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Abstract

The main goal of this article is to study an averaging principle for a class of two-time-scale
stochastic differential delay equations in which the slow-varying process includes a multiplicative
fractional Brownian noise with Hurst parameter H ∈ ( 1

2 , 1) and the fast-varying process is a
rapidly-changing diffusion. We would like to emphasize that the approach proposed in this
paper is based on the fact that a stochastic integral with respect to fractional Brownian motion
with Hurst parameter in ( 1

2 , 1) can be defined as a generalized Stieltjes integral. In particular,
to prove a limit theorem for the averaging principle, we will introduce a sequence of stopping
times to control the size of multiplicative fractional Brownian noise. Then, inspired by the
Khasminskii’s approach, an averaging principle is developed in the sense of convergence in the
p-th moment uniformly in time.
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1. Introduction

Let (Ω,F , {Ft}t≥0,P) be a stochastic basis satisfying the usual conditions. Given H ∈ (0, 1),
a continuous centered Gaussian process (BH(t))t≥0 with the covariance function

E[BH(t)BH(s)] =
1

2
(|t|2H + |s|2H − |t− s|2H), t, s ∈ R+,

is called one-dimensional fractional Brownian motion (FBM) and H is the corresponding Hurst
parameter. Since FBM characterized by the stationarity of its increments and a medium- or
long-memory property, so it is in sharp contrast with martingales and Markov processes [20, 22].
FBM also exhibits power scaling and path regularity properties with Hurst parameter H. It has
become a popular choice for applications where classical processes cannot model the property of
long memory [2, 6]. Due to the long-memory property of FBM when H ∈ ( 1

2 , 1), thus, in this
paper, we restrict ourselves to consider values of the Hurst parameter bigger than 1

2 .
It is well known that owing to different rates of interactions of subsystems and components,

singularly perturbed systems which have a wide range of applications in science and engineering
usually exhibit multi-scale behavior. Although there has been vast literature on the study for
singularly perturbed systems [7, 9], the multi-scale property makes the underlying systems highly
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complex, thus difficult to analyze. The averaging principle pioneered by Khasminskii [16] for a
class of diffusions provides an effective way to reduce the complexity of the systems in which
both fast and slow components co-exist reflected by a time-scale separation parameter ε ∈ (0, 1).
The idea of averaging principle is that there esixts a limit system given by an average of the slow
component with respect to the invariant measure of the fast component and it can approximate
the slow component in a suitable sense whenever ε ↓ 0. The work on stochastic averaging
principles proposed by Khasminskii [16] inspired much of the subsequent development; see [12, 17,
18, 25, 35, 36, 37, 39, 40] for stochastic differential equations (SDEs) and [3, 4, 10, 27, 28, 29, 30,
34] for stochastic partial differential equations. In particular, Hairer and Li [14] considered slow-
fast systems where the slow system is driven by FBM and proved the convergence to the averaged
solution took place in probability. Very recently, Pei, Inahama and Xu answered affirmatively
that an averaging principle still holds for fast-slow mixed SDEs driven by both Brownian motion
(BM) and FBM H ∈ ( 1

2 , 1) in the mean square sense [25] and H ∈ ( 1
3 ,

1
2 ] in the mean sense [26].

The aforementioned references are all concerned with systems without memory. Nevertheless, in
response to the great needs of dynamical systems with memory (delay), there is also extensive
literature on stochastic differential delay equations (SDDEs); see for example, [8, 19] and [21].
Bao, Song, Yin and Yuan [1] studied ergodicity and strong limit results for an averaging principle
for a class of two-time-scale functional SDEs. Later, Hu and Yuan [15] extended results in [1]
to neutral functional SDEs with two-time-scales. Using weak convergence method, Wu and
Yin [36] developed an averaging principle for functional diffusions with two-time scales in which
the slow-varying process includes path-dependent functionals and the fast-varying process is a
rapidly-changing diffusion. Nevertheless, except some developments for functional diffusions such
as [1, 15, 36], the investigation on two-time-scale SDDEs with non-martingale-type noises is even
more scarce to the best of our knowledge.

In contrast to the rapid progress in two-time-scale delay systems and non-martingale-type
noises, the study on averaging principles for SDDEs driven by multiplicative fractional Brownian
noise is still in its infancy. In addition, the underlying random noise in financial mathematics,
which consists of two parts: one part, describing the economical background for a stock price
(a long memory which is a property of FBM), and the other part, coming from the randomness
inherent for the stock market (a Brownian noise), is much more natural. Because, BM is lack
of memory, and FBM with H ∈ ( 1

2 , 1) is too smooth, a model driven by both processes is free
of such drawbacks. For examples, a mixed Black and Scholes model was firstly proposed by
Schoenmakers and Kloeden [31] to discuss the problem of arbitrage. Cheridito [5] studied the
martingale properties of the linear combination of BM and FBM independently.

With the motivation above, this work aims to establish an averaging principle for fast-slow
mixed SDDEs. In this paper, we shall bring delays, Brownian noise, multiplicative fractional
Brownian noise and two-time-scale system together, and prove a limit theorem for the averaging
principle for SDDEs driven by multiplicative fractional Brownian noise with Hurst parameter
H ∈ ( 1

2 , 1) and Brownian noise. Since multiplicative fractional Brownian noise and Brownian
noise coexisting, we see that the techniques in the present paper are much more complicated and
different from those of [1, 15], our main tools consist of precise estimates in Besov-type spaces (see
(2.5) below) and fractional calculus approach, i.e. generalized Stieltjes integral method, following
the methodology presented in Nualart and Rascanu [23]. Moreover, the technique adopted in
[25, Lemma 4.2], which is a key ingredient in obtaining averaging principle, does not work for
the case SDDEs and one of the outstanding issues is the infinite-dimensional phase space of the
segment processes (see Xt, Yt bellow), which makes the goal of estimating the displacement of
the segment process a very difficult task (see Lemma 3.8 bellow). To overcome these difficulties,
new approaches have to be developed. A key of our approach is the use of the newly developed
fractional calculus approach. Our main idea of the proof for the limit theorem is based on
considering a suitable sequence of stopping times to control the size of the multiplicative fractional
Brownian noise. Then, inspired by the Khasminskii’s approach, a limit theorem of the averaging
principle is proved in the sense of convergence in the p-th moment uniformly in time. Let us
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point out again that the novelty of our paper is the segment processes and delay dealing with
two-time-scale equations driven by both multiplicative fractional Brownian noise and Brownian
noise and some previous works are generalized and improved partially, e.g.[1, 25, 39, 40].

This paper is organized as follows. Section 2 presents some necessary notations and assump-
tions. A limit theorem of the averaging principle for two-time-scale mixed SDDEs driven by
multiplicative fractional Brownian noise subject to an additional fast-varying diffusion process is
then proved in Section 3. Finally, an appendix is provided at the end of the paper as technical
complements.

2. Preliminaries

In this section, we will recall some basic facts on the generalised Stieltje integral that will play
a main role in our paper, see e.g. [23, 13, 22, 41] for more details. Throughout this paper, unless
otherwise specified, we use the following notation. Let Rn be an n-dimensional Euclidean space
with norm | · |. Let T > 0. Fix the parameter α, such that 0 < α < 1

2 , denote by Wα,1(0, T ;Rn)
the space of measurable functions f : [0, T ]→ Rn such that

‖f‖α,1 :=

∫ T

0

|f(s)|
sα

ds+

∫ T

0

∫ s

0

|f(s)− f(ζ)|
(s− ζ)α+1

dζds <∞.

Following Zähle [41], for f ∈ Wα,1(0, T ;Rn), 0 ≤ s < t ≤ T , we can define a generalized Stieltje
integral ∫ T

0

f(r)dg(r) =(−1)α
∫ T

0

Dα
0+f(r)D1−α

T− gT−(r)dr, (2.1)∫ t

s

f(r)dg(r) =

∫ T

0

f(r)1(s,t)dg(r), (2.2)

where, in general, for 0 ≤ a < c ≤ T, gc−(r) := g(r)−g(c), and for a < t < c the Weyl derivatives
are given respectively by

Dα
a+f(t) =

1

Γ(1− α)

( f(t)

(t− a)α
+ α

∫ t

a

f(t)− f(ζ)

(t− ζ)α+1
dζ
)
,

D1−α
c− gc−(t) =

(−1)1−α

Γ(α)

(g(t)− g(c)

(c− t)1−α + (1− α)

∫ c

t

g(t)− g(ζ)

(ζ − t)2−α dζ
)
,

where Γ denotes the Gamma function. It can be proved that the integral (2.1) exists and that
the following crucial inequality holds∣∣∣ ∫ T

0

f(t)dg(t)
∣∣∣ ≤ ‖g‖α,0,T

Γ(1− α)Γ(α)
‖f‖α,1,

where

‖g‖α,0,T := sup
0≤s<t≤T

( |g(t)− g(s)|
(t− s)1−α +

∫ t

s

|g(ζ)− g(s)|
(ζ − s)2−α dζ

)
<∞.

For the sake of shortness, we denote Λα,g :=
‖g‖α,0,T

Γ(1−α)Γ(α) .

From now on, given the m-dimensional FBM denoted by (BHt )t≥0 with H ∈ ( 1
2 , 1), we take a

parameter α ∈ (1−H, 1
2 ) which will be fixed througout this paper. For f ∈ Wα,1(0, T ;Rn) the

integral ∫ T

0

f(s)dBHs
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will be understood in the sense of definition (2.1) pathwise, which makes sense due to Λα,BH <∞
a.s. (cf. [23]), that is ∣∣∣ ∫ T

0

f(t)dBHt

∣∣∣ ≤ Λα,BH‖f‖α,1. (2.3)

Furthermore, by the classical Fernique’s theorem, for any 0 < ϑ < 2, we have

E
[
e(Λα,BH )ϑ

]
<∞. (2.4)

We follow the approach [13, 23] to introduce some necessary spaces and norms. Let τ > 0,
(s, t) ⊂ [−τ, T ]. We will denote by Wα,∞

0 (s, t;Rn) the space of measurable functions f : [s, t]→
Rn such that

‖f‖α,∞(s,t) := sup
r∈[s,t]

(
|f(r)|+

∫ r

s

|f(r)− f(u)|
(r − u)α+1

du
)
<∞, (2.5)

For shortness, denote ‖f(r)‖α(s) := |f(r)| +
∫ r
s
|f(r)−f(u)|
(r−u)α+1 du. We also need to introduce a new

norm in the space Wα,∞
0 (s, t;Rn), that is, for any λ ≥ 1

‖f‖pα,λ(s,t) := sup
r∈[s,t]

e−λr
(
|f(r)|+

∫ r

s

|f(r)− f(u)|
(r − u)α+1

du

)p
, p ≥ 1.

