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Abstract
Hydraulic fracturing has attracted a tremendous amount of attention due to its abundant
applications, such as magma-driven dykes, fracturing of oil and gas reservoirs, heat pro-
duction from geothermal reservoirs, ice melt, and fault reactivation in mining. Therefore,
the development of fracture propagation models is of great significance to provide more
effective technical tools for the dynamic simulation of fracture formation and propagation.
Hydraulic fracturing involves a complex process due to the strong coupling between the
fluid and solid rock. The finite element method (FEM) is a traditional method for solving
the fracture propagation problem. FEM has the advantage of being robust and flexible.
However, special treatment is required when dealing with complex fracture problems such
as fracture intersection and branching because of discontinuities across fracture surfaces.
Instead of seeking to approximate partial differential equations in a conventional framework,
the peridynamic approach (PD) uses spatial integral equations that overcome the limitations
of defining partial derivatives at discontinuities, which makes it quite suitable for solving
complex fracture problems. Therefore, it is of great importance to combine the advantages
of both FEM and PD to develop a more robust and flexible fracture propagation model. The
main contribution of the thesis is to study fracture propagation problems in fully saturated
porous media based on both FEM and PD. Three fracture models based on FEM, PD, hybrid
FEM and PD are developed to simulate and explore more “realistic” fracture propagation
processes. The main research work of the thesis contains the following four parts.

First, comprehensive reviews of the fracture propagation literature, crack branching and
PD theory are given. The fracture propagation review includes a review of the fracture
propagation process, fracture models and various numerical methods for predicting fracture
propagation. The review of crack branching provides a state-of-the-art review of crack
branching, including experimental observations, physics, fracture models and associated
numerical methods. The latest advances and existing issues of crack branching are discussed.
The review of PD theory provides a review of theoretical aspects of PD and related applica-
tions of PD in different fields, especially in the field of fracture mechanics. The challenges
and new prospects for the development of PD are discussed.

Then, a fully implicit, FEM-based fracture model using zero thickness cohesive interface
elements is developed. The rock formation is considered as a fully saturated porous medium.
The fracture surface is deemed to be permeable, the fracturing fluid is treated as an impressible
Newtonian fluid, and the cohesive zone model is employed for the fracture propagation
criterion. After verifying the model, the stepwise phenomenon, which has been observed
in the field and experiments and reported recently in the numerical modelling literature, is
investigated with the model.

Then, an explicit PD approach for simulating fracture propagation in saturated porous
media is developed. A staggered method is adopted to solve the coupled system. The solid
deformation equation is solved for the displacement field, and the fluid flow equation is
solved for the pressure field with PD. After verification via benchmark examples, including a
1D consolidation problem and a 2D fluid-filled crack propagation problem, a series of tests
are conducted to study the fracture propagation phenomena in porous media, including the
crack branching phenomenon and the stepwise phenomenon. Effects of pore pressure in
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fracture propagation branching are investigated, and the stepwise phenomenon is successfully
reproduced. All the examples presented demonstrate the capability of the approach in solving
fracture propagation problems in saturated porous media.

Finally, a fully coupled hybrid FEM-PD approach for simulating fracture propagation in
saturated porous media is presented. Considering the ability of PD in solving discontinuous
problems, the area where cracks can potentially occur is discretised by PD and the crack-free
area is discretised by FEM. The solid deformation and fracture propagation are captured by
PD and FEM, while the fluid flow in both the reservoir and fracture is simulated with FEM.
The whole process is solved in a monolithic way with an implicit scheme. The approach
demonstrates the capability of modelling complex dynamic crack propagation via benchmark
examples. The branching phenomenon is then investigated with the proposed approach. In
conclusion, complex crack patterns are prone to form with faster loading rate, more brittle
and impermeable media, and with lower energy release rate.
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Chapter 1

Introduction

1.1 Background and motivation

Fracture propagation and hydraulic fracturing have received a great deal of attention due to
their importance in engineering applications, including shale gas recovery stimulation of
reservoirs, magma-driven dykes, caving and fault reaction in mining etc. [22, 123, 198]. One
of applications is shale gas reservoir stimulation, which has attracted extensive investigation
due to the vast potential of unconventional oil and gas resources. As an essential technique
for the exploitation of low-permeability oil and gas resources, hydraulic fracturing has an
essential impact on the economic development of oil and gas. The United States is leading
the world in natural gas and oil production by unlocking the enormous oil and natural gas
resources in tight-rock formations with hydraulic fracturing [234], see Fig. 1.1.

Fig. 1.1 Leading countries in natural gas and oil production in 2014 and 2017, adopted from
[234].
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In the development and production of oil and gas fields, the main goal of hydraulic
fracturing is to use the injection of fluid at high pressure to create fractures in the impermeable
formation to provide channels for oil and gas, thereby increasing the extraction of petroleum
and natural gas. Fig. 1.2 shows a schematic illustration of hydraulic fracturing technology.
According to seismic observations, the interaction between hydraulic fractures with existing
natural fractures in shale gas reservoirs can produce complex fracture networks that affect
production. However, traditional fracture models are often limited to a fracture with simple
geometry. They encounter difficulties, such as crack tip singularity modelling, the need for
external propagation criteria and the requirement for defining the crack surfaces in dealing
with complex fracture development patterns. Therefore, it is of great importance to develop
fracture models for tackling complex fracture patterns, such as the interaction between natural
fractures and hydraulic fractures, fracture bifurcation, and fracture networks.

Fig. 1.2 A schematic illustration of hydraulic fracturing technology.

1.2 Outline of the thesis

The main focus of this PhD thesis is to develop a fracture propagation model that can simulate
more “realistic" fracture propagation processes to explore the specific mechanism behind
fractures. The thesis is composed of six chapters, and the following chapters of the thesis are
as follows.

In Chapter 2, fracture propagation, crack branching and peridynamics (PD) theory are
reviewed. The fracture propagation review provides a review of the fracture propagation
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process, fracture models and various numerical methods in fracture propagation. Then,
we give a state-of-the-art review of crack branching, including experimental observations,
physics, fracture models and associated numerical methods. Key features, advantages and
limitations of fracture models and numerical methods are highlighted, and the future research
directions of crack branching modelling are discussed. The review of PD provides a summary
of the theoretical aspects of PD and related applications of PD in different fields, especially
in the area of fracture mechanics. The challenges and new prospects for the development of
PD are discussed.

In Chapter 3, a fully implicit, FEM-based fracture propagation model is developed using
zero thickness cohesive interface elements. The rock formation is considered a fully saturated
porous medium so that both pore pressure and leak-off are taken into consideration. The
nonlinearity of the crack tip is addressed with the cohesive zone model. It is demonstrated
that the developed model is capable of simulating fracture propagation in porous media
accurately with strong coupling between the rock formation and the fracturing fluid. After
verification of the model, the stepwise phenomenon, which has been observed in the field
and experiments and reported recently in the numerical modelling literature, is investigated
with the model.

In Chapter 4, an explicit PD approach for simulating fracture propagation in saturated
porous media is developed. A staggered method is adopted to solve the coupled system. The
solid deformation equation is solved for the displacement field, and the fluid flow equation is
solved for the pressure field with PD. After approach verification via benchmark examples,
including a 1D consolidation problem and 2D fluid-filled crack propagation problems, a
series of tests related to fracture propagation phenomenon are performed, including the crack
branching phenomenon and the stepwise phenomenon in porous media. The effect of pore
pressure in fracture branching is investigated, and the stepwise phenomenon is successfully
reproduced.

In Chapter 5, a hybrid FEM and PD approach for modelling fracture propagation in porous
media is presented, which combines the advantages of both the FEM and the PD method.
Considering the ability of PD in solving discontinuous problems, the area where cracks can
potentially occur is discretised by PD and the crack-free area is discretised by FEM. The
solid deformation and fracture propagation are captured by PD and FEM, while the fluid flow
in both the reservoir and fracture is simulated with FEM. The whole process is solved in a
monolithic way with an implicit scheme. The approach presented demonstrates the capability
of modelling complex dynamic crack propagation via benchmark examples, including a 1D
consolidation problem, a 2D KGD problem [151, 215] and a fracture interaction problem.
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The effects of different factors on the branching phenomenon were investigated using the
approach.

Finally, in Chapter 6, the overall conclusions and prospective work of the thesis are
presented.



Chapter 2

literature review

2.1 Review of fracture propagation

2.1.1 Introduction

Fracture propagation has attracted a tremendous amount of attention from researchers in the
oil and gas industry and the department of mechanics [231]. Numerous fracturing models
have been developed to improve the fracturing treatment design or understand some specific
mechanisms such as screen-out and near-wellbore tortuosity. The 1950-1980 period saw the
development of a series of classic hydraulic fracturing models, including the KGD model,
the PKN model, the pseudo 3D (P3D) model, and the planar 3D (PL3D) model. Until now,
the P3D model and PL3D model are still playing vital roles in commonly used commercial
software for hydraulic fracturing design. With the increasing attention on fracture propagation
in recent decades, diverse numerical methods, including the finite element method (FEM),
extended finite element method (XFEM), boundary element method (BEM), phase field
method (PFM), and discrete element method (DEM), have also been applied.

The purpose of this section is to provide an extensive review of fracture propagation
modelling in the application of reservoir stimulation on three aspects: (1) physical processes
in hydraulic fracturing; (2) the development of fracture propagation models; (3) the devel-
opment of various numerical methods in fracture propagation. The rest of the section is
organised as follows. The physical processes involved in hydraulic fracturing is introduced
in § 2.1.2. The historical development of fracture propagation models over the past decades
is reviewed in § 2.1.3. In § 2.1.4, the development of diverse numerical methods in fracture
propagation is highlighted. § 2.1.5 provides a summary of work in the current stage and
points out the challenges and necessary work in the future.
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2.1.2 Hydraulic fracture physical processes

Hydraulic fracturing can be defined as the process by which a fracture is created due to
hydraulic loading applied by fluid inside the fracture [1]. It is a complex process because
the structure field, stress field and pressure field keep changing during fracture propagation
due to the strong coupling between the solid and fluid. The physical processes involved in
hydraulic fracturing include deformation of rocks, the fluid flow within the fracture, fracture
propagation and the poroelastic effect.

Deformation of rocks

The deformation of rocks in hydraulic fracturing is mainly caused by the pressure of the fluid
in the fracture. The fluid pressure as well as the in-situ stress can be applied as boundaries
conditions when solving the deformation equation. The linear elastic theory is commonly
used for the constitutive relation of the solid rock [1, 231], and the elastoplastic theory [306]
and damage theory [391] are also adopted.

In a 2D hydraulic fracturing model in linear elastic homogeneous rock materials, fluid
is injected into the fracture and the fluid pressure p f acting on the fracture surface causes
deformation. The linear elastic theory is adopted to establish the relationship between fracture
width w and fluid pressure p f , and the constitutive model is expressed as:

σσσ=CCC : εεε (2.1)

where σσσ , εεε and CCC denote the stress, strain and elastic tensor determined by Poisson’s ratio ν

and Young’s modulus E respectively.
The equilibrium equation is expressed as:

∇·σσσ +ρg−ρü = 0 (2.2)

where σσσ is the Cauchy stress, g the gravity acceleration, and ü the acceleration of the solid
phase. The fracture width w is computed by the displacement difference between the upper
and lower surfaces of the fracture.

Fluid flow in the fracture

The fluid flow in the fracture is usually described by fluid flow lubrication theory, which
applies if one dimension of the space occupied by the fluid is much smaller than the other
dimensions. In hydraulic fracturing, the fluid in the fracture width direction is much smaller
than the directions of height and length. Poiseuille’s law [30] is adopted to describe the
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relationship between fluid flow velocity, fracture width and pressure spatial gradient:

q =− w3

12µ

∂ p f

∂x
(2.3)

where q is the flow rate, w the fracture width, µ the viscosity of the fracturing fluid, p f the
fluid pressure and x the local coordinate.

The continuity equation with leak-off considered is expressed as:

∂w
∂ t

+
∂q
∂x

+ql = 0 (2.4)

where ql is the leak-off flow rate.
If the rock is impermeable, the leak-off term can be ignored. By substituting fluid flow

equation Eq. (2.3) into the fluid continuity equation Eq. (2.4), the global continuity equation
of the fluid flow in the fracture can be obtained:

∂w
∂ t

− ∂

∂x

(
w3

12µ

∂ p
∂x

)
= 0 (2.5)

The analysis can be conducted based on the assumption that there is no fluid lag. Then the
fluid is completely filled with fractures, and the fracture tip and the fluid front are perfectly
aligned [373, 150]. It can also be based on the assumption that there exists a fluid lag, and
the fluid front is lagging behind the fracture tip [149, 193].

Fracture propagation

Fluid pressure in the fracture causes deformation of rocks, resulting in the initiation and
propagation of the fracture. Various theories have been used to predict fracture propagation,
among which the linear elastic fracture mechanics (LEFM) theory and the cohesive zone
model (CZM) are commonly used. The CZM considers the nonlinear effect near the fracture
tip while LEFM doesn’t.

In LEFM, the criterion for fracture propagation is usually given either by the conventional
energy approach or by the stress intensity approach [390]. In the energy approach, the energy
release rate G defined as the energy dissipated during the fracture per unit process of a newly
created fracture surface area [310] is used. When the energy release rate is greater than a
critical energy release rate, the fracture propagates:

G > Gc (2.6)
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where Gc is the critical energy release rate related to material properties.
In the stress intensity approach, the stress intensity factor is employed for quantifying

the conditions of stress at the crack tip [95]. A fracture propagates when the stress intensity
factor K at the tip exceeds the fracture toughness KIC (critical stress intensity factor):

K > KIC (2.7)

In linear elastic materials, the energy release rate can be computed from stress intensity
factors directly.

G =
K2

I
E ′ +

K2
II

E ′ +
K2

III
2µs

(2.8)

where µs is the shear modulus, E ′ is related to Young’s modulus E and Poisson’s ratio ν ,
which can be expressed as:

E ′ =


E, (plane stress)

E
1−ν2 , (plane strain)

(2.9)

KI , KII , and KIII are the stress intensity factors under loading mode Mode-I, Mode-II,
and Mode-III, respectively. The loading mode Mode-I, Mode-II, and Mode-III represent the
opening, in-plane sliding and out-of-plane shearing modes for fractures, respectively, see
Fig. 2.1.

(a) (b) (c)

Fig. 2.1 Three fracture loading modes.

When considering the nonlinear effect zone ahead of the fracture tip, the LFEM can not
be applied, and the CZM is usually adopted. The CZM assumes a process zone ahead of
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the real fracture tip. In the process zone, the crack propagation is directly related to the
parameters in the cohesive traction-separation law. The traction-separation law defines the
relationship between the crack width (distance between the crack surfaces) and the cohesive
traction in the process zone. The crack surfaces begin to separate (initiate) when the cohesive
strength is reached. When the separation reaches a critical value and the traction decreases to
zero, total failure occurs (the crack surfaces fully separate).

There are many types of traction-separation laws. For example, the exponential form
[27], the polynomial form [275], the bi-linear form [155] and the linear form [303], as
shown in Fig.2.2. The absorbed energy G during the fracture process can be obtained by
calculating the area under the traction-separation curve. If the Griffith energy balance is
applied, then the absorbed energy G is equal to the critical fracture energy Gc. Following this
rule, the parameters (the cohesive strength and maximum fracture opening) in the cohesive
traction-separation law can be set.

(a) (b)

(c) (d)

Fig. 2.2 Different forms of the traction-separation law.

Poroelastic effect

The porous medium is composed of a solid skeleton containing pores and fluid/gas filling in
the pores. Because of the special structure, the mechanical behaviour of porous media belongs
to multifield problems. In porous media, the deformation of a solid skeleton affects the flow
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of the pore fluid. Likewise, the flow of the pore fluid alters the solid skeleton deformation.
Therefore, the deformation of the porous medium is caused by both the effective stress and
the fluid pressure. To make the equilibrium equation Eq. (2.2) in § 2.1.2 applicable to porous
media, the total stress tensor σσσ is represented with the effective stress tensor σσσ ′ and pore
pressure p [421]:

σi j = σ
′
i j − Ii jα p (2.10)

where Ii j is the identity tensor, and α is the Biot coefficient. The Biot coefficient α denotes
the ratio of the fluid volume gained (or lost) in a material element to the volume change of
that element, and it equals 1 for incompressible solids. Note that Eq. (2.10) corresponds to
the sign convention that compressive pore pressure is positive which is widely used in soil
mechanics.

The continuity equation for the fluid flow in porous media is [51]:

∂ζ

∂ t
+∇·q = 0 (2.11)

where ζ is the variation of fluid volume per unit volume of the porous material, and q denotes
the flux. Described by Darcy’s law, the flux q can be expressed as:

q =−kw
µ

·∇p (2.12)

where µ is the fluid viscosity, and kw the permeability tensor.
The constitutive equation for the pore fluid is

p = Q(ζ −αεb) (2.13)

where Q is the Biot modulus, and εb the bulk volumetric strain.
The above equations can be combined by substitution and elimination as:

α∇· u̇+
1
Q

ṗ+∇·q = 0 (2.14)

where u̇ denotes the velocity of the solid phase and 1
Q the compressibility coefficient. The

first term can be seen as a source term driving pressure distribution and the flux. The
compressibility coefficient 1

Q is defined as:

1
Q

=
α −n

Ks
+

n
Kw

(2.15)
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where n is the porosity, Ks and Kw are the bulk module of the solid and fluid phases,
respectively.

2.1.3 Development of fracture propagation models

The accuracy of the fracture propagation model is essential to the fracture propagation
simulation and production. An excellent fracture propagation model can provide a deeper
understanding of fracture propagation mechanisms. In recent decades, a variety of fracture
propagation computational models has been developed. In this subsection, several classic
hydraulic fracturing models, including the PKN model, the KGD model, the radial model,
the Pseudo 3D model and the Planar 3D model, are reviewed.

PKN model

The pioneering work for the PKN model can be found in [313], where the so-called PK
model was developed. Then, the PK model was extended to the PKN model in [288] by
including the effects of storage and leak-off. It is a classic hydraulic fracturing model with
a long fracturing length, limited but constant fracture height and small fracture width, see
Fig. 2.3.

(a) (b)

Fig. 2.3 Schematic of (a) PKN model and (b) plane strain assumption on vertical section.

To simplify the problem, some assumptions are made: (1) the rock is a uniform linear
elastic medium; (2) the fracture height is assumed to be constant; (3) the fluid is Newtonian
fluid, which flows along the direction of the fracture length and is one-dimensional flow; (4)
the net pressure is zero at the tip; (5) the fracture length is long compared to the fracture
width and fracture height. The width at any vertical section is restricted to be elliptical and is
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computed based on a plane strain assumption [288]:

w =
(1−ν)

G

√
(h2 −4z2)(p f −σ0) (2.16)

where G is the shear modulus, ν the Poisson’s ratio, h the fracture height, p f the fluid
pressure, σ0 the confining stress, and p f −σ0 the net fluid pressure. The net fluid pressure is
constant in the z-direction but is different along fracture propagation direction.

In [404], the PKN model was improved by considering the relationship between fracture
height and fluid pressure, which extends its application to layered reservoirs. In [110], the
PKN model was developed by considering the poroelastic effect. Later in [428], the model
extended its application for non-Newtonian fluid.

KGD model

The KGD model was first developed in [215] and [151]. It is a classic hydraulic fracturing
model under plane strain assumption where the fracture width is constant in the direction of
the fracture height, as shown in Fig. 2.4.

(a) (b)

Fig. 2.4 Schematic of (a) KGD model and (b) plane strain assumption on horizontal section.

Similar to the PKN model, the KGD model also has the following assumptions: (1)
the rock is a uniform linear elastic medium; (2) the height of the fracture is assumed to be
constant; (3) the fluid is Newtonian fluid, which flows along the direction of the fracture
length and is one-dimensional flow; (4) the net pressure is zero at the tip. The difference
between the KGD model and the PKN model lies in that: (1) the vertical section is a rectangle
for the KGD model, while in the PKN model, the vertical section is an ellipse. Thus, the
fracture width remains constant along the direction of the fracture height in the KGD model;
(2) in the KGD model, the fracture pressure decreases with the increase of the fracture length
while in the PKN model, the fracture pressure increases with the increase of the fracture
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length [86]; (3) in the KGD model, the plane strain assumption is on horizontal section while
in the PKN model, the plane strain assumption is on vertical section. Therefore, the KGD
model is more applicable for fractures in the early stage with a small fracture length, while the
PKN model is applicable for fracture in the middle ot late stage with a considerable fracture
length. This thesis uses KGD model for verification with the folowing reason. The thesis
focuses on the study of fracture propagation mechanisms. The KGD plane strain assumption
is on horizontal section. Poroelastic effect and cohesive zone can be straightforwardly added
to the model. However, in PKN model, the plane strain assumption is on vertical section and
the fracture propagates out of the plane with a constant height. Additional assumptions are
required to model the fracture propagation, which makes the whole process complicated. This
is not consistent with our goal of studying two-dimensional fracture propagation mechanisms
without making more assumptions.

The relationship between fracture width and net pressure pn can be expressed as [148]:

w =
1
E ′

∫ l

0
G
(x

l
,
s
l

)
(p f −σ0)ds (2.17)

where p f −σ0 is the net pressure pn, E ′ = E/(1−ν2) the plane strain modulus, l half length
of the fracture, and G the integral kernel.

The KGD model was further extended in [102], where it can be applied to the non-
Newtonian fluid. Moreover, the fracture toughness was introduced into the model to solve
the problem of crack tip propagation in [317]. Later, the KGD model was further developed
in [69] by making some corrections in the governing equations or solution methods to make
the model more rigorous.

Radial model

The radial model was proposed in [151]. When the minimum principal stress is applied, the
formation tends to form a penny-shaped hydraulic fracture perpendicular to the direction of
the wellbore, as shown in Fig. 2.5.

Fig. 2.5 Schematic of the radial model.
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The elasticity equation relating the fracture width to the fluid-pressure can be expressed
as [373]:

w =
8R
πE ′

∫ 1

r/R

ξ√
ξ 2 − (r/R)2

∫ 1

0

xp√
1− x2

dxdξ (2.18)

where x is the position, R the radius of the model, and ξ the ratio of the position r to the
radius R.

The development of the radial model and its solutions can be found in a series of studies
[8, 373, 118]. In [8], explicit time-dependent solutions for the crack geometry and fluid
pressure associated with Newtonian and non-Newtonian fracturing fluids were derived. In
[373], asymptotic solutions of the propagation of a penny-shaped hydraulic fracture in an
impermeable elastic rock were presented. In [118], the solution of the propagation of a
penny-shaped hydraulic fracture was further developed by considering the effect of fracture
toughness, fluid viscosity and leak-off.

Pseudo 3D (P3D) model

The Pseudo 3D (P3D) model was developed on the PKN model [90]. Compared with the 2D
PKN model, it removes the limitations of the unchanged fracture height. The P3D model
can be roughly divided into two types [231]: (1) the cell-based models, where the fracture
has been divided into several self-similar cells along horizontal direction [146, 404]; (2) the
lumped elliptical model, where a fracture can be assumed as consisted of two half ellipses
joined at their centres in the fracture propagation direction [90], as shown in Fig 2.6.

(a) (b)

Fig. 2.6 Two types of P3D model: (a) the cell-based model and (b) the lumped elliptical
model.

Compared with 2D models, the P3D model can predict fracture propagation in multiple
layers and the evolution of fracture width, height along the direction of fracture length.
In [302], a 3D model was developed to investigate the effect of variations of stress and
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rock properties on fracture height. In addition, the LEFM theory was introduced as the
fracture propagation criterion on each vertical plane. In [339], a P3D model allowing
fracture initiation in multiple layers with different mechanical and fluid flow properties was
developed to study the effects of mechanical and fluid flow properties on fracture dimension
and proppant transport. In [2], the model for a hydraulic fracture with equilibrium height
growth across two symmetric stress barriers was analysed, and the scaling of the controlling
equations shows that the solution highly depends on the fracture toughness and leak-off
coefficient. In [343], a detailed discussion about the development of 2D models (the PKN
model and the KGD model) and the P3D model was given and a P3D-C model incorporating
the Carter solution of material balance was proposed, which proves to be a promising tool
for hydraulic fracture design optimisation.

Planar 3D (PL3D) model

The P3D model cannot simulate fracturing with arbitrary shapes. Therefore, planar 3D
(PL3D) models have been developed [7, 406]. PL3D models simulating the coupled fracture
propagation and fluid flow can be based on moving triangular mesh or fixed rectangular mesh
[231], as shown in Fig. 2.7.

(a) (b)

Fig. 2.7 Planar 3D (PL3D) model based on (a) moving mesh system and (b) fixed mesh
system.

The first PL3D model based on moving mesh was developed in [91] with the assumption
that the fracture driven by a fluid propagates in an infinite, homogeneous, isotropic, elastic
solid rock with in-situ stresses that vary with depth. Later, in [92], multiple fluids, proppant
transport, and thermal effects were considered in the improved model. In [93], the model was
further developed by considering the poroelastic effects in the rock. Later, the leak-off effect
and proppant transport have been considered and been added into the model [222, 9, 301].
The first PL3D model based on a fixed mesh was developed in [29]. Later, in [393], a
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more flexible PL3D model based on a displacement discontinuity method was presented, in
which the mesh composed of rectangular elements is fixed, and a special fracture tip tracking
strategy that allows a tip element to be partially fractured is utilised. The model proves
to be able to model complex planar fracture propagation problems in multi-layer elasticity
materials. In [1], the fixed mesh PL3D model was further developed by adding the effects of
leak-off and proppant transport and employing the volume of fluid (VOF) method to track
the crack tip. Compared with a moving mesh, a fixed mesh avoids interpolation errors and
remeshing difficulties. However, the fracture tip in a fixed mesh approach can not be captured
as accurately as in the moving mesh approach.

Compared with 2D models and the P3D model, the flexibility of the PL3D model is
better. The PL3D model can be applied to more complex situations, such as the case where
the layer confinement stress varies non-monotonously with depth[1]. In addition, since more
factors influencing hydraulic fracturing are considered, the accuracy of the PL3D model is
also better than the 2D models and the P3D model. However, the computational cost is also
increased.

Instead of solving the deformation field based on domain discretisation and the constitu-
tive model, these models solve the elastic equation relating the fracture width to fluid pressure
directly. Both the numerical computation cost and the mesh updating process are reduced in
this case. For example, 2D or even 3D fracture geometry is solved in the PKN, KGD and
radial model using a 1D mesh, while 3D geometry of hydraulic fracture is solved on a 2D
mesh in the PL3D model. 1D fluid flow is assumed in the PKN and the P3D model while 2D
fluid flow is for the PL3D model. The solution method can be analytical or numerical. One
limitation of these models is that the fracture is restricted to propagate along a straight line
or planar plane. In addition, the effect of natural fractures is ignored to simulate hydraulic
fracturing in more complex scenarios in terms of fracture mode and material properties.
Diverse numerical methods have been applied to develop more advanced hydraulic fracturing
models, which are discussed in detail in § 2.1.4.

2.1.4 Development of numerical methods in fracture propagation

Though a variety of fracture propagation models have been developed to investigate the frac-
ture propagation process, the study of fracture propagation still faces many challenges. For
example, the existing fracture models can not model fracture propagation in complex patterns
or geological conditions. Therefore, the numerical method becomes another essential tool
for the study of fracture propagation. Various numerical methods have been developed and
applied to fracture propagation, and the corresponding physical mechanisms are investigated.
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In this subsection, the development of various numerical methods in fracture propagation
has been reviewed. The commonly used methods for fracture propagation include the
finite element method (FEM), the extended finite element method (XFEM), the boundary
element method (BEM), the phase-field method (PFM) and the discrete element method
(DEM). We note that this subsection focuses more on the development and application of the
methods. A further detailed description of the essential characteristics of these methods and
implementation procedures can be found in § 2.2.4. Finally, the advantages and shortcomings
of these numerical methods are discussed, and the most promising methods are highlighted.

The finite element method (FEM)

As a robust and flexible approach, the finite element method (FEM) has been applied to a
wide range of hydraulic fracturing problems [77]. In [301], an adaptive finite element model
was developed for describing the fracture propagation with proppant transport. The LEFM
is utilised as a fracture propagation criterion, and the proppant distribution is obtained by
solving governing equations of fluid and elasticity. In [193], a finite-element-based algorithm
was proposed to simulate hydraulic fractures in an impermeable elastic medium, and the
fracture tip and the fluid front are tracked separately. Based on this, a 2D hydraulic fracturing
model was developed in [77] to perform comprehensive parametric studies on the evolution
of fluid lag. The geology conditions in the above models are relatively simple and the
poroelastic effect is not considered. When considering the conditions where “real" hydraulic
fracturing occurs, pore pressure in the formation and the nonlinear behaviour (plasticity) in
the front of a pre-existent crack needs to be added [32].

By taking into account the poroelastic effects, the biot theory [39] is introduced to describe
the interaction between the porous skeleton deformation and the pore pressure diffusion in
the porous medium. Moreover, the cohesive zone model with cohesive interface elements is
introduced to represent nonlinear processes in the vicinity of the crack tip. The first successful
application of cohesive elements in 2D hydraulic fracturing in porous media can be traced
back to the early 1990s [51], where the FEM is used for rock deformation, and a finite
difference method is used for fluid flow along the fracture. Zero-thickness interface elements
are employed to represent the nonlinear behaviour of the crack tip, which makes the fracture
length a natural outcome of the solution of the equation system. In [305], the influence of
plasticity in hydraulic fracturing was investigated with a combined finite difference–finite
element model, which is developed with the lubrication theory for fluid flow and the Mohr-
Coulomb flow theory of plasticity for deformation. Introducing the transversal conductivity
for double-node zero-thickness elements, a fully coupled FEM-based hydro-mechanical
model established via staggered and fully coupled approaches was presented in [383]. In
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terms of the strong coupling between the deformation and fluid flow within the fracture, the
coupled hydro-mechanical fracture behaviour in 2D dimensions was modelled in [162] with
triple-node zero-thickness interface elements considering the anisotropic description of the
flow propagation in the fracture. With the double-nodded interface elements and an adaptive
mesh refinement approach, a quasi-static hydraulic fracturing model in porous media was
established in [381]. Later, the model was developed to 3D dimension in [379]. As the
crack tip advances, the mesh updates continuously by an efficient mesh generator based
on Delaunay tessellation. With the same strategy, the hydraulic fracturing model in porous
media was extended from quasi-static conditions to dynamic conditions in [380, 213]. The
interaction between crack tip velocity and fluid flow velocity in the fracture was highlighted,
and the effects of inertia on hydraulic fracturing were investigated. In [278], a pre-processing
tool to insert cohesive interface elements into the finite element mesh was developed to
simulate the hydraulic fracturing process. Details on the computational aspects of hydraulic
fracture modelling such as mesh generation, execution time, convergence and numerical
integration issues are discussed.

Since the implementation of cohesive zone elements is relatively straightforward in
commercial or open-source FE packages, software Abaqus and codeAster, are also employed
for investigating the hydraulic fracturing process in porous media. A model was developed
with Abaqus in [370] to simulate the fluid-driven fracture propagation under plane strain
conditions. Six-node cohesive elements are employed to model the fluid flow in the fracture,
and the effects of the cohesive zone on fluid-driven fracture are investigated. Later, with
the same model, the main parameters that affect the hydraulic fracture propagation are
investigated in a poroelastic medium [371], and in a poroelasto-plastic medium [372]. In
[82], a fluid pressure cohesive zone finite element model was developed with Abaqus to
investigate the effect of cohesive material parameters and fluid viscosity on the hydraulic
fracture behaviour. In [70], a zero-thick cohesive element was proposed and implemented
into the hydraulic fracturing model with the open-source software Code Aster. With the
model, the influence of the fluid viscosity and rock formation permeability on hydraulic
fracturing is investigated.

Although the adaptive FEM has the advantage of being capable of capturing the crack
tip front accurately, the mesh needs to be dense enough to avoid the stress singularity at
the crack tip [70]. Another shortcoming of the adaptive FEM is that it is not applicable in
modelling complex fracture patterns or geometry, especially in 3D. The cohesive zone model
is introduced to overcome the shortcomings. The advantages of the cohesive zone model are
multifold: (1) the cohesive zone describes the fracture propagation behaviour more realisti-
cally and avoids the singularity at the crack tip; (2) with straightforward implementation into
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the finite element mesh, it avoids remeshing problems; (3) it is capable of modelling complex
crack patterns since the crack propagation can be a natural outcome of the solution [199]; (4)
the fluid diffusion in the porous medium and its coupled mechanical response can be better
described with ad-hoc interface elements [70]. In summary, both the adaptive FEM and the
cohesive zone model are robust and stable in simulating hydraulic fracturing. Compared with
the adaptive FEM, the cohesive zone model is more suitable for modelling large-scale and
complex hydraulic fracturing problems.

The extended finite element method (XFEM)

The extended finite element method (XFEM) was developed in [34, 264]. The core idea of
XFEM is to use the enriched shape function with discontinuous features to represent the
discontinuity in the element [488], which allows the crack to propagate on any surface within
one element instead of along element boundaries. It overcomes the remeshing and mesh
dependency issues met in FEM and CZM.

The earliest work about the application of XFEM in hydraulic fracturing could be tracked
to [223] and [358]. In [223], an XFEM hydraulic fracturing model was developed by
introducing special tip functions encapsulating tip asymptotics encountered in hydraulic
fractures. In [358], the governing equations of XFEM for hydraulic fracture modelling were
derived based on the virtual work principle and considering water pressure on the crack
surface. The accuracy of the presented XFEM hydraulic fracturing model is verified, and the
advantages of XFEM in modelling hydraulic fracturing are given.

The LEFM is adopted as propagation criterion in [157, 158, 99, 107] to model hydraulic
fracturing in an elastic medium with XFEM. In [157], two novel XFEM-based schemes were
proposed to couple the equations governing hydraulic fracture propagation, which proves
the capability of coping with various tip behaviours and propagation regimes encountered in
hydraulic fracturing modelling. In [158], a novel implicit level set algorithm was employed to
resolve the singular free boundary problem for hydraulic fracture propagation without a fluid
lag. In [99], with an energy-based criterion, an XFEM complex hydraulic fracturing model
was established to investigate the influence of in-situ stresses, rock toughness, natural-fracture
cement strength and natural fractures orientations on the hydraulic fracturing patterns. The
model was later extended from 2D to 3D in [107] to investigate the interactions between a
hydraulic fracture and a pre-existent fracture. It is found that the energy release rate has an
important effect on the hydraulic fracturing propagation process.

Instead of using LEFM, the CZM implemented with interface elements is employed in
[440, 267, 214, 432]. In [440], lower-dimensional interface elements were developed to rep-
resent discontinuities, and local enrichment approximations for a discontinuous displacement
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was adopted. With the modified XFEM, the method demonstrates its ability in dealing with
multiple fractures and hydraulic fracturing problems. A fully coupled numerical model was
developed in [267] combing both CZM and XFEM. Later, the model was extended to model
the dynamic mixed-mode crack propagation in saturated porous media in [214], in which
two alternative computational algorithms, namely the partitioned solution algorithm and the
time-dependent constant pressure algorithm, are employed to compute the forces exerted on
the fracture surfaces by fluid pressure. Instead of simulating the fluid inside and outside the
fracture separately, a novel hydraulic fracturing model based on XFEM was presented in
[435], where the fluid is simulated in a unified framework by considering the fracture as a
special porous medium. Under the unified framework, the model demonstrates its ability in
modelling the fluid flow in the complex fracture network. In [465], a novel XFEM method
was proposed to simulate the nonlinear hydro-mechanical process in crossing fractures with
a new junction enrichment function for the discontinuous of pressure across the T-shaped
fracture. With the method, the fracture interaction phenomenon is investigated. In [311], a
3D numerical model of hydraulic fracture propagation was developed, which enables a full
coupling between fluid and solid rocks based on an improved XFEM enrichment technique.
The ability of the model in simulating complex non-planar fracture geometries and multiple
fracture intersections are demonstrated.

In summary, compared with FEM, XFEM circumvents the difficulties of remeshing at
each calculation time step and allows to simulate hydraulic fractures in complex geometries.
However, when dealing with multiple fractures or fracture intersections, special enrichment
needs to be developed to account for the discontinuous at junctions and the computational
cost increases.

The boundary element method (BEM)

The BEM is designed for solving boundary value or initial value problems and formulated in
terms of boundary integral equations [243]. Compared with FEM, BEM has the following
advantages: (1) discretisation is only required at boundaries of the domain, which reduces
the computational cost; (2) the commonly used fracture propagation criterion, namely the
stress intensity factor in LEFM, can be easily computed with BEM.

As a kind of BEM formulation designed for solving the issue of the coincidence of crack
nodes [265], the displacement discontinuity method (DDM) is the most commonly used
formulation of BEM in hydraulic fracturing. In [116], a general DDM was presented to deal
with the problems with curved and straight-line cracks. With this method, crack reorientation
in hydraulic fracturing was simulated, and the effect of fault on crack reorientation was
investigated. A 2D DDM-based model that can separately track the crack tip and the fluid
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front was developed. Later, the model was employed to study the effects of frictional be-
haviour and re-initiation from flaws on fracture growth in [478]. In [479], an investigation of
fluid-driven fracture growth in naturally fractured reservoirs with simple network geometries
based on DDM was conducted. In [290] and [291], a numerical model based on DDM has
been developed to investigate the mechanical interaction between the hydraulic fracture and
preexisting natural fractures. Though hundreds of fracture tips can be simulated simulta-
neously, the pressure distribution resulting from the fluid flow along the fracture network
has not been solved and a simplified constant pressure boundary condition has been used
for all fracture segments. A novel fracture-propagation model that does not require constant
pressure boundary condition was developed in [452], where multiple-hydraulic-fracture prop-
agation from a horizontal wellbore is modelled. The DDM is used for deformation, while the
lubrication theory is used for fluid flow. The physics-based complex fracture network is then
imported into reservoir models to conduct production. Later, the model was extended to 3D
in [453] to investigate the effects of perforation-cluster spacing, differential stress, and the
geometry of various natural fractures on fracture complexity.

Several fully 3D models of hydraulic fracturing have been developed with BEM [72,
430, 365, 462]. As one of the most commonly used models, HYFRANC3D, based on
the 3D fracture analysis code (FRANC3D) and developed by the Cornell fracture group
[72], is capable of modelling multiple, arbitrary, non-planar 3D fractures patterns. The
maximum circumferential tensile stress and minimum strain energy density criterion are
employed as propagation criteria. The lubrication theory is used for governing the fluid
flow inside the fracture. The Carter leak-off model is adopted for leak-off (fluid seepage),
and the poroelastic effect is neglected. The HYFRANC3D is used to study the non-planar
propagation of a single hydraulic fracture and the interaction between closely spaced but
disjoint hydraulic fractures [342, 117, 183]. The other BEM-based fully 3D models include
the model developed by [430] and [462] based on DDM, and the model developed by [365]
and [73] based on symmetric Galerkin boundary element method (SGBEM). Based on DDM,
three different components, including stress/displacement analysis, fluid-flow analysis and
the propagation criterion, were described, and two parallel penny-shaped hydraulic fractures
were simulated in [430]. In [462], a three-dimensional simulator of the fracturing process was
developed to model multiple fracture propagation from different wellbore cases. Based on
SGBEM, a single hydraulic fracture from an inclined wellbore under varying in-situ stresses
with different layers was investigated in [365] and the simultaneous growth of non-planar
hydraulic fractures and the stress shadows from hydraulic fractures created were investigated
in [73].
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The BEM offers clear advantages: the stress field in the vicinity of the crack tip can be
accurately calculated, and the computational efficiency can be greatly increased due to the
reduction of the dimension. Nevertheless, for hydraulic fracturing problems with advanced
constitutive models such as elastoplasticity, more efforts for the discretisation and more
computational cost are required [360].

The phase field method (PFM)

Based on the principle of minimum total potential energy, the phase field method (PFM)
solves a fracture problem as an energy minimisation problem, which turns the intact material
into a broken material smoothly instead of treating cracks as strong discontinuities. The PFM
overcomes difficulties in modelling complex crack problems in three dimensions since the
fracture shape is controlled by the variable, and the fracture propagation is obtained through
the solution of the differential equation [485].

