which case, if we denote acceptor dopant concentration Nv and donor 

dopant concentration Nc, this Fermi energy level is given as: 

𝐸𝑓 =
𝐸𝑐 + 𝐸𝑣

2
+

𝑘𝑏𝑇

2
𝑙𝑛 (

𝑁𝑣

𝑁𝑐
)                                               (2.21) 

The Fermi level is often modified in conventional opto-electrical devices, usually through 

techniques such as doping, as outlined above, or with a voltage (or internal electric field), 

applied throughout the semiconductor layer (remember that voltage can be seen as a 

chemical potential, modifying the band energy levels). In these non-equilibrium conditions, 

we speak about separate quasi Fermi levels for both types of carrier. In conventional opto-

electronic active materials such as Silicon, p- and n-type doped materials are brought in 

contact which creates a so-called space charge region, where an internal field (created by the 

depletion of majority carriers in this region) serves to sweep away light-generated carriers to 

the contacts.  

Note that no matter what the band structure is, the mechanism decreasing charge collection 

will always be recombination. If charge is collected more slowly (due to low mobility or a 

counter-productive internal field) or if there are additional energy states within the gap, the 

probability for charges to recombine within the cell before collection increases 46. In the case 

of non-equilibrium carrier concentrations, where one carrier concentration is significantly 

higher than the other (this is sometimes called low-injection), recombination rate can be 

given as a function of majority carrier off-set from equilibrium, ∆𝑛:  

𝑅 =
∆𝑛

𝜏
                                                                  (2.22) 
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Where 𝜏 is the carrier lifetime. This lifetime is often determined through emission 

experiments, which will be discussed more in-depth later on. Most variables in Eq. 2.20 often 

need to be determined experimentally, an essential undertaking when characterizing devices 

with new materials. 

If the recombination is known, it can be linked to IQE. If the IQE were 100%, all generated 

charge ∫𝐺(𝑥)𝑑𝑥 would be collected as current at the contacts, however because there is a 

factor ∫𝑅(𝑥)𝑑𝑥 that is not collected at the contacts, we have a non-perfect IQE: 

𝐼𝑄𝐸 =
∫𝐺(𝑥)𝑑𝑥−∫𝑅(𝑥)𝑑𝑥

∫𝐺(𝑥)𝑑𝑥
                                               (2.23)  

Therefore, if we calculate the recombination rate profile from Eq. 2.20, the efficiency with 

which carriers are ultimately collected can also be derived, most notably the average carrier 

lifetime 𝜏 in the material.  

We have now identified the main phenomena that can drive the efficiency of an electro-

optical device. These are: 

• The charge generation efficiency (CGE), related to optical effects such absorptance, 

reflectance and transmittance. Characterized by EQE, although it should be noted that 

IQE will also be included in EQE measurements and should be determined and isolated 

(see Eq. 2.15). Because it involves net charge, CGE is also influenced by exciton 

dissociation rate, but this is usually spontaneous for inorganics at room temperature. 

• The charge collection efficiency (CCE), related to electrical recombination effects. 

Characterized by concepts such as the mobility, recombination rates (both in bulk and 

at interface). Can be modelled with drift-diffusion and continuity equations (see Eqs. 

2.20). The IQE is mainly characterized by the CCE, but also by the exciton dissociation 

rate, which may become important later on. 

Since the discussion until now has relied on thermodynamics and detailed balance, the same 

considerations are true for opposite opto-electrical devices in which certain types of radiative 

recombination are the favoured effect, in order to generate light, such as for Light-Emitting 

Diodes (LEDs). 
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2.2 Extension to organic semiconducting materials  

2.2.1 Optical considerations: transfer matrix 

As discussed before, the main focus of the work described in this thesis will be to the use of 

novel, organic and hybrid organic-inorganic semiconducting materials as the main active 

material in opto-electrical devices.  

As mentioned in Chapter 1, a key difference is that organic semiconducting materials are 

usually non-crystalline, or at least exhibit low degrees on long range order, and that charge 

transport therefore happens from molecular orbital to orbital, mainly through a mechanism 

called “hopping” 19, where a charge carrier moves through discrete, energetic jumps. These 

jumps are usually well within kT at room temperature, which means they can be thermally 

assisted at a significantly high rate. Due to this high transfer rate from molecule to molecule, 

organic materials can still be treated as having a sort of energetic band structure, by treating 

the highest occupied molecular orbital (HOMO) as if it were a conduction band, and the 

lowest unoccupied molecular orbital (LUMO) as a valence band 20. However, because of this 

transport mechanism, organic semiconductors generally have a significantly lower mobility. 

Opto-electrical devices with organic materials will therefore always have much thinner layers, 

on a sub-micron scale, to prevent too much recombination during charge transport and 

collection.  

Since active layers in organic opto-electrical devices are so thin, there will also be significant 

destructive or constructive interference within the active layer, caused by the reflectance off 

the multi-layer interfaces by light that is not fully absorbed due to layer width below the 

optical length (see Eq. 2.18). The interference will decrease or increase the absorptance of 

the device in the active layer and depending on the wavelength of incident light and thickness 

of the device, which creates standing waves. A formalism that can describe these standing 

wave profiles will need to applied.  

The Abeles transfer matrix method is such a formalism, and allows one to compute the optical 

field distribution in any multilayer stack 47. The only requirement for this method is accurate 

knowledge of layer thicknesses and complex refractive indices, which can be determined 

experimentally. The fundamentals of the methodology amount to the definition of a 

propagation matrix for each of the layers in an arbitrary stack as shown in Figure 2.5. 
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To deal with the interference effects, we assume two independent waves propagating 

throughout the stack: a forward-propagating wave (here moving towards the right) and a 

backward-propagating wave. Note that these two independent waves already consist of the 

sum of all reflected and transmitted waves that are moving in the same direction. However, 

the sum of plane waves propagating in the same direction is still a plane wave: 

𝐸1 exp (𝑖 ∙
2𝜋𝑛𝑖̅

𝜆
(𝑥 + 𝜑1)) + 𝐸2 exp (𝑖 ∙

2𝜋𝑛𝑖̅

𝜆
(𝑥 + 𝜑2))

= exp (𝑖 ∙
2𝜋𝑛𝑖̅

𝜆
𝑥) ∙ [𝐸1 exp(𝜑1) + 𝐸2 exp(𝜑2)],                                          (2.24) 

Which means the two considered waves (which are sums of all backward- and forwards-

propagating waves) are both still plane waves. Using the Fresnel coefficients of reflection and 

transmission, rij and tij respectively, we can impose boundary conditions on these two waves. 

The Fresnel coefficients are given by 

𝑟𝑖𝑗 =
𝑛̅𝑖 − 𝑛̅𝑗

𝑛̅𝑖 + 𝑛̅𝑗
 ,                                                 (2.25𝑎) 

    𝑡𝑖𝑗 =
2𝑛̅𝑖

𝑛̅𝑖 + 𝑛̅𝑗
                                                   (2.25𝑏) 

where the indices ij denote the two consequent layers in the stack, and 𝑛̅𝑗  is again the total 

refractive index of layer j, consisting of 𝑛̅ = 𝑛 + 𝑖𝑘  (k being the complex, absorbing part). 

 

Figure 2.5 Transfer Matrix 

Figure 2.5. Schematic overview of the transfer matrix method. Each layer has its own matrix, 

outlined in corresponding colour, and each matrix gives the relation between the Electric field 

magnitude of the forward- and backward-travelling wave at the start of the layer, and at the 

start of the next layer. 
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Since the forwards and backwards propagating wave are both simple plane waves, this places 

a straightforward restriction on the Electric field magnitudes at the boundaries of adjacent 

materials: each plane wave at the start of a layer consists of  

1. the transmitted wave of the previous layer and  

2. the reflected wave of opposite direction from within the same material. 

These relations can be re-obtained by working out the matrix products shown in Figure 2.5. 

For layers 1 and 2 (outlined in blue in Figure 2.6): 

𝐸⃗ 1
+ =

1

𝑡12
(𝜑1

−1𝐸⃗ 2
+ + 𝜑1

−1 𝑟12𝐸⃗ 2
−)                                         (2.26𝑎) 

𝐸⃗ 1
− =

1

𝑡12
(𝜑1𝑟12𝐸⃗ 2

+ + 𝜑1𝐸⃗ 2
−)                                               (2.26𝑏) 

𝐸1
+ is the field magnitude of the forwards wave at boundary 1, and 𝐸1

− that of the backwards 

wave. 𝜑1 is the phase propagation factor in layer 1, equalling exp (𝑖 ∙
2𝜋𝑛1̅̅̅̅

𝜆
𝑡1), with t1 the 

layer 1 thickness, and 𝜑1
−1 is the inverse phase factor exp (−𝑖 ∙

2𝜋𝑛1̅̅̅̅

𝜆
𝑡1). This can be re-written 

in more intuitive terms, noting that that r12=-r21: 

𝐸⃗ 2
+ = 𝜑1𝑡12𝐸⃗ 1

+ +  𝑟21𝐸⃗ 2
−                                                     (2.27𝑎) 

𝜑1
−1𝑡12𝐸⃗ 1

− = 𝑟12𝐸⃗ 2
+ + 𝐸⃗ 2

−                                                      (2.27𝑏) 

and Eq. 2.27b can be rewritten using Eq. 2.26a  

𝜑1
−1𝑡12𝐸⃗ 1

− =  (1 − 𝑟21
2 ) 𝐸⃗ 2

− + 𝑟12 𝜑1𝑡12𝐸⃗ 1
+                                             

𝜑1
−1𝐸⃗ 1

− =
 (1 − 𝑅21)

𝑡12
 𝐸⃗ 2

− + 𝑟12 𝜑1𝐸⃗ 1
+                                                     

𝜑1
−1𝐸⃗ 1

− = 𝑡21 𝐸⃗ 2
− + 𝑟12 𝜑1𝐸⃗ 1

+                                                     (2.27𝑐) 

Eq. 2.27a and 2.27c are simply the assumption of the continuity of plane waves throughout 

adjacent materials again. 

Each layer effectively adds another matrix to the transfer matrix product, which lets us 

determine the forwards-and-backwards-propagating electric field Ei at each layer interface. 

Thus, the optical field throughout the stack can be modelled if the layer optical constants are 
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known. From this field distribution, we can then derive the charge photogeneration 

distribution in all material layers. The following equation48 can be used to calculate the 

absorptance per wavelength 𝜆 at each position within each layer i: 

𝐼0,𝑖𝐴𝑖(𝑥, 𝜆) =
1

2
𝑐𝜀0𝛼𝑖(𝜆)𝑛𝑖(𝜆) |𝐸𝑖(𝑥, 𝜆)

2|                                      (2.28) 

and by setting the incident to global AM1.5 radiation, we can then derive the generation of 

charge carriers: 

𝐺𝑖 = ∫ ∫ 𝐼𝐴𝑀1.5(𝜆) ∙ 𝐴𝑖

𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛 

𝑥𝑖+1

𝑥𝑖

(𝑥, 𝜆)𝑑𝑥𝑑𝜆                                  (2.29) 

As we can see, the transfer matrix method lends itself to calculating both the parasitic and 

active material absorptances. We can also calculate the total reflectance and transmittance 

of the stack, by considering that 𝑅 = 𝐸⃗ 0
−/𝐸⃗ 0

+ and 𝑇 = 𝐸⃗ 𝑚+1
+ /𝐸⃗ 0

+. Some extra considerations 

of the transfer matrix method, such as how to deal with incoherent layers in the stack (often 

the glass layer on top of the device is such a layer), can be found in Appendix A1. 

Again, we can use the calculated parasitic absorbance, reflectance and transmittance in Eq. 

2.15 to calculate the IQE of the cell from the EQE. This determination of a device’s IQE 

becomes even more robust by measuring (rather than modelling) the total reflectance and 

transmittance of the cell, as could be done with an accurate spectrophotometer with specular 

and total reflectance capability and a suitably large-area device 49. 

It should be noted that the transfer matrix method is not the only method to describe cavity 

effects, and that while the transfer matrix presents a simplified and intuitive 2D 

understanding of a multi-layer stack, one could also calculate 3D modes within the device, 

using Finite Difference Time Domain (FDTD) software such as Lumerical or Comsol. This will 

play a role when investigating the emission of devices, where evanescent modes can become 

significant 50. 



40 
 

2.2.2. Electrical considerations: blends   

 

Figure 1.3. Depiction of CT state in a solar cell with PC60BM:PCDTBT active layer material. 

HOMO/LUMO levels of PCDTBT (donor material) and PCBM (acceptor material) are defined 

levels at the top and bottom. CT state is shown in blue. 

In an organic blend layer such as depicted in Figure 1.3 (here repeated for clarity), the charge 

carriers now travel through two different active materials, with different recombination rates 

and mobilities. One would expect the device to be limited by the least efficient (that is, highest 

recombination rate) material, but there are two important aspects to the IQE (or collection 

efficiency) in the excitonic case:  

1. The efficiency of exciton (and CT state) dissociation, which depends on many factors, 

such as the dielectric constant of the materials, but also the energy difference 

between the two HOMO or LUMO levels. For charge generated in the donor, a high 

difference in HOMO levels gives good exciton dissociation. For generated charge in 

the acceptor, it is the LUMO levels that matter. However, entropy also plays an 

important role, as will be seen later for the case of NFAs. 

2. The recombination rate for holes in the donor and electrons in the acceptor materials 

of the blend, as well as at the material interfaces. 

The most common acceptor material in second-generation cells is Phenyl-Cx-butyric acid 

methyl ester, or PCBM, a fullerene derivative where x denotes the number of carbon atoms 

in the fullerene molecule. This material was chosen for its high electron mobility (around 3E-
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3 cm2/Vs), the ease of spin-coating it with solvents like Chlorobenzene (CB) and its stability 

with other materials, partly due to its high electron affinity and ability to stabilize more than 

1 negative charge, and partly due to its spherical symmetry 51. PCBM absorbs mainly at higher 

energies, at wavelengths above 600nm, and therefore needs to be combined with materials 

that start absorbing at lower energy, to maximize the absorbed part of the solar spectrum. 

The donor material in PCBM blends, be it PCDTBT, P3HT or any other p-type organic 

semiconductor, will therefore ideally be absorbing across the whole spectrum, but necessarily 

starts absorbing at the lower energy side of the spectrum. Absorption starts when the photon 

energy becomes greater than the difference between donor HOMO and LUMO levels. This 

would be the band gap in inorganic devices, however in the case of organics there are no 

actual bands with available state, only defined energy levels. At higher energy photons, higher 

energy excitons will still be generated (also sometimes referred to as ‘hot excitons’), which 

will quickly relax through internal, thermal dissipation, usually in the form of phonons 52. Most 

organics therefore still absorb significantly at higher energies than their HOMO/LUMO energy 

difference, just as an inorganic band structure would. See Figure 2.6 for some quantitative 

data for some of the most common second generation organic semiconductors HOMO and 

LUMO levels. 
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Figure 2.6 Overview of Common HOMO/LUMOs 

Figure 2.6. Overview of the HOMO/LUMO levels of the most common organic 

semiconductors, demonstrating the diversity of materials available. Modified and taken 

from53. Most of this data is available in the online Ossila database. 

Although the two active materials will absorb light at different parts of the spectrum, as long 

as the exciton dissociation energy of the two materials is comparable, the IQE will be more or 

less the same across the spectrum, since the carriers from the dissociated excitons will always 

travel through their own respective material of the blend, no matter where they were first 

absorbed. For conventional organic devices, this condition of comparable dissociation energy 

tends to be true, and collection efficiency can be assumed to be quasi-constant across the 

spectrum (i.e. illumination energy independent), a useful assumption when trying to 

determine a device’s IQE. There is still however a significant debate concerning so-called ‘hot 

excitons’ 54 which are photoexcitations produced by higher energies than the gap and may 

have a higher dissociation efficiency. However, there is little evidence of such hot effects 

under operational conditions, steady state and equilibrium 54. 

As mentioned before, organic materials can be treated as if the HOMO and LUMO are band 

semiconductors with a very low mobility, and because of this, the same current and continuity 
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equations from Eq. 2.20 still hold. As a demonstration of pure excitonic transport, consider a 

neat organic material on glass (note that excitons are not dissociated here, as in a blend). The 

drift aspect of the equations is removed since excitons are neutral. We therefore have a 

neutral exciton flow density: 

−𝐷𝑒

𝛿2𝑒(𝑥)

𝛿𝑥2
= 𝐺𝑒(𝑥) − 𝑅𝑒(𝑥),                                              (2.31) 

Where e(x) is the positional exciton concentration. This equation can be solved with 

appropriate boundary conditions to give some insight into the generation and recombination 

profiles in an organic semiconductor material (as compared to in a thick inorganic Silicon 

layer, where G(x) can be assumed to be a simple exponential in line with Beer-Lambert, or 

even quasi-constant). If the single layer of organic material on glass is irradiated with light at 

a certain wavelength, we can calculate the exciton generation profile per area G(x) as a 

function of position in the layer, using the transfer matrix method described before. This 

profile will typically be a standing wave, as depicted in Figure 2.7. Since no excitons are 

flowing in or out of the layer, Je will be 0. Recombination R(x) can be assumed to be a linear 

function of e(x) and average carrier lifetime, as in Eq. 2.22.  