We will use the notation ‖f‖pα,∞(τ) := ‖f‖pα,∞(−τ,T ), ‖f‖
p
α,λ(τ) := ‖f‖pα,λ(−τ,T ) and ‖f(r)‖α(τ) :=

‖f(r)‖α(−τ). Note that when τ = 0, we shall omit (τ) in the name of the corresponding norm.
Now, we recall an auxiliary technical lemma from [11].

Lemma 2.1. For any non-negative a and b such that a+ b < 1, and for any λ ≥ 1, there exists
a positive constant C such that∫ t

0

e−λ(t−r)(t− r)−ar−bdr ≤ Cλa+b−1.

In addition, for b ≤ 0 and 0 ≤ a < 1, and for any λ ≥ 1, we have∫ t

0

e−λ(t−r)(t− r)−ar−bdr ≤ Γ(1− a)t−bλa−1.

Later on, we will also need the following estimate which follows from [23, Proposition 4.1 and
Proposition 4.3].

Lemma 2.2. For measurable functions f : [0, T ]→ Rn, there exists a constant C > 0 such that∥∥∥∥∫ t

0

f(r)dr

∥∥∥∥
α

≤ C
∫ t

0

|f(r)|(t− r)−αdr,

and ∥∥∥∥ ∫ t

0

f(r)dBHr

∥∥∥∥
α

≤ CΛα,BH

∫ t

0

((t− r)−2α + r−α)
(
|f(r)|+

∫ r

0

|f(r)− f(q)|
(r − q)1+α

dq
)
dr.

Througout this paper, C and C∗ denote positive constants that may depend on the parameters
α, T and the initial values and vary from line to line. C∗ is used to emphasize that the constant
depends on the corresponding parameter ∗ which is one or more than one parameter.
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3. Systems of Fast-Slow SDDEs

Let Rn⊗Rm denote the collection of all n×m matrices with real entries. For an A ∈ Rn⊗Rm,
‖A‖ stands for its Frobenius matrix norm. For a fixed τ > 0, let L := C([−τ, 0];Rn) denote the
family of all continuous functions from [−τ, 0] −→ Rn, endowed with the uniform norm ‖·‖∞. For
h(·) ∈ C([−τ,∞);Rn) and t ≥ 0, define the segment ht ∈ L by ht(θ) := h(t+ θ), θ ∈ [−τ, 0]. Let
BH = {BHt , t ∈ [0, T ]} and W = {Wt, t ∈ [0, T ]} be independent m-dimensional FBM adapted
to {Ft} and m-dimensional {Ft}-Bm, respectively.

We are concerned with the following mixed SDDEs driven by multiplicative fractional Brow-
nian noise with Hurst parameter H ∈ ( 1

2 , 1) and Brownian noise:

dXε(t) = b1 (Xε
t , Y

ε
t ) dt+ σ1(Xε(t− τ))dBHt , t > 0, Xε

0 = ξ ∈ L , (3.1)

dY ε(t) =
1

ε
b2 (Xε

t , Y
ε(t), Y ε(t− τ)) dt+

1√
ε
σ2 (Xε

t , Y
ε(t), Y ε(t− τ)) dWt, (3.2)

with the initial value Y ε0 = η ∈ L , where the parameter 0 < ε� 1 represents the ratio between
the natural time scale of the Xε and Y ε variables and b1 : L ×L → Rn, σ1 : Rn → Rn⊗Rm, b2 :
L × Rn × Rn → Rn and σ2 : L × Rn × Rn → Rn ⊗ Rm are Gâteaux differentiable. The
integral

∫
· dW should be interpreted as an Itô stochastic integral and the integral

∫
· dBH as a

generalised Stieltjes integral.
We denote by ∇(i) the gradient operators for the i-th component. Throughout this article,

for any χ, ψ ∈ L and x1, x2, y1, y2 ∈ Rn, we assume that

• (H1) ∇b1 = (∇(1)b1,∇(2)b1) is bounded, and there exists L1 > 0 such that

|b1(χ, ψ)| ≤ L1(1 + ‖χ‖∞).

• (H2) The function σ1 is C1 such that its Frechet derivative w.r.t x is bounded and globally
Lipschitz continuous, i.e. there exist L2, L3 > 0 such that

|D1σ1(x)| ≤ L2 and |D1σ1(x)−D1σ1(y)| ≤ L3|x− y|.

• (H3) ∇b2 = (∇(1)b2,∇(2)b2,∇(3)b2) and ∇σ2 = (∇(1)σ2,∇(2)σ2,∇(3)σ2) are bounded.

• (H4) There exist λ1 > λ2 > 0, independent of χ, such that

2〈x1 − x2, b2(χ, x1, y1)− b2(χ, x2, y2)〉+ ‖σ2(χ, x1, y1)− σ2(χ, x2, y2)‖
≤ −λ1|x1 − x2|2 + λ2|y1 − y2|2.

• (H5) For the intial value Xε
0 = ξ ∈ L , there exists a λ3 > 0 such that

|ξ(t)− ξ(s)| ≤ λ3|t− s|, s, t ∈ [−τ, 0].

According to [33, Theorem 4.1] and [19, Theorem 2.2, pp.150], the existence and uniqueness
of the solutions of (3.1) are guaranteed by the conditions (H1)-(H3) and (H5).

Lemma 3.1. Suppose that (H1)-(H3) and (H5) hold. Then, (3.1) has a unique strong solution
(Xε(t), Y ε(t))t≥−τ , i.e.,

Xε(t) = ξ(0) +

∫ t

0

b1 (Xε
s , Y

ε
s ) ds+

∫ t

0

σ1(Xε(s− τ))dBHs , t > 0,

Y ε(t) = η(0) +
1

ε

∫ t

0

b2 (Xε
s , Y

ε(s), Y ε(s− τ)) ds

+
1√
ε

∫ t

0

σ2 (Xε
s , Y

ε(s), Y ε(s− τ)) dWs, t > 0,

Xε
0 = ξ ∈ L , Y ε0 = η ∈ L .
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3.1. Ergodicity of the Frozen Equation with Memory

Consider an SDE with memory associated with the fast motion and frozen slow component
in the following form

dY (t) = b2(χ, Y (t), Y (t− τ))dt+ σ2(χ, Y (t), Y (t− τ))dWt, t > 0, (3.3)

with the initial value Y0 = η ∈ L .
Under (H3), (3.3) has a unique strong solution (Y (t))t≥−τ (see, e.g. [19, Theorem 2.2, pp.

150]). To highlight the initial value η ∈ L and frozen segment χ ∈ L , we write the corresponding
solution process (Y χ,η(t))t≥−τ and the segment process (Y χ,ηt )t≥0 instead of (Y (t))t≥−τ and
(Yt)t≥0, respectively.

In fact, the unique invariant measure with respect to the frozen equation (3.3) has been
obtained in [1]. So, we recall the ergodicity result here.

Lemma 3.2. Under (H3)-(H4), Y χ,ηt has a unique invariant measure µχ, and there exist con-
stants C, ρ > 0 such that∣∣E[b1(χ, Y χ,ηt )]− b̄1(χ)

∣∣ ≤ Ce−ρt(1 + ‖χ‖∞ + ‖η‖∞), t ≥ 0, η ∈ L ,

where

b̄1(χ) =

∫
L

b1(χ, ϕ)µχ(dϕ), χ ∈ L , (3.4)

and µχ is a unique invariant measure with respect to the frozen equation (3.3).

Let F̃t be the σ-field generated by {Y χ,ηr , r ≤ t} and for 0 ≤ ζ ≤ s ≤ T , set

J (s, ζ, χ, η) = E[〈b1(χ, Y χ,ηs )− b̄1(χ), b1(χ, Y χ,ηζ )− b̄1(χ)〉]. (3.5)

Then, the following lemma holds.

Lemma 3.3. For 0 ≤ ζ ≤ s ≤ T , there exist constants C, ρ > 0 which are independent of s, ζ
such that

J (s, ζ, χ, η) ≤ C(1 + ‖χ‖2∞ + ‖η‖2∞)e−
ρ
2 (s−ζ). (3.6)

Proof: By (3.5), invoking the Markov property of Y χ,ηt , one has

J (s, ζ, χ, η) = E[〈b1(χ, Y χ,ηζ )− b̄1(χ),E[(b1(χ, Y χ,ηs )− b̄1(χ))|F̃ζ ]〉]
≤ E

[
〈b1(χ, Y χ,ηζ )− b̄1(χ),EY

χ,η
ζ [b1(χ, Y χ,ηs−ζ)− b̄1(χ)]〉

]
.

Using Hölder’s inequality first and (H1), Lemma 3.2 and [1, Section 3, (3.11)], we obtain

J (s, ζ, χ, η) ≤ (E[|b1(χ, Y χ,ηζ )− b̄1(χ)|2])
1
2

(
E
[
|EY

χ,η
ζ [b1(χ, Y χ,ηs−ζ)− b̄1(χ)]|2

]) 1
2

≤ C(1 + ‖χ‖2∞ + ‖η‖2∞)e−
ρ
2 (s−ζ),

where C > 0 is a constant. This completes the proof. �
Now, we recall the following result from [1].

Lemma 3.4. Suppose that (H1)-(H5) hold. Then, b̄1 : L → Rn, defined by (3.4), is Lipschitz.
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3.2. Main Result.

According to (3.4), we can formulate an averaged equation:

dX̄(t) = b̄1(X̄t)dt+ σ1(X̄(t− τ))dBHt , t > 0, X̄0 = ξ ∈ L . (3.7)

By Lemma 3.4 and [33, Theorem 4.1], it is easy to know (3.7) has a unique strong solution
(X̄(t))t≥−τ .

We now state our main result of averaging principle in the sense of convergence in the p-th
moment uniformly in time.

Theorem 3.5. Suppose that (H1)-(H5) hold, for any p > 0, one has

lim
ε→0

E
[
‖Xε − X̄‖pα,∞(τ)

]
= 0.

