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Abstract: Diamond (110) surface is one of the low-index diamond faces but its effects on 

nitrogen-vacancy (NV) based quantum sensor remain unclear. The fluorine, hydrogen, nitrogen, 

and oxygen-terminated diamond (110) surfaces used for the NV centers are proposed here, and 

their electronic properties are investigated based on first-principles calculations. The 

oxygen-terminated diamond (110) surface has inter-bandgap states and surface electron spins, the 

nitrogen-terminated (110) surface has inter-band gap states, and the hydrogen-terminated (110) 

surface has negative electron affinity. Thus, these three surfaces may not be suitable for shallow 

NV centers. The fluorine-terminated diamond (110) surface has positive electron affinity, no 

surface related inter bandgap states, and no surface electron spins, so it is a promising candidate 

for NV-based quantum sensors. 
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1. Introduction 

The negatively charged nitrogen-vacancy (NV) center in diamond has long coherence time of 

milliseconds at room temperature, and its spin state can be optically read out and manipulated [1] 

[2]. The excellent spin properties make NV center gain much attention in the platform of 

quantum applications such as quantum computing [3], quantum network communication [4], and 

quantum sensing [5–7]. For its applications in quantum sensing, signal detection depends on the 

dipole coupling with the external targeted spins which decay with distance r as 1/r3 [8]. This 

requires the NV center to be located close to the diamond surface (<5 nm) [9], enhancing the 

sensitivity of the quantum sensor. Besides, the shallow NV center can provide higher spatial 

resolution, down to a few nanometres [10]. Particularly, for applications in biological quantum 

sensors, nanodiamonds with embedded NV centers can be utilized for living cell imaging, and the 

NV centers are inevitably close to the surface [11,12]. However, diamond surfaces have effects 

on the spin properties and charge stability of the shallow NV centers  [13,14]. It is reported that 

the surface noise can reduce the spin relaxation times of shallow NV centers with depth less than 

5 nm [15]. Ofori-Okai et al. [16] investigated the spin properties of NV centers with depth down 

to ~1 nm by optically detected magnetic-resonance spectroscopy. The spectral broadening of 
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shallow NV centers was observed which is related to the surface magnetic noise. The surface 

noise may originate from terminated atoms, surface dangling bonds or sp2 carbon (C) [17,18]. In 

addition, the shallow NV centers exhibit decreased fluorescence contrast for optically detected 

electron spin resonance, because the surface terminations can make the charge state of the NV 

centers unstable [14,19]. Therefore, the surface engineering is significant important for the 

shallow NV centers [13,20,21].The hydrogen (H) is one of the most common terminations on the 

diamond surfaces. The difference in electronegativity (2.1 vs. 2.5) between H and carbon (C) 

results in a dipole moment directed toward the surface [22]. Thus, the H-terminated diamond 

(100) and (111) surfaces have negative electron affinity (NEA), which can induce a hole 

accumulation layer at the surface and a large upward band bending [23]. This will convert the 

shallow NV center to the positive charge state, and subsequently, to a nonfluorescent state. When 

changing the H to the oxygen (O), fluorine (F) or nitrogen (N) with electronegativity higher than 

carbon, the dipole moment directed away from the diamond surface will be set up, and the 

diamond surfaces exhibit positive electron affinity (PEA). The experimental studies have showed 

that O-terminated [24–26] and F-terminated [27] diamond (100) surfaces can keep the negative 

charge state of shallow NV centers and increase the fluorescence intensity. However, for 

O-terminated nanodiamonds, blinking states (temporary intermittency in fluorescence) of NV 

centers was observed [28]. For F-terminated diamond (100) surfaces, nearly 30% of NV centers 

exhibit permanent bleaching during the exposure to the laser [29]. The density functional theory 

(DFT) calculations [30] shows that O and F terminations on the diamond surfaces have surface 

related states in the band gap, and the excited electron of the NV center may be trapped in these 

states, leading to the blinking or bleaching. In addition, surface magnetic noise, originating from 

the surface terminations (e.g., dangling bonds), may limit the coherence time of shallow NV 

centers [31]. In summary, the three criteria of diamond surfaces used for NV-based quantum 

sensors are: PEA, no surface related states in the band gap, and no spin noises. Many types of 

diamond surfaces, which meet the three criteria simultaneously, have been proposed theoretically 

based on DFT calculations. These theoretically proposed surfaces include N-terminated [32], 

monolayer cubic boron nitride terminated [33], and epoxy oxidized [34] diamond (111) surfaces. 

