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Abstract

In this paper, we study distribution dependent stochastic differential equations
driven simultaneously by fractional Brownian motion with Hurst index H > 1

2 and
standard Brownian motion. We first establish the existence and uniqueness theorem
for solutions of the distribution dependent stochastic differential equations by utilis-
ing the Carathéodory approximation. We then show that, under certain averaging
condition, the solutions of distribution dependent stochastic differential equations can
be approximated by the solutions of the associated averaged distribution dependent
stochastic differential equations in the sense of the mean square convergence.
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1 Introduction

Recently, stochastic processes possessing self-similarity and long-range dependence property
have become an important component of stochastic models in various scientific areas includ-
ing hydrology, telecommunication, turbulence, image processing and finance (see, for exam-
ple, Decreusefond and Üstünel [9]). The celebrated and also most widely used stochastic
process that exhibits the long-range dependence property and self-similarity is the fractional
Brownian motion (fBm in short). Interesting surveys of fBm and related stochastic calculus
could be found in Biagini et al. [4], Mishura [27], Nualart[29], Hu [17]. We recall that fBm
with Hurst parameter H ∈ (0, 1) is a zero mean Gaussian process BH = {BH

t , t ≥ 0} with
covariance function

RH(s, t) :=
1

2
(s2H + t2H − |t− s|2H), s, t ≥ 0.
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For H = 1
2
, fBm BH is nothing but standard Brownian motion which, in this paper, is

denoted by W . BH is neither a semimartingale nor a Markov process unless H = 1
2
. Hence,

one can not use the classical Itô theory with respect to W to establish stochastic calculus
for fBm BH .

On the other hand, it is now well known that stochastic differential equations (SDEs)
play a significant role in modelling evolutions of dynamical systems when taking into ac-
count uncertainty features along time in diverse fields ranging from biology, chemistry, and
physics, as well as economics and finance, and so on (see, e.g., Sobczyk [38], Mao [23]
and references therein). There have been many fundamental studies addressing the exis-
tence and uniqueness of solutions of SDEs driven by fBm. Coutin and Qian [8] established
the existence of strong solutions for SDEs driven by fBm with Hurst parameter H > 1

4
.

Nualart and Răşcanu [30] obtained global existence and uniqueness result of solutions of
multidimensional, time-inhomogeneous, SDEs driven by fBm with Hurst parameter H > 1

2
.

Furthermore, along systematical studies of fBm, many authors have proposed to study SDEs
driven by standard Brownian motion and fBm simultaneously, which led to many interest-
ing theoretical questions about self-similar Gaussian processes and fields in general. Zähle
[43] and Kubilius [21] defined the stochastic integral with respect to fBm as an extended
Riemann-Stieltjes pathwise integral and used p-variation estimates to obtain the existence
and uniqueness of the solutions of the SDEs driven by both fBm and standard Brownian
motion, respectively. Using fractional integration and the classical Itô stochastic calculus,
Guerra and Nualart [13] proved an existence and uniqueness theorem for solutions of multi-
dimensional, time-inhomogeneous, SDEs driven simultaneously by a multidimensional fBm
with Hurst parameter H > 1

2
and a multidimensional standard Brownian motion. Under

mild regularity assumptions on the coefficients, Mishura and Shevchenko [28] proved that
SDEs driven by dependent fBm and Brownian motion has a unique solution. Silva et al.
[37] established an existence and uniqueness result for solutions of multidimensional, time-
dependent, SDEs driven simultaneously by a multidimensional fBm with Hurst parameter
H > 1

2
and a multidimensional standard Brownian motion under a weaker condition than the

Lipschitz one. Sönmez [39] considered such SDEs with irregular drift coefficient. Pei et al.
[32] obtained averaging principle for fast-slow system driven by mixed fractional Brownian
rough path.

Generally, nonlinear Fokker-Planck equations can be characterised by distribution depen-
dent stochastic differential equations (DDSDEs), which are also named as McKean-Vlasov
SDEs or mean field SDEs. A distinct feature of such systems is the appearance of prob-
ability laws in the coefficients of the resulting equations. There has been an increasing
interest to study existence and uniqueness for solutions of DDSDEs. Wang [41] established
strong well-posedness of DDSDEs with one-sided Lipschitz continuous drifts and Lipschitz-
continuous dispersion coefficients. Under integrability conditions on distribution dependent
coefficients, Huang and Wang [18] obtained the existence and uniqueness for DDSDEs with
non-degenerate noise. Mehri and Stannat [24] proposed a Lyapunov-type approach to the
problem of existence and uniqueness of general law-dependent SDEs. Many interesting stud-
ies of DDSDEs have been developed further in Bao et al. [2], Huang et al. [19], Ren and
Wang [33], Röckner and Zhang [34], Mishura and Veretennikov [27], Chaudru de Raynal [6],
Hammersley et al [16] and references therein. More recently, Fan et al. [11] considered the
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following DDSDE driven by fBm with Hurst parameter H > 1
2

dX(t) = b(t,X(t),L (X(t)))dt+ σ(t,L (X(t)))dBH
t (1.1)

by showing the well-posedness and by deriving a Bismut type formula for the Lions deriva-
tive using Malliavin calculus. Galeati et al. [12] studied DDSDEs with irregular, possibly
distributional drift, driven by additive fBm of Hurst parameter H ∈ (0, 1) and established
strong well-posedness under a variety of assumptions on the drifts. Buckdahn and Jing [5]
considered mean-field SDEs driven by fBm and related stochastic control problem. Bauer
and Meyer-Brandis [3] established existence and uniqueness results of solutions to McKean-
Vlasov equations driven by cylindrical fBm in an infinite-dimensional Hilbert space setting
with irregular drift.

It is worth to note that the averaging principle, initiated by Khasminskii in the seminal
work [20], is a very efficient and important tool in the study of SDEs for modelling problems
arising in many practical research areas. Indeed, averaging principle is an effective method
for studying dynamical systems with highly oscillating components. Under certain suitable
conditions, the highly oscillating components can be “averaged out” to produce an averaged
system. The averaged system is easier for analysis which governs the evolution of the origi-
nal system over long time scales. The fundamental idea of the stochastic averaging principle
is to study complex stochastic equations with related averaging stochastic equations, which
paves a convenient and easy way to study many important properties (see, e.g., [42], [10],
[22], [31], [36], [14], [15]). Although there exist many investigations in the literature devoted
to studying stochastic averaging principle for SDEs driven by Brownian motion, fBm, Lévy
processes as well as more general stochastic measures inducing semimartingales, etc., as we
know, there is not any consideration of averaging principle for DDSDEs driven simultane-
ously by fBm and Brownian motion. Moreover, due to their distribution dependent nature,
they are potentially useful and important for modelling complex systems in diverse areas of
applications. Comparing to the classical SDEs driven by Brownian motion, fBm, and Lévy
processes, the DDSDEs are much more complex, therefore, a stochastic averaging principle
for such SDEs is naturally interesting and would also be very useful. This motivates us
to carry out the present paper, aiming to establish a stochastic averaging principle for the
DDSDEs driven simultaneously by fBm and Brownian motion

dX(t) = b(t,X(t),L (X(t)))dt+ σW (t,X(t),L (X(t)))dWt + σH(t,L (X(t)))dBH
t , (1.2)

where BH
t is an m-dimensional fBm with Hurst parameter H ∈ (1

2
, 1), and Wt is an r-

dimensional standard Browinan motion, independent of BH , and X0 = ξ is a d-dimensional
random variable independent of (BH ,W ). Precise assumptions on the coefficients b : [0, T ]×
Rd×P(Rd)→ Rd, σW : [0, T ]×Rd×Pθ(Rd)→ Rd⊗Rr, and σH : [0, T ]×Pθ(Rd)→ Rd⊗Rm

will be specified in later sections, here Pθ(Rd) stands for the set of probability measures on
Rd with finite θ-th moment. The motivation to consider such equations comes from some
financial applications, where Brownian motion as a model of volatility is inappropriate
because of the lack of memory, and fBm with H > 1

2
might be too “smooth” (i.e., not rough

enough). A model equation driven by the both noise processes is then free of such drawbacks
(see, for example, [27], [28]).