Because no special treatment is required in fracture propagation criteria, the PFM enjoys
great popularity in the study of hydraulic fracturing. To the best of the author’s knowledge,
the first PFM-based hydraulic fracturing model is developed by Boudin et al. [58]. The
model is capable of simulating hydraulic fracturing in a linear elastic impermeable material.
The pressure along the fracture surface is assumed to be uniform, and the propagation
regime is toughness-dominated. Later, the model was extended from brittle media to porous
media in [468]. Mikelic and his co-workers made essential contributions [258, 256, 226].
In [258, 256], a phase field model for a fluid-driven fracture in a poroelastic medium was
developed where the pressure field is determined simultaneously with the displacement. The
phase-field variable is used as an indicator function to combine reservoir and fracture pressure.
The reservoir heterogeneity is considered, and the intersection between hydraulic fracture
and natural fractures in porous media is successfully modelled. Later, in [226], the model
was extended to a proppant-filled fracture model by incorporating a power-law fluid and
proppant transport. A formulation for the robust numerical treatment of a four-field system
for coupling displacements, phase-field, pressure and proppant concentration is proposed.
Miehe and his collaborators have also made contributions to hydraulic fracturing with PFM
[255, 253]. In [255], a formulation incorporating alternative crack driving forces and a
concept for a Poiseuille-type fluid flow with an evolving anisotropic permeability tensor
were proposed. A modelling framework for the analysis of hydraulic fracture in porous
media was demonstrated by a benchmark simulation of 3D hydraulic fracturing propagation
with existing natural fractures. The model was further developed in [253], a macroscopic
framework for a continuum phase field modelling of fracture propagation is proposed, which
provides a rigorous geometric approach for a diffusive fracture modelling based on the
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introduction of a constitutive balance equation for a regularised crack surface and its modular
linkage to a Darcy–Biot-type bulk response of hydro-poroelasticity. The performance of the
formulation is demonstrated by simultaneous propagation of 3D multiple hydraulic fractures.

Modelling hydraulic fracturing based on PFM is a quite hot topic since PFM has the
following advantages: (1) remeshing is not required with the fracture propagation, which
makes it suitable for 3D modelling of complex crack patterns; (2) external propagation
criteria are not required since fracture propagation is a natural outcome of the solution of
the equation, which makes it easier to simulate intersections between the hydraulic fracture
and natural fractures; (3) the heterogeneity is easy to be introduced into the solution scheme.
However, the advantages of PFM do not come without a cost, at least for the current PFM
models. The computational cost of PFM simulation is high, especially when a relatively sharp
interface is to be captured. Very fine mesh and small time steps are essential for validation
with semi-analytical analytical solutions.

The discrete element method (DEM)

Albeit originally developed in [98] for the modelling of jointed structures and granular
materials, the discrete element method (DEM) has also been used in the modelling of
fracturing and fragmentation, where the discontinuities are the natural outcome of the
deformation process and control the mechanical behaviour. As a discontinuum method, the
DEM treats a material medium as an assembly of distinct particles. The motion of particles
is governed by Newton’s laws, and forces between particles are calculated according to
the small overlap between them. A variety of numerical software based on DEM has been
developed, among which the UDEC, 3DEC and PFC2D are popular software for hydraulic
fracturing.

The UDEC stands for Universal Distinct Element Code (UDEC), and 3DEC is the 3D
version. In [480], UDEC was employed to investigate the effects of hydraulic fracture
patterns and far-field stress conditions for different wellbore pressures, which obtains a better
understanding of wellbore instability. In [273], the effects of in-situ stress, rock strength
parameters, rock mass major discontinuities on the fracturing process were investigated
with UDEC. The results show that the in-situ stress, rock strength parameters, and rock
mass major discontinuities have a strong influence on hydraulic fracturing. In [172], a three-
dimensional hydraulic fracturing model in intact rock with 3DEC was presented. The effects
of in-situ stress and rock properties on hydraulic fracturing are investigated. Compared
with rock properties, the in-situ stresses have more influence on hydraulic fracturing. In
[272], the simulation of hydraulic fracture propagation in a naturally fractured rock mass
was conducted with 3DEC. Critical factors that control the interaction between hydraulic
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fracture and natural fractures are summarised, including the natural fracture network, the
mechanical properties, the in-situ stress and the operational parameters like injection rate,
fluid viscosity, and injected volume.

The PFC stands for Particle Flow Code, which has also been used in hydraulic fracturing
simulation but restricted in 2D models currently. PFC differs from UDEC and 3DEC in three
aspects: (1) the discrete elements (disk in 2D and sphere in 3D) are forced to be rigid while
the blocks in UDEC or 3DEC can be either deformable or rigid; (2) interaction between
discrete elements is easier to be implemented in PFC compared with UDEC or 3DEC, which
makes the PFC more efficient; (3) the extent of displacement is essentially not limited in
PFC [436]. In [12], the acoustic emissions results obtained from a further developed PFC2D
hydraulic fracture model was compared with the experimental results. It is found that the
hydraulically induced fracture in the granite sample is predominantly caused by tensile
failure, and the shear cracks recorded in the experiment were due to slip on natural fractures.
Later, the interaction between hydraulic fracture and a preexisting fracture presented by
weakened normal and shear bonds was investigated with a similar model in [482]. In [476],
an explicitly coupled hydro-geomechanical model in two-dimensional Particle Flow Code
(PFC2D) was employed to investigate the effects of different parameters on the interaction
between hydraulic fractures and natural fractures. It is found that under higher intersection
angle, higher in-situ differential stress states, higher fracturing fluid injection rate and fluid
viscosity conditions, the hydraulic fracture becomes less likely to be arrested by the natural
fracture. In [240], the mechanism of hydraulic fracture behaviour in a heterogeneous reservoir
under the stress perturbation was analysed with an improved PFC2D model. It is found that
both the stress wave frequency and situ stress ratios have a non-negligible influence on the
hydraulic fracturing process.

In some problems, DEM can be combined with FEM, where DEM is used to model
the interaction between different solid regions produced by fracturing and FEM is used to
analyse deformation of each solid region based on the specific constitutive model. Using
the combined FEM and DEM method, a commercial software called ELFEN is developed
[362]. It presents a real transition from a continuous medium to a solid with discrete fractures
by dynamically inserting cracks into the model with adaptive remeshing. In [322], the
propagation of hydraulic fracture in 2D intact or naturally fractured reservoir was simulated
with ELFEN. In [445], Leak-off was added and propagation of hydraulic fracture in 2D
naturally fractured reservoir with two sets of natural fractures was simulated. The capacity of
ELFEN in modelling hydraulic fracturing in complicated conditions was further demonstrated
in [323], where nonplanar propagation of single hydraulic fracture and interaction between
hydraulic fractures were simulated in 3D rock mass. In addition, proppant transport, flowback
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and clean-up of fracture region and gas production have been added into ELFEN, which
makes it an integration of hydraulic fracturing simulator and reservoir simulator.

Compared with the continuum methods, DEM considering hydraulic fracturing from a
more microscopic perspective. The advantages of DEM in hydraulic fracturing are: (1) the
remeshing problem with the fracture propagation process is circumvented; (2) no additional
fracture criteria are needed, and fracture behaviour like fracture initiation, propagation,
branching and intersection are the natural outcome of the solution of equation system; (3) it
is suitable to study the hydraulic fracturing in heterogeneous materials and fracture networks.
However, its limitations are obvious: a large scale simulation of hydraulic fracturing leads
to high computational cost, which is easily influenced by many factors, such as particle
numbers, particle shapes and contact force models [201].

2.1.5 Summary and Prospective Work

This section provides an overview of fracture propagation, including the hydraulic fracture
physical process, the development of fracture propagation models, and various numerical
methods. In terms of the hydraulic fracture process, three basic processes are included:
(1) the mechanical deformation; (2) the fluid flow within the fracture; and (3) the fracture
propagation. In addition to the three basic ones, the poroelastic effect is also considered.
The historical development of several classic hydraulic fracturing models, including the
PKN model, the KGD model, the radial model, the P3D model and the PL3D model, are
introduced. Compared with 2D models and the P3D model, both the flexibility and the
accuracy of the PL3D model are improved, which in turn also increases the computational
cost.

More importantly, various numerical methods applied in fracture propagation are re-
viewed, and their advantages and limitations are highlighted. The FEM has flexibility and
universal applicability in dealing with fracture propagation problems under various condi-
tions but encounters challenges with remeshing, crack tip singularity and calculation cost for
multiple fractures. The XFEM is independent of mesh, but special enrichment needs to be
developed to account for the discontinuous at junctions when dealing with multiple fractures
or fracture intersections. The BEM has an advantage in computational efficiency due to its
relatively easy implementation of mesh updating. At the same time, it is not suitable for
modelling heterogeneous formation properties and complex constitutive models (e.g. elasto-
plasticity). The PFM is easy to be implemented in 3D space and heterogeneous materials,
and remeshing is avoided when dealing with the complex intersection of fractures. However,
it has an expensive computational cost when a fine mesh is required for accuracy. DEM does
not need a specific propagation criterion for modelling, and remeshing is not required with
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fracture propagation. It is suitable to study fracture propagation in heterogeneous materials or
fracture networks. However, a drawback of DEM is that the computational cost is influenced
by many factors, resulting in difficulty in the determination of reasonable particle size and
parameters.

Despite a bunch of references and noteworthy contributions, the theoretical and numerical
aspects for fracture propagation are yet to be investigated, including but not limited to
the following: (1) The physical mechanism behind fracture propagation, especially in
heterogeneous material or fracture networks. The effects of different parameters from the rock
formation and the fluid properties on fracture propagation still need to be further explored. (2)
How to simulate the fracturing more realistically. Compared with real fracture propagation
problems, the current models solve the complex fracture geometry with relatively simple
geological conditions. The capability of simulating complex three-dimensional fractures in
reservoir scale needs to be improved to better define the petroleum industry’s completion
design and injection schedule. (3) Numerical approaches need to be developed to increase
the robustness and computational efficiency of the model.

2.2 Review of crack branching phenomenon

2.2.1 Introduction

Crack branching is encountered in many practical engineering problems, and is particularly
common in brittle materials and metal alloys with stress corrosion cracking [206, 287].
As shown in Fig. 2.8, crack branching can occur symmetrically or asymmetrically. The
study of crack branching phenomena, including branching mechanisms, branching criteria,
experimental measurement and numerical simulation, is of great significance for robust
and reliable prediction of crack propagation. A good understanding of the initiation and
propagation of cracks inside structural materials is important for preventing catastrophic
failure of engineering components and for developing new materials.

The theory of straight line crack expansion is basically mature, with the help of three main
types of investigation techniques, namely experimental, analytical and numerical techniques.
The mechanism for crack propagation is examined using the simple energy balance theory:
the crack occurs when the energy available for crack growth is sufficient to overcome the
resistance of the material [16]. In linear elastic fracture mechanics, the propagation criteria
of a single steady crack are mainly based on the concept of stress intensity factor or energy
release rate. While in nonlinear fracture mechanics, the J-integral is often applied, which
can be viewed as a nonlinear stress intensity parameter or energy release rate. However, the
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(a) Symmetrical crack branching [347]. (b) Asymmetrical crack branching [352].

Fig. 2.8 Crack branching photographs from experimental results.

mechanism for crack branching is more complex and still in exploration. The propagation
velocity was thought to be a determining factor in crack branching: when the crack velocity
exceeds the critical value, the stress field in front of the crack tip changes and branching
occurs. However, it was later found that experimentally observed crack velocities at crack
branches were much smaller than the theoretical ones [347], consequently, other mechanisms
were considered, including instability caused by interactions between microcracks and the
existence of micro-scale variations in the symmetries, criteria based on the stress intensity
factor and energy release rate. If near-tip instabilities are suppressed, then supersonic cracks
are also possible [165]. While many studies on the crack branching phenomenon have been
performed both experimentally and theoretically, a uniform theory that accounts for dynamic
crack propagation instability and crack branching remains an open question.

In addition to the experimental and analytical techniques, numerical simulations are also
employed to study crack branching. Various crack models and numerical methods have been
proposed to simulate crack initiation and propagation including crack branching and intersec-
tion with reasonable computational cost, and both crack propagation velocity and branching
angles have been correctly predicted. With the development of numerical techniques, the
modelling of complex crack propagation processes has become more accurate and robust,
while the mechanism of crack branching has been further understood. Dependent on how
cracks are represented, the crack models essentially divide into two categories: discrete
crack models and smeared crack models. Popular discrete crack models usually represent the
fracture topology explicitly, which include remeshing, element deletion, cracking particles,
enrichment and cohesive zone models. Smeared crack models average the crack over a
certain width without explicit tracking of fracture surfaces, and they include phase field,
nonlocal, gradient and viscous models. Based on whether spatial derivatives are employed
in the controlling equation, the main numerical methods for crack branching can also be
summarized in two categories: the continuum methods and discontinuum methods. The con-
tinuum methods model the domain as a continuous body and use partial differential equations
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with spatial derivatives to describe the underlying physics. They include the finite element
method (FEM), the extended finite element method (XFEM), the boundary element method
(BEM), and the meshfree methods (MMs). Spatial derivatives are avoided in discontinuum
methods. The peridynamic method (PD) and the discrete element method (DEM) are two
commonly used discontinuum methods. We note that each numerical method has its own
advantages and disadvantages, and no consensus has been reached for the general numerical
simulation standard of crack branching.

While dynamic crack propagation has been investigated in the literature [142, 349],
there has been little effort to systematically examine crack branching. Therefore, the aim
of this section is to summarize the research on crack branching and lead to an improved
understanding of branching mechanisms and the study direction in the future. The structure
of the section is arranged as follows. The experimental results on crack branching are
summarized in § 2.2.2. Based on the experimental results as well as the theoretical derivations,
the physics of crack branching is provided in § 2.2.3, which includes § 2.2.3 describing the
causes of crack branching and § 2.2.3 describing commonly used branching criteria. § 2.2.4
summarises and compares different crack models and numerical methods for crack branching.
Finally, § 2.2.5 summarises the existing findings related to crack branching, highlights some
of the most demanding outstanding questions, and indicates potential directions for future
research.

2.2.2 Experimental Observations of Crack Branching

A number of experimental studies on dynamic crack propagation have been carried out to
provide qualitative observations and quantitative data for the explanation of crack branching
phenomena. In this subsection, the important experimental results are reviewed in chrono-
logical order and wherever applicable these experiments are summarized: (1) from the
observation and measurement techniques, for example, the high speed photography and
electronic timer; (2) from the experimental material, which includes inorganic glass, Plex-
iglas, Holmalite-100; (3) with respect to loading conditions such as dynamic loading and
quasi-static loading; (4) from the research objectives, including the conditions under which
crack branching occurs (crack tip speed, stress intensity factor and its rate) and how crack
propagation proceeds after branching (e.g. the branching angle).

Pioneering work was performed in [374] on observing crack branching in inorganic
glasses with a multiple spark camera technique. We note that the crack speed remains at a
constant value when crack bifurcation occurs. A significant decrease of crack speed only
occurs when hackle marks appear as a result of surface energy increase. The number of
crack branches greatly increases when increasing loading stress. Crack surface undulation
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was predicted by imposing stress waves with ultrasonic transducers and the crack speed was
measured in [211]. It is found that the limiting velocity is highly related to the composition
of inorganic glass. The dynamic fracture toughness of Homalite-100 and crack propagation
velocity variation with dynamic photoelasticity were determined in [220] and [100]. In [100] ,
the equation describing the relationship between the number of branches, the arrest toughness
and branching toughness based on the experiment data was further modified. The number of
branches is in proportion to the ratio of branching toughness to arrest toughness. The dynamic
crack propagation and branching problem was examined in Homalite-100 comprehensively
using high speed photomicrography with the load triggered by an electrical pulse [350–353].
A series of important conclusions were obtained: (1) the stress intensity factor increases
while crack velocity remains constant, and there exists a quantitative correlation between
the stress intensity factor and the fracture surface roughness (mirror, mist and hackle); (2)
from macroscopic examination of the fracture surface, it was found that crack dissipates
excess energy supplied to the crack tip by creating a rough surface rather than by changing
the velocity of crack propagation; (3) from microscopic observations of fracture surface
roughness, it was found that crack branching is a natural evolution from a “cloud” of
microcracks that accompany and lead the main crack; (4) The terminal velocity in Homalite-
100 was found to be 0.45cR, about half of the Rayleigh wave speed cR.

Following the work in [350–353], the micro-branch instabilities were investigated with a
series of experiments performed on thin sheets of Plexiglas (PMMA) in [133, 134, 386, 385,
387]. An experimental system was designed in [133], where the resistance voltage increases
as a crack progresses across a sample and cuts the conductive layer, the crack tip velocity is
measured by detecting the voltage. By plotting the evolution of crack velocity during crack
growth, the existence of dynamic instabilities in a brittle fracture is detected. It is found in
[134] that once the crack velocity is greater than a critical value, dynamic instabilities occur
and the amplitude of the oscillations depends linearly on the mean velocity of the crack.
To explain the origin of instability, the presence of microscopic local crack branching was
investigated as a possible source for instability in dynamic fractures occurring in thin sheets
of brittle PMMA in [386]. The crack micro-branches are observed and measured optically
and a connection between microscopic and macroscopic crack branching is established.
Later, with the same experiment system, both the energy flux into the tip of a moving
crack and the total surface area created via the microbranching instability were measured
in [387]. It is found that a crack does not need to dissipate increasing amounts of energy
by accelerating because it has another option of dissipating energy by creating an increased
fracture surface, which provides an explanation for why the theoretical limiting velocity
of a crack is never realized. Readers are referred to [135] for a comprehensive review of
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the early work on the micro-branching instability. In recent years, under the help of brittle
poly-acrylamide gel (an aqueous elastomer), which enables probing the fracture process
in unprecedented detail by high-speed cameras, a number of important experiments have
been carried out to study the dynamic fracture process [56, 57, 55, 244]. These experimental
developments have been reviewed in [132] and it has been shown that (1) an intrinsic length
scale, which is associated with nonlinear elastic deformation near the crack tip, plays an
important role in dynamic instabilities; (2) dynamic instabilities include micro-branching
instabilities and oscillatory instabilities. The micro-branching instability may be closely
related to the oscillatory instability and it appears to be an intrinsically 3D instability instead
of a 2D instability. Further discussions about the physics of crack branching can be found in
§ 2.2.3.

A necessary and sufficient condition for crack branching was proposed by [347] (see
further discussions in § 2.2.3). The criteria was verified in [177] by using the 16-spark-gap
camera to record the dynamic photoelastic patterns of curving and branching cracks in
Homalite-100 specimens under biaxial loading conditions. Increasing the biaxial stress ratio
of horizontal loading to vertical loading and the stress level increases both the curvature
and the number of branching cracks. The modes of energy dissipation in dynamic crack
propagation and branching process in Homalite-100 were investigated in [176] by using a
potential drop technique and qualitative comparisons with PMMA were made. Fast-growing
cracks before and after bifurcation were investigated in [418] by using high-speed holographic
microscopy and obtained the crack branching velocity, branching angles, and energy release
rate in Homalite 100 and Araldite B. In Homalite 100 the crack branching velocity is 0.48CR

with an average branching angle of 17±6◦, and in Araldite B the crack branching velocity
is 0.46CR with an average branching angle of 16± 4◦. The energy release rate increases
gradually and continuously across the bifurcation point both in Homalite 100 and in Araldite
B and PMMA. It was observed in [270] that the branching patterns of PMMA single edge
notched tensile specimens with scanning electron and optical microscopes and measured
the crack propagation speed by electrical resistance methods. Each macroscopic branch is
accompanied by many small cracks along its length with most crack branches being straight.
The experimental results indicate that crack branching is a natural outcome of the growth
and coalescence with microcracks. Both subsurface damage and the frequency of crack
speed oscillations increase during the branching process. An example of using digital image
correlation (DIC) to investigate the cracking process and branching mechanisms in lightly
reinforced concrete beams was given in [129]. The DIC can visualise surface displacement
by tracking the deformation of a random speckle pattern applied to the surface through
digital images acquired at different instances of deformation [405]. Crack branching angles
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and propagation path are found to be related to the beam height and ductility. Another
technique, called digital gradient sensing (DGS), employs 2D DIC with an elasto-optic
effect to directly quantify both crack-tip fields and crack speeds. Using this technique, the
branching phenomenon was investigated in soda-lime glass in [416]. This study overcomes
measurement challenges such as low fracture toughness and high crack propagation speed
and proposed that the critical material length scale can be a criterion for crack branching.
Compared with normal observation and measurement techniques, the DIC and DGS have
advantages of lower cost and simpler operation.

The advantages and disadvantages of different observation and measurement techniques
are summarised in Table 2.1. In order to better explore the mechanism of crack propagation
and branching, current research on experimental methods is focused on both the improvement
of experimental technologies to overcome existing shortcomings and the development of
new experimental technologies. With respect to testing materials, most experiments have
adopted inorganic glass, Plexiglas, and Holmalite-100. The limiting velocity is studied
in different materials and it is found that the limiting velocity is 0.5 ∼ 0.65cR for glass,
0.6 ∼ 0.7cR for PMMA and 0.35 ∼ 0.45cR for Homalite-100 [42]. The branching angles are
also investigated although they are easily influenced by the loading conditions, geometry and
material properties. From a macroscopic viewpoint, the angle subtended by the new branch
(immediately after branching) and the original crack plane typically lies between 10◦ and
45◦ [108]. For different materials, detailed experimental results on branching angles can be
found in [135, 108, 221]. The branch shape and branch number are also influenced by the
loading conditions, geometry and material properties. The increasing of loading stress may
lead to the increasing of branch number of the cracks while the loading conditions, geometry
and material properties may have an impact on the branching angle as well as the branch
curvature, thus, the branching shape.

Table 2.1 Experimental techniques for crack branching.

Techniques Advantages Disadvantages

High Speed
Photography

(photoelasticity [100, 220], caustics [219],
holographic microscopy [417, 418])

high temporal and spatial
resolution high cost

(DIC [405], DGS [416])
high resolution, low cost,
simple experimental setup

low measurement accuracy
in stress concentrations (DIC)

Wallner Lines
(stress wave fractography [192])

accurate measurement for
crack speed low spatial resolution

Electrical Resistance Methods [195, 270] high spatial resolution
sensitive to the variation of
film thickness
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2.2.3 Physics of Crack Branching

Causes of Crack Branching

Many attempts have been made to explain the crack branching phenomenon. One of the
classical theories is from [467]. On the assumption that the crack propagates along the
direction normal to the maximum stress, when the velocity is lower than the critical velocity
0.6cS, where cS is the shear wave speed, the crack propagation process remains at a steady
state. When the crack velocity exceeds this critical value, the propagation process becomes
unstable. The stress state at the crack tip will change, and the hoop stress in the vicinity
of the crack tip will have a maximum angle of about 60◦ from the propagation direction,
which may lead to crack branching, as shown in Fig. 2.9. By considering a crack growing
from zero initial length at a uniform velocity rather than staying constant length, Yoffe’s
analytical model was further improved in [61]. It is reaffirmed that crack branching occurs if
the velocity exceeds 0.6cS. The aforementioned studies suggest that the crack propagation
become unstable and cracks are more likely to start branching when the velocity exceeds
a critical value. This mechanism is corresponding to the “velocity criterion”, see details
in § 2.2.3. Though this mechanism is not sufficient to explain the branching phenomenon,
the velocity criterion resulting from it is often employed in numerical simulation due to its
simplicity.

Fig. 2.9 Yoffe’s crack branching model [467].

An alternate attempt to explain crack branching is via the viewpoint of energy. By
assuming the energy inputting into the crack and the energy required to create new branch
surfaces is balanced, it is argued in [124] that the crack tip velocity should at least be 0.5cR

to allow the energy at the crack tip to be sufficient enough to create new surfaces for crack
branches, where cR is the Rayleigh wave speed. However, according to the experimental
observations, the crack velocity does not change significantly before and after crack branching
[352]. An explanation to that is given in [147], which proposed a more definitive analytic
model called the wavy-crack model, where two velocities are defined: the macroscopic crack
velocity va and the microscopic local velocity vc. If the crack speed is above 0.5cR, the crack
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propagates along a wavy path and the energy absorbed into the crack is used to increase vc

while va remains constant. This explains why the crack speed does not decrease much after
branching.

Another possible explanation is given in [352], which suggested that there exist many
microcracks in front of the main crack as shown in Fig. 2.10, and branching is a natural
outcome of the growth and coalescence of the microcracks. In Homalite-100, a varying
fracture surface roughness during branching, ‘mirror’, ‘mist’, and ‘hackle’, can be observed
[351], see Fig. 2.11. The fracture processes that occur over a spatial domain comparable to
the surface roughness dominate the dynamics of crack growth. Initially, a crack propagates
with a mirror-like fracture surface. Then, because of the coalescence of microvoids or
preexisting defects ahead of the crack, the crack surface may become rough and subsequently
microcracks form. The microcracks within the fracture process zone interact with each other
and form micro-branches, which results in the final crack branching.

Fig. 2.10 Ravi-Chandar’s micro crack model [352].

Fig. 2.11 Typical ‘mirror’, ‘mist’ and ‘hackle’ regions are identified in Homalite-100 [351].

Following the work of [350–353], micro-branches and their instability have been studied
in great detail recently [134, 386, 385, 387, 135, 56, 57, 55, 244, 132, 245]. Using dynamic
instabilities, these studies explain a number of long-standing problems in the dynamic fracture
of amorphous including (1) velocity oscillations and limiting velocity, (2) fracture roughness,
(3) the origin of the large increase in the energy dissipation of a crack with its velocity
and (4) transition to crack branching. A detailed discussion about velocity oscillations and
limiting is given in § 2.2.3. When the crack velocity exceeds the critical value (limiting



54 literature review

velocity), the velocity begins to oscillate rapidly [134]. A good correlation is demonstrated
between the measured crack velocity and appearance of fracture roughness on the fracture
surface [385]. The initial crack with a velocity lower than the critical crack velocity vc

corresponds to a mirror-like fracture surface. After achieving the critical crack velocity vc,
the velocity begins to oscillate. As the velocity increases, rib-like patterns observed on the
fracture surface become more apparent. Microscopic branches have also been observed
when the velocity exceeds the critical value, see Fig. 2.12. These characteristic features are
independent of the brittle material due to the fact that in two extremely different classes
of material (poly-acrylamide gel and soda-lime glass), identical characteristic behaviour
is observed [245]. The origin of the large increase in the energy dissipation of a crack
with its velocity can also be explained by the micro-branching instability [387]. When
micro-branching instabilities occur, the energy dissipation of a crack increases because more
surfaces are formed by the micro-branches. As the velocity of the crack increases, transition
to crack branching occurs with the branches becoming longer and more numerous. Micro-
branches can smoothly transform to macro-branches with similar characteristic features of
crack branching exhibited between the micro-branches and macro-branches [386]. The onset
of the micro-branching instability therefore provides a well-defined criterion for the process
that eventually culminates in macroscopic crack branching. As the crack velocity increases
larger than the critical velocity, the branch width increases and the surface roughness diverges.
This transition may be a sufficient condition for macroscopic crack branching to occur [385].
The dynamic instabilities have been further studied with a series of theoretical analysis in
[56] and with experiments in brittle gels in [244]. A weakly nonlinear theory of dynamic
fracture has been introduced, which implies that the understanding of crack instabilities
requires the introduction of new physical ingredients, e.g. length scales [56, 57, 55]. Intrinsic
nonlinear scales in the near-tip region play a decisive role in dynamic crack instabilities.
A comprehensive review of important experimental and theoretical work in dynamic crack
instabilities was given in [132], which states that the micro-branching instability is an
intrinsically 3D instability and to understand the dynamic instabilities, the framework of
fracture mechanics should be extended to include 3D crack propagation.

Through theoretical analyses, the crack branching mechanisms including dynamic crack
instability and 3D microbranching instability were systematically studied in [5, 3, 4, 210, 6].
Dynamic crack branching instability under general antiplane loading [3] and under general
loading [4] are studied and the path and geometry of the branched crack are predicted. It
is shown that after branching the in-plane elastic fields immediately exhibit self-similar
properties, and the jump in the energy release rate is maximized. Under this assumption, the
crack branching phenomenon, which is found to be energetically possible, may be seen as a
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Fig. 2.12 Three aspects of the evolution of the branching instability as the crack propagates
from left to right [385]. (a) The velocity of the crack is a smooth function of time when
v < vc, the crack velocity starts to oscillate when v ∼ vc, the oscillation amplitudes increase
when v > vc. (b) The fracture surface is smooth when v < vc, small regions of different
texture are distributed along the surface when v ∼ vc, these regions coalesce, forming a
periodic pattern with wavelength on the order of 1 mm when v > vc. (c) A single crack is
observed when v < vc, micro-branches appear when v ∼ vc, , and increase in length when
v > vc.

dynamic instability in which a self-similar single crack propagation would lose its stability at
some point dependent on crack velocity [210]. Later, in [6], the 3D out-of-plane nature of
crack front waves (generated by both the interaction of a crack with a localized material in
homogeneity and the intrinsic formation of micro-branches [384]) and the microbranching
instability with the Willis-Movchan 3D linear perturbation formalism were investigated. It is
demonstrated that within a minimal linear elastic fracture mechanics scenario, the existence
of an out-of-plane crack front instability is dependent on critical velocity, which may trigger
a 3D microbranching instability, and its fractographic implications.

For materials like inorganic glasses, where microcracks cannot be found in front of
the main crack, different mechanisms have been proposed. It is suggested in [192] that
micro-scale variations lead to twisting and tilting of the stress vector near the crack tip, cause
local instability to the dynamic properties of cracks, and are responsible for the increase of
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crack surface roughness and crack branching. The surface roughening are explained in [384]
and [50] from the interaction of the shear wave with the tip of the growing crack. The shear
wave proves the existence of front waves in dynamic fractures. The front waves feature an
out-of-plane component, which leaves marks on the fracture surfaces and causes surface
roughness and crack shape perturbations [132].

Though crack branching in dynamic fractures has long been observed and investigated
in various literatures, up to now, there has not been a universally agreed-on explanation for
crack branching mechanisms. Based on the above work, the mechanisms of branching can
be summarized as: (1) the increase of the velocity may cause unstable crack propagation,
which causes crack branching; (2) the microvoids and microcracks may increase surface
roughness and the growth and coalescence of microcracks which form micro-branches
resulting in macro-branches with the energy absorbed in the crack relating to the limiting
velocity; (3) the dynamic instability plays an important role. Cracks undergo an oscillatory
instability controlled by small-scale, near crack-tip, elastic nonlinearity, and this oscillatory
instability may trigger microbranching instability, which provides a well-defined criterion
for the process that eventually culminates in macroscopic crack branching; (4) the crack
front waves and the tilting and twisting of the stress vector at the crack front may cause local
dynamic instability, increasing of crack surface roughness leading to crack branching.

Branching Criteria

Crack branching criteria tend to be artificially formulated based on physical mechanisms to
improve crack branching simulation. We divide the criteria into two types: external criteria
and internal criteria. Here, “external” means that in the numerical simulation additional
criteria are needed to determine how the crack branching occurs. The criteria required in a
whole process for branching simulation include criteria for crack initiation, criteria for crack
propagation, criteria for crack branching time and criteria for branching angles. A series
of studies on criteria for dynamic crack initiation and crack propagation are summarized
in dynamic fracture mechanics [142, 349]. The following discussion will focus on criteria
for branching time and branching angles, instead of being exhaustive. In contrast to the
“external”, “internal” means that no additional criteria are required, and any occurrence of
branching is a natural outcome of the simulation.

External criteria To determine the branching time, three commonly used criteria are
introduced, namely the velocity criterion, the stress intensity factor criterion, and the energy
criterion.
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Velocity criterion The velocity criterion suggests that once the crack tip velocity
exceeds a critical value, branching occurs. Note that there exists two branch types, namely
micro-branches and macro-branches, which are discussed separately here. Both theoretical
and experimental approaches have been used to investigate the critical velocity of a fast
moving crack.

An energy balance equation was given in [142], which considers a crack growing with a
nonuniform speed under time-independent/dependent loading:

Gdyn ≈ (1− v
cR

)KI
0(t, l(t),0) = γ (2.19)

where Gdyn is the dynamic energy release rate, v crack velocity, KI
0(t, l(t),0) the instanta-

neous stress intensity factor at time t for a stationary crack of length l(t) and γ the fracture
energy. Based on Eq. (2.19), the fracture energy for a moving crack will vanish when the
crack velocity v increases to the Rayleigh wave speed cR. Therefore, from the elastodynamic
fracture mechanics theory, the limiting velocity for crack propagation is no larger than the
Rayleigh wave speed. However, from an experimental view, it is found that only cracks on
the cleavage planes in crystalline materials grow at a rate close to Rayleigh wave velocity.
For cracks in noncrystalline materials, the limiting velocity of the crack is significantly
smaller than the theoretically predicted limiting crack velocity [349]. The reason behind this
phenomenon can be explained by dynamic instabilities [134].

The critical velocity for micro-branches states that once the velocity exceeds the critical
velocity vc, the crack propagation becomes unstable with the occurrence of velocity oscil-
lations, increase of surface roughness and microbranching [135]. The critical velocity for
instability and micro-branches has been investigated with experimental approaches. It is
found in [133, 134] that the critical velocity for crack propagation in PMMA is 0.36cR. It is
observed that the critical velocity for crack propagation in Homalite is 0.37cR in [176] and
[351]. The critical velocity for crack propagation is found to be 0.42cR in soda-lime glass in
[160]. Based on the experimental observations above, the existence of a critical velocity for
the instability of brittle fracture may be a universal aspect [134]. While micro-branches in-
stability is seen as one of the reasons for crack branching, the transition from critical velocity
criterion for micro-branches to critical velocity criterion for macro-branches is still unknown
[135]. The critical velocity for macro-branches is used to determine when macro-branches
develop. Theoretically, as discussed in § 2.2.3, various authors established models to analyse
the critical velocity. The critical velocity is assumed to be 0.6cS in [467], 0.5cR in [124]
and [147], 0.52cR in [4]. Experimentally, as discussed in § 2.2.2, the limiting velocity is
0.5 ∼ 0.65cR for glass, 0.6 ∼ 0.7cR for PMMA and 0.35 ∼ 0.45cR for Homalite-100.
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In addition, many experimental results show that the crack velocity does not change
significantly after branching [352]. These limitations have challenged or weakened the
velocity criterion for crack branching. However, due to its simplicity, the velocity criterion
is widely used in numerical simulation for crack branching. For example, a branching
model using FEM was proposed in [235], where branched elements are added to represent
discontinuities if the crack tip velocity exceeds a given threshold. The influence of different
critical velocities on branching was also investigated with the FEM-based model. With a
similar model, the crack propagation path and branching characteristics were also successfully
captured in [18]. An additional enrichment in XFEM was set up in [456] to describe crack
branching and adopted Yoffe’s criterion as branching time criterion. The crack branching
occurs when the maximum normalized circumferential stress occurs in two symmetrical
directions and at this moment the velocity is over 0.74cR. By comparing numerical and
experimental results 0.4cR they concluded that the crack velocity error was due to the velocity
criterion adopted.

Stress intensity factor (SIF) In elastodynamic fracture mechanics, the theoretical
framework is fairly well established through a series of analyses of a dynamically propagating
crack in an infinite body in [139–142]. Taking mode I crack as an example, the dynamic
crack growth criterion is given as:

KI
dyn(t,v) = KID (2.20)

where KI
dyn is the dynamic SIF, t the time, and KID the dynamic crack growth toughness.

For the left-hand side of the Eq. (2.20), theoretically, the dynamic SIF is related to both the
crack velocity and the instantaneous SIF of a stationary crack, which can be expressed as:

Kdyn
I (t,v) = k(v)KI

0(t, l) (2.21)

where k(v) is a function of crack velocity and KI
0 the instantaneous SIF of a stationary

crack with length l at time t. Numerically, the dynamic SIF can be calculated through
the J-integral or interaction integral. Unlike the calculation in quasi-static conditions, the
numerical calculation of the J-integral or interaction integral is no longer path independent in
dynamics. The reader is referred to the book [16] for more details. For the right-hand side of
Eq. (2.20), the crack growth toughness KID can be determined experimentally, and the K–v
relationship is often employed. Experimentally, it was found that the dynamic SIF is related
to crack velocity, however, the relationship is not unique, but an average can be obtained
[100, 349].



2.2 Review of crack branching phenomenon 59

By experimental investigations, it is indicated in [220] and [100] that branching occurs
when the SIF reaches a critical value that is between two and three times the quasi-static
fracture toughness of the material. It is suggested in [89] that the dynamic SIF should reach
a critical value for branching to occur at terminal velocity. Based on previous theoretical
and experimental studies on crack curving and crack branching, the following necessary and
sufficient conditions for crack branching are proposed [347]:

KI ≥ KIb → necessary condition

r0 ≤ rc → sufficient condition
(2.22)

where KIb is the critical branching SIF, and rc is the characteristic distance from the crack tip.
With experimental observations, it was concluded in [349] that a crack will split into two
or more branches if it reaches the critical stage identified by its SIF, and each branch will
propagate with the same speed as the parent crack. The SIF criterion is applied to decide crack
branching time when modelling crack propagation [217, 338]. Using the SIF-based fracture
criterion, a crack model of crack kinking and branching on the rock-concrete interface of a
gravity dam was developed in [217]. Using a time-domain BEM approach, the dynamic crack
propagation was examined in [338], where a critical mode I SIF was used for the branching
event and the maximum circumferential stress criterion was employed for determining the
branching angle and each branch’s growth rate.

Energy criterion The energy criterion is applicable to both linear and nonlinear fracture
mechanics, e.g. the energy release rate G and the J-integral. The crack extension occurs
when the energy available for crack growth is sufficient to overcome the resistance of the
material [472].

The branching criterion theory was proposed in [124] based on the balance between
the energy inputting into the crack and the energy required to create new branch surfaces.
Based on this study, with the help of the Griffith’s energy criterion and the principle of local
symmetry, a series of analytical solutions for crack branching problems were presented [3, 4].
The energy criterion was assumed to be a necessary condition for a branching configuration,
and the stress field in front of the crack tip, the branched shape and the dynamic branching
instability were predicted and analysed. A dynamic J-integral was proposed in [419], where
the energy flux per unit time into the crack tip was calculated. Once a given critical energy
release rate is surpassed, the branch occurs and an implicit prediction for branching path
is adopted. In [455], an energy-based fracture mode for the mode-I crack branching was
presented, where branching toughness was proposed, the branching critical energy release
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rate was derived and the branching angle was predicted. The criterion shows good agreement
with the experimental observations reported in the literature.

Criteria for branching angles After the branching time is determined, the next step
is to determine how the crack propagates with branching. The branching angle has been
studied both experimentally and theoretically. Experimentally, as discussed in § 2.2.2, the
angle subtended by the new branch (immediately after branching) and the original crack
plane typically lies between 10◦ and 45◦. Theoretically, the crack propagation direction
can be predicted by the maximum circumferential stress theory, the minimum strain energy
density factor theory, the principle of local symmetry and the maximum strain energy
release rate theory [347]. A comprehensive review of earlier analytical research work
on elastostatic and elastodynamic self-similar crack branching problems in homogeneous,
isotropic and elastic brittle solids was given in [108]. Later, a series of analytical research
work on elastodynamic crack kinking or branching problem were conducted in [5, 3, 4] and
a more general solution was given. The branching angles and crack path are determined by
calculating the elastodynamic stress field / the dynamic SIF associated with the propagation
of anti-plane kinked or branched cracks under general antiplane loading [3] and arbitrary
loading condition [4]. Later, the theory of dynamic crack branching in brittle materials was
further summarized in [210]. With the theory, a systematic analysis of the branching problem
is made and the critical velocity, the branching angle, the branching tip velocity, and the
subsequent branch path described by a curvature parameter are successfully predicted.

Internal criteria Internal criteria are combined with numerical methods and embedded
in the specific crack models, which leads to crack branching as a natural outcome of the
simulation. A simple way to judge whether a model or a method contains internal criteria is
to check whether branching angle criteria are required during simulation. If not, cracks are
allowed to form freely in the simulation. Models and methods containing internal branching
criteria include, but are not limited to, the cracking particles method, the peridynamics, the
phase field model, the element deletion model, the cohesive zone model, the enrichment
models and nonlocal models/gradient models/viscous models. More detailed information
about all of these models and methods can be found in § 2.2.4.

2.2.4 Crack models and numerical methods

Crack models are used to describe how to represent the fracture, including the geometry and
the stress concentration. Numerical methods are employed to solve equations, describe the
bulk material behaviour, and capture the fracture propagation process. Different models can
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be combined with each other and they can be integrated with multiple numerical methods.
Likewise, different numerical methods can be combined to form hybrid methods, and they
can also work with different fracture models, see Fig. 2.13. Smear crack models can account
for the crack tip nonlinearity. While discrete fracture models integrated with notable methods
such as finite element method, extended finite element method, boundary element method
often do not account for crack tip nonlinearity unless the cohesive zone model is employed.