Kawai et al. [35] has found N-terminated diamond (001) surface formed by nitrogen radical 

beam exposure can improve the spin properties of NV centers, compared with oxidized diamond 

surface. However, the N-terminated diamond (111) surfaces formed by RF(N2) plasma exposure 
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are found to have C-N/C=N and C≡N bonds on the surface, which is different from the 

theoretically perfect N-terminated diamond (111) surfaces only with C-N bonds on the surface 

[32], and its effects on the NV center need further investigations. 

Shallow NV centers are created mainly via three methods [36]: (i) in situ nitrogen 

delta-doping in chemical vapor deposition (CVD) diamond, (ii) nitrogen ion implantation into 

CVD diamond, (iii) carbon irradiation of N-doped high-pressure high-temperature (HPHT) 

diamond. The most common surfaces used in above three methods are diamond (100) [24,27,37–

40] and (111) [41–43] surfaces, and effects of various terminations of diamond (100) [30,44] and 

(111) [32,34] surfaces on the near-surface NV centers have been widely studied. A single NV 

center can also be embedded in a nanodiamond to achieve nanoscale quantum sensing [45]. In 

contrast, diamond (110) surface is the least studied surface among the low-index faces that are 

relevant for NV-based sensor applications. The (110) surface is one of the most important 

surfaces for natural rough diamonds [46], a dominant surface for HPHT and CVD diamonds [47], 

and prevalent in nanodiamonds [48]. However, there is little research about shallow NV centers 

implanting in the (110) surface, and the effects of the diamond (110) surfaces on the NV-based 

quantum sensors have not been investigated either. In this work, we investigate the structural and 

the electronic properties of various diamond (110) surfaces and their effects on the NV centers, 

based on density functional theory calculations. A deep understanding of electronic properties of 

the (110) surfaces is important for paving the way to fabricate high-quality near-surface NV 

centers in the (110) surfaces. 

2. Method 

All the calculations are carried out by the plane-wave based PWmat code [49,50], with the 

generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) [51] and Optimized 

Norm-Conserving Vanderbilt pseudopotentials [52]. The energy cutoff of the plane-wave is set to 

70 Ryd (~952.40 eV), and the convergence tolerance for the residual force and energy on each 
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atom during structure relaxation were set to 0.01 eV/Å and 2.72 × 10−6 eV, respectively. The 

diamond lattice parameter is calculated to be 3.565 Å, in excellent agreement with experimental 

value of 3.567 Å [53]. 

Surfaces are modeled using slabs with 18 carbon layers, and the vacuum layer thickness is set 

to about 16 Å to ensure that the interactions between the layers are negligible. The two layers in 

the middle of the slab are fixed during the relaxation. For the 1 × 2 supercells calculations, the 

Brillouin zone is sampled by an 8 × 6 × 1 Monkhorst–Pack k-points grid [54] for energy 

minimisation steps and a 16 × 12 × 1 k-points grid for density of states (DOS) calculations. The 

structural optimization is conducted with PBE functional to save the computation cost, while all 

the other calculations, such as electron affinity, DOS and band structure calculations, are 

performed with the hybrid functional of Hyed-Scuseria-Ernzerhof (HSE06) [55], which is nearly 

free of the electron self-interaction error and produces accurate electronic energy levels. The 

parameters are chosen after careful test calculations, as shown in Figs. S3-S7. 

The electron affinity of diamond surfaces is defined as follows [56]: 

𝐸𝑒𝑎 = 𝐸𝑣 − 𝐸𝑠𝑙𝑎𝑏,𝐶𝐵𝑀 = 𝐸𝑣 − (𝑉𝑠𝑙𝑎𝑏 + 𝐸𝑏𝑢𝑙𝑘,𝐶𝐵𝑀 − 𝑉𝑏𝑢𝑙𝑘)             (1) 

where 𝐸𝑣, 𝐸𝑠𝑙𝑎𝑏,𝐶𝐵𝑀, and 𝑉𝑠𝑙𝑎𝑏 refer to the vacuum energy, the conduction band minimum 

(CBM), and the average electrostatic potential of the diamond surface, respectively; 𝐸𝑏𝑢𝑙𝑘,𝐶𝐵𝑀 

and 𝑉𝑏𝑢𝑙𝑘 are the CBM and the average electrostatic potential of bulk diamond, respectively. 

