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II. Abstract

Hot tub use is becoming increasingly popular in the UK. However, incorrect maintenance and 
cleaning can lead to the development of a vast variety of biofilms formed by microorganisms 
such as Escherichia coli and Pseudomonas aeruginosa, an opportunistic pathogen. The ease 
of proliferation and challenging removal of P. aeruginosa biofilms are of especially great 
importance to immunocompromised and elderly people, who can be vulnerable to such 
opportunistic infections. 

The aim of this study was to analyze the efficacy of a newly developed, environmentally 
friendly water sanitation, biofilm prevention and removal combination product for the 
domestic hot tub sector. The product includes active oxygen which is combined with a water 
conditioner and surfactants whose activities were tested against planktonic growth and 
biofilm formation. E. coli K12 or P. aeruginosa PA01 cells were grown and biofilms established 
under static conditions at 37 and 25°C which are standard hot tub operational and down-time 
temperatures, respectively. A range of product concentrations and combinations were 
assessed over a hot tub-relevant pH range for determining their efficacy of inhibiting 
planktonic growth and biofilm prevention and removal properties. 

Results indicated that in standard operating procedure conditions, active oxygen in the 
recommended concentration for use as well as up to ten times more dilute is effective at 
preventing planktonic growth and biofilm formation in both species across both temperatures 
and all pH levels tested. In addition, the combination with the water conditioner appeared to 
neither inhibit nor enhance active oxygen activity. Light and fluorescence microscopy 
suggested the active oxygen by itself or in combination with the conditioner may lead to 
viable-but-non-culturable cell formation. 

This study has provided novel insights on the activity of active oxygen over a range of three 
pH and two temperatures, and the results generated may assist in the development of new 
antimicrobial or disinfecting formulations. Additionally, the industrial sponsor can now make 
scientifically substantiated claims about the sanitizing efficacy of their products and promote 
the use of an eco-friendly, non-toxic alternative to chlorine for the domestic hot tub sector.  
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1.1 Background information 
 

Hot tubs are commonly used for recreation, relaxation and therapeutic effects, such 

as hydrotherapy. Indeed, it is estimated that more than 100,000 hot tubs are currently in use 

in the UK in both private and public settings. The UK is also ranked in the top 10 in the world 

hot tub market (BISHTA, 2015). The increase in hot tub ownership, coupled with the demand 

for eco-friendly products as well as awareness of the risks of incorrect maintenance, has led 

to an increased consumer demand for effective products against biofilms.  

A biofilm can be described as a complex assemblage of microbial cells irreversibly 

adhering to a surface and encased in a self-produced matrix of extracellular polymeric 

substances, which can also contain non-cellular materials, such as corrosion degradation 

particles (e.g., iron oxide), and promotes bacterial survival and proliferation (Donlan, 2002 

(Flemming et al., 2016). 

A vast variety of microorganisms have been found in recreational waters, including 

spas, hot tubs and pools. Some of the disease-causing pathogens detected in recreational 

waters include Campylobacter jejuni, Shigella sonnei, Cryptosporidium spp., Giardia 

intestinalis, Escherichia coli and Pseudomonas aeruginosa, as well as bacteria of the Legionella 

genus (Fewtrell and Kay, 2015; Leoni et al., 2018). These (opportunistic) pathogens are most 

often the results of human fecal contamination, environmental factors such as sand and 

rainfall, and domestic or wild animals (Fewtrell and Kay, 2015). In addition to bacteria, a 

variety of bodily secretions such as vomit, mucus, faeces, saliva and skin flakes have been 

found in recreational waters (Thorolfsdottir and Marteinsson, 2013).   

 Traditionally, chlorine has been used as a disinfectant agent in spas and hot tubs 

because of its high oxidation potential. However, the high working temperature of the hot 

tub, in addition to water aeration caused by the jets, can lead to evaporation of the chemicals 

and induction of unpleasant effects on users. Additionally, chlorine can react with organic hot 

tub contaminants and lead to the formation of potentially toxic disinfection-by-products 

(DPBs) such as trihalomethanes, halomethanes (THMs), haloacetic acids and chloramines, and 

its biocidal abilities may be hindered by water hardness (Swanson and Fu, 2017; Valeriani, 

Margarucci and Spica, 2018).  Bromine-based products, another popular option for microbial 

sanitation, suffer from sun degradation (Valeriani, Margarucci and Spica, 2018). Most 

importantly, however, chlorine disinfection has been found to increase antibiotic resistance 
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genes (Liu et al., 2018). Active oxygen, which describes oxidizing agents, both inorganic and 

organic, released from peroxide in aqueous solutions (such as hydrogen peroxide or benzoyl 

peroxide) (see section 1.14 for more details) is a promising alternative, with well-known 

antimicrobial effects which has been used for many decades in water decontamination 

(Choudhury et al., 2018). It has proven antimicrobial effects against E. coli and P. aeruginosa, 

two bacteria that can exhibit antibiotic resistance (Fontes et al., 2012). Therefore, an efficient 

hot tub sanitation treatment system using environmentally friendly alternatives combined 

with active oxygen provides an attractive option for hot tub owners. 

 

1.2 Biofilm formation 
 

 Bacteria can be generally found in two states: planktonic, also known as free living, 

and sessile, adherent to a surface or as part of a biofilm (Garrett, Bhakoo and Zhang, 2008). 

A biofilm can be described as a “city of microbes”, an organized microbial community encased 

in an extracellular polymeric substance matrix (EPS), which holds the biofilm together against 

a surface, and depending on the bacterial species, they may be made up for 10–25% cells and 

75–90% EPS matrix (Costerton et al., 1987, Rasamiravaka et al., 2015). Once formed, the biofilm 

has an established architecture and allows bacteria to proliferate and survive. Biofilms can be 

found in various environments, such as medical devices, natural and artificial water systems 

and living tissue. They offer protection and are notorious for their resistance to antimicrobial 

agents, such as antibiotics and disinfectants, and being more tolerant against antimicrobial 

stress compared to planktonic cells (Donlan, 2002; Davies, 2003). In addition, through 

interactions between bacteria in combination with the properties of the extra cellular matrix, 

biofilms can develop new properties not normally observed in free-living cells (Flemming et 

al., 2016). 

 

Biofilm formation is a multistep process which forms an endless cycle, generally consisting 

of five distinct stages (Fig.1) 

1. Reversible adhesion on surface 

2. Irreversible attachment 

3. Colonization of surface / proliferation 

4. Formation of a more structured phenotype / biofilm maturation 
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5. Bacterial dispersal and coverage of entire surface 

 
Figure 1.1: The formation of biofilm by P. aeruginosa in minimal medium on an abiotic surface: Top row of microscopy 

images: Stages I-IV. Bottom row: Stage IV over the course of 4 days. The fluorescent green color is caused by SYTO 9 

staining which indicates live cells. (Rasamiravaka et al., 2015) 

1.3 Conditioning film formation 
 

The conditioning film - or layer, is the first building block of the biofilm, upon which 

the foundation of its development is provided. Starting with planktonic cells, the first step is 

bacterial adhesion to the surface, a complex step that can be influenced by many factors, such 

as cell surface hydrophobicity, presence of bacterial appendages such as fimbria and flagella 

and EPS production (Rasamiravaka et al., 2015).  Of particular importance appears to be the 

hydrophobicity and texture of the surface, with planktonic bacteria readily adhering to more 

hydrophobic and rough surfaces. The reason behind this is the increased surface area in 

rougher surfaces and the diminishing shear forces (Donlan, 2002). Non-polar, hydrophobic 

materials such as plastic and metals are ideal for bacterial adhesion, thereby forming an 

obvious risk of biofilm development on hot tub surfaces and piping. 
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The conditioning layer alters the substratum favorably in order to provide an ideal 

foundation for biofilm development, especially in the aquatic environment (Bar-Zeev et al., 

2012). In the initial stages of biofilm formation, which may last anywhere between a few 

hours and a few days, organic polymers dissolved in the overlying water and colloids start 

adhering to the surface, beginning the formation of the conditioning film, which bacteria will 

then utilize to adhere to the surface (Bar-Zeev et al., 2012). This layer is composed of large 

variety of molecules, such as polysaccharides, proteins, lipids, and humic and nucleic acids, 

and surface charge, potential and tension can all be altered through interactions with the 

layer and surface, in order to negate repulsive forces and lead to irreversible adhesion 

(Donlan, 2002; Bar-Zeev et al., 2012). One way this can happen is thanks to microbial 

appendages called fimbriae, which contain non-polar sites, which are present in both P. 

aeruginosa and E. coli and can help overcome the initial electrostatic repulsion barrier 

between cell and surface (Donlan, 2002; Connell et al., 1996; Ruer et al., 2007). Additionally, 

increased water temperature and nutrients, both common in the hot tub environment, lead 

to increased bacterial attachment to surface (Donlan, 2002). 

 

1.4 Bacterial adhesion 
 

Biofilm adhesion, which is part of this stage, is made up of two steps: Primary and secondary 

adhesion. 

 

During primary or reversible adhesion which can also be described as “docking”, the cells are 

brought in close proximity with the surface, either randomly by physical forces such as water 

propulsion, or directed movement, such as chemotaxis, facilitated by microbial moving 

apparatus such as flagella movement (Dunne, 2002). The net sum of attractive or repulsive 

forces determines adhesion (Garrett, Bhakoo and Zhang, 2008). Such forces include van Der 

Waals forces, steric interactions and electrostatic (double layer) formation and temperature 

(Dunne, 2002). 

 

During secondary or irreversible adhesion, which can also be described as “locking”, a fraction 

of the cells during primary adhesion are immobilized and irreversibly adhere to the surface 

(Garrett, Bhakoo and Zhang, 2008). As the physical bacterial appendages (flagella, fimbria and 
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pili) come in touch with the layer, the bacteria begin to produce exopolysaccharides and 

extracellular proteins that bind with surface materials and their appendages (Figure 2). 

Additionally, during this stage the bacteria adhere to each other or other organisms bound to 

the surface, leading to the formation of aggregates. Interestingly, the presence of one 

bacterial species can promote the adhesion of another, and such is the case with P. 

aeruginosa and E. coli where the former species encourages adhesion and biofilm formation 

of the latter (Dunne, 2002, Culotti and Packman, 2014), ultimately resulting in mixed species 

biofilms. 

 
Figure 1.2: Bacterial microcolonies entrapped in a matrix of exopolysaccharide (Dunne, 2002) 

1.5 Bacterial growth and maturation after adhesion 
 

Following irreversible attachment, the bacteria begin to grow (binary division) and die on the 

surface. The growth of the bacteria is determined by many factors such as available nutrients, 

perfusion of dissolved gas and nutrients in the biofilm, bacterial waste removal, pH and 

oxygen perfusion (Dunne, 2002; Salgar-Chaparro et al., 2020). In particular, nutrient depletion 

has been found to play an important role in determining biofilm biomass and shape, with 

exposure to limited nutrients leading to thinner biofilm formation (Salgar-Chaparro et al., 

2020). As bacteria divide, new cells spread outward and upward from the attachment point 

to form cell clusters (Hall-Stoodley and Stoodley, 2002). This results in the developing biofilm 

to adopt a mushroom-like structure (Fig. 3), which is thought to also assist with the spread of 

nutrients to cells deep into the biofilm (Garrett, Bhakoo and Zhang, 2008). In P. aeruginosa, 

the mushroom-like structure is caused by competition for nutrients amongst bacteria and is 

facilitated by rhamnolipids, whose production is upregulated during biofilm formation 

(Rasamiravaka et al., 2015; Ghanbari et al., 2016). Rhamnolipids are classified as 

biosurfactants, and are predominantly produced by Pseudomonas aeruginosa, and are 
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classified as mono and di-rhamnolipids (Sekhon Randhawa and Rahman, 2014). They play an 

important role as anti-adhesive molecules, promoting biofilm dispersion/disruption, and in 

the mushroom-like structure formation stage, they facilitate the formation of a motile 

subpopulation which can migrate up the stalks and form mushroom caps (Nickzad and Deziel, 

2014). 

 

Additionally, a study that looked into the mushroom-like structures formed by 

hydrodynamic P. aeruginosa showed that these structures are composed by both motile and 

immotile cells, and motile cells tend to “climb” the structure and settle on top of the immotile 

cells, leading to the “cap” formation. Interestingly, the nutrient level was noted to influence 

the structure; in low nutrient environments the stalks had high density as the cells were 

forced to migrate to the top (Ghanbari et al., 2016). 

 

 

 

Following an initial lag phase, a sharp increase in the population can be observed, also known 

as exponential growth phase and is dependent on the environment and its conditions. It is at 

this point when processes aimed at adhesion cease and biological processes take over. The 

main aim at this stage is adhesion between cells, which is assisted by the production of 

polysaccharide intercellular adhesion polymers (PIA) and presence of divalent cations, which 

can interact with exopolysaccharides and thus modify the structure and composition of 

biofilm, and interact to form stronger intercellular adhesion (Garrett, Bhakoo and Zhang, 

2008; (Steiger et al., 2020). In addition, extracellular DNA, which is produced after either 

active secretion or cell lysis, also plays an important role in biofilm formation. In particular, 

its adhesion and extension from the cell surface has been found to aid  in bacterial adhesion 

at this stage, by providing structural stability of aggregates in the initial stages of biofilm 

development (Okshevsky and Meyer, 2015). In particular, it has been demonstrated that 

eDNA can bind to Type IV pili in P. aeruginosa, which forms a mesh in the biofilms and assists 

aggregation (Okshevsky and Meyer, 2015). Another factor aiding in cell-to-cell adhesion are 

extracellular structural biofilm proteins which make up the matrix (Flemming et al., 2016). 

The extracellular matrix, made up of self-producing polymers, also helps bacteria attach to 

each other, and is made up of exopolysaccharides, such as Pel and Psl which will be described 

igure 1.3: Mushroom structure: Motile cells are green, immotile are 
blue (Ghanbari et al., 2016) 
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in more detail below, proteinaceous components such as functional amyloids and eDNA 

(Steinberg and Kolodkin-Gal, 2015) 

 

Additionally, there are important gene expression changes associated with biofilm 

maturation post adhesion, such as upregulation of factors which promote and support 

attachment, especially of the extracellular matrix. 

 

In E. coli, which has been extensively studied, cellulose and curli, both components of the E. 

coli biofilm, show formation at this stage (Kostakioti, Hadjifrangiskou and Hultgren, 2013). 

Curli, being important amyloid fibers of the extracellular matrix, are important to E. coli 

surface adhesion, cell aggregation and biofilm formation (Barnhart and Chapman, 2006). 

Other studies have observed polyglucosamine and colonic acid contribution to biofilm 

architecture (Kostakioti, Hadjifrangiskou and Hultgren, 2013). Additionally, 

lipopolysaccharides (LPS O antigen), capsules (polysaccharide K antigen) and ß-1,6- N-acetyl-

D-glucosamine polymer (PGA) have been shown to be important components of the E. coli 

biofilm. PGA assists biofilm formation by aiding cell-to-cell adhesion and surface attachment, 

and also acts as an adhesin, stabilizing the E. coli biofilm. Colonic acid, another component of 

the E. coli biofilm, is capable of forming a capsule around the cells, offering protection 

(Sharma et al., 2016). 

 

P. aeruginosa has also been studied extensively (Fig. 4). At least three extracellular 

polysaccharides have been observed: alginate, Pel and Psl, which are determinants of biofilm 

structure. Alginate is a linear unbranched polymer made up of D-mannuronic and L-guluronic 

acid and contributes to biofilm stability and nutrient retention (Rasamiravaka et al., 2015). 

PSL is a repeating pentasaccharide consisting of D-mannose, L-rhamnose, and D-glucose and 

has been shown to benefit attached cells and bacteria that cannot produce PSL, and provide 

tolerance against antibiotics (Irie et al., 2016). The positively charged Pel polysaccharide is 

mainly a glucose-rich polymer made up of partially acetylated 1→4 glycosidic linkages of N-

acetylgalactosamine and N-acetylglucosamine, whose production is mediated by the pelA-G 

operon (Colvin et al., 2011; Jennings et al., 2015). Additionally, eDNA (extracellular DNA) is an 

important component of P. aeruginosa biofilms, by aiding cell-to-cell adhesion, biofilm 

expansion and early biofilm development (Rasamiravaka et al., 2015). 
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Figure 1.4: Graphic representation of biofilm formation by P. aeruginosa. Step 1: primary adhesion. Step 2: aggregation. 

Step 3: Exopolysaccharide production (Dunne, 2002). 

 

1.6 Quorum Sensing 
 

Once the cell concentration in the biofilm reaches a high enough number, a series of 

cell signaling processes, collectively named quorum sensing (QS) take place (Garrett, Bhakoo 

and Zhang, 2008). QS can be described as cell-to-cell communication employed by bacteria 

to control their population density by the production and reception of diffusible signaling 

molecules, which subsequently affect virulence, motility and biofilm formation (Rasamiravaka 

et al., 2015). Quorum sensing is especially important for virulence, as it has been observed 

that bacteria need to reach a certain population density in order to start expressing 

pathogenicity, affect the host and initiate disease (Li and Tian, 2012). P. aeruginosa, in 

particular, exploits two QS systems, las and rhl (Rasamiravaka et al., 2015). These two systems 

lead to the production of enzymes synthases LasI and Rhl II and the transcription factors LasR 

and RhlR of autoinducing signaling molecules. The las system has been shown to aid biofilm 

formation and maturation, and the rhl system has been linked to Pel and rhamnolipid 

synthesis. Additionally, there is a third, Pseudomonas-exclusive QS system, the PQS system, 

which is based on quinolone signals and is associated with eDNA release (Davies, 1998; 

Rasamiravaka et al., 2015). QS signals consist of acyl-homoserine lactones (AHLs), 

autoinducing peptides (AIPs) and autoinducer-2 (AI-2), which are key players in bacterial 

pathogenesis (Jiang et al., 2019). 
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 Quorum sensing is also of interest as a therapeutic target and anti-biofilm factor. In 

particular, anti-QS factors are a novel approach and are being examined as an alternative to 

antibiotics, by inactivating QS receptors, inhibiting and degrading QS signals, and engineering 

QS-blocking antibodies that induce bacterial cell death (Jiang et al., 2019). 

 

1.7 Final stages of biofilm maturation and dispersion 
 

 As the biofilm matures, bacterial dispersal and colonization of other sites becomes an 

option. Dispersal can happen both passively, e.g., by shear stress, but also actively by choosing 

to pursue a planktonic state. Bacteria have evolved ways to judge whether dispersal should 

occur or not, which is based on a plethora of factors, such as available nutrients, oxygen 

fluctuations and toxic product concentrations. Signaling is important for the change from 

adhesion to dispersion, and one signal that appears particularly important is the cyclic-

dimeric-GMP (c-di-GMP signal), associated with changes in motility in both P. aeruginosa and 

E. coli (Kostakioti, Hadjifrangiskou and Hultgren, 2013). Additionally, the process is 

accompanied by the production of enzymes which help with EPS degradation, leading to the 

release of bacteria and colonization of surfaces elsewhere. One such enzymes is alginate 

lyase, produced by P. aeruginosa, and N-acetyl-heparosan lyase, produced by E. coli. At the 

same time, genes encoding for flagella proteins are upregulated, equipping the bacteria with 

the necessary apparatus for motility and genes encoding for porins become downregulated 

(Garrett, Bhakoo and Zhang, 2008). 

 

 

 

1.8 Biofilm adaptation in static and dynamic environments 
  

Hot tubs are often equipped with water jets, which can be turned on and create a dynamic 

enviroment, which can cause water projection and generation of shear stress which assists 

the spread of bacteria. Hydrodynamic forces are a key regulator of bacterial adhesion to 

substratum: on one hand, low shear stress can limit bacterial detachment and assist with cell 

adhesion, and, on the other hand, high shear stress assists with mixing and bacterial transport 

across the environment (Saur et al., 2017).  
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Studies have shown that the jets lead to generation of vibrations and pressure and lead to 

biofilm consolidation, or in other words formation of a higher density biofilm over time 

(Figure 1.5). It has also been observed that water flow generates forces that “squeeze” the 

water out of the biofilm, and together with turbulent fluid flow over the biofilm lead to 

consolidation, especially at the bottom layers of the biofilm which undergo consolidation for 

the longest period of time, leading to them having the highest densities (Laspidou and 

Rittmann, 2004). Another study pointed out that hydrodynamic forces affect biofilm 

formation by controlling oxygen availability (Thomen et al., 2017). Thus, the hydrodynamic 

forces here lead to the development of a stronger, but thinner biofilm (Liu and Tay, 2002). 

 

 

 

1.9 Phenazines and electron transfer 
 

Phenazines are a group of natural products produced by a plethora of Gram-positive and 

Gram-negative bacteria, including P. aeruginosa (Guttenberger et al., 2017). Although there 

are many phenazines, the most important ones in Pseudomonas are phenazine carboxylate 

(PCA), phenazine carboxamide (PCN), and pyocyanin (PYO) (Saunders et al., 2020). They are 

colored compounds and pyocyanin, one of the most studied phenazine, is responsible for 

giving Pseudomonas its distinctive blue green color (Figure 6) (Price-Whelan et al., 2007). 

Figure 1.3: Comparison of biofilm formation on dentin on A: static and B: 
dynamic conditions (Santos et al., 2019) 
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These pigments are also redox-active, and have been shown to influence gene expression, 

metabolic flux, and redox balancing in their hosts (Price-Whelan et al., 2007).  

 
Most importantly, however, phenazines are responsible for promoting antibiotic resistance 

in P. aeruginosa biofilms. Studies have shown that biofilms from phenazine-null mutants 

treated with ciprofloxacin, a clinically relevant antibiotic, showed higher antibiotic 

susceptibility compared to wild type, phenazine-producing P. aeruginosa biofilms (Schiessl et 

al., 2019). The study also found a link between phenazines and electron transfer, suggesting 

that antibiotic resistance may be linked to respiration. 

 

Extracellular electron transfer (EET) describes the process where electron acceptors or donors 

are accessed by nearby cells. During biofilm development, a concentration gradient of 

substrates such as oxygen is formed, as it is consumed by cells in the outer border of the 

biofilm faster than it can be diffused in the interior of the structure. In order to ensure oxygen-

dependent electron acceptors can be accessed in the interior of the biofilm, mechanisms such 

as EET take place within the matrix (Saunders et al., 2020). A recent study established the role 

pyocyanin plays in an efficient redox cycle and pinpointed to the role of extracellular DNA in 

the facilitation of electron transfer, highlighting it as a key player in cellular respiration and 

the first example of a metabolically useful molecule bound by the extracellular matrix (Figure 

7). In particular, it is hypothesized that oxidized pyocyanin is retained in the oxic region of the 

oxygen gradient, and reduced PCN and PCA are found in the anoxic region, where they can 

diffuse outwards towards the oxic region. There, they reduce the oxidized PYO, which reacts 

with oxygen leading to oxidation, and the re-oxidized PYO reacts with eDNA, which re-oxidizes 

PCN and PCA and can allow diffusion towards the anoxic region (Saunders et al., 2020) 

Figure 1.4: The characteristic blue-green color exhibited by P. aeruginosa 
cultures (Karagianni.,2020) 
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Figure 1. 5: The phenazine redox cycle in the biofilm. Cells are represented 

as grey shapes, phenazines as blue structures, electrons as circles and the oxygen gradient in the biofilm as a blue gradient 

(Saunders et al.,2020). 

 
1.10 Cyclic di-GMP 
 

c-di-GMP, which is synthesized by diguanylate cyclase (DGC), is well known for its role as an 

intracellular messenger responsible for the coordination of the “lifestyle transition” from 

lone, motile cells to sessile, biofilm forming cells and vice versa, and its activity has been 

demonstrated in a wide range of bacteria, including E. coli and P. aeruginosa (Valentini and 

Filloux, 2016; Cotter and Stibitz, 2007). C-di-GMP contributes to this transition by modulating 

gene expression profiles though interaction with transcriptional regulators, such as FleQ and 

PelD (Basu Roy and Sauer, 2014). Increased c-di-GMP levels are associated with sessile 

growth, while lower levels are associated with planktonic growth (Cole and Lee, 2015). For 

example, P. aeruginosa biofilms are estimated to contain on average 75–110 pmol of c-di-

GMP per mg of total cell extract, whereas planktonic cells contain less than 30 pmol mg−1 

(Basu Roy and Sauer, 2014). C-di-GMP has also been implicated in an emerging number of 

cellular functions, such as cell cycle regulation, differentiation, biofilm formation and 

dispersion, motility, virulence, and other properties (Figure 8) (Romling et al., 2013). 

 

P. aeruginosa is a model organism to study the effects of c-di-GMP on cell motility. The 

messenger binds to many protein receptors, altering their function and leading to 

morphological changes. FleQ has also been shown to regulate the transcription of 

the psl and pel exopolysaccharide operons (Hickman and Harwood, 2008). In the absence of 

c-di-GMP, FleQ acts as a repressor, while in the presence of the messenger it acts as an 

activator (Hickman and Harwood, 2008). Pel synthesis requires activation of a seven-gene 

operon, pelA-pelG, all of which are essential for Pel-dependent biofilm formation (Colvin et 

al., 2013). A study has shown that the pelA promoter contains two FleQ binding sites on either 

side of its transcription start site, dedicated to activation and repression, which links to the 

observation that FleQ has a dual function (Baraquet et al., 2012).  Additionally, high c-di-GMP 
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levels causes downregulation of FleQ-regulated flagellar genes which are associated with 

motility, such as flhA (Hickman and Harwood, 2008). 

 

Moreover, high c-di-GMP levels, resulting in FleQ binding, also regulate the expression of the 

surface adhesin CdrA, a long, rod-shaped protein containing a beta helix structural motif 

(Borlee et al., 2010). Studies have shown that CdrA is important for the localization and 

stabilization of Psl, thus contributing to biofilm integrity and stability (Borlee et al., 2010). 

Additionally, c-di-GMP binds to PelD, a membrane bound c-di-GMP specific receptor. Studies 

have shown that c-di-GMP binding to PelD is essential for Pel polysaccharide production, 

further highlighting its importance to biofilm integrity (Whitney et al., 2012). 

 

The messenger is also important in type IV pilus-mediated twitching motility, which is 

associated with biofilm formation and adherence (Kazmierczak et al., 2006). By binding with 

high affinity to FimX, a protein with a regulatory role in surface assembly of pili, it becomes 

localized to the leading pole of moving bacteria, where type IV pili assembly and retraction 

are taking place. Studies have shown that bacteria deficient in FimX exhibit impaired motility 

and microcolony formation (Jain et al., 2012). Interestingly, FimX becomes largely bound by 

c-di-GMP when P. aeruginosa transitions from liquid to surface-associated growth, as studies 

have shown a significant increase of intercellular c-di-GMP (Jain et al., 2017). Therefore, FimX 

may act to “license” pilus assembly at lower c-di-GMP concentrations typically exhibited 

following surface attachment, leading to directionally persistent movement and surface 

colonization (Jain et al., 2012). 

 

Together, all these c-di-GMP receptor proteins act together to orchestrate the transition of 

planktonic bacteria to biofilms, with elevated c-di-GMP levels leading the process. 
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Figure 1.6: Regulatory networks underlying P. aeruginosa biofilm formation, showing the importance of c-di-GMP 

(Moradali, Ghods and Rehm, 2017) 

However, a very important property of c-di-GMP is its ability to regulate antibiotic resistance 

in biofilms. It is well known that bacteria in biofilm show higher antibiotic resistance 

compared to planktonic cells (Nickel et al., 1985). As described above, the messenger plays 

an important role in biofilm stability, therefore directly influencing antibiotic resistance. A 

number of experiments have however hinted that c-di-GMP may itself influence resistance to 

antibiotics regardless of biofilm formation. For example, an experiment utilizing a P. 

aeruginosa pel mutant strain with high c-di-GMP levels showed higher fitness when compared 

with the same strain with low c-di-GMP levels, even in the planktonic stage (Nicastro et al., 

2014). Another study, which focused on the genomics of adaptation of P. aeruginosa, showed 

that adaptive resistance to fluoroquinolones was due to multiple mutations in the known-

resistance genes including the gyrA, gyrB, nfxB, and orfN which were associated with 

mutations in the genes involved in cyclic di-GMP signaling (Wong et al., 2012). In particular, 

nfxB encodes a negative regulator of the mexCD-oprJ genes, responsible for a multidrug 

resistance efflux pump involved in the extrusion of toxic substrates (Monti et al., 2013). This 

is of particular interest, as pyocyanin, whose properties were described previously and c-di-

GMP both play key roles in regulating biofilm formation and multi-drug efflux pump 

expression in Pseudomonas aeruginosa (Wang et al., 2018). 
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1.11 Strains for analysis 
 

A vast variety of microorganisms have been found in hot tubs, including Campylobacter 

jejuni, Shigella sonnei, Cryptosporidium spp., Giardia intestinalis, Escherichia coli and 

Pseudomonas aeruginosa, as well as bacteria of the Legionella genus (Fewtrell and Kay, 2015; 

Leoni et al., 2018). These pathogens are most often the results of human fecal contamination, 

environmental factors such as sand and rainfall, and domestic or wild animals (Fewtrell and 

Kay, 2015). E. coli and P. aeruginosa, two biofilm-forming bacteria commonly found in hot 

tubs, have exhibited antibiotic resistance (Fontes et al., 2012). Therefore, it was decided that 

these two bacteria would be relevant organisms for assessing the sanitizing efficacy of the 

products. 

