The Journal of Analysis
https://doi.org/10.1007/s41478-021-00374-x

ORIGINAL RESEARCH PAPER

™

Check for
updates

On the difference of inverse coefficients of convex functions

Young Jae Sim' - Derek K. Thomas?

Received: 22 August 2021/ Accepted: 16 November 2021
© Crown 2021

Abstract

Let f be analytic in the unit disk D = {z € C: |z] <1}, and S be the subclass of
normalised univalent functions given by f(z) =z+ > ., a,z" for z € D. Let F be
the inverse function of f defined in some set |w|<ry(f), and be given by
F(w)=w+>,",A,0". We prove the sharp inequalities —1/3 < |A4| — |A3]| < 1/4
for the class L C S of convex functions, thus providing an analogue to the known
sharp inequalities —1/3 <|a4| — |az| <1/4, and giving another example of an
invariance property amongst coefficient functionals of convex functions.
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1 Introduction and definitions

Let A denote the class of analytic functions f in the unit disk D = {z € C : |z] <1}
normalized by f(0) =0 =f'(0) — 1. Then for z € D, f € A has the following
representation
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f(z)=z+iaﬂz”. (1.1)
n=2

In 1985, de Branges [1] solved the famous Bieberbach conjecture by showing that if
f €S8, then |a,| <n for n>2, with equality when f(z) = k(z) :=z/(1 —z)*, or a
rotation. It was therefore natural to ask if for f € S, the inequality ||a,+1| — |a,|| <1
is true when n > 2. This was shown not to be the case even when n = 2 [2], and that
the following sharp bounds hold.

—1<a3] — |az| < §+e_i°(26_io —1)=1.029---,
where A is the unique value of 1 in 0 < /< 1, satisfying the equation 41 = ¢*.

Hayman [3] showed that if f € S, then ||a,+1| — |a,|| < C, where C is an absolute
constant. The exact value of C is unknown, the best estimate to date being C =
3.61--- [4], which because of the sharp estimate above when n = 2, cannot be
reduced to 1.

Although the expected inequality ||a,11| — |@x|| < 1 has been verified for n > 2 by
Leung [5] in the case of starlike functions S*, sharp upper and lower bounds for
|@nt1] — |an| are only known when n =2 for some subclasses of S, such as the
classes IC of convex and close-to-convex functions [6, 7]. An exception to this was
provided by Ming and Sugawa [8], who showed that if f € IC, then —1/3 < |ay| —
|az]| <1/4, and that both of these inequalities are sharp. It turns out that finding
sharp bounds for ||a,.1| —|ax|| in the case of convex functions presents a
significantly difficult problem.

If f € S, then since f is univalent, it possesses an inverse function F, given by
F(w)=w+> ", A,0" defined in some set |o| < ro(f).

Little information is known about the the difference of coefficients of the inverse
functions for f € S, and even finding the order of growth of ||A,+1| — |A,|| appears
to be an open problem. On the other hand sharp upper and lower bounds for
|An+1| — |As| have recently been found when n = 2 for a number of subclasses of S
[9].

In this paper we will show that if f € K, then —1/3 <|A4| — |A3] <1/4,
providing another example of an invariance property amongst coefficient function-
als for convex functions, noticed in [9-11].

We note first that equating coefficients easily gives

Ay = —a;, Az = 2(1% —az Ay = 7561; + Saza; — ay. (12)

2 Preliminary Lemmas

Denote by P, the class of analytic functions p with positive real part on D given by
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On the difference of inverse...

p(z) =1+ icnz”. (2.1)

We will use the following lemmas for the coefficients of functions P, given by (2.1).
Lemma 2.1 [2, p. 41] For p € P, |c,| <2 for n> 1. The inequalities are sharp.
Lemma 2.2 [10] If p € P is of the form (2.1) with c¢; >0, then
200 =i+ (4 =) (2:2)
and
4 =} + (4= )erl(2 =0 +2(4 = )(1 = [¢P)n (2.3)
for some (, n € D.
The next lemma is a special case of more general results due to Choi et al. [12]

(see also [13]). Let D := {z € C : || < 1}, and define

Y(4,B,C) i=max(|A + Bz + CZ| + 1~ '), ABCER.