The 𝐸𝑏𝑢𝑙𝑘,𝐶𝐵𝑀 derives from the valence band maximum (VBM) of bulk diamond plus the 

experimental value of band gap. 

The formation enthalpy of diamond surface is expressed as [57]: 

𝐻(𝑃, 𝑇) = [𝐸𝑠𝑙𝑎𝑏+𝑎𝑏 − 𝑛𝐶𝜇𝐶 − ∑ 𝑛𝑖𝜇𝑖(𝑃, 𝑇)𝑖 ]/∑ 𝑛𝑖𝑖                (2) 

where 𝑛𝐶  is the number of carbon atoms in the diamond surface and 𝜇𝐶 is the energy of carbon 

atom derived from bulk diamond; 𝑛𝑖  is the number of the terminated atoms; 𝜇𝑖(𝑃, 𝑇) 

represents the chemical potential of the ith terminated atom under the pressure P and temperature 

T, which can be obtained from [58]: 
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𝜇𝑖(𝑃, 𝑇) = 𝜇𝑖(𝑃
°, 0) + 𝐻°(𝑇) − 𝐻°(0) − 𝑇𝑆°(𝑇) + 𝑘𝐵𝑇𝑙𝑛(𝑃/𝑃

°)          (3) 

where 𝜇𝑖(𝑃
°, 0) is the energy of the atom at the temperature of 0 K and the standard-state 

pressure 𝑃°; 𝐻°(𝑇) and 𝐻°(0) are the enthalpy of the atom at the temperature T and 0 K, 

respectively. 𝑆°(𝑇) is the entropy of the atom at the temperature T; kB is the Boltzmann constant; 

The enthalpy and entropy of the atom can be obtained from the thermodynamic tables [59]. 

3. Results and discussion 

The relaxed bare diamond (110) surface exhibits unconstructed (1×1) configuration (see Fig. S1), 

in consistent with previous theoretical [60] and experimental [61] studies, and its structural 

parameters are listed in Table S3. In this work, four common elements (F, H, O, and N) are 

chosen to be adsorbed on the diamond (110) surfaces and saturate all the dangling bonds. And 

then, the electronic properties of these four types of surfaces are investigated by DFT 

calculations. 

3.1 Structures and electronic properties 

Geometric structures for 1 × 2 supercells of four diamond (110) surfaces are illustrated in Fig. 1. 

Bond lengths of various diamond (110) surfaces with different termination atoms after structural 

optimization are shown in Figure S1. The electron affinity of four surfaces is computed using 

PBE and HSE06 functionals, as shown in Table S3. The electron affinity of H-terminated 

diamond (110) surfaces and F-terminated surfaces by using PBE functional are consistent with 

results of previous studies (Table S3) [62,63]. These studies [62,63] only focused on the 

structures and electronic properties of H-terminated and F-terminated (110) surfaces and did not 

investigate the properties associated with diamond quantum sensors. The element H is less 

electronegative so the dipole moments directed toward the surface are established, while 

elements F, N, and O are more electronegative than C atoms so the dipole moments directed 

away from the surface are established. Although the PBE and HSE06 functionals give different 
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values of electron affinity, both of the calculation results based on two functionals show that 

H-terminated diamond (110) surface has NEA, while the other three types of surfaces have PEA. 

Due to the NEA, H-terminated diamond (110) surface may not be suitable for NV-based 

quantum sensors, which is similar with the cases of H-terminated diamond (100) and (111) 

surfaces. 

 

Figure 1. Side and top views of crystal structures: (a) F-terminated, (b) H-terminated, (c) N-terminated, 

and (d) O-terminated diamond (110) surfaces. Black dashed line denotes the structural 1 × 2 supercells. 

The F, H, N and O atoms are shown as green, white, orange and red circles, respectively. The C atoms in 

the top carbon layer and C atoms below the first carbon layer are shown as purple and grey atoms, 

respectively. 