Eq. 2.31 becomes: 

−𝐷𝑒

𝛿2𝑒(𝑥)

𝛿𝑥2
= 𝐺𝑒(𝑥) −

𝑒(𝑥)

𝜏
.                                                (2.32) 

It becomes clear that the working principle of neat organic semiconductor is governed by 

three main exciton processes competing with each other: photo-generation, recombination 

and diffusion. Conventionally in literature the boundary conditions of a layer bounded by 

insulators (glass and air) are taken as 
𝑑𝑒(𝑥)

𝑑𝑥
= 0, at the edges of the layer x=0 and x=L 55. Solving 

Eq. 2.32 results in a concentration profile e(x), and the recombination profile can be plotted 

as 
𝑒(𝑥)

𝜏
 (see Figure 2.7). The two material properties 𝜏 and 𝐷𝑒 can be characterized together 

by one parameter, the diffusion length Ld  

𝐿𝑑 = √𝜏𝐷𝑒 ,                                                                           (2.33) 

Which singularly affects how the recombination profile will look. Increasing the diffusion 

length will result in a more flattened recombination profile.  
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Figure 2.7 Drift Diffusion Example 

 Figure 2.7. Modelled Generation and Recombination profile in a 150nm PCDTBT layer on 

glass, under 600nm wavelength illumination. Diffusion length is set to around 26nm to 

demonstrate the effect of diffusion. 

In most organic semiconductors, the diffusion length is below 10nm, and the recombination 

profile will be very close to the generation profile. In organic blends the dynamics naturally 

change somewhat as there is an exciton dissociation taking place at the donor-acceptor 

interfaces in the blended materials. This will be discussed more in-depth in Chapter 5. 

2.3 Experimental methods 

Although significant differences between organic and inorganic opto-electronic devices have 

been discussed, the main phenomena that can drive the efficiency remain unchanged:  

• The charge generation efficiency, contained in both EQE and IQE. The key difference 

in organic semiconductors is that standing waves must be accounted for with transfer 

matrix modelling, because of the optically thinner layers. 



45 
 

• The charge collection efficiency, related to electrical recombination effects and 

characterized by the IQE alone. The key difference for organics here is the existence 

of excitons, and the charge transfer state as a consequence of using two materials to 

separate the excitons into free holes and electrons. We note again that in inorganic 

semiconductors such as c-Si, free carriers are spontaneously created at room 

temperature since the binding energy is < kT by some margin. 

The discussion will now focus on how to characterize these efficiencies experimentally. 

2.3.1 Optical characterization 

The main properties that need to be determined optically are the absorptance, reflectance 

and transmittance of the device (see Eq. 2.13-2.15) and constituent layers. Reflectance and 

Transmittance are measured with a spectrophotometer. The most accurate type of 

measurement is often done with a spectrophotometer that includes an integrating sphere, 

which is a sphere-shaped chamber that is fully reflective inside and has several detectors, so 

as to capture all angularly scattered light as well (see Figure 2.8).  

 

Figure 2.8 Spectrophotometer Diagram 

Figure 2.8. Top view of a spectrophotometer diagram with integrating sphere (image 

modified upon reproduction from Perkin Elmer manual). M1-2 are mirrors, the blue beam is 

the measurement beam and the purple beam is the reference beam (one source emits both, 

to reduce noise in a so-called dual-beam configuration). 



46 
 

For the absorptance, the accurate thicknesses of all layers within the device must be obtained, 

as well as the optical constants of the materials in all layers. One of the problems is that these 

are very hard to obtain in the actual, multi-layered device after fabrication, and often every 

layer will need to be fabricated as a single layer (following the device fabrication conditions 

as closely as possible) on a substrate of silicon or glass. 

Layer thickness can be measured through a variety of techniques, the most common and 

inexpensive of which is to use a profilometer, in which case a scratch is made in the layer with 

a thin metal blade, reaching down to the substrate, and a sensitive needle applies a small 

pressure to the sample and moves to map out the thickness profile of the scratch. However, 

for very thin layers, below 100nm, more sophisticated methods are required. These tend to 

be more resource-intensive and include Atomic Force Microscopy (AFM), X-ray Microscopy 

(XRM), and ellipsometry. Ellipsometry is often the most useful one since it is also a 

requirement to derive the second necessary property, the optical constants. This particular 

method, its limitations and it alternatives, will be discussed in more detail in Chapter 3. 

2.3.2 Electrical characterization  

Once optical constants and layer thicknesses are known a device can be fabricated and the 

EQE of the device can be measured. EQE measurement has been described before, and 

usually uses a source meter unit set-up to measure the collected charges. The AM1.5G lamp 

source is used as reference for the incident amount of photons, and the software converts 

the measured amount of collected charges to a relative measure in percentage. Usually the 

JV curves, as shown in Figure 2.2, are also measured using an oscilloscope set-up. The actual 

fabrication of particular devices will be expanded upon in later chapters. It will however be 

useful to consider what to do with the EQE data, and what else we need to know when IQE 

has been determined through optical analysis and Eq. 2.15. 

In order to really understand the IQE we need to characterize the recombination going on in 

the active materials of the device. While there are many methods to do this, such as 

Transient Photocurrent (TPC), Time-delayed Collection Field (TDCF) and charge extraction by 

linearly increasing voltage (CELIV) a popular method that will be examined more closely in 

this work is the measuring the emission or luminescence of the material. In the case of 

Photoluminescence (PL), emission is stimulated through incident photons that are within 
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the absorption regime of the active material. The emitted light from the recombination will 

be of much lower intensity and Stokes shifted 56, meaning the emission will be at a slightly 

longer wavelength (lower energy) than the incident light. A filter is therefore applied to stop 

the incident light (which will not be fully absorbed) from being detected. A possible set-up 

for the experiment is shown in Figure 2.9. 

 

Figure 2.9 Rotating Emission Set-Up 

Figure 2.9. Rotating set-up for measuring photoluminescence on an organic sample on glass. 

A Photonic Multichannel Analyzer (PMA-12) is used to detect the relative amount of emitted 

photons at a certain angle, and can be rotated around the stationary sample. 

For Electroluminescence (EL), the charge carriers are injected into the device electrically 

instead, after which they recombine and emit. EL requires electrical contacts to be measured, 

but while PL seems simpler it comes with challenges of its own, most notably when trying to 

detect emission from a CT state rather than from the main singlet state, because 

photoemission can be very weak and therefore challenging to detect. Once an emission 

spectrum is measured, it can then be used to derive insight into the available energetic levels 

(or rather the difference in levels) within the device for free carriers.  

There are also different set-ups depending on whether transient or steady-state 

luminescence is being measured. Transient photoluminescence (tr-PL) measurements allow 

one to derive the time-dependent behaviour and recombination lifetime of the material, in 

contrast to the steady-state measurements which are more commonly used to analyse the 

spectrum and from this determine the energetic wavelengths that have the highest emission. 

Steady state would be used to reveal the energy at which the CT state exists in blend 
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materials, while transient measurement would be necessary to determine the lifetime 𝜏 

featured in the drift-diffusion equations (Eq. 2.20). 

It should be noted that even in these emission measurements, there will again be a distortion 

caused by the cavity effects that are present in devices with optically thin active layers 57, in 

other words for most organic or hybrid devices. Again, this will all be expanded upon more 

in-depth in chapter 5. 

2.4 Conclusion 

A theoretical framework has been provided explaining the detailed balance theory and its 

application to opto-electrical devices. This framework was then used to define key concepts 

such as external and internal quantum efficiency, which were both characterized in terms of 

optical and electrical considerations, involving such concepts as reflectance and 

transmittance, the solar spectrum, and the current continuity equations. 

This was then extrapolated to second-generation, organic semiconductor materials. Optically 

these materials pose a challenge due to their low mobility and thin layers, which requires 

treatment with methods such as the transfer matrix. Electrically these materials are 

complicated due to their high exciton dissociation energy, which requires blended active 

layers to facilitate this separation. The charge transfer state and its effect on mobility and 

quantum efficiency were also discussed. 

Finally, some key characterization methods were defined for experimentally investigating 

novel materials. These methods will now be looked at more in-depth and improved upon for 

novel organic and hybrid perovskite semiconductor materials in the next chapters, where we 

will apply the theoretical framework outlined here. 
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III. Determination of optical constants of 
simple and composite thin films 
 

The determination of optical constants is a key aspect of the characterization of electro-optical 

devices and their materials. This chapter will look at how these optical constants are defined 

today, and how they are determined for thin films. The conventional method of spectroscopic 

ellipsometry will be evaluated and discussed in the context of composite films. An alternative 

transmittance method will be discussed and applied to high-index materials such as non-

fullerenes and perovskites. 

This chapter is substantially based on the author’s work published in Advanced Optical 

Materials58  

3.1 Definition of optical constants 

Optical constants fundamentally characterize the apparent speed at which a light waves 

propagates through a certain medium. Light always travels at a fixed speed c, in the sense 

that information or a light pulse is always conveyed at c, regardless of if it travels in vacuum 

or a medium59. However, when considering light as an electromagnetic wave as proposed by 

Maxwell, the phase velocity vp at which the wave appears to propagate will deviate from c, 

depending on the medium it travels in. This apparent wave speed vp at a frequency 𝑓 is given 

by: 

𝑣𝑝 = 𝜆𝑚 ∙ 𝑓,                                                                    (3.1) 

where the medium wavelength 𝜆𝑚 is an apparent wavelength. It is altered from the vacuum 

wavelength due to the displacement response of the bound electrons in the medium to the 

propagating wave. It is linked to the original wavelength in vacuum as following 

𝜆𝑚 =
𝜆

𝑛(𝜔)
,                                                                    (3.2) 

where 𝑛(𝜔) is called the refractive index of the medium. Note that this refractive index 

depends on the radial light frequency 𝜔. As a consequence, the apparent phase velocity of 

the light wave in the medium can also be written as: 
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𝑣𝑝 =
𝑐

𝑛(𝜔)
                                                                    (3.3) 

 

Figure 3.1 Dipole Model 

Figure 3.1. A simplified model of polarized dipoles, consisting of a negative electron cloud and 

positive nucleus, under influence of an oscillating electric field 𝑬𝑒𝑖𝜔𝑡. When treated with a 

Lorentzian model, the dipoles will be oscillating at the same frequency 𝒓𝑒𝑖𝜔𝑡, resulting in a 

susceptibility 𝜒e that is only frequency-dependent (see Eq. 3.4). 

Depending on the configuration of the electron orbitals in the material, the electrons will be 

more or less responsive to the traversing electromagnetic wave, a response which is 

characterized by the dielectric permittivity 𝜀(𝜔) and magnetic permeability 𝜇(𝜔) of the 

material. Dipoles, magnetic or electric, will be induced or aligned in the material when an 

external electric or magnetic field is applied, and these dipoles will orient themselves in 

response to the external field. 𝜀(𝜔) and 𝜇(𝜔) characterize this polarization of dipoles on a 

macroscopic scale. The practical significance of these constants will be demonstrated with 

the derivation of the dielectric permittivity 𝜀. The derivation of 𝜇 is somewhat analogous but 

since the deviation from vacuum permeability is often insignificant it is usually assumed to be 

𝜇0, the vacuum value.  

If we define a polarization P as the average electric dipole moment per unit volume of the 

medium, then for most materials the relation between P and the external electric field E is 

linear, and can be given as: 

𝑷 = 𝜀0𝜒e(𝜔)𝑬                                                                    (3.4) 
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where 𝜒e(𝜔) is called the electric susceptibility and 𝜀0 is the permittivity in vacuum. Note that 

the susceptibility depends on the light frequency 𝜔, because while for a static system the 

dipole moment simply opposes the external field, for a time-dependent light wave the dipole 

response is more like that of a damped harmonic oscillator. We define an electric 

displacement field D: 

𝑫 = 𝜀0𝑬 + 𝑷                                                                    (3.5) 

This displacement field definition allows Gauss’ Law to be described in terms of only the free 

charge density in the medium, 𝜌𝑓𝑟𝑒𝑒, and allows us to implicitly account for the bound charge 

density, 𝜌𝑏𝑜𝑢𝑛𝑑. Gauss’ law becomes: 

∆ ∙ 𝑬 =
𝜌𝑓𝑟𝑒𝑒 + 𝜌𝑏𝑜𝑢𝑛𝑑

𝜀0
                                                                    (3.6𝑎) 

∆ ∙ 𝑬 =
𝜌𝑓𝑟𝑒𝑒 − ∆ ∙ 𝑷

𝜀0
                                                                    (3.6𝑏) 

∆ ∙ 𝑫 = 𝜌𝑓𝑟𝑒𝑒                                                                     (3.6𝑐) 

Similarly, Ampere’s Law in a magnetically susceptible medium can be written in terms of just 

the free current density 𝐽𝑓𝑟𝑒𝑒 and a magnetizing field H, which similarly already contains 

bound charge: 

∆ × 𝑯 = 𝐽𝑓𝑟𝑒𝑒                                                                     (3.7) 

Both these newly defined fields (displacement field D and magnetizing field H) can be written 

in terms of the original electric and magnetic fields, E and B, as following: 

𝑬 = 𝜀𝑫                                                                    (3.8𝑎) 

𝑩 =  𝜇𝑯                                                                    (3.8𝑏) 

Inspection of Eq. 3.4 and 3.5 shows a necessary relation between the material permittivity 𝜀 

and the electric susceptibility 𝜒e, and similar relations are reached for 𝜇 and the magnetic 

susceptibility 𝜒m: 

𝜀(𝜔) = 𝜀0(1 + 𝜒e(𝜔))                                                   (3.9𝑎) 

𝜇(𝜔) = 𝜇0(1 + 𝜒m(𝜔))                                                 (3.9𝑏) 
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These are already called ‘optical constants’ and can further be linked to the refractive index 

𝑛(𝜔) of the material, using Maxwell’s equations. Maxwell’s equations for an (infinite) non-

vacuum medium can be written in a simplified manner that implicitly already contains the 

bound charge, using the earlier defined fields D and H. In the absence of any free charge or 

currents in the material, Maxwell’s equations are written as: 

∆ ∙ 𝑫 = 0 and ∆ × 𝑯 =
𝛿𝑫

𝛿𝑡
                                       (3.10𝑎) 

∆ ∙ 𝑩 = 0 and ∆ × 𝑬 =
𝛿𝑩

𝛿𝑡
                                       (3.10𝑏) 

These equations have the same form as the Maxwell equations in vacuum, and can be solved 

to yield a similar plane wave solution, with the exception that the plane waves of the solution 

now travel at a different phase speed vp, owing to our substitution of the new fields using Eq. 

8: 

𝑬(𝒛, 𝒕)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  𝑬𝑒𝑖(
2𝜋
𝜆 √𝜀𝜇∙𝑧+𝜔𝑡) = 𝑬𝑒𝑖(𝑘∙𝑧+𝜔𝑡)                                  (3.11) 

𝑣𝑝 =
𝜔

𝑘
=

1

√𝜀𝜇
                                                           (3.12) 

Therefore, using the definition of refractive index in Eqs. 3.2-3.3, the relation with the 

refractive index can now be shown to be: 

𝑛(𝜔) = 𝑐√𝜀(𝜔)𝜇(𝜔)                                                      (3.13) 

Or, using the fact that c = 
1

√𝜀0𝜇0
, 

𝑛(𝜔) = √
𝜀(𝜔)𝜇(𝜔)

𝜀0𝜇0
= √𝜀𝑟(𝜔)𝜇𝑟(𝜔)                                      (3.14) 

Where 𝜀𝑟 and 𝜇𝑟 are called the relative permittivity and permeability. As mentioned before, 

the optical constants of a material are often linked to only the dielectric part while the relative 

magnetic permeability 𝜇𝑟 is assumed to be close to 1.  

This electronic response will also give rise to different optical effects such as refraction, 

reflection at boundaries, and altered interference due to the modified wavelength and 

various reflections. This is why knowledge of these optical constants is crucial in describing 

any opto-electrical device. 
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The electronic response to impinging light will be transitory, as long as the examined medium 

is transparent and doesn’t absorb any photons, that is, if the light is not of the right frequency 

(or energy) for the electrons to reach new, stable orbital.. However, if the material does 

absorb, the electrons will be propelled to a higher, stable energetic state and the EM wave 

will decrease in amplitude as it passes through the material. This behaviour can be described 

mathematically by assuming a complex part to the refractive index. If we consider the time-

independent part of the plane wave function, it can be written as: 

𝐸(𝑧)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  𝑬𝑒𝑖
2𝜋
𝜆

𝑛̅∙𝑧 = 𝑬𝑒𝑖
2𝜋
𝜆

(𝑛𝑟+𝑖𝑛𝑖)∙𝑧 

= 𝑬𝑒𝑖
2𝜋𝑛𝑟

𝜆
𝑧 ∙ 𝑒

−2𝜋𝑛𝑖
𝜆

𝑧                                                   (3.15) 

Since the imaginary part of the exponential can be described in terms of a real sine and 

complex cosine, this represents the part of the wave that is not absorbed. The attenuation is 

entirely characterized by the real part of the exponential, shown in red, which involves the 

imaginary part of the refractive index, 𝑛𝑖. This imaginary part 𝑛𝑖  is often simply denoted as 𝑘, 

a convention that will be used from here on out. In other words, the full complex refractive 

index is from here on denoted as 𝑛̅, the real part as η, and the imaginary part as k: 

𝑛̅(𝜔) = 𝜂(𝜔) + 𝑖𝑘(𝜔),                                                  (3.16𝑎) 

and similarly for the dielectric constants to which they are related: 

𝜀(̅𝜔) = 𝜀𝑟𝑒(𝜔) + 𝑖𝜀𝑖𝑚(𝜔),                                                  (3.16𝑏) 

Assuming a semi-infinite medium, we can then recover the Beer-Lambert law (Eq. 2.16) of 

absorption in terms of this imaginary optical constant k, as well as redefine the absorption 

coefficient α and the absorptance A. The intensity (or power per incident area) of the light 

beam 𝐼(𝑧) can be shown to be proportional with the square of the electric field 𝐸(𝑧), 

according to the Poynting theorem60: 

𝐼(𝑧) =
𝑐𝜂𝜀0

2
|𝐸(𝑧)|2                                                     (3.17) 

The absorption coefficient (also more generally called attenuation coefficient) is defined as: 

𝛼(𝑧) = −

𝑑𝐼(𝑧)
𝑑𝑧

⁄

𝐼(𝑧)
,                                                  (3.18) 
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which can now be calculated, using Eq. 3.15 and 3.17, to equal 

𝛼 =
4𝜋𝑘

𝜆
                                                                (3.19) 

for the simple plane wave. In other words, it is independent of position in the medium. This 

means that the introduction of a complex refractive index was justified, since it offers a useful 

description in terms of absorption. In the case of significant reflection (for thinner layers), 

𝐼(𝑧) will no longer be a simple plane wave but instead a sum of two plane waves, one traveling 

forwards and one travelling backwards, with their amplitude depending on position z within 

the layer. In that case Eq. 3.15 (which implies Beer-Lambert) will no longer be valid and the 

transfer matrix approach will need to be used to calculate I(z).  