€D

Lemma 2.3 [12] If AC >0, then

Al + 1Bl +[Cl,  [B|=2(1—|C]),
Y(A,B,C) = B?

1+1]A
+|\+4

A= |c])’ |B| <2(1 —|C]).

If AC<O0, then

Y(A,B,C)
2
L= Al + == (—4AC(C*2 —1) ng) A (|B|<2(1 ~ |C|)),
4(1—|cy)
= 2
1+ A+ Bz<min{4 1+]C))% —4AC(C2 — 1 }
Al gEaTel) (1+1Cl) ( )
R(A,B, C), otherwise,
where
Al + 1B —|Cl,  |CI(|B] +4]A]) < |AB],
—|A| + B AB| <|C|(|B| — 4|A
R(A,B,C) = Al + | |+IC\,2 |AB| <|C|(|B| — 4/A]), (2.4)
B
(IC[ + |A]) l—m, otherwise.
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We recall that the discriminant Ap of the real quadratic polynomial P(r) =
o + 2t 4 y% is defined as % — orp. We will allow a degenerate case such as y = 0.
The next lemma will also feature in our proof.

Lemma 2.4 Let P(t) and Q(t) be (possibly degenerate) real quadratic polynomials.
Suppose that P(t) > 0 and Q(t) > 0 on an interval I C R and that Ap > 0. If there
exists a positive constant T such that

() A >T3?Ap, and
() TP(t)>Q() fortel,

then the function G(t) = /P(t) — \/Q(¢) is convex on I.

3 Preliminary results

In order to prove the main result in this paper we will need the following two
theorems.

Theorem 3.1 Let f € K and be given by (1.1). Then

! 2,3 : 2
J— < g¢g< —
24(4—}—21s +57), 1f07s77,
s(1 —2s?), if%gsg 55—9,
< .
AI=Y (aso)vas—e ifﬁ<s< H (1)
121/6 ’ 50"~ V1r
1 /5
gs(2+s2), if ﬁgsgl,

where s = |az| € [0, 1]. All the inequality are sharp.

Proof We note at this point that if f € K, then |ap|<1, and we can write
1 +zf"(z)/f'(z) = p(z), for some p € P with the form (2.1). So equating
coefficients gives

1 1 1
a=5c, a3= g(c% +c¢) and a4 = ﬁ(ﬁ + 3cic2 + 2¢3). (3.2)
Hence from (1.2) we obtain
Ay = ﬁ (76(’? + Tcicr — 26‘3). (33)

Since P and |A4] are rotationally invariant, using Lemma 2.1, we may assume that
c; = ¢ with 0 <c¢ <2. Now using Lemma 2.2, we obtain

48A4 = —6¢° +5c(4 — )+ (4 — AP =24 = A)(1 - [, (3.4)

where 1 € D.If ap = ¢/2 =1, then Ay = —1, and so the inequality (3.1) is true
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when s = |ay| = 1. Also if a, = ¢/2 = 0, then |A4| = (1 — |{|*)|n|/6 < 1/6, and so
the inequality (3.1) is true when s = |ay| = 0.

We now assume that 0 <a, <1, or equivalently, 0 <c<?2. Then, since |n| <1,
(3.4) implies that

4844] <2(4 — A)[|A + B+ CC| + (1 - L), (3.5)
where
—3¢3 5 1
A—m7 B—EC, C—EC

We note that AC <O.

(a) We first consider the case 0 <ap <2/7. Since a, = ¢/2, we have 0<c <4/7.
and the condition —4AC(C~2 — 1) <B? and |B| <2(1 — |C|) in Lemma 2.3 is
satisfied. Therefore from Lemma 2.3 we obtain

B? 1

48|44 <24 — A1 — Al + ————| == (324427 + 7). (36
<26 - ) 1= Wl | = G200 4 E). G0
We note that for ¢ >4/7 (i.e. the case a; >2/7), the conditions |B| >2(1 —
|C|) and —4AC(C~? — 1) > B? are valid. Hence from Lemma 2.3 we have

max{|A + BL + €| + (1 = [{") } = R(A, B, 0),
(eD

where R is given by (2.4).
(b) For the case 2/7<a, <+/5/59, the conditions 4/7<¢<2,/5/59 and
|AB| <|C|(|B| — 4|A|) are valid, and so Lemma 2.3 gives