The calculations of partial density of states (PDOS) and fat band structure are performed using 

HSE06 functional, as shown in Fig. 2 and Fig. 3. To probe the origins of surface-related 

inter-bandgap states and the surface spins, the band decomposed charge density of the 

surface-related bands and spin density are computed, respectively, as show in Fig. 3. Calculations 

based on HSE06 functional is nearly free of the electron self-interaction error, so that HSE06 

functional gives more accurate electronic levels in band gap than PBE functional [64]. Bulk C 
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atoms are chosen from the middle of the slab and their PDOS spectra indicate the position of the 

bandgap of bulk diamond. Surface C atoms are the atoms in the top carbon layer. 

 

Figure 2. Electronic structures of the F-terminated diamond (110) surface. (a) PDOS spectra and (b) Band 

structure. The Fermi level is denoted by dashed lines. The bulk valence band maximum is set as energy 

zero. 

 

 a 

 b 
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Figure 3. PDOS spectra, band structure, and charge density isosurface of (a) H-terminated, (b) 

N-terminated and (c) O-terminated diamond (110) surfaces. Charge density isosurface are depicted at 

isovalues of 0.17, 0.4, and 0.05 e/Bohr3, respectively. The corresponding surface-related bands of band 

decomposed charge density are denoted by yellow dashed rectangle in band structures. The Fermi level is 

denoted by black dashed lines. The bulk valence band maximum is set as energy zero. 

For F-terminated (110) surface, there is no inter-bandgap states and surface magnetic spin, as 

displayed in Fig. 2. The value of bandgap is calculated to be 5.53 eV, in consistent with its 

experimental value (5.47 eV) of bulk diamond. Thus, F-terminated diamond (110) surface meet 

 a 

 and  eco posed  harge  ensity

 b 
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three criteria for applications of NV-based quantum sensors theoretically. 

For H-terminated diamond (110) surface, there are many unoccupied states near the CBM, 

which may be mixed with the unoccupied levels of the NV center. Then the excited electron of 

the NV center could be trapped in these unoccupied states, leading to blinking or bleaching. The 

band decomposed charge density in Fig. 3 (a) shows that these unoccupied bands are the 

delocalized surface image states, which are called Rydberg states [65] in quantum chemistry. In 

the concept of Rydberg states, the lowest unoccupied states originate from the antibonding 

combination of the covalent bonds [33]. The strong sp3 bonds in diamond produce the high level 

of antibonding combination, resulting a wide bandgap. The C−H covalent bond on the (110) 

surface is weaker than the sp3 bond in the diamond, leading to low energy unoccupied levels 

under the CBM. 

For N-terminated diamond (110) surface, there are also many unoccupied sub-band gap states. 

As presented in Fig. 3 (b), these sub-band states are sp*-shape orbitals. 

As displayed in Fig. 3 (c), O-terminated diamond (110) surface has inter-bandgap states and 

surface spins. The magnetic moments are localized around the O atoms, originating from the 

unpaired electron of the O atoms. It is similar with the case of on-top oxidized diamond (111) 

surfaces [34] which also have magnetic moments around the adsorbed O atoms. 

Therefore, H-, N-, and O-terminated diamond (110) surfaces may not be suitable for NV-based 

quantum sensors theoretically. 

3.2 Surface stability 

Ab initio molecular dynamics (AIMD) simulations with the PBE functional is conducted to 

examine the stability of F-terminated diamond (110) surfaces. The structure in AIMD 

simulations is a 3 × 5 supercell composed of seven carbon layers. The lowest-lying carbon layers 

with their terminating H atoms are frozen to simulate the constraint induced by the bulk. As 

displayed in the Fig. 4, AIMD simulation shows that the F-terminated surface structure are robust 

after 10 ps at 500 K, suggesting thermal stabilities at ambient conditions. 
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Figure 4. Evolution of the total energy of the F-terminated diamond (110) surface with a temperature of 

500 K. The inset is AIMD snapshots of the surface at the time of 10 ps. 

The pressure and temperature-dependent formation enthalpies are calculated to confirm the 

surface stability and investigate the possibility of fabricating F-terminated diamond (110) surface 

by chemical vapor deposition. As shown in Fig. 5, the formation enthalpy decreases with the 

increase of the pressure or with the decrease of the temperature. For example, the surface is 

stable under ~785 K in the pressure of 2 × 10−5 Torr or under ~1100 K in the pressure of 2 Torr. 

