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Introduction

Modelling the dependencies of a process with the help of space-time partial
differential equations shall lead to solutions which capture typical observed phe-
nomena, e.g. the propagation of singularities, preservation of positivity, etc. The
heat or diffusion equation is an example of an equation the solutions of which
preserve the positivity (more correctly, the non-negativity) of initial data. It is
also an example of an equation whose solution operator exhibits strong smooth-
ing effects, e.g. continuous initial data are turned into C8-solutions. In addition,
we encounter the semigroup property. These analytic properties do have a prob-
abilistic companion. With the heat equation we can associate a Brownian motion
and we can use Brownian motion to represent solutions to the heat equation.
Indeed, the Gaussian semigroup pTGt qtě0 which gives the solution to the ini-
tial value problem to the heat equation admits a representation using Brownian
motion pBtqtě0 by

upt, xq “ pTGt gqpxq “ ExpgpBtqq. (1)

Since we may construct Brownian motion with the help of the fundamental solu-
tion to the heat equation, formula (1) looks rather natural. An obvious question
is to find those space-time partial differential operators which allow an analogous
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treatment. It is well known that this is limited to second order partial differential
operators with suitable coefficients of the type

B

Bt
´

n
ÿ

k,l“1

akl
B2

BxkBxl
`

n
ÿ

j“1

bj
B

Bxj
` c, (2)

where paklqk,l“1,...,n is a non-negative definite (symmetric) matrix. In our paper
we are not interested in minimal smoothness assumptions for coefficients, but
we are stimulated by the fact that certain higher order (in space and/or in
time) partial differential operators still admit certain positive solutions, some of
which can even be represented with the help of Markov processes, not necessarily
Brownian motion. The simplest and best known example is the Laplace operator
B2

Bt2 `∆n in the half-space R` ˆ Rn which is not of the type (2), but which has
solutions we can represent with the help of the Cauchy process. Indeed, the
Dirichlet problem

B2

Bt2
upt, xq `∆nupt, xq “ 0 in R` ˆ R

n, (3)

lim
tÑ0

upt, xq “ gpxq (4)

has for a suitable g a (unique) solution which is given by the Poisson integral,
i.e.

upt, xq “

ż

Rn

Pnpt, x´ yqgpyqdy. (5)

However, this classical Poisson formula in the half-space is clearly related to the
Cauchy process pCtqtě0 and the Cauchy semigroup pTCt qtě0, namely by

upt, xq “ pTCt gqpxq “ ExpgpCtqq. (6)

Note that equation (3) is of second order in t, not of first order. Taking in (3) the
(partial) Fourier transform with respect to x we arrive at the ordinary differential
equation

d2

dt2
ûpt, ξq ´ |ξ|2ûpt, ξq “ 0 (7)

and the “initial” condition

ûp0, ξq “ ĝpξq. (8)

Note that we have only one “initial” condition for the second order equation.
The Ansatz ûpt, ξq “ e´λt, λ “ λpξq, leads to the characteristic equation

λ2 ´ |ξ|2 “ 0 (9)

with the two solutions λ1,2 “ λ1,2pξq “ ˘|ξ|. The solution λ1pξq “ |ξ| gives

upt, xq “ F´1

ξ ÞÑxpe´t|¨|ĝqpxq “ pTCt gqpxq. (10)
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We may factorise (9) according to

pλ2 ´ |ξ|2q “ pλ´ |ξ|qpλ ` |ξ|q (11)

and the solution λpξq “ |ξ| is the one of interest. It is a continuous negative def-
inite function, hence it is associated with a convolution semigroup and therefore
with a Lévy process. Guided by this well known example, see [9], we want to
discuss the following problem: Let the partial differential equation with constant
coefficients

BN

BtN
upt, xq ´

N´1
ÿ

j“0

ÿ

|α|ďm

ajα
Bj

Btj

ˆ

´i
B

Bx

˙α

upt, xq “ 0 (12)

subject to the initial condition

upl´1qp0, xq “ hlpxq, l “ 0, . . . , N ´ 1. (13)

Is it possible to obtain solutions to (12)/(13) of the type

upt, xq “
L
ÿ

j“1

pγjT
pjq
t gjqpxq “

L
ÿ

j“1

γjE
xpgjpX

pjq
t qq, L ď N, (14)

where pT
pjq
t qtě0 is a positivity preserving semigroup acting on functions defined

on Rn and which is associated with a Markov process pX
pjq
t qtě0? Clearly, there

are quite a few problems such as regularity or domain questions. To handle such
question we choose to work in the Hilbert space setting, i.e. we use L2pRnq as un-
derlying space, a restriction which is not as restrictive as it seems, other settings
e.g. the Feller setting working with C8pRnq, the space of all continuous functions
vanishing at infinity, is in principle possible. In addition, we are searching only
for holomorphic semigroups. Another problem is that we need to associate with
(12) a total of N independent “initial” conditions, not necessarily of the form
(13), but in (14) we have only L ď N conditions.

In Section 1 we look at an abstract version of our problem and push it formally to
a stage such that we can derive conditions to solve (12) with the help of (14). We
then turn to equations of the form (12) and for this we need to introduce pseudo-
differential operators with constant coefficients, but rather general ξ-dependence
of their symbols, see Section 2. In Section 3 we discuss in more detail the case
N “ 2 in order to understand how to transfer our problem to questions posed
on the involved symbols. Maybe the most important insight of this section is
that our programme to find solutions of the type (14) works in principle well,
however only case by case studies will allow us to cope with initial data. The
final section is devoted to various classes of examples, by no means covering the
full scope of our programme. Indeed, in some sense this paper is more about
a programme to obtain positivite solutions of higher order space-time partial
differential equations which allow representations with the help of some Markov
processes.
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Our notions and notation are standard and we refer to [4]. The Fourier transform
is given by

ûpξq “ p2πq´n
2

ż

Rn

e´ix¨ξupxqdx

which entails that the constant in Plancherel’s theorem is 1 and that in the
convolution theorem it is p2πq´ n

2 , i.e. pu ¨ vq^ “ p2πq´ n
2 pû ˚ v̂q. Sometimes we

write Fu for û and the inverse Fourier transform is denoted by F´1. Note that
we mainly use the partial Fourier transform with respect to x, i.e. for u “ upt, xq
we denote by Fu or û the Fourier transform with respect to x only. We write
L2