48|A4| <2(4 — *)(—|A| +|B| + |C]) = 12¢(2 — ¢?). (3.7)

(c) For the case 1/5/11 <ay<1 we have 2,/5/11<c¢<2, and the condition
|C|(|B| + 4]A|) < |AB| is satified. Therefore Lemma 2.3 gives

48|A4| <2(4 — ) (|A| + |B| — |C]) = 2¢(8 + ¢?). (3.8)

(d) For the case 1/5/59 <ay <+/5/11, we have 2,/5/59 <c¢ <24/5/11, and the

conditions |C|(|B| + 4|A|) >|AB| and |AB|>|C|(|B| —4|A|) are satified.
Therefore Lemma 2.3 gives

Finally replacing c in (3.6), (3.7), (3.8) and (3.9) by 2s, we obtain the inequalities in
(3.1).
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We now show that the inequalities in (3.1) are sharp by constructing extreme
functions for each case.
Given p € P, let f, € K be defined by

7'()
G

For the case 2/7<s<./5/59, we consider a function p; € P defined by
p1(z) = (1 + 252+ 2%)/(1 — 2%). Then it is easy to see that the coefficients of p; are
given by ¢; = 2s, ¢ = 2 and ¢3 = 2s. From (3.3), we obtain A4 = s(1 — 2s?).,and
so the inequality (3.1) in this case is sharp for f,, € K.

In a similar way we can see that the inequality (3.1) in the case 1/5/11 <s<1is
sharp for f,, € K, where

=p(2). (3.10)

1 -7

:m:1+2SZ+(4S2_2)Z2+(853_6S)Z3+"-.,

p2(z)
and the inequality (3.1) in the case 0 <s<2/7 is sharp for fps € K, where

2357+ 35?2 —27°
2 —Tsz—Ts2 + 273

p3(2)
1
=1+ 2sz+ (5 + 7s)2* +§(—4+49s2 + 4957 + -

Finally we consider the case 1/5/59 <s<./5/11. Let ps € P be defined by

1 +s(E+ 1)z + &2

pe(2) = 14s(&— 1)z = &2’
where ¢ = e/ with
5(1 —7s%)
0 = arccos (24s2)’ (3.11)

then it is easy to see that the coefficients of p, are given by
=25, c2=2((1-&+¢ and e3=2s[s*(1 — &)+ (2-&)¢,

which by (3.3) implies that

A :és[¢(5+5) _P(64+5¢+ ). (3.12)

Since & = ¢/, simple computations using (3.11) show that
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E(5+¢) - (6+56+ )
=|(1 —=7s%) cos 0+ 5(1 — s*) +i(1 + 55%) sin 0]
= —245*(1 — s*) cos? 0 + 10(1 — s*) (1 — 7s%) cos O + 25(1 — s*)* + (1 + 55%)*

(25 — s2)(1 + 552)°
2452

Hence from (3.12) we obtain

1 (14 55*)V25 — 52
Ayl = =s[E(5+ &) —2(64+ 56+ &) = :
Al = 25lE(5 + &) = 26+ 5¢+ )| o
and so (3.1) in the case /5/59 <s</5/11 is sharp for f,,, € K, which completes
the proof of Theorem 3.1. U

We next denote by K the class of functions f € A with non-negative second
coefficient, and prove the following.

Theorem 3.2 Let f € K and be given by (1.1). Then

1
(1 =5)(=1 425+ 65%),
|As + Aq| <

S8 165+ 2557 +57),

where s = a, € [0, 1]. The inequalities are sharp.