The absorptance A is defined as the following ratio: 

𝐴 =
𝐼𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑

𝐼𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡
,                                                               (3.20) 

which can be described in terms of the absorption coefficient as well, since 𝐼𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 =

 ∫
𝑑𝐼(𝑧)

𝑑𝑧
⁄

𝐿

0
 , with 𝐿 denoting the thickness of the absorbing layer: 

𝐴 =
∫ 𝛼(𝑧)𝐼(𝑧)

𝐿

0

𝐼𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡
                                                             (3.21) 

Since in the transfer matrix we know the total forwards- and backwards-propagating field at 

every layer interface, we can calculate the Electric field within the stack at every position z, 

E(z), and use this to calculate the absorptance per layer i, Ai: 

𝐴𝑖 =
∫ 𝛼𝑖

𝑐𝜂𝜀0

2
|𝐸𝑖(𝑧)|

2𝐿

0

𝑐𝜀0

2
|𝐸0|2

                                                 (3.22) 

This same equation can be found in papers conventionally used as instruction for transfer 

matrix modelling of multilayer absorption, such as the work by Pettersson et al61.  

3.2 The Kramers-Kronig relations 

It is important to note that there is a direct relation between the imaginary part and the real 

part of the dielectric constants (and of the refractive indices), which have been previously 
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defined in Eq. 3.16. This can be derived by examining the relation between the inducing field 

and the electric polarization of the molecules of the medium, given by Eq. 3.4: 

𝑷 = 𝜀0𝜒e(𝜔)𝑬                                                                    (3.4) 

Note that this relation is defined in the frequency domain, rather than the time domain. 

However there is also a causal relation between the polarization and the inducing electric 

field, and this can best be given in the time domain. Using Fourier transformation, a time-

domain relation for Eq. 3.4 is obtained: 

𝑷(𝑡) = 𝜀0 ∫ 𝜒e(𝑡 − 𝑇)𝑬(𝑇)𝑑𝑇
𝑡

−∞

                                             (3.23) 

Here, the response function 𝜒e(Δ𝑡) determines the polarization induced by an applied field 

after a time Δt. To ensure the causality of 𝜒e(Δt), it has to be zero for any time 𝛥t<0. This can 

be achieved by requiring: 

𝜒e(∆𝑡) = 𝜒e(∆𝑡)𝜗(∆𝑡)                                                  (3.24) 

𝜗(∆𝑡) = 0 (∆𝑡 < 0) 

𝜗(∆𝑡) = 1 (∆𝑡 ≥ 0) 

The Fourier transform of this special function 𝜗 is: 

𝐹𝑇{𝜗(∆𝑡)} =
𝛿(𝜔)

2
+

𝑖

2𝜋𝜔
                                            (3.25) 

And through the convolution theorem the Fourier transform of Eq. 3.24 can now be 

rewritten as: 

𝜒e(𝜔) = ∫ 𝜒e(Ω) (
𝛿(𝜔 − Ω)

2
+

𝑖

2𝜋(𝜔 − Ω)
) 𝑑Ω

∞

−∞

 

=
𝜒e(𝜔)

2
+

𝑖

2𝜋
∫

𝜒e(Ω)

𝜔 − Ω
𝑑Ω

∞

−∞

                                                   (3.26) 

Rearranging this in terms of 𝜒e(𝜔) gives: 

𝜒e(𝜔) =
𝑖

𝜋
∫

𝜒e(Ω)

𝜔 − Ω
𝑑Ω                                                    (3.27)

∞

−∞
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Recalling the relation between 𝜒e(𝜔) and the dielectric constant in Eq. 3.9a, and 

rearranging the denominator, we obtain: 

𝜀𝑟𝑒(𝜔) = 1 +
1

𝜋
∫

𝜀𝑖𝑚(Ω)

Ω − ω
𝑑Ω

∞

−∞

                                    (3.28𝑎) 

𝜀𝑖𝑚(𝜔) = −
1

𝜋
∫

𝜀𝑟𝑒(Ω)

Ω − ω
𝑑Ω

∞

−∞

                                       (3.28𝑏) 

These are the famous Kramers-Kronig dispersion relations, giving the relation between the 

real and imaginary parts of the dielectric constants. From here, the relation between the real 

and imaginary refractive index can also be obtained: 

𝜂(𝜔) = 1 −
𝑐

2𝜋𝜔
∫

𝛼(Ω)

Ω − ω
𝑑Ω                                             (3.29a)

∞

−∞

 

𝛼(𝜔) =
2𝜔

𝑐𝜋
∫

𝜂(Ω) − 1

Ω − ω
𝑑Ω                                                 (3.29b)

∞

−∞

 

Where 𝛼(𝜔) is the absorption coefficient and still equals 
4𝜋𝑘(𝜔)

𝜆
 (this is true even for reflected 

plane waves in a multi-layer stack since the field can be treated as the sum of a forwards- and 

backwards-propagating plane wave, each of which will decrease in amplitude in the same 

fashion as a normal plane wave, just in opposite direction). An even more convenient form 

can be obtained in terms of wavelength rather than frequency, since the transfer matrix 

protocol is often expressed in terms of position (and therefore wavelength) as well: 

𝜂(λ) = 1 + 4𝑐∮

2𝜋𝑐

Λ3 ∙ 𝑘(Λ)

(
2𝜋𝑐
Λ

)
2

− (
2𝜋𝑐
λ

)
2

∞

0

𝑑Λ                                        (3.30a) 

𝑘(λ) = 𝑑Λ 

These relations will play a vital role in experimental methods for determining the optical 

constants of novel opto-electric materials. A flowchart detailing the computational 

implementation of the relations in Matlab is given below. 
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Flowchart 3A: Matlab Kramers-Kronig procedure (KK.m) 

It should be noted that since the procedure involves solving an integral that runs to Λ = 0, an 

approximation must be made towards this “infinite-energy” point for 𝑘(Λ), which is unknown. 

Practically, 𝑘(Λ) tends to be known down to a wavelength of 300nm, after which absorption 

data becomes more difficult to obtain, due to glass substrate absorption past this point. 

Because of this, the whole 𝜂(λ) function is shifted by a constant to be determined from a 

known 𝜂(λ) data point in the Cauchy regime, similarly to if we were solving an indefinite 

integral. Furthermore, the known 𝑘(Λ) data can be extended using some basic 

approximations from the Tauc model of absorption, as outlined in Flowchart 3A. The 

particular formula used in the Matlab script is: 

(𝛼𝑖𝑗(Λ)ℎ𝜈)1/𝑛 = 𝐴𝑖𝑗(ℎ𝜈 − 𝐸𝑔,𝑖𝑗) ,                                                      (3.31)    

Flowchart 3A. Kramers Kronig 
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Where 𝐸𝑔,𝑖𝑗 are the examined band gaps (or MO energetic off-sets), 𝐴𝑖𝑗 a proportionality 

constant determined from known data, and 𝛼𝑖𝑗(Λ) the absorption coefficient for each band 

gap at a certain wavelength. The total absorption coefficient is then simply the sum of 𝛼𝑖𝑗(Λ) 

and 𝑘(Λ) can be determined using Eq. 3.19. For the script, the modelled band gaps are the 

primary band gap that sets in with absorption, and 2 additional ones at 200nm and 100nm. 

While this is a very crude approximation, the main reason for this extension is to obtain 

reasonable values close to 300nm. The further away from this wavelength, the less influence 

the extension actually has (this can be seen in Figure 3.2).  

 

Figure 3.2 Kramers Kronig Extension 

Figure 3.2: Effect of various models for a Kramers Kronig extension towards the high-energy 

regime. As can be seen, the difference between Tauc models with different parameters is 

quite small, on the order of a relative error of up to 0.3%. 
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3.3 Ellipsometry 

3.3.1 Procedure 

 

Figure 3.3 Ellipsometer Set-Up 

Figure 3.3 Diagram of an ellipsometer set up. The incident beam is linearly polarized and then 

reflected, after which an analyse polarizes the light again before detection of the respective 

reflected, polarized light amplitudes. 

It is time to look at some more in-depth and extensive uses of the method to characterize 

advanced single layers. Ellipsometry works through a polarization-controlled incident beam 

which is impinged upon the sample under a certain angle (usually close to the Brewster angle) 

and reflected off the sample surface (see Figure 3.3). The differently polarized amplitudes of 

the incident beam are reflected differently and the amplitudes of the s and p polarizations, As 

and Ap, are measured. From these we can determine the amplitude component 𝜓 and phase 

difference Δ: 

𝐴𝑝

𝐴𝑠
= tan(𝜓) 𝑒−∆                                                                        (2.34) 

Both 𝜓 and Δ are then fitted for three separate angles to introduce enough redundancy for 

the fit, and from this fit the optical constants of the material can be derived, after a thin-film 

on glass measurement. The software used for this fitting was CompleteEASE, provided by J.A. 

Woollam. An excellent reference work on the details of this software is also provided62. The 

general procedure with the software is to select the Cauchy Regime region, that is the region 

where no absorption in the material occurs due to the bandgap (or for organics, the HOMO-

LUMO difference) being of a higher energy than the incident light’s wavelength. Generally, 
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this region can be found by plotting ∆ against the frequency domain and looking for a region 

without break of periodicity and or continuity, as demonstrated in figure 3.4. 

 

Figure 3.4. Ellipsometer Fit Graph 

Figure 3.4: Example of psi (𝜓), delta (∆) diagram, modified upon reproduction from the 

CompleteEase software manual. Notice the outline of Cauchy region, which can be recognized 

by its continuity in Delta. 

A Cauchy model is then fitted to the data here, which means the imaginary part of the 

refractive index, k, is assumed 0 here, while η is assumed to follow a Cauchy expansion as a 

function of wavelength: 

𝜂(𝜆) = 𝐴 +
𝐵

𝜆2
+

𝐶

𝜆4
+ ⋯                                             (3.32) 

This is an empirical formula only applicable for the Cauchy regime and is usually fitted only up 

to free variable C. The thickness of the layer is also allowed as a free variable during this fit, 

and if a good starting thickness is chosen (this can be done by visibly comparing model and 

data), it will converge to a fit with a small MSE (mean squared error). Once a good fit is 

obtained, a mathematical B-spline fitting model is substituted for the Cauchy model, because 

the B-spline model also allows for a non-zero k(𝜆). This B-spline model is then extrapolated to 

fit the wavelengths outside the Cauchy regime, refitting every time as data from absorbing 

wavelengths is added to the model. During this time the previously found layer thickness is 

kept fixed, while both η(λ) and k(λ) are fitted. 

This procedure generally yields a fairly accurate set of optical constants for the single layer 

material. It is also possible to retroactively impose the Kramers-Kronig relation on the fit after 
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it has already converged to a close fit, but usually this will not have a big impact and 

sometimes this can lead to erroneous results. 

This procedure works well and can yield very accurate η, k and layer thickness for most 

materials. However, for third-generation materials there are some complications.  

3.3.2 Effective medium theory 

One such a complication is the use of porous layers, consisting of two different materials in 

one layer. This type of structure is now commonly used for perovskite devices 63, 64, based on 

the earlier work with dye-sensitized optical devices65. The reason a porous substrate layer is 

used will be expanded on in chapter 4 when the full device is discussed. More relevant to this 

chapter, to characterize such a layer consisting of 2 materials with ellipsometry requires 

certain adjustments to the fitting model. 

These adjustments are based on Bruggeman effective medium theory. Stated concisely, the 

porous combination of materials can be modelled as one material by applying a statistical 

volume average on the microscopic scale when looking at electric field and induced 

polarizability, and from here deriving an effective dielectric constant (or refractive index). 

There are several approaches but the one used in CompleteEASE is the Bruggeman 

approach66, given at each wavelength 𝜆 by: 

𝑓𝑎  
𝜀𝑎 − 𝜀

𝜀𝑎 + 2𝜀
= −𝑓𝑏

𝜀𝑏 − 𝜀

𝜀𝑏 + 2𝜀
                                           (3.33) 

Where 𝜀𝑎 and 𝜀𝑏 are the dielectric constants of the pure phases a and b, 𝑓𝑎/𝑏 represents the 

respective volume fractions of the phases, and 𝜀 is the (complex) effective dielectric constant 

(the effective refractive index 𝑛̅(𝜆) can then be derived using Eq. 3.13). 

Because this introduces several new free parameters in the fitting process, a more extensive 

experimental measurement needs to be performed to ensure there is enough data to 

converge to a meaningful fit. One technique that satisfies this is dynamic porosymmetry: the 

porous thin film sample on glass is dynamically infiltrated with a liquid of known refractive 

index like toluene, while performing ellipsometry on the sample. Since both the refractive 

indices of air and toluene are known, and only the porous material (for example, mesoporous 

Titania) is unknown, the volumetric fraction 𝑓𝑎  (= 1 − 𝑓𝑏) can then be fitted for. Once this is 

known, ellipsometry can be performed on the pure material that will be infiltrated in the 
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porous material for the device layer (for example, perovskite), and the effective refractive 

index of the mixed materials single porous layer can be determined using Eq. 3.33. 

While this process arrives at a satisfactory set of optical constants for third-generation 

materials, the measurement process is laborious and expensive. Moreover, for the basic 

procedure there are additional problems with perovskites and non-fullerenes, caused by the 

high real components of the refractive indices of these materials. In this case the difference 

between reflected s- and p-polarized light becomes too small/large to obtain a good fit with 

ease. Moreover, the required equipment for ellipsometry measurements can be costly and 

difficult to master. For the purpose of addressing these challenges, an alternative method was 

developed to determine optical constants. 

3.4 Transmittance method  

 

Figure 3.5 Transmittance Method Overview 

Figure 3.5: A general overview of the transmittance / transfer matrix procedure when modelling a 

single or multi-layer stack with unknown optical constants. 

The transmittance method is an alternative methodology to obtain optical constants. It 

requires two simple transmittance measurements on two thin-film samples on glass of the 

examined material, each sample of a slightly different thickness. Similar methodologies 

existed in the literature before, but these were often limited by requiring another variable, 

such as reflectance measurements, a type of measurement that is noted for its difficulty to 

obtain accurate results67. 

Using a Perkin Elmer spectrophotometer, transmittance measurements of a range of organic 

and hybrid organic-inorganic thin-film samples on glass were obtained. Flowcharts 3B and 3C 

below describe the Matlab procedure for the subsequent analysis. 
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Flowchart 3B. Global Thickness Fit 

 

Flowchart 3B: Matab transmittance method thickness finder script (GT_Finder.m) 



64 
 

Flowchart 3C. Transmittance Method Script (NKFinder) 

Flowchart 3C: Matab transmittance method script (NKFinder.m) 



65 
 

The transmittance method script uses a fitting procedure as well, but rather than taking 

polarized reflectance as input (as in the case of ellipsometry), spectral transmittance data is 

fitted directly to modelled transmittance with the transfer matrix method. The free variables 

which are fit during the script are the thicknesses of the two samples, and the optical 

constants at each wavelength, η(λ) and k(λ).  

Initially the same procedure as the ellipsometry method is followed: a Cauchy Regime is 

identified (easier to spot from transmittance data, since transmittance directly shows a drop 

where absorption begins), and is fitted to a Cauchy model equation, shown in Eq. 3.31 (with 

accuracy up to B). Two samples of different thickness (but identical Cauchy refractive index) 

are used to arrive at a satisfactory fit for the thicknesses as well, although in principle only 

one sample could be used while using a different method to obtain its thickness (such as 

profilometry or Cauchy regime ellipsometry). 

