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Abstract—Fault tolerance is a critical requirement for robust
motion control of redundant robotic manipulators. This task
aims to endow the redundant manipulator with the capability
to achieve the required path of end-effector in the condition
that one or some of its joints’ motion fail. Although many
fault-tolerant control algorithms of redundant manipulator have
been proposed in recent years. However, few of them are on
the basis of the condition that the robotic model is unknown.
The complexity of the calculation model limits the efficiency and
portability of these algorithms. For the first time, we proposed
a discrete model-free fault tolerant tracking control (DMFFTC)
scheme of redundant manipulator, which takes into account the
fault tolerance in the control system of redundant manipulator by
formulating it into a quadratic programming (QP) framework.
The core of the proposed scheme consists of a discrete kinematic
estimator and a discrete QP solver, powered by which the
fault-tolerant control problem is transformed into a unified
computing problem relaxing the need of knowing the redundant
manipulator’s kinematic model. A discrete joint space observer is
proposed for detection of the happening of faulty states. Extensive
simulations and experiments based on a redundant manipulator
are performed and analyzed to support the verification of the
efficiency and effectiveness of the proposed scheme.

Index Terms—Fault tolerance, model-free, zeroing neural net-
work, tracking control, redundant manipulator.

I. INTRODUCTION

REDUNDANT manipulators are playing an important
part in modern manufacturing nowadays. They perfectly

replace humans in some repetitive, laborious, and dangerous
tasks, such as welding, ironing and painting [1]. Except
for accomplishing versatile tasks, the redundant manipulator
possesses additional capabilities such as fault tolerance [2], ob-
stacle avoidance [3], joint-limit avoidance [4]. That is because
the degrees of freedom (DOF) of the redundant manipulator
are more than the required ones when performing the given

This work is partially supported by the State Key Laboratory of Robotics
and Systems (HIT) (SKLRS-2021-KF-07), the National Natural Science
Foundation of China (62173352, U181126), the Guangdong Basic and Ap-
plied Basic Research Foundation (2021A1515012314), the Research Fund
of Guangdong Key Laboratory of Precision Equipment and Manufacturing
Technique (PEMT202104), the Open Project of Shenzhen Institute of Artifi-
cial Intelligence and Robotics for Society (AC01202005006), and the Key-
Area Research and Development Program of Guangzhou (202007030004).
(Corresponding authors: Ning Tan; Fenglei Ni)

N. Tan is with the School of Computer Science and Engineering, Sun Yat-
sen University, Guangzhou, PR China and State Key Laboratory of Robotics
and Systems (HIT), Harbin, PR China. (e-mail: tann5@mail.sysu.edu.cn)

Z. Zhong and P. Yu are with the School of Computer Science and
Engineering, Sun Yat-sen University, Guangzhou, PR China.

Z. Li is with the Department of Computer Science, Swansea University,
Swansea, U.K.

F. Ni is with the State Key Laboratory of Robotics and Systems (HIT),
Harbin, PR China. (e-mail: flni@hit.edu.cn)

task. Thus redundant manipulator have higher flexibility than
non-redundant manipulators. It is also common that the fault
of a certain or even a few joints of the redundant manipulator
occurs. On the one hand, if we force the fault joint to continue
working, the manipulator may fail to complete the prescribed
path-tracking task, and it may cause serious injury [5]. On the
other hand, repair or replacement is expensive, unnecessary or
even impossible for redundant manipulators with this problem.
Because the remaining intact joints of the manipulator may
still be able to complete the existing tasks well. It makes
sense that if the desired control task can be accomplished well
by only adjusting some parameters instead of reconsidering
a new control strategy. Thus, it is very important to plan
the redundant manipulators to complete the tasks even in the
condition that some joints fault (or are locked) to function
properly. The set of techniques to achieve this function is
called fault tolerant control.

So far, a lot of fault-tolerant control techniques of redundant
manipulator have been developed. In general, the existing
fault-tolerance methods can be divided into passive fault-
tolerant methods and active fault-tolerant methods [6]. The
passive method designs and fixes the corresponding controllers
to make it robust to fault, and does not require fault detection
or controller reconfiguration. However, this method has limited
capabilities for fault-tolerant control. The active method ac-
tively responds to system failures by constantly reconfiguring
control actions to maintain the stability of the entire system
[7]. However, most of the active methods assume that the robot
manipulator’s model are known a priori.

The correctness and accuracy of the solution obtained by
these methods will be directly affected by the correctness
and accuracy of the models which are equivalent to the
Jacobian matrices in kinematic cases. Hence, corresponding
parameters in the fault-tolerant algorithm need to be modified
according to different manipulators used. In addition, the
Jacobian matrix derived from the forward kinematics model
might be different from the actual Jacobian matrix due to
calculation errors. Moreover, for robotic manipulators with
elastic elements (e.g., those composed of active rigid joints
and deformable links [8]) or flexible-bodied manipulators (e.g.,
soft and continuum robots [9], [10]), calculating their accurate
models would be extremely complicated and inaccurate. Even
for the traditional rigid-link robotic manipulators, obtaining
an exact model of the system is often laborious and time-
consuming through a calibration and parameter identification
process, or even impossible in practical processes [11], [12].
This may cause issues in the application and deteriorate the
accuracy of the solution. Thus, algorithms mentioned above
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are not well transplanted to various redundant manipulators.
The joints of the manipulator may also degenerate and cannot
perfectly execute the input instructions. However, the model-
free feature allows manipulator to ignore the changes in the
kinematic model caused by the degeneration of the joints, so
that the manipulator can still complete the task.

In view of the motivation and inspiration mentioned above,
here we propose a discrete model-free fault tolerant tracking
control (DMFFTC) scheme of redundant manipulator. We
simulated the situation of loosing one or two joints’s actuation
of the manipulator. Experiments are also carried out to verify
our scheme using a lightweight redundant manipulator called
”Kinova Jaco2”. It needs to be emphasized that the proposed
scheme is based on zeroing neural networks, so its computing
power can be really used after making hardware circuits. The
main contributions of this paper are summarized as follows.