Proof Since f € K we can write 1 + zf"(z) /f'(z) = p(z), for some p € P given by
(2.1). From (3.2) we obtain (3.3) and

1
Ay =2a5 — a3 = E(ZC% —c2).

We also note that ¢; € [0,2] since a; >0, and so
1
A3+ Ay = ﬁ (SC% — 66‘% + Tcicy — 4ep — 26‘3).
Thus using Lemma 2.2 we have

48(A34+Ay) =622 —c) 4+ (5 —4) (4 — A + (4= AP =24 = A (1 — [P,
(3.14)

where {, n € D.
If c =2s =2, then A3 + A4 = 0, hence (3.13) is true when s = 1.
Next assume that 0 <s<1 (i.e. 0 <¢<2). Then since |n| <1, (3.14) implies that

48|A3 4+ Ag| <2(4 — A)[JA+ B+ CP — (1= [¢[)],

where
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We note that AC > 0.

(a) First we consider the case 8/7 < c¢<2., then it is easy to see that |[B| >2(1 —
|C|) is valid, and so by Lemma 2.3 we obtain

48|45 + As| <2(4 — ) (|A] + |B| + |C]) (3.15)
=42 =) (=24 2¢ +3c2). '

(b) Next consider the case 0<c<8/7, then the condition |B|<2(1 —|C|) is
satisfied, and so by Lemma 2.3, we obtain

2

48|A5 + A4l <24 = A1+ A+ ———

(3.16)

(64 — 64c + 50¢* + ¢?).

ENY,

Replacing ¢ in (3.15) and (3.16) by 2s, we therefore obtain (3.13) when s € [0, 1).

Now we shall show the inequality (3.13) is sharp. For given p € P, we recall the
function f, defined by (3.10). For the case 4/7 <s <1, we can easily check that the
equality in (3.13) holds for f,, € K, where p;(z) = (1 +2sz 4 z%)/(1 — z%). For the
case 0<s<4/7, we can check the inequality (3.13) is sharp for Jps € K, where
ps € P is defined by

(1 —2)(2+ (4 —35)z+27%)

ps(3) = (1+2)(2 — Tsz +222)
1
=1+2sz+ (—243s+ 7% + Es(—24 + 215 +495%)° + - -.
Now the proof of Theorem 3.2 is finished. ([

Proposition 3.3 For a fixed constant ¢ € [1,2], define F. : [0,1] x [-1,1] — R by

Fo(r,t) = 16(1 + 6% + r*) — 4> (1 4 3172 4 2r* + 247t + 107%1) a1
3.17
+¢*[36 + r* + 60rt + 1077t + r*(13 + 24¢%)].

Then F,(r,t) >0 for all (r,1) € 0, 1] x [-1,1].

Proof We first show that F,. does not have any critical points in (0, 1) x (=1, 1).
Since

oF,
ot
(0F.)/(0t)(r,t) = 0 when t = 1y, where

(r,1) = 22 r[—4(12 + 57) + ¢*(30 + 517 + 24r1)],
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. 48 + 201> — 5¢2(6 + r?)
0~ 24c2r '

Furthermore a simple computation gives

oF, |
E(”J) =10 - _6"%(7)7

where ¢ (r) = (4 — )’ —6(32 — 108¢® +¢*). It is now easy to see that
¢@.(r) >0 for re (0,1). Thus the system of equations (OF.)/(0t) =0=
(0F.)/(0r) = 0 has no roots in (0,1) x (—1,1).

Next we show that F. >0 on the boundary of [0, 1] x [—1,1].

(i)  We first note that F.(0,¢) = 4(4 — ¢*> 4+ 9¢*) > 0.
() Letg(r) =F.(1,1), 1€ [-1,1]. If ¢ <2,/17/59, then g, is decreasing on
[—1, 1], since

g (1) = —136¢* +70c* + 48c* < 2 (—136 4+ 118¢%) <0, r€ [-1,1].

Thus gi(t) >g1(1) =16(8 — 17¢* +9¢*) >0, te[-1,1]. If c¢>
2,/17/59, we have g|(ty) = 0, where t, = (68 — 35¢%)/(24¢c*) € (—1,1).
Since g7 (7)) > 0 we have

1
g1()>g1(tg) = % (—1552 + 1496¢* — 25¢*) >0, te[-1,1].

(iii) For a fixed r € [0, 1], define Gy : [1,4] — R by Gy(x) = byx?> + byx + by,
where

by = (6—5r+r%)? b =—4(1—24r+3172 - 10" +2/*) and

bo = 16(1 + 6r° +r*).