 

• Escherichia coli (E. coli) K12 

E. coli is a Gram-negative bacterium and an anaerobic inhabitant of the gastrointestinal flora, 

where it exists as part of a multispecies biofilm. Additionally, it is a highly versatile bacterium, 

capable of being a common medical device contaminant, a frequent cause of urogenital 

infections and a hot tub contaminant (Beloin, Roux and Ghigo, 2008). Being a well-studied, 

reliable and convenient microorganism regarding its growth, E. coli is considered a valuable 

training and experimental model (Beloin, Roux and Ghigo, 2008; Brousseau et al., 2013). 

Moreover, E. coli presence in hot tubs is an indicator of fecal contamination. It is commonly 

sensitive to disinfectants and its presence suggests problems with disinfectant use or cleaning 

regime (Brousseau et al., 2013). E. coli has an optimum growth temperature of 37oC and is 

able to grow in the temperature range between 30 and 42 degrees, making the working 

temperature of a hot tub ideal for its proliferation (Doyle and Schoeni, 1984).  

 

• Pseudomonas aeruginosa (P. aeruginosa) PAO1 

P. aeruginosa is a Gram-negative opportunistic pathogen, capable of causing folliculitis, otitis 

and respiratory infections such as pneumonia, especially in cystic fibrosis patients and 

immunocompromised populations (Lutz and Lee, 2011; Crnich, Gordon and Andes, 2003). 

Studies have shown that the two most common routes for contracting P. aeruginosa 

infections are through skin exposure in hot tubs and inhalation of aerosols which are often 

present during hot tub use (Mena and Gerba, 2009). P. aeruginosa has very little nutritional 
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requirements and proliferates at a range of temperatures varying from 4–42 °C, making the 

operational and standby temperatures of the hot tub, 25-37 °C ideal. Additionally, it is a 

common hot tub contaminant, with studies showing that up to 21-62.5% of hot tubs being 

positive for P. aeruginosa, with a recent study isolating P. aeruginosa in 20.9% of hot tubs 

examined  (Lutz and Lee, 2011; Kush and Hoadley, 1980 (Caskey et al., 2018). Interestingly, P. 

aeruginosa also appears to promote corrosion of stainless steel (Yuan et al., 2008). P. 

aeruginosa also exhibits resistance to disinfectants, which makes it an ideal model organism 

to study the sanitation efficacy of the products (Russell, 1999) 

 

1.12 Enzymes  
 
As the water conditioner provided by the sponsoring company states that it contains 

enzymes, it was decided to perform a brief literature search on enzymes and their industrial 

applications, plus any potential applications in biofilm prevention and removal.  After 

consultation by the sponsoring company, the researcher was informed that the water 

conditioner contains an enzymatic mixture, and the relative proportions of the enzymes were 

90% Lipase, 5% protease and 5% amylase. 

 

Enzymes are the most well-known biological catalysts (also known as biocatalysts), capable 

of accelerating biochemical reactions in living beings. They are globular proteins that vary in 

size from less than 100 to more than 2.000 amino acids can be arranged in one or more 

polypeptide chains which are then folded and bent to form a specific three-dimensional 

structure, including the active site, a small area where the substrate binds and is converted 

into product molecules (Robinson, 2015). They are affected by pH and temperature and have 

characteristic optimum pH where the speed of the catalyzed reaction is at maximum, and 

above and below which the velocity decreases (Robinson, 2015).. Due to the efficiency, they 

are commonly used in industry, especially the food and detergent industry, therapeutics, 

reagents and as tools in genetics (Robinson, 2015). 

 

 

• Proteases 
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Proteases are degradative enzymes specialized in protein degradation and modification and 

make up for up to 20% of the enzyme market worldwide (Razzaq et al., 2019). Commercial 

proteases are produced by microbes because of their high yield, cost-effectiveness and 

desired characteristics (Razzaq et al., 2019). Proteases can be classified into serine, aspartic, 

cysteine proteases and metalloproteases, and are mainly sourced from Bacillus sp. They are 

active within a narrow pH range (5 to 8) and although optimum temperature can vary 

between source organisms, it is usually at around 60°C (Rao et al., 1998). 

 

 

• Lipases 

Lipases are a class of enzymes responsible for the hydrolysis of long chain triglycerides to free 

fatty acids and glycerol and are extensively used in the detergent industry (Snellman, Sullivan 

and Colwell, 2002). Lipases act under mild conditions, are highly stable in the presence of 

organic solvents, have broad substrate specificity and show high regio- and stereo- specificity 

in catalysis (Snellman, Sullivan and Colwell, 2002). Additionally, they are biodegradable, leave 

no harmful residue and are safe for aquatic life, and increase detergent efficacy by reducing 

the temperature needed for efficient cleaning (Hasan, Shah and Hameed, 2006). 

 

• Amylases 

α-Amylases catalyze the hydrolysis of α-1,4-glycosidic linkages in starch, low molecular weight 

products, such maltose and maltotriose units, and in naturally abundant biopolymers 

composed of glucose units. They are usually sourced from either Bacillus sp. or Aspergillus sp. 

It exhibits optimum amylolytic activity at pH ranges between 7.5 and 11 and has different 

optimum temperatures depending on the source organism, ranging from 22°C-70°C. 

Additionally, in a study α-amylase showed reasonable stability in the presence of protease K, 

by retaining 71% of its activity at 75°C (Souza and Magalhães, 2010). Interestingly, commercial 

α-Amylases also show anti-biofilm potential in Staphylococcus aureus biofilms, which may be 

partly explained by the fact that amylose-like polysaccharides are present in the EPS 

(Bradford, 2011). Amylose-like polysaccharides (α 1-4 linked polymers) are also present in P. 

aeruginosa, and bacterial amylases have shown to be effective in P. aeruginosa biofilm 

prevention (Kalpana, Aarthy and Pandian, 2012). 
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1.13 Active Oxygen 
 
 
Active oxygen is a blanket term referring to oxidizing agents, both inorganic and organic , with 

the term active oxygen referring to the active agent released from peroxide in aqueous 

solutions (Bloomfield, 2004). Active oxygen substances, such as hydrogen peroxide, are 

widely used in the medical field, in bleaching procedures, water treatment and purification of 

organic compounds (Bloomfield, 2004). Table 2 provides a summary of well-known active 

oxygen substances, their structures and most common uses. 

 

Table 1.1: Examples of active oxygen substances and their uses (ECHA, 2021). 

Name Structure Molecular 

formula 

Uses 

Hydrogen peroxide 

 

H2O2 Biocide, 

cosmetics, pH 

regulator, water 

treatment 

Benzoyl peroxide 

 

C14H10O4 Medication, 

water 

treatment, 

polymer 

production 

Ozone 

 

O3 Biocide, water 

treatment, 

drinking water 

treatment 

Pentapotassium 

bis(peroxymonosulphate) 

bis(sulphate) 

 

KHSO5 Water 

treatment, 

wastewater 

treatment, 

pollutant 

degradation 
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Active oxygen species have well known and well documented antimicrobial, fungicidal and 

virucidal effects, and have been widely used in water treatment, intraoperatively to prevent 

tissue infection by pathogens, and as a biocidal in dental operations such as root canal 

procedures. Their biocidal effects are based on their oxidative effects and formation of free 

radicals (Hunt and Mariñas, 1997). 

 

One such species is ozone, a naturally occurring gaseous molecule of triatomic allotrope of 

oxygen, whose bactericidal effects are well known (Song et al., 2018). Oxidation reactions are 

caused by dissolved molecular ozone or free radical species created during the auto-

decomposition of ozone (Hunt and Mariñas, 1997). Many studies have exhibited its anti-

biofilm effects against P. aeruginosa, stating that as little as 30 seconds of exposure are 

enough to express bactericidal effects (Bialoszewski et al., 2011). Another study examined 

active oxygen’s mode of action against P. aeruginosa and detected leakage of K+, Mg2+ and 

ATP, and led to the conclusion that active oxygen inactivates bacterial cells by causing 

cytoplasm agglutination, protein denaturation and membrane permeabilization. The same 

study also found that exposure to ozone led to P. aeruginosa cells to exhibit sensitivity to 

sodium dodecyl sulfate, a widely used detergent, and subject to inactivation by proteinase K 

(Zhang et al., 2015). It has been shown that the lipoprotein and lipopolysaccharide of gram-

negative bacteria are the first targets of ozonation (Kim,Yousef and Dave, 1999). Interestingly, 

a study showed that active oxygen may actually be more effective at killing gram-negative 

bacteria, including E. coli and P. aeruginosa, than gram-positive bacteria (Restaino et al., 

1995). Ozone is also an interesting alternative compared to chlorine or bromine as it has a 

higher thermodynamic oxidation potential, produces less harmful disinfection by products 

and additionally has a better potential compared to chlorine as a coagulant aid; coagulation 

is a process where organic matter is removed during water treatment (Choudhury et al., 2018) 

 

While performing literature search for the activity of Active Oxygen against bacteria, 

it was realized that the main active component in the tablets provided by the industrial 

sponsor was pentapotassium peroxymonosulfate (PMS), in combination with potassium 

hydrogensulphate and dipotassium peroxodisulphate. PMS is the main ingredient in the 

widely used disinfectant Virkon (eco3spa user manual, 2019; ECHA, 2021). When diluted in 
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water, peroxymonosulfate produces hydroxyl radicals and sulfate-ion radicals, both of which 

possess potent antibacterial properties (Kennedy and Stock, 1960). Pentapotassium 

peroxymonosulfate is an oxidizing agent, and 1% solutions have shown excellent inactivation 

of viruses and bacteria, after 10 minutes of contact (Eleraky et al., 2002).  A study on the 

bactericidal efficacy of Virkon against pathogens including P. aeruginosa and E. coli showed 

that after 5 minutes the product was active against both pathogens, achieving a 5-log 

reduction (Hernndez et al., 2000). In addition, another study on Virkon used at 1% 

concentration found it exhibits potent biocidal effects against both P. aeruginosa and E. coli 

(Gasparini et al., 1995). Another study found that Virkon at 0.003% showed an important 

inhibitory effect when added before an established population was formed (El-Naggar et al., 

2001). Transmission electron micrographs (Fig. 1.9) showed the morphological changes after 

Virkon treatment, with the formation of spheroplasts visible at (Fig. 1.9 c) and cell lysis visible 

at (Fig. 1.9 d) (El-Naggar et al., 2001). 

 

It is known that high temperature affects the activity of pentapotassium peroxymonosulfate. 

According to the safety data sheet of Virkon, high temperatures can lead to product 

disintegration and the formation of sulphur dioxide; therefore, Virkon treated cultures must 

not be autoclaved for this reason (Virkon S safety data sheet, 2021). However, despite an 

extensive literature search, information on the effect of pH on the activity of pentapotassium 

peroxymonosulfate was difficult to obtain and to the best of the researcher’s knowledge, non-

existent. 
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Figure 1.9: Transmission electron micrographs of E. coli after Virkon treatment. a (a) 0.03% Virkon-S for 60 min; 

(b) 0.03% for 360 min; (c) 0.125% for 60 min;(d) 0.25% for 15 min (El-Naggar et al., 2001). 

1.14 Chlorine as a water treatment 
 

Sodium dichloroisocyanurate (Figure 10), which is the main compound in the hot tub chlorine 

product (NaDCC) is a chlorinated cyanurate commonly used in swimming pools and hot tubs 

as a biocide and sanitizing agent against bacteria, viruses and parasites and has been 

approved as a treatment for drinking water (Clasen and Edmondson, 2006). Furthermore, it 

helps stabilize chlorine residuals by reducing sunlight-associated chlorine degradation. 

Chlorinated cyanurates provide cyanuric acid and free chlorine in the form of hypochlorous 

acid (HOCl), a weak acid, to the water (Jain et al., 2010; Wahman, 2018). Another benefit of 

dichloroisocyanurate is its stability, which may extend to years, and ease of use compared to 

other chlorine sources, such as liquid chlorine. Additionally, dichloroisocyanurate, in 

comparison to other forms of chlorine, produces a solution with a near-neutral pH, which is 

important as chlorine exhibits reduced sanitizing efficacy at low and high pH values (Figure 

11) (Wahman, 2018). High and low pH values dissociate hypochloric acid, forming hypochloric 

ions (OCl-) (Mazzola et al., 2003). Hypochlorous acid is about 40 to 80 times more efficient in 

killing pathogens as compared to hypochlorite, and about 80 to 100 times more efficient in 

killing E. coli (Snoeyink and Jenkins, 1980). At the pH range of natural waters (pH 6-9), the 

amount of hypochlorous acid and hypochloric ions are very sensitive to pH fluctuations, and 

as their disinfection properties vary, pH monitoring and control can be critical in ensuring 
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sanitizing efficacy (Snoeyink and Jenkins, 1980). Interestingly, NaDCC gradually releases about 

50% of its free chlorine when dissolved in water and even retains a “reserve” of chlorine, 

allowing for a 45-day lifespan of available chlorine at room temperature which gives it a 

significant advantage over chlorine which exhibits a lifespan of 24 hours (Parkinson et al., 

1996; Clasen and Edmondson, 2006; Meireles et al., 2017). 

 
 

Sodium dichloroisocyanurate has been used for a long time as a bactericidal agent against E. 

coli, P. aeruginosa amongst other pathogens (Bloomfield and Uso, 1985). Planktonic growth 

inhibition assays using P. aeruginosa in nutrient-rich media as a model organism have shown 

that NaDCC exposure for as little as 30mins is enough to significantly reduce growth. Exposure 

longer than 6hrs led to complete growth inhibition and proved its sterilizing abilities. 

Moreover, NaDCC concentrations of over 60% were found to inhibit Pseudomonas biofilm 

formation as well as inactivate active biofilms (Morgenthau et al., 2012). 

  

Regarding E. coli, NaDCC exhibits the fastest antimicrobial action in comparison with other 

chlorine-based disinfectants, such as sodium hypochlorite (Meireles et al., 2017). NaDCC has 

been shown to effectively inactivate E. coli in concentrations as low as 750-1000 ppm and 

incubation times as short as three minutes (Long et al., 2020). Additionally, studies have 

shown its activity against E. coli biofilms, by showing a 2.8 log10 reduced biofilm viability 

(Chowdhury et al., 2019). 

 

1.15 Eco3spa 
 

Figure 1.10: Sodium 
dichloroisocyanurate 
structure (Wahman, 2018) 
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The project involved collaboration with Eco3spa, a small company supplying hot tub 

chemicals and accessories throughout the UK and EU. Their range of products covers hot tub 

chemicals, filters, cleaning agents, covers and various accessories.  

 

Eco3spa provides customers with the Eco3spa watercare kit, a novel 3-step hot tub treatment 

made from natural coconut, minerals and plant extracts and contains a hot tub cleaner, 

conditioner and active oxygen sanitiser tablets to last for 3 months of average hot tub use. 

According to the company, the enzymes in the product work synergistically with the eco3spa 

Water Sanitiser Tablets to increasing the effectiveness of the tablets and reduce the amount 

of sanitiser needed to maintain a safe hot tub. The company does not possess the scientific 

underpinning of efficacy and usage of the products in combination with each other and in 

different conditions such as varying temperature and pH. Work conducted during this study 

contributed towards the optimal performance of products, in terms of product 

concentrations, whilst also comparing product efficacy against the commonly used chlorine 

hot tub treatment, also supplied by the same company. 

 

Table 1.2: Specific products analysed during the project 

Name Appearance Purpose Directions of 

use 

Product Nr. 

Eco3spa Hot tub 

cleaner 

Blue liquid Designed to 

remove biofilm 

from hot tub 

Empty bottle in 

hot tub (1200 L) 

1 

Eco3spa Water 

Conditioner 

Opaque liquid Designed to 

condition the 

water, stabilizes 

pH 

Use 300ml in 

hot tub (1200 L) 

2 

Eco3spa Active 

Oxygen tablets 

Tablets Design to 

prevent biofilm 

formation 

Use two tablets 

in hot tub (1200 

L) 

3 
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1.16 Aims and objectives 
 

Eco3spa has developed a 3-step biofilm removal and prevention kit which includes a biofilm 

remover hot tub cleaner, sanitizing tablets containing active oxygen, and an enzymatic water 

conditioner which is added to the water in combination with the active oxygen tablets. The 

recommended usage guidelines suggest using the hot tub cleaner first to remove any biofilm, 

then the water conditioner in conjunction with two active oxygen tablets to sanitize the hot 

tub and soften the water, and following that, use one tablet before each hot tub use. 

 

As the recommended guidelines suggest the use of a variety of product combinations and 

concentrations, it was decided to assess the effects of the product combinations on biofilm 

removal and sanitizing efficacy. In addition, as the activity of chlorine is defined by a very 

narrow pH range, it was decided to compare the activity of active oxygen in a series of 

different pH and benchmark it against chlorine. The company was in agreement with the 

decisions. 

 

Therefore, the aims set up with respect to Eco3spa’s products were: 

  

• To determine the optimal product concentrations, dosages, and combinations to 

prevent and remove biofilms 

 

• To assess whether temperature influences active oxygen and other products 

components 

 

• To examine whether various pH influence active oxygen, chlorine, and other 

products  

 

• To determine the sanitizing efficacy of active oxygen and benchmark its activity 

against chlorine. 
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1.17 Experimental Strategy: 
 

Although biofilms have been the focus of many studies over the past decades, little research 

has been performed in the prevention and removal of biofilms in the hot tub environment. 

The major aim of this work was to obtain an understanding of the activity of active oxygen 

tablets in various concentrations, under different pH and temperatures, and compare its 

activity to the competing product, chlorine. Biofilms in hot tubs have become a growing 

concern as research has shown they are not only present in a significant number of hot tubs 

and can affect vulnerable populations, but they are also capable of returning even following 

hot tub sanitation, as long as sanitation levels remain sub-optimal (Lutz and Lee, 2011). 

Moreover, there is concern over the development of resistance to chlorine, which is 

commonly used for hot tub sanitation (Mao et al., 2018). The Eco3Spa 3-step water watercare 

kit used to remove, sanitize and condition hot tub water will be tested to investigate its 

bactericidal properties and its activity will be compared to the competing chlorine product. 

 

To achieve this aim, microtiter plate biofilm prevention and removal assays at two different 

temperatures (25 and 37°C) will be set up, using two different media (LB and M9). Selected 

strains of E. coli and P. aeruginosa will be diluted and exposed to each of the products or in 

product combinations in these assays. Benchmarking of active oxygen against chlorine by 

comparing optical density and crystal violet measurements will be performed (Chapter 3). 

Furthermore, planktonic growth following active oxygen treatment by itself or in combination 

with products will be monitored by measuring the optical density and biofilm formation 

measurements will be performed (Chapter 4). Moreover, live-dead staining and viability 

assays will provide more insights on the effect of active oxygen on cell morphology and 

viability (Chapter 5). Finally, protein assays will attempt to investigate the components of the 

water conditioner (Chapter 6) These experiments together generated accurate parameters in 

which the product is efficient of sanitizing the hot tub environment. 

 

1.18 Covid-19 impact on research 
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Because of the effect of COVID-19 on lab access, and a 6-month absence from laboratories, 

the experimental time of this project was cut short. As a result, there were many limitations 

which affected this thesis. 

Firstly, both LB and M9 media were supposed to be used in experiments. However, due to 

limited lab time and minimal medium M9 better representing the hot tub environment, it was 

decided to focus on this culture medium. The sponsoring company was in agreement to focus 

on this priority. 

 

Additionally, many experiments were performed under time constraints, lab equipment 

limitations and under n=1 conditions. For example, upon return to laboratories in August for 

a 4-week period a rota system was in place that severely limited the available experimental 

time. Therefore, it was decided to prioritize only SOP experiments and combinations and only 

in M9 minimal media, and the sponsoring company was in agreement with this decision. 

Additionally, there was no time available to confirm or optimize any initial, non-SOP 

experiments. Moreover, many experiments and experimental procedures were performed 

for the first time, such as light and fluorescence microscopy and protein assays, which were 

performed under lab equipment limitations and under n=1 conditions.  

 

Importantly, the project originally aimed to incorporate elements of chemical analysis which 

would have provided insights on the activity of active oxygen including the use of radical 

scavengers to measure the activity of Active Oxygen, and HACH assays to measure the activity 

and concentration of chlorine, which could potentially provide answers to some of the 

questions generated in this project. As the estimation of chlorine was made using test strips 

and their color could be subjective, there is a chance of inaccuracies in chlorine 

concentrations, and a more accurate chlorine measurement system could solve this. 

However, because of the fire on the Bay Campus which severely damaged the chemical 

engineering labs, it was impossible to arrange access to the necessary equipment. 

 

Furthermore, because of lack of in-person courses, skills on graphing and statistical software 

were largely self-taught. 
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2.1 Methods overview  

This chapter describes the general materials and methods used for the experimental 

chapters.  

2.2Bacterial Strains 

 

The two bacterial strains used in the experiments were Escherichia coli K12 and 

Pseudomonas aeruginosa PA01 (Delaney, 2019). 

 

Table 2.1: Strains used, genotypes and sources 

Strain Genotype Source 

Escherichia coli K12 Frozen glycerol stock – 

Swansea ILS1 

Pseudomonas aeruginosa PAO1 Frozen glycerol stock – 

Swansea ILS1 

 

2.2.1 Storage and treatment  

All strains grown in LB media overnight were mixed with 500μl of 40% glycerol and stored as 

glycerol stocks. The glycerol stocks were stored at -80°C. 

2.3 Media composition 

 

Table 2.2: Media used and their composition (Sezonov et al., 2007; Varik et al., 2016) 

Medium Composition g/L 

LB-Luria - Bertani Peptone 10 

 Yeast extract 5 

 NaCL 5 

 Agar  12 (if required for plates) 

M9 minimal media Na2PO4 33 

 KH2PO4 15 
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 NH4CL 5 

 NaCL 2.5 

 MgSO4 2 

 Glucose  20 

 CaCl2 0.1 

 

2.3.1 Media Preparation 

 

LB broth 

To prepare nutrient rich broth, 20g of Luria-Bertani (LB) Lysogeny Broth powder was added 

to 1 liter of distilled water in a 1L glass bottle. This was then sterilized at 120°C for 20 minutes. 

To prepare agar, 20g of LB Lennox powder was added to 1 liter of distilled water in a media 

bottle. 15g of agar (Melford) was added and the bottle was autoclaved at 120°C for 20 

minutes. Media was then poured into a series of 90mm sterile petri dishes and were left to 

solidify at room temperature within a preparation flow hood. The plates were stored in 

autoclavable plastic bags within a cold room at 4-8°C and were used within a week of 

preparation.  

M9 minimal media  

56.4g of Sigma-Aldrich M9 minimal salts (5x) was added to 1 liter of distilled water in a media 

bottle and dissolved. A 700ml of distilled water was then measured out in a fresh media 

bottle. 200ml of the sterilized M9 minimal salt solution was then added to the distilled water. 

This was then followed by: 2ml of MgSO4, 20ml of 20% glucose solution and 100μl of 1M 

CaCl2. The solution was then adjusted to 1L by adding more distilled water and autoclaved at 

120°C for 20 minutes.  

2.4 Buffers and dyes  

Live-Dead stains 

SYTO 9 was purchased for ThermoFisher. SYTO 9 is a green, fluorescent nuclear and 

chromosome stain with high affinity for DNA which can pass through intact cell membranes 
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and stain nucleic acids inside of them. Propidium iodide was purchased from ThermoFisher. 

It is a red, fluorescent DNA and RNA stain commonly used for bacterial viability assessment 

which only enters cells with ruptured or compromised cell membranes. Both dyes were 

dissolved in wells containing bacteria grown in M9 media, with or without active oxygen. 

Phosphate buffered saline (PBS)  

PBS is a sterile-filtered, liquid-based salt solution containing sodium phosphate and sodium 

chloride with a pH of 7.25. The components of PBS were Potassium phosphate (monobasic) 

0.14g, Sodium chloride 9g and Trisodium phosphate 0.795g (per Liter).  

Crystal violet solution (0.1%) w/v  

1g of crystal violet powder was purchased from Sigma- Aldrich UK and dissolved in 499ml of 

distilled water in a sterile media bottle. The mixture was then shaken several times, wrapped 

in tin foil and stored away from light to prevent photodegradation. 

Coomassie blue stain 

1L of SimplyBlue Coomassie G-250 SafeStain was purchased from ThermoFisher and was used 

in accordance with the manufacturer’s instructions. 

2.5 Protein assays 

2.5.1 Enzymes 

According to the enzymatic product manufacturer, the three enzymes present in the water 

conditioner were lipase, protease and amylase, with a composition of 90% lipase, 5% protease 

and 5% amylase. Additionally, no trypsin or protease inhibitors were present in the product. 

After research on enzymes employed in similar applications, the enzymes purchased in 

aqueous solution from Sigma were: 

Table 2.3: Enzymes ordered, source organism and protein amount 

Enzyme type Bacterial origin Protein activity  
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Protease Bacillus amyloliquefaciens ≥ 0.8 U/g 

Lipase Aspergillus oryzae ≥20,000 U/g 

a-Amylase Aspergillus oryzae ≥800 FAU/g 

2.5.2 Pierce BCA assay kit 

In order to determine the concentration of protein in the enzyme solutions and the water 

conditioner, a Pierce BCA (bicinchoninic acid) assay kit was purchased from ThermoFisher 

scientific. A series of BSA (bovine serum albumin) standard dilutions were prepared according 

to instructions and a standard curve was generated, which was used to quantify the amount 

of protein in the samples under investigation. The manufacturer’s protocol of use can be 

found here: https://www.thermofisher.com/document-connect/document-

connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFSAssets%2FLSG%2Fman

uals%2FMAN0011430_Pierce_BCA_Protein_Asy_UG.pdf&title=VXNlciBHdWlkZTogUGllcmNl

IEJDQSBQcm90ZWluIEFzc2F5IEtpdA== 

 

2.5.3 Protein Precipitation procedures 

In order to isolate any protein present in the water conditioner and remove any interfering 

substances, such as oils, two precipitation procedures were performed 

Trichloroacetic acid reagent (TCA) precipitation procedure: 50 μl of undiluted water 

conditioner were pipetted in an Eppendorf together with 450 μl of ultrapure water, 100 μl of 

sodium deoxycholate and 100 μl of trichloroacetic reagent (72% (w/v) trichloroacetic acid in 

ultrapure water). The sample was allowed to incubate for 10 minutes at room temperature 

and was then centrifuged for 10 minutes at max speed. The supernatant was removed, and 

the pellet was resuspended in 5% SDS in 0.1 N NaOH. 

Acetone precipitation procedure: 50 μl of undiluted water conditioner were pipetted in an 

Eppendorf and 200ul of cold acetone were added. The sample was vortexed and incubated 

for 30 minutes at -20oC, after which it was centrifuged for 10 minutes at max speed. The 

supernatant was removed, and the pellet was resuspended in 50 μl of ultrapure water. 



 33 

2.5.4 Protein gel electrophoresis 

The protein gels used for the analysis of enzymes and the composition of the water 

conditioner were Novex NuPage 10% Bis-Tris Gels, purchased from ThermoFisher. The 

running buffer used was MOPS-SDS with a final pH of 7.7. The protein ladder used was 

“PageRuler™ Prestained Protein Ladder, 10 to 180 kDa”. 

 

The gel electrophoresis was performed according to the manufacturer’s instructions. In brief, 

a small amount of each sample containing approximately 7.5 μg of protein (Table 2.3) was 

pipetted in a microcentrifuge tube together with 1μL Tris buffer, 4μL loading buffer and 2μL 

DTT (Table 2). Then, dH2O was added to each tube for a total volume of 25 μL, and the tubes 

were heated at 95oC for 5 minutes. 

 

Table 2.4: Enzymes used, their dilutions and amount of sample used 

Sample Amount of sample (approx. 7.5 μg protein) 

Amylase (1:10 Dilution) 2μL 

Protease (1:10 Dilution) 3μL 

Lipase 1μL 

Water conditioner 6μL 

 

Samples (including 5 μL of Pre-stained Bis-Tris protein standards) were loaded into the gel 

and electrophoresis was conducted at constant voltage (140 V) at room temperature until the 

dye front reached the end of the gel after 80 minutes. The gel was then removed, washed 

and left to stain with Coomassie blue stain overnight. The gel was then destained with and 

preserved in 30% ethanol and once destained to a satisfactory degree it was photographed. 

2.5.5 Lugol solution iodine amylase assay 

To determine whether any active amylase was present in the water conditioner, Lugol 

solution was purchased from Sigma. Soluble starch was used as amylase substrate: 5g of 

soluble starch was added in 500ml of water and the mixture was boiled until transparent to 

form a 1% starch solution. In an Eppendorf, 1ml of starch and 1ml of the sample to be assessed 

were mixed and samples were removed at various time points, mixed with 100 μl of Lugol 
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solution in a microtiter plate and the color change was observed and compared to the positive 

control, which was the purchased amylase.  

 

 

2.6 Products for biofilm prevention and removal 

Table 2.5- Summary of the three products used in this study.  

Name Appearance Purpose Directions of 

use 

Product Nr. 

Eco3spa Hot tub 

cleaner 

Blue liquid Designed to 

remove biofilm 

from hot tub 

Empty bottle in 

hot tub (1200 L) 

1 

Eco3spa Water 

Conditioner 

Opaque liquid Designed to 

condition the 

water, stabilizes 

pH 

Use 300ml in 

hot tub (1200 L) 

2 

Eco3spa Active 

Oxygen tablets 

Tablets Design to 

prevent biofilm 

formation 

Use two tablets 

in hot tub (1200 

L) 

3 

2.6.1 Product 1 (Hot tub cleaner) dilutions 

According to the manufacturer’s instructions, all the contents of the bottle (500 ml) should 

be added to 1200 L (typical hot tub volume). 

