
Modeling and Computing Available Rights for Algorithmic
Licensing of Movies based on Blockchain

Arnold Beckmann

Swansea University

Swansea, United Kingdom

a.beckmann@swansea.ac.uk

João Santos

FEUP and MOG Technologies

Porto, Portugal

jacmsantos31@gmail.com

Indirajith Vijai Ananth

Swansea University

Swansea, United Kingdom

i.vijaiananth@swansea.ac.uk

ABSTRACT
We consider the challenge of determining which rights are available

for licensing within the context of algorithmic licensing of movies

using blockchain technology. We model the space of rights using

set theory. We define algorithms within our modelling context

that implement basic transactions for our use case, and argue for

their correctness. We evaluate our algorithms through experiments

within a multi-node Hyperledger Fabric network, and establish the

feasibility of our algorithms for the intended use case.

CCS CONCEPTS
• Security and privacy→ Domain-specific security and pri-
vacy architectures; • Information systems → Data manage-
ment systems.

KEYWORDS
Algorithmic Video Licensing; Available Rights; Blockchain; Smart

Contracts; Hyperledger Fabric; Performance Test

ACM Reference Format:
Arnold Beckmann, João Santos, and Indirajith Vijai Ananth. 2021. Modeling

and Computing Available Rights for Algorithmic Licensing of Movies based

on Blockchain. In 1st International Workshop on Blockchain Security, Per-

formance and Applications, January 17, 2022, Birmingham, UK. ACM, New

York, NY, USA, 8 pages. https://doi.org/10.1145/3508072.3508224

1 INTRODUCTION
Blockchain Technology has been identified as an opportunity to

disrupt processes in many areas, and in particular in the media

industry. The licensing and payment related to trading of media

assets provides a genuine use case for Blockchain Technology. The

algorithmic licensing of media assets consists of two parts: First,

there needs to be a way to ascertain that a set of rights is available

to be licensed. Second, there needs to be a way of forming legally

binding licensing agreements between a seller and a buyer. In this

paper, we will focus on the former challenge of providing efficient

algorithms to determine available rights.

To motivate why determining available rights efficiently is a

challenge, let us consider a naive approach, in which the rights

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

BlockSPAN 2021, January 17, 2022, Birmingham, UK

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8734-7/21/12. . . $15.00

https://doi.org/10.1145/3508072.3508224

used by a license are represented by the list of all points in it, that

is, all combinations of selected countries, rights, and time points.

With roughly 200 countries in the world, roughly 30 rights that can

be selected, and roughly 4000 days in a ten-year period to which a

license may refer, we are looking at around 20 million individual

data points that form such a license. Thus, comparing two such

licenses, to see whether they overlap or not, we are making 4 · 1014

comparisons, which even on the fastest PC would take more than a

day (Intel Core i9-9900K has 412,090 MIPS at 4.7 GHz, i.e., roughly

4 · 109 instructions per second, thus the above would take at least

10
5
seconds which is a bit more than 27 hours). This shows that

a naive way of representing rights is not a feasible approach to

determining available rights.

The main idea to overcome this challenge is to use set-theoretic

modeling, but instead of computing with sets directly, we will

compute with a representation of them. The representation will

be simple as we are restricting our focus on rectangular objects in

higher dimensions, which we will call Rights Hyper Ractangles. We

will represent those Rights Hyper Ractangles as the list of sets for

their sides. We will justify that this representation is feasible, that is,

that all necessary computations for determining available rights can

be done effectively on such representations. In the example above,

to see that such licenses are not overlapping, it will be sufficient to

compare the two sets of countries (40000 comparisons), the two sets

of rights (900 comparisons), and the two intervals (4 comparisons

of boundaries), which in total will be 4 · 104 comparisons instead

of 4 · 1014 comparisons.

The rest of the paper is organized as follows: The next section

will discuss related work. In Section 3 we will introduce the use

case behind the Media Asset Platform (MAP) project that is the

basis for this paper, discuss its relevance as a blockchain application,

and conclude with the main transaction that this use case needs to

support. Section 4 will define a modelling of the rights space based

on set theory, which is followed by a description of the algorithms

implementing the identified main transactions in Section 5. In Sec-

tion 6 we describe the evaluation of our algorithms in a multi-node

Hyperledger Fabric Blockchain network. We conclude the paper in

Section 7.

2 RELATEDWORK
Although there is a lack of literature related to mathematical ap-

proaches of legal rights modeling, there are some copyright model-

ing and legal implementations using Blockchain and Smart Con-

tracts. For example, [9] approaches the development of a blockchain

service to improve data traceability and protection effectiveness.