Fig. 2.13 Crack models and numerical methods.

Crack models

Crack models are used to describe how to represent the crack, and they can be roughly
divided into two categories: discrete crack models and smeared crack models. Based on how
the crack is represented, the “discrete” means the crack topology is explicitly represented
while the “smeared” means the crack is smeared over a certain width without explicit
tracking of crack surfaces. Popular discrete crack models include remeshing, element
deletion, cracking particles, and enrichment models. Popular smeared crack models include
phase field, nonlocal, gradient and viscous models. We note that different from the models
mentioned above which describe how to represent cracks, the cohesive zone model describes
the nonlinear behaviour in the process zone ahead of the crack tip with a traction-separation
law and it is essentially a discrete concept. Therefore, we describe the cohesive zone model as
part of the discrete crack models. However, it can also be implemented in smeared context by
distributing the work of separation or fracture energy over the width of an element [104]. See
[105] for various smeared representations of cohesive-zone type behaviour. As a summary,
Table 2.2 lists the advantages and limitations of different crack models, and their details are
separately discussed in the following subsections.

Discrete crack models
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Table 2.2 Advantages and limitations of different crack models for crack branching.

Crack Models Advantages Limitations

Remeshing models [287, 419]
flexible in dealing with complex
geometries and boundary conditions

awkward in dealing with complex
three-dimensional geometries

Element deletion models [410, 304, 414] easy implementation
special treatment is required to solve
the mesh dependency

Enrichment models [34, 264, 334]
solve parts of difficulties associated
with the mesh

rely on different types of enrichment
adopted, see detail in § 2.2.4

Cracking particles methods [327, 328, 336]
suitable for complex crack patterns,
straightforward implementation in 3D

special treatment is required to solve
the “spurious cracking” problems and
reduce the computational cost

Cohesive zone models [461, 66]
suitable for complex crack patterns,
removes singularity in the crack tip

special treatment is required to solve
the mesh dependency and bias

Phase field models [60, 54]
suitable for complex crack patterns,
straightforward implementation in 3D

fine mesh is required to obtain more
accurate results

Nonlocal models/gradient
models/viscous models [31, 143]

solve the ill-posed boundary value
problem, suitable for modelling failure
caused by progressive damage

physical inconsistencies may appear,
fine mesh is required to obtain more
accurate results

Remeshing models As the crack propagates and branches, new discontinuities form
across the crack, therefore, crack surfaces need to be redefined as boundaries and the mesh
needs to be updated. Remeshing models update the crack surface with remeshing techniques,
where an explicit representation of crack surfaces and a crack tracking algorithm are usually
required. During the simulation process, external criteria including the crack initiation,
propagation, branching time and angle criterion are employed, which increases the difficulty
of computational simulation. The reasons are manifold: (1) until now, there is no universally
agreed explanation for branching time and branching angles; (2) the formula to calculate
the associated parameters under dynamic situation remains a challenge; (3) a remeshing
rule including the selection of element type, mesh generation method, data transfer during
remeshing is required for which computation efficiency needs to be considered.

The remeshing models can be combined with such numerical methods as FEM and BEM
to simulate crack branching. A schematic illustration of crack branching with remeshing
models based on FEM is shown in Fig. 2.14. Compared with remeshing models based on
FEM, remeshing models based on BEM is much simpler due to the reduced dimensional
features of BEM. Details will be explained in § 2.2.4. Both methods assume that the crack
surface is generally determined by the separation between elements, which makes it difficult
to capture crack surface roughness relating to dynamic brittle fracture. We note that another
commonly used application of the remeshing models is its combination with cohesive zone
models by actively inserting cohesive interface elements into the finite element mesh, which
will be discussed separately later.

Element deletion models Element deletion models are often integrated with FEM,
where the crack is represented by a set of deleted / deactivated elements, as shown in
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Fig. 2.14 A schematic illustration of crack branching with remeshing models based on FEM.

Fig. 2.15. There is no need for explicit representation of the crack’s topology by remeshing.
The deactivation of elements can be achieved through two approaches: (1) complete element
deletion technique, in which deleted elements are replaced by rigid masses and (2) setting the
stress of the deactivated elements to zero [325, 410]. The elements, which are deactivated or
deleted, have no material resistance or stress for the rest of the simulation process [265].

However, unless the constitutive equation is properly scaled or adjusted, the released
energy due to deleting an element depends on the element size, which can cause spurious
mesh dependency and lead to high computational cost in dynamic crack simulations [205].
To reduce the spurious mesh dependency, the softening curve slope should be scaled so that
fracture energy is independent of the element size [410]. The mesh dependency problem
is also handled with variational formulations [304]. A method called “eigenerosion” was
developed in [304], which is characterized by the restriction of element erosion in a binary
sense: it can be equal to 0, if the element is eroded or 1 in case of fully elastic behaviour.
The fracture propagation is then treated as failing elements when the elastic energy release
is higher than the corresponding dissipated fracture energy. Compared with the original
element deletion model, the eigenerosion, as an extension version, is more suitable for
crack branching problems for its accuracy and convergence in complex crack simulations
[410, 304, 414, 375].

In [410], the performance of the element deletion model for dynamic crack propagation in
brittle materials was checked. It is found that the element deletion model gives a very irregular
crack velocity and performs poorly for the accurate prediction of crack branching. To reduce
the high computational cost caused by a relatively fine mesh during modelling, a dynamic
adaptive eigenfracture scheme was presented in [127] by combining the eigenfracture scheme
and the adaptive mesh refinement algorithm, which reduces the element size locally while
improving the Griffith fracture convergence property. The ability of the dynamic adaptive
eigenfracture scheme in predicting crack propagation was proved by numerical examples
of crack branching, see Fig. 2.16. It is found that the crack pattern, the crack branching
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velocity and crack instabilities in the simulation are in good agreement with the experimental
observations.

Fig. 2.15 A schematic illustration of crack
branching with element deletion models

Fig. 2.16 A numerical example of crack
branching with element deletion models.
[127]

The element deletion model deletes elements that satisfy a certain criterion explicitly with
no additional criteria used to determine the branching time and branching angles. However,
special treatment is required to solve the mesh dependency problem [205]. The mesh needs
to be fine enough to obtain accurate crack path prediction in dynamic crack simulations,
which may in turn cause high computational cost. To the best of the author’s knowledge,
there is a limited number of papers studying the performance of the element deletion model
in dynamic crack branching simulation [410, 414, 127], and no 3D examples are provided.
Though its ability in modelling the crack pattern and the crack branching velocity has been
demonstrated in 2D [127], further multiple crack braching tests and crack branching in 3D
are yet to be demonstrated.

Enrichment models The enrichment models use the so-called “enrichment approaches”
to account for the discontinuous displacement fields in the crack. The enrichment approach
involves enriching a polynomial approximation space so that the crack can be modelled
independently of the mesh. There are commonly two types of enrichment, namely, the
intrinsic enrichment and the extrinsic enrichment. The intrinsic enrichment is to replace (at
least some of) the shape functions in the polynomial approximation space with special shape
functions. The number of shape functions and unknowns is unchanged during simulation.
While the extrinsic enrichment can be achieved by adding special shape functions to the
polynomial approximation space, where more shape functions and unknowns result in the
approximation [144].

The enrichment model can be combined with XFEM or MMs. Important features about
enrichment in XFEM are [144]: (1) the enrichment is extrinsic and realized by the partition
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of unity (PU) concept; (2) the enrichment is local because only a subset of the nodes is
enriched; (3) the enrichment is mesh-based, i.e. the PU is constructed using standard FE shape
functions; (4) enrichments for arbitrary discontinuities in the function and their gradients
are available. Compared with the enrichment in XFEM, the enrichment in MMs can be both
intrinsic and extrinsic. The extrinsic enrichment can be further classified into an extrinsic
moving least-square (MLS) enrichment and an extrinsic PU enrichment. The ability of the
model to capture crack branching depends on the methods used in combination, further
details will be given in § 2.2.4.

Cracking particles methods In the cracking particles method (CPM), the crack is
modelled by a set of discrete cracks. As shown in Fig. 2.17, the discrete crack is restricted
to lie on the particles. Since the crack is described by the set of cracked particles, no
representation of the crack’s topology is needed [327, 328, 336]. The method was first
developed in [327]. In the model implemented with the cracking particles method, the
displacement approximation is given by:

uh(x) = ∑
i∈N

N̂i(x)ui + ∑
i∈Nc

Ni(x)S( fi(x))qi (2.23)

where ui is the displacement vector, N the total set of nodes in the model, Nc the set of cracked
nodes, N̂i the continuous shape functions, Ni the discontinuous shape functions, S( fi(x)) the
step function defined as 1 and −1 on two sides of the crack, and qi the enrichment parameter.
Therefore, the displacement jump across the crack can be obtained from Eq. (2.23):

[[u]] = 2 ∑
i∈Nc

Ni(x)S( fi(x))qi (2.24)

A discrete crack is introduced whenever a cracking criterion is met at a particle [327]. The
cracking criteria differ with different material properties, e.g. loss of hyperbolicity is used
for a rate independent material while loss of material stability is used for a rate dependent
material [335]. The reader is referred to [334] for detailed description of commonly used
cracking criteria.

The original model extended its application to three dimensional problems in [328], where
the discontinuity consists of cylindrical planes centred at the particles. where a continuous
crack is represented by a contiguous set of cracked particles. The sphere particles are
separated by a crack plane that passes through the centre of the particle. The method proves
its capability in large deformations and arbitrary nonlinear and rate-dependent materials with
different examples. A crack branching example in 3D with CPM is given, see Fig. 2.18.
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Fig. 2.17 A schematic illustration of crack
branching with CPMs.

Fig. 2.18 A 3D example of crack branching
with CPMs [328].

The crack front line is almost linear without capturing the fracture tunnelling feature. The
reason may be the use of brittle materials while fracture tunnelling is often observed in
ductile materials. Since the crack pattern along the out-of-plane direction is uniform, this
example can be considered as a “2.5D” example. To further prove the ability of the method to
simulate a real 3D problem, a non-planar crack growth example is given in [328], which is not
shown here since this non-planar crack growth example doesn’t include the crack branching
phenomenon. Later, the model was further developed in [336] to avoid the requirement of
the enrichment. By splitting particles where the cracking criteria are met into two particles
on opposite sides of the associated crack segments, the crack is modelled with no additional
degrees of freedom being added in the formulation. By various benchmark examples, the
model proves its capability in modelling complex crack patterns in statics and dynamics.
Using the CPM, the instability in dynamic fracture was studied and the experimentally
observed results, including the limiting velocity, microcrack branching and increase of
energy dissipation, were reproduced in [333]. It is found that the existence of voids in the
model has little effect on the occurrence of the microcrack branching. To solve the spurious
cracking problems which appear in the original CPM [327], a CPM based on nodal integration
with updated Lagrangian kernels was proposed in [460]. Crack branching examples are
studied and the existence of limiting velocity (related to dynamic instabilities) observed in
dynamic crack branching experiments is demonstrated with the simulation results.

In summary, the CPM is quite suitable for problems with complex crack patterns, es-
pecially crack branching. The CPM has the following advantages: (1) no representation
of the crack’s topology and no crack path continuity are needed; (2) crack branching can
happen automatically, no additional criteria are needed and dynamic instabilities related to
micro-branches can be captured; (3) it is easily implementable in 3D; (4) no mesh orientation
problem. On the limitation side, it is noted that: (1) due to the “discontinuous” represen-
tation of the crack surface, special techniques are required to solve the “spurious cracking”
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Fig. 2.19 Traction-separation laws for intrinsic (left) and extrinsic (right) CZMs.

problems; (2) since the crack path is approximated via a collection of cracking particles, a
finer node distribution is required to increase the accuracy of the model, which may increase
the computational cost.

Cohesive zone models The cohesive zone model (CZM) is developed to describe
the nonlinear behaviour during material failure, and assumes a process zone ahead of the
real fracture [121, 27], where a traction-separation law controls the variation of cohesive
traction with the separation (width) of the crack. When maximum principal stress reaches
the cohesive strength of the material Tmax, the crack initiates. With the crack opening,
the cohesive traction will decrease and once it has decreased to zero, the maximum crack
opening wmax is obtained and complete separation is reached. There are many types of
traction-separation laws, and a critical review on these laws and theirs physical/numerical
properties was given in [308]. Depending on the characteristics of the traction-separation
law, the CZMs can be divided into two groups: intrinsic and extrinsic CZMs, as shown in
Fig. 2.19. In the intrinsic CZM, the cohesive traction first increases with the fracture opening
at an initial stiffness K, while the extrinsic CZM does not have the initial stiffness.

The CZM is generally a concept to describe the nonlinear behaviour in the process zone
and can be incorporated with different numerical methods and crack models [104]. For
example, it can be employed by XFEM and the phase field model by introducing a length
scale. For discrete cracks in a finite element context, cohesive interface elements (elements
equipped with a traction-separation law) have been employed extensively. The simulation
process of crack branch modelling with CZMs using cohesive interface elements is further
discussed in the following paragraphs.

To model crack branching with the intrinsic CZM, the cohesive interface elements need
to be assigned on all finite element surfaces before simulation and the displacement field
is solved with the traction-separation law. During this process, remeshing is not required



68 literature review

and the crack is allowed to propagate along element boundaries. No additional criterion is
needed for crack branching since the branching phenomenon emerges as a natural outcome
of the initial-boundary value problem solution [461]. However, because the finite initial
slope of the traction-separation law modifies the stiffness of the structure and alters the
wave propagation, the intrinsic CZM has issues such as an artificial softening effect, loss
of consistency, spuriously high crack velocity (the lift-off issue) (see [378] for a complete
discussion about these issues). A remedy to reduce the effect of artificial compliance is to
increase, if possible, the initial elastic slope of the traction-separation law, which results in
severe stable time step restrictions and may even render the intrinsic approach unsuitable for
explicit dynamic calculations, or in ill-conditioning of the tangent stiffness matrices in static
or implicit dynamics analyses.

The process for modelling crack branching with the extrinsic CZM is slightly different
from modelling with the intrinsic CZM. Instead of inserting all cohesive interface elements
first, cohesive interface elements will be assigned adaptively when the criterion (the cohesive
traction reaches the cohesive strength Tmax) is satisfied [66]. By doing so, it avoids the
artificial softening effects, however, additional issues of the efficient parallelization of
extrinsic cohesive interface elements with the change in mesh topology need to be addressed.
In addition, the extrinsic CZM has the time discontinuity issue (the traction before and
after insertion / activation of an interface element may not be continuous). This is because
before cracking, the cohesive traction depends on the stress field within the neighbouring
continuum elements while in a subsequent time step following cohesive element insertion,
tractions rely on the cohesive law [378]. The time discontinuity leads to oscillatory behaviour,
non-convergence in time and dependence on nonphysical regularization parameters [307].
To solve this, different approaches have been proposed to make sure the time continuity
condition (the continuity of traction before and after insertion / activation of an interface
element) is satisfied [307, 337, 366].

Both intrinsic CZMs and extrinsic CZMs have the problem of mesh dependency and
bias since the cracks are only allowed to propagate along element facets. In [17], the
macroscopic crack branching was modelled with the extrinsic approach and it is concluded
that the occurrence of branching may be very sensitive to the mesh parameters. Due to the
dependence on mesh, the crack paths predicted tend to be somewhat inaccurate. The problem
can be remedied by using a finer mesh or special mesh operations. By investigating the
different levels of mesh refinement for both structured and non-structured meshes, it is found
in [10] that finer and unstructured mesh performs better than coarser and structured mesh
in predicting the branching pattern observed experimentally. Special operations, such as
nodal perturbation and edge-swap topological operation [312], splitting of polygonal finite
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elements [227, 412], stress recovery and domain integral [85] are also proposed to reduce
and remove mesh bias and dependency in CZMs where physical phenomena associated with
dynamic crack branching are successfully captured.

Many successful applications can be found in modelling crack branching using CZMs.
With the intrinsic CZM, the crack branching phenomenon was successfully modelled in [461].
The results show that the branching phenomenon has a close relationship with the applied
loading and the dynamic crack velocity computed by the intrinsic CZM is in good agreement
with experimental observations. By using extrinsic CZM and an advanced topological data
structure representation, it is presented in [481] that the extrinsic cohesive modelling of
dynamic fracture and emphasised the importance of adopting the extrinsic CZM for the
simulation of multiple micro-branches where the results yield improved agreement with
experiment compared to [261], which employs a potential-based intrinsic CZM for the same
problem. As shown in Fig, 2.20, complex crack branching patterns including both multiple
branches and micro-branches are predicted. After investigating the micro-branching process,
the numerical results reveal that the increased energy input leads to increased crack surface
roughness, longer micro-branches and higher crack speed. Adaptive mesh refinement and
coarsening schemes for efficient computational simulation of dynamic cohesive fracture
were proposed in [309]. The model successfully captures small branches which are observed
experimentally before the crack branching and shows that the formation of micro-branches
leads to a lower main crack velocity, which is closer to experimental observations. Though
this work uses an advanced topology-based data structure to store the FE discretisation and
realize parallelization, examples in three dimensions are not given due to the complexity
of the implementation of the extrinsic approach. For more complex problems like dynamic
fracture propagation in three dimensions, the hybrid discontinuous Galerkin and cohesive
element method has been adopted [277]. The cohesive interface elements are assigned first
on all element surfaces before simulation and are not allowed to open by a discontinuous
Galerkin formulation. The model is then switched to the extrinsic cohesive crack model when
a failure criterion is met. The method is capable of modelling large-scale dynamic crack
propagation in three dimensions with powerful computers since it saves from the trouble of
extensive updating of mesh information and avoids issues that intrinsic cohesive interface
elements bring. A scalable 3D fracture and fragmentation algorithm based on the hybrid,
discontinuous Galerkin, cohesive element method was presented in [337] and its ability in
capturing complex patterns of cracks including branching were demonstrated. In [33], a
fully-Discontinuous Galerkin formulation of nonlinear Kirchhoff–Love shells with CZMs
was presented to perform thin body fracture simulations. Three-dimensional simulations
including crack branching are given, see Fig. 2.21.
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Fig. 2.20 A 2D example of crack branching
with CZM [481].

Fig. 2.21 A 3D example of crack branching
with CZM [33].

In summary, the CZM is a good choice for the study of dynamic crack branching and
can be combined with different models and methods to describe the nonlinear behaviour of
the crack. With cohesive interface elements, it is easily incorporated into a finite element
framework and has the ability of detecting crack initiation and capturing multiple branches
and micro-branches. The mesh dependency problem it suffers can be solved by refining
meshes or other special mesh operations, which in turn, may increase the computational cost
and complexity of implementation procedure, especially in 3D. A promising approach to
avoid these problems is the combination of the cohesive law and the discontinuous Galerkin
formulation. Explanations about the approach and its application in dynamic fractures
including branching can be found in [33, 277, 378, 337].

Smeared crack models

Phase field models As a recently emerged model, the phase field model (PFM) smears
the crack over a certain domain without tracking the crack surfaces. Based on the principle of
minimum total potential energy, the PFM solves a fracture problem as an energy minimization
problem. The energy functional for simulating crack propagation is first given in [138]:

E(u,Γ) =
∫
Ω

Ψ(εεε(u))dΩ+Gc

∫
Γ

dΓ (2.25)

where Ω is a domain describing a cracked solid, Ψ denotes the elastic energy density, ε(u) is
the strain field, and Gc is the fracture toughness, which yields an admissible crack set Γ ⊂ Ω.
u is the displacement field and is discontinuous across Γ. Bourdin et al. [60] devised its
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regularized formulation:

Eε(u,φ) =
∫

Ω

f (φ)Ψ(ε(u))dΩ+Gc

∫
Ω

(
1

4l0
(1−φ)2 + l0|∇φ|2)dΩ (2.26)

where φ is damage-like crack phase-field parameter with 1 representing the unbroken part
and 0 the totally broken part. f (φ) is the energetic degradation function to help prevent
numerical difficulties where the material is broken (e.g. φ = 0). The width of transition
zone is controlled by the length scale l0. When l0 is very small, the diffusive crack presented
by the phase field would approximate a sharp crack solved in discrete crack approaches.
With the help of Eq. (2.26), the scalar field (the phase field) turns the intact material into a
broken material smoothly instead of treating cracks as strong discontinuities. This enables
PFM to overcome difficulties in modelling complex crack problems in three dimensions with
traditional numerical methods. Because the propagation of the crack is obtained through the
solution of the differential equation, the PFM also avoids the need of extra criteria for crack
propagation and additional work to track the fracture surface algorithmically [54].

The ability of PFM to simulate crack propagation and branching in two and three
dimensions has been demonstrated [54, 180, 41, 450, 448, 281]. The quasi-static phase-
field crack model was extended to a dynamic model in [54] and both 2D and 3D crack
branching examples were used to show that the combination of the phase-field model and
local refinement strategy is an effective method for simulating complex crack problems. In
[180], a phase field model was established based on variational principle and its performance
was demonstrated by means of representative 2D and 3D quasi-static and dynamic model
problems including branching. In [41], the microbranching instability occurring in dynamic
crack propagation was investigated with a 3D variational phase-field model. It is found that
the microbranching process is a three-dimensional instability and the branching patterns are
strongly influenced by phase-field internal length scale. To overcome the limitations of the
strong dependence of crack branching patterns on internal length scale, a regularized phase
field based cohesive model was introduced [450, 448, 281], which is insensitive to the length
scale and capable of capturing multiple crack branching.

Compared with remeshing models which need the separation between the elements to
describe the crack surface, PFMs are capable of modelling multiple branches, widening of
damage zone (fracture roughness) and micro-branches. Regarding multiple branches, PFMs
for simulating complex crack patterns were presented in [485] [484] and [355]. Multiple
crack branches phenomenon is observed, which demonstrates the advantages of PFM in
modelling complex crack propagation in rocks. Regarding micro-branches, it refers to the
branch of which length is in order of length-scale of simulation [42]. Fig. 2.23 shows a
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3D crack branching example with micro-branches based on PFM [41]. From the figure, a
slightly curved crack front (the crack tunnelling feature) and slightly rough crack surfaces
can be observed. Regarding the widening of the damage zone before branching, it can be
seen as an increase in fracture surface roughness prior to branching and has been observed
in experiments [347]. According to the branching mechanism proposed in [350–352], a
widening damage process-zone appears before crack branching due to the increasing fracture
roughness (mirror-mist-hackles transition). Then, after branching, as the crack branches go
on propagating, the damage zone becomes “thinner”, indicating that the crack surfaces turn
smooth again. If the energy provided is sufficiently high, the “widening-thinner process” is
repeated, and secondary branches can be observed. Fig. 2.22 shows a 2D crack branching
example, where the widening of the damage zone before branching and multiple branches
are observed.

Given its strong ability in modelling crack branching without remeshing and external
criteria, more authors choose to apply PFM for the study of the dynamic crack branching
aiming at providing new analyses of the mechanisms behind this phenomenon. The crack
velocity, the crack branching angle, the crack branching criterion, as well as the sensitivity of
numerical simulation parameters to crack branching are studied.

In terms of the crack velocity, since the crack tip is not uniquely defined in PFM [180], a
number of approaches are proposed to measure the crack tip position. In [54], the propagation
velocity was calculated explicitly by finding the crack tip with a certain defined phase-field
value. In [451], the crack speed was computed from using the slope of the line that best fits
the three points, in a least square sense. And in [181], the velocity was obtained implicitly
by using the crack surface velocity to represent the crack speed. All of the approaches
are reasonable due to the definition of the crack tip position being physically implicit in
PFM. Regarding the branching angle, similar conclusions are made in [451, 181] that with
increasing loading amplitude or velocity, the crack branches earlier and the branching angle
gets smaller. Various branching criteria have been examined. In [179], crack propagation in
two dimensions was studied using PFM and it is found that the branching instability starts
with a critical speed of 0.48cS, where cS is the shear wave speed. In [451], the validity of
the velocity branching criterion was denied by proving that crack speed at the moment of
branching is very sensitive to the width of the sample with a 2D PFM model. Instead of crack
velocity, the phase field velocity and the crack surface velocity was preferred in [181] as local
and global indicators for branching. Through studying the limiting velocity, crack branching
and velocity-toughening mechanisms with the PFM, it is proposed in [42] that the branching
occurs when the local energy release rate exceeds twice the critical energy release rate. By
quantifying the energy flux into the crack tip and fracture energy, it is confirmed in [423] that
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the crack bifurcation obeys an energy criterion as it is observed that the crack bifurcation
of PMMA always occurs with the energy flux into the crack tip exceeding a critical value.
In [250], mesh convergence and length scale sensitivity in dynamic crack simulation with
PFMs are systematically analysed. Quantitative evaluation of branching angles and crack
tip velocity and comparison between PFM simulation results and experimental results are
provided.

Fig. 2.22 A 2D example of crack branching
with PFM [112].

Fig. 2.23 A 3D example of crack branching
with PFMs, showing isosurfaces of phase
field at φ = 0.3 [207].

The crack branching phenomenon is very sensitive to numerical simulation parameters
in PD. For example, the solution scheme is influential, e.g. the monolithic scheme and the
staggered scheme may lead to different crack patterns [238] and different branching moment
[483]. The mesh size is also a significant factor, e.g. multiple crack branches can only be
captured by sufficiently refined meshes while a different mesh size may result in different
branching time [180, 181, 451, 413, 483].

The sensitivity of the branching phenomenon to the mesh size leads to limitations of
PFM. The computational cost will increase since the mesh needs to be fine enough for
the phase field to represent the accurate position of the crack. However, PFM is a very
promising model for crack branching studies with the following advantages: (1) no need for
initial crack length settings and no external criteria for branching since the crack patterns
can be automatically captured by solving the equation based on energy minimisation; (2)
straightforward implementation in three dimensions; (3) capable of modelling multiple
branches, widening of damage zone (fracture roughness) and micro-branches.

Nonlocal models/ gradient models/ viscous models When modelling failure caused
by progressive distributed damage, the material exhibits strain-softening and the governing
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differential equations may lose ellipticity, which renders the boundary value problem ill-
posed and causes physically meaningless, mesh-dependent finite element results [202]. To
solve these problems, non-local models, gradient models and viscous models are commonly
employed. By introducing a characteristic length into the discretisation, these models “smear”
the crack over a certain domain involving several elements and avoid representing the crack
topology and crack tracking algorithms [325].

An integral-type nonlocal model is defined as a model in which the constitutive law at a
point of a continuum involves weighted averages of a state variable over a certain neighbour-
hood of that point [31]. The integral formulation in the model allows the introduction of a
characteristic length that qualifies the neighbourhood over which the parameters/calculated
numbers get “smeared”. The gradient models can be constructed by including higher-order
gradients directly in the damage loading function [208]. The higher-order gradients can be
employed to smooth the non-uniformity or singularities in the strain field when regularisation
of singularities or discontinuities is required. The viscosity models can be regarded as
introducing higher order time derivatives and a length scale associated with the viscosity is
employed, which also restore the well-posedness of the BVP or initial BVP [325]. Detailed
explanations of these models are given in literature [31, 143, 325], here we mainly focus on
the performance of these models in modelling and investigating dynamic crack branching.

Examples of the application of nonlocal models and gradient models to dynamic crack
branching problems can be found in [446, 439]. With an integral-type nonlocal continuum
damage model, simulations of dynamic crack branching in PMMA were conducted and the
dynamic crack branching instabilities were studied in [446]. It is found that the selection of
the rate-dependence damage law and the critical strain for damage initiation are necessary
to predict crack patterns, crack tip velocities and dissipated energies accurately. A figure
of crack branching with the integral-type nonlocal continuum damage model is shown in
Fig. 2.24. We note that just like PFM, the nonlocal models are also capable of capturing the
multiple branches, widening of damage zone (fracture roughness) and micro-branches. In
[439], a localizing gradient damage model is proposed with micro inertia effect for modelling
dynamic fracture propagation in quasi-brittle materials, which resolves the mesh sensitivity
issue and spurious damage growth appeared in the conventional gradient damage models
and shows good performance in reproducing crack patterns (from a straight crack, to sub-
branching, and finally to macro branching), crack velocities, and fracture energies observed
in the experiments.

The advantages of the nonlocal models, gradient models and viscous models are: (1)
representation of the crack topology and crack tracking algorithms are avoided; (2) the issue
of mesh dependency and additional criteria to control crack branching are avoided; (3) they
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are capable of modelling crack surface roughness and micro-branches. Their limitations lie in
that (1) physical inconsistencies may appear in the characterization of crack kinematics due
to the wrong selection of related parameters, e.g. parameters for rate-dependence damage
law; (2) computational cost may significantly increase due to the increase of mesh density to
get a more accurate prediction of the crack.

Fig. 2.24 A numerical example of crack branching with nonlocal models [446].

Numerical methods

Numerical methods are employed to solve the equations of the bulk material. According
to whether spatial derivatives are employed or not, the numerical methods can be further
classified into continuum methods and discontinuum methods. The simulation of crack
branching is a highly challenging problem due to its complexity. Until now, numerous
methods have been applied to the modelling of crack branching with varying success. A
superior method should have the following characteristics to better capture the phenomenon
of crack branching:

• The ability of capturing different crack branching patterns, including macro crack
bifurcation, micro-branches, a single crack with multiple branches and multiple cracks
with branches.

• Good agreement with the experimental results and theoretical prediction in branching
features, such as branching angles and the crack velocity.

• Relatively easy and robust implementation process with affordable computational cost.

Specifically from the view of crack branching, this subsection summarises and compares
different numerical methods. For each method, the physical and mathematical principles
are first introduced, followed by the explanation of crack branching simulation, after which
historical and state-of-the-art applications in crack branching simulation are summarized
with discussions of both advantages and limitations, see Table. 2.3. The emphasis differs in
applications of different methods, for example, focusing more on verification (using various
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branching examples to prove the superiority of the models built by the improved numerical
methods) or focusing more on the analysis (analysing the mechanism behind the crack
branching phenomenon with these models).

Table 2.3 Numerical methods for crack branching simulation.

Numerical
Methods

Advantages Limitations

FEM flexible and robust
remeshing is required if the adaptive FEM-
based model is used, which is difficult in 3D

XFEM independent of mesh
needs special enrichment for junctions and
branches

BEM reduces dimensions not well-suited for nonlinear problems

MMs
eliminate difficulties mesh-
based methods brings

have boundary implementation, instability,
numerical integration of the weak form, high
computational cost issue

PD avoids remeshing
has relatively high computational cost and
difficulties in dealing with boundary conditions

DEM
well-suited when considering
heterogeneity

limited in granular materials, awkward in
predicting macroscopic properties and has
relatively high computational cost

The continuum methods

The finite element method The idea behind the finite element method (FEM) is to break
the continuum into a number of simple geometric elements and estimate the characteristics of
the continuous domain by assembling the discretised equations per node elementwise [320].
The method is suitable for modelling bulk materials. It has been applied to a wide range of
crack problems [77] and can be combined with nearly any crack model due to its flexibility
and robustness, see Fig. 2.13.

Depending on how the branching is simulated, a commonly used adaptive FEM-based
model (FEM combined with remeshing models) is discussed. We note that the term “adaptive
FEM-based model” here does not include the models based on both finite element method and
cohesive elements, which are discussed in § 2.2.4. The simulation process of crack branching
using the adaptive FEM-based model mainly includes the establishment and solution of the
deformation equation, the selection of the propagation criterion, and the meshing strategy. By
establishing and solving the deformation equation, the crack footprint can be obtained. Since
the crack branching process is dynamic, the inertial force and the acceleration terms need to
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be considered. Here the Newmark method [276] is used to solve the governing equations and
the resulting system is given below:

(a0M+K){u}n+1 = {F}n+1 +M(a0{u}n +a2{u̇}n +a3{ü}n) (2.27)

{ü}n+1 = a0({u}n+1 −{u}n)−a2{u̇}n −a3{ü}n (2.28)

{u̇}n+1 = {u̇}n +a6{ü}n +a7{ü}n+1 (2.29)

where {ü}, {u̇}, {u}, {F} are the global vectors of nodal acceleration, nodal velocity, nodal
displacement and nodal load, respectively; the superscript n represents time step, M and K
are the mass matrix and the stiffness matrix, respectively. The coefficients a0 - a7 are the
parameters in the Newmark method [287].

The next step is to determine whether the crack will branch or not. The branching
criterion for the adaptive FEM-based model can only be an external criterion, (see § 2.2.3)
which increases the difficulty of the simulation. The time of branching, the branching angles
and the branching speed need to be determined. Due to the singularity of the crack tip,
determination of appropriate physical mechanisms and formula to calculate the associated
parameters remains a challenge.

After obtaining the crack footprint, the mesh needs to be updated. It is possible to model
one or two branches, but as more branches develop, remeshing becomes very complex. Both
the singularity at the crack tip and the small angle between crack branches require a heavily
refined mesh and may result in a large increase in computational cost.

To the best of the authors’ knowledge, there do not appear to be many examples using the
adaptive FEM-based model to simulate crack branching due to its implementation complexity.
In [287],the dynamic crack branching phenomenon with a moving FEM (adaptive meshes)
was modelled based on Delaunay triangulation and a switching method using the dynamic
J-integral. The moving FEM has the advantage of exactly satisfying the boundary conditions
in front of and behind the propagating crack tip dynamically. The switching method using the
dynamic J-integral provides an accurate way of evaluating the dynamic J-integral regardless
of crack path, which is especially applicable when the crack tips are very close to each other
after branching. The generation of dynamic crack branching phenomenon in Homalite-911 is
successfully modelled and the simulated results agree well with experiments [287]. However,
only examples for a crack with two branches are presented and for more complicated crack
branching patterns are not discussed. Using a further developed remeshing strategy, more
complicated crack branching problems including multiple crack bifurcation were investigated
[419]. A comparison between numerical and experimental results was provided but the
calculation efficiency was not mentioned. We conclude that the adaptive FEM-based model
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still faces challenges when dealing with crack branching as discussed above, especially in
three dimensions.

The extended finite element method In order to solve mesh dependency problems,
the extended finite element method (XFEM) was developed in [34, 264]. Similar to FEM,
it is suitable for modelling bulk materials. To simulate crack propagation, XFEM uses the
enriched shape function with discontinuous features to represent the discontinuity [488]. By
doing so, the displacement discontinuity can be captured and the crack can propagate on
any surface within one element instead of along element boundaries. Thus, remeshing and
mesh dependency issues appearing in discontinuous problems with FEM can be overcome.
However, the use of enrichment functions also brings the issue of incompatibility between
accuracy of the solution and conditioning of the system matrix, especially when solving large
3-D problems. The condition numbers of the stiffness matrix can be worse if one utilizes
enrichment functions, and thus it can affect the accuracy of the solution. Several studies have
attempted addressing this issue [167, 166, 449].

Generally, there are two ways to enrich an approximation: intrinsic enrichment (enriching
the basis vector) and extrinsic enrichment (enriching the approximation) [212]. The idea for
intrinsic enrichment is to enhance the approximation space by building new basis functions
which are derived from a specific problem into the standard approximation space. For
instance, the asymptotic near tip displacement field can be built into the basis functions
so that the singularities at the crack tip can be represented. For extrinsic enrichment, the
enrichment functions are added to the standard approximation in specific zones, and as a
result, the computational cost is reduced.

Though the characteristic of XFEM facilitates its application in modelling internal or
external boundaries such as holes, inclusions, or cracks, the simulation process of crack
branching with XFEM is not an easy task. First, appropriate enrichment schemes need to be
considered for the element with the crack branch junctions and crack branches. Secondly,
though the computational cost is less expensive without remeshing, the simulation process
still requires external branching criteria, bringing issues such as the decision of reliable
criteria and the calculation of related crack parameters. Thirdly, XFEM typically uses
the level set method to track fractures, but as fracture branches increase the associated
operation becomes increasingly complicated, especially in 3D cases. In the context of the
crack branching problem, the displacement approximation uh with the partition of unity is
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expressed as [103]:

uh(x) = ∑
i∈N

uiNi + ∑
j∈NH

a jN jH(x)+ ∑
k∈NCT

Nk

(
4

∑
α=1

bα
k Φα

)
+ ∑

m∈NJ

cmNmJ(x) (2.30)

where ui is the vector, Ni, N j, Nk and Nm are the standard finite element shape functions
associated with node i, j, k and m respectively; a j, bα

k and cm represent the nodal enriched
degrees of freedom associated with the Heaviside function H(x), near tip asymptotic field
function Φα and junction function J(x), respectively; N, NH , NCT and NJ are the set of
nodes to enrich for the crack, crack tip and junction.

Progress has been made on modelling the crack branching with XFEM. In [103] a
methodology was developed to construct the enriched approximation based on the interaction
of the discontinuous geometric features and calculated the SIF of static cracks with multiple
branches. This can be used for static cracks, but the propagation of the dynamic crack
branching process is not taken into consideration. To improve the modelling of dynamic
crack propagation by XFEM, a new methodology was proposed in [35] for treating elements
that contain crack tips, which allows the velocity field of the element containing the crack tip
can change smoothly from a partially cut element to a fully cut element. The crack path and
velocity can be determined directly by the loss of hyperbolicity criterion, which facilitates
the modelling of dynamic crack growth problems, including crack branching. However,
only a relatively simple bifurcation phenomenon is captured, while fracture roughness and
micro-branches can not be captured, see Fig. 2.25. To seize the discontinuity around the
junction of a branched crack, the enrich scheme of the element crossed by two separated
cracks, the element embedded by a junction, and the way of constructing the diagonal
mass matrix for the branched element were introduced in [456], with which the initial
branching process of a moving crack (the main crack develops two branches) is successfully
simulated. However, this method requires an increase in additional degrees of freedom. For
more complex branching problems with increasing degrees of freedom in one element, an
enhanced XFEM coupling the phantom node method [409, 80] was proposed and proved its
robustness and accuracy in handling the complex branched crack problems.

In summary, the XFEM possesses the following advantages: (1) lower computational cost
without the need of remeshing; (2) suitable for cracks with complex geometry or problems
with geometric nonlinearities because of mesh independence. These advantages allow the
XFEM to become a powerful and promising tool in the simulation of complex crack problems.
However, the XFEM has imitations when dealing with multiple interacting and branched
cracks and micro-branches, since the computational cost increases as the number of cracks
grows and its formulation becomes increasingly complex. For branches or junctions, special
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discontinuous displacement enrichment needs to be developed and external criteria for the
injection of the enrichment are needed. Additionally, because of the lack of a reliable crack
branching criterion, prediction of crack propagation and branching remains a challenge [325].

Fig. 2.25 A numerical example of damage for crack branching with XFEM [35].

The boundary element method The boundary element method (BEM) is also widely
used in crack simulations due to its ability to automatically follow the propagation of the
crack with limited remeshing and its inherent accuracy [14]. The BEM is designed for
solving boundary value or initial value problems and formulated in terms of boundary
integral equations [243]. Instead of discretising the whole domain into volume elements,
the BEM only discretises the domain boundary for interpolation approximation. The basic
process of modelling crack propagation with BEM is similar to FEM. However, remeshing is
done by only adding the elements at end of the crack tip without changing the whole mesh.

The displacement integral equation at an interior point X in the absence of a body force
for linear elastic crack problems is given in [14]:

ui(X) =
∫

ΓS+Γ
+
n +Γ

−
n

Ui j(X,x) · t j(x)dΓ −
∫

ΓS+Γ
+
n +Γ

−
n

Ti j(X,x) ·u j(x)dΓ (2.31)

where Γ+
n and Γ−

n represent the upper and lower crack surfaces, respectively, ΓS the outer
boundary, u j the boundary displacement, t j the traction, Ui j the fundamental solutions for
displacement, and Ti j the traction. Fig. 2.26 shows a schematic illustration of crack branching
simulated by BEM.