The dilution factor for 500 ml needed per 1,200,000 ml of water is 24000. The product was 

diluted prior to final use as 400 μl added to 480 ml water, creating a 12000 times dilution (2x 

working concentration). The final concentrations for use in microtiter plate wells (working 

concentration, total well volume 200 μl) were prepared by pipetting 100 μl of the 

intermediate solution into 100 μl of bacteria. 
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2.6.2 Active Oxygen tablets dilutions 

According to manufacturer’s instructions, two tablets should be added per 1200 L of water. 

The weight of two tablets is approximately 40g. The detailed preparation of active oxygen 

according to SOP is described in figure 2.1. 

The dilution factor for 40 g needed per 1,200,000 ml of water is 30000. The product was 

diluted to reach the working dilution for first sanitation of a hot tub. As it was not possible to 

add to 0.01g in 300ml, 0.2 g was added to 300 ml water, creating a 1500 times dilution (20x 

working concentration). The final concentrations for use in microtiter plate wells (working 

concentration, total well volume 200 μl) were prepared by pipetting 100 μl of the 

intermediate solution into 100 μl of bacteria (see figure 2.1 for details). 

 

Figure 2.1: SOP preparation of Active Oxygen  

From the 20x concentrated stock solution, a series of dilutions were prepared. 
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Figure 2.2: Illustration of the serial dilution methods used to make up the solutions of active 

oxygen 

2.6.3 Water conditioner dilutions 

According to the manufacturer’s instructions, 300ml should be added to 1200 L (typical hot 

tub volume) every three months. 

The dilution factor for 300ml needed per 1,200,000 ml of water is 40000. The product was 

diluted prior to final use as of 250 μl added to 500 ml water, creating a 20000 times dilution 

(2x working concentration). The final concentrations for use in microtiter plate wells (working 

concentration, total well volume 200 μl) were prepared by pipetting 100 μl of the 

intermediate solution into 100 μl of bacteria.  

2.7 96 well-plates for static biofilm assays 

The 96 well plates were purchased from Sigma-Aldrich UK and were kept in room 

temperature and in their original sterile packaging (Table 2.5) 
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Table 2.6: Specifications of 96-well plate used 

Name Costar 3599 

Material Polystyrene 

Treatment Tissue culture treated 

Well volume 360μl  

Well working volume Up to 200μl  

Plate geometry Flat bottom 

 

2.7.1 Static biofilm prevention assays 

Using sterile tweezers in a flow hood, a sterile toothpick was dipped into a single colony on a 

streaked LB agar plate and suspended in 20ml of either LB or M9 media in a 20ml sterile 

universal tube for 16-18 hours at a shaking incubator at 37°C. When the optical density (OD) 

from the overnight culture was measured using a 1cm cuvette and had reached 1, a dilution 

of 1:100 was performed by pipetting 20μl of the overnight culture into 1.980μl of media in a 

2ml tube. The diluted sample was then vortexed and 100μl was aliquoted into the wells of 

the Costar 96-well plate. Three replicates of control wells were also used, containing only 

media. Different plates were used for each bacterial strain. 

100μl of the prepared active oxygen dilutions and biofilm remover dilutions were added to 

the wells. Then, the provided lid was used to cover the plates, and they were placed in two 

incubators at 37°C and 25°C for 24 hours under static conditions. 

After 24hrs incubation, the planktonic growth of the cells was measured through optical 

density (OD) by using a BMG FluoStar plate reader at 595nm, with the path-length correction 

setting activated. After measurement, the liquid cultures in the plates were carefully emptied 

in a biohazard bag, washed once by pipetting 200μl of PBS into the wells, then emptied again 

into a biohazard bag. For plates containing Pseudomonas, a total of three washes of PBS were 

used. After that, the plates were allowed to air-dry partially inverted in the flow hood for 2 

hours. 

Once the drying step was complete, 200μl of 0.1% crystal violet solution was pipetted into 

the wells and the plates were incubated at room temperature for 15 minutes. The crystal 
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violet solution was then emptied in a biohazard bag and the stained plates were allowed to 

dry overnight. The following day, the crystal violet stain was re-solubilized by using 200μl of 

30% acetic acid solution and incubating at room temperature for 15 minutes. 200μl of 

resolubilized dye was then transferred into a fresh 96-well plate and the OD was measured 

using a BMG plate reader at 595nm.  

The OD was then measured at a wavelength of 595nm, which shows the absolute biofilm 

formation. Overall, the terms used to describe biofilm and growth were defined as: 

Planktonic growth is defined as the OD595 (in AU) of the liquid bacterial culture itself, 

measured in the titer plates 

Absolute biofilm formation is measured by the crystal violet measurement at OD595 (in AU) 

following staining and destaining of the cells adhering to the microtiter plate surface  

Specific biofilm formation is defined as normalised biofilm formation (no unit) by dividing the 

absolute biofilm measurement of crystal violet at OD595 by planktonic growth measurement 

at OD595 

2.7.2 Comparisons of Inner and Outer wells of 96 well plate  

To determine whether there was any difference between the OD readings taken on inner 

wells of 96 well plates and the outermost wells due to potential edge effects, an average of 

10 OD readings from wells in the inner most section of the plate was compared to an average 

OD reading from the outer most section of the plate. More details will be provided in the 

optimization chapter (Chapter 3).  

2.7.3 Spectrophotometer 

The spectrophotometer used to measure the OD of overnight cultures and their dilutions, as 

well as the OD of the standards of the Pierce BSA assay was a “DU 730 UV/Vis” 

spectrophotometer produced by Beckman Coulter, which utilized disposable cuvettes of 1ml 

max capacity and 1cm path length. 

2.7.4 Microplate reader  
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The microplate reader used to measure the OD of 96 well plates throughout the project was 

a “FLUOstar Omega Microplate reader” produced by BMG biotech. Omega Software V5.70 

was used for data interpretation, and the path length correction setting was applied 

throughout measurements. 

2.7.5 Static biofilm removal assays 

Using sterile tweezers in a flow hood, a sterile toothpick was dipped into a single colony on a 

streaked LB agar plate and suspended in 20ml of either LB or M9 media in a 50ml sterile 

Falcon tube for 16-18 hours at a shaking incubator at 37°C. When the OD (595 nm) from the 

overnight culture reached 1, a serial dilution of 1:100 was performed by pipetting 20μl of the 

overnight culture into 1.980μl of media in a 2ml tube. The diluted sample was then vortexed 

and 100μl was aliquoted into the wells of the Costar 96-well plate. Three replicates of control 

wells were also used, containing only media. Different plates were used for each bacterial 

strain. 

The provided polystyrene lids were used to cover the plates, and they were placed in two 

incubators at 37°C and 25°C for 24 hours under static conditions. 

After 24 hours, 50μl samples from each well were pipetted into a fresh 96-well plate and the 

planktonic growth was determined by measuring the OD using a plate reader set at 595nm. 

100μl of the prepared active oxygen dilutions and biofilm remover dilutions were added to 

the inner wells of the plate. Then, the provided lid was used to cover the plates, and they 

were placed in two incubators at 37°C and 25°C for a further 24 hours under static conditions. 

50 μl samples from each well were pipetted into a fresh 96-well plate and the OD was 

measured at 595nm. After measurement, the plates were emptied in a biohazard bag and 

200μl of PBS was pipetted into the wells, then emptied into a biohazard bag. For plates 

containing Pseudomonas, three washes of PBS were used. After that, the plates were allowed 

to dry in the flow hood for 2 hours. 

Once the drying step was complete, 200μl of 0.1% crystal violet solution was pipetted into 

the wells and the plates were incubated at room temperature for 15 minutes. The crystal 

violet solution was then emptied in a biohazard bag and the stained plates were allowed to 
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dry overnight. The following day, the crystal violet stain was re-solubilized by using 200μl of 

30% acetic acid solution and incubating at room temperature for 15 minutes. The 

resolubilized dye was then transferred into a fresh 96-well plate and the OD was measured 

using a BMG plate reader set at 595nm.  

2.8 Generation of a cell count vs OD vs CFU calibration curve 

A sterile toothpick was dipped into a colony of either P. aeruginosa or E. coli on a streaked LB 

agar plate using forceps and suspended in 20ml of LB media in a 50ml sterile Falcon tube for 

16-18 hours at a shaking incubator at 37°C. A series of dilutions were performed in 

microcentrifuge tubes resulting in a range of optical densities measured in cuvettes, ranging 

from 1.0 to 0.1. 20 μl Samples were taken from the tubes containing solutions with ODs of 

0.1, 0.5 and 1 and were diluted and pipetted on a Helber Thoma counting chamber. The cover 

slip was placed on top, and the cells were counted with a 40x objective lens. 200 μl of each 

optical density preparation were pipetted to cover a vertical row of wells of a sterile 96-well 

plate, and using a multichannel pipette, 10-fold serial dilutions were prepared by pipetting 20 

μl from the first column of wells into 180 μl of LB in the next column. The mixing function was 

used to thoroughly mix the dilutions in each column before moving on to the next. Following 

that, using the multichannel pipette, 10ul samples from each serial dilution were pipetted 

(N=1) onto an appropriately marked square LB plate which was then allowed to dry in the 

flow hood for 30 minutes before being incubated at 37 degrees for 16 hours. The colony 

forming units (CFUs) were counted at the dilutions where individual colonies could be 

identified and a calibration curve establishing the relationship of OD vs CFUs vs Cell counts 

for both E. coli and P. aeruginosa was generated. It is important to note that cuvettes were 

used for these measurements and pathlength correction was assumed of titer plate wells in 

further experiments. 

2.9 Cell viability assay 

To determine the number of viable cells after product addition a 10 μl sample from a biofilm 

prevention assay was diluted and plated on an LB agar plate. The plate was then incubated at 

37oC for 24 hrs. Colony forming units (CFU) were then determined by counting the number of 

colonies that had grown on the plate.  
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2.10 Fluorescence microscopy 

For the visualization and quantification of planktonic live/dead cells, 200 μl samples from a 

biofilm prevention assay in M9 minimal media were pipetted in a new 96-well plate and 0.06 

μl of SYTO 9 green, fluorescent nucleic acid stain, as well as 0.06 μl of Propidium iodide were 

directly added in the wells. Control (untreated) wells were used as a positive control and 

chlorine-treated wells (5ppm) were used as a negative control. The microscope used was a 

ZEISS Axioscope and the magnification used was 40x. 

2.11 Statistical analysis of results 

A range of statistical test were carried out to determine the statistical significance of the 

treatments on growth and biofilm removal and prevention. These tests include normality 

tests (Kolmogorov-Smirnov and Shapiro-Wilk), which led to the use of either parametric tests 

such as ANOVAs, or non-parametric multiple comparison tests, such as Kruskal-Wallis, Mann-

Whitney U-test and Schreier-Ray-Hare (Ennos and Johnson, 2012). The software used to carry 

out the statistical analysis was GraphPad Prism version 8 and IBM SPSS version 26. P values 

that indicated no significant difference were p>0.05. In this thesis significant p-value scores 

are indicated by an asterix * indicates p<0.05, ** indicates p<0.01 and *** indicates p<0.001.  
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Chapter Three: Optimization, calibration and benchmarking  
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3.1 Introduction 

In this chapter the objectives were to establish the experimental conditions that would allow 

optimal laboratory and high-throughput analysis of biofilm formed by each of the bacterial 

species: E. coli K12, and P. aeruginosa PAO1, which could be assumed to simulate conditions 

found in a hot tub. Experimental parameters and conditions tested included: media selection, 

incubation temperatures, incubation periods, washing/staining of biofilms, biofilm 

quantification, preparation of product dilutions and pH. The justification for the use of these 

conditions and methods is described below, supported by relevant published literature and 

observations made as part of the experimental process. 

3.1.1 Media selection 

 

LB media 

 

Luria-Bertani (LB) media is commonly used for routine cell culture and maintenance because 

its nutrient-rich profile allows for quick bacterial growth and good growth yields. The media 

is rich in organic oligopeptides, allowing for access to a wide pool of free amino acids that 

support growth (Sezonov, Joseleau-Petit and D'Ari, 2007). Moreover, it has been shown that 

P. aeruginosa grows well on LB media (LaBauve and Wargo, 2012). Additionally, the nutrient-

rich environment provided by LB media was considered similar to the nutrient-rich 

environment found in hot tub piping. Therefore, LB media is an ideal choice for assessing 

bacterial growth and biofilm formation for this project.  

 

M9 minimal media 

 

Glucose minimal medium (M9) is commonly used for bacterial culture, especially E. coli. It is 

made up of nitrogen sources and minimal salts, and a carbon source such as glucose 

(Rugbjerg, Feist and Sommer, 2018). It has been shown to support P. aeruginosa growth and 

biofilm formation, as well as E. coli growth and biofilm formation (Hammond et al., 2010; 

(Naves et al., 2008). Moreover, the minimal nutrient profile of the M9 medium simulates the 
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accessible water of the hot tub, providing an ideal medium choice for bacterial growth and 

biofilm development. 

3.1.2 Incubation temperature 

Two incubators set at 25 and 37 degrees Celsius were used in this project, in order to simulate 

the two operating temperatures found in a standard hot tub. In standby mode, the water is 

maintained at 25 degrees, while 37 degrees is the operational temperature of the hot tub 

(Hot tub manual, 2019). E. coli K12 has been shown to form biofilms to temperatures even at 

23 degrees Celsius, and more interestingly, temperatures at this range have been shown to 

increase expression of genes associated with biofilm formation, leading to increased biofilm 

production compared to higher temperatures (White-Ziegler et al., 2008). P. aeruginosa has 

been observed to form biofilm in a range of temperatures ranging from 4 to 42 degrees 

Celsius and interestingly increased temperatures increase P. aeruginosa resistance to 

disinfectants (Lutz and Lee, 2011; Abdallah et al., 2015). Additionally, 37 degrees is the 

average body temperature, so studying biofilm formation at this temperature can provide 

interesting insights into biofilm and infection. 

 

3.1.3 Incubation time 

Both E. coli K12 and P. aeruginosa PA01 initial cultures were incubated overnight at 37 

degrees for 16-18 hours, which is based on previous experiments which have used the same 

incubation time for both species (Singh et al., 2005). Once the overnight cultures had been 

pipetted into a 96 well plate, it would be then incubated for 24hrs at 37 degrees to allow 

biofilm to form. This is based on previous research which has indicated that the optimal E. 

coli biofilm formation takes place after 24 hours (Adamus-Białek et al., 2015). Similarly, 

previous research has shown that P. aeruginosa shows the optimal biofilm formation at 24hrs, 

which is also linked to increased antibiotic and disinfectant resistance (Cochran et al., 2000). 

3.1.4 Phosphate Buffer Saline (PBS) washes  

PBS is a salt solution with a neutral pH of 7.2, commonly used for variety of cell culture 

applications such as washing cells before dissociation, transporting cells or tissue, cell 

dilutions prior to counting and reagent preparation. In this project, PBS was used for the 
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washing step of planktonic bacterial cells before crystal violet staining so that levels of 

absolute and specific biofilm could be measured. According to previous research, PBS is 

effective for E. coli and P. aeruginosa planktonic cell washing and excess biofilm dye rinsing 

(Hung et al., 2013; Shen et al., 2012). 

 

Additionally, after considering observations from initial experiments and previous research 

(Delaney, 2019), it was concluded that three PBS washes are necessary for sufficient removal 

of planktonic P. aeruginosa cells from the wells, which would otherwise lead to inaccurate 

measurements. Contrarily, only one PBS wash was sufficient for E. coli planktonic cell 

removal, anymore and the adherent biofilm would begin to detach (Delaney, 2019). 

3.1.5 Crystal Violet solution  

Crystal violet staining is an integral part of the microtiter plate biofilm assay, which is often 

considered the ‘gold standard” for biofilm quantification (Haney et al., 2018). Crystal violet 

binds to negatively charged surfaces, such as cell membrane surfaces and polysaccharides in 

the biofilm matrix (Li et al., 2003). The suitable preparation includes a 0.1% solution of crystal 

violet wrapped in tin foil. Crystal violet has a long history of being used as an antiseptic and 

staining agent (Maley and Arbiser, 2013;). Moreover, it is widely used for E. coli and P. 

aeruginosa biofilm staining and quantification (Wakimoto et al., 2004; Knezevic and Petrovic, 

2008). The staining was applied on well plates previously washed by PBS and according to 

published protocols, incubated at room temperature for 15 minutes before staining disposal 

(O'Toole, 2011). 

 

3.1.6 Acetic acid solubilization  

 

Following overnight incubation of the stained plates at room temperature, the dried crystal 

violet was re-solubilized by using a 30% acetic acid solution. After an incubation time of 15 

minutes, the re-solubilized stain was pipetted in a fresh well plate and the optical density was 

measured at 595nm using a plate reader. Acetic acid has been used for re-solubilization of 

both E. coli and P. aeruginosa stained biofilms (O'Toole, 2011; Coffey and Anderson, 2014). 

3.1.7 “Edge effect” in titer plate assays  
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Microtiter plate assays are considered the gold standard in biofilm detection and 

quantification (Haney et al., 2018). However, a common issue with the assay is the observed 

“edge effect”, commonly affecting the periphery of the titer plate. The edge effect can occur 

largely due to two reasons. Firstly, water and liquid can evaporate more quickly from 

peripheral wells, therefore allowing planktonic cells to adhere to the walls, which ultimately 

leads to higher biofilm formation, giving an inaccurate reading. Secondly, the peripheral wells 

are better ventilated and could therefore allow more oxygen for bacterial proliferation. This 

effect is well documented, commonplace and difficult to avoid, with a large number of studies 

showing the outer wells of a 96-well plate showing increased optical density readings 

compared to the inner wells (Lundholt et al., 2003; Gordon et al, 2007; Falls et al., 2014). 

 

In this project during the initial microtiter plate experiments, the edge effect was also 

observed. More specifically, the outermost rows of the 96-well plate were found to have 

abnormally high optical densities compared to the innermost wells. A number of methods 

have been described as solutions to the “edge effect”, such as incubating the plate for one 

hour at room temperature before introducing the plate to the incubator (Lundholt et al., 

2003). Another method of reducing the “edge effect” involves the replacement of the 36 

outermost wells with water or growth medium in place of seeded wells, however a major 

drawback is the reduction of the usable wells. In fact, it has been estimated that there is a 

38% reduction in the experimental output. Regardless, for the sake of obtaining replicable 

results in an appropriate time frame, it was decided to exclude the outermost wells and a 

comparison between the outermost and innermost wells will be described (Figure 3.1). 
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Fig. 3.1 - A typical view of a 96-well plate. Highlighted are the outermost (blue) and 

innermost (orange) wells of the plate, the latter were used for experimentation. 

 

 

 

3.2 Results 

 

3.2.1 Comparison of inner and outer wells 

 

As the edge effect is often encountered in 96-well plate assays, it was considered important 

to determine whether this would be the case in this project, and if so, which wells would be 

affected and how significant the difference would be. An overnight culture in LB was diluted 

1 in 100 and 100μl were pipetted in each well. Measurements took place after 24hrs. Results 

showed that there are significant differences between the inner and outer wells in both 

species (Fig. 3.2 and 3.3) with the exception of P. aeruginosa at 25°C where no significant 

differences were noted between inner and outer wells (Fig. 3.3).  

 

In order to determine the effect of titer plate geometry on cell growth, its quantitation and 

the effect of temperature (if any), cell densities were compared in inner and outer-most wells.  

Figures 3.2 and 3.3 show the optical densities of E. coli and P. aeruginosa cultures in the 

outermost and innermost Co-star 3599 wells in nutrient-rich media (LB), after 24hrs 
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incubation at 37 and 25 degrees Celsius. The average OD was determined by taking an 

average of six replicate wells in the innermost and outermost wells of the plate. 

 

 
 

Fig.3.2- Quantitation of planktonic cell density between the innermost and outermost wells 

of a Co-star 3599 plate by E. coli K12 at 37 and 25 degrees Celsius. Replicate number =6. A 

Mann-Whitney U-test found significance between the two 37°C and 25°C wells (P=0.0087 and 

P= 0.0043 respectively). 
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Fig 3.3- Quantitation of planktonic cell density between innermost and outermost wells of a 

Co-star 3599 plate by P. aeruginosa PA01 at 37 and 25 degrees Celsius. Replicate number =6, 

A Mann-Whitney U-test found significance between the 37°C wells, but not the 25°C wells 

(P=0.0152 and P=0.484 respectively). Error bars indicate standard error of the mean (SEM). 

 

A mean was taken of absolute OD readings from six wells per bacterial species in either 

temperature from the innermost and outermost wells of the Co-star 3599 plate. Significant 

differences between wells can be observed between wells in E. coli at both temperatures. In 

particular, after performing a Mann-Whitney U-test between the innermost and outermost 

wells at 37 degrees, a significant difference was observed between the wells (P value = 

0.0087) and 25 degrees (P value = 0.0043) (Fig. 3.2). Interestingly, in P. aeruginosa, a 

significant difference between the wells was observed at 37 degrees after performing a 

Mann-Whitney U-test (P value 0.0152), but not at 25 degrees (P=0.484) (Fig. 3.3). 

 

3.2.2 Media and temperature comparisons 
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The effect of different media, temperature and incubation time was also of interest to this 

project, to fine-tune experimental conditions. Figure 3.4 shows the optical densities of E. coli 

and P. aeruginosa in two different growth media and two different temperatures, 25 and 37 

degrees Celsius, after 24 hrs. incubation. The average OD was calculated by taking an average 

of six replicate wells from the innermost wells of a Co-star 3599 plate. 

 

 
Fig. 3.4- Quantitation of planktonic cell density between E. coli K12 and P. aeruginosa PA01 

grown on nutrient-rich (LB) media and M9 minimal media at two temperatures, 25 and 37°C, 

measured after 24hrs incubation. Replicate number = 6 and Mann Whitney U-tests found 

significant differences between groups (P=0.0022, P=0.0087, P=0.0022 and P=0.2900, 

respectively). 

 

A mean was taken of absolute OD readings from six wells per bacterial species in each 

temperature and medium from the innermost wells of a Co-star 3599 plate (Fig.3.4). After 

performing a Mann-Whitney U-test between each growth medium, a significant difference 

was observed between E. coli at 37 degrees (P value = 0.0022), E. coli at 25 degrees (P value 

= 0.0087) and P. aeruginosa at 25 degrees (P value = 0.0022). The difference between growth 

media in P. aeruginosa at 37 degrees was classed as non-significant. 
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Fig. 3.5- Quantitation of planktonic cell density between E. coli K12 and P. aeruginosa PA01 

grown on nutrient-rich (LB) media and M9 minimal media at two temperatures, 25 and 37°C, 

measured after 48 hrs. incubation. Replicate number = 6 and Mann Whitney U-tests found 

significant differences between groups (P=0.0022, P=0.0022, P=0.0087 and P=0.569, 

respectively). 

 

Fig 3.5 shows the same experiment but after 48h incubation. A mean was taken of absolute 

OD readings from six wells per bacterial species in each temperature and medium from the 

innermost wells of a Co-star 3599 plate. After performing a Mann-Whitney U-test between 

each growth medium, a significant difference was observed between E. coli at 37 degrees (P 

value = 0.0022), E. coli at 25 degrees (P value = 0.0022) and P. aeruginosa at 25 degrees (P 

value = 0. 0.0087). The difference between growth media in P. aeruginosa at 37 degrees was 

classed as non-significant. 

 

3.2.3 Incubation time comparisons 

 

In addition to 96-well plate geometry, media and temperature, incubation time also plays a 
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different temperatures, 25 (Fig. 3.6 A and C) and 37 degrees Celsius (Fig. 3.6 B and D), and at 

two different incubation times, 24 and 48 hours. 
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D  

 

Fig.3.6 A-D show the quantitation of planktonic cell densities of E. coli (Fig. 3.6 A and B) and 

P. aeruginosa (Fig. 3.6 C and D) after 24 and 48 hrs. Incubation at 25°C (Fig. 3.6 A and C) and 

37°C (Fig 3.6 B and D). N=6 for each sample and error bars indicate standard deviation. Mann-

Whitney U-tests showed significant differences between incubation times in both media. 

 

A mean was taken of absolute OD readings from six wells per bacterial species in each 

temperature and medium, in 24 and 48 hrs. intervals from the innermost wells of a Co-star 

3599 plate. After performing a Mann-Whitney U-test between each growth medium, a 

significant difference in growth was observed between 24 and 48 hrs. incubation across all 

species and media. E. coli exhibits a significant increase in OD at 25 degrees in both LB and 

M9 minimal media (Fig. 3.6 A) (P-value = 0.0043 and 0.0022, respectively), which is also 

observed at 37°C after 48hrs (Fig. 3.6 B) (P-value = 0.0087 and 0.0022, respectively). P. 

aeruginosa exhibits a significant increase in OD at 25 degrees in both LB and M9 media (Fig. 

3.6 C) (P-value = 0.0087 and 0.0022, respectively). At 37°C, P. aeruginosa showed an increased 

OD in LB medium after 48 hrs. (Fig. 3.6 D) (P-value = 0.0022), but in M9 minimal media 

although the difference between ODs is still significant, it is lower in comparison with other 

conditions. 

 

3.2.4 Optical density VS Colony forming units VS Cell counts calibration curve 

It has been shown that optical density measurements of microbial growth can vary between 

species, cell sizes and cell morphologies, which highlights the need for the generation of a 

LB M9 minimal media
0.0

0.5

1.0

1.5

2.0

2.5

Growth medium

O
D

 (5
95

 n
m

)

P.aeruginosa growth at 37 degrees after 24+48 hrs in different media

After 24 hrs

After 48 hrs

✱✱ ✱



 54 

calibration curve for each species to help estimate cell numbers and colony forming units 

from optical density measurements. (Stevenson et al., 2016). In addition, the generation of 

Log reduction data for the active oxygen product was an essential part of the project, which 

also required the generation of calibration curves. This was also of interest to the sponsoring 

company. The graphs generated cover a range of 3 Logs and the calibration curves cover the 

range of a 1 log difference between OD=1 and OD=0.1 (Fig. 3.7 A and B). In addition, 

differences between OD and CFU measurements were found between E. coli (Fig. 3.7 A) and 

P. aeruginosa (Fig. 3.7 B), confirming the results of previous studies (Choi et al., 2012; 

Stevenson et al., 2016). 
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B

 
Fig. 3.7 A – B show the calibration curves generated in order to convert OD measurements to 

CFUs and Cell counts. The ODs and CFUs tested for both E. coli and P. aeruginosa over a range 

of 0.1 to 1 AU, while cell counts were measured at ODs of 0.1, 0.5 and 1 AU. 

 

The trendline for cell counts is higher than the curve for CFUs in both graphs (Fig. 3.7A and 

B), as both viable and non-viable cells were counted. OD measurements below 0.1 were not 

performed as they tend to be unreliable and are not widely used in studies (Galbán et al., 

2007). For ODs below 0.1, the CFU data are most informative. In addition, the results 

generated come in agreement with research papers on the same topic for both species (Choi 

et al., 2012; Stevenson et al., 2016). The trendlines generated were used for the conversion 

of OD measurements to cell counts and CFU and the generation of Log reductions. 
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A  B    

 

Figure 3.8 A and B: Quantitation of absolute biofilm formation of E. coli K12 (Fig 3.8 A) and P. 

aeruginosa PA01 (Fig. 3.8 B) in M9 media after 24hrs at pH 7.4, in two temperatures (25 and 

37°C). N=4 for each bar and error bars indicate standard error of the mean (SEM). Mann-

Whitney U-tests showed significant differences between incubation temperatures. 

 

A mean was taken of absolute OD readings from four wells per bacterial species in each 

temperature from the innermost wells of a Co-star 3599 plate. After performing a Mann-

Whitney U-test between each growth medium, a significant difference was observed 

between E. coli at 37 and 25°C (P = 0.0286) and P. aeruginosa at 37 and 25°C (P = 0.0286). 
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 3.2.6 Biofilm assay optimized set up  

 

 

A B  

 

 

Figure 3.9 A and B: Comparison of absolute biofilm formation of E. coli K12 (Fig 3.9 A) and P. 

aeruginosa PA01 (Fig. 3.9 B) between control and after treatment with Active Oxygen in the 

SOP concentration diluted in M9 media after 24hrs, pH 7.4, in two temperatures (25 and 

37°C). N=4 for controls and N=3 for treated samples and error bars indicate standard error of 

the mean (SEM).  

 

A mean was taken of absolute OD readings from four wells in the controls and three wells in 

the treated samples. Overall, untreated P. aeruginosa exhibited higher biofilm formation in 

comparison to untreated E. coli. Both species exhibited higher levels of biofilm formation at 

37°C in comparison to 25°C. No biofilm formation was quantified in the wells treated with 

active oxygen at the working concentration.  
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The optimized protocol for biofilm prevention involves the preparation of Active oxygen 

tablets under the recommended standard operating procedures (SOP), which suggest 

dissolving the tablets using heated up water (37oC). An equal amount of active oxygen 

preparation was pipetted together with dilute overnight culture at the same time for a total 

volume of 200μl. Control wells include only media plus water for a total volume of 200μl. The 

innermost wells of a Co-star 3599 plate were used. The plates were placed in two different 

incubators (set up at 25 and 37°C respectively) and the biofilm was quantified using crystal 

violet staining after 24hrs. 
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C D  

Figures 3.10 A-B show the pH effect on efficacies of active oxygen and chlorine treatments of 

E. coli K12.  Planktonic cell density (A and C) and absolute biofilm formation (B and D) (both 

indicated as OD595) of E. coli K12 grown in minimal media (M9) at 37°C (A and B) and 25°C (C 

and D) at pH 7, 7.4 and 8 in the presence of Active Oxygen at ‘Normal’ concentration 

(indicating usage at SOP) or in the presence of chlorine at 3 or 5ppm. N=3 for each treatment. 