Once an ηCauchy(λCauchy) is obtained, this value is assumed for η at all absorbing wavelengths, 

and another transmittance fit is applied to either one of the transmission data sets in the 

absorbing regime, this time allowing k(λ) to roam freely. Surprisingly, a very good fit will 

already be found for k(λ), because in the absorbing regime η(λ) tends to have a minor impact 

on the transmittance of the sample. A Kramers Kronig procedure is then applied to the k(λ) 

data, using ηCauchy(λMid-Cauchy) as the “known” constant in the solution of the Kramers Kronig 

differential equation (see Flowchart 3A). Another fit of k(λ) can then be ran with the new, 

more accurate η(λ) data, and this can be repeated until the data converges. In other words 

there are three main stages to the process: 

• Cauchy regime fit where k(λ) is assumed 0 and η(λ) follows a Cauchy model fit to the 

data 

• Full spectral fit where η(λ) is fixed and k(λ) is fitted to transmittance data 

• Kramers Kronig is applied to k(λ) to derive η(λ), 

where the final two steps are repeated if necessary, until k(λ) and η(λ) converge. 
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Figure 3.6. NKFiner Fit Graph 

Figure 3.6: Example of the fit quality obtained from the Cauchy regime fitting procedure in a 

direct analogy with the first stage of fitting in ellipsometry. 

 

A limiting factor on this method is the used “known” constant in the Kramers Kronig 

procedure, which follows from how good the thickness fit in the Cauchy Regime was. This is 

never adjusted in the repeating convergence and can therefore introduce a persisting error, 

which will be shown in the result by a discontinuous step between the Cauchy regime and the 

absorbing regime. Nevertheless, as long as the thickness fit is good, this step will be negligible 

and the data reliable and useful in transfer matrix models. The script allows for the quality of 

the thickness fit to be verified by showing both the real data and the Cauchy fit model data, 

as shown in Figure 3.6. 
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3.5 Application of the transmittance method 

 

Figure 3.7. Initial NKFinder Test 

Figure 3.7 Initial validation of the NK_Finder code using simulated transmittance data from 

input optical constants and re-deriving these optical constants. The input optical constants 

were derived from ellipsometry and verified in literature. Notice the increase in accuracy 

when using a global thickness fit to determine ncauchy. Left: PCDTBT, right: PC71BM. 

The transmittance method was initially verified in steps, first the Kramers Kronig method was 

tested against known optical constant data of PCDTBT and PCBM, both common organic 

semiconductors in the literature68. The result of this is shown in Fig. 3.7. The transfer matrix 

script was also rigorously tested against spectrophotometer transmittance data and EQE data 

(which can also be derived with transfer matrix, as discussed previously). This was done for 

various, well-known organic materials, both neat and blends. It should be noted at this point 

that blended materials are not a problem for the methodology: the optical constants of the 

blend can be treated as one set of “effective” optical constants, tied to observables like 

absorptance, reflectance and transmittance, all of which have been previously linked directly 

to a Maxwell plane wave (or sum of plane waves) representation of the Electric field in the 

material.  

After these basic modules were shown to function satisfactorily, the full transmittance 

method script was tested, first against modelled transmittance data of known optical 

constants (a sort of reverse function test), then against actual spectrophotometer 
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transmittance data of PCDTBT and PCBM. The results of this data were then compared to the 

optical constants from literature and found to be accurate. 

Finally, the script was put into practice by fabricating samples of non-fullerenes (both blend 

and neat layers) and perovskites on glass. This transmittance data was processed and 

compared to ellipsometry data, the results of which are shown in Figure 3.8 (neats), Figure 

3.9 (blends) and Figure 3.10 (additional). 
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Figure 3.8 Neat Materials Results 

Figure 3.8 Comparison of n- and p-type organic semiconductors (neat materials) optical 

constants derived by ellipsometry (solid lines) and via the transmittance method (dotted lines, 

NKF stands for NK-Finder, the name of the matlab script). The refractive index (n) and 

attenuation coefficients (k) are represented on the left and right y-axis respectively. Note the 

non-fullerene acceptors Y6 and IT4F have significantly larger optical constants than their 

fullerene counterpart PCBM.  
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Figure 3.9. Blend Materials Results 

 Figure 3.9 Comparison of n-and-p-type organic semiconductors (acceptor-donor blends) 

optical constants derived by ellipsometry (solid lines) and via the transmittance method 

(dotted lines). The refractive index (n) and attenuation coefficients (k) are represented on 

the left and right y-axis, respectively. Note the high optical constants seen in the neat NFAs 

are translated through to the blends. 
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Figure 3.10 Additional Materials Results 

Figure 3.10 Optical Constants for additional neats and blends that were not featured in the 

publication. Ellipsometry fit did not converge for the mixed halide perovskite (MAPBI2Br) 
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3.6 Conclusion 

In this Chapter a detailed treatment of the theory behind optical constants and the relevant 

propagation of light through single and composite media using Maxwell’s equations was 

provided. The technique of ellipsometry was likewise described – the most common means 

to determine the optical constants of materials in thin film form, including the use of effective 

media approximations. A new method relying on transmittance only measurements and the 

Kramers-Kronig equations was advanced and its implementation using Matlab described. The 

new method was applied to a number of perovskite and organic semiconductor (NFA) systems 

which, due to their relatively large optical constants are difficult to treat with ellipsometry. 

The new method proved suitable for these materials and delivered accurate optical constants 

for electro-optical analysis such as transfer matrix and EQE modelling and prediction. In this 

regard the method is a valuable new tool, as will be shown in the next Chapter which 

describes the analysis and understanding of a particularly complex next generation material 

solar cell architecture – the so-called carbon stack.      
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IV. Application to third-generation devices 
in photovoltaics 
 

Once optical constants of single layers are known, these properties can be extrapolated to 

multi-layer stacks using the transfer matrix method. This way, complex photovoltaic devices 

can be described and modelled, to gain new insights into their functionality and to possibly 

optimize them to gain higher efficiencies. This chapter describes an in-depth analysis of several 

full devices. 

This chapter is substantially based on works published by the author in Solar Rapid 

Research Letters69 and Advanced Functional Materials70  

4.1 Characterization of PCDTBT:PCBM Solar Cell 

4.1.1 Experimental tools and fabrication 

 

Figure 4.1. PCDTBT:PCBM Cell 

Figure 4.1. A visual representation of a classic PCDTBT:PCBM cell, which was used to 

demonstrate the efficacy of the transmittance method script and transfer matrix method. 

Published in Advanced Optical Materials58 
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‘The first solar cell system to which the NKFinder modelling tool was applied was the 

archetypal bulk-heterojunction system PCDTBT:PCBM. The basic structure of the device is 

shown in Figure 4.1 and has the following elements (from the illumination side): 

1. An indium tin oxide coated glass substrate; 

2.  A thin (30 nm) PEDOT:PSS hole transport layer 

3.  A PCDTBT:PCBM BHJ active layer with blend ratio 1:4 by weight and of thickness 

varying between 55 and 315 nm); 

4. A PDINO electron transport layer of around 8nm and finally a reflective Al cathode. 

This is a classic, second-generation organic solar cell with an active layer of a PCDTBT:PCBM 

blend, a so-called bulk-heterojunction layer (BHJ) as described in Chapter 1. PCDTBT is the 

electron donor and PCBM is the acceptor. This blend was chosen because it is already well-

studied in literature and relatively easy to fabricate. The electron transport layer is a material 

called PDINO, chosen for its high electron conductivity and relative environmental 

friendliness71. The hole transport layer is PEDOT:PSS, another common material in organic 

solar cells72, and the glass layer has an imprinted layer of transparent indium tin oxide (ITO), 

which is patterned into cell active surfaces  and channels that lead to the edge of the substrate 

where silver can be painted on for contacts, according to the scheme in Figure 4.2. 

 

Figure 4.2. ITO Substrate Schematic 

Figure 4.2. Schematic of the ITO print on the solar cell glass substrate, modified upon 

reproduction from Ossila73 

The commercially patterned ITO glass substrates (Ossila) are cleaned in an Alconox solution 

bath at 60 °C, followed by a sonication in sequence in Deionized (DI) water, acetone and 2-

propanol for 10 minutes each. After treatment with UV-Ozone (Ossila, L2002A2-UK) for 
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10mins, 30 nm of PEDOT:PSS is deposited uniformly on the substrate using a spin-coating 

technique. Next, the solution for the 1:4 PCPDTBT:PC71BM is achieved as follows: PCPDTBT 

and PC71BM (1:4) are dissolved in a Chlorobenzene:Dichlorobenzene (CB:DCB) (1:1) mixture 

at 70°C, at a concentration of 40 mg ml-1. The PCDTBT:PCBM films are then also spin-coated 

on top of the PEDOT:PSS, at varying RPM (rounds per minute) speeds to vary the thickness. 

Afterwards, 10 nm of PDINO is cast on the active layer from a methanol solution (1 mg ml-1). 

Finally, 100 nm of Al is evaporated on the PDINO to form the cathode. 

For the evaporation we employ tungsten boats which are heated in a vacuum to a 

temperature at which the aluminium starts to evaporate. The cells are placed in a mask which 

ensures the aluminium is deposited in a pattern which isolates the 8 different cells (see Figure 

4B) from each other. After this the cells can be encapsulated with glue and glass to ensure 

stability, but these particular cells are stable enough to be measured without degrading on 

the short term. 

Cells with a varying active layer thickness ranging from 56nm to 313nm were fabricated 

(thickness range = [56,90,113,149,197,313]). The same spin speeds were used to deposit the 

blend on glass, and these corresponding thickness values were verified with both ellipsometry 

and transmittance method measurements. Optical constants 𝜂(𝜆) and 𝑘(𝜆) were also 

derived for all materials using the methodologies outlined in chapter 3 and found to be near 

identical for both ellipsometry and the transmission method (see Figure 3.8). NKFinder values 

were subsequently used in the EQE modelling process. 

The cells were then characterized as described in Chapter 2, by acquiring both the AM1.5G JV 

characteristics and external quantum efficiency (EQE) between 350 nm and 900 nm. The 

results of this are provided in Figure 4.3 a) and b).  
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Figure 4.3 JV And EQE of PCDTBT:PCBM Cell 

Figure 4.3 a. JV measurements of several PCDTBT:PCBM solar cell devices with varying active 

layer thickness. B. EQE measurements of the corresponding pixels on the cells. Thickness of 

the active layers of the cells is shown in the legend. 
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4.1.2 Modelling of the internal quantum efficiency (IQE) 

As can be seen in Figure 4.3, the EQE of the devices can vary quite significantly with active 

layer thickness. Recall from Chapter 1 that External Quantum Efficiency is given as: 

EQE(𝜆) =
IQE(𝜆)

1 − 𝑅(𝜆) − 𝑇(𝜆) − 𝐴𝑝(𝜆)
  ,                                              (2.15) 

and that the reason for this spectrally varying efficiency has two important components: 

- How much light is absorbed by the active layer (characterized by the denominator) 

- How much of the generated charge is electrically transported to the electrodes 

(characterized by the IQE and the numerator). 

The measured EQE is affected by both these components. If we can therefore determine how 

much light is absorbed by the active layer, we can also extract the IQE from these 

measurements. While R and T can be measured, the parasitic absorptance poses a problem, 

and must be calculated with the transfer matrix method described in Chapter 2. For the sake 

of clarity, a flowchart is shown detailing the specific implementation of a transfer matrix script 

coded in Matlab in provided in Flowchart 4A. 
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Flowchart 4A. Full Transfer Matrix Script 
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Flowchart 4A (previous page): An overview of the transfer matrix implementation in matlab. 

This method also incorporates the possibility of different angles and incoherent layers, and is 

based on the work of Harbecke47 and Ohta et al. for the deduction of internal electric fields 

(not shown here)74. 

The respective layer thicknesses and optical constants must be input in the script to predict 

the Reflection, Transmission and most importantly the parasitic and active contributions of 

the Absorptance. Once these are known the IQE can be calculated. 

The absorptance of the active layer can be deduced directly from the transfer matrix, once 

calculated. Recall that the matrix determines the electric field amplitude at every layer 

boundary (see Figure 4.4). This field can be extrapolated across the layer as a simple sum of 

the two plane waves (forwards- and backwards-travelling), by definition. Once the total 

electric field is known, this can be used to calculate and integrate active layer absorptance 

𝐴𝐴𝐿 across the layer, using 

𝐼0(𝜆)𝐴AL(𝑥, 𝜆) =
1

2
𝑐𝜀0𝛼AL(𝜆)𝜂AL(𝜆)|𝐸AL(𝑥, 𝜆)

2|,                             (2.27) 

Where incident intensity 𝐼0 can be taken as the AM1.5 intensity and 𝛼𝐴𝐿 can be derived 

from the active layer imaginary optical constant kAL, using Eq. 3.19: 

𝛼AL(𝜆) =
4𝜋𝑘AL(𝜆)

𝜆
                                                                (3.19) 

 

 

Since with the assumption in Eq. 4.1,  

EQEideal = 𝐴active layer = ∫ ∫ 𝐴AL(𝑥, 𝜆)
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

𝑡𝐴𝐿

0

𝑑𝑥𝑑𝜆,                           (4.1) 
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this is the simulated absorptance or EQE under ideal internal collection. The ratio of the 

modelled, ideal EQE to the experimental EQE is shown in Figure 4.4.  

 

Figure 4.4. PCDTBT:PCBM EQE Ratios 

Figure 4.4 Ratio of the experimentally measured EQEs to the modelled, ideal EQE, showing 

spectral uniformity in charge collection for every device. 

As can be seen, their ratio is spectrally more or less constant, except at the edges of the 

bandgap where charge generation is small and noise in the measured EQE will therefore be 

too large to have a meaningful comparison. This spectrally quasi-constant ratio implies that 

the IQE is in fact spectrally constant, a finding which is in line with the assumption that high-

energy excitons are collected with the same efficiency as low-energy excitons (see Chapter 

2). If we therefore take the average value of these spectrally quasi-constant ratios, we can 

assume it to be equal to the IQE for each active layer thickness, again following Eq. 2.15 and 

4.1: 

IQE =
EQEmeasured

EQEideal
=

EQEmeasured

𝐴Active Layer
                                       (4.2) 
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A comprehensive comparison demonstrating the validity of our assumptions can be seen in 

Figure 4.5, which compares model to experiment. As can be seen, a trend in IQE with thickness 

also exists: IQE starts reducing significantly with active layer thicknesses above 200nm. This 

seems natural given our earlier discussion of charge transport (Chapter 2): the thicker the 

layer the higher the bimolecular recombination coefficient.  

 

Figure 4.5. IQE Fitting For PCDTBT:PCBM Cell 

Figure 4.5. Spectrally constant IQE fitting of the modelled EQE with the experimentally 

measured EQE values of the thickness-varying solar cells.58 a-c. Comparisons of the modelled 

and measured EQE curves for active layers varying from 56nm thickness to 313nm.  

d. visualisation of the PCDTBT:PCBM solar cell stack. 

Now that a robust overview of modelling a standard organic cell has been demonstrated, 

the same procedure can be applied to more complex, third generation solar cells. 
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4.2 Perovskite Mesoporous Carbon-contact Solar Cell 

4.2.1 Introduction 
The Perovskite Mesoporous Carbon-contact Solar Cell is a novel solar cell architecture 

recently developed75 with the intention of facilitating industrial-scale fabrication. This cell 

design contains thick mesoporous zirconia and titania layers on the order of a micron, topped 

off with a mesoporous carbon electrode (anode), and infused with a perovskite 

semiconductor. The carbon anode is composed of nano-particulate graphene crystals 

conferring electrical conductance76. In principle, all layers of this stack are printable, and 

indeed, various groups are now producing mini-modules with power conversion efficiencies 

of >6% (aperture area of 198 cm2 ) using amino valeric acid-methyl ammonium lead iodide 

(AVA-MAPI3) as the perovskite semiconductor; see, for example, the work of Watson and co-

workers29, 77-79. The zirconia, titania, and carbon layers of the modules of Watson and co-

workers were screen printed from porous pastes and the MAPI3 “infused” into the stack post 

deposition and annealing. The schematic of Figure 4.6 shows a typical carbon stack structure, 

a notable feature being the relatively thick carbon (around 10 μm), zirconia (800 nm), and 

titania (1200 nm) layers. These form a considerably thicker “junction” than other perovskite 

architectures. The SPECIFIC Innovation and Knowledge Centre provided the example devices 

which were examined for modelling and analysis in this work. 
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Figure 4.6. Mesoporous Perovskite Carbon Solar Cell 

Figure 4.6. Visual representation of the mesoporous carbon solar cell architecture. Note that 

instead of an ITO on glass layer, this cell uses a Fluoride Tin Oxide (FTO) layer, which is better 

matched to the titania energetic band levels. 

It is the AVA-MAPI perovskite semiconductor which is the actively absorbing material in the 

cell, although certain other parts of the cell might in fact absorb and contribute to collected 

charge as well (this will later be shown by the simulation process). For most organic solar cells 

the relatively thick layers would severely impact collection efficiency, however the 

organohalide perovskites have charge carrier diffusion lengths in the micrometre range80 and 

an exciton dissociation that is expected to be near instantaneous at room temperature 

(exciton-binding energy on the order 2 meV81), meaning the majority of charge transfer is 

likely electron/hole transport instead81. The thickness of the active layer is desirable for the 

reason that thin layers will vary significantly in relative thickness error during mass 

production, which can cause a relatively high variance in cell performance (in fact, this is one 

of the reasons why Silicon solar cells are so well-suited for industrial production, the high 

mobility of silicon allows for thick junction solar cells, up to cm scale depending on the 

crystallinity of the silicon)82.  
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In short, there are several aspects that are special about this solar cell architecture and which 

need to be investigated for characterization according to the previously described procedure. 