`pRnq or L2
` for the cone tu P L2pRnq|u ě 0 a.e.u and u ě 0 in the sense

of L2pRnq means u ě 0 a.e. The term
`

´i B
Bx

˘α
means p´iq|α| Bα1

Bx
α1

1

¨ ¨ ¨ Bαn

Bxαnn
. A

continuous function ψ : Rn Ñ C is called a continuous negative definite function
if ψp0q ě 0 and for all t ą 0 the function ξ ÞÑ e´tψpξq is positive definite in the
sense of Bochner. Equivalently, a function is continuous and negative definite if
it admits a Lévy-Khinchin representation. A Bernstein function f : p0,8q Ñ R`

is a C8-function satisfying p´1qkf pkqpsq ď 0, k P N. The most important result
for us is that if f is a Bernstein function and ψ a continuous negative definite
function, then f ˝ψ is a continuous negative definite function too. The standard
reference for Bernstein functions is [7]

1 An Abstract Problem

Let pAj , DpAjqq, 1 ď j ď N , be a finite family of closable operators densely
defined on L2pRnq, each of which extends to a generator, denoted again by Aj ,

of a strongly continuous contraction semigroup pT
pjq
t qtě0 on L2pRnq. Since

DpAj ˝Alq “ tg P DpAlq|Alg P DpAjqu

it follows that the assumption

rAj , Als “ AjAl ´AlAj “ 0 for all 1 ď j, l ď N (15)

implies that for any j1, . . . , jM , 1 ď jk ď N , the operator Aj1 ˝ Aj2 ˝ ¨ ¨ ¨ ˝ AjM
is defined on

V :“ DpA1 ˝ ¨ ¨ ¨ ˝AN q (16)

which we assume to be dense in L2pRnq too. We find for the Yosida approxima-
tion Aj,λ of Aj that rAj,λ, Al,λs “ 0 and it follows that for all 1 ď j, l ď N we
have

rAj , T
plq
t s “ 0, t ě 0. (17)

As a further assumption we pose

T
pjq
t V Ă V for all 1 ď j ď N. (18)
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Note that in later situations we will replace V in (16) and (18) with a smaller
subspace of V . Clearly we have the equalities

d

dt
T

pjq
t g “ AjT

pjq
j g, g P DpAjq, (19)

as well as
d

dt
T

pjq
t g “ AjT

pjq
t g on V. (20)

By (17) and (18) we have with 1 ď j1, . . . , jM ď N , 1 ď l1, . . . , lk ď N that any

permutation of the compositions Aj1 ˝ ¨ ¨ ¨ ˝ AjM ˝ T
pl1q
t ˝ ¨ ¨ ¨ ˝ T

plN q
t is defined

on V and these permutations are equal to each other. Consequently we have for
each 1 ď j ď N and for g P V that

ˆ

d

dt
´A1

˙

¨ ¨ ¨

ˆ

d

dt
´AN

˙

T
pjq
t g “

ˆ

d

dt
´A1

˙

¨ ¨ ¨

ˆ

d

dt
´Aj´1

˙ˆ

d

dt
´Aj`1

˙

¨ ¨ ¨

ˆ

d

dt
´AN

˙ˆ

d

dt
´Aj

˙

T
pjq
j g “ 0

holds. Thus
ujpt, xq :“ pT

pjq
t gjqpxq pin L2pRnqq (21)

is a solution to the equation

ˆ

d

dt
´A1

˙

¨ ¨ ¨

ˆ

d

dt
´AN

˙

uj “ 0, 1 ď j ď N. (22)

Hence for any scalars γj P R we find for gj P V a solution to (22) by

vpt, xq :“
N
ÿ

j“1

pγjT
pjq
j gjqpxq pin L2pRnqq. (23)

By our assumption, pT
pjq
t qtě0 is a strongly continuous contraction semigroup on

L2pRnq and therefore we have in L2pRnq

lim
tÑ0

T
pjq
t gj “ gj, (24)

and consequently as an identity in L2pRnq

vp0, xq “

˜

N
ÿ

j“1

γjgj

¸

pxq. (25)

For t ą 0 we may formally differentiate (23) k-times, k P N, to find

dk

dtk
vpt, xq “

˜

N
ÿ

j“1

γjA
k
j T

pjq
t gj

¸

pxq pin L2pRnqq, (26)



6 Kristian P. Evans Niels Jacob

however in order to justify (26) we need to assume T
pjq
t gj P DpAkj q. Note that

for a holomorphic semigroup pT
pjq
t qtě0 this condition is always satisfied. Passing

in (26) formally to the limit as t Ñ 0 we arrive at

dk

dtk
vp0, xq “

˜

N
ÿ

j“1

γjA
k
j gj

¸

pxq pin L2pRnqq (27)

and once again, if for example pT
pjq
t qtě0 is for each 1 ď j ď N a holomorphic

semigroup, the calculation can be justified.

Now we change our point of view and consider (22) as an ordinary operator-
differential equation of order N in L2pRnq, i.e. we consider

˜

dN

dtN
´

˜

N
ÿ

j“1

Aj

¸

dN´1

dtN´1
` ¨ ¨ ¨ ` p´1qNA1 ˝ ¨ ¨ ¨ ˝AN

¸

u “ 0 (28)

and for this equation we prescribe the N initial conditions

up0, xq “ h̃0pxq “ h1pxq

...
...

...

upN´1qp0, xq “ h̃N´1pxq “ hN pxq

,

/

/

.

/

/

-

(29)

The function vpt, xq :“
řN
j“1

pγjT
pjq
t gjqpxq is of course a special solution to (28)

as are ujpt, xq :“ pT
pjq
t gjqpxq, and we shall not expect that we can always fit the

initial conditions using only these solutions. However, under certain (in general,
restrictive) conditions on h1, . . . , hN it might become possible to single out solu-
tions to (28) and (29) having special properties, e.g. being positivity preserving.

We want to note that when considering an operator of the type

ˆ

d

dt
´A1

˙

¨ ¨ ¨

ˆ

d

dt
´AN

˙ M
ÿ

j“0

m
ÿ

l“0

ajl
dj

dtj
Bl, ajl P R, (30)

where the operators Bl are densely defined on L2pRnq and satisfy certain com-
mutator relations, then under reasonable domain conditions it is still possible to
obtain solutions of the corresponding equation

ˆ

d

dt
´A1

˙

¨ ¨ ¨

ˆ

d

dt
´AN

˙ M
ÿ

j“0

m
ÿ

l“0

dj

dtj
Blupt, xq “ 0 (31)

with the help of the semigroups pT
pkq
t qtě0, 1 ď k ď N .