• For the first time, the model-free fault tolerant control of
redundant manipulators is proposed through formulating
the fault tolerant control as a QP problem. This QP
problem is transformed into a linear variational inequal-
ity which can be solved by a projection-operator-based
neural network (POBNN).

• Different from the state-of-the-art methods, a data-driven
kinematic-model estimator is designed and integrated
into the fault tolerant control scheme. Based on zeroing
neural networks, a neurodynamic system is developed to
approximate the the Jacobian matrix of the redundant
manipulator.

• Furthermore, two main equations of the proposed scheme
are optimized discretely and two discrete solvers are
proposed. The theoretical analysis of the two solvers
are provided. By combining the two discrete solvers, a
DMFFTC scheme is proposed.

• A discrete joint space observer is proposed for detection
of the happening of faulty states.

• Simulations and experiments with locking one joint and
two joints are presented respectively to demonstrate the
efficiency and superior performance of the DMFFTC
scheme.

The rest of the paper is organized as follows: we firstly review
other related work on fault tolerant control of robot manipula-
tors in Section II. The continuous QP scheme and the discrete
QP solver are presented in Section III. Section IV presents the
discrete kinematic estimator used in the fault tolerant scheme.
A discrete joint state observer is presented in Section V.
Section VI and VII give simulation and experiment results on
the performance verification of the DMFFTC scheme. Finally
we make a conclusion on the achievement and point out future
direction in Section VIII.

II. RELATED WORK

Due to the difficulty to find and generalize an analytical
solution at the joint level, the current methods directly deal
with the strong coupling nonlinear problems in the kine-
matics modeling by using the pseudoinverse of the Jacobian
matrix of the manipulator [13], [14]. In order to leverage
the improved computing power of real-time implementation

to motion control and to realize the secondary performance
indicators, many methods are proposed to achieve multifarious
goals. For example, joint motion limits, rectification joint
angular drift, and limit mechanical energy consumption. On
the basis of ensuring accurate motion control, the effects of the
parallel processing method based on constraint optimization on
different performance indexes are studied [4]. Chen and Zhang
[15] proposed a robust zeroing neural-dynamics approach as
well as its associated model for solving the inverse kinematics
problem of mobile robot manipulators. Jin et al. [16] designed
a time-varying QP with inherent tolerance to noises scheme.
Guo and Zhang [17] developed and investigated a weighted
velocity and acceleration minimization scheme to prevent the
occurrence of high joint velocity and joint acceleration in
redundant robot manipulators. With help of these techniques,
inverse kinematics problems of redundant manipulators have
been successfully and efficiently resolved, which give us a
good foundation for the study of fault-tolerant control.

Most of works on fault-tolerant control of robot manipula-
tors are based on pseudoinverse-type methods [5], [18], [19] as
well. However, pseudoinverse-type methods cannot efficiently
overcome Jacobian-matrix singularities when the manipulator
joint fail [18]. Li and Zhang [2] considered a fault-tolerant
constraint in the optimization criteria for motion planning for
redundant manipulators. In order to facilitate the solution, this
fault-tolerant constraint is transformed to a QP problem. Zhang
et al. [20] also proposed a fault-tolerant scheme for redundant
manipulator based on QP problem. The main focus of their
work is on solving the problem at the acceleration level. In
order to reduce initial position error of the end-effector, Li
et al. [21] developed a fault-tolerant motion planning scheme
which can diminish the initial position error arising in the
manipulator state adjustment. Li et al. [22] designed and
implemented a fault-tolerant motion planning scheme which
can adaptively localize which joints run away from the normal
state to be fault. A recurrent neural network (VP-RNN) with
varying parameters was developed to resolve the fault-tolerant
motion planning problem, which can make the remaining
healthy joints to remedy the whole system which is effected by
faulty joints and complete the expected end-effector path [23].
By taking both the robot kinematics and robot dynamics into
account, a different-level simultaneous minimization scheme is
proposed to solve fault-tolerant motion planning of redundant
manipulator using a recurrent neural network [24]. However,
all these schemes deal with fault-tolerant problem of redundant
manipulators in the condition that manipulators’ models are
known a priori. As far as authors’ knowledge, no related
work is available on model-free fault tolerant tracking control
problem of redundant manipulators.

In response to the challenge of unknown or uncertain
kinematic models, there have been numerous works proposed
in the past decades. For examples, Cheah et al. proposed an
approximate Jacobian adaptive controller for trajectory track-
ing of robot with uncertain kinematics, dynamics and actuator
model [25]. Ahmadipour et al. provided an adaptive task-space
controller for rigid-link robots with uncertain kinematics and
dynamics [26]. Xiao et al. established a theoretical framework
for designing an observer-based controller to achieve exponen-
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notation description
θ joint vector of manipulator
θ̇ joint angular velocity of manipulator
θ̈ joint acceleration of manipulator
θr joint vector of redundant manipulator measured by sensors
re end-effector’s position and orientation vector
ṙe velocity of the end-effector
r̈e acceleration of the end-effector
rd desired path
ṙd velocity of the desired path
J Jacobian matrix of the manipulator
A joint condition matrix used for fault tolerance
ξ− lower physical joint limits
ξ+ upper physical joint limits
y dual variable of θ̇
yr dual variable of θ̇r
ŷr estimate variable of yr
ỹr distance variable of yr
φ sampling gap
Λ actual joint condition matrix used for observer
Λ̂ estimate variable of Λ
Λ̃ distance variable of Λ

tial tracking control of robotic manipulators subject to both
uncertain dynamics and uncertain kinematics [27]. Yang et
al. developed an adaptive fuzzy control scheme for a dual-
arm robot, where an approximate Jacobian matrix is applied
to address the uncertain kinematic control [28]. Furthermore,
Yang et al. developed a control scheme for interaction between
robot manipulators and human arms in physical collision [29]
where, to deal with the tracking problem of the uncertain
manipulator, an adaptive controller was designed combining
with the radial basis function neural network. Zhang et al.
proposed a method capable of simultaneously optimizing per-
formance indices subject to physical constraints and handling
parameter uncertainty [30]. However, this work requires the
structure of the model to be known a priori with only unknown
parameters. Overall, these precedents do not jumped out of
limitations of the manipulators’ model, nor do they support
fault-tolerant control. A control scheme capable of performing
high quality of tracking with fault tolerant capability in a
model-free fashion is in urgently needed.