4.2.2 Determination of energetic structure 

Unlike in the previously discussed PCDTBT:PCBM cell, where the charge collection is already 

well-studied83-85, it first becomes necessary to determine how charge carrier generation and 

collection takes place in the cell. This is important not only because it might explain certain 

things about the collection process, but also because we need to know which layers are 

actively absorbing and contributing to the collected charge, in other words it needs to be 

made clear which material’s light absorptance is purely parasitic. 

While the electronic energy structure of the other materials is known from literature75, the 

graphene crystals’ energetic structure could not be readily verified, and therefore had to be 

measured. A Kelvin probe was used for this. The Kelvin probe setup works by depositing 

(screen-printing) a thin layer of the graphene on glass, attaching a metal reference clamp to 

the graphene, and bringing a gold-tipped probe close to the material. When electrical 

connection is made between the probe and the sample, electron flow can occur in the 

direction of the lower to the higher Fermi level. This electron flow causes the equilibration of 

the probe and sample Fermi levels. A surface charge then builds up on the probe and the 

sample, with a related potential difference known as the contact potential (Vc). After some 

calibration, an external potential, known as the backing potential (Vb) can be applied to null 

the charge between the probe and the sample. When the charge is nulled the Fermi level of 

the sample returns to its original position. This means that Vb is equal to -Vc, which is the work 

function difference between the probe and the sample (it is thus necessary to accurately 

know the work function of the gold probe as well). Therefore, the work function of the 

examined material can be determined from this backing voltage. 
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Figure 4.7. Carbon Cell HOMO/LUMO 

Figure 4.7. Energy band and HOMO/LUMO diagram of the involved materials. The perovskite 

energy levels are close to the mTiOx, but far removed from the mZrOx conduction band, which 

makes the zirconia act purely as a spacer layer. 

Shown in Figure 4.7 is a diagram of the resulting work function energy level of the carbon, 

alongside the energy structures of the other materials. The perovskite is throughout its whole 

layer in close contact with either the Titania and Zirconia, since it is infiltrated into these 

mesoporous layers. Note that it is also contacting a significant portion of the mesoporous 

carbon, since it is only infiltrated after all the other layers are deposited. 

It is clear from this energy structure that, with no voltage applied, electrons generated in the 

perovskite will flow towards the lower energy levels through diffusion (see Eqs. 2.20), through 

the titania into the Fluoride Tin Oxide (FTO). At this point an important distinction due to the 

hybrid inorganic-organic structure of the perovskite arises. While for band structures in purely 

inorganic materials, a big difference in energy levels is not necessarily a problem, remember 

that organic (or hybrid organic) materials may use the statistical “hopping” mechanism, which 

decreases significantly in efficiency if the energy level difference between adjacent materials 

(and with it, Fermi overlap of their wave functions) increases86. This is the reason for the 

Titania layer in the first place, since its energy level is intermediate between the two adjacent 

materials and it will therefore increase efficiency of charge transfer between them86. 

Similarly, holes will diffuse towards higher energy levels, as electrons from those levels fill up 

the available spaces. However, the relevant Zirconia band level (the conduction band) is too 
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far removed energetically to have any meaningful carrier flow. The mesoporous zirconia layer 

therefore only acts as a buffer layer between the titania and the graphene contact. This makes 

sense since otherwise electrons could flow from the perovskite or titania to the graphene 

contact, which ideally would only collect holes as a cathode. 

However, one should note that it is still possible for both electrons and holes to flow to the 

carbon contact from the perovskite itself, some of which is also directly contacting the carbon. 

Since the graphene crystals energy level is located in between perovskite HOMO and LUMO, 

the mesoporous carbon contact is not a selective contact. This is important to keep in mind 

when moving on to the full opto-electrical model. 

4.2.3 Mesoporous layers 

The mesoporous nature of the carbon stack architecture creates additional challenges for 

understanding light coupling and propagation in the structure, and indeed, determining the 

appropriate optical constants of the constituent layers. This challenge can be addressed by 

implementing an effective medium approach, which is a mathematical method that 

approximates the refractive index of the layer as an averaged refractive index of the 

composite materials. There are several different effective medium approaches, but for this 

work the Bruggeman effective medium approach was used, which can be derived according 

to87. 

𝑓𝑎
𝜀𝑎 −  𝜀

𝜀𝑎 − 2 𝜀
+ (1 − 𝑓𝑎)

𝜀𝑏 − 𝜀

𝜀𝑏 + 2 𝜀
= 0 ,                                      (4.3) 

Where 𝑓𝑎 and (1 − 𝑓𝑎) represent the probabilities of finding the respective materials of 

dielectric constants 𝜀𝑎 and 𝜀𝑏 in a spherical space and can be interpreted as a volume ratio. 𝜀 

is the unknown variable and the effective dielectric constant of the mesoporous layer, from 

which the effective optical constant can be deduced. Since this approximation still requires 

knowledge of the exact fractional volume occupation of the different composite materials (in 

this case, perovskite/air and Titania/Zirconia/Graphene), experimental methods had to be 

used to determine these exact ratios in each layer. Samples of mesoporous materials on glass 

were subjected to ellipsometric porosimetry with dynamic toluene infiltration, the results of 

which are shown in Figure 4.8.  
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Figure 4.8. Porosimetry Data 

Figure 4.8 Left: results of dynamic porosimetry measurements to determine volume fraction 

of air. High flow rate derivative means a good fit was found around this pore radius value. 

The pore volume fraction was determined to be approximately 0.5 in both cases, which was 

then plugged in as a parameter in the ellipsometric calculation together with known data for 

perovskite optical constants22. It should be noted that a full perovskite infiltration was 

assumed in calculating the effective indices, a process facilitated by the AVA component in 

the perovskite. Although some studies have confirmed this assumption70, this still remains an 

approximation. The resulting optical constants for the active, perovskite-infiltrated layers are 

shown in Figure 4.9.  
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Figure 4.9. Optical Constants For Carbon Cell 

Figure 4.9 Resulting optical constants of the active layers, derived using ellipsometry and the 

Bruggeman effective medium approximation. 

This data could consequently be implemented in a transfer matrix model to derive the full 

optical generation profile of the stack, which could in turn be used to derive a complete opto-

electrical model of the novel stack as outlined below. 

4.2.4 Full opto-electrical model 

Running the stack layer data in a transfer matrix model can yield several useful results. The 

first property that is usually determined (after reflectance and transmittance) is the internal 

electric field distribution at varying wavelengths of incident light. This can be extrapolated to 

a charge generation profile according to Eqs. 2.27 and 2.28, and the resulting profile for two 

key incident wavelengths are shown in Figure 4.10. 
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Figure 4.10 Generation Profile For Carbon Cell 

Figure 4.10 Spatial profile of photo-generated charges in the multilayer carbon stack solar cell 

at 400 and 700 nm incident light wavelengths (as examples). The generation profile is 

determined from a transfer matrix simulation of the optical field distribution assuming unity 

internal quantum efficiency. Light is incident from the left and propagates to the right. 

One of the stack properties that can immediately be observed is that most of the light at the 

lower wavelengths only generates charge in the mesoporous Titania layer, close to the anode 

of the device. The stack is unusually thick for an organic (or rather, hybrid organic) device but 

as discussed before this becomes possible due to perovskite’s low exciton binding energy and 

high mobilities, in other words recombination will be low even though (in the case of 400nm 

light) the holes will have to travel a relatively long way to the carbon contact. In fact it is a 

common property for perovskite opto-electronical devices that the major bottlenecks for 

charge collection efficiency depend on the interfacial recombination between the layer 

surfaces86. It can also be noted that towards the low energy end of the absorption spectrum 

(700nm) the light penetrates into the carbon contact, meaning the carbon itself will also 

absorb some of the light. Since there is no mechanism within the carbon contact to effectively 

drive charge separation (it is a non-selective contact, as seen in Figure 4.7), it can be assumed 

that recombination for charge generated here will be much higher, which means the IQE for 

this layer will be significantly lower (in fact from subsequent model analysis it can be assumed 

to be virtually zero). 
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By comparing the combined absorptance of the two active layers, the perovskite-infiltrated 

m-zirconia (mZrOx) and m-titania (mTiOx), with the actual measured EQE, we can make an 

estimate for the IQEs of the separate layers. Again, we will assume that the generated charges 

relax energetically and are collected with the same efficiency no matter what energy they are 

excited at in a single layer. In other words, collection efficiency is fitted to be spectrally 

constant, yet allowed to be different for both layers. 

 

Figure 4.11. IQE Fitting For Carbon Cell 

Figure 4.11 External quantum efficiencies (EQEs)—experimental values compared with 

simulations for the case of a) unity internal quantum efficiency (IQE) and b) non unity, 

spectrally flat IQEs determined from a two parameter fit (Figure S5, Supplementary 

Information). The analysis yields IQEs of 0.87 and 0.86 in the titania and zirconia layers, 

respectively. 

The result of this fit is shown in Figure 4.11. The fit yields a somewhat surprising result. The 

efficiency is near equal for both layers. While for the mTiOx layer there is an energetic driving 

force for the electrons to transfer to the Titania (thus reducing the chance of recombination), 

in the Zirconia layer there is no such driving force (the Zirconia does not interact electrically 

with the perovskite, as mentioned previously). This can be partially explained by the fact that 

even at the most penetrating wavelengths most of the light is still absorbed close to the 

Titania, which acts as a sink for electrons and thus creates a concentration gradient that drives 

diffusion in the Zirconia as well. While this is a somewhat intuitive way to look at the process, 

further electrical investigation is warranted to confirm this hypothesis. 
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Since the charge generation profile has been calculated, electrical simulations can now be 

performed. For this the drift-diffusion solver software Setfos was used. Setfos implements 

drift-diffusion equations (Eqs. 2.) across all layers using the generation profiles calculated with 

the transfer matrix (such as those shown in Figure 4.9) and solves the equations in terms of 

current, voltage and charge carrier concentration. Results are shown in Figure 4.12 and Figure 

4.13 with accompanying information. In short it becomes clear from these results that the 

active layer thickness plays an essential role, across key metrics such as open circuit voltage 

and short-circuit current density, in subverting the losses from the non-selective contact. This 

is a qualitative assertion, as accurate information about the fill factor and other aspects of the 

stack electrical properties were only estimated as model inputs. However, the figure trends 

show a clear picture as to the role of active layer thickness in the stack. 
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Figure 4.12. Simulated Thickness Dependence for Carbon Cell JV 

Figure 4.12 Simulated thickness dependence: a) shows the short-circuit current density versus 

active layer thickness as predicted by the optical model, assuming an IQE of 100%; b) shows 

the corresponding qualitative active layer thickness dependence of the open-circuit voltage, 

as obtained by electrical device simulations, for the case with a selective and a nonselective 

carbon contact. A thickness ratio of 2/3 between m-TiOx and m-ZrOx layers (Figure 1a) within 

the optically active layer is assumed. The simulated current–voltage characteristics under 1 

sun incident illumination are shown at an active layer thickness of c) 2000 nm and d) 200 nm. 

The solid and dashed lines correspond to the cases with an external series resistance (from 

the electrodes and the external wires) of 0 and 10 Ωcm2, respectively. 

  



93 
 

 

Figure 4.13. Simulated Charge Distribution For Carbon Cell 

Figure 4.13 The charge carrier distributions inside the active layer under 1 sun incident 

illumination using the combined optical and electrical device model simulated at short-circuit 

and open-circuit (z’ being the linear distance inside the junction as measured from the 

transparent cathode) for the case with a nonselective carbon electrode. Here, the c-TiO2 

contact is at z’ = 0, whereas the nonselective carbon contact is at z’ = d. In all the electrical 

device simulations, an energy level structure defined by Figure 1b is assumed. Furthermore, 

electron and hole mobilities of 10 cm2 Vs-1 , a dielectric constant of 13, effective density of 

states of 1019 cm3 , and second-order recombination with a coefficient of 6 x 1011 cm3 s 1 are 

assumed. 

4.3 Additional perovskite devices 

4.3.1 Triple cation devices 

An in-depth discussion on the stability issues of perovskites, and more specifically triple-

cation perovskites with Cesium and Formamidinium and their reproducibility, can be found in 

Appendix A2. However, since this is more related to the experimental fabrication and detracts 
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from the discussion on the opto-electronics of these devices, this discussion was kept as an 

Addendum. 

4.3.2 Perovskite silicon tandem cell 

Another interesting architecture that was examined and modelled more specifically for the 

purpose of investigating novel, more efficient devices was a tandem cell that incorporates 

both a perovskite and silicon active layer, and which can be optimized in layer thickness to 

absorb the wavelengths of light most relevant to each material to achieve efficiencies of over 

29% 88, 89. This system is challenging to simulate and a further robust test of the developed 

methodology. Furthermore, it is likely with the efforts of OxfordPV and others that the silicon-

perovskite tandem could be the first commercial implementation of the perovskite 

technology.  

 

Figure 4.14 Perovskite Silicon Tandem Cell 

Figure 4.14. Visual representation of the mesoporous carbon solar cell architecture as 

implemented in the initial optical model. In practice, various interlayers are added to facilitate 

a decrease in interfacial charge recombination, however the various interlayers may be 

subject to change and have thus been omitted for now. 

In the tandem structure shown in Figure 4.14, the perovskite junction is 150 nm thick and is 

the wider gap component of the stack (bandgap 1.55 eV, versus silicon at 1.1 eV). Optical 

constants that were used to model the 2 active layers of the stack can be found in Figure 4.15.  

From looking at the imaginary component k, the complementary nature of the two active 
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materials, silicon and triple cation perovskite may be seen. Counter-intuitively, it will be 

shown that the silicon absorbs complementary light in the low energy regime of the spectrum, 

where its k is small but non-zero. The perovskite is a triple cation blend with added Cesium 

and Formamidinium cations, fabricated as described by Saliba et al 90. The optical constants 

of this particular blend were provided by this same group and independently verified with the 

Transmittance method using transmittance measurements of a sample on glass. 

  

Figure 4.15. Optical Constants For Tandem Cell 

Figure 4.15. Used optical constants of the active layers silicon and perovskite, as well as the 

ITO transparent electrode layer. On the right an enlarged depiction of the imaginary 

component k is given for longer wavelengths. Due to the thickness of the silicon even this 

small imaginary component can cause significant absorptance. 

A particular problem with modelling this type of tandem stack is that the silicon active layer 

is typically very thick, on the order of millimetres (which is possible due to much higher 

mobilities). This means that the silicon layer needs to be implemented as an incoherent layer, 

just like the glass substrate, in the optical transfer matrix simulation. Incoherence means 

interference in these layers is not coherent and thus de-coupled from the electric field 

interference in the coherent part of the stack (see Appendix A1 for an in-depth explanation 

on incoherent layers).  Therefore, the presence of two decoupled layers significantly 

complicates the modelling efforts unless a decoupled matrix approach is used. A methodology 

doing exactly this is described by Harbecke et al47, and was implemented for the model. Figure 

4.16 gives an overview of the internal fields in the stack and the spectral absorptance of the 
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layers, while Figure 4.17 displays the generated charges in each active layer over the entire 

spectrum (modelled wavelength regime: 370-1150nm). 

 

Figure 4.16. Spectral Absorption For Tandem Cell 

Figure 4.16. Spectral Absorptance of a simplified version of the Tandem cell structure. 

Incoherent silicon layer can be seen to absorb most light past 800nm. (additional layers may 

be added to the coherent stack in practice to increase efficiency). Note that silicon mainly 

absorbs in the high wavelength (low energy) regime because the perovskite absorbs 

everything before that. 
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Figure 4.17 Generation Profile For Tandem Cell 

Figure 4.17. Total amount of generated charges in each active layer. Left: the triple cation 

perovskite layer, showing coherent interference. Right: the silicon layer, showing near 

Lambert-Beer generation. Total generated current assuming perfect collection is also shown. 

An additional challenge in this incoherent stack model was modelling the electric field in the 

coherent stack since the reflections from the incoherent layer must also be fed back as a 

scaling factor to the incident electric field to the coherent stack. For this a sum-series formula 

was used to calculate the infinite series of reflections of the glass layer and the reflections 

from the silicon layer: 

𝐸scaling factor =
𝑡AG

√1 − |𝑟coh𝑟AG|2
 

Where 𝑡𝐴𝐺  is the Fresnel transmission coefficient from air to glass, 𝑟𝐴𝐺 the Fresnel reflection 

coefficient of the same boundary, and 𝑟𝑐𝑜ℎ the total reflection coefficient from the coherent 

stack, assuming the silicon layer is semi-infinite. This latter part is an approximation in the 

sense that feedback from the silicon air interface reflection is neglected, but in practice this 

contribution to the coherent electric field is small (it can be quantified by the deviation of the 

parasitic absorptance from the expected value in Figure 4.17). 

From the general trends observed in Figures 4.16 and 4.17, we can draw some preliminary 

conclusions about the optimization process. Firstly, the silicon layer will generally draw most 

of the low-energy light while the perovskite will draw most of the visible light and displays 

interference effects. When adding interlayers, it is therefore mainly the perovskite layer that 
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must be optimized for the visible light spectrum. Secondly, the silicon is by far the biggest 

contributor to generated current, around 40% more than the perovskite. 