The difficulties of BEM for fracture problems reside in the coincidence of crack nodes,
giving rise to a singular system of algebraic equations. Different techniques such as the
sub-region boundary element method (SBEM), displacement discontinuity methods (DDM),
dual-boundary element method (DBEM) and dual-reciprocity boundary element method
have been developed to solve this problem [265]. Pioneering work modelling dynamic crack
branching with BEM was presented in [382], where crack growth and branching criteria
were combined and a time-domain boundary integral equation system is established. The



2.2 Review of crack branching phenomenon 81

Fig. 2.26 A schematic illustration of crack branching with BEM.

crack propagation speed and the SIF were calculated, showing good agreement with the
experimental observations. Since then, examples for BEM simulation of crack branching
have been presented in the literature [346, 464, 367]. A complete set of piezoelectric Green’s
functions in closed form was introduced and a solution scheme based on the boundary
integral equation method was developed in [346] to analyse plane cracks in piezoelectric
solid. A double-branched crack model is used to verify this scheme. In [464], the crack-tip
displacement discontinuity elements were placed at the corresponding crack tip on top of
the constant displacement discontinuity elements that cover the entire crack surface. By
using such elements and the SIF as a propagation criterion with a known branching angle,
complex crack problems including a branched crack example are employed to demonstrate
the efficiency and accuracy of the proposed method. In [367], the dual boundary element
method (DBEM) was applied to the analysis of mixed-mode multiple-crack growth including
branching cracks, where the SIF was evaluated via the J integral and the incremental analysis
was used to define the direction and the extension of multiple interacting cracks. Other
approaches focus on the study of the physical mechanisms behind the branching phenomenon.
The fast running cracks branching under different bi-axial loading conditions was investigated
in [338]. It is found that branching depends on the opening mode SIF, the crack velocity,
and the orientation on the maximum circumferential stress in the vicinity of the crack tip.
In[251], the crack branching process was modelled by using an indirect BEM specially
developed to treat the kink points of propagating cracks in brittle solids and the mechanism of
secondary crack initiation and propagation were studied. The results show that the formation
of the wing crack and the secondary crack caused by the crack tip and the crack kink point
may lead to a quasi-static crack bifurcation process. In [130], the BEM was applied to the
analysis of the branched and intersecting cracks in statically and dynamically loaded plates.
The influences of angles between branches of the crack and dimensions of the plate for the
star-shaped crack on a dynamic SIF were analysed. In [392], a hydraulic fracture model with
a three-dimensional displacement discontinuity method was developed and the interaction
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between multiple cracks and branches was investigated. The heterogeneity of solid rocks is
one reason for crack branches, which further results in a complex fracture network.

The BEM offers clear advantages. The stress field in the vicinity of the crack tip can
be accurately calculated and the computational efficiency can be greatly increased due to
the reduction of the dimension. Nevertheless, it still suffers from the inability to model
crack propagation and branching autonomously as it needs external criteria. Besides, the
application of BEM in nonlinear problems is limited, as it still requires that the fundamental
solution is expressed in terms of Green’s functions [325].

The meshfree methods When dealing with crack branching problems, the traditional
FEM has the limitation of remeshing, which is time-consuming especially in 3D. The XFEM
avoids the need of remeshing, however, it is awkward when dealing with multiple interacting
and branched cracks, since the computational cost increases as the number of cracks grows
and its formulation becomes increasingly complex. Meshfree methods (MMs) were devised
with the objective of eliminating part of the difficulties associated with reliance on a mesh
to construct the approximation [280], providing an advantage in dealing with crack growth
problems.

In general, MMs refer to numerical techniques that do not require any predefined mesh
information for domain discretisation, and they use a set of points scattered within the problem
domain as well as on the boundaries of the domain to represent the problem domain and its
boundaries [433]. MMs model the bulk material as a continuum.Modelling discontinuities
in MMs can be classified into two types generally: methods based on the intrinsic and
extrinsic enrichment and modification of the weight function [280]. The second type can be
further classified into the visibility method, the diffraction method, the transparency method,
and the “see through” and “continuous line” method [334]. Detailed descriptions of these
MMs and their classifications, advantages, limitations, and computer implementation aspects
can be found in [334, 325, 280, 239, 487, 191]. Here, we only give a brief introduction
of some popular MMs including the smoothed particle hydrodynamics method (SPH), the
element-free Galerkin method (EFGM) and reproducing kernel particle method (RKPM),
and focus more on their ability of capturing crack branching.

The smoothed particle hydrodynamics method (SPH) is a pure Lagrangian, meshfree
method, which was first developed to model hydrodynamic flows and then extended to solid
mechanics [268, 232]. In SPH, the domain is discretised into particles and each particle
interacts with its neighbour particles within its influence domain through a kernel function.
Early work on studying crack formation with SPH can be found in [233, 348, 330, 331].
In most of the work, the SPH is based on Eulerian kernels and a crack can occur naturally
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due to separating particles. By comparison with the traditional mesh-based methods, SPH
avoids mesh dependence when dealing with cracks. However, it suffers from problems such
as spurious instabilities, expensive computational cost and inaccurate crack path prediction
[345, 280]. To solve these problems, Lagrangian kernels instead of Eulerian kernel functions
are employed [329, 431]. However, Lagrangian kernels require specific strategies to deal
with fractures since neighbour particles do not change during a simulation. A commonly
used strategy is the visibility method, in which the displacement discontinuity is modelled
by excluding the particles on the opposite side of the crack in the approximation of the
displacement field under the assumption of an opaque crack boundary [334]. Recently, a
strategy called “pseudo-spring” was developed in [74] to facilitate SPH to model crack
propagation without any numerical artifact. The crack path can be tracked automatically
by the broken pseudo-springs. Using the Pseudo-Spring smoothed particle hydrodynamics
method (Pseudo-Spring SPH), the crack propagation and branching in 2D and 3D was
simulated and effects of tensile loading amplitude on crack branching were studied in [194].

The element free Galerkin method (EFG), first developed in [36], is a method based
on moving least-square (MLS) interpolants. The EFG requires only nodal data without the
requirement of element connectivity. Compared with SPH, the EFG avoids the calculation
of nodal volumes and obtains the gradient fields directly by taking the derivatives of the
interpolants with respect to spatial variables, which increases the accuracy and stability [36].
This feature makes it quite suitable for static and dynamic crack problems. The extended
element free Galerkin (XEFG) method was proposed in [326, 335] for modelling cohesive
crack initiation, growth and junction in two and three-dimensional statics and dynamics.
However, the closure of the crack along the front is ensured through near-tip enrichment,
which leads to the difficult selection of near-tip enrichment fields in large strain or non-linear
materials. To simulate crack propagation in non-linear solids including large deformations,
an XEFG was proposed in [489], which closes the crack tip without near-tip enrichment.
The entire crack is enriched by the sign function. The domain-decrease method is used to
remove the branch enrichment from the discontinuous displacement field. The method is
successfully applied to crack branching problems in 2D and the results agree well with the
experiment results, see Fig. 2.27. Later, the method was extended to 3D by employing an
extrinsic discontinuous enrichment and adding a Lagrange multiplier field along the crack
front to close the crack in [53]. In this way, the computational cost was further decreased.
The method proved to be capable of modelling initiation, branching, growth and coalescence
of an arbitrary number of cracks in non-linear solids by different benchmark examples.
Fig. 2.28 shows the branching example provided in [53], which is a “2.5D” example rather
than a real 3D example. The ability of the method for simulation of real 3D crack growth is
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demonstrated by another example of a circular-cylindrical chalk bar under torsion, which is
not shown here since this example doesn’t include the crack branching phenomenon.

To develop more accurate and efficient mesh-free interpolation functions, the reproducing
kernel particle method (RKPM) was introduced as an improvement of the continuous SPH
approximation in [241]. It maintains the advantages of SPH and gives more accurate
results because of the addition of a correction function. In [161], the dynamic failure and
fragmentation with a semi-Lagrangian RKPM were studied, which successfully alleviated
mesh distortion difficulties associated with the Lagrangian FEM. In [218], a virtual internal
bond model with RKPM was used to model the propagation of cohesive cracks. The capability
of the model to predict the onset of crack path instabilities is demonstrated, simulations of
crack tip instabilities and branching are conducted, and theoretical analysis of branching is
given.

The MMs eliminate difficulties of mesh-based methods, such as mesh generation for
complex 3D models, effect of distorted or low quality meshes on accuracy, adaptive remesh-
ing resulting from dynamic problems. However, they still suffer from implementation of
boundary conditions, high computational cost, instability and inconsistency problems. In
addition, when modelling crack branching, crack surfaces representation and crack tracking
algorithms are usually required, which introduces additional challenges associated with the
numerical integration of the weak form through tracking complex crack geometry, especially
for tracking complex 3D crack geometry.

Fig. 2.27 A 2D example of crack branching
with MMs [489].

Fig. 2.28 A 3D example of crack branching
with MMs [53].

The discontinuum methods

The peridynamics As a promising tool for crack problems, peridynamics (PD) is a new
continuum mechanics formulation originally developed in 2000 [394]. Detailed description
of PD can be found in § 2.3. In the following paragraphs, applications of PD for crack
branching are discussed from three perspectives.
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First, by employing or improving the PD, demonstration of capturing complex crack
patterns with crack branching and multiple crack branches examples is given. In [356], the
dual-horizon PD formulation was proposed, which naturally includes varying horizon sizes
and completely solves the “ghost force” issue [357, 332]. In [486], the extended non-ordinary
state-based PD was proposed, where the stress-based failure criteria are implemented. The
breakage of bonds is determined by the mean stresses between the interacting material points
rather than the stretch of bonds. An adaptive refinement algorithms for 2D peridynamic
grids was employed in [115] and as a consequence, computational resources are efficiently
employed. All of the PD methods above select crack branching examples to prove their
capability.

Secondly, after demonstrating the ability of capturing complex crack patterns, the PD
is applied to capture various branching phenomena, including crack surface roughening,
successive branching, micro-branches and multiple branches. Then numerical results from
PD are compared with numerical results from other methods or results from experiments
and theories. It is found in [169] that before branching the damage zone becomes thicker
through PD simulation, which is similar to the roughening before branching observed in
the experiments. Later, it is found that the PD model captures experimentally observed
successive branching events and secondary cracking [170]. PD simulation demonstrating
capture of small branches in a glass plate before the crack splits into two main branches
is presented in [10]. As loading increases, multiple branches are observed in soda-lime
glass under stress on boundaries [49], see Fig. 2.29. The widening of damage zone before
branching can also be observed in the figure. With a 3D PD model, a local crack front
bifurcation growing into a micro-branch was simulated [63], which quickly arrests or grows
further into macro-branches. Distinct features on the crack surface due to the localized
bifurcations and micro-branches are also captured with the model, known as “mirror”, “mist”
and “hackle” fracture surfaces in experimental observations [351], see Fig. 2.30.

Thirdly, through the observation of various phenomena, influencing factors and the
mechanisms of crack branching are discussed and analysed. It is summarized in [169]
that reflecting stress waves from the boundaries have a strong influence on the shape and
structure of the crack paths in dynamic fractures. Later, it is explained in [47] that why in
the simulation of [169] the propagation velocity of a dynamic crack is influenced by the
horizon size. This is because the crack propagation velocity, crack branching angles and
branching time are independent of the horizon size only in the condition that the fracture
process does not interact with the stress waves. The branching moment and velocity are
found to be very sensitive to the micro-modulus function in [84] as the branching velocity
after the first branching moment can slightly increase or decrease or stay constant under
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Fig. 2.29 A 2D example of crack branching
with PD [49].

Fig. 2.30 A 3D example of crack branching
with PD [63].

various micro-modulus functions. Through PD simulations under various conditions, In
[49], it is proposed that stress waves pile up around the crack tip and lead to “migration” of
damage sufficiently large, thus the material in front of the original crack tip becomes relaxed
and the crack branching ensues. In [63], the influence of PD horizon, dimensionality and
specimen size on dynamic fracture with PD analysis were investigated. It is found that all of
these factors have an influence on the crack branching patterns.

Generally speaking, the PD has been observed to perform well in modelling branching
problems by circumventing difficulties in remeshing and the requirement of an additional
branching criterion. In addition, it has the ability of modelling multiple branches, widening of
damage zone (fracture roughness) and micro-branches. However, more research is required
to improve existing PD methods for better computational efficiency compared with traditional
methods such as FEM. In addition, as a nonlocal method, the implementation of boundary
conditions needs to be considered.

The discrete element method Originally developed in [98], the discrete element
method (DEM) has been used in the modelling of jointed structures and granular materials.
DEM models the bulk material as a discontinuum and can be applied in modelling of
fracturing and fragmentation, where the discontinuities are the natural outcome of the
deformation process [201]. As a discontinuum method, the DEM treats a material medium
as an assembly of distinct particles, the motion of particles is governed by Newton’s laws,
and forces between particles are calculated according to the small overlap between them.
In DEM crack simulation, when the maximum stress exceeds the tensile or shear strength,
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cracks initiate and propagate [265]:

Fn = knun

∆Fs = ks∆us

|Fs|
A

≤ cd +
Fn tanβ

A

(2.32)

where Fn is the normal force, A the area, kn the normal stiffness, un the normal displacement,
∆Fs the change in shear force, ks the shear stiffness, ∆us the incremental shear displacement,
cd the cohesion, and β the joint friction angle. An example of fracture simulation using the
DEM is given in Fig. 2.31.

Fig. 2.31 A schematic illustration of crack
branching with DEM.

Fig. 2.32 A numerical example of crack
branching with DEM [178].

DEMs can be classified with various criteria, e.g. the type of contact between bodies,
the representation of deformability of solid bodies, the methodology for detection and
revision of contacts, and the solution procedure for the equation of motion [236]. Though
solution procedure for modelling crack propagation with DEM is different with different
deformability of solid bodies (the explicit and implicit one), some steps are indispensable
[201]: (1) identification of the unit (rock blocks, material particles, mechanical parts or
fracture systems) system topology; (2) formulation and solution of equation of motion of the
individual units; (3) the detection and updating of varying contacts (or connectivity) between
the units as the consequences of their motions and deformations. The DEM differs from
other methods based on continuum mechanics e.g. FEM in that the contacts between units
are varying with time and deformation while remaining fixed in other methods. The DEM
is most successful in modelling granular materials. Applications in modelling continuum
materials are being explored, but have various limitations.

Due to the unique nature of DEM, it can model crack branching with taking into account
heterogeneities [225]. Some examples of using DEM to study the crack branching in
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heterogeneous materials are listed below. Taking into account the effect of local heterogeneity
around the crack tip, crack branching in a vitreous biopolymer material is modelled in [178]
with DEM, see Fig. 2.32. A hole is set in the material to investigate the influence of the
position of the hole on crack branching patterns. The results showed that DEM is more
sensitive to stress heterogeneities and has better agreement with experimental results than
FEM. In [182], fracture branching with a grain-based modelling approach was studied. It
is found that complex fracture patterns are governed by material heterogeneity and model
discretisation. In [87], the DEM was used to model microcracks initiation and propagation
in different crystal structures, and it is found that the crack branching pattern varies with
different notch inclination angles: the larger the notch inclination angle is, the more branching
occurs.

While DEM can be applied in the crack branching simulation in heterogeneous materials,
the method has limitations: (1) it is not well suited to model complex material behaviour
reliably and its application is mostly limited to granular materials; (2) it is awkward in
predicting a variety of macroscopic properties (e.g. elastic stiffness, strength, critical energy
release rate for uni-, bi- and tri-axial loading, etc.); (3) it usually has high computational cost,
which is easily influenced by many factors, such as particle numbers, particle shapes and
contact force models [201].

2.2.5 Summary and Prospective Work

This section presents an overview of crack branching, including experimental observations,
physics, crack models and associated numerical methods for simulation of crack branching
problems. In terms of experimental observations, high speed photography is the most
commonly used technique to be combined with photoelasticity, caustics, digital image
correlation, digital gradient sensing to study the crack branching. The current focus is
on (1) how to combine and improve upon existing shortcomings with the combination of
technology development; (2) how to simplify the operations and reduce operating costs
while ensuring high temporal and spatial resolution. Supported by experimental research,
physics of branching including the causes of crack branching and branching criteria have
been investigated and summarized. One explanation suggests that branching occurs once
the crack velocity exceeds a critical value (related to the wave speed). Another explanation
assumes branching is a natural outcome of the growth of microcracks near the crack tip and
energy absorbed by the crack is related to the limiting velocity. Dynamic instabilities, which
are related to critical velocity, fracture roughness and micro-branches, are also shown to be
a strong mechanism for crack branching and are investigated. In addition, the crack front
waves and the tilting and twisting of the stress vector at the crack front are responsible for



2.3 Review of peridynamics 89

the crack branching. Corresponding to these potential causes of crack branching, different
branching criteria have been proposed, including external and internal criteria. The crack
models and numerical methods for crack branching have been developed and continuously
improved according to various crack branching criteria, which are further applied to simulate
crack branching, to shed light on the mechanisms behind branching. These models and
methods are reviewed in this section with respect to their strengths and limitations.

Several outstanding issues and challenges are identified and need to be resolved for
reliable crack branching prediction, these include the limitation of experimental techniques
for the observation and measurements of physical parameters in front of the crack tip;
current analytical techniques and existing branching criteria are not sufficient to define the
mechanisms driving crack branching and associated dynamic instabilities; the limitations
of various crack models and numerical methods proposed for simulating complex fracture
propagation processes. Moreover, the study of the branching problem is further complicated
by considerations such as heterogeneity of the material, softening behaviour and large fracture
networks in which multiple length scale cracks develop.

2.3 Review of peridynamics

2.3.1 Introduction

In classical continuum mechanics, an object is assumed to be a continuum. However,
when the displacement field of the object is discontinuous (e.g. material with cracks), the
displacement derivative is not defined at the discontinuities. Therefore, difficulties arise when
trying to solve discontinuous problems with classical continuum mechanics. Peridynamics
(PD) is a new continuum mechanics theory established by Silling [394] in 2000. By replacing
the partial differential equation with the integral equation, PD avoids the singularity and
combines continuous and discontinuous descriptions. In PD, the continuum is subdivided
into material points occupying the volume of space. The core of the PD theory is that the
behaviour of each material point depends on how it interacts with other material points
around it (inside its horizon). Since the deformation process depends on the interaction
between material points, PD can simulate the crack initiation, propagation, bifurcation and
intersection with a simple failure criterion defining the interaction force between material
points. This feature makes it a promising tool for crack propagation problems. As shown
in Fig. 2.33, PD, as a newly developed theory, has attracted more and more attention and
application.
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Fig. 2.33 Number of citations of [394] per year versus year from 2000 till present.

In recent years, the development of PD theory has become more and more mature. From
the beginning, it is only applicable in the modelling of linear elastic materials [402, 247, 403,
395]. Later, it is successfully applied to the modelling of non-linear elastic materials [401],
plastic materials [263], viscous elastic materials [262] and viscoplastic materials [137].

There are two types of theoretical models for PD [247]: bond-based PD and state-based
PD. The bond-based assume that any pair of particles interact only through a central potential
that is independent of all other local conditions [247]. The interaction force between two
material points is equal in magnitude, opposite in directions, and parallel to the line between
two material points. This assumption results in that the Poisson’s ratio is limited to 1/4
(plane strain) or 1/3 (plane stress) for an isotropic, linear, microelastic material. To remove
the restrictions for the Poisson ratio, the state-based theory was proposed by Silling et al.
[402] in 2007. In state-based PD, the interaction between two material points depends on the
bond between the two points and on the deformation of all the other bonds in the horizon.
Furthermore, it can be further divided into ordinary state-based PD and non-ordinary state-
based PD. In ordinary state-based PD, the interaction force between two material points is
not equal in magnitude, opposite in directions and still being parallel to the line between
two material points, while in non-ordinary state- based PD, the interaction force between
two material points is not equal in magnitude, and not being parallel to the line between
two material points. Differences between the bond-based PD, ordinary state-based PD and
non-ordinary PD can be seen in Fig. 2.34. Different from the bond-based PD, the state-based
PD is not only limited to linear elastic materials. Regular plasticity descriptions can be
implemented as a constitutive description. In [248], the ordinary state-based peridynamic
constitutive relations for plastic deformation based on von Mises yield criteria is presented.
In [438], an extended non-ordinary state-based PD was proposed, where the maximum tensile
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stress criterion is applied to determine the tensile failure of the bond between interacting
particles and Mohr-Coulomb failure criterion is employed to define the shear failure of the
bond between interacting particles. Additionally, compared to bond-based and ordinary state-
based PD, the non-ordinary state-based PD has the advantages in the aspect of modelling
general non-linear anisotropic materials. In bond-based PD and ordinary state-based PD,
anisotropic materials are usually modelled as different isotropic materials (for instance, fibre
and matrix of a composite laminate), where the stiffness of the bond depends on its orientation.
In the non-ordinary state-based PD formulation, the material properties for each particle can
be defined using the material constitutive matrix, rather than being defined through the bond
stiffness between adjacent particles [175]. In this way, more general anisotropic materials
are modelled.

Fig. 2.34 Schematic diagram of different PD models.

The main purpose of this section is to describe PD theory and review the related applica-
tions of PD in different fields, especially in the field of fracture mechanics. The challenges
and new prospects for the development of PD are also discussed.

2.3.2 Theoretical aspects of peridynamics

Bond-based PD

In the PD theory, it is assumed that each one of the material points x intersects with the other
material points x′ inside a horizon Hx, and the interactions vanish when out of the horizon.
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All the points inside the horizon of point x is defined as

Hx = x′ ∈ Ω,
∣∣x′−x

∣∣< δ (2.33)

in which δ is the horizon size (radius of the horizon).
As derived by Silling [394], the PD equation of motion at a reference position of x and

time t in an elastic material can be given as

ρ(x)ü(x, t) =
∫

Hx
f(x′−x,u′−u)dVx′ +b(x, t) (2.34)

in which ρ is the mass density, ü the acceleration, u the displacement vector field, b the
prescribed body-force density field, dVx′ the differential volume of the x′, f the force vector
between two material points x′ and x. Eq. (2.33) is valid at discontinuities. This is because
the divergence of the stress tensor in the partial differential equation in classical continuum
mechanics is replaced by the integral of the force density over the whole neighbourhood.
Thereby, the interaction f contains all constitutive properties of the material. For linear-elastic
materials, f can be expressed as

f(x′−x,u′−u) = λcs
y′−y
|y′−y|

(2.35)

where y represents the position of the material point in the deformed configuration and
y = x+u. λ is a scalar to describe the bond state: broken or not, which means the interaction
disappears or not. c is the bond-constant, which can be represented with the material constants
of classical continuum mechanics. For an isotropic material, it can be expressed as [247]:

c =
2E
Aδ 2 (1D) (2.36a)

c =

{
9E

πhδ 3 (2D,plane stress)
48E

5πhδ 3 (2D,plane strain)
(2.36b)

c =
12E
πδ 4 (3D) (2.36c)

in which E is the Young’s modulus of the solid skeleton, A is the cross-sectional area, and h
is thickness. s is the stretch between the material points representing the relative elongation
of the bond.
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State-based PD

In state-based PD theory, the “ state" is used to replace the "tensor" in the classical elastic
theory. Because tensors can only provide a continuous (smooth) spatial mapping, such as
deformation gradient tensor, the PD theory requires a space mapping that takes into account
both continuous (smooth) and discontinuous (non-smooth). Therefore, the “state" is defined
as a mapping from vector space to tensor set [402], which is an array that stores information
about a parameter of PD bonds associated with a particular material point [197].

The generalized state-based PD equation of motion can be expressed as:

ρ(x)ü(x, t) =
∫

Hx

{
TTT (x, t)

〈
x′−x

〉
−TTT (x′, t)

〈
x−x′

〉}
dVx′ +b(x, t) (2.37)

where TTT ⟨·⟩ is the force state.

Ordinary state-based PD

In the ordinary state-based PD formulation, the PD forces between two material points are
not equal in magnitude and in opposite directions, but their directions are parallel to the line
between two material points. For linear elastic materials, the force state is given by:

TTT (x, t)
〈
x′−x

〉
=

(
2adδ

|x′−x|
θ(x, t)+bδ s

)
y′−y
|y′−y|

(2.38)

where a, b, d are PD parameters and can be obtained by comparing the PD theory and
classical mechanics theory. First, assume a body subjected to the simple loading conditions
of isotropic expansion and simple shear. Then the strain energy density resulting from the
PD theory and classical mechanics theory is compared to each other under the same loading
conditions to obtain the corresponding parameters a, b, d in different dimensions, which can
be defined as follows [247]:

a = 0, b =
E

2Aδ 3 , d =
1

2Aδ 2 (1D)

a =
1
2
(κ −2µs), b =

6µs

πhδ 4 , d =
2

πhδ 3 (2D)

a =
1
2
(κ − 5

3
µs), b =

15µs

2πδ 5 , d =
9

4πδ 4 (3D)

(2.39)
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where κ and µs are the bulk modulus and shear modulus, respectively. θ in Eq. (2.38) is the
dilatation term, which is defined as:

θ =
∫

Hx
dδ sΛdVx′ (2.40)

Λ is the PD auxiliary parameter, which is defined as:

Λ =
(y′−y) · (x′−x)
|y′−y| · |x′−x|

(2.41)

Non-ordinary state based PD

The non-ordinary state based PD disregards the assumption in ordinary state based PD that
the direction of PD forces between two material points should be parallel to the line between
the two points. The force density vector T(x, t)⟨x′−x⟩ can be related to the traditional stress
as:

TTT (x, t)
〈
x′−x

〉
= ω

〈
x′−x

〉
PPPKKK−1(x′−x) (2.42)

where ω is the influence function that defines the strength of interactions. PPP is the first
Piola-Kirchhoff stress tensor [88], which can be obtained from Cauchy stress:

PPP = det(FFF)σσσF−T (2.43)

with FFF being the nonlocal deformation gradient, which is defined as:

FFF =

∫
Hx

ω ⟨x′−x⟩(YYY ⟨x′−x⟩⊗XXX ⟨x′−x⟩)dVx′

KKK
(2.44)

KKK is the nonlocal shape tensor, which is defined as:

KKK =
∫

Hx

ω
〈
x′−x

〉
(XXX
〈
x′−x

〉
⊗XXX

〈
x′−x

〉
)dVx′ (2.45)

In Eq. (2.44) and Eq. (2.45), XXX represents the position state which contains the relative
position of x′ and x, and YYY represents the deformation state containing the relative position
of x′ and x in the deformed configuration. ⊗ is the dyadic product operator.

Damage predication

In classical continuum mechanics, an additional criterion is required in every time step to
judge whether the crack propagates and in which direction it grows. However, in PD, only
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one criterion is needed to decide when the bond breaks. The bond refers to the long-range
interaction between pairs of points. When a bond is broken, the interaction between the pairs
of material points disappears. The bond break is a process that cannot be recovered over
time, and a series of bond breaks indicate the damage of the material. Two kinds of failure
criteria are commonly used in the PD to decide when a bond has to be broken [299]: critical
strain (critical bond stretch) criteria and critical energy criteria.

Critical strain (critical bond stretch) criteria Critical strain (critical bond stretch) criteria
[400] are related to the stretch of the bond s. The bond breaks when its stretch s exceeds the
critical stretch sc. The stretch of the bond s is written as [394]:

s =
|y′−y|− |x′−x|

|x′−x|
(2.46)

The critical stretch sc can be determined by the energy release rate Gc. The relationship
between sc and Gc is defined as [247, 286, 471]:

sc =

√
4πGc

9Eδ
(2D,plane stress) (2.47a)

sc =

√
5πGc

12Eδ
(2D,plane strain) (2.47b)

sc =

√
5Gc

6Eδ
(3D) (2.47c)

In order to add the critical strain criterion to the numerical simulation, λ is introduced in
Eq. (2.35) as a scalar to describe the bond state: broken or not. λ equals 1 when the bond is
intact, and λ equals 0 when the bond is broken.

λ =

{
0 (s ≥ sc)

1 (s < sc)
(2.48)

When the bond is broken, the interactions on the bond disappear, then the additional load
is added onto the intact bonds, which may cause a series of bonds to break. The break of the
bond is a process that cannot be recovered. The time taken by the bond break is determined
by the material geometry and loading conditions. When a series of bonds break, the damage
occurs, and the discontinuous space formed by these broken bonds becomes a macroscopic
crack.
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Critical energy criteria The critical bond stretch criterion is commonly used for dealing
with mode I fracture in homogeneous [170, 389] and heterogeneous materials [156]. However,
it is not suitable for simulating the fracture observed in elasto/visco-plastic materials, which
involves the deviatoric deformation [114]. In order to overcome the disadvantage of critical
bond stretch criteria, a criterion based on the energy was proposed in [137] for elasto/visco-
plastic materials.

In the critical energy criterion, instead of depending on the stress or strain criteria, the
failure criterion of a bond is derived from the amount of energy density stored in the bond.
The total energy density stored in a bond, wξ , is obtained by the integration of the dot product
of the force density vector and the relative displacement vector, see Eq. (2.49):

wξ =
∫

η(t f inal)

0

{
TTT (x, t)

〈
x′−x

〉
−TTT (x′, t)

〈
x−x′

〉}
·dηηη (2.49)

where ηηη is the relative displacement between two points x and x′, as shown in Fig. 2.35.
η(t f inal) is a function of time, which represents the final scalar value of displacement. The
equation represents the work density done on a bond is the dual force density integrated over
the displacement. The idea is borrowed from that the work done to a body is the force acting
on it integrated over the displacement of the body.

Fig. 2.35 Schematic of bond kinematics.

When the total energy density stored in a bond wξ is greater than the critical energy
density wc, the bond breaks. By summing up the energy critical energy densities wc through
integration and equating it to the energy release rate [137, 298], the relationship between wc

and energy release rate Gc can be obtained as follows:

wc =
9Gc

4δ 3 (2D) (2.50a)

wc =
4Gc

πδ 4 (3D) (2.50b)
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To implement the bond-break criterion into numerical simulation, the influence function
ω in Eq. (2.42) is used to describe the bond state: broken or not. When the bond is intact, it
equals 1. When the bond is broken, it equals to zero. Therefore, the failure criterion can be
expressed mathematically as:

ω =

{
0 (wξ ≥ wc)

1 (wξ < wc)
(2.51)

Local damage To describe the crack path, a scalar φ called damage parameter is used. It
represents the local damage of point x, which is defined as the ratio of the sum of the volumes
bound to the family nodes connected by the broken bonds to the sum of the volumes of all
the family nodes in the original horizon:

φ(x, t) = 1−
∫

H χdVx′∫
H dVx′

0 ≤ φ ≤ 1 (2.52)

where χ is a time-dependent damage parameter. In the critical bond stretch criteria, χ can
be replaced by the influence function λ . In critical energy criteria, χ can be replaced by the
influence function ω .

Let us consider a point x is close to a crack surface in a PD model. If there is no crack
surface, the bonds are all intact and the value of φ(x, t) is zero. If crack surfaces exist, since
failure occurs, bonds crossing the crack surface are all broken. As shown in Fig. 2.35, half of
the bonds connected to the point x are broken, leading to a local damage value φ(x, t)=0.5.

Fig. 2.36 Schematic of local damage.

Thereby, the value of the damage parameter φ(x, t) is between 0 ∼ 1. 0 represents no
failure at the point x while 1 represents total failure because all the bonds connected to the
point are broken. The crack path can be indicated by plotting the damage parameter in global,
as shown in Fig. 2.37.
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Fig. 2.37 Crack propagation path in a 2D solid media.

2.3.3 Numerical implementation

Spatial discretisation

There are two common approaches for spatial discretisation in PD: the meshless scheme
[400] and the finite element discretisation [491].

The finite element discretisation for the bond-based PD model is proposed in [491], For
state-based PD, a morphing method is developed to couple classical continuum mechanics
with state-based PD [173]. It is possible to apply traditional finite element discretisation in
PD models in continuous problems. However, when modelling discontinuous problems, e.g.
crack problems, finite element discretisation with PD models becomes nearly impossible.
Because in the traditional FEM discretisation, nodes and edges are shared between adjacent
elements, which prevents the possibility of separation between elements. In 2011, Chen
and Gunzburger [81] pioneered the application of discontinuous Galerkin elements to PD
models to solve discontinuity problems. It is proposed that discontinuous Galerkin elements
are required if finite element discretisation is employed to simulate crack growth with PD
models. In [424], a non-conforming discontinuous Galerkin finite-element scheme for
nonlocal variational problems associated with some linear nonlocal diffusion and nonlocal
PD operators was proposed. In [354], a 3D bond-based PD model was established with the
discontinuous Galerkin finite element method for dynamic brittle failure analysis.

Compared with finite element discretisation, the meshless scheme is more straightforward
[247]. In [400], the meshless scheme was first proposed, and detailed numerical implementa-
tion was given. Let us consider a domain B . The domain can be seen as a composition of
nodes associated with a specific volume, as shown in Fig. 2.38. Since there are no elements
or other geometrical connections between the nodes, the method is meshfree. The spatial
integration is implemented by the summation of the volumes of material points around the
point xi within its horizon H xi . For simplicity, let us consider the peridynamic equation of
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motion in an elastic material in bond-based PD. The discretised form of the Eq. (2.34) of
motion for node xi can be expressed as:

Fig. 2.38 Spatial discretisation.

ρüi =

Nxi

∑
j=1

fi j(x j −xi,u j −ui)Vj +bi (2.53)

where Nxi is the number of points inside the horizon Hxi of material point xi and Vj the
volume of material point x j.

Time integration

The time integration scheme for PD falls into two broad categories: the explicit and implicit
schemes. The explicit scheme is appropriate for simulating failure problems involving large
deformations as well as dynamic problems where inertial effects play an important role
[237]. However, it is conditionally stable, which means the time step is required to be small
enough to satisfy the stable condition. Compared to the explicit one, the implicit scheme
is unconditionally stable. Thereby, a larger time step is allowed. Besides, it is appropriate
for static and quasi-static problems. However, one disadvantage for the implicit scheme is
that it requires the calculation of tangent stiffness matrix when solving nonlinear problems,
and the matrix needs to be updated when the failure occurs, which renders the problems of a
high computational cost [237]. A detailed description of the explicit scheme for dynamics
problems and the implicit scheme for static problems is given below. The explicit forward
strategies and backward difference strategies are used for the explicit scheme, and the Newton
iteration is used for the implicit scheme. We note that these strategies are just selected here
for simplicity of explanation. Other numerical strategies can be found in [228].

The explicit scheme Generally, the explicit scheme calculates the state of a system at a
later time based on the state of the system at the current time. Eq. (2.53) can be written in the
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following form:

ρün
i =

Nxi

∑
j=1

fn
i j(x j −xi,un

j −un
i )Vj +bn

i (2.54)

where n is the time step number. According to Eq. (2.54) and the initial value of un, bn
i , the

PD force fn
i j is calculated and the acceleration field ün at time step n can be obtained. Then,

the velocity field u̇n+1 at next time step n+1 can be obtained by explicit forward Euler with
the known displacement field u̇n and acceleration filed ün at the time n.

u̇n+1 = u̇n +∆tün (2.55)

After obtaining the velocity field u̇n+1 at time step n+1, the displacement field un+1 at
time step n+1 can be obtained by backward difference approximation:

un+1 = un +∆tu̇n+1 (2.56)

An algorithm is given in Table 2.4 to show the numerical implementation for the dynamic
PD model with an explicit scheme.

Table 2.4 Algorithm of the numerical implementation for the dynamic PD model with an
explicit scheme.

Initial conditions and boundary conditions
Spatial discretisation
Repeat

For each node i do
For each node j inside the horizon of node i do

▷ compute the interactions between node i and node j
▷ compute the stretch s of the bond between node i and node j
▷ check the bond stretch s against the critical value sc
if s ≥ sc, then
▷ break the bond
end if

End for
▷ compute the total interaction forces acting on node i
▷ compute the acceleration ü for node i
▷ compute the displacement u for node i

End for
t = t +∆t
Until the time t exceeds the total time ttotal
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The implicit scheme The implicit scheme calculates the state of a system at a later time
with both the state of the system at the current time and the system’s state at a later time.
Compared with explicit schemes, implicit schemes allow for a large time step and are suitable
for static and quasi-static problems [237]. An example of the application of an implicit
scheme for quasi-static problems is presented to highlight the most salient aspects of implicit
methods for PD. With failure occurs, the problem is nonlinear. Thereby, Newton iteration is
employed. Regardless of the inertial term, Eq. (2.53) can be written in the following form:

Nxi

∑
j=1

fi j(x j −xi,u j −ui)Vj +bi = 0 (2.57)

By multiplying Vi to Eq. (2.57), the following equation can be obtained:

Nxi

∑
j=1

fi j(u j −ui,x j −xi)VjVi +biVi = 0 (2.58)

Eq. (2.58) an be expressed in a matrix form:

Ku = F (2.59)

where K is the stiffness matrix, by employing Newton iteration, the following equation
system can be obtained:

un+1 = un − R
K

(2.60)

where R is the residual, and can be expressed as:

R = Kun+1 −Fn+1 (2.61)

By applying Newton iteration to minimise the residual until the convergence criterion is
met, the displacement field un+1 at next time step n+1 can be obtained.

An algorithm is given in Table 2.5 to show the numerical implementation for the quasi-
static PD model with an implicit scheme.

Numerical stability

Since the explicit scheme is conditionally stable, its time step should be smaller enough to
satisfy the stability condition. Two common approaches are employed in PD to determine the
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Table 2.5 Algorithm of the numerical implementation for the quasi-static PD model with an
implicit scheme.

Initial conditions and boundary conditions
Spatial discretisation
Repeat
▷ update the load step and time step
▷ assign an initial guess to the trial displacement utrial

Repeat
▷ update the stiffness matrix K
▷ evaluate the residual R
▷ compute the displacement u
▷ check the bond stretch s against the critical value sc
if s ≥ sc, then
▷ break the bond
end if

Until the convergence criterion is met
Until the time t exceeds the total time ttotal

critical time step. The first approach is derived by Silling in [400], which is given as follows:

∆tcrit =

√√√√ 2ρ

∑
Nxi
j=1VjCi j

(2.62)

where ρ is the density, Ci j the micro modulus between the material point xi and the material
point x j. After looping over all material points in the material, the minimum value will
be taken as the critical time step. Though derived for the 1D problem, the criterion can
be applied in any number of dimensions by setting Ci j =

∣∣C(x j − xi)
∣∣ [400]. However, this

criterion is only for linear problems. For nonlinear problems, a “safety factor" less than one
is required to make sure the stability conditions are satisfied [247].

The second approach to determine the critical time step is the Courant-Friedrichs-Lewy
(CFL) approach [96].

∆tcrit =
hc

cw
(2.63)

where hc and cw are the characteristic length and the wave speed, respectively. If hc equals
grid spacing, then the evaluation of the critical time step will be very conservative. This is
because the CFL condition is commonly applied in finite element methods, where the node
interacts only with the nodes next to it. However, PD is a nonlocal theory in which nodes
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interacts with each other within a horizon. Therefore, the selection of the size of hc plays an
important role in determining the criterion.

Numerical convergence

Compared with finite element analysis, the convergence in PD is more complex, in which
two parameters play important roles: the horizon size δ and the grid spacing ∆x [247]. The
relationship between the two parameters can be expressed as follows:

m =
δ

∆x
(2.64)

where m is the ratio between the horizon size δ and grid spacing ∆x. It is of great importance
to determine the relationship between these parameters to balance accuracy and computational
cost. Two types of convergence are introduced in [169], which are m-convergence and δ -
convergence, as shown in Fig. 2.39.

(a) m-convergence (δ fixed). (b) δ -convergence (m fixed).

Fig. 2.39 Graphical descriptions for the m-convergence and δ -convergence.

• In the m-convergence, δ is fixed while m −→ ∞.

• In the δ -convergence, m is fixed while δ decreases or m increases at a slower rate than
δ decreases.

For m-convergence, with δ being fixed, the smaller ∆x is, the bigger m is. When m −→ ∞,
the numerical peridynamic approximation converges to the exact non-local peridynamic
solution for the given δ [169]. A series of studies have been conducted on the selection of m.
It is found that m = 3 is most commonly used [247]. By setting m = 3 and δ = 3∆x, both
the accuracy and the computational efficiency can be achieved. Examples of PD models
with δ = 3∆x can be found in different materials, such as micro brittle isotropic materials
[396, 111] and composite laminates [186]. m = 3 and δ = 3∆x are also applicable for a
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variety of phenomena, such as crack prediction [400], crack branching [247], contact and
impact prediction [46]. Besides m = 3, larger values for m are also selected for different cases.
With m increasing, more neighbour points will be added to compute the PD interaction forces,
and more information will be obtained. m = 4 is utilized in [169, 49] for crack branching
phenomenon in isotropic materials and for fluid flow phenomenon in porous media in [196].
m = 5 is chosen in [184, 185] for dynamic crack prorogation and branching phenomenon in
an-isotropic materials (unidirectional fiber-reinforced composites).

For δ -convergence, with m fixed and δ −→ 0, the numerical peridynamic approximation
converges to an approximation of the classical solution [169]. With smaller ∆x, more accurate
results can be achieved. However, it does not mean that the smaller ∆x, the better. The
selection of horizon size δ is of the same importance. In [400], it is found that the selection of
the horizon size should be dependent on the characteristic length dimensions of the material.
In [369], it is proposed that the horizon size should be chosen to be capable of capturing the
main characteristics of the damage evolution processes, independent of the discretisation
size. A similar conclusion is obtained in [136], where it is said that the horizon size δ should
be at least as large as the size of the plastic process zone near the crack tip to capture physical
mechanisms.