In [4], an adaptation of the applicable law in smart contracts is

introduced and is researched the Lex Cryptographia theory, which

https://doi.org/10.1145/3508072.3508224
https://doi.org/10.1145/3508072.3508224

BlockSPAN 2021, January 17, 2022, Birmingham, UK Arnold Beckmann, et al.

predicts that algorithms will eventually replace the law and the ju-

dicial system and its interaction with the current legal system. The

authors in [2] and [6] research and implement Blockchain-based

copyright systems to help improve authorization, confirmation, and

management of rights with Blockchain’s advantages such as trans-

parency, easy data traceability, decentralization, and immutability.

Jeonghee and Lee Chi et al. [1] investigated a system to perform

secure and reliable eBook transactions to prevent piracy and illegal

distribution. Nugent et al. [5] introduce a pioneering approach to

blockchain-based entitlement management, where content owners

are matched with their content’s digitally encoded rights using

a proper algorithm. BMCProtector [8] is a Blockchain and Smart

Contract based technology to protect and manage music copy-

rights using Ethereum
1
. In [7] it is also researched a blockchain

approach for digital music copyright management to take advan-

tage of Blockchain’s advantages. The authors in [3] designed a

Blockchain copyright protection system based on the Big Data

Copyright Protection system, using Hyperledger Fabric.

3 USE CASE
3.1 The Media Asset Platform (MAP) Project
This work is integrated within the European MAP Project, which

is being developed by a consortium in partnership with MetFilm

Production
2
, MOG Technologies

3
, Swansea University

4
, Birming-

ham City University
5
, and CEG Analytics Ltd. The MAP Project

is supported by the European Institute of Innovation and Technol-

ogy
6
(EIT), a body of the European Union. The MAP Project aims

to build a secure, simple and low-cost new business-to-business

Marketplace between content creators (i.e., indie filmmakers) and

distributors (i.e., “Over-the-top” channels).

3.2 Genuine Blockchain Application
Nowadays, there is a broad usage of centralized architecture stor-

age systems, which provide high reliability, enhanced consistency,

simplicity, and easy data management. However, these systems also

embody significant drawbacks, such as low data redundancy and

safety concerns due to hacker attacks and network breakdowns.

Due to these drawbacks, these systems may prevent data retrieval

or even originate data loss in case of node failures. The most com-

monly used centralized technologies are database management

systems, such as MySQL
7
, PostgreSQL

8
, and Microsoft SQL Server

9
.

Another significant disadvantage of centralized systems is the accu-

mulation of all decision-making on only one entity or organization.

This is a massive issue since any bad management decisions may

significantly affect sensitive data.

In decentralized systems, the system’s decisions reflect the demo-

cratic voices of all, or at least of the majority, of its members. These

1
Ethereum: https://ethereum.org

2
MetFilm Production: https://www.metfilmproduction.co.uk

3
MOG Technologies: https://www.mog-technologies.com

4
Swansea University: https://www.swansea.ac.uk

5
Birmingham City University: https://www.bcu.ac.uk

6
EIT: https://eit.europa.eu

7
MySQL: https://www.mysql.com/

8
PostgreSQL: https://www.postgresql.org

9
Microsoft SQL Server: https://www.microsoft.com/pt-pt/sql-server/sql-server-

downloads

systems offer a high degree of security due to Crash or Byzantine

Fault Tolerance, node misbehavior, and attacks, and, since all infor-

mation is stored equally in every network peer, it is straightforward

to retrieve information due to its redundancy. Blockchain stands

out from all decentralized storage systems for its data immutability,

traceability features, and being able to run smart contracts that

simulate real-life contracts, execute business processes and rules

through programming scripts, and automate transaction processes.

Blockchain is an append-only data structure, where new blocks

of transaction data are added and linked to the previously added

blocks through cryptographic keys. The hash of a block’s content

forms keys. The slightest change in the content of a transaction

will produce a different block hash. For a hacker node to tamper

with a blockchain, one needs to recompute all blockchain from

the targeted node till the end. Since all information is chronolog-

ically registered and all link to each other it is effortless to trace

information throughout the Blockchain storage system.

In this project, we have chosen Hyperledger Fabric
10

Block-

chain Technology to execute transactions and compute available

rights. Hyperledger Fabric is an open source blockchain framework

supported by the Linux Foundation.
11

It provides a permissioned

private blockchain solution which is suitable to support enterprise

solutions. The Fabric blockchain uses RAFT consensus which is

crash fault tolerant. As a permissioned blockchain there is no need

to employ Byzantine Fault Tolerant consensus, because only pre-

approved actors and network nodes can be part of and participate

in a permissioned blockchain system.