4.4 Conclusion 

Several third-generation solar stack architectures and their challenges were presented in this 

chapter, most importantly the carbon mesoporous stack and the perovskite-silicon tandem 

stack. Starting from the archetypal second-generation organic semiconductor system with 

PCDTBT:PCBM, we applied and demonstrated the utility of the methodology outlined in the 

previous chapters. The carbon stack architecture can be seen as a possible candidate for low 

cost, manufacturable perovskite solar cells. This is in part due to the possibility to have thick, 

micron-scale active layers, which is not possible with common (second-generation) organic 

cells. This thick active layer allows the architecture to make use of a cheap, non-selective 

carbon contact, and also allows the industrial screen-printing process to be used in 

fabrication. A full opto-electrical model was developed for the stack, and the external 

quantum efficiency of a previously empirically optimized operational device was simulated. 

Estimates of qualitative trends in active layer thickness were also made with Setfos to 

demonstrate the key bottlenecks and workings of the stack. 

The tandem perovskite-silicon solar cell architecture was also modelled optically, without the 

inclusion of variable interfaces, although these can readily be added in an experimental 

optimization. The incoherent silicon layer was shown to absorb mostly in the low-energy 

regime, where the perovskite absorptance is zero, despite the low absorption coefficient of 

silicon here, which is due to its large thickness as an incoherent layer. It is therefore the 

perovskite layer that must be focused on in any optimization process. 
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V. Out-coupling model for active layer 
photoluminescence 
 

Measurements of both photo-and-electroluminescence (PL and EL) are extremely valuable for 

understanding voltage losses and thermodynamic limits in photovoltaic devices. Particularly 

when considering sub-gap dynamics such as CT state and trap energies, the relative optical 

‘thin-ness’ of both organic solar cells and to a certain extent, homojunction perovskite devices 

requires one to carefully consider interference effects in both EL and PL. In this chapter an 

approach is advanced to account for these effects to reconstruct and predict the luminescence 

characteristics of thin film structures. The method has utility in not only reciprocity analysis in 

solar cells but also in modelling light emitting diodes. 

5.1 General outline 

5.1.1 Experimental introduction to luminescence  

While the previous chapter focused mainly on the class of perovskite solar cells, some 

experimental was also performed on non-fullerene devices that might serve as an 

introduction to the luminescence subject. In addition to optical constants, a photo-excited 

free carrier recombination study was performed on PM6:Y6, one of the best-performing non-

fullerene blends at the time of analysis91. At the time of writing there are already better 

performing blends, such as the PM6:Y6:BTP-M ternary cell92, which demonstrates how quickly 

the field of non-fullerenes is growing. 

Transient photoluminescence spectroscopy was used to measure the recombination lifetimes 

of the PM6:Y6 blend (1:1.2) using an ultrafast camera setup with a 550nm monochromatic 

laser which was shuttered to irradiate the sample after which emission was recorded in order 

to quantify recombination rates. This was done firstly for the neat materials on glass and 

secondly for the blend, to quantify the existence of quenching in the blend. The 550nm laser 

source drives excitation of excitons, which then recombine (on a timescale of picoseconds) 

and emit at a higher frequency matching the respective energy difference of the state 

transition. This can be the HOMO-LUMO difference (usually the highest intensity) but also the 

charge transfer state energy (see Figure 1.3 in Chapter 1), depending on the exciton relaxation 
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pathway. The HOMO-LUMO energy difference (and sometimes the CT state energy difference 

too, though this signal is much weaker) can be determined from the observed emission peaks 

in steady-state PL. The peak for PM6 was determined at 700nm (or 1.77 eV) and that of Y6 at 

860 nm (or 1.44 eV). Note that this only gives an estimate for the energy difference but not 

the absolute HOMO or LUMO levels.  

The next step in transient PL spectroscopy is to measure the intensity of the emission after 

excitation over time, which gives an idea of how quickly the excitons recombine. Given in 

Figure 5.1 is exactly this, with the emission scaled logarithmically to give a clearer fit with the 

lifetime decay equation93: 

𝐼𝑃𝐿,𝑟𝑒𝑙 = 𝐴 ∙ 𝑒−
𝑡
𝜏                                                                (4.4) 

Where 𝐼𝑃𝐿,𝑟𝑒𝑙 is the measured photoluminescence intensity, A some proportionality constant, 

t the time variable and 𝜏 the lifetime which we want to fit for. As can be seen in Figure 5.1, 

the neat Y6 has a longer lifetime (in the range of 27ps) than the neat PM6 (in the range of 

2ps). The interesting part is however to look at the blend, and we can see that the respective 

lifetimes of both materials and their induced excitons are significantly quenched. This implies 

that both absorptance pathways for the acceptor and donor material are contributing 

channels to the charge collection in the cell. 
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Figure 5.1 Transient PL on PM6:Y6 

Figure 5.1. Transient PL measurements and their fit with lifetime formula. Fit values for the 

respective materials at the relevant wavelengths were: 𝜏PM6, 700nm = 2.4ps (700nm), 𝜏Y6, 860nm 

= 27.2ps, 𝜏Blend, 860nm = 2.1ps, 𝜏Blend, 700nm = no fit, strongly quenched. The blend PL being 

immediately quenched at 700nm indicates very efficient exciton dissociation for excitons 

generated in the PM6. 

The efficient exciton dissociation in both materials of the non-fullerene blend has raised some 

question in regard to the energetic pathways that drive this dissociation, in particular because 

the energetic off-set between their respective HOMO levels is quite small for a wide range of 

non-fullerenes, including the PM6:Y6 91. It is of particular interest because, unlike fullerenes, 

the acceptor in non-fullerenes also absorbs a significant part of the solar spectrum 94, making 

the cell effectively act as a sort of blended tandem structure (another example of a tandem 

structure would be the perovskite-silicon tandem cell previously discussed, with similarly 

improved efficiencies). A recent review was published discussing the particular nature of non-
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fullerenes and the role of the two separate charge collection channels (one for the acceptor 

and one for the donor) 95. 

5.1.2 Luminescence fitting in thin-films 

While the previous experiment showcases some information on carrier lifetime and HOMO 

LUMO differences, it tells us very little about the CT state of the examined material. 

Luminescence of an opto-electrical material can be used not only in methods such as 

transient-PL, but also to extract useful parameters about the CT state parameters in blends 

by fitting a spectral measurement of emission to theoretical models such as Marcus theory, 

which builds on the reciprocity principle. In the case of Marcus theory, the extracted 

parameters are the energy of the CT state (ECT), reorganization energy (λCT), and oscillator 

strength (fσ) related to the electronic coupling, as well as emission probability fI. Ideally, the 

absorption cross‐section (σCT) and emission (I) are related through reciprocity so that 

σCT   =   
𝑓𝜎

𝐸√4𝜋𝜆CT𝑘B𝑇
 exp   (−

(𝐸CT + 𝜆CT − 𝐸)2

4𝜆CT𝑘B𝑇
)                   (5.1a) 

𝐼   =   
𝑓𝐼𝐸

√4𝜋𝜆CT𝑘B𝑇
 exp   (−

(𝐸CT + 𝜆CT − 𝐸)2

4𝜆CT𝑘B𝑇
)                    (5.1b) 

 

where kB is the Boltzmann constant, T the absolute temperature, and E the photon energy96. 

However, when fitting these parameters for thin-films such as those characteristic of high 

efficiency organic solar cells, there are known to be errors in the fit depending on the active 

layer thickness. Experimental evidence that this effect is significant was previously published 

by our group, Armin et al96. 

As has been argued before by independent groups 57, the problem with thin-film 

luminescence measurements is that this distortion occurs due to the significant effect of thin-

film interference on the luminescence out-coupling. This means that thin-film layer emission 

measurements cannot in good faith be fitted to Marcus theory, at least not when measured 

and fitted directly without any compensation for the cavity effects. 

5.1.3 An approach to account for cavity effects 

As discussed previously, thin-film layers, particularly when they reside within a partially 

reflecting cavity, suffer from interference effects that can drastically alter the internal electric 
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field within the layer. As a solution to this one might imagine simply taking a thick layer 

measurement of the same material and fitting the emission. However, for some organic 

semiconductors of relevance to the work described in this thesis, such as PM6, if the layer is 

made too thick (> 300 nm), the optical constants (and thus absorption cross-section) may be 

modified versus the thin film limit due to morphological impacts (this was experimentally 

observed with ellipsometry and transmittance measurements and reported in Chapter 3). The 

same could also be said for certain organic-inorganic perovskites where, for example, relative 

differences in the solvent evaporation rate and crystallisation come into play. 

As described in previous chapters, the interference modified electric field in thin-film layers 

can be modelled with the help of techniques such as FDTD or the transfer matrix method for 

the case of plane wave coupling into a cavity. The question arises as to whether a mirror 

equivalent output coupling model based upon the same principles could be developed. 

Such a model would require several key elements: 

- The internal field must be calculated to obtain the generated charge profile. This has 

already been discussed in previous chapters. 

- The drift-diffusion (5.2.1) of generated charge must be considered and compared to 

the lifetime of the charges. If the generated charge profile changes significantly due 

to charge movement before charges recombine (and thus emit), this also has to be 

modelled. 

- The re-absorption and re-emission (5.2.2) must be considered. 

- The outcoupling (5.2.3) radiation will again undergo interference effects.  

5.2 A thin-film emission model 

The model simulates the relative photon emission of an active layer on a glass substrate, 

illuminated by a laser, and detected at a certain angle from the opposite side i.e. the process 

of photoluminescence from an emissive thin film as a function of angle. Off-normal collection 

of the emission provides a means to reject the incident radiation. The experimental set-up 

was shown in Figure 1.12 but is shown again in Figure 5.2 for clarity with some more extensive 

details. 
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Figure 5.2 Rotating Emission Set-Up (Detailed) 

Figure 5.2. Rotating set-up for measuring photoluminescence on an organic semiconductor 

thin film sample on glass. A Photonic Multichannel Analyzer (PMA-12) is used to detect the 

relative number of emitted photons at a certain angle and can be rotated around the 

stationary sample. Inset shows the interference pattern of generated charges in sample. 

We will talk about relative photon emission because the detection also happens within a 

certain solid angle, which will affect the measured intensity. Additionally, there is the loss due 

to other factors such as scattering and light emitted by out-coupling from the sample sides, 

all of which are difficult to model absolutely in terms of measured photons (Figure 5.3 gives 

an overview of what is meant by these losses).  
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Figure 5.3. Plane Wave Approximation 

Figure 5.3 The losses caused by observing emission only within a certain solid angle. Green 

arrows signify emitted light coming from the dipoles that is observed, red arrows are emitted 

light that is not observed. By approximation, as seen from this figure, observed light will 

behave as parallel plane waves. 

We will assume for now that these losses are not significantly changed by varying film 

thickness or different optical constants of the active layer material (in other words we assume 

the main reason for distortion between PL or EL measurements of different materials is the 

interference effect). In practice only the out-coupling from the sample sides will have an 

effect that changes with layer thickness, because for this light the sample can act as a 

waveguide due to its small thickness. Comparisons with Setfos, which does model this, will 

show that this effect is still quite negligible. 

If the optical constants and thickness of our active layer are known (using measurement 

techniques discussed in previous chapters), we can account for the interference effect and 

scale our measurements accordingly, so a sense of genuine comparison between different 

materials can be gained. The ultimate goal here would be to measure and simulate 

interference-corrected, steady-state photoluminescence as a function of wavelength, 

averaged over measurements at several thicknesses. From this, a legitimate or at least more 
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accurate Marcus fit could then be obtained, giving insight in all the useful unknown 

parameters involved. 

5.2.1 Drift-diffusion model 

While for organics semiconductors mobility generally tends to be low relative to inorganic 

semiconductors (around 3.6 × 10−3 cm2 V−1 s−1 for PCDTBT 97), it is not a given that generated 

charges will recombine before drift-diffusing significantly, which would mean the 

recombination profile looks different from the generation profile. 

For this reason, a drift-diffusion model was implemented in Matlab, using a simplified 

version of the current and continuity equations as already discussed in Chapter 2. No 

transverse electric field is present because excitons are neutral, and the drift term is 

therefore ignored: 

−𝐷𝑒

𝛿2𝑒(𝑥)

𝛿𝑥2
= 𝐺𝑒(𝑥) −

𝑒(𝑥)

𝜏
.                                                 (5.2) 

 e(x) is the positional exciton concentration per m2, D is the diffusion coefficient, and 𝐺𝑒(𝑥) 

and 
𝑒(𝑥)

𝜏
 are the positional generation and recombination of free carriers in the layer. It is 

possible to solve this differential equation analytically if we make use of the transfer matrix 

method to calculate G(x). Recall that the internal electric wave is a superposition of a forward 

travelling wave E+(x) and a backwards-travelling wave E-(x), which are both plane waves. The 

amplitude of both waves has to be calculated with transfer matrix, but the dependency on 

position x is always the same:  

𝐸+(𝑥) = 𝐸+ exp (𝑖 ∙
2𝜋𝑛𝑖̅

𝜆
𝑥)                                               (5.3𝑎) 

𝐸−(𝑥) = 𝐸− exp (−𝑖 ∙
2𝜋𝑛𝑖̅

𝜆
𝑥)                                              (5.3𝑏) 

Giving a differential equation that can be perfectly solved with certain boundary equations. 

Typically, in the literature, the boundary conditions of a layer bounded by insulators (glass 

and air) are taken as  
𝑑𝑒(𝑥)

𝑑𝑥
= 0, at the edges of the layer x=0 and x=L 55. This is justified in by 

noting that the diffusion current at the edges will necessarily be zero at boundaries with non-

conductive material (glass/air).  
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𝐷𝑒

𝛿2𝑒(𝑥)

𝛿𝑥2
𝑑𝑥|

𝑥=0,𝐿

= 0                                                  (5.4) 

Which would then simplify to 
𝛿𝑒(𝑥)

𝛿𝑥
|
𝑥=0,𝐿

= 0 . However, this is not necessarily a given since 

the real reason there is no diffusion current flowing into the adjacent material is because the 

mobility (and with it, D) goes to zero beyond that boundary, and not because the gradient in 

carrier concentration is zero at the boundary (this might not be the case). The real reason this 

boundary condition is valid is because in an isolated layer in steady state, the total integrated 

generation ∫ 𝐺(𝑥)
𝐿

0
 must equal the total integrated recombination ∫

𝑒(𝑥)

𝜏

𝐿

0
, which means 

according to Eq. 5.2, that ∫ 𝐷𝑒
𝛿2𝑒(𝑥)

𝛿𝑥2 𝑑𝑥
𝐿

0
= 0. From this, indeed, the accepted boundary 

condition follows. Figure 5.3 shows the effect of the boundary condition as compared to an 

arbitrary one (
𝛿2𝑒(𝑥)

𝛿𝑥2 𝑑𝑥|
𝑥=0,𝐿

= 0, which would follow from the justification in literature), as 

well as a quenching boundary condition (𝑒(𝑥)|𝑥=0,𝐿 = 0) which would be the case if the layer 

was in contact with a metal or a different quenching material. 

 

Figure 5.4. Boundary Conditions For Diffusion Profile 

Figure 5.4. A comparison of boundary conditions for solving the simplified continuity equation 

5.2. D stands for 
𝛿𝑒(𝑥)

𝛿𝑥
 and y for 𝑒(𝑥). Diffusion length is set at 13nm. 
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As mentioned in Chapter 2, certain values must also be assumed for both 𝜏 and 𝐷𝑒, depending 

on the active layer material. They can be combined in one free value, the diffusion length 𝐿𝑑: 

𝐿𝑑 = √𝜏𝐷𝑒                                                                 (5.5) 

Since the experiments were performed on the archetypal organic semiconductor PCDTBT (a 

neat organic semiconducting material, which means we are dealing with excitons), we will 

use the literature value for this diffusion length (around 10nm 98). Figure 5.5 shows a 

comparison of various diffusion lengths. 

 

Figure 5.5. Diffusion Lengths Impact 

Figure 5.5. Comparison of the effect of different diffusion lengths on the dipole profile (and 

thus recombination rate profile), calculated with the exciton continuity equation. 

Indeed, we see that for the typical organic semiconductor, PCDTBT, the dipole profile will be 

quite similar to the generation profile. However, for other materials this may not be the case, 

as the significant change can be seen around 𝐿𝑑 = 40nm. It will therefore be important to 

check this value for each examined material before proceeding with emission models for 

spectral fitting. 
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5.2.2 Reabsorption and re-emission 

One might imagine, looking at Figure 5.2, that the propagation of the emission in the stack 

can be modelled in similar fashion as the transfer matrix method, with a forwards- and 

backwards-propagating plane wave that consists of the sum of all separate plane waves. In 

literature, a different model than plane wave is used to calculate the out-coupling after 

determining the dipole profile. Some of the common approaches are FDTD 99, scattering 

matrix method 57, or, in the case of the commercial software Setfos, Green’s functions that 

model many dipoles interacting with each other 50 . 

The scattering matrix method improves on FDTD, which can show spurious effects of 

numerical dispersion, but it can be very resource-intensive and is not easy to generalize to 

models for novel types of opto-electronic structures and materials. The problem with the 

interacting dipoles model approach (used by Setfos) is that reabsorption (and therefore re-

emission) of the emitted light is not modelled. 