Then since b, >0,

G| (x) = 2byx + by >2by + by = 68 — 24r — 50> +207° — 6r* >0, x€[1,4],
and  so  Gi(x)>G(1) =48 +36r +9r> +30r* +9r* > 0.  Thus
G1(c?) >0 holds for all ¢ € [1,4], and 0<r<1, and we obtain the

inequality F.(r,—1) > 0 for r € [0, 1] since F.(r,—1) = Gi(c?).
(iv) Now let G, be defined by Gy(x) = box* + byx + by, where

by = (6+5r+7%)° b =—4(1+24r+31/2 + 10 +2/*) and
by = 16(1 + 6r* + ).

By the same methods used in (iii) we have
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Gy(x)>Gy(1) =3(1 —r)(16 +4r +7r* —=3r°) >0, x€[l,4],
and so the identity F.(r,1) = Ga(c?) shows that F.(r,1)>0, r € [0,1],
which completes the proof of Proposition 3.3.
O

Since all the proofs of the inequalities in the following proposition are similar to
those used in the proof of Proposition 3.3 above, we omit the details.

Proposition 3.4 Define Gy : [0,2] x [0,1] — R by
Gi(c,r) = —6¢* = 5r(4 — ) + (4 — ).
Then G (c,r) <0 for all (c,r) € [0,2] x [0, 1].

We are able to now state and prove our main result.

4 Main result
Theorem 4.1 Let f € K and be given by (1.1). Then
L — g < L (4.1)
3 S1A4 sls .

Both inequalities are sharp.

Proof Since f € K we again write 1 + zf"(z) /f'(z) = p(z) for some p € P with the
form (2.1), then equating coefficients gives

1 1 1
022501, a3:6(c%+cz) and a4:ﬁ(c?+3clcz+203).

Thus from (1.2) we have
1 3 L s
‘A4| — |A3| = ﬂ| — 6C1 +7ClC2 — 2C3| 76|2Cl — Cz|.

Since P and |A4| — |A3| are rotationally invariant, using Lemma 2.1, we may
assume that c¢; =c¢ with 0<c¢<2. Moreover by Theorem 3.1, |A4]—

|A3] <|A4] <1/4 when 0 < ¢ <24/5/59, and so it is enough to consider ¢ satisfying
2,/5/59 <c<2.
We now use Lemma 2.2, and the fact that 5| <1 to obtain

48(|A4] — |As])
<| =66 +5¢(4— A+ cd— AP — 122 —4(4 — A + 24— A (1 -
= \PU(C7 C)7

(4.2)

where ¢ € [24/5/59,2] and { € D. We now prove that
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lI’U(C, C) S 12

for ¢ € [24/5/59,2] and { € D. Note that since Wy (c,0) = 8 — c?(14 — 6¢) < 8, we
may assume that { € D with { # 0.
I(a) We first assume that 24/5/59 <c¢ <1, then

Yul(e, )
<| =62 +5d— A+ (A=A = 1267 —4(4 = AN +2(4 = A1 = [P).
(4.3)
Putting { = re’’, r € (0,1], 0 € R, and ¢ = cos 0 € [—1, 1], we have
| —6¢% +5(4 — )+ (4 — )| — 126 — 4(4 — )|
= /by + byt + by — \/do + dyt (4.4)
=: Ai(c,r,1),
where
by = bo(c,r) :=36¢* +25(4 — ) + (4 — At + 1234 — AP
by = by(c,r) == —60c*(4 — c})r + 10(4 — 2)*r,
by = by(c,r) == —24c*(4 — A)r? (4.5)
do = do(c,r) == 16[9¢* + 2 (4 — )],
dy = di(c,r) := —96rc*(4 — c?).