2.3.4 Applications of peridynamics

As a fast-developing method, PD theory has been applied to various problems in different
fields, including, but not limited to, material failure, impact, multifield, multiscale, and wave
dispersion problems, as shown in Table 2.6. We note that these applications are not mutually
exclusive, e.g. the hydraulic fracturing process, which couples the deformation of rocks
and fluid flow together, belongs to both material failure problems and multifield problems.
Table 2.6 provides a rough classification and focused more to prove the capability of PD in
simulation of physical problems and analysis of physical mechanisms.

Table 2.6 PD applications for different problems.

Applications Further classification
Material failure problems Damage; Fracture; Fatigue
Impact problems High velocity impact; Low velocity impact

Multifield problems
Thermal-mechanics; Porelasticity; Electro-migration; Hygro-
thermo-mechanics

Multiscale problems
Multiple scales of time; Multiple scales of space ranging from
nanoscale to macroscale

Wave dispersion problems Linear elastic materials; Non-linear materials
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Material failure problems

For material failure problems, the damage investigation has been conducted with the PD
model in different materials, such as composite materials [469] and layered heterogeneous
materials [204]. In addition, various damage phenomena and specific physical mechanisms
have been reproduced and investigated with PD models. In [363], a PD model for simulating
corrosion damage and crack propagation under the synergy of chemical corrosion and
mechanical loading was established, which can predict corrosion pitting, nucleation, and
crack propagation. In [106], a PD framework for the modelling of hydrogen adsorbed stress
corrosion cracking was presented, which accounts for inter-granular crack propagation due
to the flow of hydrogen along grain boundaries of the material. It is found that the PD model
can predict the structural damage both qualitatively and quantitatively [197].

The PD model is also utilised in fracture mechanics to shed insights into understanding
the mechanisms of fracture development. The fracture growth is modelled in different
materials, such as concrete [153], rock [332], metals [447], ceramic [437], and polymers
[364], and different fracture phenomena are investigated. In [271], a 3D simulation of the
fracture process with PD in a heterogeneous medium was presented, and the factors that
affect the fracture propagation were analysed. In [169, 49] the physical mechanisms behind
dynamic crack branching in brittle materials were investigated with a PD model. In [171],
with a PD model, the complex fracturing responses of a single flaw under compression were
investigated, and effects of the flaw inclination angle and mechanisms behind the wing crack
propagation were discussed.

For the fatigue fracture, a PD model enables the simulation of three phases of fatigue
failure: fracture initiation, fatigue growth, and final failure [398]. A PD approach for
predicting the fatigue failure of materials due to cyclic loading was presented in [292]. The
crack growth phase of fatigue life rather than initiation was analysed. With a robust PD model,
simulation of fatigue cracking in homogeneous and in composite materials was conducted in
[475]. The numerical simulation results agree well with the experimental results. In [187],
a PD model was applied in predicting the damage initiation and growth in fibre reinforced
composites under cyclic loading. With the model, the strength of the materials reduces with
the number of cyclic loading increases and the damage patterns observed in experiments are
reproduced.

Impact problems

The impact problems have been investigated with different impact velocities in various
materials. For homogeneous materials, the impact of a rigid sphere against a homogeneous
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brittle glass was simulated with a PD model in [399], which proves the ability of the
peridynamic model to reproduce large deformation and fragmentation. In [216], a new
response function including thermal loading and an efficient numerical algorithm for PD
equation solutions were proposed for the progressive failure prediction in homogeneous
materials. In [46], the impact of a high-velocity projectile against a multi-layered glass system
was simulated with a PD model, which captures many damage morphologies observed in
the experiments and uncovers a time-evolution of damage and the dynamic interaction
between propagating cracks and interfaces. In [459], a PD model was utilised to simulate
the detailed delamination and matrix damage process in composite laminates under the
low-velocity impact, and the failure analysis was conducted. PD models are also utilized
in [20] , which predicted damage in laminates subjected to low-velocity impact, and the
results agree well with the experimental results. In [168], an extended ghost inter-layer
model for simulating laminated structures with multi-body interactions was proposed and
verified for simulating the fracturing behaviour of laminated glass under high-velocity impact.
As a supplement, numerical simulation of the damage of composite laminates subjected to
impact under different velocities was conducted in [415, 454]. The whole process from low-
velocity collision to high-velocity penetration appearing in composite laminate or concrete is
analysed.

Multifield problems

In addition to deformation fields, PD can be applied in other fields, such as thermal diffusion,
moisture diffusion, electric potential distribution [44]. These fields can be coupled with
the deformation fields, making PD a promising tool for coupling problems of different
fields in the presence of discontinuities. The coupling problems include thermal-mechanics,
hygro-thermo-mechanics, poroelasticity, and electro-migration problems.

For thermal-mechanics problems, a PD formulation for one-dimensional transient heat
conduction was proposed in [43], and later the formulation was extended to crack problems
in multiple dimensions in [46]. Based on [46], a PD fully coupled formulation for one-
dimensional thermal-mechanics was developed in [11]. And this formulation was extend to
multiple dimensions in [294] and thermally heterogeneous materials, e.g. fiber-reinforced
composites in [295]. In [295], the derivation of ordinary state-based PD heat conduction
equation was presented, and a detailed numerical implementation process was given. With
the PD thermal diffusion model, the effect of temperature changes in the vicinity of the crack
tip due to dynamic loading was captured, and the temperature rise at the crack tips when a
crack propagates was predicted in [15].
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Based on thermal-mechanics problems, another factor affecting the deformation field,
the moisture diffusion, is incorporated in the PD formulation, resulting in the hygro-thermo-
mechanics problems. The hygro-thermo-mechanics problems include both the effects of
temperature and moisture on the deformation field. A PD formulation that couples moisture,
temperature, vapour pressure, and the deformation field was presented in [297], which
enables failure mechanisms analysis as well as the damage prediction in materials or layered
material systems such as the electronic packages.

For poroelasticity problems, in [426], a new formulation for incorporating the effects
of pore pressure in PD was presented to simulate the deformation of porous media, and
the proposed formulation is applied to modelling the consolidation of fluid-saturated rocks.
Later, in [209], a state-based PD formulation of pressure-driven convective fluid transport in
heterogeneous porous media was developed, and the model proves to be capable of capturing
arbitrary flow discontinuities/heterogeneities. Following the above work, a hydraulic fractur-
ing model, which couples a state-based PD formulation of porous flow and the existing PD
solid formulation together, was developed to simulate fluid-driven fractures in an arbitrary
heterogeneous poroelastic medium in [300]. Later, the model was utilised to simulate com-
plex natural fracture networks and investigate the interactions between hydraulic fractures
and natural fractures [299]. A 3D linear visco-elastic PD model, which is applicable to
hydraulic fracturing initiation and propagation in a heterogeneous porous medium, was em-
ployed to investigate the interaction between induced fractures and existing fractures [271].
Considering the analogy between poroelasticity and thermo-elasticity, a new fully coupled
poroelasticity PD formulation was presented in [296] to analyse sophisticated poroelasticity
problems, e.g. fluid-filled rock fractures.

Electro-migration concerns the coupling of deformation, heat transfer, electrical potential
distribution and charge flow, and vacancy diffusion [44]. The electric potential and charge
flow cause Joule heating, which in turn causes a thermal field and thermal deformation. Due
to electro-migration, thermal migration and stress migration, the atomic flux diverges, and
material degradation occurs [242]. In [154], a PD framework, which is capable of modelling
four coupled physical processes: mechanical deformation, heat transfer, electrical potential
distribution, and vacancy diffusion, was presented and utilised to analyse electro-migration
and thermo-mechanical crack formation. Similarly, in [293], the PD framework coupling
the four physical processes was also presented and applied to model the electro-migration
phenomenon. The PD results agree well with FEM results, which proves the ability of PD in
predicting failure in interconnects due to electro-migration.



108 literature review

Multiscale problems

There exists a wide range of phenomena and processes whose characterisation requires
simultaneous and consistent modelling at multiple spatial and temporal scales [197]. For
example, fracture propagation is a common multiscale phenomenon, which can operate
across both spatial and temporal scales [44]. In addition, for phenomena that occur in
complex materials such as bio-materials, crystalline materials, polymers, and composite
materials, multiscale modelling is required [197]. Three successful multiscale applications
of PD related to fracture problems were reviewed in [19], including fracture and failure of
composites, nanofiber networks, and polycrystal fracture, which demonstrates that the PD has
a compelling advantage in multiscale modelling with length scales ranging from nanoscale
to macroscale. As one of the early applications in multiscale modelling with PD, an adaptive
refinement for one dimension was introduced in [48]. And later in [45], adaptive refinement
algorithms for the bond-based PD model for solving statics problems in two dimensions were
proposed. The coupling of molecular dynamics (MD) and PD is often employed to solve
multiscale problems. In [425], a multiscale model coupling molecular dynamics and PD was
proposed, which has three dynamic equations at three different scales, namely microscale,
mesoscale, and macroscale. The transition from the microscale to the macroscale is made by
employing the adaptive multiscale element, which is capable of passing information from
different scales. In [344], a multiscale modelling framework was established between PD and
atomistic models. A smaller length scale PD model is seamlessly linked with the atomistic
model, and the displacement field is captured in the atomistic region. The finite element
method (FEM) and PD are also coupled for the multiscale problems. In [457], a multiscale
implementation based on adaptive mesh refinement for the nonlocal PD model was developed.
An adaptive strategy is used to detect the discontinuous area and make seamless transitions
between the multiscale grid. The PD grid is utilised in the area where cracks are likely to
occur, while relatively larger finite element grid is utilised in the area where cracks do not
occur. Similar transitions and coupling strategies between FEM and PD can be found in
[284, 444]. In addition to the multiscale models (MD and PD models, FEM and PD models),
there are other multiscale PD models. Readers are referred to [13] for a detailed discussion.

Wave dispersion problems

In addition to the applications mentioned above, PD has also been applied in wave dispersion
problems since the formulation of PD has the following characteristics: if there exist long-
range forces, elastic wave dispersion occurs, and the horizon size will have an effect on the
amount of dispersion [197]. The wave propagation is investigated with PD in linear elastic
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materials and nonlinear materials. Moreover, different approaches have been proposed to
reduce the wave dispersion in PD [442, 443].

Numerical dispersion in bond-based PD models has been addressed in [441], and the
effect of the nonlocal PD forces on the dynamic response of a one-dimensional linear micro-
elastic bar was studied. Later, the wave dispersion and propagation in state-based PD models
in linear elastic solids were investigated [64]. A mathematical study of nonlinear PD wave
equations was presented in [37]. Then, the propagation of large amplitude, non-dispersive,
solitary waves in a nonlinear solid was investigated with PD in [397]. A detailed review of
PD modelling of wave dispersion problems can be found in [197], where examples of PD
simulation in other types of materials, such as the granular materials, layered composite,
graphene, are given.

2.3.5 Summary and Prospective Work

As a relatively new theory proposed in 2000, PD has attracted increasing attention for
application in fracture problems due to its intrinsic advantages in dealing with discontinuities.
This section has completed two aspects of work. First, it gives an overall picture of PD
theory, including the basic concepts, classification of PD, damage prediction and numerical
implementation. Second, a summary of the application of PD in different fields, including,
but not limited to, material failure, impact, multifield, multiscale, and wave dispersion
problems.

The advantages of PD are multiple: (1) PD combines continuous and discontinuous
descriptions and allows the crack growth to be captured without additional crack prop-
agation criteria; (2) for multiscale problems, it can be used to study large deformation
and impact/failure problems on the macro-scale and kinetics of phase transformations and
damage/failure problems on the micro-scale; (3) it is applicable in multifield problems:
the coupling formulations involving PD have been developed for the analysis of thermal,
chemical, diffusion, electrical and porous flow problems [197]; (4) it is straightforwardly
implemented in any spatial dimension.

Disadvantages have also been found in PD: (1) the computational cost is high since there
exists a large number of interactions between the nodes; (2) the boundary conditions can be
challenging to implement since PD is a nonlocal approach, and erroneous behaviour may
be observed at boundaries; (3) wave dispersion occurs due to the existence of long-range
(nonlocal) forces, leading to a distortion of the wave speed and crack propagation speed,
which is not beneficial for failure analysis.

Despite these shortcomings, PD is still a competitive tool for fracture and damage analysis
due to its unique characteristics of dealing with discontinuities straightforwardly. In addition,
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with further improvement of the theory and technology, the above shortcomings have been
improved. For example, to improve computational efficiency, computer hardware has been
upgraded, and computing technologies such as adaptive refinement and multiscale methods
are proposed [45, 197]. Furthermore, literature aiming at solving the boundary conditions
and wave dispersion can be found in [443, 324].



Chapter 3

A finite element model for hydraulic
fracturing in porous media

3.1 Introduction

Hydraulic fracturing involves a process by which fractures initiate and propagate in a forma-
tion due to the injection of fluid at high pressure and has received a great deal of attention,
mainly due to its importance in engineering applications, including shale gas reservoir stimu-
lation, compensation grouting, caving and fault reaction in mining [22, 123, 198]. In the oil
and gas recovery industry, the induced fractures increase the permeability of the reservoir,
thereby increasing the extraction of petroleum and natural gas. The economic benefits to
the petroleum industry make it essential to predict fracture propagation and understand the
physics involved in the evolution of fractures. Considerable numerical and experimental
studies have been carried out to investigate the hydraulic fracturing process. Even though all
the analytical solutions and most numerical results give smooth results, recently, it has been
observed in field tests, laboratory experiments and a few numerical simulations that the prop-
agation of fractures is not continuous but stepwise [318, 380]. However, until now, only a few
authors reproduced the stepwise phenomenon in numerical simulation [67, 68, 279, 380, 283].
In addressing the stepwise fracture tip advancement, one would like to determine: (1) the
existence of this phenomenon, especially in numerical simulations (whether the cause of
the phenomenon is physical or a numerical artifact); (2) the factors influencing the stepwise
phenomenon; (3) if the phenomenon exists, under which condition the phenomenon can be
captured. In this chapter, we begin with a discussion of these problems and a survey of the
literature. This is followed by a presentation of the numerical method developed to model
this phenomenon, with the aim of providing more insight into the process.
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The existence of the stepwise phenomenon is discussed in two aspects: in practice and
numerical simulation. In practice, field tests and laboratory experiments have confirmed the
presence of stepwise fracture advancement during the hydraulic fracturing process during the
past decades. It was argued that fracturing could occur abruptly, and the fracture could extend
at a rate greater than the velocity of entry of fluid and might approach one-fifth of the speed of
sound in some cases [321]. Through the observation of the development of brecciated normal
faults and breccia zones, it was implied in [316] that abrupt episodes of hydraulic fracturing
were separated by longer periods. By analyzing test data related to lost circulation, it is also
confirmed that the propagation of fractures is not continuous and during which the pressure
is fluctuating [145, 269, 289]. A two-dimensional lattice model was presented in [427], and
it was found that pressure inside the fracture dropped in time and had oscillations on short
time scales, resulting in discontinuous fracture propagation, similar to what was measured in
the field. An experiment was specially designed to verify this phenomenon in [318], where a
single-edge-notch test was conducted on hydrogel (one of the most homogeneous materials).
Evidence of fracture propagation jumps was observed in the experiment. By measuring the
size of different physical parameters as well as analyzing the relationship between them, it
was found that the stiffness of the hydrogel is related linearly with the spatial lengths of the
steps and inversely with the time that each step needs to propagate and break [318].

On the other hand, in numerical simulations, only a few authors have successfully re-
produced the stepwise phenomenon [67, 68, 279, 380, 283]. The complexity of the physical
process of hydraulic fracturing has led to the development of a multitude of numerical meth-
ods, including but not limited to: the finite element method (FEM), the extended/generalized
finite element method (XFEM/GFEM), the boundary element method (BEM), the phase
field method (PFM), the discrete element method (DEM) and peridynamics (PD). Though
these approaches have been successfully applied to the numerical simulation of hydraulic
fracturing, not all of them have the ability to reproduce the stepwise phenomenon. Among all
the approaches, the FEM has proven to be versatile and capable of reproducing the stepwise
phenomenon numerically. A fully coupled pressure-induced cohesive fracture model in a
porous medium was developed with FEM in [379, 377, 380]. The results show that the
fracture tip advances stepwise in a pressure-induced fracture with pressure exchange and
flow between the fracture and surrounding media. A dynamic model of cohesive fracture
propagation in porous saturated media with FEM was presented in [213]. A comparison
between the quasi-static and fully dynamic solutions was made. There is a sudden increase
of fracture length and fracture mouth opening in the dynamic fracture propagation process,
whereas in quasi-static analysis, the values of fracture mouth opening and fracture length
increase gradually. In [279], a 2D quasi-static hydraulic fracture model in porous media was
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developed using cohesive interface elements with FEM. It is concluded that the stepwise
phenomenon can be observed with a small step, whereas monotonic growth is obtained with
a large time step. However, whether the stepwise can still be observed with a smaller mesh
size is not given. The stepwise phenomenon was also investigated in [68] with three different
methods, namely the central force model, the standard Galerkin finite element method and
the extended finite element method. The results show that the stepwise phenomenon can be
observed even in dry materials. Later, the phenomenon was further explored in [67] with
a dynamic fracturing model based on the standard Galerkin finite element method under
two different loading cases: the mechanical and hydraulic loading conditions. It shows
that the phenomenon holds in quasi-static and dynamic conditions. In terms of pressure
oscillation and related frequencies, more information is given in the dynamic condition than
in the quasi-static condition. A hybrid FEM and peridynamic model was employed in [283]
to predict the dynamic solution of hydro-mechanical coupled problems. With this model,
the forerunning fracture behaviour is observed both in dry and saturated conditions, which
further proves the existence of the stepwise phenomenon.

Explanation of the stepwise behaviour remains a challenge. It was pointed out in [316]
that the rate of fracture propagation could depend on the porosity and permeability conse-
quently. Before the critical stress conditions are reached under the prevailing pore water
pressure, a long period is needed for the pore fluid to flow into the fracture for restoration.
Another explanation is that the fracture is enlarged, followed by a drop in pressure [420].
Therefore, if the pressure drops suddenly, the stresses at the fracture tips fall below their
cohesion value, and the fracture cannot grow at the next time step. The fracture will not
grow again until a ready supply of fluid is available. By analyzing the field data of Marcellus
shale and Eagleford shale, it was pointed out in [408] that the difference between the major
pressure changes could be observed when fractures intersect with natural faults and the minor
fluctuations related to intermittent propulsion. It was proposed in [466] that the intersection of
hydraulic fractures and natural fractures are the likely reasons for the stepwise phenomenon
observed in the field. When hydraulic fractures interact with nature fractures, a time delay
may occur for the natural fracture to build up fluid pressure and initiate failure, which can be
seen in the injection pressure profile. The natural fracture slip can cause a lost circulation
event, which results in multiple episodes of pressure drop and build up [466]. Based on
the experimental data, a relationship between the pause time, the hydraulic permeability,
Young’s modulus and the spatial step length was derived, and a possible explanation for the
stepwise phenomenon was given in [318]. It is concluded that a consolidation time (the time
needed for all the fluid to flow out of that layer of materials) is required before the crack tip
advancement to dissipate the over-pressure caused by the last crack tip advancement. By



114 A finite element model for hydraulic fracturing in porous media

invoking "self-organization of rupture", it was proposed in [314] that special requirements for
self-organized criticality (SOC) need to be satisfied to reproduce the stepwise behaviour. The
numerical and experimental results in [229, 260] show that the transition from continuous
to staccato fracture tip advancements is related to fluid injection rate and fluid viscosity.
However, the clear relationship between these factors is yet to be demonstrated. Though
various explanation has been given, it is still hard to reach a consensus on the mechanism
behind the stepwise phenomenon, since it is a sensitive process affected by many factors in
the field and experiments.

The stepwise phenomenon is also sensitive in numerical simulations. It was concluded in
[68] that the choice of the loading increment/fracture advancement/time-stepping algorithm
might have a substantial influence on the predicted behaviour. In [128], it was found
that a continuum model can hardly predict the stepwise phenomenon since the stepwise
phenomenon observed disappears upon refinement of the discretisation and the time step.
Later in [315], it was argued that the steps obtained in [128] are regular steps, which are
caused by numerical reasons. Only the irregular steps caused by physical reasons don’t
disappear upon refinement of the discretisation and the time step. Since the observation of
the stepwise phenomenon interferes with three velocities, namely crack tip velocity, fluid
seepage velocity in the domain, and fluid velocity in the crack tip [68], the varying of physical
influencing factors may contribute to the observation of the stepwise caused by physical
reasons. Therefore, we postulate that only under specific conditions can the physical stepwise
phenomenon (irregular steps) be captured. A series of simulations are conducted in an
attempt to find the specific conditions by varying the influencing factors.

Following the explanation of stepwise behaviour above, the main factors which may affect
fracture propagation can be grouped into two categories: (1) the formation variables, which
include rock porosity and permeability, Young’s modulus, Poisson’s ratio, Biot coefficient,
Biot modulus and fracture energy; (2) the fluid variables, which include viscosity and
the injection rate. By considering the controlling factors influencing the observation of
the stepwise phenomenon, a 2D dynamic model of hydraulic fracturing in porous media
has been developed. The finite element method is used for spatial discretisation, and an
implicit backward Euler time scheme is adopted. Cohesive elements are employed for
fracture initiation and propagation. After verification of the model, the stepwise process is
investigated. Since stepwise behaviour has only been observed in relatively recent studies
[318, 380], there are few, if any, numerical studies on the impacts of these parameters on
stepwise behaviour making the study presented here quite meaningful, filling a gap in the
literature.
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The chapter is organized as follows. The problem formulation and the governing equa-
tions are explained first in § 3.2. Then the corresponding weak forms and solution of the
discrete equations are presented in § 3.3. § 3.4 gives benchmarks for verification, including
dynamic verification, cohesive zone verification and KGD model [151, 215] verification.
§ 3.5 is devoted to a mesh independence study, which discusses whether the stepwise phe-
nomenon observed with our model is mainly due to numerical or physical reasons. § 3.6
conducts various numerical simulations by varying the influencing factors to find under
which conditions the stepwise phenomenon caused by physical reasons (irregular steps) can
be reproduced. Then, conclusions are presented in § 3.7.

3.2 Governing equations

Fig. 3.1 Fracture propagation in porous media.

A schematic illustration of fracture propagation in porous media is shown in Fig. 3.1.
To model dynamic fracture propagation in a porous formation, the following four physical
processes are considered: (i) deformation of the porous formation, (ii) fluid flow in porous
media, (iii) fluid flow in the fracture, and (iv) fracture propagation criteria. These processes
reveal a strong coupling between the formation and the fluid. The corresponding governing
equations adopted in the simulation are given in the following parts.

3.2.1 Deformation of porous formation

The deformation of a porous formation is typically modelled by the theory of poroelasticity.
The basic theory of poroelasticity, Biot’s theory, was first introduced by Biot [38] and then it
was supplemented from a physics perspective in [361]. For a fully saturated porous medium



116 A finite element model for hydraulic fracturing in porous media

with single-phase fluid, the equilibrium equation is

∇·σσσ +ρg−ρü = 0 (3.1)

where σσσ is the Cauchy stress, g the gravity acceleration, ü the acceleration of the solid phase,
and ρ the density of the porous medium defined as:

ρ = (1−n)ρs +nρw (3.2)

where n is the porosity, ρs and ρw are the intrinsic densities of the solid and the fluid,
respectively.

The total stress tensor σσσ can be expressed in terms of the effective stress tensor σσσ ′:

σi j = σ
′
i j − Ii jα pw (3.3)

where pw is the pressure of pore fluid, Ii j the identity tensor, and α = 1−Kt/Ks the Biot
coefficient, with Kt denoting the bulk modulus of the porous skeleton and Ks the bulk modulus
of the solid. The Biot coefficient α denotes the ratio of the fluid volume gained (or lost) in a
material element to the volume change of that element, and it equals 1 for incompressible
solids.

The effective stress σσσ ′ can be determined as:

σσσ
′ = C : εεεεεεεεε

′ (3.4)

where C denotes the elasticity tensor and εεεεεεεεε ′ the strain tensor.

3.2.2 Fluid flow in porous media

The continuity equation for the fluid flow in porous media is

∂ζ

∂ t
+∇·q = 0 (3.5)

where ζ is the variation of fluid volume per unit volume of the porous material, and q denotes
the flux. Described by Darcy’s law, the flux q can be expressed as:

q =−kw
µ

·∇pw (3.6)

where µ is the fluid viscosity, and kw the permeability tensor.
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The constitutive equation for the pore fluid is

pw = Q(ζ −αεb) (3.7)

where Q is the Biot modulus, α the Biot coefficient, and εb the bulk volumetric strain.
The above equations can be combined by substitution and elimination as:

α∇· u̇+
1
Q

ṗw +∇·q = 0 (3.8)

where u̇ denotes the velocity of the solid phase and 1
Q the compressibility coefficient. The

first term can be seen as a source term driving pressure distribution and the flux. The
compressibility coefficient 1

Q is defined as:

1
Q

=
α −n

Ks
+

n
Kw

(3.9)

where Ks and Kw are the bulk module of the solid and fluid phases, respectively.

3.2.3 Fluid flow in the fracture

The mass conservation equation for the fluid flow in the fracture is

∂w
∂ t

+
∂q
∂x

= 0 (3.10)

where w is the fracture opening (width), q the flow rate, and x the local coordinate aligned
with the tangential direction to the fracture path.

Assuming the fluid flow in the fracture is laminar, the cubic width law formulated for
flow between parallel plates is adopted and stated as follows:

q =− w3

12µ

∂ p f

∂x
(3.11)

where µ is the viscosity of the fracturing fluid, and p f the pressure of fluid within the fracture.

3.2.4 Fracture propagation criteria

The cohesive zone model is adopted for the fracture propagation criterion. First developed by
Dugdale and Barenblatt [28, 122], the cohesive zone model assumes a process zone ahead of
the real fracture tip and, by doing so, avoids the singularity at the fracture tip. In the process
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zone a traction-separation law controls the variation of cohesive traction with the separation
(width) of the crack. When the maximum principal stress reaches the cohesive strength of the
material, the crack initiates. With the crack opening, the cohesive traction will decrease and
once it has decreased to zero, the maximum crack width opening is obtained and complete
separation is reached.

A close view of the process zone is shown in Fig. 3.2, where tn denotes the cohesive
traction on the fracture surface, p f the fluid pressure within the fracture, δn the fracture
opening. Fluid pressure exerts on the broken cohesive element, and cohesive traction exerts
on the unbroken cohesive element. In our study, the bilinear traction-separation law is
adopted, as shown in Fig. 3.3. The traction and separation are quantified as follows:

tn =

 (1−D)knδn, δn ≥ 0 (tension)

knδn, δn < 0 (compression)
(3.12)

where subscripts n and s identify the normal direction and the shear direction, and t, k and δ

are the traction, initial stiffness and relative displacement.
D is the damage variable, which increases from 0 to 1 monotonically:

D =


0 (δ max

n < δ 0
n )

δ
f

n (δ
max
n −δ 0

n )

δ max
n (δ

f
n −δ 0

n )
(δ 0

n ≤ δ max
n ≤ δ

f
n )

1 (δ max
n > δ

f
n )

(3.13)

where superscripts 0, f and max are the parameters at damage initiation, complete failure
and the maximum value. A high initial stiffness kn is adopted to obtain realistic results and
δ

f
n is assumed to be far more than δ 0

n . The area under the traction-separation curve equals the
fracture energy Gc, representing the work needed to create a unit area of a fully developed
crack. Thus, the displacement corresponding to the complete failure point can be determined
by:

δ
f

n =
2Gc

t0
n

(3.14)

3.3 Numerical implementation

In order to solve the system of equations described in section § 3.2, a piecewise linear
Galerkin finite element method (FEM) is used for spatial discretisation and solved implicitly
in time using backward Euler.



3.3 Numerical implementation 119

Fig. 3.2 Cohesive traction on the fracture
surface.

Fig. 3.3 The traction-separation law.

3.3.1 Discretisation for the governing equations

The equations are numerically solved by using the FEM for space discretisation. Let δu
denote the test function for the displacement, the weak form of Eq. (3.1) can be written as
follows: ∫

Ω

δεεεεεεεεε : σσσ
′dΩ−

∫
Ω

δεεεεεεεεε : Iα pwdΩ−
∫
Ω

(δu ·ρg−δu ·ρü)dΩ

=
∫
Γe

δu · tedΓe −
∫
Γt

δu · ttdΓt +
∫
Γ f

δu ·nα p f dΓ f

(3.15)

where δεεεεεεεεε is the strain corresponding to the displacement test function δu , Ω the domain
of the porous formation, Γe the external boundary of the domain Ω, Γt the cohesive zone
surface, Γ f the fracture surface, te the external forces (often referred to as the confining
stress), tt the cohesive traction, and n the normal of the fracture surface.

The weak form of Eq. (3.8) is:∫
Ω

δ pwα∇· u̇dΩ+
∫
Ω

δ pw
1
Q

ṗwdΩ+
∫
Ω

kw

µ
∇δ pw ·∇pwdΩ =−

∫
Γq

δ pwn ·qdΓq (3.16)

where δ pw is the test function for pore-fluid pressure, Γq the boundary of porous formation,
and n the normal of the boundary Γq.

The weak form of Eq. (3.10) is:

∫
Γ f

δ p f
∂w
∂ t

dΓ+
∫
Γ f

(δ p f ), x
w3

12µ
p f , xdΓ f = δ p f (0)q(0)−δ p f

(
x f
)

q
(
x f
)

(3.17)
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where δ p f is the test function for fluid pressure within the fracture, p f (0) and q(0) are the
fluid pressure and the flow rate at the origin of the fracture, p f (x f ) and q(x f ) are the fluid
pressure and the flow rate at the fluid front.

Following the standard FEM discretisation, the above weak-form equations can be
expressed in a compact matrix form as:

Mü+(K+Kcoh)u− (Q+Qint)pw = f1 (3.18a)

QT u̇+Cṗw +Hpw = f2 (3.18b)

QT
int u̇+Cint ṗ f +(Hlong +Htrans)p f = f3 (3.18c)

where u, pw and p f denote the nodal displacement, the nodal pore-fluid pressure and the
nodal fluid pressure in the fracture, respectively. In this work, the fluid pressure is assumed
to be continuous across the fracture surface for convenient calculation, i.e. pw = p f in Γ f .
Thus, Htrans is omitted.

Eq. (3.18b) and Eq. (3.18c) can be assembled together and the following equations can
be obtained:

Mü+ K̄u− Q̄p = f1 (3.19a)

Q̄T u̇+ C̄ṗ+ H̄p = f̄ (3.19b)

The matrix K̄ is obtained by assembling matrices K and Kcoh; Q̄ is obtained by assem-
bling matrices Q and Qint ; C̄ is obtained by assembling matrices C and Cint , H̄ is obtained
by assembling matrices H and Htrans, f̄ is obtained by assembling matrices f2 and f3. The
detailed definitions for the coefficient matrices/vectors M, K, Kcoh, Q, Qint , C, Cint , Hlong,
f1, f2, f3 are given in following parts.

K =
∫

Ω

Bu
T DBudΩ (3.20)

Kcoh =
∫
Γt

NT
intR

T TRNint , R =

[
cosθ sinθ

−sinθ cosθ

]
(3.21)

M =
∫

Ω

Nu
T

ρNudΩ (3.22)

Q =
∫

Ω

αBu
T mNpdΩ, m = {1,1,0}T (3.23)
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Qint =
∫

Γ f

NT
intR

T
α f m2N f , m2 = {0,1}T (3.24)

C =
∫

Ω

1
Q

Np
T NpdΩ (3.25)

H =
∫

Ω

Bp
T kw

µ
BpdΩ (3.26)

Hlong =
∫

Γd

▽N f
T w3

12µ
N f dΓd, kw =

[
kx 0
0 ky

]
(3.27)

f1 =
∫
Γe

NT
u tedΓt +

∫
Γt

NT
u ttdΓt (3.28)

f2 =−
∫

Γq

NT
p qdΓq (3.29)

f3 = [q(0) ,0, · · · ,0,q(N +1)]T (3.30)

where N is the number of linear elements along the fracture length, Nu the shape function
matrix, Bu the strain displacement matrix, and Bp the first derivatives of Np.

3.3.2 Solution details

The Newmark method is used to solve the coupled dynamic nonlinear equation system. The
variables u̇,u,p at time n+1 can be represented as:

un+1 = un +∆tu̇n +(
1
2
−β )∆t2ün +β∆t2ün+1 (3.31a)

u̇n+1 = u̇n +∆tün − γ∆tün + γ∆tün+1 (3.31b)

pn+1 = pn +∆tṗn −θ∆tṗn +θ∆tṗn+1 (3.31c)

After substituting Eq. (3.31) into Eq. (3.19), we can get the following equation system:[
M+ K̄β∆t2 − Q̄θ∆t

Q̄γ∆t C+θ∆tH

]{
ün+1

ṗn+1

}
=−

{
Gs

n+1

Gp
n+1

}
(3.32)

When γ ≥ 1/2, β ≥ 1/4, and θ ≥ 1/2, the equation system is unconditionally stable. The
nonlinear equation system is solved via the Newton-Raphson method.
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To enforce the pressure continuous across the crack surface, the multi-points constraints
master-slave method is employed [279], see Fig. 3.4. Nodes 4, 5, 6 are used for fluid flow
inside the fracture and nodes 1, 2, 3, 7, 8, 9 are used for cohesive elements. Fluid pressure
p f at node 4 is equal to the pore pressure pw at node 1 and 7. Similarly, p f at node 5 is equal
to pw at node 2 and 8, and p f at node 6 is equal to pw at node 3 and 9. Take nodes 2, 5, 8 as
an example. The pore pressure degree of freedom (dof) of node 2 is taken as the master dof,
and pore pressure dofs of node 5 and 8 are taken as slave dofs. Therefore, the pressure at
node 5 and 8 is forced to be the same with the pressure at node 2.

Fig. 3.4 A case to illustrate the FE mesh with cohesive elements.

3.4 Model Verification

The proposed hydraulic fracturing model and its implementation are based on our previous
work [75, 78], where the functional modulus for formation deformation, fluid flow in the
fracture and fracture propagation have been fully validated. The newly integrated functional
modules include mainly the dynamic model, the poroelasticity model and the cohesive zone
model. In order to verify the accuracy and robustness of the numerical framework presented,
especially for the new functional modules, three benchmark problems are selected here. The
dynamic verification, cohesive zone verification and 2D KGD plane strain model verification
are given to prove the correctness of our model.

3.4.1 Dynamic solution verification

The first example is a fully saturated poroelastic column with pressure applied on its top,
which was used in [189] to verify the dynamic behaviour in porous media. The height of the
column is 30 m. And its top surface is subjected to a step loading of 1 kN/m2 applied in 0.1
s, and the pressure on the top equals zero, which is fixed as time increases. The boundary
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Table 3.1 Material properties for the poroelastic column.

Properties Symbols Values

Young’s modulus E 3.0×107 N/m2

Poisson’s ratio v 0.2
Porosity n 0.3
Bulk modulus(fluid) Kw 2.1×109 N/m2

Density(solid) ρs 1.0×103 kg/m3

Density(fluid) ρw 2.0×103 kg/m3

Permeability coefficient k
µ

1.0×10−8m2/(Pa·s)

condition for the problem is shown in Fig. 3.5, and the material properties are listed in Table
3.1. Node 1, node 11 are located at the bottom and middle of the column, respectively. Node
19 is located 3 meters from the top. As time increases, pressure increases at the bottom and
decreases at the top of the column. Fig. 3.6 shows good agreement of our numerical solution
with the solution obtained from [189].

Fig. 3.5 The basic geometry of 1D column model.

3.4.2 Cohesive zone verification

The cohesive zone model is verified through a numerical example from [70] in the storage-
toughness dominated regime. Compared with the parameters provided in Table 3.2, the
permeability is assigned a value of k = 10−16 m2 and k = 10−15 m2, respectively. The
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Fig. 3.6 The pressure history at different nodes.

viscosity is µ = 10−4 Pa·s, the fracture energy Gc is 0.12 N/mm, the critical stress is 1.25
MPa, and the confining stress is 3.7 MPa. Fig. 3.7a presents the fracture shape at t = 10
s, and the numerical solution shows good agreement with the analytical solution in the
storage-toughness dominated regime [62]. On the right, Fig. 3.7b shows the normal effective
stress across the fracture. As expected, the value of normal effective stress turns to zero when
complete separation of the fracture is reached. In the process zone, the traction increases
with decreasing fracture width (separation) and reaches its maximum critical stress 1.25 MPa
at the fracture tip. Then, away from the fracture tip, it equals the far-field stress ahead of the
fracture tip 3.7 MPa.

(a) The fracture shape in different permeability
at t = 10 s.

(b) The normal effective stress across the fracture
at t = 10 s.

Fig. 3.7 Cohesive zone verification.
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3.4.3 KGD model

To test the numerical approaches, the two-dimensional plane strain KGD model is adopted,
in which the borehole is treated as a point source in the plane because the radius is very small
compared to the fracture length. The basic geometry of this model is shown in Fig. 3.8.

Fig. 3.8 The basic geometry of the KGD model.

The fracture is then restricted to grow symmetrically with respect to the borehole in the
horizontal direction while remaining planar at all times. The fracture opening is assumed
to be perpendicular to the minimum far-field confining stress. The intrinsic cohesive zone
model is used, which saves the trouble of remeshing when crack shape changes with time.
The cohesive elements are inserted along the central line of the model before simulation. The
rock media is assumed to be homogeneous, with fully saturated media and small deformation.
Incompressible fluid fills the fracture, and there is zero fluid lag. The initial conditions on the
domain are pw = p0, u = u0, u̇=u̇0. For simplicity, the pressure is assumed to be continuous
across the fracture, so fluid pressure p f within the fracture is equal to pore pressure pw along
the fracture surface. In order to allow the fluid to penetrate the rock, the most left interface
element is treated as a traction free crack. The boundary conditions here for the fluid in
the fracture involve a constant flow rate at the mouth of the fracture and zero flow rate at
the fracture tip (no lag assumption). The analytical solutions for the fracture length l, the
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wellbore fracture aperture w and the wellbore pressure p f are [152]:

l(t) = 0.68
[

Gq3
0

µ (1−ν)

]1/6

t2/3 (3.33a)

w(0, t) = 1.87
[

µ(1− v)q0
3

G

]1/6

t1/3 (3.33b)

p f (0, t) = 1.38

[
G3q0µ

(1− v)3l2(t)

]1/4

+σ0 (3.33c)

where G describes the plane strain modulus, G = E/(1+2v), t the time, σ0 the confining
stress, q0 the injection flow rate. All parameters, including the rock properties and fluid prop-
erties used in the numerical simulation, are listed in Table 3.2. We note that when plugging
the parameters into KGD equations, they need to be converted into SI the international system
of units. Good agreement between the numerical and analytical results is obtained as shown
in Fig. 3.9, which demonstrates the reliability of the numerical method for approximation of
the KGD model solution.

Table 3.2 Rock properties and fluid properties used in KGD simulation

Properties Symbols Values

Elasticity modulus E 17 GPa
Poisson’s ratio v 0.2
Biot coefficient α 0.75
Biot modulus Q 12.2 GPa
Viscosity µ 0.1 Pa · s
Material density ρ 1.81×103 kg/m3

Porosity n 0.2
Permeability k 1.0×10−13 m2

Critical energy release rate Gc 0.05 N/mm
Initial stiffness kn 17×1014 N/m3

Tensile strength t0
n 0.9 MPa

Injection flow rate q0 1 ×10−3 m2/s
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(a) Evolution of the fracture length. (b) Evolution of the fluid pressure.

(c) Evolution of the fracture width.

Fig. 3.9 The KGD model verification.

3.5 Discussions

After verification of the model, the stepwise process is investigated here with a discussion on
whether the stepwise phenomenon observed with our model is mainly due to numerical or
physical reasons.

Time refinement Using a mesh size ∆x = 0.05 m, consecutive simulations are performed
with decreasing time step ∆t chosen to be 0.01 s, 0.005 s, 0.001 s, respectively. Referring to
the results shown in Fig. 3.10a, the stepwise phenomenon becomes increasingly noticeable
with a smaller time step. The results are consistent with those in the literature [279] for a
fixed spatial interval.

Mesh refinement To answer whether the stepwise phenomenon observed is mesh inde-
pendent or not, consecutive simulations are performed with a constant time step ∆t = 0.01 s
and different mesh size ∆x. To avoid the singularity, the mesh needs to be refined along the
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(a) Time refinement. (b) Mesh refinement.

(c) Time and mesh refinement.