Throughout this paper, the letter C will denote a positive constant, with or without
subscript, its value may change in different occasions. We will write the dependence of the
constant on parameters explicitly if it is essential.
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The rest of the paper is organised as follows. In Section 2, we present some preliminaries
for this paper. In Section 3, we prove the existence and uniqueness of solutions to our
DDSDEs driven by fBm and Brownian motion. In Section 4, we establish an approximation
theorem as an averaging principle for the solutions of the concerned DDSDEs.

2 Preliminaries

In this section, we briefly give preliminaries for our discussions in the sequel. We will use
the following notations. | · | denotes the Euclidean norm and 〈·, ·〉 denotes the scalar product
in d-dimensional Euclidean space Rd, and for a matrix, we denote by ‖ · ‖ the Euclidean
norm. Fix a time interval [0, T ] and a complete probability space (Ω,F ,P) associated with
fBm BH and Brownian motion W. We assume that there is a sufficiently rich sub-σ-algebra
F0 ⊂ F independent of (BH ,W ) such that for any µ ∈ P2(Rd) there exists a random
variable X ∈ L2(Ω → Rd,F0,P) with distribution µ. For each t ∈ [0, T ], let {Ft}t∈[0,T ] be
the σ-field generated by the random variables {X0, B

H
s ,Ws, s ∈ [0, t]} and the P -null sets,

completed and augmented by F0.

For technical reasons, we will work on the following subspace of P(Rd) for any fixed
θ ∈ [2,∞)

Pθ(Rd) :=

{
µ ∈ P(Rd) : µ(| · |θ) :=

∫
Rd
|x|θµ(dx) <∞

}
which is a Polish space under the Lθ-Wasserstein distance

Wθ(µ1, µ2) := inf
π∈C (µ1,µ2)

(∫
Rd×Rd

|x− y|θπ(dx, dy)

) 1
θ

, µ1, µ2 ∈ Pθ(Rd),

where C (µ1, µ2) is the set of probability measures on Rd × Rd with marginals µ1 and µ2.

Note that for any x ∈ Rd, the Dirac measure δx belongs to Pθ(Rd) for any θ ∈ [2,∞) and
if µ1 = L (X), µ2 = L (Y ) are the corresponding distributions of random variables X and
Y respectively, then

(Wθ(µ1, µ2))
θ ≤

∫
Rd×Rd

|x− y|θL ((X, Y ))(dx, dy) = E|X − Y |θ,

in which L ((X, Y )) represents the joint distribution of the random pair (X, Y ). For arbitrar-
ily fixed T > 0, let C([0, T ];Rd) be the Banach space of all Rd-valued continuous functions
on [0, T ], endowing with the supremum norm. Furthermore, we let Lp(Ω;C([0, T ];Rd)) be
the totality of C([0, T ];Rd)-valued random variables X satisfying E[sup0≤t≤T |X(t)|p] <∞.
Then, Lp(Ω;C([0, T ];Rd)) is a Banach space under the norm

||X||Lp := (E[ sup
0≤t≤T

|X(t)|p])
1
p .

In the follows, we recall the basic definitions and properties of the fractional calculus. For
a detailed presentation of these notions we refer to [35]. Let a, b ∈ R, a < b. Let f ∈ L1(a, b)
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and α > 0. The left and right-sided fractional integrals of f of order α are defined for almost
all x ∈ (a, b) by

Iαa+f(x) =
1

Γ(α)

∫ x

a

(x− y)α−1f(y)dy

and

Iαb−f(x) =
1

Γ(α)

∫ b

x

(y − x)α−1f(y)dy,

respectively. Let Iαa+(Lp) (resp.f ∈ Iαb−(Lp)) and 0 < α < 1, then the left and right-sided
fractional derivatives are defined by

Dα
a+f(x) =

1

Γ(1− α)

(
f(x)

(x− a)α
+ α

∫ x

a

f(x)− f(y)

(x− y)α+1
dy

)
,

and

Dα
b−f(x) =

1

Γ(1− α)

(
f(x)

(b− x)α
+ α

∫ b

x

f(x)− f(y)

(y − x)α+1
dy

)
for almost all x ∈ (a, b) (the convergence of the integrals at the singularity y = x holds
point-wise for almost all x ∈ (a, b) if p = 1 and moreover in Lp-sense if 1 < p <∞).

Recall the following properties of these operators:

• If α < 1
p

and q = p
1−αp , then

Iαa+(Lp) = Iαb−(Lp) ⊂ Lq(a, b).

• If α > 1
p
, then

Iαa+(Lp) ∪ Iαb−(Lp) ⊂ Cα− 1
p (a, b),

where Cα− 1
p (a, b) denotes the space of (α − 1

p
)-Hölder continuous functions of order α − 1

p

in the interval [a, b].

The following inversion formulas hold:

Iαa+(Dα
a+f) = f

for all f ∈ Iαa+(Lp), and
Dα
a+(Iαa+f) = f

for all f ∈ L1(a, b). Similar inversion formulas hold for the operators Iαb− and Dα
b−.

The following integration by parts formula holds:∫ b

a

(Dα
a+f)(s)g(s)ds =

∫ b

a

f(s)(Dα
b−g)(s)ds,

for any f ∈ Iαa+(Lp), g ∈ Iαb−(Lq), 1
p

+ 1
q

= 1. To prove our main results, we also present the
following Hardy-Littlewood inequality.

Lemma 2.1 ([40]) Let 1 < p̃ < q̃ <∞ and 1
q̃

= 1
p̃
− α. If f : R+ → R belongs to Lp̃(0,∞),

then Iα0+f(x) converges absolutely for almost every x, and moreover

‖Iα0+f(x)‖Lq̃(0,∞) ≤ Cp̃,q̃‖f‖Lp̃(0,∞)

holds for some positive constant Cp̃,q̃.
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Lemma 2.2 (Bihari’s inequality,[23] ) Let T > 0, and c > 0. Let ψ : R+ → R+ be a
continuous nondecreasing function such that ψ(t) > 0 for all t > 0. Let u(·) be a Borel
measurable bounded nonnegative function on [0,T], and let v(·) be a nonnegative integrable
function on [0,T]. If

u(t) ≤ c+

∫ t

0

v(s)ψ(u(s))ds for all 0 ≤ t ≤ T,

then

u(t) ≤ G−1(G(c) +

∫ t

0

v(s)ds)

holds for all t ∈ [0, T ] such that

G(c) +

∫ t

0

v(s)ds ∈ Dom(G−1),

where

G(r) =

∫ r

1

ds

ψ(s)
on r > 0,

and G−1 is the inverse function of G.

3 Existence and Uniqueness

In this section, we will establish the existence and uniqueness theorem for the solution of
distribution dependent stochastic differential equations (1.2) driven by fBm and standard
Brownian motion under the following Assumption 3.1 using the Carathéodory approximation
technique. For this purpose, we define the Carathéodory approximation as follows. For any
integer k ≥ 1, define Xk(t) = X0 for all −1 ≤ t ≤ 0 and

Xk(t) = X0 +

∫ t

0

b(s,Xk(s−
1

k
),L (Xk(s−

1

k
)))ds

+

∫ t

0

σW (s,Xk(s−
1

k
),L (Xk(s−

1

k
)))dWs

+

∫ t

0

σH(s,L (Xk(s−
1

k
)))dBH

s , t ∈ (0, T ].

(3.1)

Note that for 0 ≤ t ≤ 1
k
, Xk(t) can be computed by

Xk(t) = X0 +

∫ t

0

b(s,X0,L (X0))ds +

∫ t

0

σW (s,X0,L (X0))dWs +

∫ t

0

σH(s,L (X0))dB
H
s ,

then for 1
k
≤ t ≤ 2

k
, Xk(t) can be computed by

Xk(t) = Xk(
1

k
) +

∫ t

1
k

b(s,Xk(s−
1

k
),L (Xk(s−

1

k
)))ds

+

∫ t

1
k

σW (s,Xk(s−
1

k
),L (Xk(s−

1

k
)))dWs +

∫ t

1
k

σH(s,L (Xk(s−
1

k
)))dBH

s ,
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and so on. It is well known that comparing with Picard’s successive approximation tech-
nique, the advantage of using Carathéodory approximation technique is that we do not
need to compute X1(t), X2(t), · · ·, Xk−1(t) to compute Xk(t). In fact, we can compute Xk(t)
directly over intervals of length 1

k
. It is noted that our results are new even when the

coefficients appeared in (1.2) satisfy Lipschitz condition.