Error bars indicate standard error of the mean (SEM). Asterisks indicate significance. 

A comparison of Active Oxygen at the recommended concentration against Chlorine, added 

at the time of inoculation in two concentrations (3ppm and 5ppm) regarding E. coli planktonic 

growth and biofilm prevention at three different pH (7, 7.4 and 8) and two temperatures 

(25°C and 37°C) was made. The exact values of pH used were chosen as chlorine is known to 

exhibit maximum bactericidal activity at around pH 7.4 and is degraded at lower or higher pH 

values (Snoeyink and Jenkins, 1980). Figures 3.10 A-D show the results of benchmarking of 

active oxygen against two concentrations of chlorine at the optimal pH and pH levels deviating 

from the advised pH for hot tub maintenance for E. coli. At 37oC, very little planktonic growth 

was observed in the wells treated with the SOP concentration of Active Oxygen (Fig 3.10 A). 

E. coli treated with chlorine at 3ppm in comparison with Active Oxygen showed some 

planktonic growth which a Mann-Whitney U-test between treatments indicated to be of 

significance (P = 0.0182). A comparison at pH 8 between chlorine at both concentrations and 

Active Oxygen showed a significant difference (P = 0.0286 for both 3ppm and 5ppm). This 

suggests that chlorine loses some of its activity at pH8, while Active Oxygen retains its activity 
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at this pH. The difference in planktonic growth prevention between chlorine at 5ppm and 

Active Oxygen was found to be non-significant across all pH tested. No significant differences 

were found between the other pH. From Fig 3.10 A it is clear that active oxygen is better that 

chlorine at 3ppm at preventing planktonic growth across all pH levels tested. 

Regarding absolute biofilm formation at 37oC, low/very low biofilm was observed for all 

treatments (Fig. 3.10 B). Cells treated with 3ppm of chlorine showed some increased biofilm 

formation in comparison with Active Oxygen, which a Mann-Whitney U-test confirmed as 

significant (P = 0.0409). Notably, E. coli treated with chlorine at 5ppm exhibited the least 

biofilm formation, even lower than the cells treated with Active Oxygen (P = 0.0004). Similar 

to the planktonic growth results, chlorine at 3ppm exhibited some loss of activity at different 

pH., and when compared to Active Oxygen at pH 8, a significant difference was observed (P = 

0.0286). From Figure 3.10 B alone, it can be concluded that chlorine at 5ppm is the best 

treatment regarding biofilm prevention. However, Active Oxygen is significantly better at 

biofilm prevention in comparison to chlorine at 3ppm and retains its biofilm preventing 

properties even at high pH. 

At 25oC, very little planktonic growth was observed in the cultures treated with the SOP 

concentration of Active Oxygen (Fig 3.10 C). E. coli treated with chlorine at 3ppm showed 

some planktonic growth across all pH in comparison with Active Oxygen which a Mann-

Whitney U-test between treatments indicated to be of significance (P = 0.0493). The 

difference between chlorine at 5ppm and Active Oxygen at all pH was observed as non-

significant. Following the trend observed at 37oC, chlorine in both concentrations again 

appears to lose some of its activity in comparison to Active Oxygen at higher pH values. 

Indeed, at pH 8 a significant difference can be observed between chlorine at 3ppm and Active 

Oxygen (P = 0.0286), but no significant differences were found across the other pH (7 and 

7.4). No significant differences were detected when comparing chlorine at 5ppm and Active 

Oxygen across pH. Again, it is observed that active oxygen retains its bactericidal properties 

across the other pH (Fig. 3.10). 

Regarding absolute biofilm formation at 25oC, low/very low biofilm was observed for Active 

Oxygen treatments, and in particular no biofilm at all was measured at pH 7.4. Bacteria 

treated with 3ppm of chlorine showed some increased biofilm formation in comparison with 
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Active Oxygen, which a Mann-Whitney U-test confirmed as quite significant (P = 0.0028). The 

difference between chlorine at 5ppm and Active Oxygen at all pH was calculated as non-

significant. The difference between chlorine at 3ppm and 5ppm was calculated as significant 

(P=0.0148). Interestingly, chlorine at 3ppm appears to lose some of its activity at both low 

and high pH, and the difference in comparison with Active Oxygen was calculated as quite 

significant (P=0.028). Overall, it can be observed that Active Oxygen has potent biofilm 

prevention properties and for the conditions tested its activity is comparable to that of 

chlorine at 5ppm. 

A B  

C D  

Figures 3.11 A-D show the pH effect on efficacies of active oxygen and chlorine treatments 

of P. aeruginosa PA01.  Planktonic cell density (A and C) and absolute biofiom formation (B 

and D) (both indicated as OD595) of P. aeruginosa PA01 grown in minimal media (M9) at 37°C 

(A and B) and 25°C (C and D) at pH 7, 7.4 and 8 in the presence of Active Oxygen at ‘Normal’ 
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concentration (indicating usage at SOP) or in the presence of chlorine at 3 or 5ppm. N=3 for 

each treatment. Error bars indicate standard error of the mean (SEM). Asterisks indicate 

significance. 

Benchmarking of new products/product applications is important to demonstrate similar or 

better efficacy of the product against products in current use. Here, chlorine was chosen at 

3ppm and 5ppm regarding P. aeruginosa planktonic growth and biofilm prevention, at three 

different pH (7, 7.4 and 8) and two temperatures (25°C and 37°C).  Chlorine products for the 

hot tub market were also obtained from the sponsoring company, including 

recommendations on concentrations and pH. Figure 3.11 A shows the results of 

benchmarking active oxygen against 2 concentrations of chlorine at the optimal pH and pH 

levels deviating from the advised pH for hot tub maintenance for P. aeruginosa. Similar to the 

results for E. coli K12 at 37oC (Fig. 3.11 A), very little planktonic growth was observed from 

the bacteria treated with the working concentration of Active Oxygen across all pH. Wells 

treated with chlorine at 3ppm showed some planktonic growth which a Mann-Whitney U-

test between chlorine at 3ppm and Active Oxygen indicated to be of significance (P = 0.0182). 

The difference between chlorine at 5ppm and Active Oxygen was observed to be of no 

significance across all pH. Chlorine at 3ppm appears to lose some of its activity at both high 

and low pH in comparison to Active Oxygen, however the differences in comparison to Active 

Oxygen after performing a Mann-Whitney U-test were observed as non-significant, even at 

pH=8. 

Regarding absolute biofilm formation at 37oC (Fig. 3.11 B), low biofilm production was 

observed by the bacteria treated with the working concentration of Active Oxygen. Wells 

treated with 3ppm of chlorine showed increased biofilm formation in comparison with Active 

Oxygen, which a Mann-Whitney U-test confirmed as significant (P = 0.0359). The difference 

in biofilm formation between bacteria treated with chlorine at 5ppm and Active Oxygen was 

calculated to be non-significant across all pH. Importantly, no biofilm formation at all was 

observed in the wells treated with Active Oxygen at pH 8. In contrast, some biofilm was 

observed at pH 8 by the bacteria treated with chlorine at 3ppm, and in comparison with Active 

Oxygen at pH 8, a Mann-Whitney U-test which showed that the difference was significant (P 
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= 0.0286). It can be thus observed that Active Oxygen has potent biofilm prevention 

properties against P. aeruginosa at 37oC. 

At 25oC (Fig. 3.11 C), very low planktonic growth was observed across all treatments and pH, 

with any growth observed mostly by the bacteria treated at pH 8. However, when compared 

to Active Oxygen at all pH, both chlorine concentrations showed a non-significant difference. 

Therefore, regarding P. aeruginosa at 25oC, Active Oxygen is no better than both 

concentrations of chlorine at all pH. 

Observations made regarding absolute biofilm formation follow a similar trend (Fig. 3.11 D). 

No significant difference in biofilm formation was observed between both chlorine 

concentrations and Active Oxygen at all pH. Some loss of activity at pH 8 can be observed for 

all treatments, however statistical analysis did not show a significant difference. Therefore, 

the biofilm prevention properties of Active Oxygen at these conditions are tied with those of 

chlorine at both concentrations. 

3.3 Discussion 

Experiments on edge effect in this project showed that indeed, there is a significant difference 

between the outermost and innermost wells of a 96-well plate. In addition, it was noted that 

bacteria exhibit higher planktonic growth in LB media compared to M9 after 24hrs, but after 

48hrs bacteria exhibited higher planktonic growth in M9 media. E. coli exhibits a significant 

increase in OD at 25 degrees in both LB and M9 minimal which is also observed at 37°C after 

both 24 and 48 hrs.  P. aeruginosa exhibits a significant increase in OD at 25 degrees in both 

LB and M9 media after 24 and 48 hrs. At 37°C, P. aeruginosa showed an increased OD in LB 

medium after 48 hrs. Calibration curves generated for both species will allow conversion of 

OD to CFUs and cell counts. Benchmarking of Active Oxygen against chlorine showed that 

Active Oxygen remains relatively stable across all pH and especially pH 8 and its activity can 

be comparable to chlorine at 3ppm. 

Optical density measurements in either 25°C or 37C from the innermost and outermost wells 

of the Co-star 3599 plate showed significant differences in planktonic growth between wells 

can be observed between wells in E. coli at both temperatures. In P. aeruginosa, a significant 
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difference between the wells was observed at 37°C but not at 25°C. This comes in agreement 

with previous studies which have demonstrated similar effects (Lundholt et al., 2003). 

Therefore, it was decided to exclude the outermost row of wells for this project.  

Regarding media comparisons, it was observed that after 24hrs incubation, the highest 

planktonic growth was noted in the LB media, with the exception of P. aeruginosa at 25°C. 

After 48hrs incubation, it was noted that both E. coli and P. aeruginosa showed higher 

planktonic growth in M9 minimal media in comparison to LB after 48hrs incubation (Fig. 3.4 

and 3.5). This may be because of E. coli and P. aeruginosa stress tolerance (Jorgensen et al., 

1999). Stress tolerance has been shown to provide E. coli and P. aeruginosa with tolerance to 

prolonged starvation in glucose-supplied media, such as the M9 which may explain the 

increase in growth (Jorgensen et al., 1999). 

Regarding time comparisons, E. coli showed an increase in OD at 25 degrees in both LB and 

M9 minimal which is also observed at 37°C after both 24 and 48 hrs.  P. aeruginosa showed a 

significant increase in OD at 25 degrees in both media after 24 and 48 hrs. At 37°C, P. 

aeruginosa showed an increased OD in LB medium after 48 hrs. Prolonged starvation in the 

stationary phase, which could be the case for results obtained after 48hrs incubation, has also 

been shown to result in stress response. It has been shown that prolonged starvation may 

provide a growth advantage (Zambrano and Kolter, 1996). This allows the cells to keep 

growing under starvation, and eventually allow them to proliferate (Jaishankar and 

Srivastava, 2017). E. coli and P. aeruginosa exhibit RpoS-mediated stress tolerance which is 

known for providing tolerance to prolonged starvation in glucose-supplied media, which may 

explain the increase in growth in results obtained after 48 hrs. (Jorgensen et al., 1999). 

Futhermore,  the Growth Advantage in Stationary Phase (GASP) phenotype, present in both 

E. coli and P. aeruginosa, may provide the bacteria with a growth advantage in prolonged 

starvation, as it allows them to use the nutrients released by dying cells, which may further 

explain the results from these graphs (Zambrano and Kolter, 1996).   

The microtiter plate biofilm assay is widely used for the study of planktonic growth and 

biofilms, coupled with crystal violet staining to perform biofilm quantification. The 96-well 

interface allows for the simultaneous screening of a large number of bacterial strains or 

species and different treatments/growing conditions, in addition to be an inexpensive and 
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high throughput method (O'Toole, 2011; Azeredo et al., 2016). Additionally, previous 

research has shown that biofilm data obtained with the microtiter plate assay appeared more 

replicable and consistent compared to alternative methods, such as microscopic analysis 

(Djordjevic et al., 2002). However, a drawback of the microtiter plate method is the wide 

variety of plates provided by the supplier. With a wide variety of pre-treatments, materials 

and well-shapes available, it is no wonder that different plates can provide varying results. 

For example, well surface roughness can affect the consistency of the biofilm assays and can 

lead to higher biofilm formation in Pseudomonas fluorescens (Bordeleau et al., 2018). 

Additionally, culture treated microtiter plates have been used in previous research including 

P. aeruginosa and E. coli (Das et al., 2016; Nizet et al., 1998). It is also important to note the 

shape of the bottom of the wells; flat bottomed wells were ideal for this project as they 

allowed for maximum light transmission and OD measurements from bottom-reading 

spectrophotometers such as those used in the experiments described in later chapters 

(Sittampalam GS, 2004). 

 

The plates used in this project were Co-star 3599. Previous research has shown that the Co-

star 3599 plates provided more consistent readings and replicable results for both E. coli K12 

and P. aeruginosa PA01 strains compared to plates provided by other manufacturers 

(Delaney, 2019). Additionally, the provision of a sterile polystyrene lid allowed for simpler 

handling, reduced risk of contamination and less condensation compared to sterile sealant 

use, which also allows for more accurate readings and consistent results (Delaney, 2019). 

 

It has been shown that optical density measurements of microbial growth can vary between 

species, cell sizes, cell morphologies and stress responses, which makes it important to  

generate a calibration curve for each organism to help estimate cell numbers and colony 

forming units from optical density measurements (Stevenson et al., 2016). The graphs 

generated covered a range of 3 Logs and the calibration curves covered the range of a 1 log 

difference between OD=1 and OD=0.1 (Fig. 3.7 A and B). The differences between OD and 

CFU measurements between E. coli (Fig. 3.7 A) and P. aeruginosa (Fig. 3.7 B) evidence the 

findings of previous studies (Stevenson et al., 2016).The trendline for cell counts is higher 

than the curve for CFUs in both graphs (Fig. 3.7A and B), as both viable and non-viable cells 

were counted. In addition, the results generated come in agreement with research papers on 
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the same topic for both species (Stevenson et al., 2016). Most importantly, the findings of this 

study come in agreement with the findings of two previous studies: For E. coli, the growth 

curve is similar to the Figure 3.10 A, while for P. aeruginosa it resembles the growth curve of 

Figure 3.10 B. 

 
Figures 3.12 A and B: Figure A shows the OD vs Cell concentration of E. coli in M9 media 

(Stevenson et al., 2016) and Figure B shows the CFU vs OD curve of P. aeruginosa in LB media 

(Dong-ju Kim, 2012). 

 

Stevenson et al. showed in their paper that optical density measurements is not proportional 

to the cell number in a sample and offered some considerations to improve the accuracy of 

OD measurements. Some important factors which may affect OD measurements include 

growth and stress conditions, refractive index and cell size. Moreover, the paper presented 

different OD measurements obtained by five different spectrophotometers for the same 

sample and found rather shocking differences between brands and models, even after path 

length correction was applied (Stevenson et al., 2016). 

 

Regarding path length, many OD measurements were taken using plastic disposable cuvettes 

with a 1cm path length, which differs from the path length in microtiter plates. As the path 

length in microtiter plates is not fixed, many plate readers, including the FluoStar BMG plate 

reader used in this project, employ built-in pathlength correction. Pathlength correction 

normalizes absorbance values measured on a microtiter plate to match the absorbance values 

measured in a 1cm cuvette. 
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Regarding chlorine, the two concentrations recommended to use in experiments by the 

company (3ppm and 5ppm) were the two concentrations used in hot tubs and swim spas. In 

the experiments in the project, chlorine did not show a significant loss of activity at either pH 

7 or pH 8, however, when compared with Active Oxygen at the normal dilution, Active Oxygen 

exhibited higher stability and statistically significant higher activity. However, it should be  

noted that for both treatments, very low endpoint readings were obtained.  

 

In addition, the Active Oxygen exhibited stability across all pH tested, even at pH 8. This is of 

importance, as the tap water in some regions of the UK has been found to be in the alkaline 

range and commonly treated to be in the basic pH range (Ander et al., 2016). Alkaline pH is 

known to degrade chlorine, which is important as it exhibits reduced sanitizing efficacy at high 

pH values, which may become an issue in the hot tub environment (Wahman, 2018). In 

addition, sunlight further degrades chlorine, contributing to the loss of activity (Jain et al., 

2010). The stability of Active Oxygen under basic pH and its resistance to sunlight degradation 

and long half-life make it an attractive alternative to chlorine (ECHA, 2020). 
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Chapter 4: Efficacy testing of Active Oxygen and Water 

Conditioner and their combinations on bacterial growth and 

biofilm formation under static conditions 
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4.1 Introduction 

 

The aim of this chapter was to assess the efficacy of the products for water sanitation and 

biofilm removal and prevention and their suggested combinations in the Co-star 3599 

polystyrene 96 well plates. The protocols for static biofilm analysis are provided in the the 

materials and methods chapter. The first product is Eco3Spa Hot Tub Cleaner (Product 1) It is 

advertised as an “environmentally friendly biofilm remover and its suggested use is once 

every three months. The second product is Eco3Spa Water Conditioner (Product 2), is 

added in conjunction with the tablets every month. The third product is Eco3Spa Water 

Sanitizer tablets (Product 3), which utilizes active oxygen to sanitize the water. Product 

1 (biofilm remover) and 2 (water conditioner) were used at the recommended (SOP) 

concentrations, as the company’s focus was on active oxygen. A series of dilutions were 

prepared for the SOP experiments in order to generate a dose-response curve, which 

was also of interest to the sponsoring company. (Section 2.6.3). 

Static biofilm assays were performed with two bacterial strains E. coli K12 and P. aeruginosa 

PAO1 after addition of various concentrations and combinations the Biofilm remover, Active 

Oxygen and Water Conditioner products. These results were then quantified to assess the 

level of effect that each of the products had upon the prevention of absolute biofilm 

formation and planktonic growth.  

The product efficacy was assessed in both the recommended standard operating procedures 

(SOP), which suggests product addition to a working hot tub with heated up water (37oC), as 

well as non-SOP conditions, which include product addition to water at 25°C to provide a 

series of results and compare the effect of temperature and recommended SOP on product 

efficacy.    

The media selected represent the nutrient rich environment of the hot tub piping (LB) and 

the minimal environment of the hot tub water (M9). However, due to COVID lab closure and 

time constraints, it was decided to prioritize M9 media for the SOP experiments as it is more 
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representative of the environment where the products will be used. The sponsoring company 

was in agreement with this decision. 

In addition, Eco3Spa requested the generation of a dose-response curve of Active Oxygen 

including the SOP concentration as well as weaker and stronger concentrations, added at the 

time of inoculation at three different pH (7, 7.4 and 8) and two temperatures (25°C and 37°C), 

in order to measure the inhibition of planktonic growth. The exact values of pH used were 

chosen as the activity of active oxygen under different pH is not known. Additionally, as 

chlorine exhibits optimal activity at 7.4 and is degraded at the pH extremes, the effect of pH 

on active oxygen at these three values was assessed in order to compare the products, which 

was also of great interest to the sponsoring company. 

4.2 Results 

The experiments in this section were performed according to the Recommended Standard 

Operating Procedures (SOP) (See section 2.6.3) 

4.2.1 Efficacy of active oxygen for prevention of planktonic growth in minimal media (M9) 

Α dose-response curve of Active Oxygen including the SOP concentration as well as weaker 

and stronger concentrations, added at the time of inoculation at three different pH (7, 7.4 

and 8) and two temperatures (25°C and 37°C) was generated, in order to measure the 

inhibition of planktonic growth. 
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Figure 4.1 E. coli K12 planktonic growth (indicated as OD595) grown in minimal media (M9) 

at three pHs at 37°C (A) and 25°C (B) in the presence and absence of a range of Active Oxygen 

concentrations. ‘Normal’ indicates usage of active oxygen at SOP, other concentrations as 

indicated relate to normal SOP. N=3 for each data point with the exception of the control 

(N=4). Error bars indicate standard error of the mean (SEM). 

Α dose-response curve of Active Oxygen including the SOP concentration as well as weaker 

and stronger concentrations, added at the time of inoculation at three different pH (7, 7.4 

and 8) and two temperatures (25°C and 37°C) was generated, in order to measure the 

inhibition of planktonic growth, which was of interest to the sponsoring company. The exact 

values of pH used were chosen as the activity of active oxygen under different pH is not 

known. In addition, the benchmarking of active oxygen against chlorine, which shows optimal 

activity at 7.4 and is degraded at lower or higher pH values, was an important objective in this 

project and of great interest to the sponsoring company (Chapter 3) (Snoeyink and Jenkins, 

1980). At 37oC, the highest planktonic growth of E. coli in untreated samples (Fig 4.1A Control) 

was observed at pH=7, followed by pH=8 and finally by pH 7.4. Planktonic growth was 

supported at 37°C in M9 media containing active oxygen of one-tenth dilution and weaker for 

all pH tested. Growth was however severely reduced when active oxygen was present at half 

the SOP normal concentration and stronger at all pHs tested. Across all dilutions, the optical 

density stayed at a consistent level below 0.700 AU. A similar trend was observed at 25oC, 

with growth being supported in media containing active oxygen of one-tenth SOP dilution and 

weaker for all pH tested. Very little planktonic growth observed in media containing active 

oxygen of one-tenth dilution and stronger. Across all dilutions, the optical density remained 

at a consistent level below 0.5 AU. Interestingly, there is some, although little, planktonic 

growth observed at concentrations stronger than one-tenth SOP in pH 8. For E. coli, the levels 

of planktonic growth present in treated wells were lower at 25oC compared to 37oC. 
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A  

B  

Figure 4.2 P. aeruginosa PA01 planktonic growth (indicated as OD595) grown in minimal 

media (M9) at three pHs at 37°C (A) and 25°C (B) in the presence and absence of a range of 
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Active Oxygen concentrations. ‘Normal’ indicates usage of active oxygen at SOP, other 

concentrations as indicated relate to normal SOP. N=3 for each data point with the exception 

of the control (N=4). Error bars indicate standard error of the mean (SEM). 

A similar dose-response was observed for P. aeruginosa cultured in M9 (Fig 4.2). At 37oC, the 

highest planktonic growth of P. aeruginosa in untreated samples (Figure 4.2 A Control) was 

observed at pH=8, followed by pH 7.4 and pH 7, and a similar trend is observed at 25oC. 

However, at 37oC, much higher levels of planktonic growth were achieved, which is evident 

by the scaling on the y axis. In a similar fashion to the trend observed with E. coli, planktonic 

growth was supported at 37°C in M9 media containing active oxygen of one-tenth dilution 

and weaker for all pH tested, with no planktonic growth observed at all at lower 

concentrations. Across all concentrations, the optical density remained at a consistent level 

below 0.800 AU. At 25oC, untreated samples followed a similar growth trend to those at 37oC, 

with growth being supported in media containing active oxygen of one-tenth SOP dilution and 

weaker for all pH tested. Again, concentrations weaker than one tenth SOP supported 

planktonic growth and little growth was observed in higher concentrations. The optical 

density remained consistent below 0.300 AU. Interestingly, at pH 8, some planktonic growth 

can be observed even at the highest concentrations, with the exception of 10x concentration. 

A small spike in optical density can be observed in the 1:400 dilution, but the noticeable error 

bars must also be noted. For P. aeruginosa, the levels of planktonic growth present in treated 

as well as untreated wells were consistently lower at 25oC compared to 37oC. 

4.2.2 Efficacy of active oxygen for prevention of static biofilm in minimal media (M9) 
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A  

B  

Figures 4.3 A-B E. coli K12 absolute biofilm formation (indicated as OD595) when grown in 

minimal media (M9) at three pHs at 37°C (A) and 25°C (B) in the presence and absence of a 
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range of Active Oxygen concentrations. ‘Normal’ indicates usage of active oxygen at SOP, 

other concentrations as indicated relate to normal SOP. N=3 for each data point with the 

exception of the control (N=4). Error bars indicate standard error of the mean (SEM). 

In order to thoroughly assess the biofilm prevention properties of active oxygen, a dose-

response curve of Active Oxygen was generated, which included the SOP concentration as 

well as weaker and stronger concentrations, added at the time of inoculation at three 

different pH (7, 7.4 and 8) and two temperatures (25°C and 37°C). The dose-response curve 

was also of interest to the sponsoring company. For E. coli grown at 37oC, the highest absolute 

biofilm formation was observed in untreated wells at pH 7.4, followed by pH 7, and finally pH 

8 (Fig 4.3 A). A sharp decline in biofilm formation was observed for the lowest Active Oxygen 

dilution (1:600) tested, which trend was continued until the active oxygen of one-tenth SOP 

dilution. Almost no quantifiable biofilm could be observed when half-strength (1:2) or higher 

concentrations of active oxygen were added. Across all active oxygen dilutions, absolute 

biofilm remained consistently below 0.200 AU. At 25oC, a slower decrease in biofilm 

formation could be observed after treatment with Active Oxygen (Fig 4.3 B). Interestingly, 

biofilm formation decreased sharply at pH 7.4 one-tenth SOP dilution can be seen. Also, at 

25oC at the highest concentrations (1:2, Normal and 10x), the levels of biofilms observed were 

even lower than those at 37oC. Across all concentrations, absolute biofilm remained below 

0.380 AU.  
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Figures 4.4 A -B P. aeruginosa PA01 absolute biofilm formation (indicated as OD595) when 

grown in minimal media (M9) at three pHs at 37°C (A) and 25°C (B) in the presence and 

absence of a range of Active Oxygen concentrations. ‘Normal’ indicates usage of active 

oxygen at SOP, other concentrations as indicated relate to normal SOP. N=3 for each data 

point with the exception of the control (N=4). Error bars indicate standard error of the mean 

(SEM). 

Again, a similar trend was observed for P. aeruginosa biofilms formed when grown in M9 (Fig 

4.4). At 37oC, the highest biofilm formation was observed in untreated wells at pH 8, followed 

by pH 7.4 and finally pH 7. A sharp decline in quantifiable biofilm could be observed from the 

lowest Active Oxygen concentration, and biofilm formation continues to decline until the 

media containing active oxygen of one-tenth SOP dilution, where, interestingly, a minor peak 

appears at pH 7 and 7.4, suggesting higher biofilm formation. Across all concentrations, 

absolute biofilm remained below 1.050 AU. No quantifiable biofilm was observed at 

concentrations higher than one tenth SOP dilution. At 25oC, biofilm formation in untreated 

wells follows the same trend as in 37oC, although in lower quantities. Again, a decrease in 

biofilm formation was observed from the lowest Active Oxygen concentration. A small 

amount of biofilm is noted at media containing one-tenth SOP dilution, where in higher 

concentrations no biofilm was quantifiable. Across all concentrations, absolute biofilm 

remained below 0.600 AU. 

 

4.2.3 Efficacy of active oxygen for prevention of static biofilm in minimal media (M9)– 

Specific biofilm formation 
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A  

B  

Figures 4.5 A and B show the levels of E. coli K12 specific biofilm formation in minimal media 

(M9) and three pH, at two different incubation temperatures, in the presence and absence of 

various Active Oxygen dilutions. N=3 for each dilution with the exception of the control well 

(N=4) and the error bars indicate standard error of the mean (SEM). 
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Specific, or normalized, biofilm formation is used to measure the biofilm-forming ability of an 

organism per amount of biomass present in the assay (see section 2.7.1). Specific biofilm 

formation is defined as the absolute biofilm formation (as measured by the level of crystal 

violet via OD595 readings) divided by the planktonic cell density (measured directly via OD595 

per well) to determine the specific biofilm formation, which is without units. 

The results from sections 4.2.1-4.2.2 were used to compute specific biofilm formation after 

treatments with AO at temperatures and pH simulating hot tub environments. As E. coli 

absolute biofilm formation levels were quite low, the specific biofilm formation values 

generated were also low as a result, and the low OD and absolute biofilm formation values 

resulted in abnormal spikes at the higher concentration values (Fig. 4.5).  
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B  

Figure 4.6 A-B Specific biofilm formation of P. aeruginosa PA01 grown in minimal media (M9) 

at three pHs, at 37°C (A) and 25°C (B) in the presence and absence of a range of Active Oxygen 

concentrations. . ‘Normal’ indicates usage of active oxygen at SOP, other concentrations as 

indicated relate to normal SOP. N=3 for each data point with the exception of the control 

(N=4). Error bars indicate standard error of the mean (SEM). 

As P. aeruginosa is an organism that develops biofilm throughout the well instead of the 

liquid-air interface as E. coli does, absolute biofilm formation tends to be higher. Therefore, 

specific biofilm formation could potentially provide more useful data regarding the biofilm 

forming properties of P. aeruginosa in response to pH and active oxygen (Fig 4.6). 