Fig. 3.10 Fracture length versus time.

fracture path, and an element threshold number needs to be satisfied over the cohesive zone
[68]. Considering the computational cost, the mesh size ∆x is chosen to be 0.1 m, 0.05 m and
0.025 m, respectively. Referring to the results shown in Fig. 3.10b, the stepwise phenomenon
reduces with mesh refinement.

Time and mesh refinement It can be concluded from Fig. 3.10a and Fig. 3.10b that
during simulation, the stepwise phenomenon increases with temporal refinement and reduces
under mesh refinement. Since both temporal and spatial approximations are influential, time
and mesh refinement are required to study the stepwise phenomenon. While the current
approximations are essentially first order in time (Backward Euler) and second-order in
space (standard Galerkin piecewise linear on triangles), in order to demonstrate numerical
convergence behaviour, each refinement must be conducted such that the spatial and temporal
errors are proportionately balanced, where for a given spatial interval ∆x, the time step should
be adopted following the equation below, where C is a coefficient, and parabolic diffusion
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approximation errors provide a guide.

∆t =C∆x2 (3.34)

The results of Fig. 3.10c show that under spatial and temporal refinement, the overall trend
in fracture length tends to the analytical solution and the stepwise phenomenon (regular
steps) decreases. This implies that the stepwise phenomenon observed with our model is
mesh dependent and mainly due to numerical origin. However, the stepwise phenomenon
does exist since it has been documented both in field tests [145, 289, 316, 321], laboratory
experiments [318, 427] and numerical simulations [380, 379, 67, 283]. We note that in
most of the literature and our model, the irregular stepwise phenomenon caused by physical
reasons is not captured. A likely reason is given in [315], which states that the improper time
step/fracture advancement algorithm adopted may yield regular steps. Another likely reason
is given in [68] that various physical influencing factors may contribute to the observation
of the stepwise phenomenon since the phenomenon interferes with three velocities, namely
crack tip velocity, fluid seepage velocity in the domain, and fluid velocity in the crack
tip. Therefore, we postulate that only under specific conditions can the physical stepwise
phenomenon (irregular steps) be captured. A series of simulations are conducted in an
attempt to find the specific conditions by varying the influencing factors.

3.6 Investigation of stepwise fracture propagation

With the assumption that only under specific conditions can the physical stepwise phe-
nomenon (irregular steps) be captured, the effects of different parameters, including Young’s
modulus, Poisson’s ratio, Biot coefficient, Biot modulus, rock porosity and permeability,
viscosity, injection rate and fracture energy, on the stepwise phenomenon have been inves-
tigated. According to the controlling equation and propagation criterion, the key variables
can be divided into two categories: the formation variables and the fluid variables, which are
given in Table 3.3.

3.6.1 Young’s modulus and Poisson’s ratio

Typical values of Young’s modulus for rock formations range from a couple of 11.3 GPa to
about 40 GPa [458]. In this study, Young’s modulus is selected as: 8.5 GPa, 17 GPa and 34
GPa. The relationship between fracture length and time step under conditions for a range
of Young’s modulus for different formation rocks is investigated. Fig. 3.11 shows that the
smaller Young’s modulus is, the longer the time interval between each fracture propagation.
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Table 3.3 Key variables influencing the stepwise phenomenon.

Formation variables Fluid variables

Young’s modulus E Injection flow rate q0
Poisson’s ratio ν Viscosity µ

Biot coefficient α

Biot modulus Q
Porosity n
Permeability k
Fracture energy Gc

Fig. 3.11 Stepwise phenomenon with differ-
ent Young’s moduli.

Fig. 3.12 The stepwise phenomenon with
different Poisson’s ratios.

A likely reason for this observation is that the smaller Young’s modulus, the easier the rock
deforms. The rock will not break until it deforms to a certain extent. Therefore, the fluid in
the fracture needs more time to accumulate energy to deform the rock and then break the
rock, which means the fracture propagation velocity will be slower. However, though the
value of Young’s modulus is changed, only the regular step can be observed. This reflects
that compared with Young’s modulus, mesh is the main reason for the stepwise advancement
observed here.

The Poisson’s ratio for the formation is set at three different levels: 0.2, 0.25 and 0.3.
The relationship between fracture length and time under different conditions of Poisson’s
ratio is shown in Fig. 3.12. The jump and the pause time of the red line are nearly the same
as that of the blue line. The fracture propagation velocity appears to be relatively insensitive
to Poisson’s ratio. It can be observed that though the Poisson’s ratio is varying, the stepwise
phenomenon is still dominated by numerical reason, and no irregular steps can be captured.



3.6 Investigation of stepwise fracture propagation 131

3.6.2 Biot coefficient and Biot modulus

The Biot coefficient is 1 for incompressible grain and is less than 1 for compressible grain.
In this study, three values of Biot coefficient are considered: 0.5, 0.75 and 1. Fig. 3.13 shows
that the fracture propagation velocity is insensitive to the factors. The Biot modulus is the
inverse of a storage coefficient [38], defined as the increase of the amount of fluid (per unit
volume of rock) as a result of a unit increase of pore pressure, under constant volumetric
strain, 1

Q = ∂ζ

∂ p

∣∣∣
ε
. The values we adopt here are 11 GPa, 12 GPa and 13 GPa. The pause time

of the stepwise phenomenon is longer for the smallest Biot modulus Q, as indicated by the
red line in Fig. 3.14. Since a smaller Biot modulus Q leads to a larger porosity n, more fluid
will be stored in porous media, with less flow in the fracture. Consequently, it will take more
time for the fracture to accumulate energy and propagate. In Fig. 3.13 and Fig. 3.14, both the
steps observed are regular no matter how the Biot coefficient and Biot modulus are changed.

Fig. 3.13 Stepwise phenomenon with differ-
ent Biot coefficients.

Fig. 3.14 Stepwise phenomenon with differ-
ent Biot moduli.

3.6.3 Porosity and permeability

Fig. 3.15 shows that the permeability has an obvious effect on the fracture propagation
velocity. As permeability increases, the propagation velocity of the fracture will decrease,
and the pause time will increase. The result is consistent with what was found in the literature
[131, 376]. A likely reason is that the fluid within the fracture can be divided into two parts:
the fluid flowing into the porous medium and the fluid flowing into the fracture to overcome
the propagation criterion. If the permeability is increased, more fluid will flow into the porous
media and less fluid for propagation, which means it will take more time for the fracture to
propagate. The influence of permeability on the physical stepwise is less obvious due to no
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irregular steps can be obtained with varying permeability. Similar to permeability, porosity
also has little effect on the observation of the physical stepwise, see Fig. 3.16.

Fig. 3.15 Stepwise phenomenon with differ-
ent permeability.

Fig. 3.16 Stepwise phenomenon with differ-
ent porosity.

3.6.4 Fracture energy

The fracture energy Gc represents the energy required to create a new crack. Referring to the
traction separation law (see Fig. 3.3), if δ

f
n keeps constant, the value of the fracture energy

is proportional to the tensile strength t0
n . The fracture propagation velocity is sensitive to

fracture energy. It is easier for the fracture to propagate in low fracture energy materials,
while more time is needed for the fracture to accumulate energy for propagation in high
fracture energy materials. Though different fracture energy is adopted, it is hard to see the
irregular stepwise phenomenon caused by physical reasons, see Fig. 3.17.

Fig. 3.17 Stepwise phenomenon with different fracture energy.



3.7 Conclusions 133

3.6.5 Viscosity and injection flow rate

The effect of variation in viscosity of the fluid is presented in Fig. 3.18. With high viscosity,
the fluid within the fracture may flow more slowly, which means it needs more time for the
fluid to catch up with the fracture tip and accumulate more pressure to break the propagation
criterion. Regular steps are observed with different viscosity, which hints that though related
to fluid velocity, the varying viscosity can not capture the physical stepwise phenomenon.

A high injection rate leads to faster fracture propagation velocity, as shown in Fig. 3.19. A
high injection rate causes the fluid to flow faster, reducing the time for the high injection rate
fluid to fill in fracture. Therefore, it is easier for the fluid within the fracture to accumulate
energy for the fracture to break the “propagation criterion”. However, no irregular steps can
be observed.

Fig. 3.18 Stepwise phenomenon with differ-
ent viscosity.

Fig. 3.19 Stepwise phenomenon with differ-
ent injection rate.

3.7 Conclusions

A 2D plane strain dynamics fluid-driven fracture model in porous media is developed
and employed to study the stepwise phenomenon. From a survey of the literature and a
series of numerical tests, we arrive at the following conclusions. (1) The stepwise fracture
advancement during the hydraulic fracturing process does exist in field tests and laboratory
experiments. (2) It is important to distinguish whether the stepwise phenomenon observed
in numerical simulation is due to physical or numerical reasons. Only a few studies have
captured the physical stepwise phenomenon numerically. The stepwise phenomenon observed
in our model is proved to be dependent on mesh size and time step even with poroelastic
effect and dynamic rock deformation and fracture propagation considered. (3) The factors



134 A finite element model for hydraulic fracturing in porous media

influencing the stepwise phenomenon are summarised: the formation variables and the fluid
variables, including Young’s modulus, Poisson’s ratio, Biot coefficient, Biot modulus, rock
porosity and permeability, fracture energy, viscosity and injection rate. Under the assumption
that only under specific conditions can the physical stepwise phenomenon (irregular steps)
be captured, a series of simulations are conducted in an attempt to find the specific conditions
for irregular stepwise. Although influencing factors are tested over a prescribed range, no
irregular stepwise phenomenon is observed with our model, indicating that the stepwise
fracture propagation may be induced by some other factors or physical processes not included
in our model.

Work is in progress to develop a mesh-independent model to improve understanding of
the stepwise phenomenon. In addition, the model in this study is confined to fully saturated
homogeneous media, with a Newtonian fluid in two dimensions and mode I propagation for
simplicity. However, in reality, the fracture propagates in a more complicated way. This
suggests that further physical mechanisms might also contribute to this phenomenon and
may need to be introduced in order to capture the stepwise phenomenon.



Chapter 4

A peridynamic approach for modelling
hydraulic fracturing in porous media

4.1 Introduction

Hydraulic fracturing defines a process by which a fracture initiates and propagates due to
the high-pressure fluid. It has abundant applications, including the magma-driven fractures,
heat production from geothermal reservoirs, fault reactivation in mining operations and
re-injection of drilling cuttings [1, 370]. The extraction of gas and oil underground is also
an important application. In order to enhance the oil and gas recovery rate, a mixture of
viscous fluid and proppant need to be pumped at high pressure through a borehole, and the
increase of fluid pressure leads to rock break, thus forming an effective fracture network.
The effective fracture network can increase the permeability of the reservoir and make the oil
easily flow into the well through the fractures, which enhances the production and improve
economic returns. Hence, the study of fluid-driven fracture process in rocks and the related
fracture networks is of great significance in the engineering area.

In the past few decades, a series of laboratory experiments [125, 126, 164, 40, 470] and
field studies [25, 21, 200, 249] have been conducted to investigate hydraulic fracturing in
order to better understand fracture propagation mechanisms. Laboratory studies can range
from a few cubic centimetres of small rock samples to one cubic centimetre or more of
large rock samples [231]. The advantages of laboratory research lie in: (1) the experiment
can be repeated many times; (2) the experimental parameters, such as stress conditions,
are convenient to control; (3) the experimental results, such as the length and width of
cracks, are more convenient for detection and observation. However, laboratory research has
encountered experimental funding constraints. In addition, laboratory conditions make it
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difficult to replicate complex geological conditions and stress conditions in the field, making
results different from the actual field results. The field experiment is the primary data for the
evaluation of hydraulic fracturing. Although the observation results of crack development
on the site may not be as intuitive as those in the laboratory, there are still various technical
means for evaluation. For example, radioactive tracer logs and temperature logs can be
used to infer fracture geometry near the wellbore [24]; production data and production
logging information can be used to analyse the fracture development process [319]; acoustic
and resistivity logs can be used to evaluate the location where fractures develop [203].
In addition to laboratory experiments and field studies, theoretical mathematical models
including the PKN model, KGD model and the radial model [313, 151, 288, 407, 159] and
various analytical solutions [109, 370, 150] are also employed to investigate mechanisms
involved in hydraulic fracturing. Further details of the theoretical mathematical models and
analytical solutions can be found in § 2.1. Compared with laboratory, field experiments
and theoretical models, numerical methods are more flexible with lower cost, making them
become necessary tools to study the fluid-driven fracture behaviours.

In order to study the process of hydraulic fracturing and reveal the mechanisms involved,
a variety of numerical methods have been developed. The numerical methods can be roughly
divided into the continuum methods and the discontinuum methods. The commonly used
continuum methods include the finite element method (FEM), the extended finite element
method (XFEM), the boundary element method (BEM), and the phase-field method (PFM). A
detailed procedure for numerical implementation with FEM for a 2D fully-coupled hydraulic
fracturing model was given in [52]. Combined with cohesive process zone, 2D and 3D
fully-coupled hydraulic fracturing models were presented and related hydraulic fracturing
behaviour were studied in [70, 379, 278]. By circumventing the remeshing problem, XFEM
is also applied to the simulation of hydraulic fracturing problem [359, 266]. As one of the
earliest studies in modelling hydraulic fracture with XFEM, a hydraulic fracture driven by a
uniform and constant fluid pressure at the bottom of a gravity dam was simulated in [359]. In
[266], a fully coupled XFEM model was established with the nonlinear cohesive zone model
and parameters influencing the hydraulic fracture propagation were studied. Compared with
FEM, BEM overcomes the disadvantages of high computation cost due to mesh update in
the whole domain [174]. Examples for modelling hydraulic fracturing in 2D and 3D with
BEM can be found in [429, 71, 463]. Compared with the methods mentioned above, the
PFM has advantages in coping with complex fracture patterns since it treats the fracture
propagation process as an energy minimisation problem, avoiding the tracking of the fracture
and additional criteria for fracture branching and intersection [79]. The first phase field
model to simulate hydraulic fracturing in impermeable materials was developed by Bourdin
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[59]. Later, in [257, 259], the model was extended to fluid-saturated poroelastic materials by
adding poroelastic terms in the energy functional. The commonly used discontinuum method
for hydraulic fracturing is DEM, which treats a material medium as an assembly of distinct
particles and the motion of particles are governed by Newton’s laws [98]. Applications of
DEM in hydraulic fracturing are described in [101]. The influence of different parameters,
including the rock properties, in-situ stress, injection flow rate, fluid viscosity on hydraulic
fracturing, are also studied with the DEM model [274, 474, 119].

Though the methods mentioned above have been successfully applied in the study of
hydraulic fracturing, most of them suffer from the limitations associated with simple fracture
patterns/geometry. Since the controlling equations employed in these methods are partial
differential equations where partial derivatives do not exist at discontinuities, complex
crack patterns are hard to simulate. In order to overcome the limitation, Silling introduced
peridynamics (PD) theory [394], using the spatial integrals equations instead of partial
differential equations, which is very suitable for solving discontinuous problems. In addition,
no complex criterion is required for crack propagation as the crack growth can be initialised
spontaneously with only one bond-break criterion, which makes PD become a compromising
tool to study hydraulic fracture behaviour. PD theory can be mainly classified into two types:
the bond-based PD and the state-based PD. The difference between the bond-based PD
and the state-based PD is that the bond-based PD is restricted with a constant Poisson ratio
while the state-based PD overcomes the limitations of the fixed Poisson’s ratio [394, 403].
However, when conducting fracture modelling and investigating the corresponding behaviour,
the limitation of the bond-based PD can be ignored since it is easier to understand and
implement compared with the state-based PD [284].

Due to the advantages of PD in modelling complex crack problems, it is widely applied in
investigating the mechanisms of crack propagation and branching in brittle media [47, 49, 84,
169]. The influence of different parameters, including reflecting stress waves [169], horizon
size [47], the micromodulus function [84], rock properties and loading conditions [49] on
crack geometry and crack path/branch in brittle media, are studied. The first application of PD
in hydraulic fracturing can be traced in [426], in which a new formulation for incorporating
the effects of pore pressure was presented to simulate the deformation of porous media.
Following the work, a new hydraulic fracturing model which couples a new PD formulation
of porous flow and the existing PD solid formulation together was developed in [300] to
simulate fluid-driven fractures in an arbitrary heterogeneous poroelastic medium. After
verification by comparing its simulation results with the well-known KGD model, the model
is used to simulate hydraulic fractures in more complex natural fracture networks and
investigate the key parameters influencing the interactions between the hydraulic fracture and
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natural fractures in [299]. A novel 3D simulation of the hydraulic fracturing initiation and
propagation in a heterogeneous geological medium was presented by a linear viscoelastic PD
model in [271], which is then used to investigate the interaction between induced fractures
and a pre-existing fracture, as well as the influence of the angle of approach and differential
horizontal stress on the fracture propagation behaviour. In [296], a new fully coupled
poroelastic PD formulation was proposed using the analogy between poroelasticity and
thermoelasticity. The formulation demonstrates the capability in analysis of more complex
poroelastic problems, including fluid-filled rock fractures as in hydraulic fracturing, has been
demonstrated. Combining both advantages of FEM and PD, a hybrid modelling approach
for simulating hydraulic fracture in porous media with hybrid FEM and PD was proposed
in [284], which demonstrates its ability in modelling complex crack patterns such as crack
branching and crack interaction. Though the PD theory has been applied in investigating the
crack propagation and branching in brittle media, to the best of the author’s knowledge, little
related work has been published about using the bond-based PD to analyse the following
two crack behaviours: (1) the study of fracture branching in porous media on different
loading conditions and (2) the study of the stepwise phenomenon. Stepwise means that the
propagation of fractures is not continuous but intermittent. It has been recently observed
in field tests and laboratory experiments, but only a few studies reproduced it numerically
[318, 380].

In this chapter, an explicit peridynamic approach for modelling hydraulic fracture propa-
gation in saturated porous media is presented to investigate cracking branching behaviours
in porous media under different loading conditions and the stepwise phenomenon. In the
framework of bond based PD, the rocks deformation equation system is solved for the dis-
placement field, and the fluid flow equation in porous media is solved for the fluid pressure
field. A staggered strategy and an explicit time integration scheme are used. The approach
is verified via two benchmark examples. Subsequently, two crack propagation behaviours,
including cracking branching in porous media under different loading conditions and the
stepwise phenomenon, are investigated. By comparing our results with previous numerical
results, the effect of the pore pressure on hydraulic fracturing branching is discussed and
more evidence for stepwise phenomena is provided.

The chapter is organised as follows. The governing equations of the problem of hydraulic
fractures in porous media are given in § 4.2, followed by § 4.3 which is devoted to the
numerical implementation details. Benchmark examples are provided for verification in
§ 4.4. § 4.5 is devoted to the application of the model, which includes the study of the crack
branching phenomenon and the stepwise phenomenon. Conclusions are presented in § 4.6.
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4.2 Mathematical models for hydraulic fracturing

Hydraulic fracturing is a complex process that includes four physical processes: (1) deforma-
tion of porous media, (2) fluid flow in porous media, (3) fluid flow in the fracture, and (4)
fracture propagation criteria. These processes reveal a strong coupling between deformation
of rocks and the fluid flow. The governing equations involved in these processes are described
as follows.

4.2.1 Governing equations for deformation of porous media

Introduce by Biot [38], the theory of poroelasticity is used for deformation of a porous
formation. For a fully saturated porous medium with a single-phase fluid, the equilibrium
equation is:

∇·σσσ +ρg−ρü = 0 (4.1)

where σσσ is the Cauchy stress, g the gravity acceleration, ü the acceleration of the solid phase,
and ρ the density of the porous medium defined as:

ρ = (1−n)ρs +nρw (4.2)

where n is the porosity, ρs and ρw are the intrinsic densities of the solid and the fluid,
respectively. The total stress tensor σσσ can be expressed in terms of the effective stress tensor
σσσ ′ [420]:

σi j = σ
′
i j − Ii jα p (4.3)

where p is the pressure of pore fluid, Ii j the identity tensor, and α = 1−Kt/Ks the Biot
coefficient, which denotes the ratio of the fluid volume gained in a material element to the
volume change of that element. Kt denotes the bulk modulus of the porous skeleton and Ks

the bulk modulus of the solid.
Derived by Silling [394], PD is a new continuum mechanics formulation. It uses the

spatial integrals equation instead of the partial differential equation, which makes it very
attractive for solving discontinuous problems, e.g. crack propagation. In the PD theory, a
continuum material is treated as a composition of material points x that interact with other
material points x′ inside a horizon Hx, and the interactions vanish outside of the horizon, see
Fig. 4.1. The set of points inside the horizon of point x are denoted as

Hx = x′ ∈ Ω,
∣∣x′−x

∣∣< δ (4.4)

where δ is the horizon size (radius of the horizon).
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Fig. 4.1 Interaction of a material point with its neighbouring points.

At a reference position of x and time t, the PD equation of motion is described by an
integral formulation [394]:

ρ(x)ü(x, t) =
∫

Hx
f(x′−x,u′−u)dVx′ +b(x, t) (4.5)

where ρ is the mass density, u the displacement vector, ü the acceleration, b a prescribed
body-force density vector, dVx′ the differential volume of x′, f the force vector between
two material points x′ and x. The interaction f between material points is related to the
deformation, pressure and constitutive properties of the material and is called a bond.

Based on the PD theory, the governing equation for deformation Eq. (4.1) can be written
in the PD form [296], which is defined as:

ρ(x)ü(x, t) =
∫

Hx
λc(s−αγP̄)

ξξξ +ηηη

|ξξξ +ηηη |dV +b(x, t) (4.6)

in which ξξξ and ηηη represent the initial relative position x′ − x and the current relative
displacement u′−u, respectively. λ is a scalar to describe the bond state: broken or not so
as to judge whether the crack will propagate or not. Detailed explanation will be given in
§ 4.2.3. α is the Biot coefficient. c is the PD material parameter, which can be interpreted as
the bond stiffness. For an isotropic material, it can be expressed as:

c =
2E
Aδ 2 (1D) (4.7a)

c =

{
9E

πhδ 3 (2D,plane stress)
48E

5πhδ 3 (2D,plane strain)
(4.7b)

c =
12E
πδ 4 (3D) (4.7c)
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in which E is the Young’s modulus of the solid skeleton, A the cross-sectional area, and h the
thickness.

γ is the coefficient of fluid pore pressure defined as:

γ =
1
E

(1D) (4.8a)

γ =

{
1−ν

E (2D,plane stress)
(1−2ν)(1+ν)

E (2D,plane strain)
(4.8b)

γ =
1−2ν

E
(3D) (4.8c)

with ν representing the Poisson’s ratio. P̄ is the average fluid pore pressure of points x′ and x
is defined as:

P̄ =
P(x′, t)+P(x, t)

2
(4.9)

s is the stretch between the material points, which represents the relative elongation of
the bond, which is defined as:

s =
|ηηη +ξξξ |− |ξξξ |

|ξξξ |
(4.10)

4.2.2 Governing equations for fluid flow in porous media and in the
fracture

The continuity equation for the fluid flow in porous media is [38]:

∂ζ

∂ t
+∇·q = 0 (4.11)

where ζ is the variation of fluid volume per unit volume of the porous material, and q denotes
the flux. Described by Darcy’s law, the flux q can be expressed as:

q =−kw

µ
·∇p (4.12)

where µ is the fluid viscosity, and kw the permeability. And p is the pore fluid pressure
defined as:

p = Q(ζ −αεb) (4.13)
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where Q is the Biot modulus, α the Biot coefficient, and εb the bulk volumetric strain. The
compressibility coefficient 1

Q is defined as:

1
Q

=
α −n

Ks
+

n
Kw

(4.14)

where Ks and Kw are the bulk module of the solid and fluid phases, respectively.
By substituting Eq. (4.12) and Eq. (4.13) into Eq. (4.11), the governing equation for fluid

flow in porous media can be obtained:

α∇· u̇+
1
Q

ṗ+∇·q = 0 (4.15)

where u̇ denotes the velocity of the solid phase and 1
Q the compressibility coefficient. The

first term can be seen as a source term driving pressure distribution and the flux.
Using analogy between poroelasticity and thermoelasticty [294, 296], Eq. (4.15) can be

written in the PD form:

1
Q

Ṗ(x, t) =
∫

Hx
(κP

P(x′, t)−P(x, t))
|x′−x|

− c
2

αγ ė)dV +
q
ρ

(4.16)

where q is the mass of fluid per unit volume per unit time, ρ the fluid density, κP the PD
parameter and can be expressed in terms of the permeability kw.

κP =
2kw

µAδ 2 (1D) (4.17a)

κP =
6kw

πµhδ 3 (2D) (4.17b)

κP =
6kw

πµδ 4 (3D) (4.17c)

ė denotes the time rate of change of extension and can be described as:

ė =
ξξξ +ηηη

|ξξξ +ηηη | ·(u̇
′− u̇) (4.18)

The equation for fracture domain can be seen as a special form of Eq. (4.16) if the volumetric
strain term is neglected [284] supposing that the fluid in the fracture is incompressible. And
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in the fracture domain, the permeability kw becomes k f ;

k f =
1
η

w2

12
(4.19)

where w is the fracture width and η is a fracture parameter set equal to unity in this study.

4.2.3 Propagation criterion

In fracture mechanics, the fracture propagation criterion is used to control the propagation of
a fracture. One of the commonly used criteria used in PD is called the critical bond stretch
criterion [400]. When the stretch of the bond s is greater than the critical value sc, the bond
is assumed to be broken, and the pairwise force between the pair of nodes disappears. λ is a
scalar to describe the bond state: broken or not. λ equals 1 when the bond is intact. λ equals
0 when the bond is broken.

λ (x, t,ξξξ ) =

{
0 (s ≥ sc)

1 (s < sc)
(4.20)

The critical stretch sc can be determined by the critical energy release rate Gc. The
relationship between sc and Gc is defined as [247, 286, 471]:

sc =

√
4πGc

9Eδ
(2D,plane stress) (4.21a)

sc =

√
5πGc

12Eδ
(2D,plane strain) (4.21b)

sc =

√
5Gc

6Eδ
(3D) (4.21c)

The break of the bond is a process that cannot be recovered. The time taken by the bond
break is completely determined by the material geometry and loading conditions. When
a series of bonds break, the discontinuous space formed by these broken bonds becomes
a macroscopic crack. Without the requirement of external criterion for crack propagation
direction or crack branching angles, in the "critical bond stretch" criterion, the crack growth
is a natural outcome of the calculation result.

To describe the crack path, a scalar φ called damage parameter is used. It represents the
local damage of point x, which is defined as the ratio of the sum of the volumes bound to
the family nodes connected by the broken bonds to the sum of the volumes of all the family
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nodes in the original horizon:

φ(x, t) = 1−
∫

H λ (x,x′, t)dVx′∫
H dVx′

0 ≤ φ ≤ 1 (4.22)

Thus, the value of the damage parameter is between 0 and 1, with 0 representing no failure at
the point x while 1 representing total failure because all the bonds connected to the point are
broken. The crack path can be indicated by plotting the damage parameter.

4.3 Numerical implementation

4.3.1 Space discretisation

In the PD theory, a material can be seen as a composition of material points. Thus, the domain
can be divided into nodes with a volume, and the whole body can be seen as a combination
of the points.

The discretised form of solid deformation Eq. (4.6) for every node xi of the discretised
domain is:

ρü(i) =

N( j)

∑
j=1

λc(s(i)( j)−αγP̄(i)( j))
ξξξ (i)( j)+ηηη(i)( j)∣∣∣ξξξ (i)( j)+ηηη(i)( j)

∣∣∣V( j)+b(i) (4.23)

where i and j represent the material points, N( j) the number of material points inside the
horizon of point i, and Vx j the volume of material point x j.

Similarly, the discretised form of fluid flow Eq. (4.16) for every node xi of the discretised
domain can be written as:

1
Q

Ṗ(i) =
N( j)

∑
j=1

(κP
P( j)−P(i)∣∣x( j)−x(i)

∣∣ − c
2

αγ ė(i)(i))dV( j)+
q(i)
ρ(i)

(4.24)

4.3.2 Time integration

An explicit time integration scheme is used to solve the coupled equation system. Since the
explicit method is conditionally stable, the critical time step can be estimated following the
rules from [400, 247]. And the time step should satisfy both the equation for deformation of
porous media and the equation for fluid flow. Eq. (4.23) and Eq. (4.24) can be written as:

ρün
(i) =

N( j)

∑
j=1

λc(sn
(i)( j)−αγP̄n

(i)( j))
ξξξ

n
(i)( j)+ηηηn

(i)( j)∣∣∣ξξξ n
(i)( j)+ηηηn

(i)( j)

∣∣∣dV( j)+bn
(i) (4.25)



4.4 Verification of the model 145

1
Q

Ṗn
(i) =

N( j)

∑
j=1

(κP
Pn
( j)−Pn

(i)∣∣∣xn
( j)−xn

(i)

∣∣∣ − c
2

αγ ėn
(i)(i))dV( j)+

qn
(i)

ρ(i)
(4.26)

A numerical implementation flowchart is shown in Fig. 4.2. The equation for deformation
of porous media is solved for the displacement field, and the equation for fluid flow in
porous media is solved for the fluid pressure field. After inputting the initial parameters and
applying pressure boundary conditions, the time rate of pressure change ṗn is first calculated.
According to Eq. (4.26) and the value of u̇n, pn , we can get ṗn. Then we update the pressure
field pn+1 by Eq. (4.27).

pn+1 = pn +∆t ṗn (4.27)

pn+1 is then applied on the fracture surface as mechanical boundary conditions, which
is related with the body force density in Eq. (4.25). According to Eq. (4.25), the PD force
as well as the stretch of the bond are calculated. Then, the stretch of the bonds is checked,
and if its stretch exceeds the critical stretch value, the interaction between the two nodes is
terminated. Eq. (4.25) is then integrated in time numerically via the following sequence:

u̇n+1 = u̇n +∆tün (4.28)

un+1 = un +∆tu̇n+1 (4.29)

which depends on the values of u̇n, pn at time level n, leading to the values of un+1 at the
new time level, and the process is repeated by updating un+1 and pn+1.

4.4 Verification of the model

The accuracy of the current algorithm and formulae is demonstrated by two examples
presented below. The first case involves a one-dimensional fully coupled consolidation
problem, and the solution is compared with the analytical solution. The second case is an
example of a two-dimensional fluid-filled fracture propagation problem in porous media.

4.4.1 1D porous media bar

The model describes a consolidation problem of a fully saturated 1D poroelastic bar. A
pressure of 104 Pa is applied on its left edge, see Fig. 4.3. The length of the bar is L=15
m with a cross-section area of 1 m2. The left surface is allowed for fluid drainage, and
the pore pressure at the left surface remains zero, while the right surface is not allowed for
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Fig. 4.2 The flow chart for the simulation process.

fluid drainage, and the flux is zero. The material properties are listed in Table 4.1. The grid
spacing ∆x = 0.0015 m, and 1000 nodes are employed. The radius of horizon δ is 0.0045 m.
And the time step is ∆t = 1×10−6 s. For the 1D problem, the micro-modulus c = 2E

Aδ
, where

A is the cross-section area.

Fig. 4.3 The basic geometry of the poroelastic bar.

The initial condition is given as:

P(x, t = 0) = vP0 (4.30a)

u(x, t = 0) = aiP0(L− x) (4.30b)

where
v =

a−ai

αa
, ai =

a
1+α2aQ

, a = 1.0×10−8N/m2 (4.31)
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Table 4.1 Material properties for the poroelastic column.

Properties Symbols Values

Young’s modulus E 1.0×108 Pa
Biot coefficient α 0.5
Biot modulus Q 6.06×109 N/m2

Viscosity µ 1.0×10−3 (Pa·s)
Permeability k 1.0×10−12 m2

Material density ρ 1.9×103 kg/m3

The analytical solution to this problem is given in [434]:

P(x, t) =
4vP0

π

N

∑
m=0

{
1

2m+1
exp(−(

(2m+1)π
2L

)2ct)× sin(
(2m+1)πx

2L
)

}
(4.32)

u(x, t) =cmvP0

{
(L− x)− 8L

π2

N

∑
m=0

{
1

(2m+1)2

}}
× exp(−(

(2m+1)π
2L

)2ct)

× cos(
(2m+1)πx

2L
)+aiP0(L− x)

(4.33)

where
c =

kQ
(α2a+Q)µ

, cm = (a−ai)/v (4.34)

Fig. 4.4 shows the comparison between the analytical solution and numerical solution.
Fig. 4.4a shows the pore pressure along the central axis at different times, while Fig. 4.4b
shows the displacement along the central axis at different times. As time increases, the pore
pressure decreases, and the displacement increases in the x-direction, which represents the
water flows out from the top surface, and the soil consolidates.

4.4.2 2D fluid-filled crack problem

The model describes a fluid-filled crack propagation problem. The propagation of the crack
is driven by the pressure applied on its crack surfaces. The geometry and the boundary
conditions of the model are shown in Fig. 4.5. The initial crack 2a = 0.3 m is set in the
centre of a square of W = 6 m long. All the surfaces of the square are impermeable. The
top and bottom surfaces are constrained in the vertical direction, and the lateral surfaces are
constrained in the horizontal direction.
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(a) Pressure distribution. (b) Displacement distribution.

Fig. 4.4 The comparison of analytical and numerical solution along the bar.

Fig. 4.5 The basic geometry of the fluid-filled crack problem model.

The pressure applied on crack surface is increased with time:

Pt(y = L/2,x) = P0
t
t0

(W/2−a < x <W/2+a) (4.35a)

Pb(y = L/2,x) =−P0
t
t0

(W/2−a < x <W/2+a) (4.35b)
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where P0 = 2000 Pa and t0 = 0.01 s. Pt and Pb are the pressure applied on the crack top and
bottom surfaces, respectively. The initial conditions are:

ux(x,y, t = 0) = 0 (4.36a)

uy(x,y, t = 0) = 0 (4.36b)

u̇x(x,y, t = 0) = 0 (4.36c)

u̇y(x,y, t = 0) = 0 (4.36d)

P(x,y, t = 0) = 0 (4.36e)

The parameters of the model are listed in Table 4.2. The grid spacing is ∆x = 0.015 m
and the time step is ∆t = 1×10−6 s.

Initially, the crack is not allowed to propagate, and the corresponding horizontal and
vertical displacement are shown in Fig. 4.6a and Fig. 4.6b. The corresponding pressure
distribution in the domain is shown in Fig. 4.7a. To verify the accuracy of the model, the
numerical result obtained in [296] is given in Fig. 4.7b. The results obtained by the proposed
PD model agree well with the results obtained in [296], which demonstrates the capability
of the method for handling fluid-filled crack problems. As the pressure on crack surfaces
increases with time, the crack becomes wider, and the pressure decreases gradually from the
crack surface to the top and bottom surfaces of the model, which represents the fluid flow out
from the crack to porous media. We note that the pressure is negative ahead of the crack tip.
According to Biot theory, dilatation is positive in the regions ahead of the crack tips arising
from the opening mode of deformation. There exists pressure pressure drop in the regions of
positive dilatation, which causes large suction and negative pressure.

Table 4.2 Material properties for the 2D fluid filled crack problem.

Properties Symbols Values

Young’s modulus E 1.0×108 Pa
Poisson’s ratio v 1/3
Biot coefficient α 0.1
Biot modulus Q 6.06×109 N/m2

Viscosity µ 1.0×10−3 (Pa·s)
Permeability k 1.0×10−12 m2

Material density ρ 1.9×103 kg/m3
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(a) Horizontal displacement. (b) Vertical displacement.

Fig. 4.6 Horizontal and vertical displacement at t = 0.01 s (deformed configuration with a
magnification of 104).

(a) Results obtained by the PD model. (b) Results obtained in [296].

Fig. 4.7 Comparison of pressure distribution at t = 0.01 s (deformed configuration with a
magnification of 104 and pressure unit: Pa).

After verifying the model without failure, the crack is then allowed to propagate with a
critical stretch sc = 3×10−6. With crack length increasing, the crack surfaces on which the
pressure applied are increasing. The pressure distribution with crack propagation at different
times is shown in Fig.4.8. Negative pressure can be observed in the vicinity of the crack tip,
and with time increasing, pore pressure increases on both sides of the crack surfaces and
decreases towards the top and bottom surfaces of the model. The results agree well with the
Ansys results in [296], which demonstrates the accuracy and the reliability of the numerical
method for hydraulic fracturing problems.
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(a) t=0.001 s. (b) t=0.002 s.

(c) t=0.004 s. (d) t=0.006 s.

Fig. 4.8 Pressure distribution with crack prorogation at different times (deformed configura-
tion with a magnification of 104 and pressure unit: Pa).

4.5 Application

After verifying the accuracy of the model, it is then applied to the investigation of two
common kinds of phenomena observed in hydraulic fracturing: the crack branching phe-
nomenon and the stepwise phenomenon. The crack branching phenomenon is often observed
in dynamic crack propagation. However, since the crack patterns are complex, only a few
new numerical methods have the capability of modelling the phenomenon [247], and the
physical mechanism involved is unclear. With the advantages in modelling discontinuous
problems, PD becomes a promising tool for crack branching problems. A bunch of studies
have investigated the mechanics of crack branching in brittle media with PD, as described in
the introduction part. However, to the author’s best knowledge, crack branching in porous
media with PD has not been investigated yet. Therefore, a crack branching model based on
PD is designed and presented to the study of fracture branching in porous media on different
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loading conditions. The stepwise phenomenon, standing for the intermittent propagation of
hydraulic fractures, has been observed and investigated with the central force model, the
standard Galerkin finite element method (SGFEM) and the extended finite element method
(XFEM) [68, 67]. However, it has not been studied systematically under different loading
conditions with PD. Therefore, models dealing both with hydraulic fracturing and mechan-
ical loading conditions with PD are established to prove more evidence for the stepwise
phenomenon in numerical aspects.

4.5.1 Study of crack branching

In order to obtain a more comprehensive understanding of crack branching mechanism in
porous media in hydraulic fracturing, a comparison between crack branching in brittle media
and crack branching in porous media is conducted. Two loading conditions, including the
stress applied on boundaries and stress applied on crack surfaces, are designed. The grid
spacing ∆x is set to be the same as the benchmark examples in [49], which is small enough
and matches the computing power of the computer. The horizon size is set to be δ = 3∆x
since it is demonstrated that with m=3, the crack branching behaviour can be captured, and
the grid is independent of crack propagation [247]. The time step ∆t is selected to satisfy the
stability with the grid spacing and horizon size adopted in this simulation, which is 0.05 µs
in this subsection.

Study of crack branching in brittle media

The model describes a crack propagation and branching problem in brittle media. The
model is established with a width of W = 0.1 m and a height of H = 0.04 m. Two boundary
conditions are applied. The first boundary condition is added by applying the stress on the
upper and lower surfaces of the model, see Fig. 4.9. The second boundary condition is added
by applying the stress on the upper and lower surfaces of the crack, see Fig. 4.11. The initial
crack is set along the central line of the model, and the crack length is 0.5 m. The total
number of PD points is 400 in the x-direction and 160 in the y-direction. The grid spacing
∆x = 2.5× 10−4 m and the horizon size δ = 7.5× 10−4 m. The other parameters of the
model are listed in Table 4.3.

Under the first loading condition, crack propagation is driven by the stress applied on
the upper and lower surfaces of the model. By increasing the loading stress, different crack
patterns can be observed, see Fig. 4.10. When the loading amplitude is σ = 2 MPa, the
crack propagates along the central line at first and then branches at t = 43 µs, see Fig. 4.10a.
When the loading amplitude is σ = 4 MPa, the crack propagates along the central line
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Table 4.3 Material properties for the crack branching problem.

Properties Symbols Values

Young’s modulus E 72.0×109 Pa
Poisson’s ratio v 0.22
Material density ρ 2.44×103 kg/m3

Critical energy release rate Gc 3.8 N/m

at first and then at t = 33 µs, multiple branches can be observed, see Fig. 4.10b. If the
energy-driven crack cannot be fully dissipated by the material after the first branching event,
multiple branches happen and may lead to fragmentation [252]. Comparing Fig. 4.10a and
Fig. 4.10b, it can be concluded that as applied load increases, multiple branching events
develop, branching angles become smaller, branching time becomes earlier and the location
of branching moves closer to the starting location.

Under the second loading condition, the driven energy for the crack propagation is from
the stress applied on the upper and lower surfaces of the initial crack. When crack grows,
the applied stress will not be extended to the newly developed crack surfaces. By increasing
the loading stress from σ = 3 MPa to σ = 6 MPa, different crack patterns can be observed,
see Fig. 4.12. The branching event happens at t = 35 µs when σ = 3 MPa, and it happens
earlier (t = 30 µs) when σ increases to 6 MPa. The branching angles also become smaller,
similar to the phenomenon obtained by the first loading condition. However, continued or
cascading branching is not observed.