III. FAULT TOLERANCE SCHEME

A. QP Formulation for Fault Tolerance

For a redundant manipulator, the kinematics equation map-
ping the joint vector θ(t) ∈ Rn and the end-effector’s position
and orientation vector re(t) ∈ Rm in Cartesian space can be
written as below:

f(θ(t)) = re(t) (1)

where f(·) : Rn → Rm in this formula represents a nonlinear
mapping. Given re(t), it is usually very difficult to obtain
the θ(t) ∈ Rn due to the nonlinearity and redundancy of f(·).
Thus, the inverse-kinematic problem of redundant manipulator
is usually solved at velocity level. Through differentiating both
sides of (1) with respect to t, we can get the relationship
between the change rate of actuators and the velocity of end-
effector:

J(θ)θ̇ = ṙe (2)

where J(θ) ∈ Rn∗m = ∂f(θ)/∂θ is the Jacobian matrix
of the redundant manipulator. To keep the paper concise,

we use J instead of J(θ) below. θ̇ is the derivative of θ,
which represents the joint angular velocity of the redundant
manipulator. ṙe is the derivative of re, which represents the
velocity of the end-effector at time t along the actual path. Our
goal is to control the redundant manipulator to move along the
desired path rd. As introduced in [31], to solve this problem,
a QP method (QP1) is used to solve the inverse kinematics
problem of the manipulator:

minimize Φ(t) =
1

2
θ̇TWθ̇ + qT θ̇ (3)

subject to Jθ̇ = ṙd (4)

where superscript T denotes the transpose of a matrix or
vector; ṙd is the derivative of rd. W and q are defined
specifically according to different control schemes. In this
paper, as the fault-tolerant performance is mainly concerned,
the coefficient matrix W is simply set as identity matrix I ,
and coefficient vector q = 0 [32].

As we introduced before, without fault-tolerant control,
joint failures may cause serious consequences. Therefore, fault
tolerant need to be considered in QP1. If there are mf joints
faulty (e.g., the ith, · · · , and jth joints, i, j ∈ [1, 2, · · · , n]), the
corresponding joint-velocity variables should be forced set to
zeros (e.g., θ̇i = 0, · · · , θ̇j = 0). Thus, the following equations
need to be guaranteed:

0θ̇1 + · · ·+ 1θ̇i + · · ·+ 0θ̇n−1 + 0θ̇n = 0,
...

0θ̇1 + 0θ̇2 + · · ·+ 1θ̇j + · · ·+ 0θ̇n = 0.

(5)

The above equations can be rewritten as matrix form below:

Aθ̇ = 0, (6)

where

A =

0 · · · 1 · · · 0 · · · 0
...

0 · · · 0 · · · 1 · · · 0

 ∈ Rmf×n, (7)

θ̇ =
[
θ̇1, · · · , θ̇i, · · · , θ̇j , · · · , θ̇n

]T
= 0. (8)

Moreover, equation (4) is not very accurate due to to the error
between rd and re. Thus a vector-valued error function is
defined as follows:

ε = rd − re. (9)

In order to make each element of the error function converges
to zero, by utilizing zeroing neural network design formula

ε̇ = −µ1ε (10)

where µ1 ∈ R+ is a positive parameter to adjust the conver-
gence rate, and ε̇ is the derivative of ε with respect to t. By
substituting (9) into (10), we can get:

Jθ̇ = ṙd + µ1(rd − re). (11)

By using (6) and (11), the fault-tolerant control equation
constraints can be easily incorporated into QP1. The equation
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(6) thus can be combined together with joint physical con-
straints and joint velocity constraints into the QP1.

minimize Φ(t) =
1

2
θ̇T θ̇ (12)

subject to Jθ̇ = ṙd + µ1(rd − re) (13)

Aθ̇ = 0 (14)

ξ− 6 θ̇ 6 ξ+. (15)

where ξ− and ξ+ are both n dimensional vectors, representing
the lower and upper physical joint limits of the manipulator
respectively. Assuming that the joints of the manipulator have
speed limits and angle limits below:

θ− 6 θ 6 θ+

θ̇− 6 θ̇ 6 θ̇+.
(16)

The specific definition of ξ− and ξ+ are as follows:

ξ− = max(β(θ− − θ), θ̇−)

ξ+ = min(β(θ+ − θ), θ̇+).
(17)

Here, β is a parameter used to adjust the size of the feasible
region after the joint limit conversion. Now the time-varying
fault-tolerance control problem of the redundant manipulator
is transformed into a new QP problem. It can be rewritten as
the following QP problem (QP2):

minimize Φ(t) =
1

2
θ̇T θ̇ (18)

subject to Cθ̇ = d (19)

ξ− 6 θ̇ 6 ξ+. (20)

where matrix C is defined as C = [JT ,AT ]T ∈ R(m+mf )×n

and vector d is defined as d = [(ṙd + µ1(rd − re))T ,0T ]T ∈
Rm+mf .

By using dual decision variables, QP2 can be firstly trans-
formed into a set of linear variational inequalities [32]. A
primal-dual equilibrium vector y∗ ∈ Ω := {y|y− 6 y 6
y+} ⊂ Rn+m+mf can be obtained, and it has to be obtained
that, ∀y ∈ Ω,

(y − y∗)T (Qy∗ + z) > 0, (21)

where the primal-dual vector y, its upper bounds and lower
bounds are defined as below:

y =

[
θ̇
u

]
,y− =

[
ξ−

−∞

]
,y+ =

[
ξ+

∞

]
. (22)

where u is an auxiliary variable whose initial value is set as 0
in this paper. The matrix Q and vector z are defined as below:

Q =

[
I −CT

C 0

]
, z =

[
0
−d

]
. (23)

According to [32], we can transform the QP2 problem into
a equation:

P (y − (Qy + z))− y = 0. (24)

The parameter of the projection function P (·) is a vector.
This projection function restricts the lower and upper limits
of each element of the input vector yi×1. Without using this
function, the manipulator may be damaged due to that the
input values are beyond the joint limits. The specific values of
the lower and upper limits of the i-th element are determined
by y−i and y+

i respectively.