The proof of Theorem 3.5 consists of the following steps: Firstly, we give some a priori
estimate for the solution of (3.1). Secondly, following the discretization techniques inspired by
Khasminskii in [16], we introduce the auxiliary process (X̂ε, Ŷ ε) and divide [0, T ] into intervals
depending of size δ := τ

N < 1, for a positive integer N sufficiently large. For any t ∈ [0, T ], we

construct Ŷ ε with initial value Ŷ ε0 = Y ε0 = η ∈ L

dŶ ε(t) =
1

ε
b2(Xε

tδ
, Ŷ ε(t), Ŷ ε(t− τ))dt+

1√
ε
σ2(Xε

tδ
, Ŷ ε(t), Ŷ ε(t− τ))dWt,

Ŷ ε(tδ) = Y ε(tδ),

where tδ = b tδ cδ is the nearest breakpoint preceding t and define the process X̂ε by

dX̂ε(t) = b1(Xε
tδ
, Ŷ εt )dt+ σ1(Xε(t− τ))dBHt (3.8)

with the initial value X̂ε
0 = ξ ∈ L . Then, we can derive uniform bounds ‖Xε − X̂ε‖α,λ(τ).

Thirdly, based on the ergodic property of the frozen equation, we obtain appropriate control of
‖X̂ε − X̄‖α,λ(τ). Finally, we can estimate ‖Xε − X̄‖α,λ(τ) and obtain the main result.

Step 1: A priori estimate for the solution of (3.1). We use techniques similar to those
used in [32, Theorem 4.2] to give a priori estimate for the solution Xε.

Lemma 3.6. Suppose that (H1), (H2) and (H5) hold. Then, for any p ≥ 1, there exists a
constant Cp > 0 which is independent of ε such that

E[‖Xε‖pα,∞(τ)] ≤ Cp.

Proof: For shortness, denote, Λ := Λα,BH ∨ 1 and for any λ ≥ 1 let

‖f‖∞,λ(τ),t := sup
−τ≤s≤t

e−λs|f(s)|,

‖f‖1,λ(τ),t := sup
−τ≤s≤t

e−λs
∫ s

−τ

|f(s)− f(r)|
(s− r)α+1

dr.

We start by estimating ‖Xε‖∞,λ(τ),t. We have

‖Xε‖∞,λ(τ),t ≤ sup
−τ≤s≤0

e−λs|ξ(s)|+ sup
0≤s≤t

e−λs|Xε(s)|

≤ sup
−τ≤s≤0

e−λs|ξ(s)|+ sup
0≤s≤t

e−λs
∣∣∣∣ ∫ s

0

b1 (Xε
r , Y

ε
r ) dr

∣∣∣∣
7



+ sup
0≤s≤t

e−λs
∣∣∣∣ ∫ s

0

σ1(Xε(r − τ))dBHr

∣∣∣∣
=: I1 + I2 + I3.

First, for I1, I2, by (H1), one has

I1 + I2 ≤ ‖ξ‖α,∞(−τ,0) + C sup
0≤s≤t

e−λs
∫ s

0

(1 + ‖Xε
r‖∞)dr

≤ ‖ξ‖α,∞(−τ,0) + C sup
0≤s≤t

∫ s

0

e−λ(s−r)(1 + sup
−τ≤q≤r

e−λr|Xε(q)|)dr

≤ ‖ξ‖α,∞(−τ,0) + C sup
0≤s≤t

∫ s

0

e−λ(s−r)(1 + ‖Xε‖∞,λ(τ),t)dr,

where C > 0 is a constant.
Next, for the third term I3, by (H2) and (2.3), we have

I3 ≤ Λα,BH sup
0≤s≤t

e−λs
∫ s

0

|σ1(Xε(r − τ))|
rα

dr

+Λα,BH sup
0≤s≤t

e−λs
∫ s

0

(∫ r

0

|σ1(Xε(r − τ))− σ1(Xε(q − τ))|
(r − q)1+α

dq
)
dr

≤ Λα,BH sup
0≤s≤t

e−λs
∫ s−τ

−τ

(1 + |Xε(r)|
(r + τ)α

+

∫ r

−τ

|Xε(r)−Xε(q)|
(r − q)1+α

dq
)
dr

≤ Λα,BH sup
0≤s≤t

∫ s−τ

−τ
e−λ(s−r)

(1 + e−λr|Xε(r)|
(r + τ)α

+e−λr
∫ r

−τ

|Xε(r)−Xε(q)|
(r − q)1+α

dq
)
dr

≤ Λα,BH sup
0≤s≤t

∫ s−τ

−τ
e−λ(s−r)[(1 + ‖Xε‖∞,λ(τ),t)(r + τ)−α + ‖Xε‖1,λ(τ),t]dr

≤ Λα,BH sup
0≤s≤t

∫ s

0

e−λ(s−u+τ)[(1 + ‖Xε‖∞,λ(τ),t)u
−α + ‖Xε‖1,λ(τ),t]du.

Thus, by Lemma 2.1, it follows that

‖Xε‖∞,λ(τ),t ≤ KΛ
(
1 + λα−1‖Xε‖∞,λ(τ),t + λ−1‖Xε‖1,λ(τ),t

)
,

with some constant K which is dependent on ‖ξ‖α,∞(−τ,0) and can be assumed to be greater
than 1 without loss of generality.

To proceed, noting that for t ∈ [−τ, 0], one has∫ t

−τ

|Xε(t)−Xε(s)|
(t− s)1+α

ds =

∫ t

−τ

|ξ(t)− ξ(s)|
(t− s)1+α

ds,

and for t ∈ [0, T ], one has∫ t

−τ

|Xε(t)−Xε(s)|
(t− s)1+α

ds =

∫ 0

−τ

|Xε(t)− ξ(0)|
(t− s)1+α

ds+

∫ 0

−τ

|ξ(0)− ξ(s)|
(−s)1+α

ds

+

∫ t

0

|Xε(t)−Xε(s)|
(t− s)1+α

ds.

Consequently, we have

‖Xε‖1,λ(τ),t ≤ sup
−τ≤s≤0

e−λs
∫ s

−τ

|ξ(s)− ξ(r)|
(s− r)1+α

dr + sup
0≤s≤t

e−λs
∫ 0

−τ

|ξ(0)− ξ(r)|
(−r)1+α

dr
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+ sup
0≤s≤t

e−λs
∫ 0

−τ

|Xε(s)− ξ(0)|
(s− r)1+α

dr + sup
0≤s≤t

e−λs
∫ s

0

|Xε(s)−Xε(r)|
(s− r)1+α

dr

=:

4∑
i=1

Ji.

It is easy to obtain
J1 + J2 ≤ ‖ξ‖α,∞(−τ,0).

In what follows, by (2.3), using the same step as for the terms I2 and I3, we have

J3 ≤ sup
0≤s≤t

e−λs

sα
|Xε(s)− ξ(0)|

≤ sup
0≤s≤t

1

sα

∫ s

0

e−λ(s−r)(1 + ‖Xε‖∞,λ(τ),t)dr

+Λα,BH sup
0≤s≤t

1

sα

∫ s

0

e−λ(s−u+τ)[(1 + ‖Xε‖∞,λ(τ),t)u
−α + ‖Xε‖1,λ(τ),t]du

≤ Λα,BH sup
0≤s≤t

∫ s

0

e−λ(s−u+τ)[(1 + ‖Xε‖∞,λ(τ),t)u
−2α + (s− u)−α‖Xε‖1,λ(τ),t]du

≤ KΛ(1 + λ2α−1‖Xε‖∞,λ(τ),t + λ−α‖Xε‖1,λ(τ),t).

For the term J4, applying Lemma 2.2, we derive that

J4 ≤ sup
0≤s≤t

e−λs
∫ s

0

∣∣ ∫ s
r
b1(Xε

q , Y
ε
q )dq

∣∣
(s− r)1+α

dr

+Λα,BH sup
0≤s≤t

e−λs
(∫ s

0

(s− r)−2α|σ1(Xε(r − τ))|dr

+

∫ s

0

(s− r)−α
(∫ r

0

|σ1(Xε(r − τ))− σ1(Xε(q − τ))|
(r − q)1+α

dq

)
dr

)
≤ sup

0≤s≤t
e−λs

∫ s

0

|b1(Xε
q , Y

ε
q )|

(s− r)α
dr

+Λα,BH sup
0≤s≤t

e−λs
(∫ s−τ

−τ
(s− r − τ)−2α(1 + |Xε(r)|)dr

+

∫ s−τ

−τ
(s− τ − r)−α

∫ r

−τ

|σ1(Xε(r))− σ1(Xε(q))|
(r − q)1+α

dqdr

)
≤ sup

0≤s≤t

∫ s

0

e−λ(s−r) e
−λr(1 + sup0≤q≤r |Xε(q)|)

(s− r)α
dr

+Λα,BH sup
0≤s≤t

∫ s−τ

−τ
e−λ(s−r) 1 + e−λr|Xε(r)|

(s− r − τ)2α
dr

+Λα,BH sup
0≤s≤t

∫ s−τ

−τ
e−λ(s−r)(s− τ − r)−αe−λr

∫ r

−τ

|Xε(r)−Xε(q)|
(r − q)1+α

dqdr

≤ sup
0≤s≤t

∫ s

0

e−λ(s−r)(s− r)−α(1 + ‖Xε‖∞,λ(τ),t)dr

+Λα,BH sup
0≤s≤t

∫ s

0

e−λ(s−u+τ)(s− u)−2α(1 + ‖Xε‖∞,λ(τ),t)du

+Λα,BH sup
0≤s≤t

∫ s

0

e−λ(s−u+τ)(s− u)−α‖Xε‖1,λ(τ)tdr.

Thus, by Lemma 2.1 again, we have

‖Xε‖1,λ(τ),t ≤ KΛ(1 + λ2α−1‖Xε‖∞,λ(τ),t + λ−α‖Xε‖1,λ(τ)t). (3.9)
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Putting λ = (4KΛ)
1

1−α , we get

‖Xε‖∞,λ(τ),t ≤
4

3
KΛ

(
1 + λ−1‖Xε‖1,λ(τ),t

)
. (3.10)

Then, plugging this to the inequality (3.9) and making simple transformations, we arrive at

‖Xε‖1,λ(τ),t ≤
3

2
KΛ + 2(KΛ)1/(1−α) ≤ CΛ1/(1−α),

where C > 0 is a constant which is independent of ε.
Substituting this into (3.10), we get

‖Xε‖∞,λ(τ),t ≤ CΛ1/(1−α).