It is clear that, in general, no unique solution of (28) and (29) of the type

vpt, xq “
´

řN

j“1
γjT

pjq
t gj

¯

pxq with g depending on h1, . . . , hN exists. Indeed,
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neither the existence nor the uniqueness of such a solution can be taken for
granted. In order to get some ideas we now restrict ourselves to the case N “ 2

and we assume that pT
p1q
t qtě0 is positivity preserving (or sub-Markovian) on

L2pRnq whereas pT
p2q
t qtě0 is not. For simplicity we add the assumption that

pT
p1q
t qtě0 is holomorphic, which follows for example if pTtqtě0 is symmetric and

conservative. Thus for g P L2pRnq, g ě 0 in L2pRnq a non-negative solution to

ˆ

d

dt
´A1

˙ˆ

d

dt
´A2

˙

upt, xq “ 0 (32)

is given by upt, xq “ pT
p1q
t gqpxq. Moreover, we have

lim
tÑ0

upt, xq “ lim
tÑ0

T
p1q
t gpxq “ gpxq in L2pRnq

and differentiation yields

d

dt
upt, xq “ A1T

p1q
t gpxq “ pT

p1q
t A1gqpxq

where for the last step we need to assume that g P DpA1q. Under this assumption
we find

lim
tÑ0

dupt, xq

dt
“ lim

tÑ0

´

T
p1q
t A1g

¯

pxq “ pA1gqpxq in L2pRnq.

If we add to (32) the initial condition

up0, xq :“ lim
tÑ0

upt, xq “ h1pxq

d

dt
up0, xq :“ lim

tÑ0

d

dt
upt, xq “ h2pxq

,

/

.

/

-

(33)

we arrive at the relation

h1 “ g and h2 “ A1g. (34)

Thus, for the initial value problem

ˆ

d

dt
´ A1

˙ˆ

d

dt
´ A2

˙

upt, xq “

ˆ

d2

dt2
´ pA1 `A2q

d

dt
` A1A2

˙

upt, xq “ 0

up0, xq “ g and
d

dt
up0, xq “ A1g

,

/

.

/

-

(35)

a solution is given by upt, xq :“ pT
p1q
t gqpxq and this solution is positive in the

sense that g ě 0 in L2pRnq implies upt, xq ě 0. Of course, a uniqueness result
for (28) and (29) (with N “ 2) holds in our situation, but we have to note that
the initial data h1 and h2 are not independent of each other.

We now want to study the more general case, namely to find positive solutions

to (28) and (29) under the assumption that forM ď N the semigroup pT
pjq
t qtě0,
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1 ď j ď M , generated by Aj are positivity preserving in L2pRnq. In this case,
for gj P L2pRnq, gj ě 0, 1 ď j ď M , and coefficients γj ě 0 each of the functions

vpt, xq :“
M
ÿ

j“1

γjT
pjq
j gjpxq p in L2pRnqq (36)

gives a non-negative solution to (28) and we need to relate the functions gj to the

initial data h1, . . . , hN . Under appropriate conditions on pT
pjq
t qtě0, for example

holomorphy, we derive using (27) the equations

vpk´1qp0, ¨q “ hk “
M
ÿ

j“1

γjA
k´1

j gj, 1 ď k ď N. (37)

Thus, in the situation under discussion, given γj ě 0, 1 ď j ď M , and functions
gj P DpAN´1

j q, 1 ď j ď M , for hk, 1 ď j ď M , determined by (37) we have
a non-negative solution to (28) and (29) by (36) provided gj ě 0. The more
interesting question is of course whether we can determine gj P DpANj q, gj ě 0,
and γj ě 0, 1 ď j ď M , for given functions hk, 1 ď k ď N . These are N
equations for (essentially)M ă N unknown functions, but due to the conditions
gj ě 0, these are non-linear equations. We have to solve for the mapping

S :
M
ą

j“1

D`pAN´1

j q Ñ pL2pRnqqN (38)

SG “ H,G “ pg1, . . . , gM q ÞÑ ph1, . . . , hNq “ H (39)

where hk is given by (37) and D`pAN´1

j q “ tgj P DpAN´1

j q|g ě 0u. Clearly
ŚM

j“1
D`pAN´1

j q is a convex set in pL2pRnqqM and S maps convex combinations

onto convex combinations implying that the image of
ŚM

j“1
D`pAN´1

j q under S

is a convex subset in pL2pRnqqN . For M “ 1, N fixed and γ1 “ 1 for simplicity,
we have the N equations

hk “ Ak´1

1
g1, 1 ď k ď N, (40)

which implies of course g1 “ h1 “ h̃0. Moreover, for k “ 2 we get formally

g2 “ pA1q´1h2 “ pA1q´1h̃0. (41)

In general, we may try to interpret pA1q´1 as the abstract potential operator in

the sense of Yosida associated with pT
p1q
t qtě0. But of course we have to sort out

domain problems, and similarly we may try to handle gk “ pA1q´1˝¨ ¨ ¨˝pA1q´1hk
with k copies of pA1q´1. The case M ě 2 is obviously much more complicated
and we will pick it up in forthcoming investigations. In the next section we want
to turn our attention to concrete pseudo-differential operators and by this we
can reduce our consideration to the level of symbols, i.e. functions which are
easier to handle than abstract operators.
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2 Some translation invariant pseudo-differential operators

In order to handle operators such as (30) for concrete operators Aj and Bl
we now introduce translation invariant pseudo-differential operators in a quite
general manner. Note that any translation invariant operator on S 1pRnq is indeed
a convolution operator, but its kernel might be rather singular.
Let q : Rn Ñ R be a continuous function of at most polynomial growth, i.e. we
have for some c ě 0 and m ě 0 the estimate

|qpξq| ď cp1 ` |ξ|2q
m
2 for all ξ P R

n. (42)

On SpRnq we can define the pseudo-differential operator

qpDqupxq :“ p2πq´n
2

ż

Rn

eix¨ξqpξqûpξqdξ. (43)

From (42) and Plancherel’s theorem we deduce immediately that

}qpDqu}s ď cq,s}u}s`m (44)

for all u belonging to SpRnq, or for u P Hs`mpRnq, where HtpRnq, t P R, denotes
the standard Bessel potential space (or Sobolev space of fractional order) with
the norm

}u}2t “

ż

Rn

p1 ` |ξ|2qt|ûpξq|2 dξ. (45)

The operator qpDq has extensions qpDq : Hm`spRnq Ñ HspRnq, however, in
general, we cannot determine the domain of the closure of pqpDq,SpRnqq in
L2pRnq in terms of classical Sobolev spaces. If q1 and q2 are continuous symbols
each satisfying (42) with cj and mj , then their compositions q1pDq ˝ q2pDq is
given on SpRnq by

pq1pDq ˝ q2pDquqpxq “ p2πq´n
2

ż

Rn

eix¨ξq1pξqq2pξqûpξqdξ (46)

which extends to an operator on L2pR2q with domain Hm1`m2pRnq. Moreover,
on Hm1`m2pRnq we have rq1pDq, q2pDqs “ 0 since all translation invariant op-
erators on S 1pRnq commute. Note that qjpDq maps Hm1`m2pRnq continuously
into HmkpRnq, j, k “ 1, 2, j ‰ k.
Thus, if we restrict in (30) the operators Aj and Bl to be operators of the type
(43), translation invariance and hence commutativity can be taken for granted
and in addition we can always operate on some space HmpRnq, m sufficiently
large, in order to handle various compositions of the operators Aj and Bl.