3.3 User Journeys and Transactions
In this work, the types of actors that will interact with the system

will be Buyers and Sellers.

A Seller is a Filmmaker or motion Picture rights owner who

has a goal of selling licenses, and for that, he or she provides the

platform with a list of films and creates a list of available rights for

each film.

A Buyer is a distributor or a rights reseller with the goal of

acquiring film licenses. The Buyer then searches and browses films

of interest from the film catalog and customizes a license according

to one’s needs.

In line with the way blockchain systems operate, wewill consider

transactions that can be initiated by the various actors of the MAP

ecosystem. Transactions will define atomic transitions of states,

which are used to evolve the state of the MAP blockchain.

We will consider three basic transactions between Seller and

Buyer as the basis of our investigations.

• SellerSetsAvRights— Seller sets the rights which are avail-

able for sale.

• SellerBlocksRights — Seller has the ability to block parts

of the available rights which may be unavailable due to

previous or independent transactions.

• BuyerLicencesRights — A Buyer needs to fix a licensing

agreement from available rights.

10
Hyperledger Fabric: https://www.hyperledger.org/use/fabric

11
Linux Foundation: https://linuxfoundation.org/

https://ethereum.org
https://www.metfilmproduction.co.uk
https://www.mog-technologies.com
https://www.swansea.ac.uk
https://www.bcu.ac.uk
https://eit.europa.eu
https://www.mysql.com/
https://www.postgresql.org
https://www.microsoft.com/pt-pt/sql-server/sql-server-downloads
https://www.microsoft.com/pt-pt/sql-server/sql-server-downloads
https://www.hyperledger.org/use/fabric
https://linuxfoundation.org/

Modeling and Computing Available Rights for Algorithmic Licensing of Movies based on Blockchain BlockSPAN 2021, January 17, 2022, Birmingham, UK

Pay TV

Distribution
Channels

Subscription
Methods

Basic

PremiumTerrestrial

Cable

Satellite

Catch-Up

Exibition

Theatrical

Cinematic
Rights

Ancilliary
Rights

NonTheatrical

Public Video

Airline

Hotel

Ship

Train

Commercial
Vehicle

VOD

FVOD

SVOD

TVOD

Internet
Streaming

Eletronic Service
Transaction (EST)

Extended Use
EST

Internet
Downloading

Free

TypeType

PayPerView

Residencial

NonResidencial

Video

Video
Rental

Video
SellThru

Location TypeSelling Type

AdVOD

Limited Use
EST

Single Use
EST

Clause

Sub-Right

Right Type

Educational

Internal
Educational

Rights

Commercial Non-Commercial

Rights Category

Rights

Public
Performance
Rights (PPR)

Figure 1: Type of Rights

4 MODELING
The rights we consider within the MAP project are made up from

several components coming from different spaces. In the following

we identify those spaces, develop a mathematical abstraction for

them, and derive essential properties for our use case.

4.1 The Space of Rights (SoR)
4.1.1 Type of rights. With R we denote the set of rights that can

be in principle licensed individually. In Fig. 1 it will be the set of all

orange colored field options. We will use r etc to denote members

of R, and R for subsets of R.

Remark. The data structure implementing R will also allow iden-

tifiers denoting groups of rights as in Fig. 1. For example, we will use

an identifier for ‘VOD’ to denote all VOD rights.

4.1.2 Territories. With C we denote the set of territories (coun-

tries), or more precisely, the set of smallest geographical entities

that can be part of a right. We will use c etc to denote members of

C, and C to denote subsets of C.

Remark. The data structure implementing C will in addition to

identifiers for territories also allow other identifiers denoting groups

of territories as in Fig. 2. For example, we will use an identifier for

‘world’, i.e., C.

4.1.3 Time space. With T we denote the set that denotes time. A

continuous space like reals is unnecessary for our use case, because

a license will be bound to discrete dates. We will use integers. which

are intended to refer to days, viewed as time points. We will use t
etc to denote members of T , and T to denote subsets of T .

4.1.4 Exclusivity. With E = {ex, nex} we denote that rights can

be taken exclusively or non-exclusively. We will use e etc to denote
members of E.

Continent

Region Countries Group

Sub-region

Country

State States Group

Other

Territory

Custom

Figure 2: Territories

4.1.5 Space of Rights (SoR). Based on the components territories C,

type of rights R, time space T , and exclusivity E, we define the

Space of Rights SoR as

SoR = C × R × T × E

As a 4-dimensional space, SoR is difficult to visualize in 2-dimensions,

thus the drawing in Fig. 3 has to be viewed with caution. A point

in this space is of the form

(c, r , t , e) ∈ SoR

BlockSPAN 2021, January 17, 2022, Birmingham, UK Arnold Beckmann, et al.