(i) Now assume that A; is increasing with respect to ¢ € [—1, 1]. Then by (4.3)
and (4.4), we have

Wyle, ) <Ai(e,r, 1) +2(4 — ) (1 — ) =: Hy(c,r),
where
Hi(c,r) =] —6c*+5(4 —c*)r+ (4 — cH)r
—12¢* — 4(4 — A)r| +2(4 — ) (1 — 7).

| 4r [ 4r(5+r)
k=1 —— d ky=4/——~. 4.6
! r+3 e 6+5r+r2 (46)

We note that 0 <k; <k, <+/2 forr € (0, 1] and consider the following cases.
(a) If ¢ <ky, then

Let
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Hi(e,r) =8 +4r — 4% + (4 — r + )

12(2 + 3r — 72
Swglz’ re(0,1].
3+r

(b) If ky <c <k, then
Hi(c,r) = 8 4+ 36r — 4r* 4+ ¢*(=20 — 9r + r?)

< 12(2 4 3r — r?)

<12 0, 1].
< g <12, re(0,1]

(c) If ¢c>k, then
Hi(c,r) =c*(—8+r+3r") +4(2 —r -3

48(1 — 3r — 2r%)
“ersir
Thus by (a), (b) and (c), H(c,r) <12 follows, and Wy(c,{) <12
holds.
(i) Next assume that A; is decreasing with respect to ¢ € [—1, 1]. Then
by Proposition 3.4 and the inequality 12¢* +4(4 —c*)r>0, we
obtain

<8<12, re(0,1].

Pule, ) <Aile,r,—1) +2(4 =) (1~ 1)
= Gi(c,r)| = 126> +4(4 — )| +2(4 = )1~ )
=4Q2+r=37) + (-8 —r+3r)
<4(24r—3r")<12,

since —8 — r 4+ 372 <0, and G is the function defined by (3.5). Thus
we obtain Wy (c, () <12.

(iii) Now we assume that A; is neither increasing nor decreasing with
respect to 1 € [—1,1], and let A;(f) = A;(+,-, 7). Then there exists
t; € (—1,1) such that Z|(t;) = 0, which implies that

by +2brty — d
Ai(0) =A(n) = <#> Vdo +dity.

d
Since b, <0,
by + 2byt) —dy > by + 2by — d, 47)
= 2r(4 — *)[20r% + (18 — 24r — 5¢%)] > 0.

and so using d; <0 and (4.7), it follows that 4;(#;) <0. Hence it
follows from (4.3), (4.4), (i) and (ii) that
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Yy(e,{) < max A(c,r, 1) +2(4 — cz)(l — r2) <12,

teQ

where
Q ={-1,1}u{n e (-1,1): 2 (1) =0}

I(b) Now assume that 1 <¢ <2, then by (4.2) we have

Wy(e,0) < (4 - ) [B(e,0) +2(1 = [1)] <3[ (e, 0 +2(1 - [P)],

where ¥(c, () is defined by

—6c3

¥, () = ‘4 +5¢{ + cf?

‘ 12¢%

22y

— 2
We now show that
(e, 0)+2(1 - 0Py <4 (4.8)

A computation putting { = re'’, r € (0,1] and 0 € R, gives

~ 1
‘Hq@:—ggwm+bﬁ+hﬂ—zj—dﬁ+dm

4 c?
where t = cos0 € [—1,1] and b;, i € {0,1,2}, and d;, j € {0, 1}, are
given by (4.5). So the inequality (4.8) is equivalent to
A (bo + bit + byt®) — (do + dit) — 4(1 + 12)* (4 — )’

§4(] + I’2)<4 — 6‘2)\/d0 + dit.

Next write

c2<b0 + blt =+ b2t2) — (d() + dlt)
— 41474 =) = —(4 = A)Fe(r,1),

(4.9)

where F, is defined by (3.17). Since c¢ € [1,2], Proposition 3.3,
shows that F.(r,t) >0, which gives

Cz(b() + bt + bzl‘z) - (d() + d]l) — 4(1 + }"2)2(4 — 6‘2)2 <0.

Therefore since 4(1 + r?)(4 — ¢?)\/dy + dit >0, (4.9) is true. Thus
(4.8) follows, and Wy (c, ) <12 holds.

Thus the proof of the upper bound in (4.1) is complete.