At 37oC at concentrations of half strength of active oxygen and higher, very little specific 

biofilm can be observed (Fig 4.6A). Peaks in specific biofilm formation can be seen at the one-

tenth concentration of active oxygen for P. aeruginosa grown at pH 7 and 7.4. These peaks 

can be attributed to the low planktonic growth values measured. Other than those peaks, the 

highest levels of specific biofilm formation were observed to be in the control groups, which 

would be expected. At 25oC at concentrations of half strength of active oxygen and higher 

little specific biofilm formation is observed (Fig 4.6B). Similar peaks in specific biofilm 
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formation were observed though peaks seemed to have shifted to lower concentrations. No 

data points were added for pH7 and 7.4, as the very low numbers of biofilm noted led to the 

generation of abnormally high numbers. However, large error bars at these concentrations 

indicate that they may not be of significance. Therefore, the highest specific biofilm formation 

was observed to be in the control groups, similar to the results at 37oC. 

 

4.2.4 Effect of pH and temperature on efficacy of active oxygen to prevent bacterial growth 
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Figure 4.7 A-C Planktonic growth of E. coli K12 and P. aeruginosa PA01 (indicated as OD595) 

in minimal media (M9) at 37 and 25°C at pH 7 (A), 7.4 (B) and 8 (C) in the presence and absence 

of a range of Active Oxygen concentrations. ‘Normal’ indicates usage of active oxygen at SOP, 

other concentrations as indicated relate to normal SOP. N=3 for each data point with the 

exception of the control (N=4). Error bars indicate standard error of the mean (SEM). 

The results were also used to compare the effect of treatments and conditions on planktonic 

growth of strains at one pH (Fig 4.7 A-C). At pH 7, the highest planktonic growth was exhibited 

by E. coli at both 25 and 37 degrees Celsius, followed by P. aeruginosa grown at 37 degrees 

(Fig 4.7 A). The lowest growth was exhibited by P. aeruginosa at 25oC. E. coli grown at both 

temperatures showed a sharp decrease in optical density after treatment with the lowest 

concentration of Active Oxygen, with E. coli grown at 25oC showing a decrease of 

approximately 67% and E. coli at 37oC by approximately 46%. For P. aeruginosa, the change 

is less dramatic, with P. aeruginosa grown at 37oC showing a decrease in cell density by 

approximately 28% and at 25oC by approximately 8.5%. It can be observed that regarding 

untreated cells, E. coli tended to exhibit higher planktonic growth at pH 7 in comparison with 

P. aeruginosa. In addition, E. coli appears to be more susceptible to Active Oxygen in 

comparison with P. aeruginosa grown at 37oC. P. aeruginosa at 25oC shows a decreased 

response to Active Oxygen, but also low levels of planktonic growth in comparison with E. 

coli. In addition, a Mann-Whitney U-test between P. aeruginosa grown at 37oC and 25oC 

calculated a significant difference (P = 0.0286), while the difference between E. coli grown at 

37oC and 25oC was calculated as non-significant (P > 0.05). 

At pH 7.4, E. coli grown at 37oC remained at the lead position for highest planktonic growth 

(Fig 4.7B). However, it is now followed by P. aeruginosa grown at 37oC. In contrast with Figure 

4.7A, E. coli grown at 25oC now showed reduced growth in contrast with the results at pH 7. 

The overall lowest planktonic growth, similar to pH 7, is shown by P. aeruginosa grown at 

25oC. In comparison with the results obtained at pH 7, there is an overall decrease in 

planktonic growth. In conjunction, the overall decrease in planktonic growth can be described 

as less dramatic. The decrease in planktonic growth in E. coli at 37oC is approximately 14%, 

and for E. coli at 25oC it is about 10%. The sharpest decrease in planktonic activity is exhibited 

by P. aeruginosa at 37oC and is about 48%. A decrease of about 21% observed for P. 
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aeruginosa at 25oC. It can be observed that both bacteria grown at 37oC at this pH showed 

higher planktonic growth than those grown at 25oC. In addition, a Mann-Whitney U-test 

between P. aeruginosa grown at 37oC and 25oC calculated a significant difference (P = 0.0286), 

which is the same for the difference between E. coli at 37oC and 25oC (P = 0.0286). 

Interestingly, a small peak at media containing 1 in 100 SOP concentration can be observed 

for E. coli and P. aeruginosa grown at 37oC. 

At pH 8, the highest planktonic growth was exhibited by E. coli at 25oC, followed closely by E. 

coli and P. aeruginosa grown at 37oC (Fig 4.7C). The lowest planktonic growth was shown by 

P. aeruginosa at 25oC. The sharpest decrease in planktonic activity with the lowest Active 

Oxygen dilution was observed for E. coli grown at 25oC, with a decrease of approximately 

53%, and is followed by E. coli grown at 37oC with a 33% decrease and P. aeruginosa grown 

at 37oC with a decrease of approximately 21%. The lowest reduction, approximately 11%, was 

observed for P. aeruginosa grown at 25oC. In comparison with the results obtained at pH 7.4, 

the overall planktonic growth appeared higher. E. coli grown at 25oC appeared to be the most 

responsive organism regarding Active Oxygen treatment at pH 8, while the least responsive 

one, consistent throughout pH change, appears to be P. aeruginosa at 25oC. Interestingly, all 

bacteria showed a small dip in planktonic growth at the 1:200 SOP concentration, and E. coli 

grown at 37oC showed a small peak at the 1:10 SOP concentration before being quickly 

reduced. Most importantly, however, some planktonic growth by E. coli at 25oC could still be 

detected, while the very small amounts observed by E. coli and P. aeruginosa at 37oC are 

negligible. A Mann-Whitney U-test between P. aeruginosa grown at 37oC and 25oC calculated 

a significant difference (P = 0.0286), while the difference between E. coli at 37oC and 25oC was 

calculated as non-significant (P > 0.05). 

4.2.5 Effect of pH and temperature on efficacy of active oxygen to prevent absolute biofilm 

formation 
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C  

Figure 4.8 Absolute biofilm formation of E. coli K12 and P. aeruginosa PA01 (indicated as 

OD595) grown in minimal media (M9) at 37 and 25°C at pH 7 (A), 7.4 (B) and 8 (C) in the 

presence and absence of a range of Active Oxygen concentrations. ‘Normal’ indicates usage 

of active oxygen at SOP, other concentrations as indicated relate to normal. N=3 for each data 

point with the exception of the control (N=4). Error bars indicate standard error of the mean 

(SEM). 

The results were also used to compare the effect of treatments and conditions on absolute 

biofilm formation of strains at one pH (Fig 4.8). At pH 7, the highest biofilm formation in 

untreated wells was exhibited by P. aeruginosa grown at 37oC, followed by P. aeruginosa 

grown at 25oC, E. coli grown at 37oC and finally by E. coli grown at 25oC (Fig. 4.8A). P. 

aeruginosa grown at 37oC showed a remarkable biofilm forming ability, with absolute biofilm 

endpoint readings measured at ~2.0 AU. Interestingly, P. aeruginosa grown at 37oC also 

appeared to be very responsive to Active Oxygen, showing a substantial decrease in biofilm 
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formation after treatment with the lowest concentration of Active Oxygen of approximately 

58%. P. aeruginosa grown at 25oC showed a decrease of approximately 34%, E. coli grown at 

37oC of approximately 65%, and E. coli grown at 25oC showed the lowest response by 

approximately 20%. It can be observed that concentrations weaker than the 1 in 10 SOP 

concentration supported biofilm formation, and active oxygen concentrations of one-tenth 

or higher were effective at preventing biofilm formation, with almost no biofilm quantified. 

A small peak in biofilm formation could be observed at one-tenth strength active oxygen for 

P. aeruginosa grown at 37oC, which could be of interest. A Mann-Whitney U-test between P. 

aeruginosa grown at 37oC and 25oC calculated a significant difference (P = 0.0286), which was 

the same for the difference between E. coli grown at 37oC and 25oC (P = 0.0286). Overall, 

Active Oxygen in concentrations higher than one-tenth strength appeared to be effective 

against biofilm formation across all strains and temperatures. 

At pH 7.4, P. aeruginosa grown at 37oC showed the highest biofilm formation across all 

strains, even higher than at pH 7 and interestingly the dose-response curve follows a trend 

quite similar to the one at pH 7 (Fig 4.8 B). P. aeruginosa grown at 25oC takes the second 

place, followed closely by E. coli grown at both 37 and 25oC. Untreated E. coli at 25oC showed 

higher biofilm formation at pH 7.4 in comparison with pH 7, while E. coli at 37oC biofilm 

formation remained at similar values. P. aeruginosa grown at 37oC remained very responsive 

to Active Oxygen treatment, showing a reduction of approximately 58%, which was the same 

for pH 7. P. aeruginosa grown at 25oC showed a reduction of approximately of 48%, E. coli 

grown at 37oC of approximately 65% and E. coli grown at 25oC showed the lowest reduction 

of about 12%. It can once again be observed that active oxygen concentrations weaker than 

1 in 10 SOP support biofilm formation, and dilutions stronger than 1 in 10 SOP are effective 

at preventing biofilm formation, with very little biofilm quantified. Interestingly, a small peak 

in biofilm formation can be observed again in the 1 in 10 concentration for P. aeruginosa 

grown at 37oC, which further provokes interest. A Mann-Whitney U-test between P. 

aeruginosa grown at 37oC and 25oC calculated a significant difference (P = 0.0286), which is 

the same for the difference between E. coli grown at 37oC and 25oC (P = 0.0286). 

At pH 8, once more the highest biofilm formation was exhibited by P. aeruginosa grown at 

37oC, which was now at even higher levels than previously reported, with absolute biofilm 
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endpoint readings measured at > 3.0 AU (Fig 4.8C). The second place is taken by P. aeruginosa 

grown at 25oC, which showed absolute biofilm endpoint readings at ~ 1.1 AU. E. coli grown at 

both temperatures showed little biofilm formation. Once more, P. aeruginosa at 37oC 

remained very responsive to Active Oxygen treatment, showing a reduction of approximately 

67%. P. aeruginosa grown at 25oC showed a biofilm reduction of approximately of 48%, 

similar to the reduction noted at pH 7.4, E. coli grown at 37oC of approximately 30% and E. 

coli grown at 25oC showed the lowest reduction of about 16%. The peak in biofilm formation 

shown by P. aeruginosa grown at 37oC at one-tength strength active oxygen was no longer 

present at pH 8. It could once again be observed that concentrations weaker than 1 in 10 SOP 

supported biofilm formation, and concentrations higher than 1 in 10 were effective at 

preventing biofilm formation, with miniscule amounts of biofilm quantified. E. coli grown at 

both temperatures showed little biofilm formation at high pH. A Mann-Whitney U-test 

between P. aeruginosa grown at 37oC and 25oC calculated a significant difference (P = 0.0286), 

which was the same for the difference between E. coli grown at 37oC and 25oC (P = 0.0286). 

4.2.6 Effect of water conditioner (Product 2) in combination with active oxygen for 

prevention of planktonic growth in minimal media (M9) 
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Figure 4.9 A and B show the planktonic growth of E. coli K12 (indicated as OD595) in minimal 

media (M9) at 37°C (A) and 25°C (B) at pH 7, 7.4 and 8 in the presence and absence of a range 

of Active Oxygen concentrations and product 2. ‘Normal’ indicates usage of active oxygen at 

SOP, other concentrations as indicated relate to normal SOP. Product 2 was used at SOP 

concentration only. Product 2 alone was tested at pH 7.4 only. N=3 for each data point with 

the exception of the control (N=4). Error bars indicate standard error of the mean (SEM). 

In order to measure the effect of Active Oxygen in combination with Product 2 on planktonic 

growth, a series of experiments including the SOP concentration as well as weaker and 

stronger concentrations, added at the time of inoculation at three different pH (7, 7.4 and 8) 

and two temperatures (25°C and 37°C) were performed. The sponsoring company was in 

agreement with this. Regarding E. coli planktonic growth at 37oC, very little growth was 

observed at the highest three concentrations of Active Oxygen (1:2, normal and 10x) (Fig 

4.9A) The addition of Product 2 by itself appeared to have a small yet significant effect in 

reducing planktonic growth, confirmed by a Mann-Whitney U-test (P = 0.0286). Notably, the 

highest planktonic growth excluding controls is observed in the 1 in 10 SOP concentration 

with the addition of Product 2, with endpoint readings at around 0.56 AU. The addition of 

Product 2 to active oxygen at one-tenth and half-strength concentrations appeared to 

enhance planktonic growth when compared to active oxygen at those concentrations alone. 

Addition of product 2 to active oxygen at higher concentrations did not have an effect.  A 

Scheirer-Ray-Hare test across all combinations showed that Active Oxygen had a significant 

effect, but that neither Product 2 nor the interaction between the two factors had a 

significant effect (Critical value for all samples tested <3.85, P > 0.05). A note must be made 

on the combination of one-tenth strength active oxygen in combination with Product 2, 

where the critical value was calculated close to the detection limit (approx.3.69), and 

therefore further investigation and higher replicate numbers may show a combined effect. 

Regarding E. coli planktonic growth at 25oC, similar to the results at 37oC, very little growth is 

observed in the higher Active Oxygen concentrations (1:2, normal and 10x) (Fig 4.9B). 

However, some noticeable growth was observed across all AO concentrations at pH 8. The 

addition of Product 2 by itself appears to have a small yet significant effect in reducing 

planktonic growth, confirmed by a Mann-Whitney U-test (P = 0.0286). Product 2 in 
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combination with the 1 in 10 SOP concentration appears to enhance planktonic, which a 

Scheirer-Ray-Hare analysis did not calculate as significant. A Scheirer-Ray-Hare test across all 

combinations showed that Active Oxygen had a significant effect, but that neither Product 2 

nor the interaction between the two factors had a significant effect (Critical value for all 

samples tested <3.85, P > 0.05). 
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Figures 4.10 A-B Planktonic growth of P. aeruginosa PA01 (indicated as OD595) in minimal 

media (M9) at 37°C (A) and 25°C (B) at pH 7, 7.4 and 8 in the presence and absence of a range 

of Active Oxygen concentrations and product 2. ‘Normal’ indicates usage of active oxygen at 

SOP, other concentrations as indicated relate to normal SOP. Product 2 was used at SOP 

concentration only. Product 2 alone was tested at pH 7.4 only. N=3 for each data point with 

the exception of the control (N=4). Error bars indicate standard error of the mean (SEM).  

By observing the results for P. aeruginosa planktonic growth at 37oC (Fig. 4.10 A), very little 

growth is observed in the higher Active Oxygen concentrations (1:2, normal and 10x). The 

addition of Product 2 by itself appeared to have a small yet significant effect in reducing 

planktonic growth, confirmed by a Mann-Whitney U-test (P = 0.0286). Notably, the highest 

levels of planktonic growth is observed in media containing active oxygen of one-tenth 

dilution, with endpoint readings at around 0.700 AU. A spike in planktonic growth appears in 

the 1:2 dilution in combination with Product 2 at pH 8, however the large error bars indicate 

that this is probably of no significance. Product 2 in combination with the one-tenth and 1 in 

2 active oxygen concentrations appears to support planktonic growth. The SOP and 10x 

concentrated preparations in combination with Product 2 had no significant effect on 

planktonic growth. A Scheirer-Ray-Hare test across all combinations showed that Active 

Oxygen had a significant effect, but neither Product 2 nor the interaction between the two 

factors had a significant effect (Critical value for all samples tested <3.85, P > 0.05).  

By observing the results for P. aeruginosa planktonic growth at 25oC (Fig. 4.10 B), low levels 

of planktonic growth were supported in media containing active oxygen of 1 in 2 SOP 

concentration and higher. The addition of Product 2 by itself appears to have a small yet 

significant effect in preventing planktonic growth, confirmed by a Mann-Whitney U-test (P = 

0.0286). In comparison with P. aeruginosa growth at 37oC (Fig. 4.10 A), Active Oxygen appears 

less effective at preventing planktonic growth, especially at pH 8. Notably, the highest 

planktonic growth is observed in the 1 in 10 concentration, with endpoint readings at around 

0.06 AU. The addition of Product 2 in media containing active oxygen in the 1 in 10 and 1 in 2 

SOP concentrations does not appear to enhance planktonic growth, and a Scheirer-Ray-Hare 

test across all combinations showed that Active Oxygen had a significant effect but neither 



 94 

Product 2 nor the interaction between the two factors had a significant effect (Critical value 

for all samples tested <3.85).  

4.2.7 Effect of water conditioner (product 2) on efficacy of active oxygen to prevent 

absolute biofilm formation 
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Figures 4.11 A-B Absolute biofilm formation of E. coli K12 (indicated as OD595) grown in 

minimal media (M9) at 37°C (A) and 25°C (B) at pH 7, 7.4 and 8 in the presence and absence 

of a range of Active Oxygen concentrations and product 2. ‘Normal’ indicates usage of active 

oxygen at SOP, other concentrations as indicated relate to normal SOP. Product 2 was used 

at SOP concentration only. Product 2 alone was tested at pH 7.4 only. N=3 for each data point 

with the exception of the control (N=4). Error bars indicate standard error of the mean (SEM). 

In order to measure the effect of Active Oxygen in combination with Product 2 on biofilm 

formation, a series of experiments including the SOP concentration as well as weaker and 

stronger concentrations, added at the time of inoculation at three different pH (7, 7.4 and 8) 

and two temperatures (25°C and 37°C) were performed. The sponsoring company was in 

agreement with this. The exact values of pH used were chosen as the activity of active oxygen 

under different pH has been demonstrated to remain stable, in comparison with chlorine at 

the same values (Chapter 3). Regarding E. coli absolute biofilm formation at 37oC (Fig. 4.11 

A), small amounts of biofilm were supported across all Active Oxygen concentrations. The 

addition of Product 2 by itself appeared to have a small yet significant effect in reducing 

biofilm formation, confirmed by a Mann-Whitney U-test (P = 0.0286). The highest biofilm 

formation in treated wells is observed in media containing active oxygen in the 1 in 10 

concentration in combination with Product 2, with endpoint readings at around 0.14 AU. A 

Scheirer-Ray-Hare test across all combinations showed that Active Oxygen had a significant 

effect but neither Product 2 nor the interaction between the two factors had a significant 

effect (Critical value for those samples tested <3.85, P > 0.05). Small amounts of biofilm could 

be observed across all concentrations of AO and pH, with the lowest numbers seen at the 

wells treated with AO at Normal and 10x concentrations. 

For E. coli absolute biofilm formation at 25oC (Fig. 4.11 B), small amounts of biofilm were 

observed across all Active Oxygen concentrations. The addition of Product 2 by itself 

appeared to have a small yet significant effect in preventing biofilm formation, confirmed by 

a Mann-Whitney U-test (P = 0.0286). The highest levels of biofilm formation in treated wells 

was supported in the media containing 1 in 10 SOP concentration + Product 2, with endpoint 

readings at around 0.2 AU. The addition of Product 2 in combination with active oxygen does 

not appear to affect biofilm formation. A Scheirer-Ray-Hare test across all combinations 
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showed that Active Oxygen had a significant effect but neither Product 2 nor the interaction 

between the two factors had a significant effect (Critical value for all samples tested <3.85), 

however the critical value noted for Active Oxygen with the addition for Product 2 was 

elevated (approx. 2.6), which could be further investigated. Small amounts of biofilm were 

supported across all concentrations and pHs, with the lowest numbers seen at bacteria 

treated with the SOP and 10x concentrations. 
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Figures 4.12 A-B Absolute biofilm formation of P. aeruginosa PA01 (indicated as OD595) 

grown in minimal media (M9) at 37°C (A) and 25°C (B) at pH 7, 7.4 and 8 in the presence and 

absence of a range of Active Oxygen concentrations and product 2. ‘Normal’ indicates usage 

of active oxygen at SOP, other concentrations as indicated relate to normal SOP. Product 2 

was used at SOP concentration only. Product 2 alone was tested at pH 7.4 only. N=3 for each 

data point with the exception of the control (N=4). Error bars indicate standard error of the 

mean (SEM).  

Regarding P. aeruginosa absolute biofilm formation at 37oC after Active Oxygen treatment 

(Fig. 4.12 A), small levels of biofilm were supported in the 1 in 2 SOP concentration with the 

addition of Product 2 at pH 8, however the error bar is quite large, so it probably was of no 

significance. The addition of Product 2 by itself appears to have a small yet significant effect 

in preventing biofilm formation, confirmed by a Mann-Whitney U-test (P = 0.0286). Little to 

no biofilm was supported in all concentrations and combinations stronger than 1 in 10 SOP 

concentration, with the exception of the 1 in 2 concentration + Product 2. No biofilm was 

observed at all in the SOP concentration and 10x concentration, and very small amounts were 

supported in these concentrations at pH 8. A Scheirer-Ray-Hare test across all combinations 

showed that Active Oxygen had a significant effect but neither Product 2 nor the interaction 

between the two factors had a significant effect (Critical value for all samples tested <3.85).  

By observing the results of P. aeruginosa absolute biofilm formation at 25oC (Fig.4.12 B), small 

amounts of biofilm were supported across all Active Oxygen concentrations. The addition of 

Product 2 by itself appears to have a small yet significant effect in preventing biofilm 

formation, confirmed by a Mann-Whitney U-test (P = 0.0286). Very little biofilm was 

supported in media with active oxygen concentrations higher than 1in 10, with almost no 

biofilm observed at all in the 10x SOP concentration. The combination of Active Oxygen in the 

1 in 10 SOP concentration with Product 2 lead to low levels of biofilm formation. Small 

amounts of biofilm can be seen at the SOP and 10x concentration at pH 8. A Scheirer-Ray-

Hare test across all combinations showed that Active Oxygen had a significant effect but 

neither Product 2 nor the interaction between the two factors had a significant effect (Critical 

value for all samples tested <3.85). However, the combination of Active Oxygen in the 1 in 10 
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SOP concentration in combination with Product 2 generated an increased critical value 

(approx. 2.1), which may lead to further investigation. 

4.2.8 Static planktonic removal assays in nutrient rich media – Non S.O.P. experiments 

The experiments described from this section onwards were all performed before the 

outbreak of COVID-19 under non-SOP conditions. As the project was at a relatively early stage, 

many of the experiments described here were experimental and included product 

combinations not normally found in a hot tub, to assess product interactions and their effect 

in biofilm inhibition/prevention. 

This section contains the results obtained from the static planktonic growth inhibition assays 

performed on two bacterial species, E. coli K12 and P. aeruginosa PA01 at two different 

temperatures, 25 and 37 degrees Celsius. The results represent cell densities (OD595) 

obtained after 24hrs of incubation in LB media and a further 24hrs (total 48hrs) incubation 

after addition of active oxygen at different concentrations and product combinations, 

including the active oxygen tablets (Product 3), the water conditioner (Product 2) as well as 

the biofilm remover (Product 1) for E. coli (Fig 4.13) and P. aeruginosa (Fig. 4.14). Only the 

final cell densities were recorded and are reported here. Fresh media was added in the control 

wells and the products added were diluted in water, not media. 

It must be made clear that the researcher wished to show the data here, even though they 

were not optimized to show trends. In addition, due to experimental limitations, statistical 

analyses were not performed. 
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Figures 4.13 A and B. Planktonic growth of E. coli K12 (indicated as OD595) in nutrient-rich 

media (LB) at 25°C (A) and 37°C (B) in the presence and absence of a range of Active Oxygen 

concentrations and product 1 (biofilm remover). ‘Normal’ indicates usage of active oxygen at 

SOP, other concentrations as indicated relate to normal SOP. Product 1 was used at SOP 

concentration only. N=3 for each data point. Error bars indicate upper/lower quartile limits. 

Untreated E. coli at 37oC showed the highest planktonic growth in comparison with E. coli at 

25oC, with endpoint readings at around 1.5 AU, in comparison to E. coli at 25oC 1.0 AU (Fig. 

4.13). Active Oxygen appeared to be effective at reducing planktonic growth across all tested 

concentrations. Product 1 (biofilm remover), used at SOP, also appeared effective at reducing 

planktonic growth. 

 

A  B  

Figure 4.14 A-B. Planktonic growth of P. aeruginosa PA01 (indicated as OD595) in nutrient-

rich media (LB) at 25°C (A) and 37°C (B) in the presence and absence of a range of Active 

Oxygen concentrations and product 1 (biofilm remover). ‘Normal’ indicates usage of active 

oxygen at SOP, other concentrations as indicated relate to normal SOP. Product 1 was used 

at SOP concentration only. N=3 for each data point. Error bars indicate upper/lower quartile 

limits.  

Untreated P. aeruginosa at 37oC showed the highest planktonic growth in comparison with P. 

aeruginosa at 25oC, with endpoint readings at around 1.12 AU, in comparison to P. aeruginosa 

at 25oC 1.10 AU (Fig. 4.14). Active Oxygen appeared to be effective at reducing planktonic 
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growth across all concentrations, especially at 37oC. Product 1 (biofilm remover) also 

appeared effective at reducing planktonic growth. 

 

A  B 

 

 

Figures 4.15 Planktonic growth of E. coli K12 (indicated as OD 595) in nutrient-rich media (LB) 

at 25°C (A) and 37°C (B) in the presence and absence of a range of Active Oxygen 

concentrations, plus with Products 1 by itself (biofilm remover) and active oxygen in 

combination with Product 2 (water conditioner). Product 2 was not used by itself. ‘Normal’ 

indicates usage of active oxygen at SOP, other concentrations as indicated relate to normal 

SOP. Product 1 was used at SOP concentration only. N=3 for each data point. Error bars 

indicate standard error of the mean (SEM).  

 

The aim of this experiment was to assess the planktonic growth inhibitory effect of active 

oxygen against E. coli and P. aeruginosa in various concentrations by itself as well as in 

combination with product 2, as well as the effect of Product 1, even though it is marketed as 

a biofilm remover. Regarding the cell density measurements of E. coli at both temperatures, 

it was observed that treating cells with Active Oxygen across all concentrations was effective 

at reducing planktonic growth by up to 74.28 % (Fig. 4.15 B). The addition of Product 2 to 

active oxygen treatments did not appear to have a significant effect in growth prevention. In 

addition, Active oxygen and its combination with Product 2 appeared to be more effective at 

37oC. 
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A B  

 

Figures 4.16 Planktonic growth of P. aeruginosa PAO1 (indicated as OD595) in nutrient-rich 

media (LB) at 25°C (A) and 37°C (B) in the presence and absence of a range of Active Oxygen 

concentrations, plus with Products 1 (biofilm remover) and in combination with Product 2 

(water conditioner). ‘Normal’ indicates usage of active oxygen at SOP, other concentrations 

as indicated relate to normal SOP. Product 1 was used at SOP concentration only. N=3 for 

each data point. Error bars indicate standard error of the mean (SEM). 

 

Regarding the cell density measurements of P. aeruginosa at both temperatures, it can be 

observed that Active Oxygen across all concentrations was effective at reducing planktonic 

growth by up to 67.5% (Fig, 4.16 B), and the addition of Product 2 did not appear to have a 

significant effect in growth prevention (Fig 4.16 A-B). A small increase in planktonic growth 

could be observed when active oxygen was added at 10x concentration at both temperatures, 

however it is possible that this could have been due to accidental contamination and 

therefore of no significance. 

 

 

4.2.9 Static biofilm removal in nutrient rich media – Non S.O.P. experiments 

This section contains the results obtained from the static biofilm removal assays performed 

on E. coli K12 and P. aeruginosa PA01 at two different temperatures, 25 and 37 degrees 

Celsius. The results represent the absolute biofilm formed (measured as OD at 595nm) 

obtained after 24hrs of incubation in LB media and a further 24hrs (total 48hrs) incubation 
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with the addition of active oxygen dilutions and/or other Eco3Spa products and combinations, 

followed by crystal violet staining (measured at OD595) for E. coli and P. aeruginosa (Fig. 

4.17). Only the final cell densities were recorded and are reported here. Fresh media was 

added in the control wells and the products added were diluted in water, not media. 

It must be made clear that the researcher wished to show the data here, even though they 

were not optimized to show trends. In addition, due to experimental limitations, statistical 

analyses were not performed. 
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B  

 

Figures 4.17 A-B Absolute biofilm formation (indicated as OD595) of E. coli K12 (A) and P. 

aeruginosa PAO1 (B) in nutrient-rich media (LB) in the presence and absence of a range of 

Active Oxygen concentrations or product 1 (biofilm remover), which were added after an 

initial 24hrs of growth and biofilm formation. ‘Normal’ indicates usage of active oxygen at 

SOP, other concentrations as indicated relate to normal SOP. Product 1 was used at SOP 

concentration only. N=3 for each data point. Error bars indicate standard error of the mean 

(SEM).  

 

The aim of this experiment was to assess the biofilm removal effect of active oxygen against 

developed E. coli and P. aeruginosa biofilms after 24hrs, in various concentrations by itself as 

well as in combination with product 2, as well as the effect of Product 1, even though it is 

marketed as a biofilm remover. By observing the absolute biofilm formation results for E. coli 

(Fig. 4.17 A) it can be seen that untreated and treated E. coli showed higher biofilm formation 

at 37oC compared to 25oC. Addition of Active Oxygen at all concentrations appeared to be 

effective at reducing biofilms that were formed after 24hrs and/or prevented or reduced 

further biofilm formation in comparison to the untreated samples. In addition, Product 1 

(biofilm remover) removed biofilms and/or reduced biofilm formation more effectively at 

25oC in comparison to 37oC. 
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By looking at the absolute biofilm formation results for P. aeruginosa (Fig. 4.17 B), it is evident 

that it retained and/or formed higher biofilm levels at 37oC in comparison to 25oC. P. 

aeruginosa also showed higher biofilm formation in comparison with E. coli at both 

temperatures. Addition of Active Oxygen at all concentrations appeared to be effective at 

removing biofilms that were formed after 24hrs and/or prevented or reduced further biofilm 

formation in comparison to the untreated samples, and effectiveness appears to be 

maintained across different concentrations. In addition, Product 1 removed biofilms and/or 

reduced biofilm formation at both temperatures. 