P (yi×1) =

g(y1)
...
g(yi)

 , g(yi) =


y−i yi 6 y−i
yi y−i 6 yi 6 y+

i

y+
i y+

i 6 yi

(25)

B. Discrete QP Solver

In this subsection, we propose a discrete QP solver to solve
the above QP2 problem. According to [21], [33], the error
function of (24) can be defined as:

e(y)=̇y − P (y − (Qy + z)). (26)

Here =̇ denotes the computational assignment operator.
Moreover, the following vector can be defined as the search
direction to find the zero point of piecewise-linear projection
equation (24):

g(y)=̇QTe(y) + (Qy + z). (27)

With the iteration index k = 0, 1, 2, · · · , if yk /∈ Ω, the
following recursive formula can be obtained for the solution
of (24):

yk+1=̇P (yk − ρ(yk)g(yk)), (28)

where,

ρ(y)=̇
‖e(y)‖22

‖(QT + I)e(y)‖22
>

‖e(y)‖22
‖(QT + I)‖2F ‖e(y)‖22

=
1

‖(QT + I)‖2F
> 0.

(29)

Here, ‖ · ‖2 denotes the two norm of a vector argument.
Above is the solver of the linear variational inequalities [33].
The flowchart of the discrete fault tolerance QP solver is
shown in Fig. 1. Therefore, solving this equation is equivalent
to solving the above QP2 problem. The fault-tolerance control
problem of the redundant manipulator can be solved.

For a control task of duration T , its sampling gap is τ . For
each gap, we can set the Eq. (26)-(29) to iterate m times.
m ≥ 1, the larger the m, the higher the accuracy of the
result. Therefore, the value of m can be appropriately increased
under the premise of ensuring real-time calculation. Thus,
the computational complexity of our scheme is O(Tm/τ).
In the revised manuscript, the discussion on computational
complexity has been added.

C. Theoretical Analysis of QP Solver

In this part, we analyze the feasibility of the discrete QP
solver.
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1) Convergence Analysis: It can be proved that the QP
solver of a redundant manipulator is convergent. That means
the solution of yk+1 generated by the proposed solver is
convergent to the actual solution y∗.

Starting with any initial state y0, generated by the QP solver
above, the solution sequence yk, k = 0, 1, 2, · · · , satisfies:

‖yk+1 − y∗‖22 6 ‖yk − y∗‖22 − ρ(yk)‖e(yk)‖22 ∀y∗ ∈ Ω∗,
(30)

where Ω∗ denotes the set of actual solutions. As shown in
(29), ρ > 0 guarantees the effective solution of piecewise-
linear equation (24). That is the sequence yk converges
globally linearly to an optimal solution y∗. The proof can
be generalized from [33].

2) Stability Analysis: Here we prove the QP solver of a
redundant manipulator is stable.

A Lyapunov function candidate is defined as:

v1 =
‖yk − y∗‖22

2
. (31)

According to [32], the time-derivative of y is:

ẏk = −(QT + I)e(yk) (32)

Obviously, the Lyapunov function candidate (31) is positive-
definite. Then, the time-derivative of v1 can be obtained as
follow:

v̇1 =
dv

dt
= −(yk − y∗)T (QT + I)e(yk)

6 −‖e(yk)‖22 6 0.
(33)

Thus v1 is positive-definite and v̇1 is negative-definite. Accord-
ing to the Lyapunov theory, the model-free scheme is stable.

𝑒 𝑦𝑘 = 𝑦𝑘 − 𝑃(𝑦𝑘 − 𝑄𝑦𝑘 + 𝑧)

𝑃(∙)

Σ

𝑦𝑘+1
𝑦𝑘

𝑄 = I −𝐶𝑇

𝐶 0
, 𝑧 =

0
−𝑑

𝐶 = 𝐽𝑇 , 𝐴𝑇 𝑇 , 𝑑 = ሶ𝑟𝑑
𝑇 , 0𝑇

𝑇

-

𝑔 𝑦𝑘 = 𝑄𝑇𝑒 𝑦𝑘 + (𝑄𝑦𝑘 + 𝑧)

𝜌 𝑦𝑘 =
𝑒 𝑦𝑘

2

2

(𝑄𝑇 + 𝐼)𝑒 𝑦𝑘 2
2

∙

+

Fig. 1. Flowchart of the discrete fault tolerance QP solver.

IV. DISCRETE MODEL-FREE KINEMATIC ESTIMATOR

In this section, we propose a discrete model-free numerical
computing solver to achieve the model-free goal.

A. Continuous Kinematic Estimator

In order to solve the QP2 in the condition that without
knowing the kinematics model, a vector-valued error function
is defined to indicate the error when estimating J used in last
section:

ε = ṙe − Jθ̇ ∈ Rm. (34)

𝑦𝑛+1

Discrete QP 
solver (27-29)

Discrete 
kinematic 

estimator (44-50)

ሶ𝜃𝑛 𝐽𝑛+1

ሶ𝑟𝑑

Sensor
ሶ𝑟𝑒, ሷ𝑟𝑒

QP2 problem

inputs

outputs

𝜃𝑛

𝑦𝑛+1

𝜃𝑛+1, 𝐽𝑛+1

Fig. 2. Schematic diagram of the DMFFTC scheme.

Following the design principle of zeroing neural networks, we
can get the formula below:

ε̇ = −µ2ε (35)

where µ2 ∈ R+ is a positive parameter to adjust the conver-
gence rate, and ε̇ is the derivative of ε with respect to t. By
substituting (34) into (35), we can get:

r̈e − J̇ θ̇ − Jθ̈ = −µ2(ṙe − Jθ̇). (36)

where J̇ represents the derivative of J with respect to t. r̈e is
the derivative of ṙe, which represents the actual acceleration
at the redundant manipulator’s end-effector. θ̈ is the derivative
of θ̇, which represents the acceleration of each joint of the
redundant manipulator. This equation can be rewritten as the
following form:

J̇ = (r̈e − Jθ̈ + µ2(ṙe − Jθ̇))θ̇−1 (37)

where θ̇−1 here represents the pseudo-inverse of the θ̇ accord-
ing to the value of m and n. In this equation, ṙe, r̈e can be
measured by sensors or vision instruments. θ̇ can be obtained
by the QP solver in next section.