Compared with pressure, temperature has a stronger influence on the stability of the F-terminated 

(110) surface. Therefore, fabrication of F-terminated diamond (110) surface should be under a 

relatively low temperature (< ~700K). Fluorination on the diamond (100) surface has been 

achieved by exposing surfaces to fluorine-containing gases (e.g., F [66], XeF2 [67]) and plasmas 

(e.g., CF4 [68], CF [69]). Previous annealing experiments show that terminated F atoms start to 

desorb from the diamond (100) surface above the temperature of ~925 ℃ [67]. Similarly, the 

F-terminated diamond (100) surface is stable under a relatively low temperature. 
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Figure 5. Pressure and temperature-dependent formation enthalpies of F-terminated diamond (110) 

surfaces 

3.3 Effects on the  V center 

In order to outline the effect of the F terminations on the NV center, calculations on a 3 × 5 

supercell with a single NV center are also performed. An NV center is placed in the middle of the 

supercell and a substitutional N atom is also placed at the same layer with a distance of 7.67 Å 

from the NV center, as shown in Fig. 6 (a). The distance is larger than 7.5 Å, which ensures that 

the substitutional N has a minimal effect on the NV center [70]. The depth of the NV center is 

~11.5 Å. The local structural parameters of NV center and substitutional N are shown in Fig. S2 

and Table S2. For (001) [71] and (111) [34] surfaces, the depth deeper than 10 Å means the NV 

centers properties have already converged to bulk values. Firstly, a 3 × 5 supercell of 

F-termination surface without NV center or additional N atom is built and relaxed. Then the NV 

center and additional N atom are introduced in the supercell, and the terminated atom and the 

first carbon layer are fixed during the relaxation. The gamma point and PBE functional are used 

during the geometry optimization. The energy cutoff of the plane-wave is reduced to 50 Ryd to 

save the computational costs. The substitutional N atom acts as the electron donor to NV center 

and makes the NV center in the negative charge state, to achieve an uncharged supercell. 
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Conventional way to charge the NV center is making the supercell in negative charge state 

without the donor N, and then an artificial background jellium charge is imposed. However, in 

the case of charged defects, the Coulomb interaction between the localized charge distributions 

converges very slowly and many approaches have been proposed over the years to overcome this 

problem [72,73]. By contrast, the method of introducing donor N can avoid solving this problem. 

 

Figure 6. (a) Structure of 3×5 supercell of F-terminated diamond (110) surface. The NV center is excited 

by green light to emit in the red range. (b) Spin density of NV center calculated by HSE06 functional and 

the substitutional N. Charge density isosurface is depicted at isovalue of 0.011 e/Bohr3. (c) Defect levels 

of NV center in the supercell calculated by HSE06 functional. The orange and yellow lines represent the 

levels of NV center and substitutional N, respectively. 

The HSE06 computed spin density for ground state of NV center is shown in Fig. 6 (b), while 

the substitutional N has zero spin density. As shown in Fig. 6 (c), there are no extra 

surface-related levels in the band gap, which is identical to the band structure in Fig. 2. The 

splitting of the occupied level 𝑒𝑥,𝑦 is nearly 0.1 eV, but the splitting of the unoccupied �̅�𝑥,𝑦  

level is small as about 1.8 meV. The luminescence of NV center is from the �̅�𝑥,𝑦-to-�̅�𝑥,𝑦 
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electronic transition, and splitting of these two levels can bring luminescence broadening, and 

then reduce the luminescence intensity [44]. Thus, for the NV center in F-terminated (110) 

surface, splitting of the occupied level 𝑒𝑥,𝑦 may not affect the luminescence, and the small 

splitting value of the unoccupied �̅�𝑥,𝑦  level will not lead to obvious luminescence broadening. 

Energy diagram illustrating the Franck–Condon approximation for the excitation and 

de-excitation process of the NV center is shown in Fig. S8. The optical transitions of the NV 

center in F-terminated (110) surface are calculated by PBE and HSE06 functional are presented 

in Table S4, which agrees well with previous studies [64]. For example, the HSE06 calculated 

zero-phonon-line of the NV center is 1.910 eV, close to the theoretical value (1.955 eV [64], 

1.962 eV [70]) and experimental value (1.945 eV [74]) of NV center in bulk diamond. Therefore, 

it is confirmed that F terminations on the (110) surface have no obvious effects on the optical 

properties of the shallow NV center (depth ≈ 11.5 Å). Furthermore, the effects of the depth of 

NV center on the optical properties are shown in Figs. S9-12. 