(a) Geometry of the sample. (b) Stress applied on boundaries.

Fig. 4.9 Description of the crack propagation problem.

Study of crack branching in porous media

The branching examples are then modified from brittle media to porous media. Since there
exists a strong coupling between the rocks deformation and fluid flow in porous media, a
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(a) t=43 µs, σ= 2 MPa. (b) t=33 µs, σ= 4 MPa.

Fig. 4.10 Crack pattern under the condition that stress applied on boundaries.

(a) Geometry of the sample. (b) Stress applied on crack surfaces.

Fig. 4.11 Description of the crack propagation problem.

(a) t=35 µs, σ= 3 MPa. (b) t=30 µs, σ= 6 MPa.

Fig. 4.12 Crack pattern under the condition that stress applied on crack surfaces.

second equation Eq.(4.24) is added to the simulation process to calculate the pore pressure
field. The effect of pore pressure on crack branching is then investigated.

The geometry and two loading conditions remain the same, and the parameters used
are listed in Table. 4.3. The initial pore pressure is set to be 3 MPa. Fig. 4.13 shows the
comparison of crack branching between brittle media and porous media under two loading
conditions: (1) stress applied on boundaries (left) and (2) stress applied on crack surfaces
(right). According to Fig. 4.13a and Fig. 4.13c, under the first loading condition (stress
applied on boundaries), with pore pressure increasing, the branching phenomenon remains
the same. While according to Fig. 4.13b and Fig. 4.13d, under the second loading condition
(stress applied on crack surfaces), the location of branching moves farther to the starting
location, which indicates that the time needed for branching increases, and the length of
crack branches decreases. The first loading condition stands for the mechanical loading,
while the second loading condition is similar to hydraulic loading, under which the pressure
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inside the crack drives the crack to grow. Thus, for fluid-driven fractures in porous media,
the pore pressure in porous media plays an important role in crack branching. The higher the
pore pressure, the harder crack branching event happens.

To sum up, in this subsection, a fully coupled hydraulic fracturing model fracture in
porous media is presented and employed to capture the dynamic crack branching behaviour in
both brittle and porous media to investigate the branching mechanisms. The results indicate
that sufficient loading is required in order to initiate the crack branching process. With higher
loading forces, multiple branches event can be observed. Compared with the stress applied
on crack surfaces condition, crack branching is more easily induced with the stress applied
on boundaries condition. In addition, for the fluid-driven crack (stress applied on crack
surfaces), the existence of pore pressure will depress the growth and branching of the crack.

(a) t=43 µs, σ= 2 MPa. (b) t=35 µs, σ= 3 MPa.

(c) t=43 µs, σ= 2 MPa. (d) t=35 µs, σ= 3 MPa.

(e) t=43 µs, σ= 2 MPa. (f) t=35 µs, σ= 3 MPa.

Fig. 4.13 The comparison of crack branching between brittle media and porous media under
two loading conditions: (a) crack pattern in brittle media under the first loading condition;
(b) crack pattern in brittle media under the second loading condition; (c) crack pattern in
porous media under the first loading condition; (d) crack pattern in porous media under
the second loading condition; (e) pore pressure distribution in porous media under the first
loading condition; (f) pore pressure distribution in porous media under the second loading
condition.
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4.5.2 Study of the stepwise phenomenon

The stepwise phenomenon has been observed in field tests and laboratory experiments [318].
However, it is very hard to reproduce it numerically. Till now, only a few studies capture the
stepwise phenomenon numerically [67, 68, 131, 379, 380]. It was pointed out in [68] that
the observation of this phenomenon is influenced by many factors, including the choice of
loading increment/fracture advancement/time stepping algorithm adopted. Unfortunately,
in Chapter 3, we fail to reproduce the stepwise phenomenon with a FEM model. In this
Chapter, we resort to PD to see if the physical irregular step can be observed. As a superior
method to solve discontinuous problems, PD is rarely adopted to investigate the stepwise
phenomenon. Recently, only one paper mentioned that the stepwise phenomenon can be
reproduced successfully under hydraulic loading conditions with a hybrid FEM and PD
approach [284]. The phenomenon has not been evidenced and investigated thoroughly.
Therefore, in this subsection, the explicit PD model will be utilised to check whether the
stepwise phenomenon could be reproduced with PD models.

Two test cases from [67], namely the mechanical loading and hydraulic loading cases,
are employed here to investigate the fracture propagation process with our new explicit PD
method. A comparison is made between our results and results obtained by FEM methods in
[67], and the stepwise phenomenon is investigated.

Mechanical loading case

The model describes a plane strain problem of crack propagation driven by mechanical
loading in saturated porous media. The model is established with a rectangle of 2×0.2 m,
see Fig. 4.14. The right surface is constrained in the horizontal and vertical direction, and all
the surfaces are impermeable with no fluid flowing out. The mechanical loading condition
is added by applying a vertical velocity boundary condition of uy = 2.35×102 m/s on the
upper and lower left surfaces of the rectangle. And time t1 equals 0.02 s. The initial crack
set along the central line of the model on the left is 0.02 m. All material properties of the
model are given in Table.4.4. In order to check the convergence of the results, three sets of
parameters are used: (1) ∆x = 0.001 m, (2) ∆x = 0.002 m and (3) ∆x = 0.004 m, where ∆x
is the grid spacing. The horizon size δ is equal to 3∆x. A time step size of ∆t = 1×10−7 s is
used to meet the stability condition for all grid spacing.

Fig. 4.15 shows that the crack length grows with time increasing and the irregular stepwise
phenomenon, which evidences that the proposed PD model can reproduce the stepwise
phenomenon observed in the experiment. With smaller grid spacing, the phenomenon can
still be observed with the periods of quiescence, representing the behaviour is a truly stepwise
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Fig. 4.14 Mechanical loading sample.

Table 4.4 Material properties for two loading cases.

Properties Symbols Values

Young’s modulus E 25.85×109 Pa
Poisson’s ratio v 1/4
Biot coefficient α 1
Dynamic viscosity µ 5.0×10−4 (Pa·s)
Permeability k 1.0×10−12 m2

Material density ρ 1.9×103 kg/m3

Porosity n 0.2
Bulk modulus(solid) Ks 13.46×109 N/m2

Bulk modulus(fluid) Kw 0.2×109 N/m2

Density(solid) ρs 1.0×103 kg/m3

Density(fluid) ρw 2.0×103 kg/m3

Intrinsic permeability k 2.78×10−21m2

phenomenon, not numerical errors. A physical reason behind this phenomenon may be that
when the crack is temporarily arrested, another sudden extension in the crack length occurs
only after enough energy has been accumulated in the system [188]. Comparing the results
obtained by the explicit PD model with the results obtained by the standard Galerkin finite
element method (SGFEM) in [67], similar patterns can be found.

Hydraulic loading case

The model describes a plane strain problem of crack propagation driven by hydraulic loading
in saturated porous media. The model of 2m long and 0.2m wide is subjected to a rapid
pressure increase of 5×105 MPa/s at the crack mouth, reaching a maximum value of 100
MPa, see Fig. 4.17. The right surface is fixed, and all the surfaces are impervious. The initial
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Fig. 4.15 Crack tip advancement under mechanical loading condition.

(a) Results obtained by the PD model. (b) Results obtained by SGFEM in [67].

Fig. 4.16 Comparison of crack tip advancement under mechanical loading.

crack set along the central line of the model on the left is 0.02 m. As time increases, the crack
propagates due to the injection of the fluid pressure. All material properties of the model are
given in Table.4.4. And time t1 equals 0.02 s. The initial crack set along the central line of
the model on the left is 0.02 m. Three sets of ∆x are used: (1) ∆x = 0.001 m, (2) ∆x = 0.002
m and (3) ∆x = 0.004 m, and ∆t = 1×10−7 s.

Fig. 4.18 shows the crack tip advancement with different grid spacing under hydraulic
loading. With the grid spacing decreasing, the stepwise phenomenon becomes less obvious,
and no periods of quiescence can be observed, making it hard to tell whether the stepwise
due to numerical errors or physical reasons. Similar patterns have also been obtained in [67],
see Fig. 4.19. It is indicated in [67] that though in Fig. 4.19b the stepwise phenomenon under
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Fig. 4.17 Hydraulic loading sample.

hydraulic loading case is not as distinct as the case under mechanical loading, the horizontal
water velocity contours will be beneficial for observing and evidencing the phenomenon.

Fig. 4.18 Crack tip advancement under hydraulic loading condition.

(a) Results obtained by the PD model. (b) Results obtained by SGFEM in [67].

Fig. 4.19 Comparison of crack tip advancement under hydraulic loading.
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In this subsection, the PD model for fracture propagation under two different loading
conditions is established and proves to be capable of reproducing the stepwise phenomenon.
The results obtained by the PD approach are similar to results obtained by the SGFEM,
indicating that the explicit PD modelling approach is a promising tool to study the stepwise
phenomenon. The examples also indicate that under mechanical loading conditions, the
stepwise phenomenon is more distinct due to the solid behaviour. Sudden jump or crack
extension will happen when energy accumulated is enough in the hydraulic fracturing system.

4.6 Conclusions

This chapter focuses on the study of hydraulic fracturing problems with peridynamics. An
explicit peridynamic modelling approach for simulating hydraulic fracture propagation in
saturated porous media is presented. A staggered strategy and an explicit time integration
scheme are used. The rocks deformation equation system is solved for the displacement
field, and the fluid flow equation is solved for the pressure field with PD. The approach is
validated via benchmark examples, including a a one-dimensional consolidation problem and
a two-dimensional fluid-filled crack propagation problems, which demonstrate the ability
of the approach to simulate the hydraulic fracture process. We use the approach to perform
a series of peridynamic computational tests in order to aid understanding of the physical
mechanisms involved in hydraulic fracturing.

First, the results show that the approach is capable of capturing dynamic crack branching
in brittle media and porous media. Crack branching requires a sufficiently high loading
condition. Under higher loading conditions, multiple branching occurs. The pore pressure
will depress the growth and branching of the crack under the fluid-driven condition. Second,
the approach proves to be capable of reproducing the stepwise phenomenon in the fracture
examples under the mechanical loading case as well as the hydraulic loading case, which
is in agreement with experimental observations and numerical simulations obtained with
SGFEM. Based on the above results, it can be concluded that the proposed peridynamic
approach has the potential to analyse various phenomena in hydraulic fracturing and the
mechanisms involved. With further development, the modelling approach could be used in
the future to tackle problems with more complex hydraulic fracture patterns as observed in
the field. Since the simulation scale in the practice and in the field is relatively large, the
development of an implicit model without time step limitation is of great importance, which
will be discussed in the next Chapter.



Chapter 5

A hybrid FEM and PD approach for
modelling hydraulic fracturing in porous
media

5.1 Introduction

Hydraulic fracturing describes the process of injecting fluid with proppant into the wellbore,
creating pressure that causes cracks in the rock to develop and spread [1, 26]. It is widely
used in the petroleum industry for the development of oil and gas reservoirs, especially
low permeability tight formations. In the past few decades, extensive laboratory experi-
ments [40, 125, 126, 164, 470] and field studies [21, 25, 200, 249] have been conducted to
study hydraulic fracturing in order to obtain a better understanding of fracture propagation
mechanism. In addition, numerical methods are necessary to reveal the fluid-driven fracture
behaviors since they are usually more flexible, cheaper and faster to perform compared to
laboratory and field experiments. The simulation of hydraulic fracturing in porous media
includes three physical processes: (i) deformation of the porous formation, (ii) fluid flow
in porous media and in the fracture, and (iii) fracture propagation [370]. These processes
reveal a strong coupling between the solid formation and the fluid, making the associated
numerical simulation a challenging task. Using a numerical approach, this study focuses on
the branching of fluid-driven fractures in porous media, which often occurs during hydraulic
fracturing and critically affects the productivity enhancement.

Complicated by the occurrence of complex fracture patterns and fluid networks, numerical
studies of hydraulic fracturing and branching in porous media are limited. Guo et al. [163]
studied hydraulic fracture branching with a phase-field model and concluded that the crack
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branch occurs when the crack propagates towards stiff rock under certain conditions (e.g.
Young’s modulus ratio exceeding a critical value) and low in-situ stress difference promotes
crack branching. Phase-field models were also developed by Zhou et al. [485], Ni et al. [282]
to investigate hydraulic fracture propagation in porous media. It is found in [485] that the
final crack branching pattern is not sensitive to the flux rate, and by increasing the flux rate
branches will occur but secondary branches either will not occur or remain unchanged. The
influence of energy release rate on hydraulic branching is also studied in [485], where smaller
critical energy release rate is found to promote more complex crack branching patterns. The
permeability is found to have a limited effect on crack propagation directions [282]. Using
a finite element crack band model, Rahimi-Aghdam et al. [340] studied the branching of
hydraulic fracture and found the porosity, seepage force (highly related with the permeability),
and weak layers are essential for the crack branching phenomenon. Using a bonded-particle
model, Zhang et al. [477] investigated fracture patterns in tight sandstone. Complex crack
patterns are found more prone to develop under low differential in-situ stress, while the
injection of high flow rate and low viscosity fluid are found to encourage dominant fracture
development. Ni et al. [284] presented a hybrid finite element and peridynamics model to
simulate hydraulic crack branching and found secondary crack branching can occur under
higher flux rate. There appears to be a consensus from these limited studies that high injection
flow rate leads to crack branching and more complex crack patterns [282, 284, 368, 485].
However, different researchers often come to different conclusions when using different
methods, and the effect of various physical parameters on crack branching still needs further
investigation.

Commonly used methods for the simulation of fluid-driven fractures include the finite
element method (FEM), the extended finite element method (XFEM), the phase-field method
(PFM), the discrete element method (DEM) and the peridynamics method (PD). Note that
each numerical method has its advantages and disadvantages, and a good numerical method
should have the ability to simulate complex fracture propagation processes with reasonable
computational cost [224]. The aforementioned simulation methods can be roughly classified
into two groups: continuum and discontinuum methods, which are briefly recapped below to
put the present study in perspective.

The continuum methods for hydraulic fracturing simulation include FEM, XFEM and
PFM. The FEM has been successfully applied in hydraulic fracturing simulation for several
decades. Boone and Ingraffea [52] presented an early work to simulate hydraulic fracturing
using a fully-coupled 2D FEM model. More recently, many other more advanced 2D and
3D FEM models [70, 76, 77, 278, 379] have been developed to simulate hydraulic fracturing
in impermeable or porous media, including the use of cohesive zone models to overcome
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the numerical difficulty caused by stress concentration at fracture tips. To date, the FEM is
often used for simple crack geometries (most often horizontal cracks), while for complex
crack patterns, e.g. crack branching and multiple branches with time-varying fluid flow
network, it becomes almost impossible to achieve a stable and affordable FEM simulation
due to the requirement of constant remeshing. Compared with FEM, XFEM avoids/reduces
the need of constant mesh updating in the simulation of crack propagation and it has also
been applied to hydraulic fracturing problems [359, 266]. However, the requirement of
adaptive discontinuous displacement enrichment prevents such XFEM from being applicable
to problems in which multiple cracks grow and intersect in complex patterns [247]. Compared
with FEM and XFEM, the PFM has advantages in coping with complex fracture patterns
since it treats fracture propagation and formation deformation simultaneously as an energy
minimization problem, avoiding the tracking of individual fractures and the extra criteria for
fracture branching and intersection [79]. The first phase field model to simulate hydraulic
fracturing in impermeable materials is developed by Bourdin et al. [59]. Later, the model was
expanded for fluid-saturated poroelastic materials by adding poroelastic terms in the energy
functional [257, 259] or by utilizing minimization principles for coupling Darcy–Biot-type
flow in poroelastic media [254]. However, extremely fine mesh are generally needed in phase
field simulation of fracture propagation [79], which sharply increases the computational
cost. The discontinuum methods include mainly DEM. In DEM [98], the material medium
is treated as an assembly of distinct particles and the motion of particles are governed by
Newton’s laws, thus the discontinuities are the natural outcome of the deformation process.
Application of DEM to simulation of hydraulic fracturing is described in [101]. The influence
of different parameters including the rock properties, in-situ stress, injection flow rate, fluid
viscosity on hydraulic fracturing are also studied with DEM models [274, 474, 120].

Introduced by Silling [394], the PD theory is a continuum theory based on integro-
differential equations, which is a promising tool for studying fracture propagation problems.
It uses spatial integrals equations instead of partial differential equations as the controlling
equation so as to overcome the limitations of ill-posed partial derivatives at discontinuities,
e.g. crack surfaces. In addition, crack growth can be initialised spontaneously with only
one simple criterion so that no external criterion is required for complex crack patterns.
With advantages in solving discontinuous problems, PD has been widely used for fracture
branching analysis [10, 47, 49, 84, 169], which mostly focus on the branching phenomenon in
impermeable media. The first application of PD in hydraulic fracturing was reported in [426],
in which a new formulation for incorporating the effects of pore pressure is presented to
simulate the deformation of porous media. Following this work, Ouchi et al. [300] proposed
a hydraulic fracturing model which couples a new PD formulation of porous fluid flow with
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the existing PD solid formulation together to simulate fluid driven fractures in an arbitrary
heterogeneous poroelastic medium. Using a linear viscoelastic PD model, Nadimi et al. [271]
simulated hydraulic fracturing initiation and propagation in a 3D heterogeneous geological
medium. The simulation work is done by using the PDLAMMPS (peridynamic large-scale
atomic/molecular massively parallel simulator) open source software; and the interaction
between induced fractures and a pre-existing fracture, as well as the influence of the angle
of approach and differential horizontal stress on the fracture propagation behaviour are
investigated. Oterkus et al. [296] presented a new fully coupled poroelastic PD formulation by
using the analogy between poroelasticity and thermo-elasticity. Combining both advantages
of FEM and PD, a hybrid modelling approach for simulating hydraulic fracture in porous
media with hybrid FEM and PD was proposed to study the hydraulic fracturing behaviour
in [284, 283], where a staggered solver is employed. The fluid equation is solved by an
implicit time integration iteration while the solid equation is solved by the adaptive dynamic
relaxation algorithm, which makes the whole system unconditionally stable.

In this study, we focus on the influence of different parameters on hydraulic fracturing
branching in porous media and to balance between efficiency and accuracy, a fully coupled
hybrid FEM-PD modelling approach is adopted. Specifically, the solid deformation and frac-
ture propagation are solved by FEM and PD, while the fluid flow equation is solved by FEM.
For the solid simulation, the areas where cracks are likely to occur are discretised by PD, and
the areas without cracks are discretised by FEM. After verification via benchmark examples
including static and dynamic problems, a series of computational tests are performed to study
the effects of different parameters on dynamic hydraulic fracture branching in porous media,
providing some useful insights on crack branching mechanisms in porous media.

The rest of the chapter is organised as follows. First, § 5.2 describes the mathematical
models and governing equations for hydraulic fracturing. Next, the corresponding numerical
implementation including space discretisation, time discretisation, coupling strategy and
solution strategy are explained in detail in § 5.3. Then, in § 5.4, benchmarks including static
deformation problems without and with failure, dynamic deformation problems without and
with failure, dynamic fluid and solid coupling problems without and with failure, are used
for verification. Finally, § 5.5 is devoted to the study of dynamic branching phenomenon in
porous media, after which conclusions are presented in § 5.6.

5.2 Mathematical models for hydraulic fracturing

Hydraulic fracturing is a physically complex procedure where underground rocks are frac-
tured by injecting a viscous fluid [1]. The injected fluid increases the pressure on the surface
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of the fracture, so as to reach the critical propagation conditions for the crack and split
the rock at the crack tip. The fluid driven process includes a strong coupling between the
fluid moving in porous media, the fluid moving in the fracture, and fracture propagation. In
Chapter 3 and in Chapter 4, the mathematical models for hydraulic fracturing has already
been discussed in detail. Here, we only give a brief introduction.

5.2.1 Deformation of a porous formation

In this work, the solid deformation equation is solved by FEM coupled with PD. The
FEM is based on classical continuum mechanics, which assumes that a material point only
interacts with its immediate neighbors (locality) and the local medium remains continuous
as it deforms. The classical FEM formulation is established on spatial derivatives that are
undefined at discontinuities. This leads to its limitation in solving discontinuous problems,
such as crack propagation problems. PD is a non-local theory, employing spatial integral
equations instead of partial differential equations, which makes it suitable for crack simulation.
However, a limitation of the non-local PD theory is the difficulty to accurately represent
boundary conditions, see § 5.3.3 for more details. Recognizing the strength and weakness of
FEM and PD, we introduce a hybrid approach to describe continuum deformation.

Classical continuum mechanics description

The deformation of a porous formation is typically modelled by the theory of poroelasticity.
The basic theory of poroelasticity was first introduced by Biot (1941) now known as Biot’s
theory, which was further developed from a physics perspective [361]. For a fully saturated
porous medium with a single-phase fluid, the equilibrium equation is

∇·σσσ +ρg−ρü = 0 (5.1)

where σσσ is the Cauchy stress, g the gravity acceleration, ü the acceleration of the solid phase,
and ρ the density of the porous medium.

Peridynamics theory

At a reference position of x and time t, the peridynamic equation of motion are described by
an integral formulation [394]:

ρ(x)ü(x, t) =
∫

Hx
f(x′−x,u′−u)dVx′ +b(x, t) (5.2)
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in which ρ is the mass density, ü the acceleration, Hx the horizon, u the displacement vector
field, b a prescribed body-force density field, dVx′ the differential volume of x′, f the force
vector between two material points x′ and x, and interaction f between the material points
is related to the deformation, pressure and constitutive properties of the material and is
called a bond. There are two types of theoretical models for PD: the bond-based PD and
the state-based PD. The bond-based PD assumes that any pair of particles interacts only
through a central potential that is totally independent of all other local conditions [247]. This
assumption results in that for an isotropic, linear, microelastic material, the Poisson’s ratio is
limited to 1/4 (plane strain) or 1/3 (plane stress). To remove the restrictions for Poisson’s
ratio, the state-based PD was proposed [402], where the interaction between two material
points depends not only on the bond between the two points, but also on the deformation
of all the other bonds in the horizon. Here, the bond-based PD are intentionally chosen for
simplicity with lower computing times with respect to the state-based PD.

Based on the bond-based PD theory, the governing equation for solid deformation
Eq. (5.1) is formulated as [296]:

ρ(x)ü(x, t) =
∫

Hx
λc(s−αγP̄)

ξξξ +ηηη

|ξξξ +ηηη |dVx′ +b(x, t) (5.3)

where ξξξ = x′−x denotes the initial relative position, ηηη = u′−u the current relative displace-
ment, λ a scalar describing the bond state (i.e. broken or not), c the bond stiffness, and γ the
coefficient of fluid pore pressure. Details of c and γ can be found in §4.2.1. P̄ is the average
fluid pore pressure of points x′ and x is defined as:

P̄ =
P(x′, t)+P(x, t)

2
(5.4)

s is the stretch between the material points, which represents the relative elongation of
the bond:

s =
|ηηη +ξξξ |− |ξξξ |

|ξξξ |
(5.5)

The fracture propagation is determined by λ and associated failure criteria, for which further
details are given in § 5.2.3.

5.2.2 Fluid flow in porous media and in the fracture

The continuity equation for the fluid flow in a porous medium can be written as:

α∇· u̇+
1
Q

ṗ+∇·q = 0 (5.6)
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where u̇ denotes the velocity of the solid phase, ṗ the velocity of the fluid pressure, and 1
Q

the compressibility coefficient. The first term can be seen as a source term driving pressure
distribution and the flux. q is defined by Darcy’s law. Darcy’s law, a phenomenologically
derived constitutive equation that describes the flow of a fluid through a porous medium, is
used. The Darcy’s law reads:

q =−kw
µ

·∇p (5.7)

where µ is the fluid viscosity, and kw the permeability tensor. In two dimensions, kw is
written as:

kw =

[
kx 0
0 ky

]
(5.8)

where kx and ky are principle permeability coefficients in the x and y directions, respectively.
Note here for a fracture domain, in Eq. (5.6), the first term of the equation can be neglected
[284], and the permeability kx and ky becomes:{

kx = k f sinθ

ky = k f cosθ
(5.9)

where θ is the direction angle of maximum principal strain and can be calculated by
Eq. (5.10):

θ =
1
2

atan(
γxy

εx − εy
) (5.10)

where εx, εy and γxy are the normal strain in the x-direction, normal strain in the y-direction
and the shear strain.

k f is the fracture permeability, which is given in and Eq. (5.10). In Eq. (5.11), w is the
fracture width and is calculated via the stretch of the bond [284] and η is a fracture parameter
set equal to unity in this research.

k f =
1
η

w2

12
(5.11)

5.2.3 Failure criterion

In fracture mechanics, the fracture propagation criterion is used to control the propagation of a
fracture. With FEM method, linear elastic fracture mechanics (LEFM) is normally adopted as
the fracture propagation criterion. The LEFM includes the maximum tensile stress criterion
and minimum strain energy density criterion, the maximum principal strain criterion and
maximum strain energy release criterion [341]. When modeling crack branching phenomenon
with FEM, an external branching criterion is required to determine the branching time and
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branching angle. Compared with FEM, the criterion used for crack propagation in PD is
relatively simple. Without the requirement of external criteria for crack propagation direction
or crack branching angles, the crack growth is a natural outcome of the computation.

One of the most common criteria in PD is called the “critical bond stretch ” criterion
[400]. When the stretch of the bond s is greater than the critical value sc, the bond is assumed
to be broken, and the pairwise force between the pair of nodes disappears. λ is a scalar to
describe the bond state where λ equals 1 when the bond is not broken, λ equals 0 otherwise.

λ (x, t,ξξξ ) =

{
0 (s ≥ sc)

1 (s < sc)
(5.12)

The critical stretch sc is determined by the critical energy release rate Gc. The relationship
between sc and Gc is defined as presented in:[247, 286, 471]:

sc =

√
4πGc

9Eδ
(2D,plane stress) (5.13a)

sc =

√
5πGc

12Eδ
(2D,plane strain) (5.13b)

sc =

√
5Gc

6Eδ
(3D) (5.13c)

When a series of bonds break, the discontinuous space formed by these broken bonds
becomes a macroscopic crack. An example of broken bonds is given in Fig. 5.1, where a
horizon size δ = 2∆x is adopted.

Fig. 5.1 Crack formed by broken bonds (δ = 2∆x).

To describe the crack path, a scalar φ called the damage parameter is used. It represents
the local damage of point x, which is defined as the ratio of the number of broken bonds to
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the total number of bonds connected to point x:

φ(x, t) = 1−
∫

H λ (x,x′, t)dVx′∫
H dVx′

0 ≤ φ ≤ 1 (5.14)

5.3 Numerical implementation

5.3.1 FEM spatial discretisation of the governing equations

A detailed explanation of the discretisation procedure for the poroelasticity problem with
FEM can be found in [490]. The weak form of the governing equations (solid deformation
equation Eq. (5.1) and fluid flow equation Eq. (5.6)) is first obtained and then the unknown
field parameters (the displacement and pressure) are represented by nodal values and inter-
polation functions. Following the standard FEM discretisation, the discretised governing
equations Eq. (5.1) and equation Eq. (5.6) can be expressed in a compact matrix as [52]:

MF ü+KFu−QFp = fF (5.15a)

QT
F u̇+CF ṗ+HFp = qF (5.15b)

where u denotes the nodal displacement, p the nodal fluid pressure, fF the nodal force, qF

the nodal flow source. The coefficient matrices/vectors MF , KF , QF , CF and H are given by
the following expressions:

MF =
∫

Ω

Nu
T

ρNudΩ, KF =
∫

Ω

Bu
T DBudΩ

QF =
∫

Ω

αBu
T mNpdΩ, m = {1,1,0}T

CF =
∫

Ω

1
Q

Np
T NpdΩ, HF =

∫
Ω

Bp
T kw

µ
BpdΩ

(5.16)

where Nu denotes the shape function matrix for displacement, Np the shape function matrix
for pressure, Bu the strain-displacement matrix, and Bp the matrix of first derivatives of the
shape functions Np.
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Nu =

[
N1 0 N2 0 · · · Nn 0
0 N1 0 N2 · · · 0 Nn

]
Np =

[
N1 N2 · · · Nn

]
Bu =

N1,x 0 N2,x 0 · · · Nn,x 0
0 N1,y 0 N2,y · · · 0 Nn,y

N1,y N1,x N2,y N2,x · · · Nn,y Nn,x


Bp =

[
N1,x N2,x · · · Nn,x

N1,y N2,y · · · Nn,y

]
(5.17)

5.3.2 PD spatial discretisation of the governing equations

Following the meshless PD discretisation [247], Eq. (5.3) can be written as:

ρü(i) =

N( j)

∑
j=1

λc(s(i)( j)−αγP̄(i)( j))
ξξξ (i)( j)+ηηη(i)( j)∣∣∣ξξξ (i)( j)+ηηη(i)( j)

∣∣∣V( j)+b(i) (5.18)

where i and j represent the material points and N( j) represents the number of material points
inside the horizon of point i. Multiplying Eq. (5.18) by the volume of material point i V(i),
the following equation is obtained:

mü(i) =

N( j)

∑
j=1

λc(s(i)( j)−αγP̄(i)( j))
ξξξ (i)( j)+ηηη(i)( j)∣∣∣ξξξ (i)( j)+ηηη(i)( j)

∣∣∣V( j)V(i)+b(i)V(i) (5.19)

Under the assumption of small deformation, the PD space discretisation for the solid
deformation Eq. (5.19) is expressed as:

MPDü+KPDu−QPDp = fPD (5.20)

MPD = A N
i=1ρV(i)

fPD = A N
i=1b(i)V(i)

KPD = A Nbond
b=1 Kb

QPD = A Nbond
b=1 Qb

(5.21)

where A is the operator for assembling matrix, MPD the global mass matrix, KPD the global
stiffness matrix, and fPD the external force, N the number of material points for the whole
system, Nbond the number of bonds, Kb the stiffness matrix of the bond between nodes xi
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and x j.

Kb =

[
ki j

k ji

]
(5.22)

where ki j and ki j are the stiffness matrices of the bond for node xi and node x j, respectively.
It is noted here ki j =−k ji.

Take the first term of the left side of Eq. (5.19) as an example, if the assumption “small
displacement” is made (|ηηη | ≪ |ξξξ |), it can be simplified as:

fi j = csλ
ηηη +ξξξ

|ηηη −ξξξ |
∼= csλ

ξξξ

|ξξξ |
(5.23)

According to Eq. (5.23), the derivative of the pairwise force fi j with respect to ηηη is:

∂ f
∂η1

= cλ
∂ s

∂η1
= cλ

∂ (

√
(ξ1+η1)2+(ξ2+η2)2−|ξξξ |

|ξξξ | )

∂η1
=

cλ

|ξξξ |

1
2 ·2 · (ξ1 +η1)√

(ξ1 +η1)2 +(ξ2 +η2)2
(5.24)

where f is the norm of the vector of fi j, ξξξ = (ξ1,ξ2) and ηηη = (η1,η2). Due to the assumption
“small displacement”, the following relation holds√

(ξ1 +η1)2 +(ξ2 +η2)2 ∼= |ξξξ | (5.25)

Substituting Eq. (5.25) into Eq. (5.24) yields:

∂ f
∂η1

= λ
cξ1

|ξξξ |2
(5.26)

Similarly,
∂ f
∂η2

= λ
cξ2

|ξξξ |2
(5.27)

Thus,

fi j =


∂ f1
∂η1

∂ f1
∂η2

∂ f2
∂η1

∂ f2
∂η2

[η1

η2

]
= λ


cξ1

|ξξξ |2
· ξ1
|ξξξ |

cξ2

|ξξξ |2
· ξ1
|ξξξ |

cξ1

|ξξξ |2
· ξ2
|ξξξ |

cξ2

|ξξξ |2
· ξ2
|ξξξ |


[
−1 0 1 0
0 −1 0 1

]
ui1

ui2

u j1

u j2

 (5.28)
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Therefore, ki j can be written as:

ki j =
λcViVj

|ξξξ |3

[
−ξ 2

1 −ξ1ξ2 ξ 2
1 ξ1ξ2

−ξ1ξ2 −ξ 2
2 ξ1ξ2 ξ 2

1

]
(5.29)

Thus, according to Eq. (5.22), the stiffness matrix of the bond Kb can be described as:

Kb =
λcViVj

|ξξξ |


−cos2θ −cosθsinθ cos2θ cosθsinθ

−cosθsinθ −sin2θ cosθsinθ sin2
θ

cos2θ cosθsinθ −cos2θ −cosθsinθ

cosθsinθ sin2θ −cosθsinθ −sin2
θ

 (5.30)

where θ is the angle between the angle between the bond and the x axis at the current
configuration. Similarly, Qb is the coefficient matrix for pressure,and can expressed as:

Qb =−
λcαBγViVj

2


cosθ cosθ

sinθ sinθ

−cosθ −cosθ

−sinθ −sinθ

 (5.31)

5.3.3 Coupling strategy

To solve the mathematical models described in § 5.2 using the hybrid FEM-PD approach,
we need to effectively deal with two types of coupling: (1) the coupling between PD and
FEM and (2) the coupling between the solid deformation and the fluid pressure. The former
is reflected by the coupled FEM-PD spatial discretisation of porous media, while the latter is
reflected by the coupled fluid and solid equations. In this section, we focus on the FEM-PD
coupling, while the numerical treatment for fluid-solid coupling will be explained in § 5.3.4.

Both FEM and PD are used to solve the deformation of porous media. Due to the non-
local feature of PD, the application of boundary conditions for peridynamics need to follow
specific rules [247], see Table 4.1. In this research, FEM is adopted for the outer area, and
PD is adopted for the inner area where cracks are likely to occur. As shown in Fig. 5.2, the
porous media Ω is discretised into FEM sub-domain ΩF and PD sub-domain ΩP such that

Ω = ΩF +ΩP, ΩF ∩ΩP = φ (5.32)

The nodes in PD sub-domain are called the PD nodes (red circles), while the nodes in FEM
sub-domain are called the FEM nodes (blue and white diamonds). Since the FEM nodes
shown as blue diamonds (in Fig. 5.2) are used to define the appropriate internal forces on the
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Fig. 5.2 Illustration of FEM and PD sub-domain.

Table 5.1 Rules for the application of boundary conditions for peridynamics.

Boundary
condition

Traction
boundary condition

Displacement or velocity
boundary condition

Rules
can be applied as body force density in a
“real material layer” along the boundary
of a nonzero volume.

can be applied by prescribing constraints
on displacement and velocity fields in a
“fictitious material layer” along the boun-
dary of a nonzero volume.

real PD nodes (red circles), we call these FEM nodes the coupling nodes. The dashed lines
represent the bonds coupling PD nodes to the surrounding FEM elements. The continuous
lines represent standard bonds between PD nodes. The bonds connecting PD nodes to
coupling nodes only apply forces to PD nodes while the FEM elements having PD nodes
only apply forces to FEM nodes. The coupling is realised by adopting in the global stiffness
matrix the terms coming from the FEM theory, representing forces acting on FEM nodes,
and the terms coming from the PD discretisation, representing forces acting on PD nodes.
This coupling ensures not only the completeness of the integral of the non-local strain energy
for all PD nodes, but also the smooth transition from the local model to the non-local model
[285].
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5.3.4 Solution strategy

Static approach

For the static situation, the first item of Eq. (5.20), the acceleration terms, can be neglected.
Here the Backward Euler is used for time discretisation and the resulting system is given
below: 

u̇n+1 = 1
∆t (u

n+1 −un)

ṗn+1 = 1
∆t (p

n+1 −pn)

(5.33)

K̄un+1 − Q̄pn+1 = f̄n+1 (5.34a)

QT
F u̇n+1 +CF ṗn+1 +HFpn+1 = qn+1

F (5.34b)

where K̄ is obtained by assembling KPD and KF , Q̄ by assembling QF and QPD, and f̄ by
assembling fF and fPD.

After substituting Eq. (5.33) into Eq. (5.34), the following equation system is obtained:{
u
p

}(n+1)

=

{
u
p

}(n)

− R
J

(5.35)

J =

K̄ − Q̄

QT
F

CF

∆t
+HF

 (5.36)

R =

[
K̄un+1 − Q̄pn+1 − f̄n+1

QT
F u̇n+1 +CFpn+1 +HFpn+1 −qn+1

]
(5.37)

The coupled equation system is solved via Newton-Raphson method.

Simulation flowchart of static problems with failure

If failure occurs, the simulation flow chart for solving the static failure problem with the
FEM-PD approach is shown in Fig. 5.3. First, the initial and boundary conditions are given,
Then, the domain is divided into the FEM sub-domain and PD sub-domain following the
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Fig. 5.3 Flowchart for solving the static failure problem with the FEM-PD approach.

rules that the crack is assumed to develop in the PD sub-domain. Then, the PD stiffness
matrix and FEM matrix are coupled together as described in § 5.3.3. The coupling method
follows the action and reaction principle at the transition between FEM and PD sub-domain.
For static failure problem, one of the most important things is to find the equilibrium once
the failure occurs. Here, a small try load is given first, which will not cause any failure. Then
under the loading condition, the displacement u of each node and the max stretch smax of the
bond are calculated. The failure criterion sc has already been given. With the proportion of

sc
smax

, the smallest load to cause failure (break the balance) can be calculated by F = Ftry
sc

smax
.

With the calculated load, the displacement u of each node and the max stretch smax of the
bond are calculated again. Check whether there is any bond broken (the bond of which the
stretch is over the critical stretch sc), if yes, delete the broken bonds and update the matrix
KPD since the PD forces don’t exist in broken bonds. By deleting the broken bond iteratively
until there is no bond broken, the equilibrium is finally made. Then, a small try load is given
again to find the next equilibrium state.
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Dynamic approach

The coupled fluid-solid equations for crack branching in porous media are dynamic and
nonlinear. Here the Newmark method [276] is used for time discretisation taking into account
the inertial force and the acceleration terms, and the resulting system is given below:

ün+1 = a0(un+1 −un)−a2u̇n −a3ün

u̇n+1 = a1(un+1 −un)−a4u̇n −a5ün

pn+1 = pn +∆t(1−θ)ṗn +θ∆tṗn+1
(5.38)

with

a0 =
1

β∆t2 , a1 =
γa

β∆t
, a2 =

1
β∆t

a3 =
1

2β
−1, a4 =

γa

β
−1, a5 = ∆t(

γa

2β
−1)

(5.39)

M̄ün+1 + K̄un+1 − Q̄pn+1 = f̄n+1 (5.40a)

QT
F u̇n+1 +CF ṗn+1 +HFpn+1 = qn+1

F (5.40b)

where M̄ is obtained by assembling MPD and MF .
After substituting Eq. (5.38) into Eq. (5.40), we obtain the following equation system:{

u
p

}(n+1)

=

{
u
p

}(n)

− R
J

(5.41)

J =

a0M̄+ K̄ − Q̄

a1QT
F

CF

θ∆t
+HF

 (5.42)

R =


M̄(a0(un+1 −un)−a2u̇n −a3ün)+ K̄un+1 − Q̄pn+1 − f̄n+1

QT
F(a1(un+1 −un)−a4u̇n −a5ün)+CF · pn+1 −pn

w −∆t(1−θ)ṗn
w

θ∆t
+ · · ·

HFpn+1 −qn+1

 (5.43)
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When γa ≥ 1/2, β ≥ 1/4, and θ ≥ 1/2, the above equation system is unconditionally stable.
The coupled nonlinear equation system is solved via a monolithic scheme with the Newton-
Raphson method.

Simulation flowchart of dynamic problems with failure

Fig. 5.4 Flowchart for solving the dynamic failure problem with the FEM-PD approach.

The simulation flow chart for solving the dynamic failure problem with the FEM-PD
approach is illustrated in Fig. 5.4. After the initial and boundary conditions are given, the
domain is divided into the FEM sub-domain and PD sub-domain following the rule that the
crack is assumed to develop in the PD sub-domain. Then, the coupled matrix is assembled
using the PD matrix and FEM matrix coupling strategy. The Newmark method is used for
time discretisation. For each time step if local failure is detected (s ≥ sc in Eq. (5.12)),
dynamic crack propagation develops and local bonds break accordingly, forming a nonlinear
equation system. The stiffness matrix is updated according to the change in local connectivity
whenever broken bonds are detected. Newton iteration is then used to solve the non-linear
system. The loop continues until bond breaking has ceased and the result satisfies the
convergent condition error < ε . Here, error =

∣∣∣xitn+1−xitn

xitn+1

∣∣∣, where x represents the unknowns
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(pressure or displacements in the 2D hydraulic fracturing problem) and itn represents the
iteration step. Once the Newton iteration has converged, go to the next time step.