B. Discrete Kinematic Estimator

In this subsection, we propose a discrete model-free solver
based on he continuous model-free scheme derived above.
xk is defined as the value of x at the time instant tk = kφ,

as well as sampling gap φ. By using the vector-form Euler
forward formula and vector-form Euler backward formula [34]
we have:

ẋk =
xk+1 − xk

φ
+O(φ),

ẋk =
xk − xk−1

φ
+O(φ).

(38)

Equations (38) is used to discretize the model-free scheme.
Here we define κ = µ2φ. Thus, the following discrete solver
DS-I is obtained:

θ̈k=̇
θ̇k − θ̇k−1

φ
, (39)

J̇k=̇(r̈e,k − Jkθ̈k + κ/φ(ṙe,k − Jkθ̇k))θ̇−1
k , (40)

θk+1=̇θk + φθ̇k, (41)

Jk+1=̇Jk + φJ̇k. (42)
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Similarly, by using Taylor-Zhang discretization formula [35]
and the 3-instant backward finite difference formula, we have:

ẋk =
2xk+1 − 3xk + 2xk−1 − xk−2

2φ
+O(φ2),

ẋk =
3xk − 4xk−1 + xk−2

2φ
+O(φ2).

(43)

Equations (38) is used to discretize the first two steps of the
model-free scheme, and (43) to discretize the rest. Thus, the
discrete solver DS-II can be derived as follows:

θ̈k=̇
θ̇k − θ̇k−1

φ
(k 6 2), (44)

θ̈k=̇
3θ̇k − 4θ̇k−1 + θ̇k−2

2φ
(k > 2), (45)

J̇k=̇(r̈e,k − Jkθ̈k + κ/φ(ṙe,k − Jkθ̇k))θ̇−1
k , (46)

θk+1=̇θk + φθ̇k (k 6 2), (47)

θk+1=̇
3

2
θk − θk−1 +

1

2
θk−2 + φθ̇k (k > 2), (48)

Jk+1=̇Jk + φJ̇k (k 6 2), (49)

Jk+1=̇
3

2
Jk − Jk−1 +

1

2
Jk−2 + φJ̇k (k > 2) (50)

where θ̇ used in this solver is obtained from y in QP solver.
For the initial values of the above solver, θ0 is the initial value
of the inputs, such as the initial angle of the manipulators’
joints. θ̇0 and θ̈0 are set to ~0 ∈ Rn. As for J0, its value
is determined via motor babbling. That is, independently
altering the state of the ith input by a small value ∆θi, the
corresponding displacement of manipulator’s end-effector ∆re
is measured. Then, the ith column of J0 can be initialized
as J0 = [∆re1

∆θ1
, ∆re2

∆θ2
, · · · , ∆ren

∆θn
]. As shown in Fig. 2, by

combining the discrete QP solver and kinematic estimator, the
DMFFTC scheme can be synthesized for handling the QP2 in
Section III.

C. Theoretical Analysis

In this part, we analyze the theoretical analysis of the
proposed model-free solver.

1) Convergence Analysis: It can be proved that the discrete
model-free solver DS-I and DS-II of a redundant manipulator
is convergent.

Similar to [36], we can obtain that DS-I model is convergent
withO(γ2), i.e., Jk = J∗

k+O(γ2), where J∗
k is the theoretical

solution. Thus we have:

‖Jk − J∗
k‖2 = ‖J∗

k +O(γ2)− J∗
k‖2 = ‖O(γ2)‖2. (51)

Analogously, simulation error ‖Jk−J∗
k‖2 of DS-II scheme

is convergent with O(γ3), the proof is complete.
2) Stability Analysis: Here we prove the discrete model-

free solver DS-II of a redundant manipulator is stable. A
Lyapunov function candidate is defined:

v2 =
‖ ε ‖22

2
=
εTε

2

=

∑m
i=1

∑m
j=1 ε

2
ij

2
> 0.

(52)
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Fig. 4. The joint angles of the redundant manipulator under different
conditions. (a) All joints work normally. (b) The third joint θ3 motion fails.
(c) The third joint θ3 and the fifth joint θ5 motion fail.

Obviously, the Lyapunov function (52) is positive-definite.
Then, the time-derivative of v2 is derived as follow:

v̇2 =
dv2

dt
= εT

dε

dt
= −µ2ε

Tε 6 0.
(53)

According to the Lyapunov theory, the DS-I and DS-II scheme
are stable.

V. DISCRETE JOINT STATE OBSERVER

As introduced in (7), matrix A is required to represent
the running state of the joints. However, in reality, we can
not know in advance when and which joints will fail. Thus,
estimating the running state of joints is a necessary task. To
do that, we proposed a discrete joint space observer in this
section.

At the beginning, we set mf = n and A = zeros(n, n),
assuming that all joints are in good condition. By using a
primal-dual neural network [32], we can obtain:

ẏr = µ3(I +QT ){P [yr − (Qyr + z)]− yr} (54)

where yr is the dual variable of θ̇r; θr is the joint vector of
redundant manipulator measured by sensors; µ3 ∈ R+ is a
positive parameter to adjust the convergence rate.