II. We next prove the lower bound in (4.1). Since P and |A3| — |A4| are
rotationally invariant, using Lemma 2.1 we may assume that ¢; = ¢, with 0 <¢ <2.
Moreover by Theorem 3.2, |A3| — |A4]| <]A3 4+ A4 <1/3 hold when 0 <c¢<4/3 or
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V2 < ¢ <2. Hence it is enough to consider ¢ satisfying 4/3 < ¢ < /2.
Using Lemma 2.2 and the fact that || < 1, we obtain

48(|A3| — [A4])
<122 —4(4 = A — | — 63 +5¢(4 = A +c(d— AP +2(4 = A1 — [P
= ‘PL(C7 C>7

where { € D, and so we must show that

Yi(e,()<16 (4.10)
holds for all ¢ € [4/3,V/2] and { € D.
Note that we can assume that { # 0, since
¥, (c,0) = 8 +2¢*(5 — 3¢) < 16.
Also since ¢ >4/3, we have
[12¢% — 4(4 — )| — | — 6>+ 5¢(4 — )+ c(4 — )
<[12¢* — 4(4 — )| - %| —6¢% +5(4 — A+ (4 - A (4.11)

44— AT -0l - 3124+ 50+

where A* = 3c?/(4 — ¢*). Moreover putting { =re’, re (0,1], 0 € R, and
t =cosf € [—1,1], we have

1
A" — ¢ — §| — 24" + 50 + | = \Jdo + dit — \/(bo + b1t + by1?) ]9 =: Ay(c,1,1),

(4.12)
where

dy =A% +r% dy = —24r,
by = 10r(—24" + 1),
In order to apply Lemma 2.4, we put

by =252 + (24" + %)%, by = —8A*F2.

A =d, Azzgil(bﬁ—ztbobz) and T:%cz.

We now show that

A>T, (4.13)
and
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1

T(dy + dit) > = (bo + b1t + byt?), t€[—1,1].

O |

First let

Ay (100 - )[4 + A6+ )

Gle) =3, = 729¢4(4 — ¢2)

Then it is easy to see that

4(100 — ¢? 4 884
G(C,F)ZG(C,O) ﬁZG(g,()) :ﬁ > 2.

Since ¢ < v/2, we obtain
3/2 3/2
T3/2 — <§C2> S (%) — l_s‘ <2.

Thus by (4.15), (4.16) and (4.17), we obtain (4.13).
Next we will show that (4.14) holds. To do this, we let

1 1 1
—Zbyt? — b+ Td, |1+ Tdy — by =
9 2 +( 9 1+ 1) + Tdy 9 0

72(4 — 2)? ¢
where
G(t) = 45¢%(9 + rOrt) — 128/%(25 + r* 4 10r1)
—8c*[36 + r* + 1951t + 107t + r*(58 + 247%))
+ 16¢2r[4r® 4+ 120 4 4077t + r(121 + 48¢%)).

We consider the following 5 cases.
(a) Write
Ga(—1) = By + Bor + Byr* + Byr® + Bsr*,
where

By = —288¢* +405¢%, B, = —1920¢* + 1560¢* — 270¢°,

(4.14)

(4.15)

(4.16)

(4.17)

B3 = — 3200 + 2704¢* — 656¢* 4+ 45¢°, B, = 1280 — 640¢? + 80c*,

Bs = — 128 + 64c* — 8¢*.
Then it is easy to check that
B, > 0, By > 07 B3 <07 Bs5 <0.

Therefore we obtain
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B + Byr + Byr* + Byr® + Bsr* > By + B3 + Bs
= —3328 4+ 2768¢% — 952¢* + 450c°
> 0.

Hence Gy(—1) > 0.
(b) We next show that G»(1) > 0.
First note that

G, (1) = Bg + Bys + Bgs® 4+ Bos® =: H (s),
where
Bs = — 1287°(5 + 1),
B7 =16r(120 + 169r + 40r* + 4r%),
Bs = — 8(36 + 195r + 8217 + 101 + 1),
By =45(3 4 r)7,
and s = ¢? € [16/9,2], and since Bg <0 and By > 0, we have

H/(s) = By + 2Bgs + 3Bos*

256
>B 4B —B
>B7 + 8+27 9
16 2 3 4
:?(504—330r+95r + 60r° + 6r7)
> 0.