Thus, we have

‖Xε‖α,∞(τ) ≤ eλT
(
‖Xε‖∞,λ(τ),T + ‖Xε‖1,λ(τ),T

)
≤ CeΛ1/(1−α)

Λ1/(1−α)

≤ CeΛ1/(1−α)(
1 +

(
Λα,BH

)1/(1−α))
.

Since 0 < 1
1−α < 2, by (2.4), we have

E
[
e(Λα,BH )ϑ

]
≤ C.

Then, the statement follows. �
Using similar techniques, we have the following remark. Here, we omit the proof.

Remark 3.7. Suppose that (H1)-(H5) hold. Then, for any p ≥ 1, there exist constants C,Cp > 0
which are independent of ε such that

‖X̂ε‖α,∞(τ) + ‖X̄‖α,∞(τ) ≤ Ce(Λα,BH )1/(1−α)(
1 + (Λα,BH )1/(1−α)

)
(3.11)

and

E[‖X̄‖pα,∞(τ)] + E[‖X̂ε‖pα,∞(τ)] ≤ Cp. (3.12)

Lemma 3.8. Suppose that (H1)-(H5) hold. Then, for any p > 1
1−α , there exists a constant

Cp > 0 which is independent of ε such that

sup
t∈[0,T ]

E[‖Xε
t −Xε

tδ
‖p∞] ≤ Cpδp(1−α)−1.

Proof: We start to estimate |Xε(t)−Xε(s)|. For any s, t ∈ [0, T ], there exists C > 0 such that

|Xε(t)−Xε(s)| ≤
∣∣∣∣ ∫ t

s

b1 (Xε
r , Y

ε
r ) dr

∣∣∣∣+

∣∣∣∣ ∫ t

s

σ1(Xε(r − τ))dBHr

∣∣∣∣
≤ C

∫ t

s

(1 + ‖Xε
r‖∞)dr + CΛα,BH

∫ t

s

|σ1(Xε(r − τ))|
(r − s)α

dr

+CΛα,BH

∫ t

s

∫ r

s

|σ1(Xε(r − τ))− σ1(Xε(q − τ))|
(r − q)1+α

dqdr

≤ C

∫ t

s

(1 + sup
−τ≤u≤r

|Xε(u)|)dr

+CΛα,BH

∫ t

s

(1 + sup−τ≤u≤r |Xε(u)|)
(r − s)α

dr
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+CΛα,BH

∫ t

s

∫ r

s

|Xε(r − τ)−Xε(q − τ)|
(r − q)1+α

dqdr

≤ C(1 + ‖Xε‖α,∞(τ))|t− s|+ CΛα,BH

∫ t

s

(1 + ‖Xε‖α,∞(τ))

(r − s)α
dr

+CΛα,BH

∫ t−τ

s−τ

∫ v

s−τ

|Xε(v)−Xε(u)|
(v − u)1+α

dudv

≤ C(1 + Λα,BH )(1 + ‖Xε‖pα,∞(τ))|t− s|
1−α. (3.13)

Note that the same conclusion holds for |X̂ε(t)− X̂ε(s)| and |X̄(t)− X̄(s)|.
Then, observe that

E[‖Xε
t −Xε

tδ
‖p∞] ≤ E

[N−1∑
m=0

sup
−(m+1)δ≤θ≤−mδ

|Xε(t+ θ)−Xε(tδ + θ)|p
]

≤ N max
m=0,··· ,N−1

E
[

sup
−(m+1)δ≤θ≤−mδ

|Xε(t+ θ)−Xε(tδ + θ)|p
]

=: N max
m=0,··· ,N−1

Jp(t,m, δ),

where N = τ
δ by the definition of δ. For any t ∈ [0, T ] and any θ ∈ [−τ, 0], there exist k,m ≥ 0

such that t ∈ [kδ, (k + 1)δ) and θ ∈ [−(m+ 1)δ,−mδ]. Thus, one has

t+ θ ∈ [(k −m− 1)δ, (k + 1−m)δ] and tδ + θ ∈ [(k −m− 1)δ, (k −m)δ].

We consider three cases.

Case 1. m ≤ k − 1. Involving Hölder’s inequality, by (H1), (H2), (3.13) and Lemma 3.6, there
exists a constant Cp > 0 such that

Jp(t,m, δ) ≤ CpE
[

sup
−(m+1)δ≤θ≤−mδ

∣∣∣ ∫ t+θ

kδ+θ

b1(Xε
r , Y

ε
r )dr +

∫ t+θ

kδ+θ

σ1(Xε(r − τ))dBHr

∣∣∣p]
≤ Cpδ

p−1

∫ t−mδ

kδ−(m+1)δ

E
[
|b1(Xε

r , Y
ε
r )|p

]
dr

+CpE
[∣∣∣ ∫ t−(m+1)δ

kδ−(m+1)δ

σ1(Xε(r − τ))dBHr

∣∣∣p]
+CpE

[
sup

−(m+1)δ≤θ≤−mδ

∣∣∣ ∫ t+θ

t−(m+1)δ

σ1(Xε(r − τ))dBHr

∣∣∣p]
+CpE

[
sup

−(m+1)δ≤θ≤−mδ

∣∣∣ ∫ kδ+θ

kδ−(m+1)δ

σ1(Xε(r − τ))dBHr

∣∣∣p]
≤ Cpδ

p + Cpδ
p(1−α)E

[(
1 + Λα,BH

)p
(1 + ‖Xε‖α,∞(τ))

p
]

≤ Cpδ
p(1−α).

Case 2. m ≥ k − 1. By (H5), there exists a constant Cp > 0 such that

|Xε(t+ θ)−Xε(tδ + θ)|p = |ξ(t+ θ)− ξ(tδ + θ)|p ≤ Cpδp.

Case 3. m = k. By Hölder’s inequality, we deduce from (H1), (H2) and (3.13) that

Jp(t,m, δ) = E
[

sup
−(m+1)δ≤θ≤−mδ

|Xε(t+ θ)−Xε(tδ + θ)|p
]

≤ Cpδ
p + CpE

[
sup

−(m+1)δ≤θ≤−mδ
|Xε(t+ θ)−Xε(tδ + θ)|p1{t+θ>0}

]
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≤ Cpδ
p + CpE

[
sup

−t≤θ≤−kδ

∣∣∣ ∫ t+θ

0

b1(Xε
r , Y

ε
r )dr

∣∣∣p]
+CpE

[
sup

−t≤θ≤−kδ

∣∣∣ ∫ t+θ

0

σ1(Xε(r − τ))dBHr

∣∣∣p]
≤ Cpδ

p(1−α),

where Cp > 0 is a constant. Thus, the desired assertion is finished by taking the discussions
above into account. �

To derive uniform bounds ‖Xε− X̂ε‖α,λ(τ), we will also need following estimate ‖Y εt − Ŷ εt ‖∞
which follows from [1, Lemma 4.2, Lemma 4.3] and to make our paper self-contained, the proofs
will be given in Appendix.

Lemma 3.9. Under (H1)-(H5), for any p > 2
1−α , there exists β > 0 which is independent of ε

such that

sup
t∈[0,T ]

E[‖Y εt − Ŷ εt ‖p∞] ≤ Cpε−1δp(1−α)−1eβ
δ
ε . (3.14)

where Cp > 0 is independent of ε.

Lemma 3.10. Under (H1)-(H5), for any p > 2
1−α , we have

sup
t∈[0,T ]

E[‖Y εt ‖p∞ + ‖Ŷ εt ‖p∞] ≤ Cp,

where Cp is a constant which is independent of ε.

Lemma 3.11. Suppose that (H1)-(H5) hold. Then, for any p > 2
1−α , there exists a constant

Cp > 0 such that

E[‖X̂ε −Xε‖pα,λ(τ)] ≤ Cpδ
p(1−α)(1 + ε−1eβ

δ
ε ).

Proof: From (3.1) and (3.8), we have

E[‖X̂ε −Xε‖pα,λ(τ)] ≤ E
[

sup
t∈[0,T ]

e−λt|X̂ε(t)−Xε(t)|p
]

+E
[

sup
t∈[0,T ]

e−λt
(∫ t

0

|X̂ε(t)−Xε(t)− X̂ε(s) +Xε(s)|
(t− s)α+1

ds

)p]
+E
[

sup
t∈[0,T ]

e−λt
(∫ 0

−τ

|X̂ε(t)−Xε(t)− X̂ε(s) +Xε(s)|
(t− s)α+1

ds

)p]
=: A1 + A2 + A3.

Firstly, for A1,A2, by (H1) and (H2), Lemma 2.2, Lemma 3.8 and Lemma 3.9, we have

A1 + A2 ≤ CpE
[

sup
t∈[0,T ]

e−λt
∥∥∥∥∫ t

0

(b1(Xε
s , Y

ε
s )− b1(Xε

s , Ŷ
ε
s ))ds

∥∥∥∥p
α

]
+CpE

[
sup
t∈[0,T ]

e−λt
∥∥∥∥∫ t

0

(b1(Xε
s , Ŷ

ε
s )− b1(Xε

sδ
, Ŷ εs ))ds

∥∥∥∥p
α

]
≤ CpE

[
sup
t∈[0,T ]

(∫ t

0

|b1(Xε
s , Y

ε
s )− b1(Xε

s , Ŷ
ε
s )|

(t− s)α
ds

)p]
+CpE

[
sup
t∈[0,T ]

(∫ t

0

|b1(Xε
s , Ŷ

ε
s )− b1(Xε

sδ
, Ŷ εs )|

(t− s)α
ds

)p]
12



≤ Cp

∫ T

0

(E[‖Xε
s −Xε

sδ
‖p∞ + ‖Y εs − Ŷ εs ‖p∞])ds

≤ Cpδ
p(1−α)−1(1 + ε−1eβ

δ
ε ).