While using a plane wave model necessarily has some approximations, it does easily lend itself 

to model the reabsorption of the emitted light (and here in fact it has an advantage over the 

Green’s function dipole model). The fraction of light that is re-emitted, however, is a free 

parameter that will turn out to become quite significant for thicker samples. We can define 

this free parameter as Pr, the probability of radiative recombination for an exciton. Usually in 

literature this probability is determined using rates of the available pathways. In a simplistic 

model where there are only two rates considered, kr the rate for radiative recombination and 

knr the rate for non-radiative recombination, it would equal: 

𝑃𝑟 =
𝑘𝑟

𝑘𝑟 + 𝑘𝑛𝑟
                                                             (5.6) 

Were this parameter known, it would be possible to model the re-emission with iterative 

steps, each time calculating absorption, applying the continuity equation if needed for the 

step’s dipole profile, and then reducing the intensity of that dipole profile by 𝑃𝑟. 

Even this treatment isn’t fully adequate as real emission also undergoes a smeared-out Stokes 

shift (see Figure 5.6) in wavelength, so some excitons will recombine and emit at different 

frequencies than the modelled ones. In principle a Stokes shift could be measured and also 

implemented in the model.  
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Figure 5.6. Stokes Shift 

Figure 5.6. Stokes shift visualized through its underlying principle of vibrational energy levels 

around the principle energy levels. The shift is due to vibrational relaxation. Modified upon 

reproduction from. 100 

For the current implementation of the model, the amount of reabsorption and re-emission 

will be assumed to be very small compared to initial absorption and emission and be 

neglected, but measurements could in principle be undertaken to determine this parameter.  

5.2.3 Out-coupling model 

Compared to the FDTD model and the Green’s function model, the plane wave out-coupling 

approach approximates the other methods in two notable ways: 

1. Dipole emission is in all directions. Losses from the sides of the active layer (as 

visualized by the downwards red arrows in Figure 5.2) are not modelled by the plane 

wave model. The first approximation is that the amount of light coupled into these 

“evanescent modes” does not change significantly with thickness. In reality, there may 

be more or less outcoupling depending on thickness, since layer thickness will act as 

if affecting waveguide dimensions, in certain directions, depending on which modes 

can form in transverse direction. However, as indicated above from comparisons with 
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Setfos calculations, this thickness-related effect is rather insignificant, because the 

evanescent modes generally account for a small fraction of the emission. 

2. Surface dipole effects are not accounted for. This is a more serious impact caused by 

an antenna effect 50 close to the layer surface. For these dipoles, optical feedback with 

the surface causes increased recombination, but almost exclusively radiating through 

evanescent modes (see Figure 5.6). Effectively for our plane wave model, it means 

that emission near surfaces is heavily quenched. However, this effect can be 

approximated mathematically by calculating a dipole profile with boundary conditions 

set to a quenching material at the interface instead (see Figure 5.3, y=0, and compare 

to Figure 5.7). We will call this extra approximation the Quench model. 

 

Figure 5.7. Boundary Emission Feedback 

Figure 5.7. Modified upon reproduction from the Setfos 5.0 manual: “dynamics of dipoles is 

enhanced close to the electrodes due to strong optical feedback. Only, as mode analysis 

shows, the “additional" dissipated power is mostly coupled to evanescent modes, instead of 

being emitted out of the device. On the other hand, the increase of the radiative decay rate 

for dipoles close to the electrodes results in a strong reduction of the exciton density at those 

positions: we call this effect exciton quenching.” 
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Aside from these approximations the plane wave model will be shown to yield similar results 

to the Setfos model. The out-coupling interference effect is modelled by assuming, again, a 

forward propagating and a backward propagating wave. However, at every point x in the 

stack, we will now have a backward and a forward propagating plane wave originating from 

that point, due to exciton recombination at that location. 

Let us call 𝐸𝐷𝐼𝑃 the electric field caused by the initial radiative exciton recombination, named 

DIP because the excitons act as radiating dipole antennas. EDIP is a known from the exciton 

profile in the relative sense (compared to other locations in the layer), since it is directly 

proportional to the square root of the recombination rate 𝑅(𝑥) at x, following Eq. 3.17. 

𝑅(𝑥) =
𝑒(𝑥)

𝜏
≈

𝑐𝜂𝜀0

2
|𝐸𝐷𝐼𝑃(𝑥)|2                                             (5.8) 

Now we need to account for the interference effect on 𝐸𝐷𝐼𝑃(𝑥) resulting from reflections off 

the layer interfaces. The forwards-propagating wave, 𝑬∗
+(𝒙), has to be calculated as a sum of 

all contributing reflections. This can be done with a series/sum manipulation, which is 

visualized for a PCDTBT layer in figure 5.8:  

𝑬∗
+(𝑥) =  

1

2

1

Ω
𝐸𝐷𝐼𝑃

+ (𝑥) ∙ [1 + 𝑒
2𝜋𝑛̅
𝜆

[2𝑡1+2𝑡2] ∙ 𝑟𝑃𝐺𝑟𝑃𝐴 +  𝑒
2𝜋𝑛̅
𝜆

[4𝑡1+4𝑡2] ∙ (𝑟𝑃𝐺𝑟𝑃𝐴)
2 + ⋯]

+
1

2

1

Ω
𝐸𝐷𝐼𝑃

− (𝑥) ∙ [𝑒
2𝜋𝑛̅
𝜆

[2𝑡1]
∙ 𝑟𝑃𝐺 +  𝑒

2𝜋𝑛̅
𝜆

[4𝑡1+2𝑡2]
∙ 𝑟𝑃𝐺

2𝑟𝑃𝐴 + ⋯]             (5.9𝑎) 

Where Ω is the solid angle, 𝐸∗
+(𝑥) the total forwards propagating emission wave at x, and t1 

and t2 the respective distances to both layer interfaces at x. rPA and rPG are the Fresnel 

reflection coefficients for the PCDTBT/Air and PCDTBT/Glass interfaces, 𝑛̅ the (complex) 

refractive index and λ the wavelength of the emitted light. The formula is colour-coded to the 

figure to help in the visualization. 
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Figure 5.8. Plane Wave Model Interference 

Figure 5.8. Visualization of the contributions to the forwards field in the active layer, 𝐸∗
+(𝑥).  

This series can then be rewritten as an infinite sum: 

𝑬∗
+(𝑥) =  

1

2

1

𝜔
𝐸DIP

± (𝑥) ∙ ∑ (𝑒
2𝜋𝑛̅
𝜆

2[𝑡1+𝑡2]
∙ 𝑟PG𝑟PA)

𝑚∞

𝑚=0

+    

1

2

1

𝜔
𝐸DIP

± (𝑥) ∙ 𝑒
2𝜋𝑛̅
𝜆

[2𝑡1] ∙ 𝑟PG ∑ (𝑒
2𝜋𝑛̅
𝜆

2[𝑡1+𝑡2] ∙ 𝑟PG𝑟PA)
𝑚

                (5.9𝑏)

∞

𝑚=0

 

Which can again be rewritten using the following mathematical manipulation, which is valid 

for infinite sums with factors F between 0 and 1: 

∑(𝐹)𝑚

∞

𝑚=0

= 𝑆𝑚 

𝐹. 𝑆𝑚 = 𝑆𝑚+1 

(1 − 𝐹)𝑆𝑚 = 1 − 𝐹𝑚+1 

𝑆𝑚 =
1 − 𝐹𝑚+1

1 − 𝐹
 

Where 𝐹𝑚+1 becomes 0 for 𝑚 → ∞. Consequently, we can rewrite Eq. 5.9b as: 

𝑬∗
+(𝑥) =  

1

2

1

𝜔
𝐸DIP

± (𝑥) ∙
1

1 − 𝑒
2𝜋𝑛̅
𝜆

2[𝑡1+𝑡2] ∙ 𝑟PG𝑟PA

+    

1

2

1

𝜔
𝐸DIP

± (𝑥) ∙ 𝑒
2𝜋𝑛̅
𝜆

[2𝑡1]
∙ 𝑟PG

1

1 − 𝑒
2𝜋𝑛̅
𝜆

2[𝑡1+𝑡2]
∙ 𝑟PG𝑟PA
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=
1

2

1

𝜔
𝐸DIP

± (𝑥) ∙
1 + 𝑒

2𝜋𝑛̅
𝜆

[2𝑡1]
∙ 𝑟PG

1 − 𝑒
2𝜋𝑛̅
𝜆

2[𝑡1+𝑡2] ∙ 𝑟PG𝑟PA

                                  (5.9𝑐) 

Which is our final equation for 𝑬∗
+(𝑥). Note that this only calculates interference between the 

backwards and forwards emission from one position x. For the full emission that is observed, 

𝐸𝑜𝑢𝑡,𝑇𝑜𝑡𝑎𝑙, we need to phase shift all 𝑬∗
+(𝑥) to the end of the layer and sum them there, due 

to the interference effect between all these electric fields. In a continuous model this would 

mean integrating over the active layer thickness, in our Matlab implemented model this 

means we can just take a sum of discrete points: 

𝐸𝑜𝑢𝑡,𝑇𝑜𝑡𝑎𝑙 = ∫ 𝐸𝑜𝑢𝑡
+ (𝑥)𝑑𝑥

𝐿

0

≅ ∑ 𝐸𝑜𝑢𝑡
+ (𝑥)∆𝑥

𝐿
𝑛

∆𝑥=𝑛

                                    (5.7) 

Where 𝐸𝑜𝑢𝑡
+ (𝑥) the forwards-propagating plane wave originating from position x (𝑬∗

+(𝑥)), but 

phase-shifted to the end of the layer by multiplying with 𝑒
2𝜋𝑛

𝜆
(𝐿−𝑥). ∆𝑥, the step-size of the 

integral approximation, is set to 1nm (as it has been previously for the transfer matrix 

implementations).  

So now the total emission for a certain layer thickness can in principle be computed. However, 

there are still some important caveats to note: 

1. There is also emitted light transmitted into the glass and reflected from the glass/air 

boundary. This light is incoherent with the original light and has to be treated 

separately. When calculating the contributions of this emission it turns out they are 

negligible. This is because of the effect of reabsorption on an already low fraction of 

light having to traverse the whole layer (see figure 5.9). 
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Figure 5.9. Layer Position Impact On Emission 

Figure 5.9. A visual representation comparing the intensity of the original recombination 

profile to the intensity of the plane wave reaching the end of the layer from a certain 

position in the layer, adjusted for reabsorption and interference. 

2. The light is actually measured at a non-normal angle, not perpendicular to the layer. 

This has two effects on the model, one is that the effective thickness of the layer is 

lengthened by 
1

cos(𝜃)
, 𝜃 being the angle of incidence, and the second that the Fresnel 

coefficients need to be modified with the angle of incidence as well: 

𝑟𝑖𝑗,𝑠 =
𝑛̅𝑖 cos(𝜃𝑖) − 𝑛̅𝑗 cos(𝜃𝑗)

𝑛̅𝑖 cos(𝜃𝑖) + 𝑛̅𝑗 cos(𝜃𝑗)
, 

𝑟𝑖𝑗,𝑝 =
𝑛̅𝑗cos (𝜃𝑖) − 𝑛̅𝑖cos (𝜃𝑗)

𝑛̅𝑗cos (𝜃𝑖) + 𝑛̅𝑖cos (𝜃𝑗)
 

This effectively produces two different contributions to the emission, one for the s-

polarized fraction of the emitted light and one for the p-polarized fraction (both 

fractions are equal since emitted light is isotropic). 

With all this incorporated into the model, the out-coupling model is complete and we can 

move on to comparing to the Green’s function model in Setfos, and finally to experimental 

data of emission measurements. 
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5.3 Experimental results 

Seven PCDTBT samples of varying thickness (249nm, 190nm, 147nm, 123nm, 94nm, 70nm, 

31nm) were fabricated in a cleanroom glovebox (< 1ppm H2O and O2), all PCDTBT on glass. 

The films were spun cast from solution in Chlorobenzene (CB), with varying concentrations, 

and thicknesses were verified using both ellipsometry and the transmittance method. The 

emission of these samples was measured under a range of angles (8°- 42°, in 5° steps) at an 

excitation wavelength of 530nm. For this, an Oxxius laser was used, and the detection was 

implemented with a PMA spectral photon count detector (Figure 5.1). Then the same data 

was taken for a range of PCE10 samples on glass for a similar thickness range. Data of both 

measurement sets are shown in Figures 5.10 and 5.11. 

 

Figure 5.10. Spectral Emission Data PCDTBT 

Figure 5.10. Spectral emission data for PCDTBT on glass, various layer thicknesses (indicated 

in the legend), taken with the rotating set-up shown in Figure 5.1. Standard angle of 

measurement was 8°. The sample was irradiated with an Oxxius laser at a wavelength of 

532nm, and measured intensity was filtered out below 550nm. 
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Figure 5.11. Spectral Emission Data PCE10 

Figure 5.11. Spectral emission data for PCE10 on glass, various layer thicknesses, taken with 

the rotating set-up shown in Figure 5.1. Standard angle of measurement was 8°. The sample 

was irradiated with an Oxxius laser at a wavelength of 532nm, and measured intensity was 

filtered out below 550nm. A separate measurement of emission versus angle for a single film 

thickness was also undertaken as a secondary source of data (Figure 5.11). The integrated and 

peak intensity follow the expected solid angle cosine law. 

 

Figure 5.12. Angular Spectral Emission Data PCDTBT 

Figure 5.12. Spectral emission data for PCDTBT on glass, various measurement angles, 

observed with the rotating set-up. Taken for a thickness of 147nm. 
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Next, the model was tested as a predictor for the trend in relative emission due to 

interference effects when varying thickness. Since we are looking at a trend in relative 

emission, the data was scaled by a constant factor for direct comparison. Setfos emission 

predictions for the same sample thicknesses were also calculated and compared. The result 

of this comparison can be seen in figure 5.13 for PCDTBT and figure 5.14 for the PCE.  

To check the reproducibility and accuracy of the measurements, a new set of samples over 

an extended thickness range was created for both materials, and measurements were taken 

multiple times to assess standard deviations (both Set 1 and Set2 are shown in the plot for 

comparison of the different sample batches). An important factor in obtaining reproducible 

data is sample quality, if the layer thickness is not uniform, emission data can vary quite 

significantly depending on where the sample is irradiated (as may be the case for samples like 

the 190nm one where the standard deviation is high). 

 

Figure 5.13. Emission Simulation and Data, PCDTBT 

Figure 5.13. PCDTBT emission data for varying thicknesses, observed at a wavelength of 

760nm. The Plane Wave out-coupling model is denoted by blue and green, where blue 

incorporates a quench approximation as outlined in section 5.5.2, and green is the plane wave 

model as is. 
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Figure 5.14. Emission Simulation and Data, PCE10 

Figure 5.14. PCE10 emission data for varying thicknesses, observed at a wavelength of 800nm 

(peak emission). Here only the quench approximation model is shown for the plane wave 

model since the difference between quench or no quench approximation is quite small. 

The predictions are quite similar for both the Setfos and plane wave outcoupling models, and 

they agree with the trend in experimental data up to a thickness of around 200 nm. After this 

the predictive abilities of the models break down. The reason for this is likely that both models 

fail to account for re-emission. As a result, they both underestimate the emission at thicker 

active layers. This omission is currently being addressed by the Setfos developers for a future 

upgrade. 

Be that as it may, we can attempt to achieve our goal for a Marcus model fit free of 

interference effects, using the thicknesses for which our model appears to be valid, that is, 

up to 200nm. A comparison of the averaged original data (red) compared to the averaged 

interference corrected data (black), using 4 different sample thicknesses below 200nm, is 

shown in figure 5.15. As can be seen, the interference correction reduces the standard 

deviation at all wavelengths and gives an improved curve. The correction works by correcting 

the data by the factor of deviation that is predicted due to interference at that thickness (a 

simple relative scaling). Note that this will only be spectrally consistent if performed with a 

predictive model, not by an experimental baseline correction, which will vary spectrally. 
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Figure 5.15. Averaged Emission Data Measured and Corrected. 

Figure 5.15. Spectral emission data averaged over 4 PCDTBT samples of varying thickness. The 

red averaged data is not interference corrected and as such shows a large standard deviation 

from the average (which increases with more samples) and more uncertain peak. The black 

data is corrected using the PW emission model and gives a narrower deviation (which stays 

approximately the same with more samples added) and a more pronounced peak at 1.77eV 

(700nm). A Marcus fit to the interference-corrected curve was also performed but does not 

converge since the equation, outlined in section 5.1, describes blends with a CT state and not 

neat materials like PCDTBT. However, the fit is demonstrative of the procedure that would be 

followed for a blend. Table 5A below describes the fitting procedure in more detail.  
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Table 5A. Details on the Marcus Fit of Averaged Emission in 5.15 

 

Table 5A. Converged parameters, in eV, for a Marcus fit to the interference-corrected curve 

from Figure 5.14, as outlined in section 5.1. The listed parameters are varied to achieve the 

best fit, where ect is the energy of the CT state (ECT), lambda is the reorganization energy (λCT), 

and ff the oscillator strength (fσ), as defined in Eq. 5.1b (repeated below for comparison). x is 

the energy, which is given by the x-axis of the figure. The equation is given in eV units. 