Then, we use the differential equation (54) to construct the
joint space observer. Firstly, considering some joints of the
redundant manipulators may fail, we define a diagonal matrix
Λ for estimation: {

ŷr = Λyr
˙̂yr = Λẏr

(55)

Λ =


σ1

σ2

. . .
σn+m

 ∈ R(n+m)∗(n+m). (56)

Similar to matrix A, Λ can indicate the joint states of the
redundant manipulator. The difference is that, when the i− th
(i 6 n) joint fails after a time instant, σi will become zero;
when the i− th joint works properly, the σi 6= 0 holds. After
integrating matrix Λ, (54) can be rewritten as:

ẏr = µ3Λ(I +QT ){P [yr − (Qyr + z)]− yr} (57)

Through evaluating the value of σi, we can detect which or
when the joint is failed during the tracking control task. Thus
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Fig. 3. The motion states of the redundant manipulator when performing trajectory tracking under different conditions where all the joints and links are
visualized at every sampling instant. (a) All joints work normally. (b) The third joint θ3 motion faults with the joint trajectory illustrated by an ellipse. (c)
The third joint θ3 and the fifth joint θ5 motion fault with the joint trajectories illustrated by two ellipses.

the dynamic observer can be conducted by using differential
equations system below for the redundancy resolution:{

˙̂yr = Λ̂ẏr − k1(ŷr − yr)
˙̂
Λ = k2ẏr(ŷr − yr)T

(58)

where k1 > 0 and k2 > 0 are the convergence scaling
parameters, and ŷr − yr denotes the error-correction term.

Next, in order to evaluate the convergence properties for the
estimated ŷr, we define the following distance variables:{

˙̃yr = ẏr − ˙̂yr
˙̃Λ = Λ̇− ˙̂

Λ
. (59)

Combining (54)-(58), we have the following distance systems
for evaluating convergence of distance variables:{

˙̃yr = −Λ̃ẏr − k1ỹr
˙̃Λ = k2ẏrỹ

T
r

(60)

Considering our scheme is discrete, we also discretize the
observer system following the same discretization method
introduced in Section IV-B:

˙̃yr,k=̇Λ̃kẏr,k − k1ỹr,k (61)

ỹr,k+1=̇ỹr,k + φ ˙̃yr,k, (k 6 2) (62)

ỹr,k+1=̇
3

2
ỹr,k − ỹr,k−1 +

1

2
ỹr,k−2 + φ ˙̃yr,k, (k > 2) (63)

˙̃Λk = k2ẏr,kỹ
T
r,k (64)

Λ̃k+1=̇Λ̃k + φ ˙̃Λk, (k 6 2) (65)

Λ̃k+1=̇
3

2
Λ̃k − Λ̃k−1 +

1

2
Λ̃k−2 + φ ˙̃Λk (k > 2) (66)

The estimated variables ỹr and Λ̃ should converge to zero
as time evolves. Generally speaking, the judgment condition
is that, while ỹr converges to zero, if σ̃i of distance matrix
Λ̃ does not keep at zero, then the i − th joint is detected
to be fault. Thus, based on the discrete joint space observer
introduced above, the working state of joint can be detected
automatically.

VI. SIMULATIONS

In this section, we implement the DMFFTC scheme derived
above through simulations.
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Fig. 5. Tracking errors of the redundant manipulator with faulty θ3. (a) Our
scheme. (b) Model-based scheme.
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Fig. 6. Tracking errors of the redundant manipulator with faulty θ3 and θ5.
(a) Our scheme. (b) Model-based scheme.

A. Settings

In the simulations, the duration of the control task
is Td = 20 s. The sampling gap φ is set as 0.001
s. The redundant manipulator we use for simulation is
“Kinova Jaco2”. The initial input is set as θ(0) =
[1.596, 2.341, 3.045,−2.498,−1.131, 0.77]T . The positive pa-
rameters µ1 and µ2 are set as 100. The desired trajectories
rd = [dx, dy, dz]T are set as:

dx = 3r cos(2π(sin(0.5πt/Td))
2)+

r cos(6π(sin(0.5πt/Td))
2)− 4r + initPos(x),

dy = 3r sin(2π(sin(0.5πt/Td))
2)+

r sin(6π(sin(0.5πt/Td))
2) + initPos(y),

dz = −2r sin(2π(sin(0.5πt/Td))
2)−

r sin(4π(sin(0.5πt/Td))
2) + initPos(z)

(67)
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where r is used to adjust the size of trajectory and in this
case 0.03 m. It is worth noting that although our method
can achieve joint fault tolerance, joint faults will narrow the
working space of the redundant manipulator due to loss of
degrees of freedom.

For given desired trajectories, the redundant manipulator can
easily complete the control task in the condition that all the
joints work normally, as shown in Fig. 3(a). The root mean
squared error (RMSE) is 0.0001 mm, which is a negligible
error in a majority of applications. From Fig. 4(a), we can
see that all six joints are involved in fulfilling the task, but
the changes of joints θ5 and θ6 are not significant due to
redundancy.

B. One Faulty Joint

The situation that the third joint (θ3) of the redundant
manipulator is considered to be faulty here. As shown in
Fig. 3(b), the third joint θ3 (the joint connecting the red bar
and the cyan bar), does not generate any rotation. By using
the DMFFTC scheme, the redundant manipulator is able to
complete the tracking task with a RMSE of 0.0002 mm as
shown in Fig. 5(a), which is quite a negligible error. From
Fig. 4(b) we can clearly illustrate that, θ3 did not rotate at all
during the task. To compensate the missing DOF, the rotations
of other joints (especially θ4 and θ5) have increased slightly.

0.3

X (m)

0.250.26

-0.4

Y (m)

Z
 (

m
)

0.28

-0.45
0.2-0.5

Actual trajectory
Desired path

(a)

0 10 20 30
t (s)

-0.1

0

0.1

0.2

E
rr

or
 (

m
m

)

RMSE=0.0001 mm

(b)

0 10 20 30
t (s)

-3

-2

-1

0

1

2

3

4

Jo
in

t a
ng

le
 (

ra
d)

(c)

0 10 20 30
t (s)

-0.6

-0.4

-0.2

0

0.2

0.4

(d)

Fig. 7. Situation of normal-faulty transition. (a) The desired path and actual
trajectory. (b) Simulation error. (c) The joint angles during the simulation. (d)
The third columns of estimated Ĵ and actual J during the simulation.

C. Two Faulty Joints

Then, in the case when both the third and the fifth joints of
the redundant manipulator fault at the same time, it may not
be able to see a obvious difference, but we can still see the
control task is well performed from Fig. 3(c). The achieved
RMSE is 0.0003 mm as illustrated in Fig. 6(a). As shown in
Fig. 4(c), θ3 and θ5 does not rotate at all during the task, and
the rotations of the remaining normal joints are increased to
remedy the missing DOF.