Secondly, for A3, we have

A3 ≤ CpE
[

sup
t∈[0,T ]

e−λt
(∫ 0

−τ

|X̂ε(t)−Xε(t)− X̂ε(0) +Xε(0)|
(t− s)α+1

ds

)p]
+CpE

[
sup
t∈[0,T ]

e−λt
(∫ 0

−τ

|X̂ε(0)−Xε(0)− ξ(s) + ξ(s)|
(−s)α+1

ds

)p]
≤ CpE

[
sup
t∈[0,T ]

e−λt
(∫ 0

−τ

|X̂ε(t)−Xε(t)|
(t− s)α+1

ds

)p]
≤ CpE

[
sup
t∈[0,T ]

t−pαe−λt
∣∣∣∣ ∫ t

0

(b1(Xε
s , Ŷ

ε
s )− b1(Xε

sδ
, Ŷ εs ))ds

∣∣∣∣p]
+CpE

[
sup
t∈[0,T ]

t−pαe−λt
∣∣∣∣ ∫ t

0

(b1(Xε
s , Y

ε
s )− b1(Xε

s , Ŷ
ε
s ))ds

∣∣∣∣p]
≤ CpE

[
sup
t∈[0,T ]

tp−1−pαe−λt
∫ t

0

‖Xε
s −Xε

sδ
‖p∞ds

]
+CpE

[
sup
t∈[0,T ]

tp−1−pαe−λt
∫ t

0

‖Y εs − Ŷ εs ‖p∞ds
]

≤ Cp

∫ T

0

(E[‖Xε
s −Xε

sδ
‖p∞ + ‖Y εs − Ŷ εs ‖p∞])ds

≤ Cpδ
p(1−α)−1(1 + ε−1eβ

δ
ε ).

Thus, we have

E[‖X̂ε −Xε‖pα,λ(τ)] ≤ Cpδ
p(1−α)−1(1 + ε−1eβ

δ
ε ).

This completes the proof. �

Step 2: The estimate for ‖X̄ − X̂ε‖α,λ(τ).
For each R > 1, we define the following stopping time τR,

τR := inf{t ≥ 0 : ‖BH‖α,0,t ≥ R} ∧ T. (3.15)

Lemma 3.12. Suppose that (H1)-(H5) hold. Then, for any p > 2
1−α , there exist positive con-

stants Cp and Cp,R such that

E[‖X̂ε − X̄‖pα,λ(τ)] ≤ Cp
√
R−1E[‖BH‖2α,0,T ] + Cp,Rδ

p(1−α)−1(1 + ε−1eβ
δ
ε ) + Cp,R(δ + εp

′
δ−p

′
),

where p′ ∈ (1, 2).

Proof: From (3.7) and (3.8), we have

E[‖X̂ε − X̄‖pα,λ(τ)] ≤ E[‖X̂ε − X̄‖pα,λ(τ)1{τR<T}]

+E[‖X̂ε − X̄‖pα,λ(τ)1{τR≥T}]. (3.16)

For the first term on the right-hand side of inequality (3.16), by Chebyshev’s inequality, we
have

E[‖X̂ε − X̄‖pα,λ(τ)1{τR<T}] ≤
(
E[‖X̂ε − X̄‖2pα,λ(τ)]

) 1
2
(
P
(
τR < T

)) 1
2 . (3.17)
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It is easy to obtain

P
(
τR < T

)
≤ P

(
‖BH‖α,0,T ≥ R

)
≤ R−1E[‖BH‖2α,0,T ].

Because ‖BH‖α,0,T has moments of all order, see Lemma 7.5 in Nualart and Răşcanu [23], thus
we have

lim
R→∞

R−1E[‖BH‖2α,0,T ] = 0.

Then, summing up all bounds we obtain

E[‖X̂ε − X̄‖pα,λ(τ)1{τR<T}] ≤ Cp
√
R−1E[‖BH‖2α,0,T ].

For the second term on the right-hand side of inequality (3.16), we have

E[‖X̂ε − X̄‖pα,λ(τ)1D] ≤ CpE
[

sup
t∈[0,T ]

e−λt|X̂ε(t)− X̄(t)|p1D
]

+CpE
[

sup
t∈[0,T ]

e−λt
(∫ t

0

|X̂ε(t)− X̄(t)− X̂ε(s) + X̄(s)|
(t− s)α+1

ds

)p
1D

]
+CpE

[
sup
t∈[0,T ]

e−λt
(∫ 0

−τ

|X̂ε(t)− X̄(t)− X̂ε(s) + X̄(s)|
(t− s)α+1

ds

)p
1D

]
=: B1 + B2 + B3,

where D := {‖BH‖α,0,T ≤ R}.
For the first two terms, we have

B1 + B2 ≤ CpE
[

sup
t∈[0,T ]

e−λt
∥∥∥∥ ∫ t

0

(b1(Xε
sδ
, Ŷ εs )− b̄1(Xε

sδ
))ds

∥∥∥∥p
α

1D

]
+CpE

[
sup
t∈[0,T ]

e−λt
∥∥∥∥∫ t

0

(b̄1(Xε
sδ

)− b̄1(Xε
s ))ds

∥∥∥∥p
α

1D

]
+CpE

[
sup
t∈[0,T ]

e−λt
∥∥∥∥∫ t

0

(b̄1(Xε
s )− b̄1(X̂ε

s ))ds

∥∥∥∥p
α

1D

]
+CpE

[
sup
t∈[0,T ]

e−λt
∥∥∥∥∫ t

0

(b̄1(X̂ε
s )− b̄1(X̄s))ds

∥∥∥∥p
α

1D

]
+CpE

[
sup
t∈[0,T ]

e−λt
∥∥∥∥∫ t

0

(σ1(X̂ε(s− τ))− σ1(X̄(s− τ)))dBHs

∥∥∥∥p
α

1D

]
+CpE

[
sup
t∈[0,T ]

e−λt
∥∥∥∥∫ t

0

(σ1(Xε(s− τ))− σ1(X̂ε(s− τ)))dBHs

∥∥∥∥p
α

1D

]
=:

6∑
i=1

Ci.

It is easy to know

C1 ≤ CpE
[

sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

(b1(Xε
sδ
, Ŷ εs )− b1(Xε

sδ
))ds

∣∣∣∣p]
+CpE

[
sup
t∈[0,T ]

(∫ t

0

|
∫ t
s
(b1(Xε

rδ
, Ŷ εr )− b1(Xε

rδ
))dr|

(t− s)1+α
ds

)p]
=: C11 + C12.

For C11, we have

C11 ≤ CpE
[

sup
t∈[0,T ]

∣∣∣∣ b
t
δ c−1∑
k=0

∫ (k+1)δ

kδ

(b1(Xε
kδ, Ŷ

ε
s )− b1(Xε

kδ))ds

∣∣∣∣p]
14



+CpE
[

sup
t∈[0,T ]

∣∣∣∣ ∫ t

tδ

(b1(Xε
sδ
, Ŷ εs )− b1(Xε

sδ
))ds

∣∣∣∣p]

≤ Cpδ
p + CpE

[
sup
t∈[0,T ]

(
b t
δ
c
)p−1

b tδ c−1∑
k=0

∣∣∣∣ ∫ (k+1)δ

kδ

(b1(Xε
kδ, Ŷ

ε
s )− b1(Xε

kδ))ds

∣∣∣∣p]
≤ Cpδ

p +
Cp
δp

max
0≤k≤bTδ c−1

E
[∣∣∣∣ ∫ (k+1)δ

kδ

(b1(Xε
kδ, Ŷ

ε
s )− b1(Xε

kδ))ds

∣∣∣∣p].
Then, for C12, by Hölder’s inequality and the fact that α < 1

2 , we have

C12 ≤ CpE
[

sup
t∈[0,T ]

(∫ t

0

|
∫ t
s
(b1(Xε

rδ
, Ŷ εr )− b1(Xε

rδ
))dr|

(t− s)1+α
ds

)p]
≤ CpE

[
sup
t∈[0,T ]

(∫ t

0

(t− s)
(−1−α)p+3

2
+α

p−1 ds

)p−1

×
∫ t

0

|
∫ t
s
(b1(Xε

rδ
, Ŷ εr )− b1(Xε

rδ
))dr|p

(t− s) 3
2 +α

ds

]
≤ CpE

[
sup
t∈[0,T ]

∫ t

0

|
∫ t
s
(b1(Xε

rδ
, Ŷ εr )− b1(Xε

rδ
))dr|p

(t− s) 3
2 +α

1`cds

]
+CpE

[
sup
t∈[0,T ]

∫ t

0

|
∫ t
s
(b1(Xε

rδ
, Ŷ εr )− b1(Xε

rδ
))dr|p

(t− s) 3
2 +α

1`ds

]
=: C121 + C122,

where 1· is an indicator function, ` := {t < (b sδ c+ 2)δ} and `c := {t ≥ (b sδ c+ 2)δ}.
By (H1) and the fact that bλ1c − bλ2c ≤ λ1 − λ2 + 1, for λ1 ≥ λ2 ≥ 0, we have

C121 ≤ CpE
[

sup
t∈[0,T ]

∫ t

0

|
∫ (b sδ c+1)δ

s
(b1(Xε

rδ
, Ŷ εr )− b1(Xε

rδ
))dr|p

(t− s) 3
2 +α

1`cds

]
+CpE

[
sup
t∈[0,T ]

∫ t

0

|
∫ t
tδ

(b1(Xε
rδ
, Ŷ εr )− b1(Xε

rδ
))dr|p

(t− s) 3
2 +α

1`cds

]
+CpE

[
sup
t∈[0,T ]

∫ t

0

(b tδ c − b
s
δ c − 1)p−1

(t− s) 3
2 +α

×
b tδ c−1∑
k=b sδ c+1

∣∣∣∣ ∫ (k+1)δ

kδ

(b1(Xε
kδ, Ŷ

ε
r )− b1(Xε

kδ))dr

∣∣∣∣p1`cds]

≤ CpE
[

sup
t∈[0,T ]

∫ t

0

(
(b sδ c+ 1)δ − s

)p−1 ∫ (b sδ c+1)δ

s
|(b1(Xε

rδ
, Ŷ εr )− b1(Xε

rδ
))|pdr

(t− s) 3
2 +α

1`cds

]
+CpE

[
sup
t∈[0,T ]

∫ t

0

(
t− tδ

)p−1 ∫ t
tδ
|(b1(Xε

rδ
, Ŷ εr )− b1(Xε

rδ
))|pdr

(t− s) 3
2 +α

1`cds

]

+
Cp
δp−1

E
[

sup
t∈[0,T ]

∫ t

0

(t− s)p− 3
2−α

b tδ c−1∑
k=b sδ c+1

∣∣∣∣ ∫ (k+1)δ

kδ

(b1(Xε
kδ, Ŷ

ε
r )− b1(Xε

kδ))dr

∣∣∣∣p1`cds]

≤ Cpδ
p−1 +

Cp
δp

max
0≤k≤bTδ c−1

E
[∣∣∣∣ ∫ (k+1)δ

kδ

(b1(Xε
kδ, Ŷ

ε
r )− b1(Xε

kδ))dr

∣∣∣∣p].
For C122, set  := {b tδ c > 1} and c := {b tδ c ≤ 1}, by (H1) and the fact that t − s <

b sδ cδ − s+ 2δ ≤ 2δ, we have

C122 ≤ CpE
[

sup
t∈[0,T ]

∫ (b tδ c−1)δ

0

|
∫ t
s
(b1(Xε

rδ
, Ŷ εr )− b1(Xε

rδ
))dr|p

(t− s) 3
2 +α

1
⋂
`ds

]
15



+CpE
[

sup
t∈[0,T ]

∫ t

(b tδ c−1)δ

|
∫ t
s
(b1(Xε

rδ
, Ŷ εr )− b1(Xε

rδ
))dr|p

(t− s) 3
2 +α

1
⋂
`ds

]
+CpE

[
sup
t∈[0,T ]

∫ t

0

|
∫ t
s
(b1(Xε

rδ
, Ŷ εr )− b1(Xε

rδ
))dr|p

(t− s) 3
2 +α

1c
⋂
`ds

]
≤ Cpδ

p sup
t∈[0,T ]

(∫ (b tδ c−1)δ

0

(t− s)p− 3
2−α1

⋂
`ds

)
+Cp sup

t∈[0,T ]

(∫ t

(b tδ c−1)δ

(t− s)p− 3
2−α1

⋂
`ds

)
+Cp sup

t∈[0,T ]

(∫ t

0

(t− s)p− 3
2−α1c

⋂
`ds

)
≤ Cpδ

p− 1
2−α.