Assumption 3.1 There exists a non-decreasing function K(t) such that for any t ∈ [0, T ],
x, y ∈ Rd, µ, ν ∈ Pθ(Rd),

|b(t, x, µ)− b(t, y, ν)|p ≤ K(t)ψ(|x− y|p + Wp
θ(µ, ν)),

‖σW (t, x, µ)− σW (t, y, ν)‖p ≤ K(t)ψ(|x− y|p + Wp
θ(µ, ν)),

‖σH(t, µ)− σH(t, ν)‖p ≤ K(t)ψ(Wp
θ(µ, ν)),

and
|b(t, 0, δ0)|p + ‖σW (t, 0, δ0)‖p + ‖σH(t, δ0)‖p ≤ K(t),

where ψ : R+ → R+ is continuous and non-decreasing concave function with ψ(0) = 0,
ψ(x) > 0, for every x > 0 such that

∫
0+

1
ψ(x)

dx = +∞.

Example 3.2 We can give a few concrete examples of the function ψ(·). Let K > 0, and
let δ ∈ (0, 1) be sufficiently small. Define
ψ1(u) = Ku, u ≥ 0.

ψ2(u) =

{
u log(u−1), 0 ≤ u ≤ δ;
δ log(δ−1) + ψ′2(δ−)(u− δ), u > δ.

ψ3(u) =

{
u log(u−1) log log(u−1), 0 ≤ u ≤ δ;
δ log(δ−1) log log(δ−1) + ψ′3(δ−)(u− δ), u > δ.

where ψ′ denotes the derivative of the function ψ. They are all concave nondecreasing
functions satisfying

∫
0+

du
ψi(u)

=∞. Furthermore, we observed that the Lipschitz condition is
a special case of our proposed condition.

Definition 3.3 An Rd valued stochastic process X = (Xt)0≤t≤T is called an unique solution
of (1.2), if X ∈ Lθ and satisfies the follwing

(i)

X(t) = ξ +

∫ t

0

b(s,X(t),L (X(s)))ds+

∫ t

0

σW (s,X(s),L (X(s)))dWs

+

∫ t

0

σH(s,L (X(s)))dBH
s , t ∈ [0, T ],P− a.s..

(3.2)

(ii) If Y = (Yt)0≤t≤T is another solution with Y (0) = ξ, then

P(X(t) = Y (t) for all 0 ≤ t ≤ T ) = 1.

Note that σH(s,L (X(s))) is a deterministic function, then
∫ t
0
σH(s,L (X(s)))dBH

s can be
regarded as a Wiener integral with respect to fBm.

Next, we will prove the uniform boundedness property for the sequence of stochastic
processes {Xk(t), k ≥ 1} given by Equation (3.1).
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Lemma 3.4 Suppose that Assumption 3.1 holds and ξ ∈ Lp(Ω→ R,F0,P) with p ≥ θ and
p > 1/H. Then for all k ≥ 1,

E( sup
0≤s≤T

|Xk(s)|p) ≤ C2 := (4p−1E|ξ|p + C1)e
C1T ,

where C1 = Cλ,p,H,TK(T )(2a+ 1).

Proof. Following the simple inequality

|x1 + x2 + · · ·+ xk|p ≤ kp−1(|x1|p + |x2|p + · · ·+ |xk|p), (3.3)

we have

E( sup
0≤s≤t

|Xk(s)|p) ≤ 4p−1E|ξ|p + 4p−1E( sup
0≤s≤t

∣∣∣∣ ∫ s

0

b(u,Xk(u−
1

k
),L (Xk(u−

1

k
)))du

∣∣∣∣p)
+ 4p−1E( sup

0≤s≤t

∣∣∣∣ ∫ s

0

σW (u,Xk(u−
1

k
),L (Xk(u−

1

k
)))dWu

∣∣∣∣p)
+ 4p−1E( sup

0≤s≤t

∣∣∣∣ ∫ s

0

σH(u,L (Xk(u−
1

k
)))dBH

u

∣∣∣∣p)
=: 4p−1E|ξ|p + I1 + I2 + I3.

(3.4)

For the term I1, by Hölder inequality and Assumption 3.1, we have

I1 = 4p−1E( sup
0≤s≤t

∣∣∣∣ ∫ s

0

b(u,Xk(u−
1

k
),L (Xk(u−

1

k
)))du

∣∣∣∣p)
≤ (4T )p−1E

∫ t

0

∣∣b(s,Xk(s−
1

k
),L (Xk(s−

1

k
)))
∣∣pds

≤ (8T )p−1E
∫ t

0

(
∣∣b(s,Xk(s−

1

k
),L (Xk(s−

1

k
)))− b(s, 0, δ0)

∣∣p + |b(s, 0, δ0)|p)ds

≤ (8T )p−1E
∫ t

0

K(s)

[
ψ

(
|Xk(s−

1

k
)|p + Wp

θ(L (Xk(s−
1

k
)), δ0)

)
+ 1

]
ds

≤ (8T )p−1
∫ t

0

K(s)

(
ψ

(
2E|Xk(s−

1

k
)|p
)

+ 1

)
ds.

(3.5)

For the term I2, it comes from Burkholder-Davis-Gundy inequality, Hölder inequality,
and Assumption 3.1, we obtain

I2 = 4p−1E( sup
0≤s≤t

∣∣∣∣ ∫ s

0

σW (u,Xk(u−
1

k
),L (Xk(u−

1

k
)))dWu

∣∣∣∣p)
≤ CpE[

∫ t

0

‖σW (s,Xk(s−
1

k
),L (Xk(s−

1

k
)))‖2ds]

p
2

≤ CpT
p
2
−1E

∫ t

0

‖σW (s,Xk(s−
1

k
),L (Xk(s−

1

k
)))‖pds

≤ CpT
p
2
−1E

∫ t

0

(‖σW (s,Xk(s−
1

k
),L (Xk(s−

1

k
)))− σW (s, 0, δ0)‖p + ‖σW (s, 0, δ0)‖p)ds

(3.6)
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≤ CpT
p
2
−1E

∫ t

0

K(s)

[
ψ

(
|Xk(s−

1

k
)|p + Wp

θ(L (Xk(s−
1

k
)), δ0)

)
+ 1

]
ds

≤ CpT
p
2
−1
∫ t

0

K(s)

(
ψ

(
2E|Xk(s−

1

k
)|p
)

+ 1

)
ds.

For the term I3. It follows from Theorem 4 in [1], (3.5) in [11], and Assumption 3.1, we
have

I3 = 4p−1E( sup
0≤s≤t

|
∫ s

0

σH(u,L (Xk(u−
1

k
)))dBH

u |p)

≤ Cλ,p,HT
pH−1

∫ t

0

‖σH(s,L (Xk(s−
1

k
)))‖pds

≤ Cλ,p,HT
pH−1

∫ t

0

(‖σH(s,L (Xk(s−
1

k
)))− σH(s, δ0)‖p + ‖σH(s, δ0)‖p)ds

≤ Cλ,p,HT
pH−1

∫ t

0

K(s)

[
ψ

(
W p
θ (L (Xk(s−

1

k
)), δ0)

)
+ 1

]
ds

≤ Cλ,p,HT
pH−1

∫ t

0

K(s)

(
ψ

(
E|Xk(s−

1

k
)|p
)

+ 1

)
ds,

(3.7)

where Cλ,p,H above may depend only on H by choosing proper 1−H < λ < 1− 1
p
.

Given that ψ(·) is concave and increasing, there must exist a positive number a such that

ψ(u) ≤ a(1 + u). (3.8)

Hence, we have

E( sup
0≤s≤t

|Xk(s)|p)

≤ 4p−1E|ξ|p + ((8T )p−1 + CpT
p
2
−1 + Cλ,p,HT

pH−1)

×
∫ t

0

K(s)

(
ψ

(
2E|Xk(s−

1

k
)|p
)

+ 1

)
ds

≤ 4p−1E|ξ|p + Cλ,p,H,TK(T )(2a+ 1)

∫ t

0

(
E( sup

0≤u≤s
|Xk(u)|p) + 1

)
ds,

(3.9)

which with the help of Gronwall inequality, gives

E( sup
0≤s≤t

|Xk(s)|p) ≤ (4p−1E|ξ|p + C1T )eC1T ,

where C1 = Cλ,p,H,TK(T )(2a+ 1).