 

4.2.10. Static planktonic growth prevention assays in M9 minimal media – Non S.O.P. 

experiments 

This section contains the results obtained from the static biofilm removal assays performed 

on two bacterial species, Escherichia coli K12 and Pseudomonas aeruginosa PA01 at two 

different temperatures, 25 and 37 degrees Celsius. The results represent the optical densities 

obtained after 24hrs incubation in M9 minimal media.  

Fresh media was added in the control wells and the products added were diluted in water, 

not media. 

It must be made clear that the researcher wished to show the data here, even though they 

were not optimized to show trends. In addition, due to experimental limitations, statistical 

analyses were not logical and were not performed. 
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Figures 4.18 A and 4.18 B Planktonic growth of E. coli K12 and P. aeruginosa (indicated as OD 

595) in minimal media (M9) at 25°C (A) and 37°C (B) in the presence and absence of a range 

of Active Oxygen concentrations, plus with Products 1 by itself (biofilm remover). ‘Normal’ 

indicates usage of active oxygen at SOP, other concentrations as indicated relate to normal 

SOP. Product 1 was used at SOP concentration only. N=3 for each data point. Error bars 

indicate standard error of the mean (SEM). 
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The aim of this experiment was to assess the planktonic growth inhibitory effect of active 

oxygen against E. coli and P. aeruginosa after 24hrs, in various concentrations by itself as well 

as in combination with product 2, as well as the effect of Product 1, even though it is marketed 

as a biofilm remover. Untreated E. coli samples at 37oC (Fig. 4.18 A) show the highest 

planktonic growth with an approximate endpoint reading of 2.1 AU, followed by E. coli at 25oC 

with an approximate endpoint reading of 1.9 AU. Active Oxygen across all dilutions appears 

to have an effect in reducing planktonic growth, with the greatest effect observed in the 10x 

concentration. Interestingly, the product appears to be more effective at 25oC in comparison 

to 37oC, where little effect is observed. In addition, Product 1 does not appear to be very 

effective at preventing biofilm formation at either temperature.  

 

Untreated P. aeruginosa samples at 37oC (Fig. 4.18 B) show the highest planktonic growth 

with an approximate endpoint reading of 1.6 AU, followed by P. aeruginosa at 25oC with an 

approximate endpoint reading of 1.4 AU. Similar to the results for E. coli (Fig. 4.18 A), Active 

Oxygen across all dilutions appears to have an effect in reducing planktonic growth, with the 

greatest effect observed in the 10x concentration. The only exception appears to be Active 

Oxygen in 1:10 dilution at 25oC, where almost no effect is observed. In general, the product 

appears to be more effective at 25oC. In addition, Product 1 appears to have an effect at 

preventing biofilm formation to a similar degree in both temperatures, in contrast with E. coli. 

4.2.11 Static biofilm removal assays in minimal media – Non S.O.P. experiments 

This section contains the results obtained from the static biofilm removal assays performed 

on two bacterial species, Escherichia coli K12 and Pseudomonas aeruginosa PA01 at two 

different temperatures, 25 and 37 degrees Celsius. The results represent the absolute biofilm 

formation (measured as OD at 595nm) obtained after 24hrs of incubation in M9 minimal 

media and a further 24hrs incubation with the addition of active oxygen dilutions and product 

combinations, followed by crystal violet staining. 
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Figures 4.19 A and 4.19 B show the biofilm formation measured after performing a crystal 

violet assay and measuring the absorbance at 595nm (absolute biofilm?) in E. coli (A) and P. 

aeruginosa (B), in the presence and absence of the active oxygen product as well as product 

1 (biofilm remover). N=3 for each treatment and error bars indicate standard error of the 

mean. 
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The aim of this experiment was to assess the biofilm prevention effect of active oxygen 

against E. coli and P. aeruginosa after 24hrs, in various concentrations by itself as well as the 

effect of Product 1, even though it is marketed as a biofilm remover. By observing the 

absolute biofilm formation results for E. coli (Fig. 4.19 A) it can be seen that E. coli shows 

higher biofilm formation at 37oC compared to 25oC. All Active Oxygen concentrations appear 

to be effective at reducing biofilm formation in comparison to the untreated samples. 

Interestingly Active Oxygen appears to be more effective at preventing biofilm formation at 

25oC compared to 37oC. The greatest preventative effect is observed at the 10x 

concentration. Product 1 shows a more pronounced effect at 25oC compared to 37oC. 

 

By looking at the absolute biofilm formation results for P. aeruginosa (Fig. 4.19 B), it can be 

observed that biofilm formation at 37oC is higher in comparison to 25oC, and P. aeruginosa 

shows the highest biofilm formation in comparison with E. coli at both temperatures. All 

Active Oxygen concentrations appear to be effective at reducing biofilm formation in 

comparison to the untreated samples, and effectiveness appears to be maintained across 

different dilutions. The most effective Active Oxygen concentration appears to be 10x 

concentrated. In addition, Product 1 appears to prevent biofilm formation in both 

temperatures, however the effect is less pronounced in comparison to E. coli. 

4.2.12 Static planktonic growth removal assays of product combinations in nutrient rich 

media (LB) – Non S.O.P. experiments  

This section contains the results obtained from the planktonic growth inhibition assays 

performed on two bacterial species, Escherichia coli K12 and Pseudomonas aeruginosa PA01 

at two different temperatures, 25 and 37 degrees Celsius. The results represent the optical 

densities obtained after 24hrs of incubation in nutrient rich media with the addition of active 

oxygen at the normal working concentration + various eco3spa product dilutions and the 

absolute biofilm formation measured via crystal violet staining after a further 24hrs 

incubation. Growth medium was used as a blank. 

Fresh media was added in the control wells and the products added were diluted in media. 
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It must be made clear that the researcher wished to show the data here, even though they 

were not optimized to show trends. In addition, due to experimental limitations, statistical 

analyses were not logical and were not performed. 

 

A                      B  

 

C D  

Figures 4.20 A-D Planktonic growth of E. coli K12 (Fig. 4.20 A-B) and P. aeruginosa PAO1 (Fig. 

4.20 C-D) (indicated as OD595) in nutrient-rich media (LB) at 25°C (Fig. 4.20 A-C) and 37°C (Fig. 

4.20 B-D) in the presence and absence of a range of product combinations with Product 1 

(biofilm remover) and Product 2 (water conditioner). ‘Normal’ indicates usage of active 
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oxygen at SOP, other concentrations as indicated relate to normal SOP. Product 1 and Product 

2 were used at SOP concentration only. N=3 for each data point. Error bars indicate standard 

error of the mean (SEM). 

Untreated E. coli samples at 37oC (Fig. 4.20 A-B) show the highest planktonic growth with an 

approximate endpoint reading of 1.4 AU, followed by E. coli at 25oC with an approximate 

endpoint reading of 1.0 AU. In both temperatures, all product combinations appear to be 

effective in preventing planktonic growth to some degree, and the level of reduction appears 

to be similar across treatments. The best preventative effects for E. coli at 25oC (Fig. 4.20 A) 

appears to be Product 1 by itself and Active Oxygen in SOP concentration by itself. At 37oC 

(Fig.4.20 B), the best preventative effect appears to be Active Oxygen in SOP concentration 

in combination with Product 1, followed by Active Oxygen in combination with Product 2 

(water conditioner). 

 

Untreated P. aeruginosa samples at 37oC (Fig. 4.20 C-D) show the highest planktonic growth 

with an approximate endpoint reading of 1.1 AU, followed by P. aeruginosa at 25oC with an 

approximate endpoint reading of 1.0 AU. In both temperatures, all product combinations 

appear to be effective in preventing planktonic growth to some degree, and the level of 

reduction appears to be similar across treatments, however all treatments appear to be more 

effective at 37oC. The best preventative effects for P. aeruginosa at 25oC (Fig. 4.20 C) appears 

to be Active Oxygen by itself. At 37oC (Fig. 4.20 D), the best preventative effect appears to be 

Active Oxygen in combination with Product 1, followed by Active Oxygen by itself. 

4.2.13 Static biofilm inhibition removal of product combinations in nutrient rich media – 

Non S.O.P. experiments 

This section contains the results obtained from the static biofilm removal assays performed 

on two bacterial species, Escherichia coli K12 and Pseudomonas aeruginosa PA01 at two 

different temperatures, 25 and 37°C. The results represent the absolute biofilm formation 

(measured as OD at 595nm) obtained after 24hrs of incubation in LB nutrient rich media and 

a further 24hrs incubation (time of measurement) with the addition of various product 

combinations, followed by crystal violet staining. 
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Fresh media was added in the control wells and the products added were diluted in media. 

It must be made clear that the researcher wished to show the data here, even though they 

were not optimized to show trends. In addition, due to experimental limitations, statistical 

analyses were not logical and were not performed. 
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B  

Figures 4.21 A and B Absolute biofilm formation (indicated as OD595) of E. coli K12 (A) and P. 

aeruginosa PAO1 (B) in nutrient-rich media (LB) in the presence and absence of a range of 

product combinations with Product 1 (biofilm remover) and Product 2 (water conditioner), 

which were added after an initial 24hrs of growth. ‘Normal’ indicates usage of active oxygen 

at SOP, other concentrations as indicated relate to normal SOP. Product 1 was used at SOP 

concentration only. N=3 for each data point. Error bars indicate standard error of the mean 

(SEM). 

By observing the absolute biofilm formation results for E. coli (Fig. 4.21 A) it can be seen that 

E. coli shows higher biofilm formation at 37oC compared to 25oC with average endpoint 

reading of around 1.4 AU in comparison to 0.8 AU. All product combinations appear to be 

effective to some degree at reducing biofilm formation in comparison to the untreated 

samples. The highest biofilm preventative effect for both temperatures is exhibited by Active 

Oxygen in combination with Product 2, followed by Product 2 by itself. In addition, generally 

less biofilm formation is observed at 25oC in comparison to 37oC. 

 

By observing the absolute biofilm formation results for P. aeruginosa (Fig. 4.21 B) it can be 

seen that E. coli shows higher biofilm formation at 37oC compared to 25oC with average 
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endpoint reading of around 3.7 AU in comparison to 1.1 AU. All product combinations appear 

to be effective to some degree at reducing biofilm formation in comparison to the untreated 

samples. The highest biofilm preventative effect for both temperatures is exhibited by Active 

Oxygen by itself, followed by Product 2 by itself. Similar to the results for E. coli (Fig. 4.21 A), 

generally less biofilm formation is observed at 25oC in comparison to 37oC. 

 

4.2.14-Colour change observations in P. aeruginosa overnight cultures 

While removing the P. aeruginosa overnight cultures containing M9 minimal media pH 

adjusted to pH 7, pH 7.4 and pH 8 from the shaking incubator, before the preparation of 

dilutions for the titer plate assays, the color of the media was observed. 

 

 
 

Figure 4.22: P. aeruginosa overnight cultures. From left to right: pH 7, pH 7.4 and pH 8 

 

Of interest was the green color of the P. aeruginosa overnight (16 hrs.) shaken cultures at 

37°C. In particular, the sample incubated at pH 8 appeared denser and with a more intense 

green color in comparison with the other pHs.  
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4.3 Discussion 

4.3.1 Planktonic growth 

Overall, in M9 media E. coli exhibited higher levels of planktonic growth in comparison with 

P. aeruginosa (Figs. 4.1 A-B, 4.2 A-B). E. coli reached higher levels of planktonic growth at 25°C 

when compared to 37°C, however this was not the case for P. aeruginosa, as higher 

temperatures (37°C) led to higher planktonic growth (Figs. 4.1 A-B, 4.2 A-B). Regarding the 

effect of pH, at pH 7, E. coli at both temperatures showed higher planktonic growth in 

comparison with P. aeruginosa at both temperatures (Fig, 4.7 A). At pH 7.4, E. coli and P. 

aeruginosa at 37°C surpassed bacteria at 25°C (Fig, 4.7 B). At pH 8, both strains showed 

similarly high levels of planktonic growth with the exception of P. aeruginosa at 25°C (Fig. 4.7 

C). With regards to active oxygen, it appeared to be equally effective at preventing planktonic 

growth against both species in concentrations higher than 1 in 10 SOP (Figs, 4.1 A-B, 4.2 A-B). 

Moreover, it appeared equally effective in both temperatures tested, however a small 

decrease in activity in both species appeared at 25°C (Figs 4.1 B, 4.2 B). Regarding the effect 

of pH, active oxygen was effective across all pH tested, with a small decrease in activity at pH 

8 and 25°C (Figs 4.1 B, 4.2 B). Furthermore, the addition of water conditioner by itself 

appeared to have a small yet significant effect in planktonic growth prevention in both strains 

and temperatures, and its combination with active oxygen appeared to neither increase not 

inhibit its activity for both strains, temperatures and all pH tested. 

Regarding the experiments in LB, both strains exhibited high levels of planktonic growth (4.13 

A-B, 4.14 A-B), with the highest planktonic growth observed by E. coli. Both strains exhibited 

the highest levels of growth at 37°C growth (4.13 A-B, 4.14 A-B). With regards to active 

oxygen, as it was not used in SOP conditions in the LB experiments, loss of activity in 

comparison to SOP conditions is noted. Regardless, active oxygen is still capable of 

bactericidal activity, with the most effective concentrations noted as the 1 in 10 and 10x 

concentrated preparations (Figs 4.13, 4.14, 4.15, 4.16). The water conditioner and biofilm 
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remover, although not bactericidal, appear to have an effect in preventing planktonic growth, 

especially at higher temperatures (37°C). The combination of water conditioner and active 

oxygen, once more, appeared to neither increase not inhibit its activity (Fig. 4.15, 4.16 and 

4.20). 

4.3.2 Planktonic growth – strain comparisons 

In M9 media experiments, untreated E. coli exhibited higher levels of planktonic growth in 

comparison with untreated P. aeruginosa (Figs. 4.1 A-B, 4.2 A-B). In particular, E. coli 

planktonic growth at 37°C remained consistently high (Fig. 4.7 A-C). In contrast, P. aeruginosa 

planktonic growth remained in lower levels, however at 37°C and at higher pH the levels of 

planktonic growth began to approach those of E. coli (Fig 4.7 A-C). Moreover, in comparison 

with untreated wells, E. coli showed a more dramatic decrease in planktonic growth after 

treatment with the lowest active oxygen concentration (1 in 600 SOP) in comparison to P. 

aeruginosa (Fig. 4.7 A-C). 

The high growth levels of E. coli growth in M9 media are not surprising, as it is a very 

commonly used E. coli growth medium (Thakur et al., 2010). In addition, E. coli cells are well-

known for their capability of growing in glucose minimal media, and it has been demonstrated 

that growth in minimal media can even provide E. coli cells with survival benefits, such as 

increased transcription of genes which can support survival, such as stress proteins (Tao et 

al., 1999). In addition, E. coli K12 is known for its susceptibility to disinfectants  (Berney et al., 

2006) 

4.3.3 Planktonic growth – temperature comparisons 

E. coli reached higher levels of planktonic growth in M9 minimal media at 25°C when 

compared to 37°C, however this was not the case for P. aeruginosa, as higher temperatures 

(37°C) led to higher planktonic growth (Figs. 4.1 A-B, 4.2 A-B). This was surprising, as it was 

expected that higher planktonic growth would be observed at 37°C, which is the optimum 

temperature for E. coli growth (Doyle and Schoeni, 1984). However, there are factors which 

may enable and even promote growth in lower temperatures, such as cold shock protein D 

(Langklotz and Narberhaus, 2011). 
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CspD (cold shock protein D) may play a role in inhibiting planktonic growth in minimal media. 

CspD is a toxin protein expressed in upon entry into stationary phase and upon carbon 

starvation (Langklotz and Narberhaus, 2011). The family of cold-shock proteins are commonly 

RNA chaperones involved in a variety of functions, supercoiling of DNA to initiation of 

translation, and combat the formation of stable secondary structures in mRNAs to aid 

translation at low temperatures (Jones and Inouye, 1994). However, unlike most cold-shock 

proteins, CspD acts as a replication inhibitor due to ssDNA binding (Yamanaka and Inouye, 

1997). It has been shown that CspD expression limits growth of E. coli K12 in M9 minimal 

media at 30oC (Langklotz and Narberhaus, 2011), which may partially explain the results of 

this project (low levels of M9 and LB growth at 37°C) and in addition, CspD has been shown 

to be poorly degraded when cells grow in low temperatures (30oC) in both LB and M9 media, 

in contrast with the optimum temperature of 37oC (Langklotz and Narberhaus, 2011). 

A study has shown that CspD is regulated by Cyclic AMP (cAMP) receptor protein (CRP), a 

regulator involved in the induction of genes during the stationary phase in E. coli (Uppal et 

al., 2014). cAMP is mainly involved in catabolite repression in bacteria and plays a large role 

in E. coli metabolism regulation; the uptake of E. coli preferential carbon sources, such as 

glucose, requires the phosphoenolpyruvate: sugar phosphotransferase system (PTS) 

(Deutscher et al., 2006). When PTS sugars are available, the phosphoryl group of 

phosphorylated EIIA protein (EIIA∼P) is transferred to PTS sugars to perform the uptake of 

those sugars into the cell (Park et al., 2006). When PTS sugars are not available and non-PTS 

sugars are available in the medium, adenylyl cyclase CyaA is activated by EIIA∼P leading to 

cAMP synthesis (Park et al., 2006). Following that, cAMP-CRP activates the transcription of 

genes encoding proteins responsible for the transport of non-PTS sugars, resulting in the cell 

up-taking non-PTS sugars (Park et al., 2006).  

4.3.4 Planktonic growth – media and time comparisons 

M9 minimal media is a widely used buffered growth medium which supports E. coli planktonic 

growth and contains inorganic salts and a carbon source; in this case, glucose (Naves et al., 

2008). Luria-Bertani media is widely used for E. coli growth and research, and its rich nutrient 

and oligopeptide content provides an ideal growth environment (Sezonov, Joseleau-Petit and 

D'Ari, 2007). Interestingly, after 48hrs incubation in both temperatures, E. coli exhibited 
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higher planktonic growth in M9 minimal media in comparison to LB (Fig. 4.14 A-B and 4.18 A). 

Although P. aeruginosa showed low levels of planktonic growth in M9 after 24 hrs. (4.9 A-B), 

after 48 hrs. the planktonic growth for both temperatures reached a similar value (4.18 C-D). 

Similar to E. coli, P. aeruginosa showed higher planktonic growth in M9 minimal media in both 

temperatures in comparison to LB after 48hrs incubation (Fig. 4.14 A-B and 4.21 B) 

This is not surprising, as P. aeruginosa reaches significant levels of planktonic growth in both 

LB and M9 minimal media at 37oC (LaBauve and Wargo, 2012). In addition, studies have 

showed that P. aeruginosa shows increased planktonic growth in LB medium in comparison 

to M9 at 30oC, which may partially explain the difference in planktonic growth at 25oC, as 

many metabolic pathways shut down at temperatures below 30oC (LaBauve and Wargo, 2012 

(Schleheck et al., 2009). 

 In addition, similar to E. coli, P. aeruginosa also exhibits RpoS-mediated stress tolerance 

(Jorgensen et al., 1999). RpoS has been shown to provide P. aeruginosa with tolerance to 

prolonged starvation in glucose-supplied media, such as the M9 media used in this project, 

which may explain the increase in growth (Jorgensen et al., 1999). 

Of interest is also the metabolism of E. coli growing in LB media. A study has shown that over 

a growth period of about 8 hours, E. coli switches from a sequential mode of substrate 

utilization to the simultaneous one. The first carbon substrates utilized are maltose and 

maltodextrins, followed mannose, galactose, fucose, rhamnose, mannitol, trehalose, and 

arabinose (Baev et al., 2006). 

In order to explain the results obtained after long periods of incubation, during which the cells 

were in the stationary phase, the understanding of the role of sigma factors is crucial. In order 

for bacterial cells to regulate the expression of genes necessary for routine cell functions or 

adaptation to stress conditions, many regulatory mechanisms are needed. The most 

important mechanism in gene regulation involves the initiation of transcription, where the 

DNA-dependent RNA polymerase (RNAP) is the main player (Wosten, 1998). RNAP is the 

catalytic protagonist in regards to the RNA synthesis from a DNA template, however it is 

incapable of initiating transcription by itself and an additional polypeptide known as a σ-factor 

is required (Polyakov et al., 1995; Travers and Burgessrr, 1969). Sigma-factors belong to a 
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family of small proteins that can bind reversibly with the RNAP core enzyme. Together, the σ-

factor and the RNAP core enzyme form an initiation-specific enzyme, the RNAP holoenzyme 

(Travers and Burgessrr, 1969). 

Of particular importance to this project is the stationary phase σ-factors, such as RpoE and 

RpoS, found in both E. coli and P. aeruginosa, and is responsible for mediating the general 

stress response (Wosten, 1998). RpoE is only found in E. coli, while RpoS RpoS is unstable 

during exponential phase but stable during the stationary phase, and is upregulated by both 

positive regulators such as ppGpp and polyphosphate and negative regulators such as cAMP 

(Jaishankar and Srivastava, 2017). RpoS is responsible for inducing a series of genes which 

cause starved E. coli cells to become smaller, their cell walls to become more highly cross-

linked, condense their cytoplasm and increase of their periplasmic volume, which studies 

have shown that these effects take place in E. coli in rich medium at 37oC at an OD of 1 (Lange 

and Hengge-Aronis, 1991; Zambrano and Kolter, 1996). RpoS leads to the development of a 

highly resistant state and allows the cells to not only overcome the initial stress encountered, 

but also to become tolerant to further stress conditions (Battesti et al., 2011)  Studies have 

shown that RpoS is not only induced by entry into stationary phase, but by also high cell 

density (Liu et al., 2000). In addition, a recent study has shown that RpoS may be linked in the 

dynamic of persister cell formation and that ppGpp, a cyclic nucleotide acting as a secondary 

messenger in a similar fashion to c-di-GMP and cAMP which is upregulated by stress, plays an 

important role in RpoS activity (Kalia et al., 2013; Patange et al., 2018). 

Prolonged starvation in the stationary phase, which could be the case for results obtained 

after 48hrs incubation, has been shown to result in Growth Advantage in Stationary Phase 

(GASP) phenotype. An interesting results from a study showed that older cell populations in 

stationary phase exhibiting GASP phenotype had a growth advantage, as they could utilize 

the nutrients released by dying cells (Zambrano and Kolter, 1996).  This allows the cells to 

keep growing under starvation, and eventually allow them to replace the parental population 

(Jaishankar and Srivastava, 2017). 

Interestingly, RpoS has also been found to play a role during exponential growth in E. coli K12 

in rich media (LB). Although growth in nutrient rich media is not likely to be stressful, the 

study showed that some stress-protective factors (osmY and gadAB) were maintained at low 
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levels during exponential growth, possibly allowing enhanced adaptation to changing 

environments and may play a protective role against osmotic and acid stress during this 

critical phase, in addition to genes related to carbon source transport, protein folding and 

iron acquisition (Dong et al., 2008). 

4.3.5 Planktonic growth – pH comparisons 

Regarding the effect of pH, at pH 7, E. coli at both temperatures showed higher planktonic 

growth in comparison with P. aeruginosa at both temperatures (Fig, 4.7 A). At pH 7.4, E. coli 

and P. aeruginosa at 37°C surpassed bacteria at 25°C (Fig, 4.7 B). At pH 8, both strains showed 

similarly high levels of planktonic growth with the exception of P. aeruginosa at 25°C (Fig. 4.7 

C). E. coli at both temperatures showed the highest planktonic growth at pH 7 (Fig. 4.1 A and 

B). In addition to pH 7, E. coli at both temperatures also showed high levels of planktonic 

growth at pH 8, with endpoint measurements quite close to those for pH 7 (Fig. 4.1 A and B). 

P. aeruginosa showed the highest planktonic growth at pH 8 and the lowest at pH 7 (Fig. 4.2 

A-B). 

The results regarding E. coli planktonic growth make sense, as a study has shown that E. coli 

K12 doubling time at 37oC is at its fastest at pH 7 at 18 minutes, in contrast to 25 minutes at 

pH 5 and 8.7 (Maurer et al., 2005). This also makes sense as the pH in the human gut, where 

E.coli is normally found, ranges from pH 6 to pH 7.4 (Fallingborg, 1999). In addition, the 

growth and adaptation of E. coli in mildly acidic conditions have been well-studied; growth in 

mild acid (pH 6-7) can enhance elements of cellular metabolism and cause upregulation of 

protein pumps and outer membrane proteins, which in turn increase influx of nutrients and 

thus aid growth (Harden et al., 2015). In addition, mildly acidic conditions allow the uptake of 

permeable acids, which acidify the cytoplasm, increase anions, and lower the cytoplasmic pH. 

This has been shown to induce a number of genes, such as genes associated to flagellar 

motility and oxidative stress (Maurer et al., 2005). It is known that E. coli in the human body 

can withstand pH from 2 to 8, and even harsh conditions caused by pancreatic secretions, 

including a pH of 10 (Maurer et al., 2005). Therefore, it would make sense for E. coli to exhibit 

resistance and capability to grow under higher pH values (Fig. 4.1 A and B). It is also known 

that E. coli growth using glucose causes acetate to accumulate, which is inhibitory for growth. 

An interesting study using LB media supplemented with glucose at different pH found that at 
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pH 7 and 8 a drop in media pH was noted, but surprisingly the metabolism of the cells re-

calibrated it to values similar to the initial ones, which may explain the growth levels observed 

(Sánchez-Clemente et al., 2018). Rather surprisingly, untreated E. coli showed relatively low 

levels of planktonic growth at pH 7.4, especially at 25oC.  

A study has shown that P. aeruginosa PA01 growth at low pH values, even at around pH 6 are 

growth inhibitory, which agrees with planktonic growth results for P. aeruginosa at pH 7 

(Fig.4.7 A) (Bushell et al., 2018). Reasons why low pH may inhibit growth include lowering of 

cytoplasmic pH, anion toxicity and osmotic stress (Bushell et al., 2018). The highest planktonic 

growth in both temperatures was noted at pH 8, followed by pH 7.4 (Fig. 4.2 A and B). This 

comes in agreement with previous research, where P. aeruginosa exhibited slow growth in 

pH values below 6, but grew at an increased rate at pH 7.5, with a peak at around pH 8.2 (Tsuji 

et al., 1982).  

Interestingly, at pH 8, P. aeruginosa shaken cultures exhibited a bright green color (Fig. 4.25. 

Phenazines are well-known for their bright blue-green pigment and have been shown to 

change color with pH change, which makes them useful in biosensors (Pierson and Pierson, 

2010). In addition, a pigment produced by P. aeruginosa PAO1, pyoverdine, is responsible for 

the generation of a bright green pigment. It has been shown that P. aeruginosa at high pH 

values (around pH 8) shows enhanced pyoverdine production, which may explain the color 

change at high pH in this project (Albesa et al., 1985). RpoS is also responsible for pyocyanin 

production, and experiments have shown that P. aeruginosa PA01 RpoS mutants were 

overproducing pyocyanin, while the overproduction of RpoS resulted in a decrease in 

pyocyanin levels (Suh et al., 1999).  

4.3.6 Planktonic growth – effect of different products 

In general, across all media used, the Active Oxygen product is effective at reducing bacterial 

growth to some or large degree, even when used at non-SOP recommendations. Both E. coli 

and P aeruginosa exhibited similar levels of susceptibility to Active Oxygen, with no planktonic 

growth observed at all at 37oC in SOP experiments, in concentrations higher than 1 in 10 of 

SOP in M9 minimal media (Fig. 4.1 A and 4.2 A). However, some loss of activity was noted for 

both organisms at 25oC, and in particular at pH 8 (4.1 B and 4.2 B).  
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This comes partially in agreement with a previous study on the efficacy of Virkon on both 

organisms, where it was discovered that the MIC for both E. coli and P. aeruginosa was the 

same (Gasparini et al., 1995). As Active Oxygen is well-known for its reactivity towards organic 

compounds (Bailey, 1958), it is possible that it may react with the organic nutrients present 

in LB media, such as yeast extract (Sezonov, Joseleau-Petit and D'Ari, 2007). It is possible that 

these reactions may lead to some loss of efficacy, which may explain the higher levels of 

activity noted in M9 media, where less organic nutrients are present (Rugbjerg, Feist and 

Sommer, 2018). This may also help explain the high levels of planktonic growth prevention 

achieved during the SOP experiments in M9 media (Section 4.2.1). Regarding the SOP 

experiments, the European Chemicals Agency mentions that the degradation of 

pentapotassium peroxymonosulfate is dependent on pH and temperature, with increased 

degradation noted at increasing temperatures and pH (ECHA, 2021). Most importantly, it was 

noted the substance has a half-life of above 800 h (at 20°C) in a buffered solution of pH 4, the 

half-life at pH 7 is 145 hours and only 2.8 hours at pH 9 (ECHA, 2021). Therefore, the loss of 

activity noted at low temperature (25oC) and high pH makes sense. It also may be possible 

that the temperature of 37oC has a beneficial effect on the activity and maintenance of Active 

Oxygen, but no literature was found on this particular topic. In conclusion, active oxygen 

appeared to be an effective planktonic growth inhibitor in SOP concentrations higher than 1 

in 10 SOP against both strains under all conditions tested. 