7

type
of
rights

time

Figure 3: 4-dimensional Space of Rights

meaning that c is a territory in C; r is a type of rights in R; t is a
time point in T ; e is either ex or nex.

4.2 State of Available Rights
4.2.1 Rights Hyper Rectangle (RHR). We will consider hyper rect-

angular sub-spaces in SoR which we also call boxes. Again, it is

difficult to draw such 4-dimensional boxes in 2 dimensions, an

attempt is given in Fig. 4.

I
n 7

9

type
of
rights

time

is.it typeofrights I I
time

Figure 4: 4-dimensional Rights Hyper Rectangle

Definition 1. A Rights Hyper Rectangle (RHR), or Box, β is given

by a nonempty set

β = C × R ×T × E

where C ⊆ C, R ⊆ R, T is an interval in T , and E ⊆ E.

4.2.2 State of Available Rights. The state of available rights Σ is de-

termined by a RHR µ (that is set by Seller) and a sequence β1, . . . , βk
of RHRs (that are either blocked by Seller or blocked through a

license taken by a buyer). We denote this state as

Σ = Σ(µ, β1, . . . , βk)

The set of available rights in state Σ(µ, β1, . . . , βk) is given by

available(Σ(µ, β1, . . . , βk)) = µ \
⋃

1≤i≤k

βi

Remark. We use RHRs as the basic building blocks for defining

the space of potential rights that the seller wants to offer, for defining

spaces of rights that the seller wants to remove from previously offered

ones, for expressing rights related to licenses that seller and buyer

agree upon, and for expressing the space of rights that needs to be

removed in the latter case.

5 ALGORITHMS
5.1 Transactions revisited
In Subsection 3.3 we have identified basic transactions between

Buyer and Seller that need to be supported. We will now formalise

those transactions and define how they act on the state of available

rights.

• For transaction SellerSetsAvRights, Seller identifies a RHR
µ which defines the initial state Σ0 := Σ(µ).

For other transactions we assume that the system is in state

Σk = Σ(µ, ®β).

• For transaction SellerBlocksRights, Seller chooses a RHR
β . The new state is Σk+1 = Σ(µ, ®β, β).
A seller may do this at the beginning to exclude already sold

rights, however it may also be allowed at later stages.

• With transaction BuyerLicencesRights, Seller and Buyer

fix a licensing agreement for a RHR of the formC×R×T×{e}.
Let α = C × R ×T , see Fig. 5.

7
Hog

jetµeo
time

in ieIEII

Figure 5: 3-dimensional sub Rights Hyper Rectangle

If e = ex, α is fixed exclusively. Thus, the condition

α × {ex} ⊆ available(Σk)

needs to be satisfied. As a consequence of executing this

transaction, both the exclusive and non-exclusive versions of

α need to be removed from the set of available rights, which

is expressed in the following way: Let β be α × {ex, nex}.

Then the new state is Σk+1 = Σ(µ, ®β , β).
If e = nex, α is fixed non-exclusively. Thus, the condition

α × {nex} ⊆ available(Σk)

needs to be satisfied. As a consequence of fixing rights non-

exclusively, their exclusive version will become unavailable,

which is expressed by removing the exclusive versions of

α from the current state, while keeping the non-exclusive

version. This is defined formally in the following way:

– If α × {ex} ⊆ available(Σk), then let β = α × {ex} and

define Σk+1 = Σ(µ, ®β , β).
– Otherwise, let Σk+1 = Σk .

Remark. The cases of fixing a licensing agreement also cover other

forms of exclusive or non-exclusive scenarios, like selling number of

emissions, or educational licenses.

Modeling and Computing Available Rights for Algorithmic Licensing of Movies based on Blockchain BlockSPAN 2021, January 17, 2022, Birmingham, UK

5.2 Properties of RHRs
The state of available rights has been modeled on the basis of RHRs

as it simplifies the algorithmic approach for computing available

rights. Here we will give the properties that will later form the basis

of our algorithms

Lemma 1. β ⊆ available(Σ(µ, ®β)) iff

β ⊆ µ ∧ ∀i, β ∩ βi = ∅

Proof. The proof follows immediately from the definition of

available(Σ(µ, ®β)) as µ \
⋃

1≤i≤k βi using elementary set theoretic

identities. □

For the following two Lemmas we consider two RHRs β1 and β2,
with

βi = Ci × Ri ×Ti × Ei

Lemma 2. β1 ⊆ β2 iff

C1 ⊆ C2 ∧ R1 ⊆ R2 ∧ T1 ⊆ T2 ∧ E1 ⊆ E2

Proof. ⇐ clear.