Lemma 3.5 Suppose that ξ ∈ Lp(Ω→ R, F0,P) with p ≥ θ and p > 1
H

. Then

E|Xk(t)−Xk(s)|p ≤ C3[(t− s)p + (t− s)
p
2 + (t− s)pH ], t ≥ s,

where C3 = (6p−1 + Cp + Cλ,p,H)(a+ 1)K(T )(C2 + 1).
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Proof. It follows from (3.1), we have

Xk(t)−Xk(s) =

∫ t

s

b(u,Xk(u−
1

k
),L (Xk(u−

1

k
)))du

+

∫ t

s

σW (u,Xk(u−
1

k
),L (Xk(u−

1

k
)))dWu

+

∫ t

s

σH(u,L (Xk(u−
1

k
)))dBH

u .

(3.10)

In view of inequality (3.3), we get

E|Xk(t)−Xk(s)|p

≤ 3p−1E|
∫ t

s

b(u,Xk(u−
1

k
),L (Xk(u−

1

k
)))du|p

+ 3p−1E|
∫ t

s

σW (u,Xk(u−
1

k
),L (Xk(u−

1

k
)))dWu|p

+ 3p−1E|
∫ t

s

σH(u,L (Xk(u−
1

k
)))dBH

u |p

=: J1 + J2 + J3.

(3.11)

By Hölder inequality and Assumption 3.1, we have

J1 = 3p−1E
∣∣∣∣ ∫ t

s

b(u,Xk(u−
1

k
),L (Xk(u−

1

k
)))du

∣∣∣∣p
≤ 3p−1(t− s)p−1E

∫ t

s

∣∣b(u,Xk(u−
1

k
),L (Xk(u−

1

k
)))
∣∣pdu

≤ 6p−1(t− s)p−1E
∫ t

s

(
∣∣b(u,Xk(u−

1

k
),L (Xk(u−

1

k
)))− b(u, 0, δ0)

∣∣p
+ |b(u, 0, δ0)|p)du

≤ 6p−1(t− s)p−1E
∫ t

s

K(u)

[
ψ

(
|Xk(u−

1

k
)|p + Wp

θ(L (Xk(u−
1

k
)), δ0)

)
+ 1

]
du

≤ 6p−1(t− s)p−1
∫ t

s

K(u)

(
ψ

(
2E|Xk(u−

1

k
)|p
)

+ 1

)
du.

(3.12)

As for J2, by Burkholder-Davis-Gundy inequality, Hölder inequality and Assumption 3.1,
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we obtain

J2 = 3p−1E
∣∣∣∣ ∫ t

s

σW (u,Xk(u−
1

k
),L (Xk(u−

1

k
)))dWu

∣∣∣∣p
≤ 3p−1E

(
sup

s≤u1≤t

∣∣∣∣ ∫ u1

s

σW (u,Xk(u−
1

k
),L (Xk(u−

1

k
)))dWu

∣∣∣∣p)
≤ CpE[

∫ t

s

‖σW (u,Xk(u−
1

k
),L (Xk(u−

1

k
)))‖2du]

p
2

≤ Cp(t− s)
p
2
−1E

∫ t

s

‖σW (u,Xk(u−
1

k
),L (Xk(u−

1

k
)))‖pdu

≤ Cp(t− s)
p
2
−1E

∫ t

s

(‖σW (u,Xk(u−
1

k
),L (Xk(u−

1

k
)))− σW (u, 0, δ0)‖p

+ ‖σW (u, 0, δ0)‖p)du

≤ Cp(t− s)
p
2
−1E

∫ t

s

K(u)

[
ψ

(
|Xk(u−

1

k
)|p + Wp

θ(L (Xk(u−
1

k
)), δ0)

)
+ 1

]
du

≤ Cp(t− s)
p
2
−1
∫ t

s

K(u)

(
ψ

(
2E|Xk(u−

1

k
)|p
)

+ 1

)
du.

(3.13)

For the term J3, the method main comes from [1], [11], for completeness, we give the
main proof. Taking λ satisfying 1 − H < λ < 1 − 1

p
because pH > 1. Using the fact that∫ t

u
(t − r)−λ(r − u)λ−1dr = C(λ), the stochastic Fubini theorem and the Hölder inequality,

we get

E
∣∣∣∣ ∫ t

s

σH(u,L (Xk(u−
1

k
)))dBH

u

∣∣∣∣p
= C(λ)−pE

(∣∣∣∣∫ t

s

(∫ t

u

(t− r)−λ(r − u)λ−1dr

)
σH(u,L (Xk(u−

1

k
)))dBH

u

∣∣∣∣p)
= C(λ)−pE

(∣∣∣∣∫ t

s

(t− r)−λ
(∫ r

s

(r − u)λ−1σH(u,L (Xk(u−
1

k
)))dBH

u

)
dr

∣∣∣∣p)
≤ C(λ)−p(p− 1)p−1

(p− 1− pλ)p−1
(t− s)p−1−pλ

×
∫ t

s

E
∣∣∣∣∫ r

s

(r − u)λ−1σH(u,L (Xk(u−
1

k
)))dBH

u

∣∣∣∣p dr

(3.14)

Notice that for each r ∈ [0, T ],
∫ r
s

(r − u)λ−1σH(u,L (Xk(u − 1
k
)))dBH

u is a centered
Gaussian random variable. By Kahane-Khintchine formula, we obtain that there exists a
constant Cp such that
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E
∣∣∣∣ ∫ r

s

(r − u)λ−1σH(u,L (Xk(u−
1

k
)))dBH

u

∣∣∣∣p
≤ Cp

(
E
∣∣∣∣ ∫ r

s

(r − u)λ−1σH(u,L (Xk(u−
1

k
)))dBH

u

∣∣∣∣2) p
2

≤ Cp

(∫ r

s

∫ r

s

(r − u)λ−1‖σH(u,L (Xk(u−
1

k
)))‖

× (r − v)λ−1‖σH(v,L (Xk(v −
1

k
)))‖|u− v|2H−2dudv

) p
2

≤ Cp,H

(∫ r

s

(r − u)
λ−1
H ‖σH(u,L (Xk(u−

1

k
)))‖

1
H du

)pH
,

(3.15)

where the last inequality is due to the argument in Theorem 1.1 in [25].

Substituting (3.15) into (3.14) and using the condition 1 −H < λ and Lemma 2.1 with
q̃ = pH and α = 1− 1−λ

H
(imply p̃ = pH

p(λ+H−1)+1
), we have

E
∣∣∣∣ ∫ t

s

σH(u,L (Xk(u−
1

k
)))dBH

u

∣∣∣∣p
≤ Cλ,p,H(t− s)p−1−λp

∫ t

s

(∫ r

s

(r − u)
λ−1
H ‖σH(u,L (Xk(u−

1

k
)))‖

1
H du

)pH
dr

= Cλ,p,H(t− s)p−1−λp
(
‖I

λ+H−1
H

0+ (‖σH(r,L (Xk(r −
1

k
)))‖

1
H I[s,t])‖LpH [s,t]

)pH
≤ Cλ,p,H(t− s)p−1−λp

(
‖‖σH(r,L (Xk(r −

1

k
)))‖

1
H I[s,t]‖

L
pH

p(λ+H−1)+1 [s,t]

)pH
= Cλ,p,H(t− s)p−1−λp

(∫ t

s

‖σH(r,L (Xk(r −
1

k
)))‖

p
p(λ+H−1)+1dr

)p(λ+H−1)+1

≤ Cλ,p,H(t− s)pH−1
∫ t

s

‖σH(r,L (Xk(r −
1

k
)))‖pdr.

(3.16)

Hence, by Assumption 3.1, we have

J3 = 3p−1E|
∫ t

s

σH(u,L (Xk(u−
1

k
)))dBH

u |p

≤ Cλ,p,H(t− s)pH−1
∫ t

s

‖σH(u,L (Xk(u−
1

k
)))‖pdu

≤ Cλ,p,H(t− s)pH−1
∫ t

s

(‖σH(u,L (Xk(u−
1

k
)))− σH(u, δ0)‖p + ‖σH(u, δ0)‖p)du

≤ Cλ,p,H(t− s)pH−1
∫ t

s

K(u)

[
ψ

(
W p
θ (L (Xk(u−

1

k
)), δ0)

)
+ 1

]
du

≤ Cλ,p,H(t− s)pH−1
∫ t

s

K(u)

(
ψ

(
E|Xk(u−

1

k
)|p
)

+ 1

)
du.