Thus H, is increasing with respect to s € [16/9,2], and so

Hi(s) > H, <§)

128
- 8l
Thus G,(1) > 0 as claimed.
(c) We note that G, has its (unique) critical value at t = fy, where

(864 — 1357 — 250° — 25r*) > 0.

. 5(—48c* + 27¢* + 3212 — 8c?r?)
0 — .

192¢2r

We now show that G(#p) > 0, in which case G,(r) > 0 for all t € [—1, 1],
and (4.14) follows. Write

G (1) Gs(2, 1), (4.18)

1
T 192¢2

where
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Gs(x,y) =Bio + Bi1y + Bioy?*,
By =Bjo(x) = 9x*(—25600 + 29056x — 6660x> 4 2025x°),

By =Bii(x) = —48x(6400 — 944x — 344x* + 45x7),
Bi, =Bpp(x) = —64(100 — x)(4 — x)*.
It is easy to see that By} <0 and By, <0, so
Gs(x,y) > Gs(x,1) = Bio + Bi1 + Bz
= —102400 — 254976x — 192000x2 + 278080x> — 62100x* + 18225x° > 0.

holds for x € [16/9,2] and y € [0, 1]. Thus we obtain G(#) > 0, by (4.18).
Hence by Lemma 2.4, the function A, is convex on [—1, 1], and the convexity

of A; (on [—1,1]), (4.11) and (4.12) implies that
WYi(e, () < max{¥p(c,r); ¥i(c, 1)}, (4.19)

where ¢ € [4/3,1/2] and r € (0,1]. Thus we will obtain (4.10) if we show
that W, (c,7) <4 and W (c, —r) <4 for ¢ € [4/3,V/2] and r € (0, 1], where

Yi(e,—r) = |3 4+ r(4 — )]
- % |—6¢* — 5r(4 — ¢*) + (4 — )| +%(4 —cAH(1 -1

and
Y (e, r) = ‘302 —r(4 - cz)|
1 1
- g‘—6cz +5r(4—c*) + 4 - c2)| +§(4 — A1 =),

(d) Clearly 3¢* + r(4 — ¢*) >0 holds. Also
—6c* —5r(4 =)+ (4 —¢*) = —(6 = 5r + r*)c? — 20r + 477

< —20r + 417 <0.

Hence

Wi (c,—r) =3 +r(d —c?)

316 =54 =)+ P = 4 (4= (1= )
1

=5 [4(3 —dr—r) + (3 +4r+17)]
1

< 5(9 —4r — 1’2)<47

which gives Wy (c,—r) <4.
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() Next clearly 3c¢> —r(4—c?) >4(c>—1)>0. If —6c*+5r(4—c*)+
r?(4 — ¢?) <0, then, since ¢ < V2, we have
Y (c,r)==[4 (3+4r—r2) +cz(3—4r+r2)}

(9+4r—r?)<4.

u.)l»—n O\I'—‘

[

If —6¢% +5r(4 — ¢*) 4+ r*(4 — ¢?) >0, then

2o 2(5r +1?)
~64+5r+r2

Using this inequality, we see that
1
Wi(e,r) = £ [4(3 — 16r - 5r%) + *(27 + 167 + 57%)]

12(1 + 3r)
K
T 645+ T

Hence we obtain the desired inequality W, (c,r) <4,and by (4.19), the
inequality (4.10) is established. Thus the proof of the lower bound in (4.1) is
complete.

We end the proof of Theorem 4.1 by giving extreme functions for the inequalities in
(4.1).

First consider f; € K defined by 1+ zf{'(z)/f/(z) = (1 +2*)/(1 — z%). Compar-
ing coefficients, we obtain a, =0, a3 = 1/3, a4 =0, and so from (1.2) we have
Ay =0, A3 = —1/3, and |A4] — |A3| = —1/3, so that the lower bound in (4.1) is
sharp for f;.

Next consider f, € K defined by 1+ 7£5/(z)/f2(z) = (1 + z+ z2)/(1 — Z%). Then
the coefficients of f> are given by a, = 1/2, ay =1/2, ay = 3/8, and so from (1.2)
we have Ay = 1/4, A3 = 0 and |A4| — |A3| = 1/4. Thus the upper bound in (4.1) is
sharp for f;. U
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