In this work, F termination is proved to be more suitable for shallow NV centers than O 

termination on diamond (110) surface based on DFT calculations. Actually, the most widely used 

termination on the diamond (100) and (111) surfaces for quantum sensors is oxygen [24,27–

29,75]. For example, Hayate et al. [76] found that surface oxidization can stabilize the charge 

state of shallow NV center and improve their coherence properties evaluated using Rabi 

oscillation measurements. Lovchinsky et al. [77] used the shallow NV centers to detect single 

proteins, and they found that the surface treatment is important for detection sensitivity. Their 

experiments show that the coherence time can be improved by more than an order of magnitude 

when the diamond surface is oxidized combined with annealing. The oxygen is bioinert material 

which is required in biological sensing [78,79], while fluorine is not bioinert material. In addition, 

oxygen does not have nuclear spins while fluorine has nuclear spins. The nuclear spins will 

produce nuclear spin noise in quantum sensing [80]. However, for F-terminated diamond (111) 

or (001) surfaces, the resulting surface dipole is directed away from the surface and is very 

strong because the electronegativity difference between F (4.0) and surface C (2.5) is very large 

[22]. Thus, the F-terminated diamond surface is highly water-repellent, avoiding the nonspecific 

binding of biomolecules [22]. This property is important, because one of the applications of NV 
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centers is biological sensing. Therefore, it is deduced that F-terminated diamond (110) surface 

can be chemically stable in bio-sensing applications. In addition, the charge states of NV centers 

are more stable on the F-terminated (100) surface than the O-terminated (100) surface [68]. This 

could be explained by that O-terminated (100) surface exist a mixed chemical state with 

hydroxyl groups or carboxylic acids and could reaction with moisture in air which is likely to 

become electron acceptors [68]. Therefore, for these reasons, fluorine terminations may perform 

better than oxygen terminations on the diamond (110) surface for biological quantum sensors. 

We strive to provide a comprehensive list of studies related to the effects of surface 

terminations on the NV centers, as shown in Table S5. Many other significantly important studies 

of NV centers, which are not related to surface terminations, may not be listed in this work. 

Theoretically, F-terminated diamond (110) surface meets the three criteria: PEA, no surface 

related states in the band gap, and no spin noises. Therefore, F-terminated diamond (110) surface 

performs better over many other terminated diamond surfaces, as shown in the Table S5. In 

addition, this is the first work investigating the effects of (110) surface terminations on the NV 

centers, intending to invoke further research on the diamond (110) surfaces. 

Then, we turn to discuss the differences among the (110) surface and other surface orientations 

used for NV centers. For the CVD-grown diamond, the alignment of NV centers is up to ~100% 

[41], 50% [81], 50% [81], and 73% [80] on (111), (100), (110), and (113) surfaces, respectively. 

Preferentially-aligned NV centers will increase the number of collected photons and then the 

signal-to-noise ratio in quantum sensing applications [42]. Thus, from the perspective of 

alignment of NV centers, CVD-grown (110) surfaces may not be the best surface compared with 

CVD-grown (111) surfaces. However, ion implantation and carbon irradiation are the other two 

common methods producing NV centers. For these two methods, NV centers are randomly 

oriented along four <111> crystallographic axes, and therefore in these two methods, there is no 

differences in alignment of NV centers among (111), (100), (110), and (113) surfaces. 

4.  onclusions 

To summarize, F, O, H, and N-terminated diamond (110) surfaces used for shallow NV centers 
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are first proposed in this work, and their electronic properties are investigated based on DFT 

calculations. The O-terminated diamond (110) surface has inter-bandgap states and surface 

electron spins, the N-terminated diamond (110) surface has inter-band gap states, and the 

H-terminated diamond (110) surface has NEA. Thus, these three surfaces may not be suitable for 

shallow NV centers. The F-terminated diamond (110) surface has PEA, no surface related inter 

bandgap states, and no surface electron spins, so it may be suitable for NV-based quantum 

sensors. Furthermore, an NV center is placed in the F-terminated diamond (110) surface and it is 

confirmed that F terminations have no obvious effects on the electronic and optical properties of 

NV center. The AIMD simulation shows that the F-terminated surface is thermally stable at 500 

K. The formation enthalpy calculations results indicate that fabrication of F-terminated diamond 

(110) surface should be under a relatively low temperature (< ~700K). This work will pave the 

way to fabricate high-quality near-surface NV centers in the (110) surfaces. 
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