Thus, for any p′ ∈ (1, 2), we have

C1 ≤ Cpδ
p−1 +

Cp
δp

max
0≤k≤bTδ c−1

{(
E
[∣∣∣∣ ∫ (k+1)δ

kδ

(b1(Xε
kδ, Ŷ

ε
r )− b1(Xε

kδ))dr

∣∣∣∣2])
p′
2

×
(
E
[∣∣∣∣ ∫ (k+1)δ

kδ

(b1(Xε
kδ, Ŷ

ε
r )− b1(Xε

kδ))dr

∣∣∣∣
2(p−p′)
2−p′

]) 2−p′
2
}

≤ Cpδ
p−1 +

Cp
δp

max
0≤k≤bTδ c−1

{(
E
[∣∣∣∣ ∫ (k+1)δ

kδ

(b1(Xε
kδ, Ŷ

ε
r )− b1(Xε

kδ))dr

∣∣∣∣2])
p′
2

×
(
δ

2(p−p′)
2−p′ −1E

[ ∫ (k+1)δ

kδ

|(b1(Xε
kδ, Ŷ

ε
r )− b1(Xε

kδ)|
2(p−p′)
2−p′ dr

]) 2−p′
2
}

≤ Cpδ
p−1 +

Cp
δp′

max
0≤k≤bTδ c−1

{(
E
[∣∣∣∣ ∫ (k+1)δ

kδ

(b1(Xε
kδ, Ŷ

ε
r )− b1(Xε

kδ))dr

∣∣∣∣2])
p′
2

≤ Cpδ
p−1 +

Cp
δp′

max
0≤k≤bTδ c−1

(∫ δ
ε

0

∫ δ
ε

ζ

Jk(s, ζ)dsdζ

) p′
2

, (3.18)

where 0 ≤ ζ ≤ s ≤ δ
ε , and

Jk(s, ζ) = E[〈b1(Xε
kδ, Ŷ

ε
sε+kδ)− b̄1(Xε

kδ), b1(Xε
kδ, Ŷ

ε
ζε+kδ)− b̄1(Xε

kδ)〉]. (3.19)

Now, by the construction of Ŷ ε and a time shift transformation, for any fixed k and s ∈ [0, δ],
we have

Ŷ ε(s+ kδ) = Ŷ ε(kδ) +
1

ε

∫ kδ+s

kδ

b2(Xε
kδ, Ŷ

ε(r), Ŷ ε(r − τ))dr

+
1√
ε

∫ kδ+s

kδ

σ2(Xε
kδ, Ŷ

ε(r), Ŷ ε(r − τ))dWr

= Ŷ ε(kδ) +
1

ε

∫ s

0

b2
(
Xε
kδ, Ŷ

ε(r + kδ), Ŷ ε(r + kδ − τ)
)
dr

+
1√
ε

∫ s

0

σ2

(
Xε
kδ, Ŷ

ε(r + kδ), Ŷ ε(r + kδ − τ)
)
dW ∗r ,

where W ∗t = Wt+kδ −Wkδ is the shift version of Wt, and hence they have the same distribution.
For fixed ε > 0 and r ≥ 0, let

Y X
ε
kδ,Ŷ

ε
kδ
(r
ε

+ θ
)

= Ŷ ε(r + kδ + θ), θ ∈ [−τ, 0].
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Let W̄ be a Wiener process and independent of W . Construct a process Y X
ε
kδ,Ŷ

ε
kδ by means

of

Y X
ε
kδ,Ŷ

ε
kδ(

s

ε
) = Ŷ ε(kδ) +

∫ s
ε

0

b2
(
Xε
kδ, Y

Xεkδ,Ŷ
ε
kδ(r), Y X

ε
kδ,Ŷ

ε
kδ(r − τ)

)
dr

+

∫ s
ε

0

σ2

(
Xε
kδ, Y

Xεkδ,Ŷ
ε
kδ(r), Y X

ε
kδ,Ŷ

ε
kδ(r − τ)

)
dW̄r

= Ŷ ε(kδ) +
1

ε

∫ s

0

b2
(
Xε
kδ, Y

Xεkδ,Ŷ
ε
kδ(

r

ε
), Y X

ε
kδ,Ŷ

ε
kδ(

r

ε
− τ)

)
dr

+
1√
ε

∫ s

0

σ2

(
Xε
kδ, Y

Xεkδ,Ŷ
ε
kδ(

r

ε
), Y X

ε
kδ,Ŷ

ε
kδ(

r

ε
− τ)

)
d ¯̄W ε

r , (3.20)

where ¯̄W ε
t =
√
εW̄t/ε is the scaled version of W̄t. Because both W ∗ and ¯̄W are independent of

(Xε
kδ, Ŷ

ε
kδ), by comparison, yields

(Xε
kδ, Ŷ

ε
s+kδ

)
s∈[0,δ)

∼
(
Xε
kδ, Y

Xεkδ,Ŷ
ε
kδ

s
ε

)s∈[0,δ), (3.21)

where ∼ denotes coincidence in distribution sense.
Thus, for s ∈ [0, δ), from (3.19), we have

Jk(s, ζ) = E[〈b1(Xε
kδ, Y

Xεkδ,Ŷ
ε
kδ

s )− b̄1(Xε
kδ), b1(Xε

kδ, Y
Xεkδ,Ŷ

ε
kδ

ζ )− b̄1(kδ,Xε
kδ)〉].

Let M ε
kδ be the σ-field generated by Xε

kδ and Ŷ εkδ that is independent of {Y χ,ηr : r ≥ 0}. By
adopting the approach in [24, Theorem 7.1.2] . We can show

Jk(s, ζ) = E
[
E[〈b1(Xε

kδ, Y
Xεkδ,Ŷ

ε
kδ

s )− b̄1(Xε
kδ), b1(Xε

kδ, Y
Xεkδ,Ŷ

ε
kδ

ζ )− b̄1(Xε
kδ)〉|M ε

kδ]
]

= E
[
J (s, ζ, χ, η)|(χ,η)=(Xεkδ,Ŷ

ε
kδ)

]
,

which, with the aid of Lemma 3.3, yields

Jk(s, ζ) ≤ C(1 + E
[
‖Xε

kδ‖2∞] + E
[
‖Ŷ εkδ‖2∞])e−

ρ
2 (s−ζ),

where C > 0 is a constant which is independent of k, ε, δ, s, ζ.
Then, by (3.18), one has

C1 ≤ Cp(εp
′
δ−p

′
+ δp−1).

Next, by Lemma 3.4, Lemma 3.8 and Lemma 3.11, it is easy to obtain

4∑
i=2

Ci ≤ CpE
[

sup
t∈[0,T ]

e−λt
∫ t

0

(t− s)−α|b̄1(Xε
sδ

)− b̄1(Xε
s )|pds1D

]
+CpE

[
sup
t∈[0,T ]

e−λt
∫ t

0

(t− s)−α|b̄1(Xε
s )− b̄1(X̂ε

s )|pds1D
]

+CpE
[

sup
t∈[0,T ]

e−λt
∫ t

0

(t− s)−α|b̄1(X̂ε
s )− b̄1(X̄s)|p1Dds

]
≤ CpE

[
sup
t∈[0,T ]

e−λt
(∫ t

0

(t− s)−
p
p−1αds

)p−1
∫ t

0

‖Xε
sδ
−Xε

s‖p∞ds
]

+CpE
[

sup
t∈[0,T ]

∫ t

0

e−λ(t−s)(t− s)−α sup
−τ≤r≤s

e−λs|X̂ε(r)−Xε(r)|p1Dds
]

+CpE
[

sup
t∈[0,T ]

∫ t

0

e−λ(t−s)(t− s)−α sup
−τ≤r≤s

e−λs|X̂ε(r)− X̄(r)|p1Dds
]
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≤ CpE
[

sup
t∈[0,T ]

∫ t

0

‖Xε
sδ
−Xε

s‖p∞ds
]

+CpE
[

sup
−τ≤t≤T

e−λt|X̂ε(t)−Xε(t)|p1D
][

sup
t∈[0,T ]

∫ t

0

e−λ(t−s)(t− s)−αds
]

+CpE
[

sup
−τ≤t≤T

e−λt|X̂ε(t)− X̄(t)|p1D
][

sup
t∈[0,T ]

∫ t

0

e−λ(t−s)(t− s)−αds
]

≤ Cpδ
p(1−α)−1(1 + ε−1eβ

δ
ε ) + Cpλ

α−1E[‖X̂ε − X̄‖pα,λ(τ)1D]. (3.22)

For C5, by Lemma 2.2, we have

C5 ≤ Cp,RE
[

sup
t∈[0,T ]

∫ t

0

e−λt[(t− r)−2α + r−α]‖σ1(X̂ε(r − τ))− σ1(X̄(r − τ))‖pα1Ddr

]
≤ Cp,RE

[
sup
t∈[0,T ]

∫ t

0

e−λt[(t− r)−2α + r−α]|σ1(X̂ε(r − τ))− σ1(X̄(r − τ))|p1Ddr
]

+Cp,RE
[

sup
t∈[0,T ]

∫ t

0

e−λt[(t− r)−2α + r−α]

(∫ r

0

(r − q)−1−α

×|σ1(X̂ε(r − τ))− σ1(X̄(r − τ))− σ1(X̂ε(q − τ)) + σ1(X̄(q − τ))|dq
)p

1Ddr

]
=: C51 + C52.