(3.17)
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Thus, by (3.8), (3.11) and Lemma 3.4, we can obtain

E|Xk(t)−Xk(s)|p

≤ (6p−1 + Cp + Cλ,p,H)[(t− s)p−1 + (t− s)
p
2
−1 + (t− s)pH−1]

×
∫ t

s

K(u)

(
ψ

(
2E|Xk(u−

1

k
)|p
)

+ 1

)
du

≤ (6p−1 + Cp + Cλ,p,H)(2a+ 1)K(T )(E( sup
0≤u≤T

|Xk(u)|p) + 1)

× [(t− s)p + (t− s)
p
2 + (t− s)pH ]

≤ C3[(t− s)p + (t− s)
p
2 + (t− s)pH ],

(3.18)

where C3 = (6p−1 + Cp + Cλ,p,H)(2a+ 1)K(T )(C2 + 1).

Theorem 3.6 Suppose that Assumption 3.1 holds and ξ ∈ Lp(Ω → R, F0, P) with p ≥ θ
and p > 1/H. Then the equation (1.2) has a unique solution X ∈ Lp(Ω;C([0, T ];Rd)).

Proof. We split the proof into two step.

Step one: (Existence) We first prove that (Xk)k≥1 is a Cauchy sequence in Lp(Ω;C([0, T ];Rd))
with p ≥ θ and p > 1

H
.

In fact, for m > k ≥ 1, it is routine to obtain

sup
0≤s≤t

|Xm(s)−Xk(s)|p

≤ 3p−1 sup
0≤s≤t

∣∣∣ ∫ s

0

(
b(u,Xm(u− 1

m
),L (Xm(u− 1

m
)))

− b(u,Xk(u−
1

k
),L (Xk(u−

1

k
)))
)
du
∣∣∣p

+ 3p−1 sup
0≤s≤t

∣∣∣ ∫ s

0

(
σW (u,Xm(u− 1

m
),L (Xm(u− 1

m
)))

− σW (u,Xk(u−
1

k
),L (Xk(u−

1

k
)))
)
dWu

∣∣∣p
+ 3p−1 sup

0≤s≤t

∣∣∣ ∫ s

0

(
σH(u,L (Xm(u− 1

m
)))

− σH(u,L (Xk(u−
1

k
)))
)
dBH

u

∣∣∣p
=: F1 + F2 + F3.

(3.19)
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By Hölder inequality, Assumption 3.1 and Lemma 3.5, we have

EF1 = 3p−1E
(

sup
0≤s≤t

∣∣∣ ∫ s

0

(
b(u,Xm(u− 1

m
),L (Xm(u− 1

m
)))

− b(u,Xk(u−
1

k
),L (Xk(u−

1

k
)))
)
du
∣∣∣p)

≤ (3T )p−1E
∫ t

0

|b(u,Xm(u− 1

m
),L (Xm(u− 1

m
)))

− b(u,Xk(u−
1

k
),L (Xk(u−

1

k
)))|pdu

≤ (6T )p−1E
∫ t

0

∣∣∣∣b(u,Xm(u− 1

m
),L (Xm(u− 1

m
)))

− b(u,Xk(u−
1

m
),L (Xk(u−

1

m
)))

∣∣∣∣pdu
+ (6T )p−1E

∫ t

0

∣∣∣∣b(u,Xk(u−
1

m
),L (Xk(u−

1

m
)))

− b(u,Xk(u−
1

k
),L (Xk(u−

1

k
)))

∣∣∣∣pdu
≤ (6T )p−1

∫ t

0

K(u)ψ(2E|Xm(u− 1

m
)−Xk(u−

1

m
)|p)du

+ (6T )p−1
∫ t

0

K(u)ψ
(

2C3

(
(
1

k
− 1

m
)p + (

1

k
− 1

m
)
p
2 + (

1

k
− 1

m
)pH
))
du.

(3.20)

By Burkholder-Davis-Gundy inequality, Hölder inequality, Assumption 3.1 and Lemma
3.5, we obtain

EF2 = 3p−1E
(

sup
0≤s≤t

∣∣∣ ∫ s

0

(
σW (u,Xm(u− 1

m
),L (Xm(u− 1

m
)))

− σW (u,Xk(u−
1

k
),L (Xk(u−

1

k
)))
)
dWu

∣∣∣p)
≤ CpE

(∫ t

0

‖σW (u,Xm(u− 1

m
),L (Xm(u− 1

m
)))

− σW (u,Xk(u−
1

k
),L (Xk(u−

1

k
)))‖2du

) p
2

≤ CpT
p
2
−1E

∫ t

0

‖σW (u,Xm(u− 1

m
),L (Xm(u− 1

m
)))

− σW (u,Xk(u−
1

k
),L (Xk(u−

1

k
)))‖pdu

(3.21)
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≤ CpT
p
2
−1E

∫ t

0

‖σW (u,Xm(u− 1

m
),L (Xm(u− 1

m
)))

− σW (u,Xk(u−
1

m
),L (Xk(u−

1

m
)))‖pdu

+ CpT
p
2
−1E

∫ t

0

‖σW (u,Xk(u−
1

m
),L (Xk(u−

1

m
)))

− σW (u,Xk(u−
1

k
),L (Xk(u−

1

k
)))‖pdu

≤ CpT
p
2
−1
∫ t

0

K(u)ψ
(

2E|Xm(u− 1

m
)−Xk(u−

1

m
)|p
)
du

+ CpT
p
2
−1
∫ t

0

K(u)ψ
(

2C3

(
(
1

k
− 1

m
)p + (

1

k
− 1

m
)
p
2 + (

1

k
− 1

m
)pH
))
du.

By Assumption 3.1 and Lemma 3.5, we have

EF3 = 3p−1E
(

sup
0≤s≤t

∣∣∣ ∫ s

0

(
σH(u,L (Xm(u− 1

m
)))− σH(u,L (Xk(u−

1

k
)))
)
dBH

u

∣∣∣p)
≤ Cλ,p,HT

pH−1
∫ t

0

‖σH(u,L (Xm(u− 1

m
)))− σH(u,L (Xk(u−

1

k
)))‖pdu

≤ Cλ,p,HT
pH−1

∫ t

0

‖σH(u,L (Xm(u− 1

m
)))− σH(u,L (Xk(u−

1

m
)))‖pdu

+ Cλ,p,HT
pH−1

∫ t

0

‖σH(u,L (Xk(u−
1

m
)))− σH(u,L (Xk(u−

1

k
)))‖pdu

≤ Cλ,p,HT
pH−1

∫ t

0

K(u)ψ(E|Xm(u− 1

m
)−Xk(u−

1

m
)|p)du

+ Cλ,p,HT
pH−1

∫ t

0

K(u)ψ
(
C3

(
(
1

k
− 1

m
)p + (

1

k
− 1

m
)
p
2 + (

1

k
− 1

m
)pH
))
du.

(3.22)

Hence, we have

E
(

sup
0≤s≤t

|Xm(s)−Xk(s)|p
)

≤ ((6T )p−1 + CpT
p
2
−1 + Cλ,p,HT

pH−1)

∫ t

0

K(u)ψ(2E|Xm(u− 1

m
)−Xk(u−

1

m
)|p)du

+ (6p−1T p + CpT
p
2 + Cλ,p,HT

pH)K(T )ψ
(

2C3

(
(
1

k
− 1

m
)p + (

1

k
− 1

m
)
p
2 + (

1

k
− 1

m
)pH
))
.

(3.23)

Taking limit as m, k →∞, using the fact that ψ(0) = 0, we obtain for every ε > 0,

Z(t) ≤ ((6T )p−1 + CpT
p
2
−1 + Cλ,p,HT

pH−1)

∫ t

0

K(u)ψ(2Z(u))du

≤ ε+ ((6T )p−1 + CpT
p
2
−1 + Cλ,p,HT

pH−1)K(T )

∫ t

0

ψ(2Z(u))du.