⇒: Assume β1 ⊆ β2. Fix (c, r , t , e) ∈ β1. To show C1 ⊆ C2 let

x ∈ C1. Then (x , r , t , e) ∈ β1 ⊆ β2, hence x ∈ C2.

Similar for other components. □

Lemma 3. β1 ∩ β2 = ∅ iff

C1 ∩C2 = ∅ ∨ R1 ∩ R2 = ∅ ∨ T1 ∩T2 = ∅ ∨ E1 ∩ E2 = ∅

Proof. ⇐ clear.

⇒: We argue indirectly. Let c ∈ C1 ∩C2, r ∈ R1 ∩R2, t ∈ T1 ∩T2,
and e ∈ E1 ∩ E2. Then (c, r , t , e) ∈ β1 ∩ β2. □

As we can see, we mainly need to implement tests of disjoint-

ness and subset for components. For those we can also allow data

structures that include some form of hierarchical representation of

subsets, see remarks in Subsection 4.1. One example of this is that

we can allow ‘world’ to represent the set of all territories.

5.3 Data Structures
5.3.1 Base types. We will need base types for representing the

set of territories C, the set of rights R, the time space T , and the

exclusivity space E from Section 4.1. We call these types

• CType for territories C

• RType for rights R

• TType for time T

• EType for exclusivity E

5.3.2 Interface for unsorted sets. We define an interface for a data

structure of unsorted sets over our base types. An unsorted set

contains distinct elements: no element appears more than once,

and the elements are in no specific order. The following operations

are supported:

• create() creates an empty set.

• add(x) adds x to set if not already present.

• disjoint(s1, s2) tests whether sets s1 and s2 are disjoint.
• subset(s1, s2) tests whether s1 is a subset of s2, that is, that
all elements of s1 are also elements of s2.

5.3.3 Interface for intervals. We define a special interface for in-

tervals that are defined by start and end dates, where the start

date has to come before the end date. The following operations are

supported:

• create(s, e) creates an interval with start date s and end

date e .
• disjoint(i1, i2) tests whether intervals i1 and i2 are disjoint.
• subset(i1, i2) tests whether i1 is a subset of i2.

5.3.4 Interfaces for Rights Hyper Rectangles. Rights Hyper Rect-
angles, denoted RHR, will be 4-tuples with components consisting

of a set of type CType, a set of type RType, an interval of type

TType, and a set of type EType. They will support the following

operations:

• createRHR(C,R,T ,E) creates an RHR from the listed compo-

nents.

• projC extracts the CType component of an RHR.

• projR extracts the RType component of an RHR.

• projT extracts the TType component of an RHR.

• projE extracts the EType component of an RHR.

5.3.5 State of available rights. The state of available rights Σ con-

sists of 2 components, the µ component which is a RHR set be

seller, and a list of βi which are RHRs denoting blocked parts. The

following operations will be supported:

• create(x) creates a state with µ-component x and empty list

of βs.
• append(y) appends y to the list of βs.
• projµ extracts the µ component from a state.

• projβ extracts the β-list component from a state.

5.4 Algorithms
We start by describing basic algorithms for disjointedness- and

subset-relations between RHRs.

5.4.1 Basic algorithms. Following Lemma 3, disjointedness be-

tween RHRs can be computed via the disjointedness of their com-

ponents as described in Algorithm 1.

Algorithm 1 Disjointedness relation for RHRs

1: function Disjoint(β1, β2)
2: if disjoint(projE(β1), projE(β2)) then
3: return true

4: else if disjoint(projT(β1), projT(β2)) then
5: return true

6: else if disjoint(projR(β1), projR(β2)) then
7: return true

8: else if disjoint(projC(β1), projC(β2)) then
9: return true

10: else
11: return false

12: end if
13: end function

In a similar way following Lemma 2, Algorithm 1 computes the

subset relation between RHRs utilizing the subset relation of their

components.

BlockSPAN 2021, January 17, 2022, Birmingham, UK Arnold Beckmann, et al.

Algorithm 2 Subset relation for RHRs

1: function Subset(β1, β2)
2: if ¬ subset(projE(β1), projE(β2)) then
3: return false

4: else if ¬ subset(projT(β1), projT(β2)) then
5: return false

6: else if ¬ subset(projR(β1), projR(β2)) then
7: return false

8: else if ¬ subset(projC(β1), projC(β2)) then
9: return false

10: else
11: return true

12: end if
13: end function

Algorithm 3 tests whether an RHR is available for a given state,

based on the identity given in Lemma 1.