We are interested in the case where some of the operators Aj are generators of
translation invariant sub-Markovian semigroups and in this case we know much
more.
Let pµtqtě0 be a convolution semigroup on Rn and ψ : Rn Ñ C its associated
continuous negative definite function, i.e. we have

µ̂tpξq “ p2πq´n
2 e´tψpξq, t ą 0 and ξ P R

n. (47)
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We can associate with pµtqtě0 an L2-sub-Markovian semigroup

pTψt gqpxq “ pµt ˚ gqpxq “ p2πq´n
2

ż

Rn

eix¨ξe´tψpξqĝpξqdξ, (48)

i.e. pTψt qtě0 is a strongly continuous contraction semigroup on L2pRnq satisfy-

ing 0 ď g ď 1 in L2pRnq, i.e. λpnq-almost everywhere, implies 0 ď T
ψ
t g ď 1 in

L2pRnq. Moreover, if ψ is real-valued then pTψt qtě0 is symmetric, i.e. pTψt g, hq0 “

pg, Tψt hq0, and if in addition ψp0q “ 0, then pTψt qtě0 is conservative, hence
Markovian, which means that its extension to L8pRnq has the property that

T
ψ
t 1 “ 1 λpnq-almost everywhere.

By a theorem of E. M. Stein [8] such a semigroup has a holomorphic extension
z ÞÑ Tψz for z in a certain sector of C.
For every continuous negative definite function ψ the function ξ ÞÑ ψpξq ´ ψp0q
is again a continuous negative definite function and if ψ is real-valued then

pT
ψ´ψp0q
t qtě0 is a symmetric Markovian strongly continuous contraction semi-

group on L2pRnq, hence it has a holomorphic extension. However we have

T
ψ
t g “ p2πq´ n

2

ż

Rn

eix¨ξe´tψpξqĝpξqdξ

“ p2πq´ n
2

ż

Rn

eix¨ξe´tψp0qe´tpψpξq´ψp0qĝpξqdξ

“ e´tψp0qT
ψ´ψp0q
t g

implying that for every real-valued continuous negative definite function ψ :
Rn Ñ R we can consider pTψt qtě0 as a holomorphic semigroup. We also note
that on L2pRnq X C8pRnq this semigroup admits the representation

pTψt gqpxq “

ż

Rn

gpx´ yqµtpdyq, g P L2pR2q X C8pRnq (49)

which is pointwisely defined and which admits a pointwise extension to CbpR
nq.

Let pTψt qtě0 be the symmetric L2-semigroup associated by (48) with ψ. The

L2-generator of pTψt qtě0 is the operator pAψ, Hψ,2pRnqq where

Hψ,spRnq :“
 

u P L2pRnq|}u}ψ,s ă 8
(

, s ě 0, (50)

and

}u}2ψ,s :“

ż

Rn

p1 ` ψpξqqs|ûpξq|2dξ “ }p1 ` ψpDq
s
2u}2L2 , (51)

where we denote by ψpDq and p1 ` ψpDqq
s
2 the pseudo-differential operators

ψpDqupxq “ F´1pψûqpxq “ p2πq´ n
2

ż

Rn

eix¨ξψpξqûpξqdξ (52)

and

p1 ` ψpDqq
s
2upxq “ F´1pp1 ` ψp¨qq

s
2 ûqpxq “ p2πq´n

2

ż

Rn

eix¨ξp1 ` ψpξqq
s
2 ûpξqdξ,

(53)
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respectively. These operators are considered as extensions from SpRnq to their
natural L2-domains, i.e. Hψ,2pRnq and Hψ,spRnq, respectively. An easy calcula-
tion shows now that

Aψ “ ´ψpDq, DpAψq “ Hψ,2pRnq. (54)

(For details we refer to [4] or [2].) In order to cover interesting examples we want
to emphasise that if ϕ : Rm Ñ R “ ϕpξ1, . . . , ξmq, m ď n, is a continuous nega-
tive definite function on Rm then ψ : Rn Ñ R, ψpξ1, . . . , ξnq :“ ϕpξ1, . . . , ξmq, is
a continuous negative definite function on Rn. Moreover, the sum ψ of finitely
many continuous negative definite functions ψj : Rn Ñ R, 1 ď j ď N , i.e. the
function ψ “ ψ1 ` ¨ ¨ ¨ ` ψN , is again a continuous negative definite function as
is λψ, λ ą 0, for ψ continuous negative definite. Finally, we note that for every
continuous negative definite function we have the estimate

|ψpξq| ď cψp1 ` |ξ|2q (55)

which implies that HspRnq Ă Hψ,spRnq for all s ě 0.

We now suggest to first study problem (22), (29) (or (28), (29)) in the context
of generators of the type Aψj , j “ 1, 2, then to investigate the case where N “ 2
but only A1 is of the type Aψ . The aim is to come towards an understanding of
constraints needed to arrive at certain families of positivity preserving solutions.

3 Some discussions on the case N “ 2

With N “ 2 we choose A1 “ ´ψ1pDq and A2 “ ´ψ2pDq, where ψ1, ψ2 : Rn Ñ R

are continuous negative definite functions with corresponding operator semi-

groups pT
p1q
t qtě0 and pT

p2q
t qtě0. For the moment we pretend that all data belong

to SpRnq, later we will take care on precise domains. The equation we want to
solve is

ˆ

B

Bt
` ψ1pDq

˙ˆ

B

Bt
` ψ2pDq

˙

upt, xq “ 0 (56)

under the initial conditions

up0, xq “ h1pxq

Bu

Bt
p0, xq “ h2pxq

,

.

-

(57)

We are looking for solutions of the form

vpt, xq “ γ1T
p1q
t g1pxq ` γ2T

p2q
t g2pxq. (58)

If γ1, γ2 ě 0 and g1, g2 ě 0 then v is a non-negative solution to (56). Thus
the problem is to find g1, g2 (non-negative) for given h1, h2. From (57) and the

holomorphy of pT
p1q
t qtě0 and pT

p2q
t qtě0 we deduce

γ1g1pxq ` γ2g2pxq “ h1pxq

p´ψ1pDqγ1g1qpxq ` p´ψ2pDqγ2g2qpxq “ h2pxq.