(3.24)
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where Z(t) = limm,k→∞ E(sup0≤s≤t |Xm(s)−Xk(s)|p). Hence, Bihari inequality yields

Z(t) ≤ 1

2
G−1[G(2ε) + 2((6T )p−1 + CpT

p
2
−1 + Cλ,p,HT

pH−1)K(T )t],

where G(2ε) + 2((6T )p−1 + CpT
p
2
−1 + Cλ,p,HT

pH−1)K(T )t ∈ Dom(G−1), G−1 is the inverse
function of G(·) and

G(v) =

∫ v

1

ds

ψ(s)
, v > 0

By Assumption 3.1, one sees that limε↓0G(ε) = −∞ andDom(G−1) = (−∞, G(∞)). Letting
ε→ 0 gives Z(t) = 0, i.e.,

E( sup
0≤s≤t

|Xm(s)−Xk(s)|p)→ 0, as m, k →∞. (3.25)

Consequently, (Xk)k≥1 is a Cauchy sequence in Lp(Ω;C([0, T ];Rd)) with p ≥ θ and p > 1
H

,
and then the limit, denoted by X. Therefore, putting m→∞ in (3.25), we conclude

lim
k→∞

E( sup
0≤s≤T

|X(s)−Xk(s)|p) = 0. (3.26)

Now, we will prove that the X(t) is a solution to (1.2). For all 0 ≤ t ≤ T , we have

E|X(t)−Xk(t−
1

k
)|p = E|X(t)−Xk(t) +Xk(t)−Xk(t−

1

k
)|p

≤ 2p−1E|X(t)−Xk(t)|p + 2p−1E|Xk(t)−Xk(t−
1

k
)|p.

(3.27)

By Lemma 3.5 and (3.26), we obtain

E|X(t)−Xk(t−
1

k
))|p → 0, as k →∞.

Therefore, as k →∞ in (3.1), we obtain

X(t) =ξ +

∫ t

0

b(s,X(t),L (X(s)))ds+

∫ t

0

σW (s,X(s),L (X(s)))dWs

+

∫ t

0

σH(s,L (X(s)))dBH
s , t ∈ [0, T ],

(3.28)

that indicates X(t) is a solution to (1.2). Hence, the proof of the existence is completed.

Step Two: (Uniqueness) LetX(t), Y (t) be two solutions for (1.2) on the same proba-
bility space with X(0) = Y (0), then, by inequality (3.3),

E
(

sup
0≤s≤t

|X(s)− Y (s)|p
)

≤ 3p−1E
(

sup
0≤s≤t

∣∣∣∣∫ s

0

(
b(u,X(u),L (X(u)))− b(u, Y (u),L (Y (u)))

)
du

∣∣∣∣p)
+ 3p−1E

(
sup
0≤s≤t

∣∣∣∣∫ s

0

(
σW (u,X(u),L (X(u)))− σW (u, Y (u),L (Y (u)))

)
dWu

∣∣∣∣p)
+ 3p−1E

(
sup
0≤s≤t

∣∣∣∣∫ s

0

(
σH(u,L (X(u)))− σH(u,L (Y (u)))

)
dBH

u

∣∣∣∣p)
=: H1 +H2 +H3.

(3.29)
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By Hölder inequality and Assumption 3.1, we have

H1 = 3p−1E
(

sup
0≤s≤t

∣∣∣∣∫ s

0

(
b(u,X(u),L (X(u)))− b(u, Y (u),L (Y (u)))

)
du

∣∣∣∣p)
≤ (3T )p−1E

∫ t

0

|b(s,X(s),L (X(s)))− b(s, Y (s),L (Y (s)))|pds

≤ (3T )p−1E
∫ t

0

K(s)ψ
(
|X(s)− Y (s)|p + Wp

θ

(
L (X(s)),L (Y (s))

))
ds

≤ (3T )p−1K(T )

∫ t

0

ψ

(
2E
(

sup
0≤u≤s

|X(u)− Y (u)|p
))

ds.

(3.30)

It comes from Burkholder-Davis-Gundy inequality, Hölder inequality and Assumption
3.1, we obtain

H2 = 3p−1E
(

sup
0≤s≤t

∣∣∣ ∫ s

0

(
σW (u,X(u),L (X(u)))− σW (u, Y (u),L (Y (u)))

)
dWu

∣∣∣p)
≤ CpE

(∫ t

0

‖σW (s,X(s),L (X(s)))− σW (s, Y (s),L (Y (s)))‖2ds
) p

2

≤ CpT
p
2
−1E

∫ t

0

‖σW (s,X(s),L (X(s)))− σW (s, Y (s),L (Y (s)))‖pds

≤ CpT
p
2
−1E

∫ t

0

K(s)ψ
(
|X(s)− Y (s)|p + Wp

θ

(
L (X(s)),L (Y (s))

))
ds

≤ CpT
p
2
−1K(T )

∫ t

0

ψ
(

2E
(

sup
0≤u≤s

|X(u)− Y (u)|p
))
ds.

(3.31)

By Assumption 3.1, we have that

H3 = 3p−1E
(

sup
0≤s≤t

∣∣∣∣∫ s

0

(
σH(u,L (X(u)))− σH(u,L (Y (u)))

)
dBH

u

∣∣∣∣p)
≤ Cλ,p,HT

pH−1
∫ t

0

‖σH(s,L (X(s)))− σH(s,L (Y (s)))‖pds

≤ Cλ,p,HT
pH−1

∫ t

0

K(s)ψ
(
W p
θ

(
L (X(s)),L (Y (s))

))
ds

≤ Cλ,p,HT
pH−1K(T )

∫ t

0

ψ
(
E
(

sup
0≤u≤s

|X(u)− Y (u)|p
))
ds.

(3.32)

Therefore,

E
(

sup
0≤s≤t

|X(s)− Y (s)|p
)
≤ ((3T )p−1 + CpT

p
2
−1 + Cλ,p,HT

pH−1)K(T )

×
∫ t

0

ψ
(

2E
(

sup
0≤u≤s

|X(u)− Y (u)|p
))
ds.

(3.33)

Then, the Bihari inequality implies that X(t) = Y (t), t ∈ [0, T ], P−a.s. This completes the
proof.
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4 Stochastic averaging principle

In this section, our aim is to establish a stochastic averaging principle for the following
stochastic integral equations

Xε(t) = ξ +

∫ t

0

b(
s

ε
,Xε(s),L (Xε(s)))ds+

∫ t

0

σW (
s

ε
,Xε(s),L (Xε(s)))dWs

+

∫ t

0

σH(
s

ε
,L (Xε(s)))dBH

s , t ∈ [0, T ],

(4.1)

where ε ∈ (0, ε0] is a positive parameter with ε0 > 0 being fixed. The coefficients of
(4.1) fulfill the same conditions as in (1.2). Thus, Equation (4.1) has a unique solution
Xε(t), t ∈ [0, T ].

Our objective is to show that the solution Xε(t), t ∈ [0, T ] could be approximated in
certain sense by the solution X̄(t),t ∈ [0, T ] of the following averaged equation

X̄(t) = ξ +

∫ t

0

b̄(X̄(s),L (X̄(s)))ds+

∫ t

0

σ̄W (X̄(s),L (X̄(s)))dWs

+

∫ t

0

σ̄H(L (X̄(s)))dBH
s , t ∈ [0, T ],

(4.2)

where b̄ : Rd ×P2(Rd)→ Rd, σ̄W : Rd ×P2(Rd)→ Rd ⊗Rr, and σ̄H : P2(Rd)→ Rd ⊗Rm is
Borel measurable function.

Remark 4.1 The averaging principle is also applicable to the following system

dX(t) =εb(t,X(t),L (X(t)))dt+
√
εσW (t,X(t),L (X(t)))dWt

+ εHσH(t,L (X(t)))dBH
t ,

(4.3)

where 0 < ε ≤ 1. With the time scaling t → t
ε
, denote by Φε(t) := X( t

ε
), Wε(t) :=

√
εW t

ε

and BH
ε (t) := εHBH

t
ε

for all t ∈ R, we transform equation (4.3) to

dΦε(t) =b(
t

ε
,Φε(t),L (Φε(t)))dt+ σW (

t

ε
,Φε(t),L (Φε(t)))dWε(t)

+ σH(
t

ε
,L (Φε(t)))dB

H
ε (t).

Then we can consider the following equation

dX̃ε(t) =b(
t

ε
, X̃ε(t),L (X̃ε(t)))dt+ σW (

t

ε
, X̃ε(t),L (X̃ε(t)))dW (t)

+ σH(
t

ε
,L (X̃ε(t)))dB

H(t).