Algorithm 3 Availability relation

1: function Available(β , Σ)
2: if ¬Subset(β, projµ(Σ)) then
3: return false

4: end if
5: for each x in projβ(Σ) do
6: if ¬Disjoint(β,x) then
7: return false

8: end if
9: end for
10: return true

11: end function

5.4.2 State update algorithms. The following algorithms imple-

ment state transitions based by transactions identified in Subsec-

tion 5.1. They all modify a global structure which represents the

current state of available rights.

We start with identifing a global state variable and its initial-

isation in Algorithm 4. Procedure Initialise State implements

Transaction SellerSetsAvRights.

Algorithm 4 Creating a state

1: global variables
2: Σ
3: end global variables
4:

5: procedure Initialise State(µ)
6: Σ← create(µ)
7: end procedure

Algorithm 5 blocks a set of rights by appending it to the β-list
of the global state, implementing SellerBlocksRights.

We now come to the main algorithms for taking out available

rights. We distinguish cases according to whether rights are taken

out exclusively or non-exclusively, starting with the exclusive case

first, following our discussion of these cases in Subsection 5.1.

Algorithm 5 Blocking a set of rights

1: procedure Block(β)
2: Σ. append(β)
3: end procedure

Algorithm 6 Taking out exclusive rights

1: procedure Exclusive(C ,R,T)
2: β ← createRHR(C,R,T , {ex})
3: if ¬Available(β, Σ) then
4: abort ‘Rights not available’
5: end if
6: β ← createRHR(C,R,T , {ex, nex})
7: Σ. append(β)
8: end procedure

Algorithm 7 Taking out non-exclusive rights

1: procedure NonExclusive(C ,R,T)
2: β ← createRHR(C,R,T , {nex})
3: if ¬Available(β, Σ) then
4: abort ‘Rights not available’
5: end if
6: β ← createRHR(C,R,T , {ex})
7: if Available(β , Σ) then
8: Σ. append(β)
9: end if
10: end procedure

Algorithm 7 implements taking out non-exclusive rights.

Algorithms 6 and 7 together implement Transaction BuyerLi-
cencesRights.

5.5 Correctness of Algorithms
Based on their developments and modelling, the previously defined

algorithms satisfy the following correctness properties.

Theorem 1. Let Σ = available(Σ(µ, β1, . . . , βk)), and let α =
C × R ×T .

If α is available exclusively in Σ, that is, α × {ex} ⊆ available(Σ),
then Σ.Exclusive(C,R,T) returns true. Furthermore, in the updated

space α is not available neither exclusively nor non-exclusively.

If α is available non-exclusively in Σ, that is, α × {nex} being a
subset of available(Σ), then Σ.NonExclusive(C,R,T) returns true.
Furthermore, in the updated space α is not available exclusively.

6 EXPERIMENTS
We describe the evaluation of our algorithms in an experimental

Hyperledger Fabric network run at Swansea University. The ex-

perimental setup consists of three parts: the blockchain network,

the smart contracts (called chaincode in Fabric) running on the

blockchain, and a client application interacting with the blockchain

by invoking chaincode.

Modeling and Computing Available Rights for Algorithmic Licensing of Movies based on Blockchain BlockSPAN 2021, January 17, 2022, Birmingham, UK

6.1 Blockchain Network
A blockchain network relies on cryptography and Public Key In-

frastructure (PKI). Thus, Certificate Authorities (CAs) form the

basis for a fabric network. An organisational structure is replicated

in generating public, private cryptographic keys and certificates.

These keys and certificates are used when starting various nodes

of the network.

The Fabric blockchain network is made from various nodes

which form the network. Peer nodes store two kinds of data. First

one is the ledger data which stores all the transaction data. From

the ledger data the world state can be calculated which contains

the current state of the blockchain system.

Peers can either be endorsing peers or ledger peers. Peers with

installed smart contracts are involved in transaction verification

and endorsement along with hosting ledgers. Ledger peers do not

have installed smart contracts. They just host the ledger.

Orderer nodes verify the identities are endorsements and check

for endorsement policy requirements before creating blocks of

transactions. The blocks are then disseminated to peers for updating

the ledgers.

Orderer 2

Orderer 3

Host 2

O
R

G
 1

CA

Orderer 1

Peer 1

Host 1

Peer 2 Peer 2

Host 3

TLS CA

O
R

G
 2

CA

Peer 1

Host 1

Orderer 1

Orderer 2

Host 2

Peer 2

Host 3

Figure 6: Fabric Blockchain Network

The experimental setup is based on two organisations, Org1 and

Org2. Fig. 6 shows the Blockchain network and its components with

their organisational affiliation. Each organisation has two peers

to avoid a single point of failure. All peers are endorsing peers

involving in transaction endorsements.