+

(59)
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Using the Fourier transform we arrive at

γ1ĝ1pξq ` γ2ĝ2pξq “ ĥ1pξq (60)

and
γ1ψ1pξqĝ1pξq ` γ2ψ2pξqĝ2pξq “ ´ĥ2pξq. (61)

Under the assumption γ1γ2pψ2pξq ´ ψ1pξqq ‰ 0, i.e. γ1 ‰ 0, γ2 ‰ 0 and ψ2pξq ‰
ψ1pξq we obtain

ĝ1pξq “
´ĥ1pξqψ2pξq ´ ĥ2pξq

γ1pψ1pξq ´ ψ2pξqq
, ĝ2pξq “

ĥ1pξqψ1pξq ` ĥ2pξq

γ2pψ1pξq ´ ψ2pξqq
(62)

In order to find g1 and g2 we now need some conditions. Even with hj in SpRnq
we cannot expect ĝ1 or ĝ2 to belong to SpRnq, however, ĝ1 and ĝ2 need only to be

in L2pRnq in order to find g1 and g2 in L2pRnq too. The holomorphy of pT
pjq
t qtě0

then implies that T
pjq
t gj P

Ş

kPNDprψjpDqskq “
Ş

kPNH
ψj,2kpRnq, hence we can

achieve sufficient regularity to obtain a solution of (56). What becomes obvious
is that a trade-off between the behaviour of the zeroes of ψ1´ψ2 and the zeroes of
ĥ1ψj ¯ ĥ2 is now needed to determine g1 and g1 uniquely. This shall not surprise
us, in general we shall not expect (56) and (57) to have a unique (non-negative)
solution of the type (58). Given our initial question, it is natural to change the
point of view and to start with γ1, γ2 ě 0 as well as with g1, g2 ě 0 and to use
(57) to determine conditions for h1 and h2. In this case, h1 is already determined
by (59) as is h2 determined by (60). We introduce the mapping

S : Hψ1,2pRnq ˆHψ2,2pRnq Ñ L2pRnq ˆ L2pRnq

pg1, g2q ÞÑ Spg1, g2q “ pγ1g1 ` γ2g2,´γ1ψ1pDqg1 ´ γ2ψ2pDqg2q

“ pF´1pγ1ĝ1 ` γ2ĝ2q, F´1p´γ1ψ1ĝ1 ´ γ2ψ2ĝ2qq

(63)

and by construction, essentially the range of S|Hψ1,2ˆHψ2,2XL2

`
ˆL2

`
will con-

sist of exactly those elements ph1, h2q for which we can find pg1, g2q such that

upt, xq “ γ1T
p1q
t g1pxq ` γ2T

p2q
t g2pxq is a non-negative solution to (56). Since S is

linear and Hψ1,2 ˆHψ2,2 XL2
` ˆL2

` is convex the range of S|Hψ1,2ˆHψ2,2XL2

`
ˆL2

`

is convex too and it always contains the zero function. The range of S̃ :“
S|Hψ1,2ˆHψ2,2XL2

`
ˆL2

`
can be characterised in more detail. Since by assumption

gj ě 0 and gj P L2pRnq its Fourier transform ĝj must be a positive definite
distribution belonging to L2pRnq. Thus we have

RpS̃q “ tpF´1pγ1w1 ` γ2w2q, F´1p´γ1ψ1w1 ´ γ2ψ2w2qq|γ1, γ2 ě 0,

w1, w2 P L2pRnq positive definite, ψjwj P L2pRnqu.
(64)

Thus we have

Proposition 1. For ph1, h2q P RpS̃q there exists pg1, g2q P pHψ1,2 ˆ Hψ2,2q X

pL2
` ˆ L2

`q such that vpt, xq “ pT
p1q
t g1qpxq ` pT

p2q
t g2qpxq ě 0. If in addition

vpt, ¨q, t ą 0 belongs to tu P L2pRnq|p1 ` ψ1pDqqp1 ` ψ2pDqqu P L2pRnqu then v

is a non-negative solution to (56) and (57).
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Remark 1. We may introduce the spaceHψ1,ψ2,spRnq as the space of all elements
in L2pRnq such that

}u}2ψ1,ψ2,s
“

ż

Rn

p1 ` ψ1pξqqsp1 ` ψ2pξqqs|ûpξq|2 dξ ă 8

and replace in Proposition 1 the condition pg1, g2q P pHψ1,2ˆHψ2,2qXpL2
` ˆL2

`q
by pg1, g2q P pHψ1,ψ2,2 ˆHψ1,ψ2,2q X pL2

` ˆL2
`q. A more practical, but less sharp

condition would be pg1, g2q P pH4 ˆH4q X pL2
` ˆL2

`q, and in the case where ψj
satisfies |ψjpξq| ď cψj p1 ` |ξ|2qmj , 0 ă mj ă 1, instead of the estimate |ψjpξq| ď

cψj p1 ` |ξ|2q we may require pg1, g2q P pH2pm1`m2q ˆH2pm1`m2qq X pL2
` ˆ L2

`q.

We next want to look at the case where A1 “ ´ψpDq is a generator of a sym-
metric sub-Markovian semigroup, but A2 is not. We assume that A2 is of the
type qpDq with q satisfying (42). A positive solution to (56) with ψ2pDq being
replaced by ´A2 is now sought in the form

vpt, xq “ T
p1q
t g1pxq, (65)

since γ1 ‰ 0 is needed we now may chose γ1 “ 1, hence we put in (58) γ2 “ 0
and γ1 “ 1. This leads to

ĝ1pξq “ ĥ1pξq and ψ1pξqĝ1pξq “ ´ĥ2pξq (66)

or ĥ2pξq “ ´ψ1pξqĥ1pξq. Thus we may obtain positive solutions to (56) and (57)

if h1 P L2pR2q is a positive definite distribution such that ψ1ĥ1 P L2pRnq and if

in addition we have ĥ2 “ ´ψ1ĝ1, i.e. h2 “ ´ψ1pDqg1. However, as an additional

condition we need ψ1pDqT
p1q
t g P DpA2q, for which g P Hm`2pRnq is a sufficient

condition.
Eventually we want to switch from (56) and (57) to

ˆ

B

Bt
` ψ1pDq

˙ˆ

B

Bt
` ψ2pDq

˙

Bupt, xq “ 0 (67)

or
ˆ

B

Bt
` ψ1pDq

˙ˆ

B

Bt
´A2

˙

Bupt, xq “ 0 (68)

under the initial conditions

up0, xq “ h1pxq

Bu

Bt
p0, xq “ h2pxq.

,

.