To ensure the DDSDEs (4.2) also has a unique solution X̄t, t ∈ [0, T ], we will make use
of the following assumptions on the coefficients. Moreover, we assume K(t) is bounded.
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Assumption 4.1 (Averaging condition) There is a bounded positive function ϕ : (0,∞)→
(0,∞) with limT→∞ ϕ(T ) = 0, such that for any x ∈ Rd, µ ∈ P2(Rd)

sup
t≥0

∣∣∣∣ 1

T

∫ t+T

t

[b(s, x, µ)− b̄(x, µ)]ds

∣∣∣∣2 ≤ ϕ(T )(1 + |x|2 + W2
2(µ, δ0)),

sup
t≥0

1

T

∫ t+T

t

‖σW (s, x, µ)− σ̄W (x, µ)‖2 ds ≤ ϕ(T )(1 + |x|2 + W2
2(µ, δ0)),

sup
t≥0

1

T

∫ t+T

t

‖σH(s, µ)− σ̄H(µ)‖2 ds ≤ ϕ(T )(1 + W2
2(µ, δ0)).

Remark 4.2 (i) Noting that

sup
t≥0

∣∣∣∣ 1

T

∫ t+T

t

[b(s, x, µ)− b̄(x, µ)]ds

∣∣∣∣2 ≤ sup
t≥0

1

T

∫ t+T

t

|b(s, x, µ)− b̄(x, µ)|2ds,

this shows that Assumption 4.1 is weaker than the following averaging condition:

sup
t≥0

1

T

∫ t+T

t

|b(s, x, µ)− b̄(x, µ)|2ds ≤ ϕ(T )(1 + |x|2 + W2
2(µ, δ0)).

Hence, we need to overcome the difficulties with the weaker condition to obtain the
averaging principle for the concerned DDSDEs.

(ii) For any x, y ∈ Rd, and any T > 0, we have∣∣b̄(x, µ)− b̄(y, ν)
∣∣2

≤ 3

∣∣∣∣ 1

T

∫ T

0

[b(s, x, µ)− b̄(x, µ)]ds

∣∣∣∣2 + 3

∣∣∣∣ 1

T

∫ T

0

[b(s, y, ν)− b̄(y, ν)]ds

∣∣∣∣2
+ 3

∣∣∣∣ 1

T

∫ T

0

[b(s, x, µ)− b(s, y, ν)]ds

∣∣∣∣2
≤ 3ϕ(T )(2 + |x|2 + |y|2 + W2

2(µ, δ0) + W2
2(ν, δ0)) + 3K(T )ψ(|x− y|2 + W2

2(µ, ν)),

(4.4)

|b̄(0, δ0)|2 ≤ 2

∣∣∣∣ 1

T

∫ T

0

[b(s, 0, δ0)− b̄(0, δ0)]ds
∣∣∣∣2 + 2

∣∣∣∣ 1

T

∫ T

0

b(s, 0, δ0)ds

∣∣∣∣2
≤ 2ϕ(T ) + 2K(T ).

Taking T →∞, because K(t) is bounded, there exists a constant L, such that

|b̄(x, µ)− b̄(y, ν)|2 ≤ Lψ(|x− y|2 + W2
2(µ, ν)), |b̄(0, δ0)|2 ≤ L.

Similarly, for any x, y ∈ Rd, and any T > 0, we have

‖σ̄W (x, µ)− σ̄W (y, ν)‖2

≤ 3ϕ(T )(2 + |x|2 + |y|2 + W2
2(µ, δ0) + W2

2(ν, δ0)) + 3K(T )ψ(|x− y|2 + W2
2(µ, ν)),
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‖σ̄H(µ)− σ̄H(ν)‖2 ≤ 3ϕ(T )(2 + W2
2(µ, δ0) + W2

2(ν, δ0)) + 3K(T )ψ(W2
2(µ, ν)),

‖σ̄W (0, δ0)‖2 ≤ 2ϕ(T ) + 2K(T ), ‖σ̄H(δ0)‖2 ≤ 2ϕ(T ) + 2K(T ).

Taking T →∞, we have

‖σ̄W (x, µ)−σ̄W (y, ν)‖2 ≤ Lψ(|x−y|2+W2
2(µ, ν)), ‖σ̄H(µ)−σ̄H(ν)‖2 ≤ Lψ(W2

2(µ, ν)),

‖σ̄W (0, δ0)‖2 ≤ L, ‖σ̄H(δ0)‖2 ≤ L.

Thus, the coefficients b̄, σ̄w, σ̄H satisfy the Assumptions 3.1, Therefore, there is a unique
solution X̄t to the averaged equationthe (4.2).

Remark 4.3 Using the similar proof methods as Lemma 3.4, Lemma 3.5 and Theorem 3.6,
we have that for any initial value Xε(0) = ξ satisfying E|ξ|2 < ∞, under Assumption 3.1,
there exists an unique solution Xε(t) ∈ L2(Ω;Rd) for equation (4.1). Moreover, this solution
satisfies

E
[

sup
0≤t≤T

|Xε(t)|2
]
≤ C4,ε,

and

E|Xε(t)−Xε(s)|2 ≤ C5,εK(
T

ε
)(|t− s|+ |t− s|2 + |t− s|2H),

where C4,ε, C5,ε are two positive constants depend on ε.

Lemma 4.2 Suppose that Assumptions 3.1 and 4.1 hold and E|ξ|2 < +∞. Then, we have

lim
ε→0

E
(

sup
0≤t≤T

∣∣∣ ∫ t

0

(
b(
s

ε
,Xε(s),L (Xε(s)))− b̄(Xε(s),L (Xε(s)))

)
ds
∣∣∣2) = 0. (4.5)

Proof. Let {t1, t2, · · ·, tN} be a partition of [0, T ]:

ti = i
√
ε, 0 ≤ i ≤ N − 1, 0 < T − tN−1 ≤

√
ε, tN = T.

Then, it is not difficult to obtain that T ≤ N
√
ε < T +

√
ε. We have∣∣∣∣ ∫ t

0

[b(
s

ε
,Xε(s),L (Xε(s)))− b̄(Xε(s),L (Xε(s)))]ds

∣∣∣∣2
≤ N

∣∣∣∣ ∫ t

[ t√
ε
]
√
ε

[b(
s

ε
,Xε(s),L (Xε(s)))− b̄(Xε(s),L (Xε(s)))]ds

∣∣∣∣2 +N
N−2∑
i=0

|Xi|2,
(4.6)

where Xi :=
∫ ti+1

ti
[b( s

ε
, Xε(s),L (Xε(s))) − b̄(Xε(s),L (Xε(s)))]ds. By Hölder inequality,

Assumptions 3.1 and Remark 4.2, we have∣∣∣∣ ∫ t

[ t√
ε
]
√
ε

[b(
s

ε
,Xε(s),L (Xε(s)))− b̄(Xε(s),L (Xε(s)))]ds

∣∣∣∣2
≤ 2(t− [

t√
ε
]
√
ε)

∫ t

[ t√
ε
]
√
ε

(
|b(s
ε
,Xε(s),L (Xε(s)))|2 + |b̄(Xε(s),L (Xε(s)))|2

)
ds

≤ 4(t− [
t√
ε
]
√
ε)

∫ t

[ t√
ε
]
√
ε

(K(
s

ε
) + L)

[
ψ
(
|Xε(s)|2 + E|Xε(s)|2

)
+ 1
]
ds

≤ 4(K(
T

ε
) + L)ε(a+ 1 + a sup

0≤t≤T
|Xε(t)|2 + aE( sup

0≤t≤T
|Xε(t)|2)).

(4.7)
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By (4.7) and Remark 4.3, we get

E

(
sup

0≤t≤T

∣∣∣∣ ∫ t

0

[b(
s

ε
,Xε(s),L (Xε(s)))− b̄(Xε(s),L (Xε(s)))]ds

∣∣∣∣2
)

≤ CεN(K(
T

ε
) + L) +NE

N−2∑
i=0

|Xi|2

≤ C(K(
T

ε
) + L)

√
ε(T +

√
ε) +N

N−2∑
i=0

E|Xi|2.