For C51, by Hölder inequality and Lemma 2.1, we have

C51 ≤ Cp,RE
[

sup
t∈[0,T ]

∫ t

0

e−λ(t−r)[(t− r)−2α + r−α] sup
−τ≤q≤r

e−λr|X̂ε(q)− X̄(q)|p1Ddr
]

≤ Cp,Rλ
2α−1E[‖X̂ε − X̄‖pα,λ(τ)1D].

By (H2) and Lemma 7.1 in Nualart and Răşcanu [23], there exists a constant C > 0 such
that

|σ(x1)− σ(x2)− σ(x3) + σ(x4)| ≤ C|x1 − x2 − x3 + x4|+ C|x1 − x3|
×(|x1 − x2|+ |x3 − x4|). (3.23)

Then, for C52, we have

C52 ≤ Cp,RE
[

sup
t∈[0,T ]

∫ t

0

e−λt[(t− r)−2α + r−α]

(∫ r−τ

−τ
(r − τ − u)−1−α

×|σ1(X̂ε(r − τ))− σ1(X̄(r − τ))− σ1(X̂ε(u)) + σ1(X̄(u))|du
)p

1Ddr

]
≤ Cp,RE

[
sup
t∈[0,T ]

∫ t−τ

−τ
e−λt[(t− s− τ)−2α + (s+ τ)−α]

(∫ s

−τ
(s− u)−1−α

×|σ1(X̂ε(s))− σ1(X̄(s))− σ1(X̂ε(u)) + σ1(X̄(u))|du
)p

1Dds

]
≤ Cp,RE

[
sup
t∈[0,T ]

∫ t−τ

−τ
e−λt[(t− s− τ)−2α + (s+ τ)−α]

×
(∫ s

−τ

|X̂ε(s)− X̄(s)− X̂ε(u) + X̄(u)|
(s− u)1+α

du

)p
1Dds

]
+Cp,RE

[
sup
t∈[0,T ]

∫ t−τ

−τ
e−λt[(t− s− τ)−2α + (s+ τ)−α]

×
(
|X̂ε(s)− X̄(s)|

∫ s

−τ

|X̂ε(s)− X̂ε(u)|
(s− u)1+α

du

)p
1Dds

]
18



+Cp,RE
[

sup
t∈[0,T ]

∫ t−τ

−τ
e−λt[(t− s− τ)−2α + (s+ τ)−α]

×
(
|X̂ε(s)− X̄(s)|

∫ s

−τ

|X̄(s)− X̄(u)|
(s− u)1+α

du

)p
1Dds

]
≤ Cp,RE

[
sup
t∈[0,T ]

∫ t−τ

−τ
e−λ(t−s)[(t− s− τ)−2α + (s+ τ)−α]

×(1 + ∆(X̂ε) + ∆(X̄))p‖X̂ε − X̄‖pα,λ(τ)1Dds

]
,

where

∆(X̂ε) = sup
−τ≤s≤T

∫ s

−τ

|X̂ε(s)− X̂ε(q)|
(s− q)1+α

dq,

∆(X̄) = sup
−τ≤s≤T

∫ s

−τ

|X̄(s)− X̄(q)|
(s− q)1+α

dq.

Then, by (3.11) and (3.13), under the condition that ‖BH‖α,0,T ≤ R, there exists a constant
CR, such

∆(X̂ε) + ∆(X̄) ≤ CΛα,BH (1 + ‖X̂ε‖α,∞(τ)) sup
−τ≤s≤T

∫ s

−τ
(s− r)(1−α)−1−αdr

+CΛα,BH (1 + ‖X̄‖α,∞(τ)) sup
−τ≤s≤T

∫ s

−τ
(s− r)(1−α)−1−αdr

≤ CΛα,BH (1 + ‖X̂ε‖α,∞(τ) + ‖X̄‖α,∞(τ))
≤ CR. (3.24)

Thus, by (3.24), we obtain

C5 ≤ C51 + C52 ≤ Cp,Rλ2α−1E[‖X̂ε − X̄‖pα,λ(τ)1D]. (3.25)

Now, let us consider B3. Clearly, we have

B3 = E
[

sup
t∈[0,T ]

e−λt
(∫ 0

−τ

|X̂ε(t)− X̄(t)|
(t− s)α+1

ds

)p]
≤ E

[
sup
t∈[0,T ]

t−pαe−λt|X̂ε(t)− X̄(t)|p
]

≤ CpE
[

sup
t∈[0,T ]

t−pαe−λt
∣∣∣∣ ∫ t

0

(b1(Xε
sδ
, Ŷ εs )− b̄1(Xε

sδ
))ds

∣∣∣∣p1D]
+CpE

[
sup
t∈[0,T ]

t−pαe−λt
∣∣∣∣ ∫ t

0

(b̄1(Xε
sδ

)− b̄1(Xε
s ))ds

∣∣∣∣p1D]
+CpE

[
sup
t∈[0,T ]

t−pαe−λt
∣∣∣∣ ∫ t

0

(b̄1(Xε
s )− b̄1(X̂ε

s ))ds

∣∣∣∣p1D]
+CpE

[
sup
t∈[0,T ]

t−pαe−λt
∣∣∣∣ ∫ t

0

(b̄1(X̂ε
s )− b̄1(X̄s))ds

∣∣∣∣p1D]
+CpE

[
sup
t∈[0,T ]

t−pαe−λt
∣∣∣∣ ∫ t

0

(σ1(X̂ε(s− τ))− σ1(X̄(s− τ)))dBHs

∣∣∣∣p1D]
+CpE

[
sup
t∈[0,T ]

t−pαe−λt
∣∣∣∣ ∫ t

0

(σ1(Xε(s− τ))− σ1(X̂ε(s− τ)))dBHs

∣∣∣∣p1D]
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=:

6∑
j=1

B3i.

First, for B31, one has

B31 ≤ CpE
[

sup
t∈[0,T ]

t−pαe−λt
∣∣∣∣ ∫ t

0

(b1(Xε
sδ
, Ŷ εs )− b̄1(Xε

sδ
))ds

∣∣∣∣p1D]
≤ CpE

[
sup
t∈[0,T ]

t−pαe−λt
∣∣∣∣ ∫ t

tδ

(b1(Xε
sδ
, Ŷ εs )− b̄1(Xε

sδ
))ds

∣∣∣∣p]

+CpE
[

sup
t∈[0,T ]

t−pα
(
b t
δ
c
)p−1

b tδ c−1∑
k=0

∣∣∣∣ ∫ (k+1)δ

kδ

(b1(Xε
kδ, Ŷ

ε
s )− b1(Xε

kδ))ds

∣∣∣∣p]

≤ Cpδ +
Cp
δp−1

E
[

sup
t∈[0,T ]

tp−1−pα
b tδ c−1∑
k=0

∣∣∣∣ ∫ (k+1)δ

kδ

(b1(Xε
kδ, Ŷ

ε
s )− b1(Xε

kδ))ds

∣∣∣∣p]
≤ Cpδ +

Cp
δp

max
0≤k≤bTδ c−1

E
[∣∣∣∣ ∫ (k+1)δ

kδ

(b1(Xε
kδ, Ŷ

ε
s )− b1(Xε

kδ))ds

∣∣∣∣p]
≤ Cpδ +

Cp
δp′

max
0≤k≤bTδ c−1

(
E
[∣∣∣∣ ∫ (k+1)δ

kδ

(b1(Xε
kδ, Ŷ

ε
r )− b1(Xε

kδ))dr

∣∣∣∣2])
p′
2

≤ Cpδ + Cpε
p′δ−p

′
.

On the other hand, for B32,B33 and B34, we obtain that

B32 + B33 + B34 ≤ CpE
[

sup
t∈[0,T ]

t−pαe−λt
∣∣∣∣ ∫ t

0

(b̄1(Xε
sδ

)− b̄1(Xε
s ))ds

∣∣∣∣p1D]
+CpE

[
sup
t∈[0,T ]

t−pαe−λt
∣∣∣∣ ∫ t

0

(b̄1(Xε
s )− b̄1(X̂ε

s ))ds

∣∣∣∣p1D]
+CpE

[
sup
t∈[0,T ]

t−pαe−λt
∣∣∣∣ ∫ t

0

(b̄1(X̂ε
s )− b̄1(X̄s))ds

∣∣∣∣p1D]
≤ CpE

[
sup
t∈[0,T ]

tp−1−pα
∫ t

0

e−λt‖Xε
sδ
−Xε

s‖p∞ds1D
]

+CpE
[

sup
t∈[0,T ]

tp−1−pα
∫ t

0

e−λ(t−s) sup
−τ≤r≤s

e−λs|X̂ε(r)−Xε(r)|pds1D
]

+CpE
[

sup
t∈[0,T ]

tp−1−pα
∫ t

0

e−λ(t−s) sup
−τ≤r≤s

e−λs|X̂ε(r)− X̄(r)|pds1D
]

≤ Cp

∫ T

0

E[‖Xε
sδ
−Xε

s‖p∞1D]ds+ Cpλ
−1E[‖X̂ε −Xε‖pα,λ(τ)1D]

+Cpλ
−1E[‖X̂ε − X̄‖pα,λ(τ)1D]

≤ Cpδ
p(1−α)−1(1 + ε−1eβ

δ
ε ) + Cpλ

−1E[‖X̂ε − X̄‖pα,λ(τ)1D].