-

(69)

Here B “ qpDq is a pesudo-differential operator with symbol qpξq satisfying (42).
For g1, g2 P Hm`4pRnq the operators ψ1pDq, ψ2pDq and qpDq mutually commute
and hence we may search for the solutions of the type

vpt, xq “ γ1T
p1q
t g1pxq ` γ2T

p2q
t g2pxq (70)
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or
vpt, xq “ T

p1q
t g1pxq, (71)

respectively. This implies that all of our previous considerations carry over to the
new case, however we need to add additional assumptions, i.e. domain conditions.
For the case of equation (67) the precise condition is of course

γ1ψ1pDqT
p1q
t g1 ` γ2ψ2pDqT

p2q
t g2 P DpBq, (72)

and only if DpBq is better known, say as an anisotropic Bessel potential space,
we can say more. In the best case we would expect DpBq “ Hq,2pRnq “ tu P
L2pRnq|qpDq P L2pRnqu and then we can give more detailed conditions.

We now consider operators of the type (30) where we assume that for some
L ď N the operators Aj , 1 ď j ď L, have an extension from SpRnq to a
generator of a holomorphic sub-Markovian semigroup pTtqtě0 on L2pRnq. Our
aim is to find solutions to (31) of the type

vpt, xq “
L
ÿ

j“1

pγjT
pjq
t gjqpxq, γj ě 0 and gj ě 0 in L2pRnq. (73)

In addition, we add the initial conditions (29). It is clear that in this generality
we cannot obtain existence or uniqueness results. Most of all we need to consider
carefully domains of suitable extensions of the operators Aj , L ă j ď N , and
Bl, 1 ď l ď M , and further, on some suitable common domain we need the
commutator relations rAj , Als “ 0 and rAj , Bls to hold. We do not want to follow
the general abstract case, but we want to assume that all operators involved
are translation invariant pseudo-differential operators of the type (43). More
precisely, for 1 ď j ď L we assume that Aj “ ´ψjpDq where ψj : Rn Ñ R

is a continuous negative definite function and for L ă j ď N , as well as for
1 ď l ď M , we assume that the symbols of the operators Aj and Bl satisfy (42)
for some growth exponent depending on mj and m̃l respectively. We put

m :“ 2L`
N
ÿ

j“L`1

mj `
M
ÿ

l“1

m̃j , (74)

and we consider all operators on HmpRnq. It follows that on HmpRnq any com-
position of operators Aj1 ˝ ¨ ¨ ¨ ˝ Ajk ˝ Bl1 ˝ ¨ ¨ ¨ ˝ Blj , 1 ď jα ď N , 1 ď lβ ď M ,
maps HmpRnq into L2pRnq, and any of such a composition for L ă jα ď N maps
HmpRnq into H2LpRnq. Moreover we have HmpRnq Ă H2LpRnq and the com-
positions do not depend on the ordering of the operators. Since by assumption

pT
pjq
t qtě0, 1 ď j ď L, extends to a holomorphic semigroup we have for every

g P L2pRnq that T
pjq
t g P

Ş

kPNH
2k,ψj pRnq, t ą 0. In order to guarantee that

T
pjq
t g P HmpRnq, t ą 0, and hence that all operators Aj1 ˝¨ ¨ ¨˝Ajk ˝Bl1 ˝¨ ¨ ¨˝Bli

commute with T
pjq
t , t ą 0, we add the assumption

p1 ` ψjpξqq ě κ0p1 ` |ξ|2q
m1

j

2 , κ0 ą 0,m1
j ą 0, j “ 1, . . . , L. (75)
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Now it follows that for every collection gj P L2pRnq, 1 ď j ď L, a solution to
(31) is given by

vpt, xq :“
L
ÿ

j“1

pγjT
pjq
t gjqpxq, t ą 0, (76)

and for γj ě 0, gj ě 0 in L2pRnq this solution is non-negative.

Next we want to adjust the initial conditions. For gj P H2LpRnq, or even gj P

H2pm1

1
`¨¨¨`m1

LqpRnq, due to the holomorphy of the semigroups pT
pjq
t qtě0 we find

for 1 ď k ď N

vpkqp0, xq “
L
ÿ

j“1

pγjA
k´1

j gjqpxq “ hkpxq pin L2pRnqq. (77)

Switching to the Fourier transforms we obtain the following system of N equa-
tions for the L unknown functions ĝj:

L
ÿ

j“1

γjp´ψjpξqqk´1 ĝjpξq “ ĥkpξq, 1 ď k ď N. (78)

Once more, we change our point of view and we consider (78) as conditions
for the initial values h1, . . . , hN to hold in order that (31) under (29) admits a
non-negative solution.

We introduce the mappings S and S̃ analogously to (63) by

S : pHm ˆ ¨ ¨ ¨ ˆHmq Ñ L2 ˆ ¨ ¨ ¨ ˆ L2

g :“ pg1, . . . , gLq ÞÑ Sg :“ ph1, . . . , hN q,
(79)

where

hk “ pSgqk :“
L
ÿ

j“1

γjp´ψjpDqqqk´1gj , 1 ď k ď N, (80)

i.e.

ĥk “ pSgq^
k “

L
ÿ

j“1

γjp´ψjq
k´1ĝj . (81)

If by assumption gj ě 0, 1 ď j ď L, then there exists positive definite distribu-
tions wj P L2pRnq such that wj “ ĝj and we find

hk “ F´1

˜

L
ÿ

j“1

γjp´ψjq
k´1wj

¸

. (82)

For the range of S̃ :“ S|pHmˆ¨¨¨ˆHmqXpL2

`
ˆ¨¨¨ˆL2

`
q we derive in analogy to (64)

RpS̃q “

#˜

F
´1p

L
ÿ

j“1

γjwjq, F´1p
L
ÿ

j“1

γjp´ψjqwjq, . . . , F´1p
L
ÿ

j“1

γjp´ψjqN´1
wjq

¸

ˇ

ˇ

ˇ

ˇ

γ1, . . . , γL ě 0, w1, . . . , wL positive definite, ψk´1

j wj P L2pRnq, 1 ď k ď N
)

.

(83)
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Thus we arrive at

Proposition 2. For ph1, . . . , hNq P RpS̃q there exists pg1, . . . , gLq P pHmˆ¨ ¨ ¨ˆ

Hmq X pL2
` ˆ ¨ ¨ ¨ ˆ L2

`q such that vpt, xq :“
řL

j“1
γjT

pjq
t gj ě 0. If in addition

each pT
pjq
t qtě0 is holomorphic and (75) is satisfied, then v solves (31) under the

initial condition (29).

Remark 2. While RpS̃q is in general difficult to determine, we may of course
choose some of the parameters γj to be 0 and then the situation becomes more
transparent. For example, we may choose γj “ 0 for all j ‰ j0 for a fixed
j0 P t1, . . . , Lu and γj0 “ 1. In this case the condition (80) reduces to

h1 “ F´1wj0 , h2 “ F´1p´ψj0wj0 q, . . . , hN “ F´1p´ψN´1

j0
wj0q.