4.3.7 Planktonic growth – effect of product combinations 

With regards to the combination of Active Oxygen with the water conditioner (Product 2), 

statistical analysis showed that it makes no difference in planktonic growth prevention (Fig. 

4.9 A-B and 4.10 A-B). Scheirer-Ray-Hare analysis showed that Active Oxygen by itself was 

responsible for the prevention of planktonic growth, and no interactions with Product 2 were 

noted. A small, yet statistically insignificant increase in planktonic growth at the 1 in 10 Active 

Oxygen SOP concentration in combination with Product 2 was noted across all strains and 

temperatures (Fig. 4.9 A-B, 4.10 A) with the exception of P. aeruginosa at 25oC (Fig. 4.10 B). 

It is not certain if some components of the Conditioner are responsible for this increase in 

endpoint measurements or whether a morphological change in surviving bacteria is 

responsible. According to the manufacturer, the water conditioner contains coconut fatty 



 122 

acids and glycosides, and it may be possible that the surviving bacteria may be using some of 

the components as an additional or preferential nutrient source. 

 

4.3.8 Biofilm formation 

Overall, in M9 media and SOP experiments P. aeruginosa exhibited dramatically higher levels 

of biofilm growth in comparison with E. coli (Figs.4.8 A-C). P. aeruginosa reached higher levels 

of biofilm formation at 37°C when compared to 25°C, and higher temperature (37°C) led to E. 

coli increased biofilm formation (Figs.4.8 A-C). Regarding the effect of pH, at pH 7, P. 

aeruginosa at both temperatures showed higher planktonic growth in comparison with E. coli 

at both temperatures (Fig, 4.8 A). At pH 7.4, P. aeruginosa at both temperatures surpassed E. 

coli (Fig, 4.8 B). At pH 8, once more P. aeruginosa showed dramatically high levels of biofilm 

formation in comparison with E. coli (Fig. 4.8 C). With regards to active oxygen, it appeared 

to be equally effective at preventing biofilm formation against both species in concentrations 

higher than 1 in 10 SOP (Figs, 4.3 A-B, 4.3 A-B). Moreover, it appeared equally effective in 

both temperatures tested, however a small decrease in activity in E coli appeared at 37°C (Fig 

4.3 A). Regarding the effect of pH, active oxygen was effective across all pH tested, with no 

decrease in activity noted at any pH or temperature at concentrations higher than 1 in 10 SOP 

(Figs 4.8 A-C). Furthermore, the addition of water conditioner by itself appeared to have a 

small yet significant effect in planktonic growth prevention in both strains and temperatures 

(Fig. 4.11 A-B, 4.12 A-B), and its combination with active oxygen appeared to neither increase 

not inhibit its activity for both strains, temperatures and all pH tested. 

Regarding the experiments in LB, both strains exhibited high levels of biofilm formation after 

48 hrs. (4.17 A-B), with the highest planktonic growth observed by P. aeruginosa. Both strains 

exhibited the highest levels of biofilm formation at 37°C (4.17 A-B). With regards to active 

oxygen, as it was not used in SOP conditions in the LB experiments, loss of activity in 

comparison to SOP conditions is noted. Regardless, active oxygen is still capable of inhibiting 

biofilm formation to some degree, with the most effective concentrations noted as the 10x 

concentrated preparation (Figs 4.17 A-B). The water conditioner and biofilm remover, 

although not bactericidal, appear to have an effect in preventing planktonic growth by 
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themselves, especially at higher temperatures (37°C) (Fig. 4.21). The combination of water 

conditioner and active oxygen, once more, appeared to neither increase not inhibit its activity 

(Fig. 4.21). 

4.3.9 Biofilm formation – strain comparisons 

In M9 media experiments, untreated P. aeruginosa exhibited higher levels of biofilm 

formation in comparison with untreated E. coli (Figs. 4.8 A-C). In particular, P. aeruginosa 

biofilm formation at 37°C remained consistently the highest overall (Fig. 4.8 A-C). In contrast, 

E. coli biofilm formation remained in lower levels (Fig 4.8 A-C). Moreover, in comparison with 

untreated wells, P. aeruginosa showed a more dramatic decrease in planktonic growth after 

treatment with the lowest active oxygen concentration (1 in 600 SOP) in comparison to E. coli 

(Fig. 4.8 A-C). 

The high growth levels of P. aeruginosa growth in M9 media are particularly interesting. First 

of all, P. aeruginosa PA01 is known to form biofilm equally well in both LB and M9 media 

(Schleheck et al., 2009). However, it could be that the limited nutrients may induce the 

transcription of stress factors such as RpoS, can provide P. aeruginosa biofilms with survival 

benefits, such as resistance to disinfectants and higher density (Bouillet et al., 2019). In 

addition, P. aeruginosa is known for its biofilm production and for its property to grow biofilm 

throughout the well tested (Ochoa et al., 2015; (Merritt et al., 2005). 

4.3.10 Biofilm formation – temperature comparisons 

Regarding the effect of temperature on biofilm formation, in M9 minimal media and SOP 

experiments, P. aeruginosa showed dramatically increased biofilm formation at 37°C in 

comparison to 25°C (Fig 4.8). The same can be observed with E. coli, with higher biofilm 

formation in the same experiment noted at 37°C (Fig. 4.8). With regards to growth in LB media 

after 48hrs, the highest biofilm formation was noted by P. aeruginosa at 37°C (around 6.000 

AU) (Fig, 4.17). E. coli also exhibited the highest biofilm formation at the same temperature 

(Fig 4.17). However, in all media tested, the difference temperature makes is more dramatic 

in P. aeruginosa in comparison with E. coli, where the difference in biofilm formation between 

the two temperatures is smaller. 
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The large amounts of biofilm noted at 37°C are not surprising, as studies have shown that not 

only P.aeruginosa shows increased biofilm formation at this temperature, but also that 

biofilm biomass, EPS production, adhesion and mechanical stability were highest at 37°C in 

comparison with lower temperatures such as 28°C (Donnarumma et al., 2010; Kannan and 

Gautam, 2015). 

 

Regarding the biofilm formation of E. coli at lower temperatures, CspD has been linked to 

biofilm formation in E. coli as well as the formation of persister cells (Kim et al., 2010). The 

term persisters is used to describe bacterial cells under stress, such as starvation or use of 

antimicrobials, and under this resting state they exhibit resistance to nearly all antibiotics 

without undergoing genetic change (Wood, 2017). Importantly, most of these cells are found 

in biofilms in humans, which highlights the importance of understanding and fighting against 

them (Wood, 2017). It has been demonstrated that CspD is regulated by Cyclic AMP (cAMP) 

receptor protein (CRP), a regulator involved in the induction of genes during the stationary 

phase in E. coli (Uppal et al., 2014)Additionally, cAMP-CRP is involved in the transcription of 

about 7% of E. coli genes, including genes linked to biofilm formation. 

4.3.11 Biofilm formation – media and time comparisons 

M9 minimal media is a widely used buffered growth medium which supports E. coli planktonic 

growth and contains inorganic salts and a carbon source; in this case, glucose (Naves et al., 

2008). Luria-Bertani is widely used for E. coli growth and research, and its rich nutrient and 

oligopeptide content provides an ideal growth environment (Sezonov, Joseleau-Petit and 

D'Ari, 2007). Therefore, it would be expected that E. coli would exhibit higher absolute biofilm 

formation after 24hrs in LB media in comparison to minimal media, which was the case for 

both temperatures (4.19 A and 4.9 A-B). Interestingly, after 48 hrs. incubation, E. coli 

exhibited absolute biofilm formation endpoint values in LB media quite close to those 

observed after 48hrs incubation in minimal media (Fig. 4.15 A and 4.17 A). P. aeruginosa 

shows higher biofilm formation in M9 media after 24hrs at 37oC (Fig. 4.10 A and 4.19 B), but 

not at 25oC (Fig. 4.10 B and 4.19 B). Interestingly, after 48hrs incubation, P. aeruginosa at 25oC 

exhibited absolute biofilm formation endpoint values in LB media quite close to those 
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observed after 48hrs incubation in minimal media, but not at 37oC where higher endpoint 

values were noted at LB media (Fig. 4.15 B and 4.17 B). 

Increased levels of E. coli biofilm in nutrient rich media has been observed in previous studies 

(Pratt and Kolter, 1998).In addition, previous studies have confirmed that E. coli biofilm 

adherence/formation increases under nutrient low conditions (Reisner et al., 2006). 

Furthermore, growth in M9 media has been shown to provide some benefits to biofilms, such 

as resistance to physical forces (Jefferson, 2004). Additionally, the growth rate of cells plays 

a major role in biofilm survival. Studies have shown that the sensitivity of biofilm cells to 

antibiotics increased in tandem with growth rate, suggesting that a slower growth rate may 

play a protective role against antimicrobials (Evans et al., 1991). Moreover, the role of RpoS 

in biofilm formation cannot be ignored. As mentioned in the previous section, RpoS is an 

important mediator during stress response, evidenced by the fact that RpoS mutants are 

incapable of forming mature biofilms, hinting that RpoS is needed for the expression of genes 

expressed in biofilms (Collet et al., 2008). Indeed, RpoS mutants showed impaired surface 

growth and biofilm architecture (Collet et al., 2008), which further highlight the role of stress 

mediators in biofilm formation. 

P. aeruginosa strains are known for being resilient biofilm formers under varying conditions 

(Ochoa et al., 2015). In addition, P. aeruginosa PA01 has been shown to form biofilm equally 

well in both LB and M9 media, which may explain the similar values notes in this project 

(Schleheck et al., 2009). 

4.3.12 Biofilm formation – pH comparisons 

pH plays a large role in biofilm formation and this is reflected in the biofilm formation results 

for various pH values obtained during this project. Regarding untreated samples, E. coli 

showed the highest absolute biofilm values at pH 7.4 for both 25oC and 37oC (Fig. 4.3 A and 

B). This comes in agreement with the results of a study which came to similar conclusions, 

with E.coli showing high biofilm formation at pH 7.4 at 25oC (Mathlouthi et al., 2018). 

Interestingly, E. coli maintains its internal pH at around 7.6, which may also help explain the 

increased biofilm formation (Maurer et al., 2005). At high pH values, E. coli showed very low 

biofilm formation (Fig. 4.8 C). Studies have shown that high pH (8.7) represses flagellar and 
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chemotaxis genes and represses synthesis of flagella, which may have an effect on biofilm 

(Maurer et al., 2005). 

pH is also of importance in P. aeruginosa biofilm formation. Across all temperatures and 

treatments, P. aeruginosa exhibited the highest biofilm formation at pH 8, followed by pH 

7.4, which comes in agreement with the results of a study assessing biofilm formation at 

different pH values, where accelerated biofilm formation was observed at pH 8 and 7.4 in 

comparison to pH 5.5, using crystal violet quantification (Hostacka et al., 2010). In addition, 

pH has an effect on the expression of P. aeruginosa virulence factors, such as alginate. Indeed, 

a study has found increased alginate production in P. aeruginosa at pH 8, which consequently 

leads to increased biofilm formation at higher pH (Harjai et al., 2005). The lowest biofilm 

formation was noted at pH 7. Low biofilm formation by P. aeruginosa at low pH has been 

observed before, and in a study by Stoodley et al, P. aeruginosa biofilm thickness fell to 68% 

at pH 3 (Stoodley et al., 1997).  

RpoS also plays an important role in regulating P. aeruginosa biofilms. A study has shown that 

RpoS has a positive effect on biofilm formation, as RpoS mutants showed a significant 

decrease in biofilm thickness and presence of more planktonic cells (Bouillet et al., 2019). In 

addition, RpoS is important in P. aeruginosa antibiotic resistance, as mutants were more 

susceptible to antibiotics in comparison with wild-type (Whiteley et al., 2001). A study has 

shown that RpoS also regulates quorum sensing, and RpoS mutants showed increased levels 

of  rhII, which is associated with Pel synthesis (Whiteley et al., 2000). Therefore, it could be 

linked to the fact that P. aeruginosa at pH 7 and 7.4 showed lower biofilm formation (Fig. 4.4 

A and B). 

4.3.13 Biofilm formation – effect of different products 

Both E. coli and P aeruginosa exhibited similar levels of susceptibility to Active Oxygen, with 

no or very little absolute biofilm formation observed at all at 37oC in SOP experiments, in 

concentrations higher than 1 in 10 of SOP in M9 minimal media (Fig. 4.3 A-B and 4.4 A-B). 

Interestingly, pH and temperature did not appear to play a major role in influencing the 

activity of Active Oxygen, with the exception of E. coli at both temperatures, where very small 

amounts of biofilm were noted (Fig 4.3 A-B). Rather surprisingly, almost no P. aeruginosa 
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biofilm at all was noted in both temperatures in all concentrations higher than 1 in 10 SOP 

(Fig. 4.4 A-B). Product 2 (water conditioner) used by itself showed to have a small yet 

significant effect at preventing biofilm formation in both organisms and temperatures (Fig. 

4.11 A-B, 4.12 A-B). Interestingly, although not marketed as a biofilm preventing agent, 

Product 1 (biofilm remover) also had an effect in biofilm prevention, which was more 

prominent in E. coli (Fig. 4.19 A-B). 

It is possible that the small amounts planktonic growth noted for both organisms at 25oC, and 

in particular at pH 8 (4.1 B and 4.2 B), may be at the viable-but-not-culturable state and may 

be incapable of producing biofilm, as no biofilm was measured for the same treatments (Li et 

al., 2014). Regarding the biofilm remover, according to the sponsoring company it contains a 

blend of surfactants. This would justify the reduction in biofilm formation, especially in E. coli, 

as surfactants have been shown to inhibit biofilm formation at the air-liquid and solid-liquid 

interface (Wu et al., 2013). In addition, surfactants have been demonstrated to prevent 

planktonic cells from attaching to the preformed biofilm in both E. coli and P. aeruginosa 

(Davey et al., 2003). 

4.3.14 Biofilm formation – effect of product combinations 

According to the sponsoring company, the water conditioner contains a blend of enzymes, 

coconut extract, pH stabilizers and minerals. The combination of active oxygen and water 

conditioner (Product 2) did not appear to either enhance or inhibit the biofilm preventing 

properties of the tablets (Fig. 4.11 A-B, 4.12 A-B). Overall, the addition of Product 2 does not 

appear to inhibit or further enhance the biofilm prevention ability of Active Oxygen, which 

was confirmed by a series of Scheirer-Ray-Hare tests. Interestingly, however, at 25oC in both 

E. coli and P. aeruginosa there was some increased biofilm formation noted in the 

combination of Active Oxygen in the 1 in 10 SOP concentration plus Product 2, compared to 

Active Oxygen in the same concentration by itself. 

 To date, information on the synergistic effect of an enzymatic product and Active Oxygen 

was not found. It may be possible that in sub-inhibitory stress conditions the addition of 

Product 2 at 25oC could lead to survival of species and possible development of resistance, 

which may have an effect on virulence and pathogenicity. A possible theory which 
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marposexplain the phenomenon may include the need for high temperature for sufficient 

“activation” of the water conditioner as the product is added when the hot tub is operational, 

and the water has reached 37oC. It is possible that low temperature and stress conditions 

generated by the sub-inhibitory concentration of Active Oxygen may cause the bacteria to 

utilize some of the components of the water conditioner as environmental nutrients, which 

may explain the increase in biofilm formation. 

The water conditioner may also assist the biocidal effect of Active Oxygen by acting as a pH 

regulator. In a brief experiment, the addition of Active Oxygen in distilled water reduced its 

pH from approximately 5.5 to 3 (data not shown). Indeed, Virkon preparations have been 

shown to have a low pH of around 2.6 – 3, which agrees with this observation (Hernndez et 

al., 2000) As the company’s description of the conditioner mentions is acts as a pH regulator, 

it can be hypothesized that Active Oxygen may act more efficiently at certain pH ranges.  
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Chapter 5: Initial studies of effect of Active Oxygen and 

Conditioner on cell morphology and viability  
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5.1 Introduction 

In Chapter 4, SOP experiments in minimal media showed that Active Oxygen, when used in 

concentrations higher than 1 in 10 SOP, was effective at preventing planktonic growth and 

biofilm formation across all pH tested and at both 25°C and 37°C. Moreover, the addition of 

water conditioner appeared to neither significantly enhance nor inhibit the activity of the 

sanitizing tablets.  This led to the consideration that the water conditioner may affect cell 

morphology and viability, leading to the decision for undertaking light microscopy and live-

dead staining experiments. In addition, Log kill experiments are presented in this chapter, 

which were of great interest to the sponsoring company. It is important to note that work in 

this chapter was undertaken in the last 2 weeks of the researcher’s lab time, under time 

constraints, lab equipment limitations and under n=1 conditions.  

 

 

5.2 Cell morphology 

In the previous chapter, experiments showed that the addition of water conditioner appeared 

to neither significantly enhance nor inhibit the activity of the sanitizing tablets. Experiments 

involving combinations of active oxygen with the conditioner in sub-optimal concentrations 

(1 in 10 SOP concentration) led to a small yet no significant increase in OD measurements and 

biofilm formation. This led to the question of whether this spike in OD is caused by cell 

clumping or changes in cell morphology. In addition, the paper of Stevenson et al. showed 

that cells under stress undergo morphological changes which may further influence OD 

measurements (Stevenson et al., 2016). 10 μl of sample were pipetted straight from a 

microtiter plate well on a microscope slide without dilution. Figure 5.1 shows micrographs of 

the effect(s) of Active Oxygen by itself or in combination with the Water Conditioner on the 

cell morphology of E. coli K12 grown in M9 at 37oC at pH 7.4 for 24hrs. Figures 4.1 A and 4.2 

A show the results of planktonic growth and biofilm formation corresponding to each 

treatment. 
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Figure 5.1. Effect of increasing concentrations of active oxygen on the cell morphology of E. 

coli K12 grown for 24h in M9 pH 7.4 at 37°C in the absence (upper panels) or presence (lower 

panels) of water conditioner (Product 2). Arrows point to visible cell clumps. Bar indicates 

50µm. 

 

Figure 5.1 shows that relatively high cell densities were reached in each well. This was partially 

because the samples used were undiluted, even though the actual measurements of cell 

densities (OD595) indicated reductions in the presence of active oxygen (Chapter 4, Figs 4.1 

A and 4.9 A). In addition, motile cells were observed in the control and across all experiments 

containing only Active Oxygen. Interestingly, the addition of water conditioner (Product 2) in 

combination with Active Oxygen resulted in a decrease in cell motility, with a concomitant 

increase in large numbers of immotile cells (data not shown as no micrograph taken). The 

combination of Active Oxygen at the Normal concentration with Product 2 resulted in E. coli 

forming chain-like clumps. Treatment of cells with one-tenth strength Active Oxygen resulted 

in the formation of cell clumps, more of which are visible after the addition of Product 2. The 

combination of Active Oxygen at the lowest tested concentration with Product 2 also resulted 

in the formation of long, clump-like structures. It appears that the addition of Product 2 led 

to enhanced “clumping”, though it remains to be established if one or multiple components 
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in product 2 was responsible for this phenotype. Another question generated from these 

observations was whether the cells in the “clumps” were alive, viable-but-not-culturable, or 

dead, which could potentially affect efficacy of water sanitation at the longer term.  

 

5.3 Fluorescence microscopy images 

To gain an appreciation of the viable state of cells in clumps in the presence of Product 2 it 

was decided to perform Live-Dead staining/fluorescent microscopy. Propidium iodide (dead 

stain) and SYTO 9 (live stain) were pipetted into a well containing the samples and the well 

contents were thoroughly mixed. For the Negative control, a preparation of 5ppm chlorine 

was used. 9μl of sample were pipetted straight from a microtiter plate on a microscope slide 

with no dilution. 

 

As the experiment took place in the last 2 weeks of research with limited support and 

equipment limitations, this caused the late and n=1 nature of these experiments, lack of 

computer-controlled image capture (leading to suboptimal image capture via mobile phone 

camera). Additionally, lack of experience with this type of instrumentation, led to movement 

of slides for images that otherwise should not be moved to be fully comparable, allowing 

overlays. This also explains the lack of light-field micrographs to indicate all cells in the field 

of vision. 
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Figure 5.2. Effect of active oxygen and water conditioner alone or in combination on viable 

state of planktonic cells of E. coli K12 grown for 24h in M9 pH7.4 at 37°C. Live, viable cells are 

indicated by green-fluorescing cells that have taken up SYTO-9 (upper panels), cells assumed 

dead or with impaired membranes are indicated by red-fluorescing cells that have taken up 

propidium iodide (PI) (lower panels). 
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Figure 5.3. Effect of active oxygen and water conditioner alone or in combination on viable 

state of planktonic cells of P. aeruginosa PA01 grown for 24h in M9 pH7.4 at 37°C. Live, viable 

cells are indicated by green-fluorescing cells that have taken up SYTO-9 (upper panels), cells 

assumed dead or with impaired membranes are indicated by red-fluorescing cells that have 

taken up propidium iodide (PI) (lower panels). 

 

Figures 5.2 and 5.3 show the effects of Active Oxygen by itself or in combination with the 

Water Conditioner on the viable state of E. coli K12 and P. aeruginosa PAO1 grown at 37oC at 

pH 7.4 for 24hrs, respectively. Throughout all light microscopy images, a high cell density can 

be observed. This is because the samples used were undiluted. Regarding live-dead 

microscopy, in the untreated control experiments, both species grew well thereby exhibiting 

a large number of live cells (as indicated by green-fluorescing cells) and a small number of 

dead cells (as indicated by red-fluorescing cells) (Fig. 5.2 A and F and 5.3 A and F). In cells 

treated with a known disinfectant (chlorine at 5 ppm) (5.2 B and G and 5.3 B and G), almost 

all cells were dead (red cells) and very few, if any live (green) cells were noted. Surprisingly, 

live (green) cells were noted for both species after treatment with Active Oxygen at normal 

operating concentration (Fig. 5.2 C and 5.3 C), although fewer P. aeruginosa cells were noted 

overall (Fig. 5.3 C and H). Interestingly, some clump-like structures (Fig. 5.2 H  and 5.3 H) were 
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noted, but it was uncertain if they were morphologically similar to those seen in the previous 

light microscopy experiment (See section 5.2). In addition, there is a chance the cell clumping 

may have prevented the dyes from penetrating the cells. The addition of Product 2 by itself 

(Fig. 5.2 E and 5.3 E) also appeared to cause formation of small clumps. When treated with 

product 2 by itself, larger numbers of cells can be observed, however this may be due to 

clumping or unstable photo capture. Importantly, the combination of active oxygen with 

product 2 once again appears to form small chain-like or round clumps. 

 

Overall, the number of live (green) cells found after treatment with known disinfectants was 

surprising as more dead (red) cells were expected. It would be worthwhile therefore to repeat 

fluorescence microscopy experiments to determine the viable state of cells to ensure the 

current observations are valid and not accidental.  

 

5.4 Cell viability assays and efficacy of compounds on loss of cell viability  

 

 

5.4.1 Efficacy of compounds on loss of cell viability - CFU data 

In light of the observations made in section 5.3 which could not be repeated due to time and 

laboratory constraints, it was decided to determine cell viability following 24h treatments 

(Figs 4.1 A, 4.2 A, 4.9 A and 4.10 A), with active oxygen by counting the formation of colonies 

resulting from 16 hr incubation of serial dilutions of planktonic cell cultures which were then 

plated onto LB agar. 
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Figure 5.4: Loss of cell viability (shown as log reduction after CFU counting) of E. coli K12 and 

P. aeruginosa PAO1 following treatment with active oxygen. ‘Normal’ indicates usage of 

active oxygen at SOP, other concentrations as indicated relate to normal SOP. N=1 for 

biological repeats.  

 

To calculate Log reductions from CFUs, the latter representing viable cells after treatment, 

samples were pipetted straight from the 96-well plates used in the SOP experiments in M9 

media described in the previous chapter (Figs 4.1 A, 4.2 A, 4.9 A and 4.10 A), diluted serially 

and then plated on agar to allow counting of colonies resulting from cells that retained 

viability or were awoken from VNBC state. Samples were taken from E. coli and P. aeruginosa 

grown at 37oC, pH 7.4. Overall, a Log reduction of 4.11 was noted after E. coli treatment with 

10x concentrated Active Oxygen, followed by a 4-Log reduction at the Normal concentration 

and a 3.2-Log reduction at one-tenth strength of active oxygen. P. aeruginosa showed slightly 

lower Log reductions, which proved less dose-dependent on active oxygen, though more 

consistent throughout the treatments. Treatment of P. aeruginosa led to the highest Log 

reduction at the Normal concentration at 3.64, followed by a 3.58-Log reduction at the 10x 

concentration and a 3.53-Log reduction at the 1:10 dilution. 

Interestingly, the undiluted samples from cultures containing Active Oxygen and Product 2 

(Water Conditioner) led to no CFU formation at all. Samples were also taken from cultures 

treated with chlorine at both concentrations (3ppm and 5ppm) and pH (7, 7.4 and 8). CFUs 
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could also not be detected across these conditions. Rather than concluding these treatments 

were superior in water sanitation, the lack of any CFU formation is more suggestive of an 

accidental experimental error. Therefore, these experiments should be repeated before 

drawing final conclusions about efficacy of the combination or of the benchmarking product. 

 

 

5.4.2 Efficacy of active oxygen on loss of cell viability – calibration curve derived data 

Due to time and laboratory access constraints, it was not possible to determine CFU-derived 

cell viabilities for all product treatments, and at all temperatures and pH ranges tested. 

Nonetheless, Log reductions could be derived by using cell density data obtained in the SOP 

experiments (Figs 4.1 A, 4.2 A, 4.9 A and 4.10 A) instead of pipetting samples on agar plates, 

which were converted to CFUs and then log reductions were calculated using OD-CFU 

calibration curves generated earlier for E. coli and P. aeruginosa (see section 3.2.5). Results 

with OD values below 0.1 and higher than 1 were excluded as the range of ODs used in the 

calibration curves were between 0.1 and 1. As results for treatments with Active Oxygen 

concentrations higher than one-tenth strength resulted in very low OD measurements, they 

were excluded from these derivations. 
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B  

C  
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D  

 

 

Figures 5.5 A-D Cell viabilities (shown as log reductions derived from OD595-CFU conversions) 

following treatment with active oxygen at sub-SOP concentrations for E. coli (A-B) and P. 

aeruginosa (C-D) grown in M9 at 37°C (A and C) and 25°C (B and D) at different pHs. 

 

Overall, low log reductions were noted as expected due to relatively good planktonic growth. 

The highest derived Log reductions overall were noted for E. coli at 37oC, with Active Oxygen 

in concentrations stronger than 1:200 at pH 7 resulting in a Log reduction higher than 1, 

followed by Active Oxygen at pH 8, with Log reductions noted in the range between 0.5 and 

0.75. Regarding E. coli at 25oC, all Active Oxygen dilutions at pH 7 resulted in a Log reduction 

higher than 1, followed by Active Oxygen at pH 8 with similar results. The highest Log 

reductions for P. aeruginosa at both temperatures were noted at pH 7.4, followed by pH 8. 

Log reductions for P. aeruginosa are lower than E. coli. In addition, the highest log reduction 

for P. aeruginosa at 25oC was noted at pH 8. 

 

 

5.5 Discussion 
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Light microscopy showed high cell numbers in untreated wells, indicating that the growth 

conditions were optimal for E. coli. Active oxygen treatment in all concentrations showed the 

presence of motile cells. The addition of water conditioner (Product 2) in combination with 

Active Oxygen resulted in a decrease in cell motility and the formation of cell clumps. Live-

dead staining showed high numbers of live cells and low numbers of dead cells in the control 

wells for both species, indicating optimal growth conditions. Live cells were noted for both 

species after treatment with Active Oxygen at SOP concentration and some small clumps 

were noted after the addition of water conditioner. Viability assays after active oxygen 

treatment at three concentrations showed a Log reduction higher than 3.5 for both species. 

The addition of Product 2 (conditioner) led to no visible CFUs.  No CFUs were also noted after 

chlorine treatment. Calibration curve derived data showed lower levels of reduction; 

however, they were dependent on the difference between control and treated wells, which 

was not large in some cases. From the experimental results and with limitations, it can be 

concluded that active oxygen achieves a log reduction higher than 3.5, the combination with 

water conditioner causes clumping and the development of viable cells but non-culturable on 

agar, and water conditioner by itself does not appear to have a significant bactericidal effect.   

Although live-dead staining showed some challenges, it ended up providing crucial insights 

on cell morphology and clumping.  

 

Interestingly, the undiluted samples from the wells containing Active Oxygen and Product 2 

(Water Conditioner) led to no CFU formation at all. This is interesting, as samples from the 

same wells used for fluorescence microscopy (Fig. 5.9 A-B and 5.14 A-B) showed that there 

were live cells present. If the lack of CFU formation were not an accidental experimental error, 

then this could potentially be an exciting observation. This as it may suggest that the product 

combination may lead to the formation of viable but non-culturable cells (VBNC). VNBC cells 

are defined as living cells which, however, cannot grow on agar, unable to produce colony 

forming units and is of great importance in research as it may lead to underestimation of the 

number of cells present in a sample during CFU counting, a standard microbiology technique 

(Li et al., 2014). E. coli and P. aeruginosa have both been shown capability to enter VBNC state 

(Zhang et al., 2015). Characteristics of VBNC cells include intact cell membranes in contrast to 

dead cells with ruptured membranes, plasmid retention, active cellular metabolism and 

respiration and active transcription of genes, plus uptake of nutrients (Li et al., 2014). 
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However, what makes VBNC cells potentially dangerous is the fact that although they may be 

avirulent in their current state, upon entering favorable condition they could resuscitate into 

virulent culturable cells (Du et al., 2007). Therefore, it would also be of interest to see whether 

the cells in this project can resuscitate in hot tub operational conditions. 