Then, for B35, we have

B35 ≤ CpE
[

sup
t∈[0,T ]

t−pαe−λt
(∫ t

0

|σ1(X̂ε(r − τ))− σ1(X̄(r − τ))|
rα

dr

)p
1D

]
+CpE

[
sup
t∈[0,T ]

t−pαe−λt
(∫ t

0

(∫ r

0

(r − q)−1−α

×|σ1(X̂ε(r − τ))− σ1(X̄(r − τ))− σ1(X̂ε(q − τ)) + σ1(X̄(q − τ))|dq
)
dr

)p
1D

]
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≤ CpE
[

sup
t∈[0,T ]

t(p−1)(1−2α)e−λt
∫ t

0

|σ1(X̂ε(r − τ))− σ1(X̄(r − τ))|p

r2α
1Ddr

]
+CpE

[
sup
t∈[0,T ]

tp−1−pαe−λt
∫ t

0

(∫ r−τ

−τ
(r − τ − u)−1−α

×|σ1(X̂ε(r − τ))− σ1(X̄(r − τ))− σ1(X̂ε(u)) + σ1(X̄(u))|du
)p

1Ddr

]
≤ CpE

[
sup
t∈[0,T ]

t(p−1)(1−2α)

∫ t

0

e−λ(t−r) sup−τ≤q≤r e
−λr|X̂ε(q)− X̄(q)|p

r2α
1Ddr

]
+CpE

[
sup
t∈[0,T ]

tp−1−pα
∫ t−τ

−τ
e−λ(t−s)

×e−λs
(∫ s

−τ

|X̂ε(s)− X̄(s)− X̂ε(u) + X̄(u)|
(s− u)1+α

du

)p
1Dds

]
+CpE

[
sup
t∈[0,T ]

tp−1−pα
∫ t−τ

−τ
e−λ(t−s)

×e−λs
(
|X̂ε(s)− X̄(s)|

∫ s

−τ

|X̂ε(s)− X̂ε(u)|
(s− u)1+α

du

)p
1Dds

]
+CpE

[
sup
t∈[0,T ]

tp−1−pα
∫ t−τ

−τ
e−λ(t−s)

×e−λs
(
|X̂ε(s)− X̄(s)|

∫ s

−τ

|X̄(s)− X̄(u)|
(s− u)1+α

du

)p
1Dds

]
≤ Cp,Rλ

2α−1E[‖X̂ε − X̄‖pα,λ(τ)1D].

In the same way as for the term B35, we have

B36 ≤ Cp,Rλ2α−1E[‖X̂ε −Xε‖pα,λ(τ)1D].

Now, by taking the discussions above into account, we obtain

E[‖X̂ε − X̄‖pα,λ(τ)1D] ≤ Cp,Rδp(1−α)−1(1 + ε−1eβ
δ
ε ) + Cp,R(δ + εp

′
δ−p

′
).

Finally, we obtain that

E[‖X̂ε − X̄‖pα,λ(τ)] ≤ Cp,Rδ
p(1−α)−1(1 + ε−1eβ

δ
ε ) + Cp,R(δ + εp

′
δ−p

′
)

+Cp

√
R−1E[‖BH‖2α,0,T ].

Then, the statement follows. �

Step 3: The estimate for ‖X̄ −Xε‖α,λ(τ).
By Lemma 3.11 and Lemma 3.12, we have

E[‖Xε − X̄‖pα,λ(τ)] ≤ Cp,Rδ
p(1−α)−1(1 + ε−1eβ

δ
ε ) + Cp,R(δ + εp

′
δ−p

′
)

+Cp

√
R−1E[‖BH‖2α,0,T ].

Then, we have

E[‖Xε − X̄‖pα,∞(τ)] ≤ eλTE[‖Xε − X̄‖pα,λ(τ)]

≤ Cp,Rδ
p(1−α)−1(1 + ε−1eβ

δ
ε ) + Cp,R(δ + εp

′
δ−p

′
)

+Cp

√
R−1E[‖BH‖2α,0,T ].
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Thus, if δ = ε
√
− ln ε, then, for any p > 2

1−α , as R→∞, one see that

lim
ε→0

E[‖Xε − X̄‖pα,∞(τ)] = 0.

The Hölder’s inequality yields that above conclusion also holds for 0 < p ≤ 2
1−α .

This completes the proof. �

Appendix

Note that similar to the proofs of [1, Lemma 4.2, Lemma 4.3], the proofs of Lemma 3.9 and
Lemma 3.10 in this paper can be obtained. To make this paper self-contained, we present the
modified proof here.

The Proof of Lemma 3.9: In what follows, we verify (3.14) by an induction argument. For
any t ∈ [0, τ), due to Y ε0 = Ŷ ε0 = η, it is easy to check that

E[‖Y εt − Ŷ εt ‖p∞] ≤
bt/δc∑
j=0

E
[

sup
jδ≤s≤((j+1)δ)∧t

|Y ε(s)− Ŷ ε(s)|p
]

=: I(t, δ).

By means of Itô’s formula and B-D-G’s inequality, together with Y ε(tδ) = Ŷ ε(tδ), we obtain
from (H3) that

E
[

sup
jδ≤s≤((j+1)δ)∧t

|Y ε(s)− Ŷ ε(s)|p
]

≤ C

ε

∫ ((j+1)δ)∧t

jδ

E[‖Xε
s −Xε

sδ
‖p∞ + |Y ε(s)− Ŷ ε(s)|p]ds

+
1

2
E
[

sup
jδ≤s≤((j+1)δ)∧t

|Y ε(s)− Ŷ ε(s)|p
]
, t ∈ [0, τ).

Consequently, we conclude that

I(t, δ) ≤ 1

ε

∫ t

0

E[‖Xε
s −Xε

sδ
‖p∞]ds

+
1

ε

bt/δc∑
j=0

∫ ((j+1)δ)∧t

jδ

E[|Y ε(s)− Ŷ ε(s)|p]ds

≤ 1

ε

∫ t

0

E
[
‖Xε

s −Xε
sδ
‖p∞
]
ds

+
1

ε

∫ δ

0

bt/δc∑
j=0

E
[

sup
jδ≤r≤(jδ+s)∧t

|Y ε(r)− Ŷ ε(r)|p
]
ds

≤ 1

ε

∫ t

0

E[‖Xε
s −Xε

sδ
‖p∞]ds+

1

ε

∫ δ

0

I(t, s)ds. (3.26)

This, combined with Lemma 3.8 and Gronwall’s inequality, gives that

E[‖Y εt − Ŷ εt ‖p∞] ≤ Cpε−1δp(1−α)−1eβ
δ
ε , t ∈ [0, τ), (3.27)

for some Cp > 0.
Next, for any t ∈ [0, τ), thanks to (3.27), it is immediately to obtain

E[‖Y εt − Ŷ εt ‖p∞] ≤ E[‖Y ετ − Ŷ ετ ‖p∞] + E
[

sup
τ≤s≤t

|Y ε(s)− Ŷ ε(s)|p
]
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≤ Cpε
−1δp(1−α)−1eβ

δ
ε

+Cp

bt−τc∑
j=0

E
[

sup
(N+j)δ≤s≤((N+j+1)δ)∧t

|Y ε(s)− Ŷ ε(s)|p
]

=: Cpε
−1δp(1−α)−1eβ

δ
ε + CpM(t, τ, δ).

Carrying out a similar argument to derive (3.26), we deduce from (3.27) that

M(t, τ, δ) ≤ 1

ε

∫ t

τ

E[‖Xε
s −Xε

sδ
‖p∞]ds

+
1

ε

∫ δ

0

bt−τc∑
j=0

E
[

sup
(N+j)δ≤r≤((N+j)δ+s)∧t

|Y ε(r)− Ŷ ε(r)|p
]
ds

+
1

ε

∫ δ

0

bt−τc∑
j=0

E
[

sup
jδ≤s≤((j+1)δ)∧(t−τ)

|Y ε(s)− Ŷ ε(s)|p
]
ds

≤ Cp

(
ε−1δp(1−α)−1 +

δ

ε

δp(1−α)−1

ε
e
βδ
ε

)
+

1

ε

∫ δ

0

M(t, τ, s)ds.

Thus, the Gronwall’s inequality yields

M(t, τ, δ) ≤ Cp
δp(1−α)−1

ε
e
βδ
ε ,

where we have used ε
δ ∈ (0, 1). Finally, (3.27) follows by repeating the previous procedure. �

The Proof of Lemma 3.10: From (3.2), it follows that,

Y ε(t) = η(0) +

∫ t/ε

0

b2(Xε
εs, Y

ε(εs), Y ε(εs− τ))dt

+

∫ t/ε

0

σ2(Xε
εs, Y

ε(εs), Y ε(εs− τ))dW̄s, t > 0, (3.28)

where we used the fact that W̄t := 1√
ε
Wεt is a Brownian motion. For fixed ε > 0 and t ≥ 0, let

Ȳ ε(t+ θ) = Y ε(εt+ θ), θ ∈ [−τ, 0]. So, one has Ȳ εt = Y εεt. Observe that (3.28) can be rewritten
as follows.

Ȳ ε(t/ε) = η(0) +

∫ t/ε

0

b2(Xε
εs, Ȳ

ε(s), Ȳ ε(s− τ))dt

+

∫ t/ε

0

σ2(Xε
εs, Ȳ

ε(s), Ȳ ε(s− τ))dW̄s.

Then, following the argument which has been obtained in [1, Section 3, (3.11)], for any s > 0
we deduce that

E[‖Ȳ εs ‖2∞] ≤ 1 + ‖η‖2∞e−ρs + E
[

sup
0≤r≤εs

‖Xε
r‖2∞

]
.

This, together with Ȳ εt = Y εεt, gives that

E[‖Y εεs‖2∞] ≤ 1 + ‖η‖2∞e−ρs + E
[

sup
0≤r≤εs

‖Xε
r‖2∞

]
.

In particular, taking s = t/ε we arrive at,

E[‖Y εt ‖2∞] ≤ 1 + ‖η‖2∞ + E
[

sup
0≤r≤t

‖Xε
r‖2∞

]
.
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This, together with Lemma 3.6, yields that,

sup
t∈[0,T ]

E[‖Y εt ‖2∞] ≤ C

for some C > 0. Observe from Lemma 3.9 and Hölder’s inequality that

E[‖Ŷ εt ‖2∞] ≤ 2E[‖Y εt − Ŷ εt ‖2∞] + 2E[‖Y εt ‖2∞]

≤ C + C
(
ε−1δp(1−α)−1e

βδ
ε

)2/p
, p > 2(1− α)−1.

Next, taking δ = ε(− ln ε)
1
2 in the estimate above and letting y = (ln ε)

1
2 , we have

E[‖Y εt ‖2∞] ≤ 1 +
(
ey

2

(e−y
2y)p(1−α)−1eβy

)2/p
, p > 2(1− α)−1.

Then, the desired assertion follows since the leading term

ey
2

(e−y
2y)p(1−α)−1eβy → 0

as y ↑ ∞ whenever p > 2(1− α)−1. �
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