In the following chapter we will turn to concrete partial differential operators
with constant coefficients and we will try to find families of non-negative solu-
tions for related initial value problems.
However, we first want to extend our considerations by allowing complex-valued
continuous negative definite functions ψj : R

n Ñ C as symbols of Aj “ ´ψjpDq.
The only change in our argument is required to justify that the associated op-

erator semigroup pT
pjq
t qtě0 is holomorphic on L2pRnq. As the example of the

drift, which corresponds to ψpξq “ ´iξ, n “ 1, shows us that we cannot expect
for a general complex-valued continuous negative definite function ψj the semi-

group pT
pjq
t q to be holomorphic. However, in the case where ψ satisfies the sector

condition

|Imψpξq| ď κ0Reψpξq, κ0 ą 0, |ξ| ě R ě 0, (84)

it follows that ´ψpDq is a sectorial operator and hence the generator of a holo-
morphic semigroup on L2pRnq, see [6] or [10]. Moreover, since Reψ is a contin-
uous negative function too, we can form the spaces HReψ,spRnq. Thus replac-
ing in our previous considerations the real-valued continuous negative definite
functions by complex-valued continuous negative definite functions each satisfy-
ing the sector condition and using the spaces HReψ,spRnq with Reψ satisfying
(where appropriate) additional conditions such as (84), we obtain the previous
results in the more general situation. For more details we refer to [1] and [4].

4 Higher Order Partial Differential Equations Admitting

Non-negative Solutions

We now turn from operator-valued differential operators to partial differential
equations of the type

BN

BtN
upt, xq ´

N´1
ÿ

j“0

ÿ

|α|ďm

ajα
Bj

Btj

ˆ

´i
B

Bx

˙α

upt, xq “ 0, ajl P R, (85)
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and we ask when does such an equation admit a solution given by

vpt, xq “
L
ÿ

j“1

pγjT
pjq
t gjqpxq, γj ě 0, gj ě 0, L ď N, (86)

where gj P L2pRnq and pT
pjq
t qtě0, 1 ď j ď L, is an L2-sub-Markovian semigroup.

When taking in (85) the Fourier transform with respect to x we arrive at the
parameter dependent ordinary differential equation

dN

dtN
ûpt, ξq ´

N´1
ÿ

j“0

ÿ

|α|ďm

ajαξ
α dj

dtj
ûpt, ξq “ 0. (87)

We long for solutions of (87) of the form

ûpt, ξq “ v̂kpt, ξq “ e´ψkpξqt (88)

where ψk : Rn Ñ C is a continuous negative definite function satisfying the
sector condition and Reψk satisfies the growth condition (75). From (87) we
arrive (with λpξq “ ψkpξq) at the characteristic equation

λN pξq `
N´1
ÿ

j“0

ÿ

|α|ďm

ajαp´1qN´j´1ξαλjpξq “ 0 (89)

for which we seek solutions λk “ λkpξq which are continuous negative definite,
satisfying the sector condition and the real part of which satisfies (75). Every

such solution will give rise to a holomorphic sub-Markovian semigroup pT
pkq
t qtě0

associated with λk by

pT
pkq
t uq^pξq “ e´tλkpξqûpξq (90)

and we may apply the considerations of the previous chapters to obtain non-
negative solutions of the type (86) for the equation (85). The problem is of
course to find such solutions λ to (89). Even in the cases where we can obtain
solutions with the help of radicals, it is not clear which properties the function
ξ ÞÑ λkpξq will have. So far we have no general answer to our problem, however
the following examples show the scope of our considerations. It is clear that
if we obtain solutions of the type (86) the function λkpξq in (90) must be a
continuous negative function satisfying the sector condition, provided we assume

that pT
pjq
t qtě0 to be holomorphic. We prefer to provide some rather concrete

examples, but in each case it is obvious that we can include more general and
complicated cases with similar symbol structure.

Example 1. A. We take in (85) the dimension n “ 1 and the values N “ 2,
m “ 4 and ajα “ δ0,4. Then we are dealing with the equation

B2

Bt2
upt, xq ´

B4

Bx4
upt, xq “ 0 (91)
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which yields
λ2 ´ ξ4 “ 0. (92)

Since λ´ ξ4 “ pλ´ ξ2qpλ` ξ2q we have the continuous negative definite function
λ1pξq “ ξ2 as a solution which satisfies all our conditions, and for g P L2pRq,
g ě 0, a non-negative solution to (91) is given by px, tq ÞÑ pTGt gqpxq, where
pTGt qtě0 is the Gaussian semigroup on L2pRq.
B. Taking next N “ 4 and m “ 2 in (85), but again n “ 1, and further
ajα “ δ0,2, we get the equation

B4

Bt4
upt, xq `

B2

Bx2
upt, xq “ 0 (93)

which leads to λ4 ´ ξ2 “ 0. Obviously λpξq “ |ξ|
1

2 is a solution of this equation
and this is a continuous negative definite function which fulfills all of our re-
quirements. The associated semigroup pT λt qtě0 is the semigroup subordinate to

the Gaussian semigroup with the help of the Bernstein function fpsq “ s
1

4 . The

polynomial λ4 ´ ξ2 admits the factorisation λ4 ´ ξ2 “ pλ ´ |ξ|
1

2 qpλ ` |ξ|
1

2 qpλ ´

i|ξ|
1

2 qpλ ` i|ξ|
1

2 q and therefore only one solution of λ4 ´ ξ2 “ 0 is a continuous
negative definite function as sought.
C. Now we take ajα “ δ0,2m as coefficients for n “ 1 and 2N , 2m P N and hence
(89) becomes λ2N “ |ξ|2m. Further, by λ “ |ξ|

m
N we always have for m

N
ă 2,

i.e. m ď 2N , a continuous negative definite function as a solution satisfying all
of our conditions. We can phrase this differently, namely that for n “ 1 to ev-

ery α-stable process pX
pαq
t qtě0 with α rational we can find a partial differential

equation of B2N

Bt2N upt, xq “ B2m

Bx2m , upt, xq “ 0 such that the transition function of

pX
pαq
t qtě0 gives the solution to that equation. We refer to [11] where (fractional)

differential equations being solved by transition functions of certain stable pro-
cesses, i.e. densities of certain convolution semigroups, are discussed.

Our next examples show that there are more than just symmetric stable semi-
groups which give solutions of the type (86). We still assume n “ 1.