𝐼   =   
𝑓𝐼𝐸

√4𝜋𝜆CT𝑘B𝑇
 exp   (−

(𝐸CT + 𝜆CT − 𝐸)2

4𝜆CT𝑘B𝑇
)                    (5.1b) 

 

As mentioned before, these parameters are only defined for blends rather than neat 

materials, the fit is merely demonstrative in that sense. For blends, EL measurements would 

be more suitable. A suggestion of how the Plane Wave emission model could be extended in 

this direction is given in the next Chapter. 

5.4 Conclusion 

While the emission model would still need to be improved in regards with re-emission and EL 

to become truly useful, it does in its current form demonstrate how such a full model might 

be implemented. Additionally, we have shown that sample uniformity and measurement data 

quality are critical. As it is currently implemented, the model can already provide various 

valuable insights into the emission process, such as from where in the layer the majority of 

emitted light is coming from, how the recombination profile can be different from the 

generation profile due to diffusion of the excitons, and the importance of the thickness of the 
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active layer material, which will give rise to significant, but predictable interference effects. 

In principle the model could eventually be extrapolated to blend materials, for which the 

Marcus fit was designed, but there are still various other effects that would have to be 

accounted for as well, such as the exciton dissociation into electrons and holes (which might 

affect the recombination profile significantly) and existence of charge transfer states. For 

blends it may indeed be argued that Electroluminescence measurements are better suited, 

because then the recombination profile will be a quasi-Dirac function where both carriers 

meet. However, the out-coupling model as presented here would remain virtually unchanged. 
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VI. Conclusions and outlook 
 

This thesis describes a body of work focused on furthering our understanding of the opto-

electrical physics of next generation semiconductor materials and devices – notably organic 

and organohalide perovskite semiconductors for photovoltaics and in a more limited sense 

light emission. The majority of the content focusses on the assessment and adaptation of 

optical-electrical methods and models used routinely in inorganic semiconductor systems: 

optical constant determination via ellipsometry and spectrophotometry; transfer matrix and 

finite element; thermodynamic reciprocity and the treatment of light emission. Using this 

suite of capabilities, several novel second and third generation photovoltaic systems have 

been examined, and in one rather extreme case – the perovskite carbon stack architecture – 

quite significant new insight was gained, namely a thickness-dependent feature that allows 

devices with a non-selective contact to still attain viable efficiencies. Another important 

outcome of this work has been the additional information gained on the newly emergent non-

fullerene electron acceptors which are proving very different to their second-generation 

fullerene counterparts.   

A significant part of work presented in this thesis focused on the development of an 

alternative method for optical constant determination of high dielectric constant materials, 

highlighting the benefits of a transmittance method in supplement to conventional 

ellipsometry. This method was made use of repetitively for characterizing challenging organic 

and organohalide perovskite semiconductors and has significant resource advantages over 

ellipsometry. The method was fully validated using a number of very challenging systems. It 

will likely continue to be helpful to the next generation semiconductor and opto-electrical 

and materials communities and we have made freeware code available for anyone to use103. 

Another important outcome of this element of the work has been the additional information 

gained on the newly emergent non-fullerene electron acceptors which are proving very 

different to their second-generation fullerene counterparts. Notably, they have significantly 

higher optical constants and complementary absorption when in an acceptor: donor blend. 

Both of these characteristics have significant impacts of device-level opto-electrical 

properties and notably low finesse cavity effects.   
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In relation to the carbon contact perovskite solar cell (perovskite carbon stack), the structure 

benefits from comparatively thick, micron-scale active layers, which are not only attractive 

from a manufacturing perspective, but also enable a cheap and electrically non-selective 

mesoporous carbon anode to be utilised. The key opto-electrical finding was that the non-

selective contact works because of the imbalance between minority and majority carriers at 

that electrode resulting in relatively low levels of contact-related recombination. This 

architecture is gaining considerable interest for manufacturing and scaling, and 

improvements are also being investigated including using more stable forms of perovskite 

such as the triple cation blend 101, attempting to improve the perovskite infiltration by adding 

various wetting agents102, and improving the contact in ways that maintain the industrial 

fabrication process, such as the addition of Nickel Oxide particles to the mesoporous carbon 

paste70. 

Another significant device structure that is still currently being developed and pursued 

vigorously is the perovskite-silicon tandem solar stack. An opto-electrical model including 

thick incoherent layers was developed and presented. This model can now be used to 

optimize specific implementations of the tandem stack, to derive the parameters for highest 

possible efficiencies (such as spacer and transport layers, perovskite bandgap and layer 

thickness, etc.) before fabrication. An additional electric charge transfer model, utilizing 

knowledge of interfacial recombination rates of various interlayers and layer mobilities, could 

be added to this optimization model in the future. That would be a valuable contribution as 

next steps. 

Core to the modelling-centric work described in this thesis was the use of the transfer matrix 

method, which was described in detail theoretically and implemented in all previously 

mentioned endeavours. The theory behind this method, accounting for various interference 

effects in multi-layer device stacks, was used as the basis to derive a new type of model that 

accounts for interference effects in photo-emission measurements. Cavity effects in emission 

are significant in devices like thin film LEDs and EL measurements not properly correct for 

interference are often used in combination with reciprocity to establish CT state parameters. 

Our so-called plane wave model was able to successfully model, reconstruct and correct 

photoluminescence and decouple PL measurements from layer thickness interference and 
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was validated versus a Setfos finite element calculation. A script implementing this new model 

is also available as open-source103. 

Current limitations for the plane wave model include the modelling of re-emission, which 

requires measurement of another free variable: the probability of radiative recombination Pr. 

For this the rates of radiative recombination and of non-radiative recombination need to be 

known (see Eq. 5.6). In future work, these might be determined experimentally and 

incorporated into the model. Additionally, the plane wave model would only truly become 

useful for organic semiconductor blend materials, which tend to have lower 

photoluminescence. For this reason, electroluminescence would be the target measurement. 

In principle, electro-luminescence changes nothing about the plane wave model, with the 

exception that the recombination profile is no longer a diffusion-shifted generation profile 

but becomes a quasi-Dirac peak function at the location in the layer where injected charge 

carriers meet. Thus, the model should be able to be extended towards organic semiconductor 

blend materials and provide valuable insights on charge transfer state properties, which is a 

key property of organic blends still under much discussion today95, 96, 104, 105. 

In summary, the research presented in this thesis has further advanced our understanding of 

the opto-electrical physics of next generation semiconductors and related light harvesting 

and emissive devices. New analytical approaches have been developed and made available 

to the community and insight gained into several state-of-the-art device architectures such 

as the perovskite carbon stack, non-fullerene based organic solar cells and perovskite-silicon 

tandems. Finally, a window has been opened on the treatment of emissive junctions to 

account for cavity interference effects. This once again highlights the old adage that a ‘good 

solar cell is a good light emitting diode’ and the long-held principles of thermodynamic 

reciprocity at the heart of our field.  
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Appendix A1 
 

This appendix will briefly discuss incoherence in a multilayer stack and how to incorporate it 

into transfer matrix formalism. The problem of incoherence is that a layer is too thick (on the 

order of 100s of microns) for the reflected light at the boundaries to overlap and interfere 

with the original beam. This is a consequence of absolute normal incidence being an imperfect 

approximation. Any small deviation from perfect perpendicular incident light becomes a 

problem when the layer is too thick, as demonstrated in figure A1. 

 

Figure A1. Visual demonstration of the incoherence problem. 

In order to model this situation, forwards- and backwards-propagating beams that are the 

sum of all reflections in the incoherent layers need to be treated as intensities. This decouples 

this part of the light in the device from the phase-coherent light within the smaller layers. In 

other words, the matrices become identical to the original transfer matrix ones with the 

exception that reflectance and transmittance coefficients are used rather than Fresnel 

coefficients, and (for perfectly transparent incoherent layers) the phase factors are always 

unity, rather than a plane wave propagation. 

If only one glass thick incoherent layer is involved, and is positioned in front of the coherent 

stack, a simple sum-series formalism can be used to link the contributions of the incoherent 

layer (and all its reflections) the light incident into the coherent stack, as following: 
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Figure A2. Visual demonstration of the sum-series used to model incoherent layer. 

𝑅𝑡𝑜𝑡𝑎𝑙  = 𝑅𝑔𝑙𝑎𝑠𝑠 + 𝑇𝑔𝑙𝑎𝑠𝑠·𝑅𝑠𝑡𝑎𝑐𝑘·𝑇−𝑔𝑙𝑎𝑠𝑠 + 𝑇𝑔𝑙𝑎𝑠𝑠·𝑅𝑠𝑡𝑎𝑐𝑘·𝑅𝑔𝑙𝑎𝑠𝑠·𝑅𝑠𝑡𝑎𝑐𝑘·𝑇−𝑔𝑙𝑎𝑠𝑠 + … 

𝑅𝑡𝑜𝑡𝑎𝑙  = 𝑅𝑔𝑙𝑎𝑠𝑠+ 𝑇𝑔𝑙𝑎𝑠𝑠
2 · ∑ 𝑅𝑠𝑡𝑎𝑐𝑘

𝑛+1∞
𝑛=0 ·𝑅𝑔𝑙𝑎𝑠𝑠

𝑛  

𝑅𝑡𝑜𝑡𝑎𝑙  = 𝑅𝑔𝑙𝑎𝑠𝑠+ 𝑇𝑔𝑙𝑎𝑠𝑠
2  ·

𝑅𝑠𝑡𝑎𝑐𝑘

1−𝑅𝑠𝑡𝑎𝑐𝑘·𝑅𝑔𝑙𝑎𝑠𝑠
 

This is for example the formalism implemented in the free open-source code of the McGehee 

group (https://web.stanford.edu/group/mcgehee/transfermatrix/) 

In reality, however, there will be phase attenuation for glass if the light energy is higher than 

the so-called glass gap (starts around 350nm wavelength). 

𝑅𝑡𝑜𝑡𝑎𝑙  = 𝑅𝑔𝑙𝑎𝑠𝑠 + 𝑇𝑔𝑙𝑎𝑠𝑠·𝑅𝑠𝑡𝑎𝑐𝑘·𝑇−𝑔𝑙𝑎𝑠𝑠·𝒆− 𝟒𝝅𝒌
𝝀

∙𝟐𝒕 +  𝑇𝑔𝑙𝑎𝑠𝑠·𝑅𝑠𝑡𝑎𝑐𝑘·𝑅𝑔𝑙𝑎𝑠𝑠·𝑅𝑠𝑡𝑎𝑐𝑘·𝑇−𝑔𝑙𝑎𝑠𝑠 ∙ 𝒆− 𝟒𝝅𝒌
𝝀

∙𝟒𝒕 

+ … 

In addition, if the position of the glass layer changes, or there are several incoherent layers, 

this approach becomes much more complicated. Once the incoherent light reaches back into 

the coherent part of the stack, coherent interference needs to be applied to this part of the 

light again, before it possibly couples into the incoherent layer again, etc.  

This is why the approach in the work of full transfer matrix treatment with sub stacks that are 

coherent or incoherent, is much more efficient. In effect the device is divided into sub stacks 

which are coupled to each other in a formalism similar to the transfer matrix. In effect we 

bundle all the coherent matrices into one matrix, modify this matrix to denote intensity rather 
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than electric field, and then repeat the transfer matrix procedure with the incoherent layers, 

treating the whole coherent stack as one layer. This is fully expounded upon in the work of 

Harbecke and shown in the Matlab implementation in flowchart 4A in Chapter 4. An 

implementation of this script has been provided open source103.  
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Appendix A2 

 

Figure A2.1. a standard perovskite crystal consisting, commonly106, of an organic cation, A = 

(methylammonium (MA) CH3NH3
+; formamidinium (FA) CH3(NH2)2

+),3–5 a divalent metal, B = (Pb2+; Sn2+; 
Ge2+),4,6 and an anion X = (Cl−; Br−; I−, BF4

−; PF6
−; SCN−). 

As briefly discussed in Section 4.2, there exist modifications of the perovskite solution to alter 

certain properties such as adhesiveness (in the case of AVA-MaPbI), but also efficiency and 

stability. An impactful paper on one such modification was published by Saliba et al106, 

demonstrating the increased stability and efficiency of perovskite consisting of a triple cation 

blend. The “standard” perovskite contains an organic cation of methylammonium (MA), a 

halide of Iodide (I) and a divalent metal of lead (Pb), arranged in the structure outlined 

previously in chapter 2 and shown again in Figure 4.14. Replacing certain components in this 

unit cell can impact the stability of the crystal, as well as the bandgap of the useful “dark” 

perovskite α-phase and the available other phases at room temperature. The main reason for 

these changes is the different effective ionic radii of the substituted elements, which impacts 

the Goldschmidt tolerance factor according to the effective ionic radii of the used 

elements107. This tolerance factor determines how stable the most useful crystal phase 

structure will be, as depicted in Figure 4.15. The other phases, such as the yellow δ-phase, are 

not useful for either optical absorption or electrical conduction. In fact, the perovskite will 

always be in an equilibrium between the shown phases. This means that, with the optimal 
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mixing of elements, an equilibrium can be reached, whereas much of the material as possible 

is in the useful α-phase. 

 

Figure 4.15. Depiction of the impact of molar ratios of components on the most stable crystal 
structure of the solid material at room temperature. Modified upon reproduction from107. 

This optimal blend was determined experimentally by Saliba et al106, and contains three 

different cations, Cesium (Cs), Methylammonium (MA) and Formamidinium (FA), in an 

optimal molar ratio, empirically determined as Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3  , where the 

fractional indices stand for the molar proportions. The yield of this mixture managed to get 

efficiencies of up to 21.1%, a record at the time, though work has been released since, getting 

efficiencies up to 25.2%108. 

The Saliba paper also discusses stability considerations, noting that humidity, as well as the 

glovebox atmosphere and even ambient temperature can have a significant impact on the 

device performance. This might be seen as one of the downsides of these devices, as the 

industrial fabrication process typically requires procedures that are easily reproducible and 

stable on a mass scale. Reproducibility is such a common issue for these triple cation devices 

that papers have been written with very precise recipes to address this exact issue90. It should 

be noted that in all these recipes, complex interlayers are key in gaining high efficiency, since 

interlayer recombination seems to be the main limitation86. 
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Figure 4.16 Architectures of the standard triple cation perovskite cell. Modified upon 

reproduction from 90. 

Nonetheless, cells using this altered type of perovskite have been shown to demonstrate 

record-high efficiencies, and as such significant efforts were undertaken to reproduce the 

architecture for the purpose of this thesis as well. However, even when following the recipes 

described in literature very carefully, cells failed to yield the same results. Initially, the PTAA-

Perov3C-C60-BCP-Cu inverted architecture was attempted. Many failed attempts to attain a 

reasonable efficiency, in addition with difficulties with the evaporator caused a switch to 

glass/FTO/c-TiO2/mp-TiO2/ CH3NH3PbI3/spiro-MeOTAD/Au regular architecture, which is 

described in for example109. With this architecture personal top efficiencies of up to 6.9% 

were achieved, and these top devices represented a very small fraction of the many batches 

that were fabricated. Some IV curves of the fabricated devices are shown in Figure 4.17. 

Improvement of up to 10% could be attained by using a cleanroom-specific recipe for the 

triple perovskite, which had slightly different molar ratios, and which was developed through 

much trial and error by perovskite users there (who managed to attain efficiencies up to 18%). 

However, this is still a far cry from reported values in literature.  
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Figure 4.17. IV curves for one of the fabricated inverted triple cation devices, using PTAA 
architecture as described by Stolterfoht et al90. 

 

Figure 4.18 JV curves for one of the fabricated regular triple cation devices, using Pedot Au 
architecture with local cleanroom recipe 
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Key factors in making perovskite so difficult to reproduce are the precise required ratios of 

the multiple components, the order in which the components can be added together, the 

stability of the solution, the glovebox ambient temperature and atmosphere as mentioned 

before63, as well as the method of deposition of the perovskite solution. The used method for 

our work was spin-drop deposition110, which involves first depositing the perovskite solution 

on a sample, then initiating a carefully tailored spin-speed program on a spin-coater holding 

the sample, and depositing the antisolvent (there are various kinds with various reported 

effects) at the correct time under the correct angle to sublimate the crystalline, “darker” 

phase of the perovskite. Failure to replicate any of these aspects accurately can result in the 

wrong phase of perovskite, pinholes, or unstable crystallization. After deposition the layer is 

annealed for on a hot-plate of 100 degrees Celsius for 40-60 minutes. Again, conditions of the 

box can have an effect. All this has given perovskite a reputation of being notoriously difficult 

to reproduce. 

In addition, there are certain other aspects which are still not fully understood for the 

material, such as the so-called light soaking effect which makes the perovskite devices more 

or less efficient after exposing them to AM1.5 lamp light. The most common explanation for 

this is the fact that the interstitial ions in the perovskite crystal (A in Figure 4.14) may in fact 

be mobile, even in the solid phase, and will accumulate at interfaces depending on the applied 

voltages and light to which the material is exposed32. This implies that even during fabrication, 

even the lighting of the perovskite in the glovebox may affect the optimal crystallization, 

which would be another explanation for the variety in cleanroom recipes across research 

groups. 

While these difficulties at reproducing efficiencies may seem troubling and cast doubt on the 

industrial application of perovskite, there are many groups that have indeed succeeded at 

creating ever-higher efficiencies with perovskite devices, using special perovskite structures 

such as a 2D/3D ordering of the crystal111, and even the addition of caffeine112. For this reason, 

it remains a subject of enthusiastic research in the academic world. 

 