D. Comparison

As far as we know, our scheme is the only model-free
scheme for fault tolerant tracking control of redundant ma-
nipulators based on recurrent neural networks. Therefore, we
compared it with a model-based fault tolerant algorithm in [2]
with simulated model errors. Without loss of generality, the
DH parameters of the model are added with small biases. i.e.,
α4 = 1.047+∆ν and d6 = −0.1729+∆ν where ∆ν = 0.008.

As shown in Fig. 5, when θ3 faults, the root mean squared
error (RMSE) of using our method is 0.0002 mm. However,
considering the model error, the RMSE of using model-based
method is 0.0984 mm, which is much larger than that using our
method. Similar results also occur when both θ3 and θ5 fault,
as shown in Fig. 6. Modeling errors are usually unavoidable
for model-based methods, however, thanks to its model-free
nature, the DMFFTC scheme can bypass the uncertainties
caused by the modeling errors.
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Fig. 8. The velocity simulations curves. (a) The joint velocities in the
condition that all joint works well. (b) The joint velocities in the condition
that θ3’s velocity is limited. (c) The simulation error in the condition that
θ3’s velocity is limited.

E. Normal-Faulty Transition

To show smoothness of the DMFFTC scheme when cop-
ing with the joint-state shifting from normal to fault mode,
we carry out an additional simulation to show the tracking
performance during this normal-faulty transition. The goal
trajectories rd = [dx, dy, dz]T are set as:

dx = 2r sin(6π(sin(0.5πt/Td))
2)−

r sin(4π(sin(0.5πt/Td))
2)− 4r + initPos(x),

dy = −2r cos(6π(sin(0.5πt/Td))
2)−

r cos(4π(sin(0.5πt/Td))
2) + initPos(y),

dz = 2/3r cos(6π(sin(0.5πt/Td))
2)+

1/3r cos(4π(sin(0.5πt/Td))
2)− r + initPos(z)

(68)

where r = 0.03. In this case, the positive parameters µ1 and
µ2 are set as 200. The duration of the control task is Td = 30
s, when 0 ≤ t < 10 s, no joint is considered to be failed;
when 10 ≤ t < 20 s, θ3 faults; when 20 ≤ t ≤ 30 s, θ4 and
θ5 fault.

As shown in Figs. 7(a) and 7(b), the actual trajectory is
basically along with the desired path that RMSE is only
0.0001 mm. Most amount of the errors are concentrated at the
transition points. From Fig. 7(c), we can see that θ3 fails from
t = 10 s to t = 20 s, θ4 and θ5 fault after t = 20 s. Fig. 7(d)
shows the transformation of the third columns of estimated
Ĵ and actual J during the simulation. When 0 ≤ t < 10
s, estimated Ĵ basically coincides with actual J . However,
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Fig. 9. Situation of away from joint reset state transition. (a) Simulation error.
(b) The joint angles during the simulation.

controlled by the DMFFTC scheme, the estimated Ĵ keeps
unchanged during 10 ≤ t < 20 s. When 20 ≤ t ≤ 30 s, the
estimated Ĵ is very different from the actual J due to other
joints’ faults.

F. Joint Speed Limit

The simulation above discusses the condition that the joint
is completely failed. However, in practice, the joint typically
have a degradation over time which ends in a failure at the
end. Thus, our scheme also support to constrain the velocity
of specified joints to avoid more serious failures. By adjusting
the value of ξ+ and ξ− in (17), the velocity limits of failed
joints can be adjusted.

First, all joints are set to work normally, just as the
settings in section VI-A. No velocity limit is set that
ξ+ is set as [∞,∞,∞,∞,∞,∞]T and ξ− is set as
[−∞,−∞,−∞,−∞,−∞,−∞]T respectively. As shown in
Fig. 8(a), θ3’s velocity is the largest one, reaching 0.2 rad at
time t = 10 s.

Then, we consider that θ3 slightly fails at the beginning and
completely fails after t = 15 s. As shown in Fig. 8(b), θ3’s
velocity is maintained at 10 rad around t = 10 s, and finally
keeps at 0 rad after t = 15 s. Meanwhile, in order to make up
for the limited θ3, θ1 and θ4’s velocities increase significantly
and accordingly. The RMSE of the simulation is 0.0002 mm,
and the most errors are concentrated at t = 15 instant.

G. Transition Far Away From Rest State

In this simulation, the transition happens at a value which is
far away from the joint rest state. The simulation settings are
the same as Section VI-E. In order to conduct the condition
that the joint is far away from the rest state, we firstly set θ3

fail during the time 8 < t < 12. During this period, in order
to remedy the missing DOF, θ4 has done a large movement,
away from joint reset state. Then we set θ3 normal, θ4 fail. As
shown in Fig. 9, the transition cause a big error in an instant,
but it will not have a big impact on the overall control.

H. Fault Detection by Observer

The effectiveness of the discrete joint space observer pro-
posed in Section V is verified in this simulation. The desired
trajectories are set as (67) with r = 0.02 m. We set all joints
of manipulator well at the beginning of simulation, afterwards
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Fig. 10. The results of observer when θ3 fails at time t = 10 s. (a) Simulation
error. (b) The distance variable ỹr . (c) The distance variable Λ̃.

θ3 fails at time t = 12 s. The parameter µ3, k1 and k2 are
set as 100, 200 and 100 respectively. At the beginning of the
simulation, all joints of manipulator are set to be working
well, then θ3 is set to fail at time t = 12 s. As shown in
Fig. 10, at time 0-12 s, ỹr constantly converge to zero. When
the value of Λ̃ keeps at zero (indicating that no joint fails),
ỹr will be set randomly and the observer continues to keep
detecting until the fault happens. After the θ3 fails at time
t = 12, σ3 of Λ̃ does not keep at zero, and until ỹr converges
to zero again, the failure is detected. In this simulation, the
large abnormality can be detected within 0.023 seconds. The
RMSE of the simulation is 0.0004 mm.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12. Local close-up snapshots of θ3 joint. (a)-(d) θ3 joint without faulty
joints. (e)-(h) θ3 joint when it faults.