Example 2. A. Consider the differential operator B2

Bt2 ` B2

Bx2 `a B
Bx , where a P R is

a parameter. This operator leads to the characteristic equation λ2 ´ ξ2 ´ iaξ “ 0
which we can factorise according to λ2 ´ ξ2 ´ iaξ “ pλ´ pξ2 ` iaξq

1

2 qpλ` pξ2 `

iaξq
1

2 q. The function ξ ÞÑ ξ2 ` iaξ is a continuous negative definite function

for every a P R. Since s ÞÑ fpsq “ s
1

2 is a Bernstein function, it follows that

ξ ÞÑ λpξq “ pξ2 ` iaξq
1

2 is a continuous negative definite function too. Moreover,
since Reλ2pξq “ ξ2 and Imλ2pξq “ aξ, it follows that λ2pξq fulfills the sector
condition as well as the growth condition (75). Hence the semigroup generated
by the differential operator with symbol λ2pξq is on L2pRq holomorphic which
is inherited by the semigroup obtained by subordination with the help of the
Bernstein function f . In addition, since |λ

1

2 pξq| “ pξ4 ` aξ2q
1

2 the growth con-
dition (75) is fulfilled too. Thus for g ě 0, g P L2pRq, a non-negative solution to
B2u
Bt2 ` B2u

Bx2 ` a Bu
Bx “ 0 is given by upt, xq :“ F´1

ξ ÞÑxpr´pξ2`iaξq
1

2 tĝpξqqpxq.
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B. The wave operator B2

Bt2 ´ B2

Bx2 “
`

B
Bt ´ B

Bx

˘ `

B
Bt ` B

Bx

˘

needs a more careful
discussion. The characteristic equation λ2 ` ξ2 “ 0 admits the factorisation
pλ ´ iξqpλ ` iξq. Although ξ ÞÑ ˘iξ are continuous negative definite functions,
we cannot apply our considerations since these functions do not satisfy the sec-
tor condition and hence the corresponding pseudo-differential operators are not
sectorial, hence do not generate a holomorphic semigroup.

C. We want to investigate the operator B2

Bt2 ` a B
Bt ` b B2

Bx2 with a, b P R. This
gives the characteristic equation λ2 ´ aλ ´ bξ2 “ 0 with solutions λ1,2 “
a
2

˘ 1

2

a

a2 ` 4bξ2. For a ą 0, b ą 0 the function λ1pξq “ a
2

` 1

2
pa2 ` 4bξ2q

1

2

is a continuous negative definite function satisfying the sector as well as growth
conditions.

Remark 3. It is easy to see that if a continuous negative definite solution to a
one-dimensional pn “ 1q characteristic equation depends only on ξ2, then we can

handle the n´dimensional case when replacing ξ2 by |ξ|2, i.e. ´ B2

Bx2 by ´∆n.

Example 3. In Example 4.1.C. the operator BN

BtN ´ p´1qm B2m

Bx2m was discussed

and we want to extend our considerations to the case BN

BtN ´ Bm

Bxm . This entails
the characteristic equation λN ´ p´iξqm “ 0 and we always have a solution
λ “ p´iξq

m
N . For m ď N this is a continuous negative definite function since

ξ ÞÑ ´iξ is one and s ÞÑ s
m
N , s ě 0, m ď N , is a Bernstein function. However,

for m,N P N, m ă N , we find p´iξq
m
N “ |ξ|

m
N e´im

N
π , or

p´iξq
m
N “ |ξ|

m
N pcos m

N
π ´ i sin m

N
πq

which gives

|Im p´iξq
m
N | “ |ξ|

m
N sin m

N
π “ |ξ|

m
N tanpm

N
πq cos m

N
π “ cm,NRe p´iξq

m
N ,

where cm,N ą 0 for 0 ă m ă N . Thus ξ ÞÑ p´iξq
m
N fulfills the sector condition

as well as the growth condition and for 0 ă m ă N our previous results apply

to BN

BtN ´ Bm

Bxm . Note that Example 4.1.C. extends by Remark 3 to the case BN

BtN ´

p´∆nqm, but an extension of the example BN

BtN ´ Bm

Bxm to higher dimensions is not
obvious. For more properties of the one-dimensional drift operator in relation to
fractional derivatives we refer to [5].

We now have a look at the Laplace operator in the half-space R` ˆ Rn, n ě 1.

Example 4. The operator is of course B2

Bt2 ` B2

Bx2

1

` ¨ ¨ ¨ ` B2

Bx2
n

and we treat the

variable t ě 0 differently to the variable x “ px1, . . . , xnq P Rn. The charac-
teristic equation becomes λ2 ´ |ξ|2 “ 0 which we can factorise according to
pλ´ |ξ|qpλ` |ξ|q. The function ξ ÞÑ |ξ| is of course a continuous negative definite
function satisfying all of our conditions. The corresponding operator semigroup
is the Cauchy semigroup and the result will lead us to the Poisson formula for
the Laplacian in the half-space, see [9] and our introduction.
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Example 5. We may now use our previous examples to study higher order equa-

tions in several space dimensions such as B4

Bt4 ´ B4

Bt2By2 ` B3

Bt2Bx ´ B3

By3 the charac-
teristic equation of which is

λ4 ´ iλ2η ´ λ2|ξ|2 ´ iη|ξ|2 “ pλ´ piηq
1

2 qpλ´ |ξ|qpλ ` piηq
1

2 qpλ` |ξ|q.

The function ψ1pηq “ piηq
1

2 and ψ2pξq “ |ξ| are continuous negative definite
functions in R, both satisfying all of our conditions on R and hence the corre-

sponding semigroup pT
pjq
t qtě0, j “ 1, 2, are holomorphic sub-Markovian semi-

groups on L2pRq. However we cannot expect these semigroups to be holomorphic
on L2pR2q when associated with ϕ1pξ, ηq “ ψ1pηq or ϕ2pξ, ηq “ ψ2pξq, respec-
tively. Nonetheless, all of our results still apply provided the data g1, g2 P L2pR2q

when forming upt, x, yq “ pT
p1q
t g1qpx, yq ` pT

p2q
t g2qpx, yq, where pT

pjq
t gjq

^p¨, ¨q “
e´ϕjp¨qtĝjp¨, ¨q, provided the data g1 and g2 are sufficiently smooth.

These examples demonstrate the scope of our results as they show how to con-
struct many further ones. However, the central question ”How many continuous
negative definite solutions does the characteristic equation admit?” is for the
general case open, which of course should not be a surprise. In particular, we
want to point out that in higher dimensions, i.e. n ě 2, special combinations of
terms in the characteristic equation may lead to “unexpected” solutions, simi-
lar to the cases where we treat pξ1, . . . , ξnq P Rn as one variable |ξ|2, or where

pξ, ηq ÞÑ pξ2 ´ iηq
1

2 is treated as one variable when solving the characteristic
equation.

In light of the results in [3], handling equations of the type (85) with t-dependent
coefficients would be of great interest.
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