The number of orderers are choosen to fullfil the RAFT con-

sensus algorithm. To withstand n number of node failures, 2n + 1
orderer nodes are required. If more than n number of nodes go

down the network will not achieve quorum, and consensus would

not be reached rendering the blockchain network to stop processing

transactions. In our network, Org1 has three orderers, Org2 two,

for a total of five orderers to withstand two orderer nodes failures.

All fabric nodes are hosted across six virtual servers running

docker containers. TLS is enabled for communication between the

nodes. One TLS CA for both organisations is used to achieve this.

To enable advanced queries and store the world state persistently,

CouchDB is used with all peers.

6.2 Chaincode and Clients
The basic transaction flow starts from a client who is part of an

organisation participating in the fabric network. A client initiates a

transaction by forming a transaction proposal. The client makes a

request to invoke a chaincode function with certain parameters and

sent them to endorsing peers. Endorsing peers verify signatures and

execute the chaincode independently to generate a transaction pro-

posal response. These responses are called endorsements and they

are sent back to the client. The client collects all the endorsements

and sends them to orderer. Orderer nodes verify their signature and

checks for endorsement policy.

Endorsement policy is set at channel level. The endorsements are

accepted and made into a block only if it fulfils endorsement policy.

In oour experimental setup both organisation need to endorse a

transaction to be valid. This requires peers from both organisations

to run the chaincode and endorse a transaction to be valid. The

blocks are then sent to all peers in the channel.

The core of the experiment are smart contract. The algorithms

from the previous section are implemented in Golang and deployed

onto our blockchain network 6. A client application written in

javascript using Fabric Nodejs API is used to interact with the

blockchain, invoke the chaincode functions and test it.

6.3 Evaluations
The performance of algorithms has been evaluated in the following

way. The client initiates the experiment by invoking chaincode

to create a state based on 200 countries, 30 rights, exclusive and

non-exclusive, and a time span of 50000 days (which approximates

to roughly 137 year), using Algorithm 4. We then block or take out

rights based on random RHRs formed from 20 countries, 3 rights,

either exlusive or non-exclusive, and an interval of 200 days. We

do this by alternating the following steps: We either call chaincode

that implements Algorithm 5 to block 500 of such randomly chosen

RHRs. Or we repeatedly for 100 times choose one randomly chosen

RHR and call chaincode that tries to take out rights by implementing

Algorithms 6 and 7. In the latter case we measure the time the

invocation of chaincode takes. The min, max and mean of those

times for different sizes of blocked rights spaces are displayed in

Fig. 7.

The execution time jumps between number of blocked RHRs

going from 1500 to 2000. The reason for this is the configuration of

the ordering system in the Fabric network: The ordering service is

minting a new block either after a timeout has occurred, or the size

of transaction proposals exceeding a set value. The default timout is

2secs, which needs to be waited until the size of the state build from

blocked RHRs exceeds the threshold value somewhere between

1500 and 2000 blocks. Therefore, we consider adjusted times where

the timeout has been subtracted.

BlockSPAN 2021, January 17, 2022, Birmingham, UK Arnold Beckmann, et al.

0 1000 2000 3000 4000

0
50
0

10
00

15
00

20
00

25
00

Experiments

block size

tim
e

in
 m

illi
se

c

0
20

40
60

80
10
0

nu
m

be
r o

f s
uc

ce
ss

fu
l t

ra
ns

ac
tio

ns

mean
mean adj
min adj
max adj
no. successes

Figure 7: The performance of Algorithms 6 and 7 on blocked spaces of various sizes

We also indicate in Fig. 7 howmany of the 100 attemps to take out

rights have been successful: Initially, when the number of blocked

RHRs is 0, all 100 attempts are successful. The more RHRs have

been blocked, the less likely it is to take our further rights until

hardly any are successful (only 1 of 100 attempts is successful once

4000 RHRs have been blocked).

The diagram in Fig. 7 demonstrates that there is a linear depen-

dency between the number of blocked RHRs and the time it takes

to take out another set of rights.

7 CONCLUSION
In this paper, we have provided a modeling of licensing rights

based on set theory. We have defined algorithms that implement

the main transactions SellerSetsAvRights, SellerBlocksRights,
BuyerLicencesRights between a seller and a buyer for the MAP

use case, and argued for correctness and efficientcy of those algo-

rithms through careful development in relation to mathematical

models. We evaluated the algorithms through suitable experiments

within a multi-node Hyperledger Fabric Blockchain network that

has also been used to deploy the MAP project.

In future work, we will expand our framework in several ways.

We will allow a seller to choose several right spaces at the start, as

this is a realistic scenario in cases where a seller wants to import

existing licensing agreements into the MAP system. We will also

expand the modeling of components (like countries) to support

named subspaces, as this would align with the interface design and

the preferred way a used would want to interact with the system.