VII. EXPERIMENTS

In this section, we implement the discrete model-free fault-
tolerant control scheme on a physical platform of the redun-
dant manipulator ”Kinova Jaco2” to verify its correctness and
efficiency.
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Fig. 11. Snapshots of control results of the redundant manipulator. (a)-(d) all joints work well. (e)-(h) θ3 fails. (i)-(l) θ3 and θ5 fail (with highlighted areas).
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Fig. 13. The joint-angle curves. (a) The joint angles in the condition that all
joint works well. (b) The joint angles in the condition that θ3 fails. (c) The
joint angles in the condition that θ3 and θ5 fail.

A. Drawing Task

1) Settings: The first experiment is controlling the redun-
dant manipulator to perform the drawing task where the ma-
nipulator is holding a pen to draw desired figures. The duration
of the control task is set as Td = 20 s and the sampling gap
φ as 0.001 s. The initial input of the manipulator is set as
θ(0) = [−1.596, 4.612, 1.474,−2.498, 2.011,−0.801]T . The
positive parameters µ1 and µ2 are set as 100. The desired
trajectories rd = [dx, dy, dz]T are set as (67). Trajectory scale
r is also set to 0.03 m.

The experiment without faulty joints is firstly performed. As
shown in Fig. 11(a) to Fig. 11(d), the manipulator complete
the task successfully and the corresponding states of the joints
are given in Fig. 13(a).

2) One Faulty Joint: To verify the fault tolerance capability,
a single joint of θ3 is set to be not working. The experiment
process is shown in Fig. 11(e) to Fig. 11(h), which shows
θ3 being not moving. As we can see, the drawing task task
is well performed. To show clearer the results, local close-
up snapshots of θ3 joint are presented in Fig. 12. As shown
from Figs. 12(a) to 12(d), the rotation of θ3 is very obvious
under normal condition. On the other hand, governed by the
DMFFTC scheme, θ3 does not generate any rotation as shown
from Figs. 12(e) to 12(h). The joint-angle curves are shown
in Fig. 13(b) where we can recognize that θ3 does not rotate
at all during the task. In the meantime, rotation amplitudes of
θ4 θ5 and θ6 changed evidently.

3) Two Faulty Joints: In this case, the θ3 and θ5 are set to
fault. Despite the fact that two joints have faulted, the drawing
task is completed as shown in Fig. 14(a) to Fig. 14(d), with
θ3 and θ5 are marked. In Fig. 13(c), we can see that there is

no any movement generated in θ3 and θ5 during the whole
process. In the same time frame, rotation amplitude of θ4

varied constantly.

(a) (b) (c) (d)

Fig. 14. Snapshots of the trajectory tracking process of the redundant
manipulator in the transition simulation.

B. Accuracy Evaluation

1) Settings: In this section, a visual device is used
to evaluate the real-time fault-tolerant tracking perfor-
mance. The duration and sampling gap φ of the con-
trol task are set as Td = 300 s and 0.1 s respective-
ly. The initial input of the manipulator is set as θ(0) =
[4.9467, 3.6651, 1.3740, 4.1542, 1.5102,−1.7237]T . Joint θ4

is set to the fault mode when t ≥ 100 s, and θ5 is set
to be faulty when t ≥ 200 s. The desired trajectories
rd = [dx, dy, dz]T are set as (68). Trajectory scale r is set
to 0.025 m.

2) Normal-Faulty Transition: As shown in Figs. 14 and
15(a), under the field of view of the visual device, manipulator
successfully complete the tracking task while normal-faulty
transition happens. Fig. 15(b) shows that the RMSE of the
experiment is 0.9 mm which is an acceptable level for many
applications. The state transitions of joint θ4 and θ5 are also
illustrated in Fig. 15(c).

VIII. CONCLUSIONS

In this paper, we propose a discrete model-free fault tol-
erant tracking control scheme for redundant manipulators.
The DMFFTC scheme allows us to solve the redundant
manipulator’s control problem in the condition that some joints
are faulty. This scheme is independent with the kinematic
model and can achieve highly accurate tracking control when
fault happens in one or more joints. The detailed derivation
of the scheme and theoretical analysis are presented. The
performances in the cases with one and two faulty joints are
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Fig. 15. Experiment results of the transition simulation. (a) The desired path
and actual trajectory. (b) Simulation error. (c) Joint angles evolution.

verified with simulation and experiments. Comparative studies
with the model-based fault tolerant method verified that, in
the condition of existing modeling uncertainties, the DMFFTC
scheme achieved higher tracking accuracies. In addition, the
tracking performance during transition from normal state to
faulty state of the joints is verified as well. Lastly, the RMSE
of trajectory tracking quantified by the visual device is 0.9
mm. Based on these results, we can definitely conclude that
the DMFFTC scheme is competent to realise fault tolerant
tracking control without any knowledge about the kinematic
model, which brings portability and flexibility for applying the
fault tolerant scheme generically.
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croélectronique de Montpellier (LIRMM)- INRIA,
University of Montpellier, Montpellier, France, in
2014. He is currently a Senior Lecturer with the De-
partment of Computer Science, Swansea University,
Swansea, U.K. His current research interests include
intelligent control of medical/service robotics and
biosignal processing. Dr. Li serves as an Editorial

Board Member for PLOS One and a Guest Editor for Frontiers in Neuro-
robotics and Frontiers in Neuroscience.

Fenglei Ni received the B.S. and M.S. degrees
in electrical engineering and the Ph.D. degree in
Mechanical Engineering from the Harbin Institute
of Technology, Harbin, China, in 1998, 2002, and
2007, respectively. He is currently a Professor with
the State Key Laboratory of Robotics and System,
Harbin Institute of Technology. His current research
interests include the design and control of robotic
systems.

Authorized licensed use limited to: SWANSEA UNIVERSITY. Downloaded on February 10,2022 at 08:49:11 UTC from IEEE Xplore.  Restrictions apply. 