 

RpoS, whose role in the stress response has been explained extensively in this thesis, 

unsurprisingly plays a role in VBNC formation in E. coli, with studies showing that RpoS helps 

cells stay in the VBNC state for longer, with mutants exiting the phase sooner and dying. The 

same study found that RpoS is responsible for maintaining cells culturable, with RpoS mutants 

losing their cultivability faster (Boaretti et al., 2003). 

 

Regarding ‘live-dead’ cell staining, one critical consideration is that the fluorescent dyes used 

depend on the cells’ membrane integrity. It is assumed that viable cells have intact cell 

membranes that do not allow ‘dead’ stains to pass through, while ‘dead’ cells have ruptured 

cell membranes (Stiefel et al., 2015). SYTO 9 and Propidium iodide, the fluorescent stains used 

in this project, also work based on this assumption (Stiefel et al., 2015). As VBNC cells have 

intact cell membranes, it makes sense that they would be stained green and thought of as 

live cells (Stiefel et al., 2015). This can provide an explanation to the phenomenon observed 

in this project, where Active Oxygen in combination with Product 2 could potentially lead to 

VBNC formation and is an interesting product combination phenotype to note. 
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Chapter 6: Review of protein components in Product 2 

(Water conditioner) 
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6.1 Introduction 

Results described in Chapters 4 and 5 indicate that (combinations of) treatments with 

eco3spa Product 2 (Water conditioner) at standard operating concentration yielded 

interesting observations regarding overall product efficacy as well as cell morphology and 

viability. The combination of the water conditioner with active oxygen did not inhibit the 

activity of active oxygen and may even have supported it (section 4.2.6 -4.2.7). Additionally, 

the addition of the water conditioner by itself appears to have a small biofilm inhibitory effect 

(section 4.2.6-4.2.7). The combination of active oxygen and water conditioner caused the 

appearance of clump-like cell aggregates (section 5.3), while possibly also changing the viable 

status and/or membrane integrity of treated cells (section 5.3). 

The content listing of Product 2 details a blend of glycosides, a tertiary amine oxide, an 

isothiazolinones preservative, salt, citric acid, a blend of coconut fatty acids, and a mixture of 

proteins with hydrolytic activities: lipase, protease and amylase in a composition of 90% 

lipase, 5% protease and 5% amylase. Due to the interesting phenotypes when cells were 

exposed to Product 2, it is of interest to test each component separately to determine the 

source of the activity of whether it is the results of an interaction with other components in 

Product 2 and/or Active Oxygen.  

Due to time and laboratory constraints, it was not possible to investigate each component in 

Product 2 in this project. It was decided to prioritize a very brief investigation of protein 

concentration and activity of one quickly assessed enzyme (amylase), benchmarked against 

commercially available enzymes due to ease of access to bioanalytical instrumentation and 

immediate availability of bio-chemicals.  

The aim of this chapter therefore was to assess the overall protein concentration and 

determine amylase activity in eco3spa Product 2.  

 

6.2 Results 

 

6.2.1 Protein standard graph 

 

Bovine serum albumin (BSA) was used as standard to generate a protein calibration curve (Fig 

6.1). The resulting trendline equation was used to calculate the protein content of the 
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commercial enzyme preparations (amylase, lipase and protease solutions) in addition to the 

water conditioner product. The protein concentration of the samples is shown in Table 6.1.  

  
 

Figure 6.1- Protein standard curve plotting OD595 against known BSA protein concentrations.  

 

A series of diluted albumin (BSA) standards covering a range of 25 to 2000 μg/mL were 

prepared according to the manufacturer’s instructions and incubated at 37°C for 30 mins. The 

protein concentration (μg/ml) indicated that the suitable protein gel would be a Bis-Tris gel 

utilizing the MOPS buffer (Refer to table 6.1). 

 

Table 6.1. Protein concentration of enzymes and water conditioner 

Sample Protein concentration (μg/ml) 

Amylase 38.787 

Protease 25.330 

Lipase 6.9511 

Water conditioner 1.2705 

 

 

6.2.2 Visualization of enzyme and water conditioner proteins 
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It was decided to also conduct protein electrophoresis to enable visualization of any protein 

present in the Product 2, which would also allow size investigation and comparison of the 

proteins against the commercial preparations of single enzymes. Figure 6.2 shows the result 

of protein resolved on NuPAGE 10%, Bis-Tris gels. The commercial enzymes were resolved, 

indicating a single protein of 55 kDa in the amylase sample (Fig 6.2 lane B), two protein bands 

of sizes 60 and 38 kDa for the protease sample (Fig 6.2 lane C), two main protein bands of 

sizes 55 and 32 kDa, which were accompanied further by minor protein bands of sizes 28 and 

24 kDa for the lipase sample (Fig 6.2 lane D). Protein band(s) could alas not be successfully 

detected for Product 2 (Fig 6.2 lane E, indicated by the red-boxed area. According to total 

protein analysis, the water conditioner should have contained 1.27 ug of protein, which 

Coomassie stain would have been able to visualize. This experiment should therefore be 

repeated to confirm the presence of any protein in Product 2. 

 
Figure 6.2. Comparison of Product 2 with commercial enzyme preparations resolved on 

Coomassie-stained NuPage 10% Bis-Tris gel. A, Pre-stained protein standards; B, 38.78 µg 

amylase; C, 25.3 µg protease; D, 6.95 µg lipase; E, 6μL µl Water Conditioner (supposedly 

containing 1.27 µg protein).  
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6.2.3 Protein concentration efforts 

Surprisingly, according to the protein gel results, lane E showed no bands which would 

suggest the lack of enzymes present or at a level that is undetectable by Coomassie blue. To 

further assess whether any protein was present in the water conditioner and remove any 

interfering substances, such as oils, a TCA precipitation procedure and an acetone 

precipitation procedure were performed, a pellet was formed, and the extracted product was 

used in a BSA assay to check whether any protein was present, but no protein was detected, 

or the levels were below assay threshold. 

 

6.2.4 Lugol iodine assay 

As protein electrophoresis failed to detect any protein in Product 2 and due to time restraint, 

it was decided to perform a more sensitive protein activity experiment. The amylase enzyme 

assay was selected for it is non-complicated and rapid, for which all assay components were 

available, in order to check whether any active amylase was present in the Water Conditioner 

at all. A 1% soluble starch solution was prepared as substrate, which was then mixed with the 

commercial amylase solution as positive control, or with Product 2. Following incubation at 

room temperature at different time intervals, amylase activity was then visualized by adding 

Lugol-iodine solution. Lugol-iodine stains dark blue/black when starch is present, while it is 

amber-red in the absence of starch. Figure 6.3 shows the results of one amylase activity assay 

(N=1).  
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Figure 6.3- Qualitative assay for amylase activity in control and Product 2 using a Lugol iodine 

assay. A1, starch (negative control); A2 and B5, starch and commercial amylase (positive 

control); A3 commercial amylase (negative control); B1, starch plus Product 2 upon mixing 

(0h); B2, starch plus Product 2 after 1h incubation; B3, starch plus Product 2 after 16h 

incubation; B4, Product 2. Lugol-iodine was added to stain starch. 

 

The combination of starch and iodine led to the immediate development of an almost-black 

color, while the immediate addition of amylase and starch into iodine led to the development 

of a pale amber color. Amylase by itself led to the development of a darker amber color. 

Product 2 (water conditioner) was mixed with starch and incubated for a range of 0-16 hrs. 

and samples were pipetted into iodine. Regardless of incubation time, no color change was 

observed. Interestingly, the addition of water conditioner also led to positive staining, which 

could either result from the listed glycosides, or perhaps result from other components. 

Regardless, this experiment should be repeated to confirm the presence or absence of 

amylase in Product 2 

 

6.3 Discussion 

Due to experimental limitations and the unanswered question regarding the protein 

composition of the water conditioner, a Lugol iodine assay was performed to qualitatively 

assess if any amylase was present in the water conditioner. Lugol is commonly used to detect 

starch and polysaccharides (Sehnke et al., 2001). However, at no point during the incubation 

period was a color change detected, even after overnight incubation, when Product 2 was 

added. The fact that Lugol changed color in reaction to the Water Conditioner by itself 

indicates that the product indeed contains glycosides, as the ingredients list mentioned. It is 

surprising that no color change to amber was noted at any point, which suggests that no 

active amylase is present, unlike the product description. Precipitation assays and protein 

visualizations also indicated that no protein is present at all. 

 

The effects observed after the addition of Water Conditioner together with Active Oxygen 

such as cell clumping and conversion of viable cells to VBNC are therefore difficult to attribute 

to amylase, as no protein content was detected, assuming these initial findings need to be re-

analyzed in repeat experiments.  
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It is also possible that another component of the Water Conditioner could be responsible for 

the possible enhancement of Active Oxygen activity, possibly a pH regulator as mentioned 

before, the coconut fatty acid or another component yet to be positively linked conclusively 

to the observed phenotypes. 
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Chapter 7: General Discussion, Reflections and Conclusions 
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7.1 Introduction 

 

This project involved eco3Spa, specialty and eco-friendly hot tub sanitation product 

distributors for the wet leisure industry in the UK. They provide products designed for water 

sanitation, and biofilm prevention and removal in hot tubs. However, prior to this project 

Eco3Spa did not possess the scientific underpinning of efficacy and the effects of the product 

and/or its product combinations, as well as the effect of pH and temperature on product 

efficacy. Eco3Spa also wanted high-quality, ready to publish graphs for marketing and 

promotion purposes, as well as information on the number of bacteria present in samples 

and Log reduction data. 

This project addressed the question of whether eco3spa products are able to inhibit 

planktonic growth and/or reduce/remove biofilm under static conditions at the 

recommended and other concentrations. This has been achieved through the optimization of 

planktonic growth and biofilm assays that allowed levels of planktonic bacterial growth and 

biofilm formation in the presence or absence of these products to be quantified accurately. 

Furthermore, the results have been interpreted in the context of published literature on 

biofilm properties, bacterial growth, stress response and bacterial adaptation to 

environmental conditions, which has given insight into how the product(s) may act. 

7.2 Optimization of studies 

 

A large part of the research project was dedicated to estimating, detecting and optimizing the 

experimental conditions in order to determine the exact conditions that not only produce 

replicable results, but also simulate the hot tub environment, leading to the development of 

Chapter 3 - Optimization and Chapter 4 – non SOP experiments. This chapter allowed a biofilm 

assay to be designed that mimicked the conditions found within a hot tub or swim spa setting. 

The bacteria selected (E. coli and P. aeruginosa) for testing were strains commonly found in 

hot tubs, which can be responsible for development of disease in the elderly and 

immunocompromised people (Fewtrell and Kay, 2015; Lutz and Lee, 2011). P. aeruginosa was 

of particular interest, as it is not only commonly found in recreational waters but is also 

notorious for not only forming persistent biofilms in the aquatic environment, but also for 
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being resistant to antibiotics and disinfectants, making its prevention and removal a challenge 

(Lutz and Lee, 2011; Fontes et al., 2012). 

 

It was also important to consider the conditions found within a hot tub environment. Two 

incubation temperatures of 25 and 37 degrees were used for biofilm incubation, to represent 

the water temperature when the hot tub was switched off and the normal temperature of a 

hot tub during use (Hot tub manual, 2019). In addition, the media selected also had to reflect 

the different conditions under which biofilm may grow. Although some experiments were 

undertaken in LB media, because of time constraints, it was decided to prioritize use of M9 

as the main medium, to simulate the nutrient-poor environment of the hot tub water. The 

sponsoring company was in agreement with this decision (Hammond et al., 2010; Naves et 

al., 2008). 

 

Finally, it was also critical to optimize the experimental conditions to ensure accuracy and 

precision. For example, the extend of the edge effect was assessed, along with the number of 

washes, washing materials, drying and staining times, preparation of Active Oxygen and 

chlorine etc. Moreover, information was also gathered regarding incubation temperatures 

and times, differences in media regarding planktonic growth and biofilm formation and the 

effect of media in tandem with incubation time on the experiments, which not only assisted 

with the experiments of this project but may also provide insights to future research. 

 

7.3 Effect of temperature 

In M9 media SOP experiments, untreated E. coli exhibited higher levels of planktonic growth 

in comparison with untreated P. aeruginosa, where planktonic growth remained in lower 

levels (Figs. 4.1 A-B, 4.2 A-B). In LB experiments, E. coli reached higher planktonic growth in 

comparison with P. aeruginosa (4.13 and 4.14). Regarding biofilm formation, in M9 media and 

SOP experiments, P. aeruginosa showed the highest levels of biofilm formation at 37°C in 

comparison to 25°C (Fig 4.8). Similarly, E. coli showed higher biofilm formation in the same 

experiment at 37°C (Fig. 4.8). Regarding growth in LB media after 48hrs, the highest biofilm 

formation noted across all experiment was produced by P. aeruginosa at 37°C. It can be 

concluded that the highest planktonic growth and biofilm formation overall were noted at 
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37°C and that higher temperature influences growth and biofilm formation of P. aeruginosa 

at a greater degree than E. coli.  

Static biofilm assays showed that the Active Oxygen tablets, in SOP conditions, are effective 

at preventing planktonic growth and biofilm formation for both E. coli and P. aeruginosa. For 

biofilm prevention, no biofilm was quantified at all after treatment with the SOP 

concentration, 10x concentration as well as the 1 in 2 SOP concentration. Planktonic growth 

and biofilm formation would start forming at relatively low levels in the 1 in 10 concentration 

and in concentrations lower than this, the product would begin gradually losing its efficacy. 

The product exhibited similar planktonic growth and biofilm prevention properties in both 

strains assessed, with slightly lower efficacy noted at biofilm prevention at pH 8 and 25oC. It 

can be hypothesized that temperature may play a role in enhancing the activity of Active 

Oxygen, and it would be interesting to assess the effect of temperature cycling between 25 

and 37 degrees to simulate the hot tub environment. It is also hypothesized that high 

temperature may play a role in the activation of the tablets, as the product description 

indicates dissolving the tablets in a functioning hot tub with the temperature of water set up 

at around 37°C, and there are large differences in active oxygen activity between SOP and 

non-SOP experiments. 

 

Regarding non-SOP experiments, although the active oxygen tablets are intended as a 

preventative treatment, they still had an effect in inhibiting planktonic growth and a 

bactericidal effect, even after 24hrs incubation, especially at the 10x concentration, which is 

more pronounced at 37°C (Fig 4.2 A-D). In addition, the water conditioner and biofilm 

remover, even though they are not intended for killing bacteria, also had a similar effect which 

was also enhanced by high temperature (Fig 4.2 B-D). Similar trends can be observed 

throughout most experiments in this project. It can therefore be concluded that high 

temperature is indeed important for the optimal activity of products tested and may play a 

role in proper dissolution, activation, or enhancement. 
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7.4 Effect of pH 

In M9 media SOP experiments, the effect of pH on planktonic growth, biofilm formation and 

active oxygen activity was assessed. At pH 7, E. coli showed the highest planktonic growth 

overall (Fig, 4.7 A). At pH 7.4, E. coli and P. aeruginosa at 37°C surpassed bacteria at 25°C (Fig, 

4.7 B), and at pH 8, both strains showed similarly high levels of planktonic growth with the 

exception of P. aeruginosa at 25°C (Fig. 4.7 C). pH is also important in biofilm formation. 

Untreated E. coli showed the highest biofilm formation at pH 7.4 for both 25oC and 37oC (Fig. 

4.3 A and B). At high pH values, E. coli showed very low biofilm formation (Fig. 4.8 C), in 

contrast with P. aeruginosa which showed biofilm formation at higher pH, especially at pH. 8 

(Fig. 4.8 C). It can be concluded that the highest planktonic growth and biofilm formation for 

E. coli were noted at low pH, in contrast with P. aeruginosa which proliferated at high pH. 

In general, the Active Oxygen product is effective at reducing planktonic growth across the 

range of pH tested. Both E. coli and P aeruginosa showed low levels of planktonic growth after  

active oxygen treatment. However, some loss of activity was noted for both species at 25oC 

and in particular at pH 8 (4.1 B and 4.2 B). In addition, regarding biofilm formation, very low 

levels were detected after treating E. coli, even with active oxygen concentrations higher than 

1 in 10 SOP. It is possible that the small amounts of planktonic growth noted for both species 

at 25oC, and in particular at pH 8 (4.1 B and 4.2 B), may be at the viable-but-not-culturable 

state and may not produce biofilm (Li et al., 2014).The European Chemicals Agency has 

indicated that the form of active oxygen present in the tablets (pentapotassium 

peroxymonosulfate) is degraded at low temperatures and high pH. Therefore, the loss of 

activity noted at low temperature (25oC) and high pH makes sense. It would also be 

interesting to use a wider pH range to further investigate the effect of pH on Active Oxygen. 

As the Active Oxygen prevented biofilm growth in the SOP experiments, the product can be 

considered as effective at preventing biofilm. 

 

In addition, several studies have indicated that biofilm removal products containing levels of 

biocidal chemicals that fall below the European Chemicals Agencies can enhance planktonic 

growth of bacteria by inducing stress which can enhance biofilm formation (Battesti et al., 
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2011). This was indeed observed in this project (Fig. 4.4 A), where low pH and suboptimal MIC 

led to increased biofilm formation. This is a well-known effect, and several antimicrobials and 

disinfectants at sub-optimal MIC have shown to induce biofilm formation (Majtan et al., 

2008).  

 

7.5 Benchmarking of product against chlorine  

 

Regarding the benchmarking of chlorine against active oxygen, the two concentrations 

recommended to be included in experiments by the company (3ppm and 5ppm) were the 

two concentrations used in hot tubs and swim spas. Chlorine did not show a significant loss 

of activity at either pH 7 or pH 8, however in comparison with Active Oxygen at the normal 

dilution, Active Oxygen exhibited higher stability and statistically significant higher sanitizing 

activity. Moreover, active oxygen exhibited stable sanitation activity across all pH tested, even 

at pH 8. The knowledge that tap water in some regions of the UK has been found to be in the 

basic range which degrades chorine and the fact that sunlight further degrades chlorine, make 

active oxygen an attractive alternative(Ander et al., 2016)Jain et al., 2010). 

 

Samples from bacteria treated with chlorine at either 3ppm or 5ppm in all pH did not lead to 

CFU formation. This suggests that chlorine treatment may lead to VBNC formation, and the 

small levels of cells responsible for the planktonic growth noted during benchmarking may be 

incapable of forming a biofilm. 

 

7.6 Active Oxygen dose-response 

 

The dose response curves generated provided valuable insights on the activity of active 

oxygen in a series of dilutions against both species under a range of temperatures and pH. 

Both species showed sensitivity even to the lowest active oxygen concentration (1 in 600 SOP 

concentration), which suggests that active oxygen is capable of reducing planktonic growth 

even in low concentrations. The 1 in 10 SOP concentration in M9 media was the lowest tested 

concentration capable of preventing planktonic growth to very low levels in both species, and 

concentrations higher than that were equally effective (Section 4.2.1).  
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Similar results were noted for biofilm formation. Once more, both species showed sensitivity 

even to the lowest active oxygen concentration (1 in 600 SOP concentration), which suggests 

that active oxygen is capable of preventing biofilm formation to some degree even in low 

concentrations. The 1 in 10 SOP concentration in M9 media was the lowest tested 

concentration capable of preventing biofilm formation to very low levels in both species, and 

concentrations higher than that were equally effective (Section 4.2.2).  

 

Light microscopy showed live (motile) cells in after treatment with active oxygen in a series 

of concentrations, which was surprising. Furthermore, live/dead staining showed significant 

numbers of live cells in populations treated with a series of active oxygen concentrations, 

which raised questions regarding the bactericidal efficacy of the product. However, CFU 

viability assays generated very few colony-forming cells. In addition, the assays showed the 

product was capable of achieving an average 3.5 log reduction in both species, which 

confirmed its sanitizing efficacy. The results from the viability assays and the absence or 

presence of very few of colony forming units led to the speculation that active oxygen may 

lead to formation of VBNC cells. The very low levels of planktonic growth were noted for both 

species at 25°C at the concentrations mentioned, however as no biofilm formation was noted 

in by the cells under those treatments, in combination with the microscopy results may 

further hint at VBNC formation. 

 

7.7 Efficacy of products alone and in combination 

 

The addition of Product 2 (Water conditioner) in combination with active oxygen again did 

not appear to either assist not inhibit active oxygen activity (Sections 4.2.6, 4.2.7). In addition, 

pH did not appear to play a role in the efficacy of the combinations. The addition of Product 

2 by itself did appear to have a small effect in preventing planktonic growth and biofilm 

formation, but whether this is caused by the conditioner or by nutrient deprivation is not 

clear and needs more investigation. Interestingly, a small increase in optical density and 

biofilm formation after treatment of cells in both species with active oxygen in the 1 in 10 

concentration plus conditioner was seen. It could be hypothesized that in sub-optimal stress 

conditions the addition of Product 2 could cause stress-induced biofilm formation, which may 

have an effect on virulence and pathogenicity. In addition, it could be possible that some of 
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the components of the conditioner may be used as a nutrient source by the surviving bacteria, 

or that components may be interfering with the OD measurements. 

 

In addition, the addition of product 1 (biofilm remover) also appeared to have a small effect 

in preventing planktonic growth and biofilm formation (Section 4.2.8). Surfactants, which are 

present in the product, have been shown to prevent biofilm formation in a range of bacteria, 

including E. coli and P. aeruginosa (Wu et al., 2013). However, as the project’s main interest 

was on active oxygen, the biofilm remover was included in very few experiments and more 

investigation may reveal synergistic effects of the product with active oxygen or water 

conditioner.  

 

Light microscopy provided some insights on the morphological changes induced by the 

product combinations. In particular, it was noted that the addition of the water conditioner 

in combination with active oxygen led to the formation of clump-like structures and immobile 

cells. This was further investigated using fluorescence microscopy and live/dead staining cells, 

which showed the formation of some clump-like structures. The addition of water conditioner 

by itself also appeared to cause clump formation, although it is not entirely clear, and a repeat 

of the experiment is needed. It should be noted that live-dead staining does have some 

drawbacks, such as depending on cell membrane integrity to determine viability, and 

alternative viability assessment methods may provide more insights on the topic. Moreover, 

CFU viability assays did not generate any colony-forming cells at all. The results from the 

viability assays and the absence of colony forming units led to the speculation that the 

combination of water conditioner with active oxygen may lead to formation of VBNC cells. 

However, more testing is needed to confirm this. In particular, the use of confocal microscopy 

or flow cell cytometry can be helpful in the determination of cell morphology and viability, as 

well as the use of dyes specific for enzymatic activity or respiration (Rosenberg et al., 2019). 

Another morphological change that may be observed in stressed bacteria is the formation of 

small colony variants (SCVs). SCVs are naturally occurring variants which provide cells with a 

survival advantage by protecting them from host defences and antibiotics, most commonly 

in the human body. They appear as non-pigmented, non-haemolytic colonies ∼10 times 

smaller than those of the normal phenotype and can be recovered through the use of 
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nutritional supplementation (Garcia et al., 2013). Unfortunately,  due to limited lab time and 

experimental limitations it was not possible to test for these variants. 

 

The protein gel showed no bands in the lane where water conditioner was tested, and BCA 

assays together with precipitation assays showed that no protein was present in the product 

in detectable levels. In addition, a Lugol iodine assay indicated that no active amylase was 

present in the product, however significant levels of glycosides, which according to the 

manufacturer were present in the conditioner, or sugar-based molecules, may have reacted 

with the iodine. These results suggest that the enzymes were not responsible for the 

synergistic effect of the water conditioner with active oxygen. According to the sponsoring 

company, the product contains coconut fatty acids and citrate, which may act as a pH 

regulator, and it is possible that either one of these components or some other ingredient 

may be responsible for the synergistic effect. However, as the experiments found no evidence 

of enzymatic activity or protein presence, it would be worthwhile to confirm the presence of 

any potentially active ingredients. 

 

 

7.8 List of conclusions 

 

After performing a literature review, the experiments presented in this project and a critical 

appraisal of the results obtained, it can be concluded that the questions set at the beginning 

of the project, in agreement with the sponsoring company, have been answered. In particular, 

the conclusions reached in this project are: 

 

• Active oxygen at SOP is effective at preventing planktonic growth and biofilm 

formation for both E. coli and P. aeruginosa in concentrations higher than 1 in 10 SOP, 

at both 25°C and 37°C and over a range of pH (Chapter 4) 

• The addition of water conditioner appears to neither enhance not inhibit the sanitizing 

efficacy of active oxygen and may lead to generation of clumps and switch cells to 

VBNC (Chapter 4 and Chapter 5). 

• Active oxygen achieves an average 3.5 Log reduction against both species (Chapter 5) 
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• The active oxygen tablets perform at least as well as chlorine in preventing planktonic 

growth and biofilm formation, and may even be more stable at extreme pH (Chapter 

3) 

• Constant pH balancing is not required when using the active oxygen tablets 

• Attempts to biochemically analyze the water conditioner showed that no enzymes or 

protein were present. 

 

7.9 Limitations 

 

Because of the effect of COVID-19 on lab access, and a 6-month absence from laboratories, 

the experimental time of this project was cut short. However, despite these difficulties, this 

project has achieved the goals set out by the company and provided important insights on 

the sanitizing efficacy of active oxygen and the effects of product combinations on bacterial 

growth and biofilm formation. 

 

Other than the very limited lab time available, many experiments were performed under time 

constraints, lab equipment limitations and under n=1 conditions. For example, upon return 

to laboratories in August for a 4-week period a rota system was in place that severely limited 

the available experimental time. Therefore, only SOP experiments and combinations 

prioritized by the company were performed, and only in M9 minimal media. Additionally, 

there was no time available to confirm or optimize any initial, non-SOP experiments.  

 

In addition, experiments and experimental procedures performed for the first time, such as 

light and fluorescence microscopy and protein assays were performed under lab equipment 

limitations and under n=1 conditions. For example, regarding fluorescence microscopy, lack 

of computer-controlled image capture software led to suboptimal image capture via mobile 

phone camera.  

 

Importantly, the project originally aimed to incorporate elements of chemical analysis which 

would have provided insights on the activity of active oxygen including the use of radical 

scavengers to measure the activity of Active Oxygen, and HACH assays to measure the activity 

and concentration of chlorine, which could potentially provide answers to some of the 
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questions generated in this project. As the estimation of chlorine was made using test strips 

and their color could be subjective, there is a chance of inaccuracies in chlorine 

concentrations, and a more accurate chlorine measurement system could solve this. 

However, because of the fire on the Bay Campus which severely damaged the chemical 

engineering labs, there was inability to access the necessary equipment. 

 

Furthermore, because of lack of in-person courses, skills on graphing and statistical software 

were self-taught. 

 

7.10 Future work 

 

There are many ways in which the investigation could be enhanced if further work was to 

take place. One of the questions left unanswered is the composition of the water conditioner. 

As no enzymes nor protein were detected, the factor causing the clumping or VBNC formation 

remains unknown and of great interest.  

 

Another future experiment of importance would be to identify the reactive species present 

in the active oxygen tablets and confirm whether pentapotassium peroxymonosulfate (PMS) 

is part of the product formulation, as this was supposed to be a part of this project and was 

not performed due to lack of access to chemical engineering labs. 

 

Regarding pH experiments, there are several ways in which the investigation could be 

enhanced. Initially, a wider range of pH could be assessed. It was shown in this project that 

even small pH changes can have a large effect on planktonic growth and biofilm formation, 

and the addition of a wider range of pH could provide interesting results. In addition, the pH 

of adjusted cultures could be measured after overnight incubation, as well as after product 

addition.  

 

In respect to potential VBNC formation, experiments could be performed to determine 

whether those cells could resuscitate in hot tub conditions, including water change or sub-

MIC of products, as this could potentially lead to medical complications. In addition, as the 

drawbacks of SYTO 9/PI staining have been described, p-iodonitrotetrazolium violet (INT) 
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staining could also be performed to detect metabolically active VBNC (Schottroff et al., 2018). 

Screening for SCVs could also be performed. 

 

In addition, the generation of more realistic experimental conditions would also be 

interesting. For example, the efficacy of the products could be assessed, in addition to growth 

media, in real hot tub water samples or swimming pool water. It may be possible to ask the 

sponsoring company to provide a sample, or set up a microcosm experiment as it has been 

already performed in some studies in order to perform studies of the aquatic environment 

(Mauro et al., 2013). Besides a series of factors such as temperature and water movement 

could be closely monitored and adjusted to provide an accurate representation of the hot tub 

environment. For example, the initial temperature could start at 25oC, or a more realistic 

environmental temperature, and then slowly heat up to 37oC, mimicking the heat up process 

of a hot tub. In addition, experiments utilizing temperature fluctuations could be performed, 

by heating up and allowing the media to reach room temperature for a few cycles. This could 

potentially provide useful information regarding the stability of Active Oxygen under 

repeated temperature fluctuations that take place in the hot tub environment. 

 

Furthermore, confocal microscopy of the biofilm structures using cell viability staining could 

be performed (Cerca et al., 2012). It could also be useful for observing the effects that the 

products may have upon the biofilm structure (Azeredo et al., 2016). 
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