ACKNOWLEDGMENTS
This work has received funding from the European Institute of

Innovation and Technology (EIT). This body of the European Union

receives support from the European Union’s Horizon 2020 research

and innovation programme.

REFERENCES
[1] Jeonghee Chi, Jangyeon Lee, Nakyung Kim, Jeewoo Choi, and Soyoung Park. 2020.

Secure and reliable blockchain-based eBook transaction system for self-published

eBook trading. PLOS ONE 15, 2 (02 2020), 1–33. https://doi.org/10.1371/journal.

pone.0228418

[2] Jun Guo, Hongbo Zhou, Lan Yang, and Xuhui Chen. 2020. Research on digital

copyright blockchain technology. In 2020 3rd International Conference on Smart

BlockChain (SmartBlock). 1–5. https://doi.org/10.1109/SmartBlock52591.2020.

00028

[3] Jieyi Long and Haiquan Wang. 2019. Design of Blockchain System in BDCP Using

Hyperledger Fabric. In Proceedings of the 2019 The World Symposium on Software

Engineering (Wuhan, China) (WSSE 2019). Association for Computing Machinery,

New York, NY, USA, 78–82. https://doi.org/10.1145/3362125.3362127

[4] Ana Mercedes López Rodríguez. 2021. Ley aplicable a los smart contracts y lex

crytographia. CUADERNOS DE DERECHO TRANSNACIONAL 13, 1 (mar. 2021),

441–459. https://doi.org/10.20318/cdt.2021.5966

[5] Timothy Nugent, Fabio Petroni, Benedict Whittam Smith, and Jochen L. Leid-

ner. 2019. An On-Chain Method for Automatic Entitlement Management Using

Blockchain Smart Contracts. In Business Information Systems Workshops, Witold

Abramowicz and Rafael Corchuelo (Eds.). Springer International Publishing, Cham,

255–266.

[6] Yi Ouyang, Xianghan Zheng, Xiaoliang Lu, Lin Xiaowei, and Shengyin Zhang.

2019. Copyright Protection Application Based on Blockchain Technology. In 2019

IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud

Computing, Sustainable Computing Communications, Social Computing Networking

(ISPA/BDCloud/SocialCom/SustainCom). 1271–1274. https://doi.org/10.1109/ISPA-

BDCloud-SustainCom-SocialCom48970.2019.00182

[7] Yaping Zeng. 2020. Digital Music Resource Copyright Management Mechanism

Based on Blockchain. In 2020 3rd International Conference on Smart BlockChain

(SmartBlock). 158–162. https://doi.org/10.1109/SmartBlock52591.2020.00036

[8] Sijia Zhao and Donal O’Mahony. 2018. BMCProtector: A Blockchain and Smart

Contract Based Application for Music Copyright Protection. In Proceedings of the

2018 International Conference on Blockchain Technology and Application (Xi’an,

China) (ICBTA 2018). Association for Computing Machinery, New York, NY, USA,

1–5. https://doi.org/10.1145/3301403.3301404

[9] Peng Zhu, Jian Hu, Xiaotong Li, and Qingyun Zhu. 2021. Using Blockchain Tech-

nology to Enhance the Traceability of Original Achievements. IEEE Transactions on

Engineering Management (2021), 1–15. https://doi.org/10.1109/TEM.2021.3066090

https://doi.org/10.1371/journal.pone.0228418
https://doi.org/10.1371/journal.pone.0228418
https://doi.org/10.1109/SmartBlock52591.2020.00028
https://doi.org/10.1109/SmartBlock52591.2020.00028
https://doi.org/10.1145/3362125.3362127
https://doi.org/10.20318/cdt.2021.5966
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00182
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00182
https://doi.org/10.1109/SmartBlock52591.2020.00036
https://doi.org/10.1145/3301403.3301404
https://doi.org/10.1109/TEM.2021.3066090

	Abstract
	1 Introduction
	2 Related Work
	3 Use Case
	3.1 The Media Asset Platform (MAP) Project
	3.2 Genuine Blockchain Application
	3.3 User Journeys and Transactions

	4 Modeling
	4.1 The Space of Rights (SoR)
	4.2 State of Available Rights

	5 Algorithms
	5.1 Transactions revisited
	5.2 Properties of RHRs
	5.3 Data Structures
	5.4 Algorithms
	5.5 Correctness of Algorithms

	6 Experiments
	6.1 Blockchain Network
	6.2 Chaincode and Clients
	6.3 Evaluations

	7 Conclusion
	Acknowledgments
	References