5.4 Model verification

5.4.1 Static problem without failure

1D bar model under two different loading conditions

The 1D bar is composed of 31 nodes with a length of L = 30 m. The PD sub-domain is
composed of nodes 13-25, while the FEM sub-domain is composed of nodes 1-12 and 26-31.
The parameters used in this model is shown in Table 5.2. Two different loading conditions
are considered. (1) With the left end fixed, the right end of the bar is subjected to a tensile
unit force, see Fig. 5.5. (2) With both ends fixed, the bar is subjected to uniformly distributed
axial unit forces.

Table 5.2 Parameters for 1D bar model.

Grid spacing ∆x (m) Young’s modulus E (Pa) Bar cross section area A (m) Radius of horizon δ (m) Micro-modulus c
1 1 1 3 2/9

Fig. 5.6 and Fig. 5.7 show the comparison of displacement between PD-FEM and
analytical solution under the first and second loading conditions. The coupled PD-FEM
numerical solution is in good agreement with the analytical solution. The relative error is
calculated with the equation given below:

erel,i =
u∗i −ui

ui
(5.44)

where i is the node index, u the exact displacement value and u∗ the numerically computed
displacement value. Using the equation, the relative errors under two different loading
conditions are calculated only with nodes in which no boundary conditions have been applied.
The relative error for the first loading condition is 2.6e-14 while for the second loading
condition is 5.8e-15. It can be seen that the result of simulation by PD-FEM is accurate
enough for 1D bar model.

Fig. 5.5 Geometry and discretisation of 1D bar model.
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Fig. 5.6 The comparison of displacement un-
der the first loading condition.

Fig. 5.7 The comparison of displacement un-
der the second loading condition.

2D plane stress model

As shown in Fig. 5.8, a 2D plane stress square model with 50 m side length and 1 m thickness
is established. The PD sub-domain is in red rectangular composed of 475 material points
(xi(x1,x2) ∈ ΩP,-11 m≤ x1 ≤7 m and -8 m≤ x2 ≤16 m) while the FEM sub-domain is the
rest and composed of 1980 rectangular elements. The parameters used in this model are
listed in Table 5.3.

Table 5.3 Parameters for 2D plane stress square model.

Grid spacing ∆x (m) Young’s modulus E (Pa) Poisson ratio ν Radius of horizon δ (m) Micro-modulus c
1 1 1/3 3 2/9

Fig. 5.8 Geometry and discretisation of 2D solid deformation model.

The vertical displacement on the left edge and the horizontal displacement on the bottom
edge are constrained while the displacement on the top edge are free. By applying a uniform
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horizontal displacement u = 0.5 m on the right edge, the plate is stretched in the horizontal
direction. According to the analytical solution, the exact solutions of displacements are
evaluated with equations u∗ = 0.5 x

E v∗ = −0.5ν
y
E . The relative errors distribution of the

horizontal and vertical displacements are shown in Fig. 5.9 and Fig. 5.10. The relative error
of u reaches 2e-13 while the relative error of v reaches 3e-13. It can be seen that no spurious
behaviour is observed at the interface between FEM and PD sub-domain and the result of
simulation by PD-FEM is accurate enough for 2D model.

Fig. 5.9 The relative error of horizontal dis-
placement u.

Fig. 5.10 The relative error of vertical dis-
placement v.

5.4.2 Static problem with failure

A double cantilever beam crack model (crack caused by tension)

A double cantilever beam model is established with the length of 0.1 m and the width of
0.025 m, see Fig. 5.11. An initial crack of 0.05 m length is in the left middle of the model.
The FEM sub-domain is composed of 5100 rectangular elements while the PD sub-domain,
shown as the red rectangle, has 5226 material points (xi(x1,x2) ∈ ΩP, -0.05 m≤ x1 ≤0.05 m
and -0.005 m≤ x2 ≤0.005 m). The parameters used in this model are listed in Table 5.4.

Table 5.4 Parameters for a double cantilever beam crack model.

Grid spacing ∆x (m) Young’s modulus E (GPa) Poisson ratio ν Radius of horizon δ (m) Micro-modulus c (N/m6) Critical stretch sc
5e-4 200 1/3 1.5e-3 1.68e+20 6.7e-3

The right edge is fixed and the loading conditions is applied by giving displacement on
the two vertices of the left edge. With the applied displacements, the crack starts to propagate.
Fig. 5.12 shows the crack development history with time varying. From (a) to (d), time
increases and the crack develops, and when the crack tip reaches close to the right edge, the
crack branches. The results shows the same with results in paper [285].
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Fig. 5.11 Geometry and discretisation of a double cantilever beam crack model.

Fig. 5.12 Crack development history with time varying from (a) to (d).

A diagonally loaded square plate crack model (crack caused by shear force)

As shown in Fig. 5.13, a diagonally loaded square plate model with an initial crack in the
center is established. The side length is 0.15 m. The length of the crack is 0.045 m and the
angle between the crack and the horizontal direction is 62.5°. The PD sub-domain is in red
rectangle. As a square, its side length is 0.016 m smaller than the whole domain. The rest is
the FEM sub-domain, which is suitable for applying diagonally loading boundary conditions.
The FEM sub-domain is composed of 1136 rectangular elements while the PD sub-domain,
shown as the red rectangle, has 4624 material points. The parameters used in this model are
listed in Table 5.5.

Table 5.5 Parameters for a diagonally loaded square plate crack model.

Grid spacing ∆x (m) Young’s modulus E (GPa) Poisson ratio ν Radius of horizon δ (m) Micro-modulus c (N/m6) Critical stretch sc
2e-3 2.94 0.38 6e-3 8.386e+18 8.9e-3

In the experiment [23], the load is given at the hole on the top and bottom corner and on
a hole with a diameter of 0.004 m. Here, in order to get the results close to the experiment
results, the velocity boundary conditions adopted are taken from [190]. The load is applied
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Fig. 5.13 Geometry and discretisation of a diagonally loaded square plate crack model.

Fig. 5.14 Crack paths with time varying (a) initial crack and (b) final crack.

Fig. 5.15 Experimental result of a diagonally loaded square plate crack model.
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through a constant velocity constraint of u̇ = 1×10−6 m/s within the region of 0.025 m from
the top and bottom corner of the plate until damage is captured. Later, the damage analysis is
performed with a constant velocity constraint of u̇ = 1×10−8 m/s to predict crack growth
path.

In order to avoid spurious cracking near the region of loading, a no-fail region with a
length of 0.04 m is introduced from the top and bottom corner of the plate. The deformation
and damage progression of the plate are simulated through the PD-FEM model and the crack
development history with time increasing from (a) to (b) are shown in Fig. 5.14. Compared
with the experiment result in Fig. 5.15, the crack propagation path simulated by the PD-FEM
approach agrees well with the experimental result, which demonstrates the accuracy and
effectiveness of the hybrid PD-FEM approach.

5.4.3 Dynamic problem without failure

2D plane stress model subjected to an external load

The 2D plane stress model with a side length of 8 m is subjected to an external load F. The
related parameters are listed in Table 5.6. And the time step ∆t of the integration is chosen to
be 1×10−3 s.

Table 5.6 Parameters for 2D plane stress crack model.

Grid spacing ∆x (m) Young’s modulus E (GPa) Poisson ratio ν Radius of horizon δ (m) Micro-modulus c (N/m6) Density ρ (kg·m−3)
0.1 0.05 0.25 0.3 5.6e+9 2647

3

Fig. 5.16 Geometry and discretisation of a 2D plane stress model subjected to an external
load.
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As shown in Fig. 5.16, the PD sub-domain, shown as the red rectangle, has 1681 material
points while the FEM sub-domain is the rest, composed of 4800 rectangular elements. The
boundary conditions are also shown in Fig. 5.16. Both the left and right sides are fixed in
the horizontal direction and the bottom edge is fixed in the vertical direction. The top left
corner is imposed by an external load F. Fig. 5.17 and Fig. 5.18 show the horizontal and
vertical displacement histories at point A obtained by the hybrid approach FEM-PD and
FEM. Taking FEM results as a reference, it can be seen that the numerical results of the
hybrid FEM-PD approach agrees well with the FEM results.

Fig. 5.17 The comparison of horizontal dis-
placement at point A with FEM and PD-
FEM.

Fig. 5.18 The comparison of vertical dis-
placement at point A with FEM and PD-
FEM.

5.4.4 Dynamic problem with failure

Three-point bending problem

As shown in Fig. 5.19, a notched three-point bending beam with an initial crack at the bottom
has been established. The length of the beam is 1.01 m and the width of the beam is 0.4
m. The length of the initial crack is 0.2 m. The beam is divided into FEM-subdomain and
PD-subdomain. The size of the PD sub-domain is 0.4 m× 0.4 m, which is the area of the
red rectangle. The PD sub-domain has 6480 material points while the FEM sub-domain is
composed of 8040 rectangular elements. The related parameters are listed in Table 5.7. And
the density of the material is 8×103 kg· m−3. the time step ∆t of the integration is chosen to
be 1×10−3 s.

For the boundary conditions, the left end of the bottom is fixed, while the right end of
the bottom edge is fixed in the vertical direction. In the middle of the top edge, a velocity
boundary condition is applied with u̇ = 10 m/s within a length of 0.21 m. Under this velocity
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Table 5.7 Parameters for a three-point bending model.

Grid spacing ∆x (m) Young’s modulus E (GPa) Poisson ratio ν Radius of horizon δ (m) Micro-modulus c (N/m6) Critical stretch sc
5e-3 192 0.33 1.5e-2 1.61e17 1.41e-2

Fig. 5.19 Geometry and discretisation of a three-point bending model.

Fig. 5.20 crack development history with time varying (a) t = 400 µs, (b) t = 500 µs, (c) t =
650 µs and (d) t = 850 µs.

boundary condition, the crack development history is recorded with time increasing, see
Fig. 5.19. From (a) to (d), time increases and the crack develops. The results shows the same
with results in paper [230].
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5.4.5 Dynamic problem with failure and pressure field

1D porous media bar

The model describes a fully saturated 1D poroelastic column bar with a pressure applied
at the top of the bar, see Fig. 5.21. The height of the column is 15 m. The top surface is
subjected to a constant pressure of 104 Pa. The top surface is used for fluid drainage and the
pore pressure at the top surface remains zero, while the bottom surface acts as a solid wall
and the fluid flux is zero. The PD is used to describe the deformation of the porous media
and the FEM is used to describe the fluid flow in the porous media. Referring to [284], the
material properties are listed in Table 5.8. To check the convergence, three different grid
spacings are considered: (1) ∆x = 0.2 m; (2) ∆x = 0.1 m and (3) ∆x = 0.05 m, where ∆x is
the grid spacing. The horizon size δ is equal to 3∆x.

Fig. 5.21 The basic geometry of 1D porous media bar model.

The analytical solution to this problem is given in [434]:

P(z, t) =
4vP0

π

N

∑
m=0

{
1

2m+1
exp(−(

(2m+1)π
2L

)2ct)× sin(
(2m+1)πz

2L
)

}
(5.45)

u(z, t) =cmvP0

{
(L− z)− 8L

π2

N

∑
m=0

{
1

(2m+1)2

}}
× exp(−(

(2m+1)π
2L

)2ct)

× cos(
(2m+1)πz

2L
)+aiP0(h− z)

(5.46)
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where
v =

a−ai

αa
, ai =

a
1+α2aQ

, c =
kQ

(α2a+Q)µ
, cm = (a−ai)/v (5.47)

with a = 1.0×10−8 N/m2.
Fig. 5.22 shows the distributions of pore pressure and displacement along the central axis

at different times with different grid sizes. The numerical solutions show good agreement
with the analytical solutions and with smaller grid size, the numerical results indicate
convergence towards the analytical results. As time increases, the pore pressure decreases
and the displacement increases in z direction, indicating water out flow from the top surface
together with soil consolidation.

(a) Pressure distribution. (b) Displacement distribution.

Fig. 5.22 The comparison of analytical and numerical solution along the bar.

Table 5.8 Material properties for the poroelastic column.

Properties Symbols Values

Elasticity modulus E 1.0×108 Pa
Biot constant α 0.5
Biot modulus Q 6.06×109 N/m2

Viscosity µ 1.0×10−3 Pa·s
Permeability k 1.0×10−12m2

Material density ρ 1.9×103 kg/m3
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KGD problem

As shown in Fig. 5.23, a plane strain KGD problem [76] is employed to examine the hybrid
numerical scheme in two-dimensions. The borehole is treated as a point source in the plane
because the radius is very small compared to the fracture length. Due to symmetry, Fig. 5.23
only shows half of the model, which is 16 m in height and 8 m in width. The domain is
divided into a FEM-subdomain and a PD-subdomain, where the PD-subdomain is the area
where the crack can potentially occur. The PD sub-domain is 8 m×8 m, as indicated by the
red rectangle in Fig. 2.4.

For boundary conditions, the top and bottom sides are fixed in the vertical direction,
the right edge is fixed in the horizontal direction, and the pressure on the boundaries is set
as zero. The initial crack length is 0.1 m and a flux q = 0.0001 m3/s is injected in the left
borehole. For the introduced fractures, the fluid pressure exerts on the fracture surfaces and
no friction is considered. The rock media is assumed homogeneous and fully saturated, and
it undergoes small deformation. All parameters including the rock properties, fluid properties
and other conditions used in the numerical simulation are listed in Table 4.3. When plugging
the parameters into KGD equations, they need to be converted into SI the international
system of units. Note that for the element inside the fracture domain, the porosity is 1 and
the permeability is calculated using Eq. (5.9) and Eq. (5.11).

Fig. 5.23 Geometry and discretisation of a KGD model.

In order to check for convergence of the results, three different grid spacings and time
steps are used: (1) ∆x = 0.2 m, ∆t = 0.2 s; (2) ∆x = 0.1 m, ∆t = 0.1 s and (3) ∆x = 0.05 m,
∆t = 0.05 s. The horizon size δ is equal to 3∆x. The comparison between the analytical
solutions [151, 411] and numerical results in terms of evolution of the fracture length,
pressure and width are shown in Fig. 5.24. Using ∆x = 0.05 m and ∆t = 0.05 s, the growth
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Table 5.9 Rock properties, fluid properties and loading conditions used in KGD simulation.

Properties Symbols Values

Elasticity modulus E 15.96×109 Pa
Poisson’s ratio v 0.25
Biot constant α 1
Bulk modulus(Solid) Ks 36×109 Pa
Bulk modulus(Fluid) K f 3×109 Pa
Viscosity µ 1.0×10−3 Pa·s
Material density ρ 1.81×103 kg/m3

Porosity n 0.19
Permeability k 1.0×10−14 m2

Critical energy release rate Gc 100 N/m

of crack and the distribution of pressure in porous media and in the fracture are shown in
Fig. 5.25. We note that the pressure is negative ahead of the crack tip. According to Biot
theory, dilatation is positive in the regions ahead of the crack tips arising from the opening
mode of deformation. There exists pressure pressure drop in the regions of positive dilatation,
which causes large suction and negative pressure.

All three parameters show convergence with accuracy increasing with the decrease of
time step and mesh size, which demonstrates the reliability of the numerical method for
hydraulic fracturing problems. However, we note that while errors are decreasing the largest
errors are in the evolution of the fluid pressure and fracture width at the borehole. There
are two potential causes for this difference. First, the analytical solution is based on the
local theory while the numerical solution is established on non-local theory (peridynamics).
Secondly, the medium in the analytical solution is linearly elastic and there is no leak-off at
the fracture surface, while in our model, the medium is poroelastic and the fracture surface is
permeable since the leak-off is automatically captured by the model.

Fluid-driven fracture interaction with natural cracks

To test the method capability of describing multiple cracks and evaluating fluid pressure
in and out of the fracture area, a problem involving a fluid-driven fracture interacting with
natural cracks [484] is considered. With the exception of an additional natural crack, the
geometry of the model is similar to that of the KGD model. The natural crack is 4 m long
and 3.8 m away from the original crack that is 0.2 m in length. The domain is divided into an
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(a) Fracture length evolution. (b) Fracture pressure evolution.

(c) Fracture width evolution.

Fig. 5.24 Verification of the KGD model.

(a) t=2.5s. (b) t=5s. (c) t=7.5s.

Fig. 5.25 Pore pressure and fracture pressure distribution with time varying (unit: Pa).
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Fig. 5.26 Geometry and discretisation of fracture interaction model.

FEM-subdomain and a PD-subdomain, where the PD-subdomain is 8 m×12 m, as indicated
by the red rectangle in Fig. 5.26.

The boundary conditions and material properties are listed in Table 5.9, together with a
flux of q = 0.0001 m3/s applied. The time step ∆t is set to 0.1 s. The fracture path evolution
with time t is shown in Fig. 5.27. The time varying pressure distribution in and out of the
fracture is shown in Fig. 5.28.

Both the fracture path and the pressure results are in good agreement with the literature
[284, 484]. Initially, the fracture propagates in the horizontal direction. Fluid is injected in
the borehole as time evolves and the fracture starts to interact with the natural crack (the
vertical crack in Fig. 5.26), and the fluid starts to flow along the vertical direction. Due to the
interaction between the cracks, the crack propagation direction changes. Model verification
demonstrates that the proposed method can describe hydraulic fracturing propagation in
porous media in a relatively straight forward way.

5.5 Dynamic branching study

The simulation results of hydraulic fracture branching are influenced by many factors, which
can essentially be divided into two types: physical and non-physical factors. Physical factors
refer to properties of porous media and operational conditions, and non-physical factors refer
to assumptions made in the mathematical model or method itself. As discussed in § 5.1,
the physical factors mainly include Young’s modulus, in-situ stress condition, injection rate,
viscosity, porosity and permeability, energy release rate and heterogeneity. Until now, how
they affect hydraulic fracture branching has not been systematically investigated, while the
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(a) t=3.5 s. (b) t=13.5 s. (c) t=62.5 s.

Fig. 5.27 Fracture path evolution with time varying.

(a) t=3.5 s. (b) t=13.5 s. (c) t=62.5 s.

Fig. 5.28 Pore pressure and fracture pressure distribution with time varying (unit: Pa).

conclusions from related studies by different authors are not always consistent, see Table 5.10.
In the effort to bridge this gap, we use the proposed hybrid FEM-PD model to study the
sensitivity of different physical parameters to the branching phenomenon.

Specifically, six parameters are selected in this study: the flux rate, Young’s modulus,
porosity, permeability, viscosity, and energy release rate. The influence of in-situ stress and
heterogeneity is not included here because all models and field and experimental results reach
a consensus on this point, namely, low in-situ stress difference and heterogeneity is beneficial
for crack branching. In addition, to reduce the complexity and ensure the uniqueness of
variables, the influence of non-physical factors is eliminated in this study. In peridynamics,
the grid size, the horizon size and micro-modulus function model all have an influence on
the crack geometry and crack branch [47, 84]. In order to reduce the dependence of crack
paths on grid and capture the crack branching behavior accurately [113], an m ratio of m = 3,
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Table 5.10 Comparison between the previous conclusions and our conclusions.

Physical Factors Existing conclusions Our conclusions

Flux rate

Faster flux rate leads to branching phenomenon.
(1) Secondary branching is observed with increasing flux
(fem hybrid peridynamics model) [284]
(2) No secondary branching is observed with increasing flux
and flux rate has little effect on final crack patterns
(phase field model) [485]

Faster flux rate leads to branching
phenomenon, no secondary branching is
observed and branching angles increases
with increasing flux rate

Young’s modulus
Branching occur when the crack propagates into rock with
high Young’s modulus (phase field model) [163]

Multiple branches are observed with higher
Young’s modulus

Porosity
No porosity, no branching phenomenon
(finite element crack band model) [340]

Porosity has a limited effect on branching
phenomenon, with higher porosity,
the branching angles slightly decrease

Permeability

(1) No permeability, no branching phenomenon
(finite element crack band model) [340]
(2) The permeability has limited effect on crack propagation
direction (phase field model) [282]

Lower permeability is beneficial to crack
branching

Viscosity

(1) Lower viscosity is beneficial to crack branching [284]
(2) In homogeneous rock, low viscosity fluids result exerts little
influence on fracture complexity (lattice Boltzmann method (LBM)
- discrete element method (DEM) coupled model) [83]

Effects of viscosity to branching phenomenon
is multifacet.

Energy release rate
Lower energy release rate leads to branching phenomenon
(phase field model) [485]

Lower energy release rate leads to branching
phenomenon, secondary branching is observed
with decreasing energy release rate

namely the ratio between the horizon and the grid spacing, is adopted. The grid size and
micro modulus function keeps constant and the horizon size is set to be δ = 3∆x. The
results from this work and various literatures are compared in Table 4.4, which shows both
agreement and differences and are discussed in the following subsections.

5.5.1 Effect of flux rate

The effect of flux rate on crack branching is investigated and discussed in this subsection. The
geometry and the boundary conditions are the same as that used in the KGD model. Three
different cases are studied with three different flux rates, namely, case 1-1 (q = 0.001 m3/s),
case 1-2 (q = 0.005 m3/s), case 1-3 (q = 0.01 m3/s). The other parameters are unchanged,
see Table 5.9. The crack patterns under different flux rate are shown in Fig. 5.29. As
expected, as the flux rate increases, the crack starts to branch. With the flux rate increasing,
the fluid velocity increases together with the energy that drives the fracture. When the energy
is much higher than what the porous media can dissipate, the crack starts to branch. A
secondary crack branching phenomenon with increase in flux rate is not observed in our
model. However, with increasing flux rate, the crack angle increases, which is also observed
in [484]. Fig. 5.30 shows the fluid pressure under different flux rate at the injection point. As
observed, a higher flux rate will cause a larger fluid pressure. The pressure oscillation occurs
because it is influenced by the mesh size (see Fig. 3.9b) and the interacting velocities: the
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velocity of the crack advancement, the velocity of the fluid in the fracture and the seepage
velocity of the fluid in the domain and from the crack [68].

(a) Case 1-1 (q=0.001 m3/s). (b) Case 1-2 (q=0.005 m3/s). (c) Case 1-3 (q=0.01 m3/s).

Fig. 5.29 Crack patterns under different flux rate.

Fig. 5.30 The variation of pressure under different flux rate.

5.5.2 Effect of Young’s modulus

With a fixed high flux rate q = 0.01 m3/s, the influence of Young’s modulus on crack
branching is investigated. Typical values of Young’s modulus for rock formations range from
20 GPa to about 40 GPa [458]. Thus, three different cases are investigated here, which are
marked as: case 2-1 (E = 15.96 GPa), case 2-2 (E = 23.94 GPa), case 2-3 (E = 31.92 GPa).
The other parameters are unchanged. Fig. 5.31 shows the crack patterns resulting from
different Young’s modulus. With the increase in Young’s modulus, the crack angle becomes
smaller and the crack patterns become complex, even secondary crack branching can be
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observed. There are two possible reasons behind this phenomenon. First, since the Young’s
modulus describes the ability of the material to resist deformation, rocks with low Young’s
modulus tend to be ductile and rocks with high Young’s modulus tend to be brittle [246].
Cracks with sharp tips propagate easier than cracks having blunt tips [65]. Secondly, the value
of critical stretch sc, marked as the crack propagation (bond-break) criterion, is calculated
from the value of Young’s modulus, see Eq. (5.13c). Therefore, if the Young’s modulus is
increased, the criterion for crack development decreases, which results in more branches. The
variation of pressure value at injection point under different Young’s modulus is presented in
Fig. 5.32. For a smaller Young’s modulus, the fluid pressure will be smaller.

(a) Case 2-1 (E=15.96 GPa). (b) Case 2-2 (E=23.94 GPa). (c) Case 2-3 (E=31.92 GPa).

Fig. 5.31 Crack patterns under different Young’s modulus.

Fig. 5.32 The variation of pressure under different Young’s modulus.
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5.5.3 Effect of porosity and permeability

In geology, the porosity is the fraction of bulk volume of the reservoir that is not occupied by
the solid framework of the reservoir and the permeability describes reservoir rock’s ability to
allow the fluids to flow through its interconnected pores [422]. They are closely related to
each other [94]. So we study these two factors together.

The porosity values for sedimentary rocks reservoirs range from 0.1 to 0.4 in sandstones
and from 0.05 to 0.5 in carbonates [97]. Thus, with a flux rate q = 0.01 m3/s, three cases are
selected: case 3-1 (n = 0.2), case 3-2 (n = 0.3), case 3-3 (n = 0.4). For permeability, since
(k = 1.0×10−14 m2) is already very small, an increasing permeability scheme is selected.
Three cases including case 4-1 (k = 1.0×10−14 m2), case 4-2 (k = 1.0×10−13 m2), case
4-3 (k = 1.0×10−12 m2) are tested with the porosity n = 0.2 and the flux rate q = 0.01 m3/s.
The effect of different porosity and permeability on crack branching is studied. Fig. 5.33 and
Fig. 5.34 show the crack patterns under different porosity and permeability, separately.

From Fig. 5.33 and Fig. 5.34, it can be observed that compared with porosity, the
branching phenomenon is much more sensitive to permeability. With higher porosity, the
crack branching angle slightly decreases. However, with higher permeability, the crack
patterns change significantly, the crack develops a much smaller branching angle, and
propagates along a straight line instead of branching. The reason is most likely due to
the permeability increase, which results in more fluid flow into the porous media, and
consequently in less fluid flowing into the fracture, so that the energy driven by the fluid in
the fracture becomes smaller and the crack propagation velocity decreases. Fig. 5.35 and
Fig. 5.36 show fluid pressure at the injection point for different porosity and permeability. It
can be observed that the porosity has little effect on fluid pressure at the injection point while
the fluid pressure decreases with the increase of permeability.

5.5.4 Effect of viscosity

To study the effect of different viscosity on hydraulic crack branching, parameters in Table 5.9
are modified here to make the propagation scheme belong to viscosity dominated regime
[373]. The energy release rate is modified to G = 1 N/m and the flux rate is set as q =

0.001 m3/s. The other parameters remain unchanged. Three different viscosity, namely,
case 5-1 (µ = 0.1 Pa·s), case 5-2 (µ = 0.01 Pa·s), case 5-3 (µ = 0.001 Pa·s) are examined.
The crack patterns under different viscosity are shown in Fig. 5.37. By decreasing the fluid
viscosity from µ = 0.1 Pa·s to µ = 0.01 Pa·s, the branching angle grows. This phenomenon
is also observed by increasing the flux rate, which indicates that increasing the flux rate
or decreasing the viscosity may cause a similar effect. This is consistent with what has
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(a) Case 3-1 (n=0.2). (b) Case 3-2 (n=0.3). (c) Case 3-3 (n=0.4).

Fig. 5.33 Crack patterns under different porosity.

(a) Case 4-1 (k=1.0×10−14

m2).
(b) Case 4-2 (k=1.0×10−13

m2).
(c) Case 4-3 (k=1.0×10−12

m2).

Fig. 5.34 Crack patterns under different permeability.

been observed in numerical and experimental results: complex fracture patterns are prone to
form with lower viscosity and high flux rate [284, 388, 473]. However, when the viscosity
varies from µ = 0.01 Pa·s to µ = 0.001 Pa·s, the increasing angles phenomenon becomes
less obvious. A likely reason is that: due to the propagation of the fracture is a complex
interaction process between the solid formation and the fluid, the effect of viscosity on
hydraulic fracturing is multifaceted. Reducing viscosity will increase the velocity of the
fluid, thereby enhancing the hydraulic driving force. Increasing the intrinsic permeability of
the porous media causes more fluid to flow into the porous media, so the hydraulic driving
force is reduced.The variation of pressure value at injection point under different viscosity is
plotted in Fig. 5.38, from which it can be observed that higher viscosity will cause higher
fluid pressure at the injection point.
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Fig. 5.35 The variation of pressure under
different porosity.

Fig. 5.36 The variation of pressure under
different permeability.

(a) Case 5-1 (µ=0.1 Pa·s). (b) Case 5-2 (µ=0.01 Pa·s). (c) Case 5-3 (µ=0.001 Pa·s).

Fig. 5.37 Crack patterns under different viscosity.

Fig. 5.38 The variation of pressure under different viscosity.



5.6 Conclusions 199

5.5.5 Effect of energy release rate

With the viscosity µ = 0.001 Pa·s, the flux rate q = 0.0001 m3/s and the other parameters
fixed, the effect of energy release rate is investigated with three different cases: case 6-1
(G = 1 N/m), case 6-2 (G = 0.01 N/m), case 6-3 (G = 0.001 N/m). The crack patterns under
different energy release rates are shown in Fig. 5.39. As expected, by decreasing the energy
release rate, the crack branching phenomenon can be observed. When the energy release rate
is sufficiently low, the complex crack patterns, e.g. secondary crack branching, are prone to
form. We note that the thicknesses of some parts of the crack patterns are abnormally large,
which may be caused by the widening damage process-zone before crack branching due to
the increasing fracture roughness [351, 352] and the simultaneous breaking of a series of
bonds due to the change of the physical parameters (e.g. energy release rate) during dynamic
simulation. The fluid pressure from the injection point under different energy release rate
is compared in Fig. 5.40, from which it can be concluded that a larger energy release rate
causes larger fluid pressure, which is also observed in [484].

(a) Case 6-1 (G=1 N/m). (b) Case 6-2 (G=0.01 N/m). (c) Case 6-3 (G=0.001 N/m).

Fig. 5.39 Crack patterns under different energy release rate.

5.6 Conclusions

In this chapter, a fully coupled hydraulic fracture propagation simulation approach with a
hybrid finite element method (FEM) - peridynamics (PD) scheme is presented. The approach
has been verified with three benchmark examples and proved to be effective for simulating
complex dynamic crack propagation process. The effects of different factors on branching
phenomenon are investigated using the presented approach. From the conducted analysis, we
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Fig. 5.40 The variation of pressure under different energy release rate.

found that complex crack patterns are prone to form with faster loading rate, more brittle and
impermeable media, and with lower energy release rate.

Compared with a staggered solver, the monolithic solver used here solves the displace-
ments and pressure simultaneously. Not only the strong coupling between the porous media
and growing fractures can be captured accurately, but also the time step limitation is removed,
which makes this approach very competitive and stable in solve hydraulic fracture problems
in geological scale. Moreover, no external criterion is required for branching, making branch-
ing a natural outcome of the simulation, which solves mesh dependency problem and reduces
calculation costs. The limitation of the method lies in that the bond-based peridynamics is
only applicable in elastic materials with a fixed Poisson’s ratio of 1/4 or 1/3. The bond-based
peridynamics are intentionally chosen here for simplicity. The method can be extended to
an advanced version “state-based peridynamics” to remove the limitations of constraints
on fixed Poisson’s ratios and to be applied to the modelling of non-linear elastic materials,
plastic materials, viscous elastic materials.



Chapter 6

Conclusions and outlook

6.1 Conclusions

In this thesis, a comprehensive overview of the numerical simulation of fracture propaga-
tion is provided and three sets of fracture propagation models, which are based on FEM,
peridynamics and hybrid FEM and peridynamics, are developed. With the fracture propa-
gation model based on FEM, the stepwise phenomenon is investigated. With the fracture
propagation model based on peridynamics, both the stepwise phenomenon and the branch-
ing phenomenon are investigated. With the fracture propagation model based on a hybrid
FEM and peridynamic approach, the branching phenomenon is further investigated. The
contributions in this thesis are summarised as follows.

First, comprehensive reviews of fracture propagation, crack branching and peridynamics
theory are presented. The fracture propagation review includes a review of the hydraulic
fracture process, fracture propagation models and various numerical methods for predicting
fracture propagation. In terms of the hydraulic fracture process, three basic processes are
included: (1) the mechanical deformation; (2) the fluid flow within the fracture; and (3)
the fracture propagation. In addition to the three basic processes, the poroelastic effect is
also considered. The historical development of several classic hydraulic fracturing models,
including the PKN model, the KGD model, the Radial model, the Pseudo 3D model and
the Planar 3D model, are introduced. Compared with 2D models and the P3D model, both
the flexibility and accuracy of the PL3D model have improved. More importantly, various
numerical methods applied in fracture propagation are reviewed, and their advantages and
limitations are summarised. The finite element method (FEM) has flexibility and universal
applicability in dealing with fracture propagation problems under various conditions but
encounters challenges with remeshing, crack tip singularity and calculation cost for multiple
fractures. The extended finite element method (XFEM) is independent of the mesh, but



202 Conclusions and outlook

special enrichment needs to be developed to account for the discontinuous at junctions when
dealing with multiple fractures or fracture intersections. The boundary element method
(BEM) has an advantage in terms of computational efficiency for modelling fracture prop-
agation processes from a macro point of view due to its relatively easy implementation of
mesh updating, while it is not suitable for modelling heterogeneous formation properties
and complex constitutive model (e.g. elasto-plasticity). For the phase field method (PFM),
formation heterogeneities are relatively easy to implement, and remeshing is not essential
when dealing with the complex intersection of fractures, even in 3D space. However, the
PFM has a high computational cost when an extremely fine mesh and small-time steps are
required. The DEM does not need a specific propagation criterion for modelling, and remesh-
ing is not required with fracture propagation, and it is suitable to study fracture propagation
in heterogeneous materials or in fracture networks. However, a drawback of DEM is the
computational cost, which is influenced by many factors, such as particle numbers, particle
shapes and contact force models, resulting in difficulty in the determination of reasonable
particle size and parameters.

A state-of-the-art review of crack branching is provided, including experimental ob-
servations, physics, and fracture models and associated numerical methods. In terms of
experimental observations, high-speed photography is the most commonly used technique to
be combined with photoelasticity, caustics, digital image correlation, digital gradient sensing
to study the crack branching. The current focus is on (1) how to combine and improve upon
existing shortcomings with the combination of technology development; (2) how to simplify
the operations and reduce operating costs while ensuring high temporal and spatial resolution.
Supported by experimental research, the physics of branching, including the causes of crack
branching and branching criteria, have been investigated and summarised. One explanation
suggests that branching occurs once the crack velocity exceeds a critical value (related to the
wave speed). Another explanation assumes branching is a natural outcome of the growth of
microcracks near the crack tip and energy absorbed by the crack is related to the limiting
velocity. Dynamic instabilities, which are related to critical velocity, fracture roughness
and micro-branches, are also shown to be a strong mechanism for crack branching and are
investigated. In addition, the crack front waves and the tilting and twisting of the stress vector
at the crack front are responsible for the crack branching. Corresponding to these potential
causes of crack branching, different branching criteria have been proposed, including external
and internal criteria. The crack models and numerical methods for crack branching have been
developed and continuously improved according to various crack branching criteria, which
are further applied to simulate crack branching, to shed light on the mechanisms behind
branching.
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The review of peridynamics gives an overall picture of peridynamics theory, including the
basic concepts, classification of peridynamics (bond-based and state-based peridynamics),
damage prediction and numerical implementation. Peridynamics has been successfully
applied to the following problems, including, but not limited to, material failure problems,
impact problems, multifield problems, multiscale problems, wave dispersion problems. Peri-
dynamics has various advantages: (1) it combines continuous and discontinuous descriptions
together by replacing the partial differential equation with the integral equation as the ap-
proximated equation; (2) the crack development (crack nucleation, growth and branching)
and crack intersection phenomena are naturally captured by allowing bonds to break when
the bond stretch is greater than the critical criterion without excessive judgment conditions;
(3) it is applicable in multiscale problems: by both employing peridynamics alone and by
combining the peridynamics model with other models, such as finite element model and
molecular dynamics model, large deformation and impact/failure problems on the macro
scale and kinetics of phase transformations and damage/failure problems on the micro-scale
can be studied; (4) it is applicable in multifield problems. The coupling formulations involv-
ing peridynamics have been developed for the analysis of thermal, chemical, diffusion, and
electrical problems as well as porous media flow; (5) it is straightforwardly implemented in
any dimension. However, peridynamics has some shortcomings, such as the high compu-
tational cost, the difficult implementation of the boundary conditions and wave dispersion
problems. Despite these shortcomings, peridynamics is still a competitive tool for fracture
and damage analysis due to its unique characteristics of dealing with discontinuities in a
straightforward way.

The second contribution of the thesis is to develop a fully implicit, FEM-based fracture
propagation model using zero thickness cohesive interface elements and investigate the
stepwise phenomenon with the model. The rock formation is considered as a fully saturated
porous medium. The fracture surface is deemed to be permeable, the fracturing fluid is
treated as an incompressible Newtonian fluid, and the cohesive zone model is employed for
the fracture propagation criterion. A fully implicit numerical solution scheme is formulated,
where the solid and the fluid are solved together in a monolithic finite element scheme. A
recent explanation of the stepwise phenomenon is summarised, and the factors that are most
likely to affect the phenomenon are investigated. From the survey of the literature and a
series of numerical tests, we arrive at the following conclusions. (1) The stepwise fracture
advancement during the fracture propagation process does exist in field tests and laboratory
experiments. (2) It is important to distinguish whether the stepwise phenomenon observed
in numerical simulation is due to physical or numerical reasons. Only a few studies have
captured the physical stepwise phenomenon numerically. The stepwise phenomenon observed
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in our model is shown to be dependent on mesh size and time step even with poroelastic
effect and dynamic rock deformation and fracture propagation considered. (3) Although
influencing factors are tested over a prescribed range, no irregular stepwise phenomenon is
observed with our model, indicating that the stepwise fracture propagation may be induced
by some other factors or physical processes not included in our model.

The third contribution of the thesis is to develop an explicit peridynamic approach for
simulating fracture propagation in saturated porous media, which proved to have the ability
to reproduce the physical stepwise phenomenon. A staggered method is adopted to solve the
coupled system. The solid deformation equation is solved for the displacement field, and
the fluid flow equation is solved for the pressure field with peridynamics. After verification
via benchmark examples, including a 1D consolidation problem and 2D fluid-filled crack
propagation problems, a series of tests are conducted to study the fracture propagation
phenomenon in porous media, including the crack branching phenomenon and the stepwise
phenomenon. First, the approach proved to be capable of capturing the dynamic crack
branching in brittle media and porous media. The crack branching needs a sufficiently
high loading condition. Under higher loading conditions, multiple branches event occurs.
And the pore pressure depresses the growth and branching of the crack under the fluid-
driven condition. Second, the approach proved to be capable of reproducing the stepwise
phenomenon in the fracture examples under the mechanical loading case as well as the
hydraulic loading case, which is in agreement with experimental observations and numerical
simulations obtained with the adaptive FEM. Based on the above results, the proposed
peridynamic approach has the potential to analyse various phenomena in fracture propagation
and the mechanisms behind it. With further development, the approach could be used in the
future to tackle problems with more complex fracture propagation patterns as observed in the
field.

Finally, a hybrid FEM and peridynamics approach for modelling fracture propagation
in porous media is proposed, which combines the advantages of both the FEM and the
peridynamics. Considering the ability of peridynamics in solving discontinuous problems,
the area where cracks can potentially occur is discretised by peridynamics and the crack-free
area is discretised by FEM. The solid deformation and fracture propagation are captured by
peridynamics and FEM, while the fluid flow in both the reservoir and fracture is simulated
with FEM. The whole process is solved in a monolithic way with an implicit scheme. The
approach demonstrates the capability of modelling complex dynamic crack propagation
occurring in benchmark examples, including a 1D consolidation problem, a 2D KGD prob-
lem and a fracture interaction problem. The effects of different factors on the branching
phenomenon were investigated using the approach. From the conducted analysis, we find
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that complex crack patterns are prone to form with faster loading rate, more brittle and
impermeable media with a lower energy release rate.

6.2 Outlook

In this thesis, we have reviewed the existing models and numerical methods for predicting
fracture propagation. Three approaches are developed. On the basis of the work in this thesis,
the following work can be further carried out: (1) The mechanical analysis of the fracture
propagation model in this thesis is based on linear elastic fracture mechanics. However,
in practical problems, the mechanical deformation processes involve plastic deformation.
Therefore, the introduction of complex elastoplastic constitutive laws are of great significance
in understanding the mechanical deformation mechanism behind fracture propagation in
engineering applications. (2) Extension of the proposed methods to a solid-liquid-gas
multiphase flow simulation is a natural next step. (3) A 3D model can be developed to further
explore the mechanism for fracture propagation, especially fracture branching. In addition,
more complex geological conditions, such as heterogeneity and natural fracture networks, can
be considered to simulate more “realistic” fracture propagation processes. (4) The bond break
in this model now is a process that cannot be recovered over time. The closure of the fracture
and the reversal of flow direction need further study. (5) For large-scale geological problems,
multiscale methods can be considered for prediction of complex fracture propagation patterns
with reduced computational cost.
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