(4.8)

By Assumptions 3.1, 4.1 and Remark 4.2, we have

|Xi|2 =

∣∣∣∣ ∫ ti+1

ti

[b(
s

ε
,Xε(s),L (Xε(s)))− b̄(Xε(s),L (Xε(s)))]ds

∣∣∣∣2
≤ 3

∣∣∣∣ ∫ ti+1

ti

[b(
s

ε
,Xε(ti),L (Xε(ti)))− b̄(Xε(ti),L (Xε(ti)))]ds

∣∣∣∣2
+ 3

∣∣∣∣ ∫ ti+1

ti

[b(
s

ε
,Xε(s),L (Xε(s)))− b(s

ε
,Xε(ti),L (Xε(ti)))]ds

∣∣∣∣2
+ 3

∣∣∣∣ ∫ ti+1

ti

[b̄(Xε(ti),L (Xε(ti)))− b̄(Xε(s),L (Xε(s)))]ds

∣∣∣∣2
≤ 3

∣∣∣∣ε∫
ti+1
ε

ti
ε

[b(s,Xε(ti),L (Xε(ti)))− b̄(Xε(ti),L (Xε(ti)))]ds

∣∣∣∣2
+ 3
√
ε(K(

T

ε
) + L)

∫ ti+1

ti

ψ(|Xε(s)−Xε(ti)|2 + E|Xε(s)−Xε(ti)|2)ds

≤ 3εϕ(
1√
ε
)

(
1 + sup

t∈[0,T ]
|Xε(t)|+ E( sup

t∈[0,T ]
|Xε(t)|2)

)

+ 3
√
ε(K(

T

ε
) + L)

∫ ti+1

ti

ψ(|Xε(s)−Xε(ti)|2 + E|Xε(s)−Xε(ti)|2)ds.

(4.9)

Hence,

N

N−2∑
i=0

E|Xi|2

≤ 3Nε
N−2∑
i=0

ϕ(
1√
ε
)(1 + 2E( sup

t∈[0,T ]
|Xε(t)|2))

+ 3N
√
ε(K(

T

ε
) + L)

N−2∑
i=0

∫ ti+1

ti

ψ(2E|Xε(s)−Xε(ti)|2)ds

(4.10)
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≤ 3Nε
N−2∑
i=0

ϕ(
1√
ε
)(1 + 2E( sup

t∈[0,T ]
|Xε(t)|2))

+ 3N2
√
ε(K(

T

ε
) + L)

∫ ti+1

ti

ψ
(

2C5,εK(
s

ε
)((s− ti) + (s− ti)2 + (s− ti)2H)

)
ds

≤ CN2ε

[
ϕ(

1√
ε
) + (K(

T

ε
) + L)ψ

(
2C5,εK(

T

ε
)(
√
ε+ ε+ εH)

)]
≤ C(T +

√
ε)2
[
ϕ(

1√
ε
) + (K(

T

ε
) + L)ψ

(
2C5,εK(

T

ε
)(
√
ε+ ε+ εH)

)]
.

Combining (4.10) with (4.8), we get

E

(
sup

0≤t≤T

∣∣∣∣ ∫ t

0

[b(
s

ε
,Xε(s),L (Xε(s)))− b̄(Xε(s),L (Xε(s)))]ds

∣∣∣∣2
)

≤ C(K(
T

ε
) + L)

√
ε(T +

√
ε)

+ C(T +
√
ε)2
[
ϕ(

1√
ε
) + (K(

T

ε
) + L)ψ

(
2C5,εK(

T

ε
)(
√
ε+ ε+ εH)

)]
→ 0,

(4.11)

as ε tends to zero.

Lemma 4.3 Suppose that Assumptions 3.1 and 4.1 hold and E|ξ|2 < +∞. Then, we have

lim
ε→0

E
∫ T

0

‖σW (
s

ε
,Xε(s),L (Xε(s)))− σ̄W (Xε(s),L (Xε(s)))‖2ds = 0. (4.12)

Proof. It’s similar to Lemma 4.2, let {t1, t2, · · ·, tN} satisfy

ti = i
√
ε, 0 ≤ i ≤ N − 1, 0 < T − tN−1 ≤

√
ε, tN = T.

Denote

Yi :=

∫ ti+1

ti

‖σW (
s

ε
,Xε(s),L (Xε(s)))− σ̄W (Xε(s),L (Xε(s)))‖2ds.

Thus, we have

N−1∑
i=0

EYi = E
∫ T

0

‖σW (
s

ε
,Xε(s),L (Xε(s)))− σ̄W (Xε(s),L (Xε(s)))‖2ds.
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By Assumptions 4.1, 3.1, and Remark 4.2, we obtain

Yi =

∫ ti+1

ti

‖σW (
s

ε
,Xε(s),L (Xε(s)))− σ̄W (Xε(s),L (Xε(s)))‖2ds

≤ 3

∫ ti+1

ti

‖σW (
s

ε
,Xε(ti),L (Xε(ti)))− σ̄W (Xε(ti),L (Xε(ti)))‖2ds

+ 3

∫ ti+1

ti

‖σW (
s

ε
,Xε(s),L (Xε(s)))− σW (

s

ε
,Xε(ti),L (Xε(ti)))‖2ds

+ 3

∫ ti+1

ti

‖σ̄W (Xε(ti),L (Xε(ti)))− σ̄W (Xε(s),L (Xε(s)))‖2ds

≤ 3ε

∫ ti+1
ε

ti
ε

‖σW (s,Xε(ti),L (Xε(ti)))− σ̄W (Xε(ti),L (Xε(ti)))‖2ds

+ 3(K(
T

ε
) + L)

∫ ti+1

ti

ψ
(
|Xε(s)−Xε(ti)|2 + E|Xε(s)−Xε(ti)|2

)
ds

≤ 3
√
εϕ(

1√
ε
)(1 + sup

t∈[0,T ]
|Xε(t)|2 + E( sup

t∈[0,T ]
|Xε(t)|2))

+ 3(K(
T

ε
) + L)

∫ ti+1

ti

ψ
(
|Xε(s)−Xε(ti)|2 + E|Xε(s)−Xε(ti)|2

)
ds.

(4.13)

By Remark 4.3, we have

N−1∑
i=0

EYi ≤ 3
√
ε
N−1∑
i=0

ϕ(
1√
ε
)(1 + 2E( sup

t∈[0,T ]
|Xε(t)|2))

+ 3(K(
T

ε
) + L)

N−1∑
i=0

∫ ti+1

ti

ψ
(
2E|Xε(s)−Xε(ti)|2

)
ds

≤ CN
√
ε

[
ϕ(

1√
ε
) + (K(

T

ε
) + L)ψ

(
2C5,εK(

T

ε
)(
√
ε+ ε+ εH)

)]
≤ C(T +

√
ε)

[
ϕ(

1√
ε
) + (K(

T

ε
) + L)ψ

(
2C5,εK(

T

ε
)(
√
ε+ ε+ εH)

)]
.

(4.14)

Hence,

E
∫ T

0

|σW (
s

ε
,Xε(s),L (Xε(s)))− σ̄W (Xε(s),L (Xε(s)))|2ds

≤ C(T +
√
ε)

[
ϕ(

1√
ε
) + (K(

T

ε
) + L)ψ

(
2C5,εK(

T

ε
)(
√
ε+ ε+ εH)

)]
→ 0,

(4.15)

as ε tends to zero.

Lemma 4.4 Suppose that Assumptions 3.1 and 4.1 hold and E|ξ|2 < +∞. Then, we have

lim
ε→0

∫ T

0

‖σH(
s

ε
,L (Xε(s)))− σ̄H(L (Xε(s)))‖2ds = 0. (4.16)
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The proof is the same as Lemma 4.3, here we omit the proof.

Theorem 4.5 Assume that E|ξ|2 < +∞. Then, under Assumptions 3.1 and 4.1, the fol-
lowing averaging principle holds

lim
ε→0

E

(
sup
t∈[0,T ]

|Xε(t)− X̄(t)|2
)

= 0.

Proof. For any r ∈ [0, T ], we have

E

(
sup
t∈[0,r]

|Xε(t)− X̄(t)|2
)

≤ 3E

(
sup
t∈[0,r]

∣∣∣∣∫ t

0

(
b(
s

ε
,Xε(s),L (Xε(s)))− b̄(X̄(s),L (X̄(s)))

)
ds

∣∣∣∣2
)

+ 3E

(
sup
t∈[0,r]

∣∣∣∣∫ t

0

(
σW (

s

ε
,Xε(s),L (Xε(s)))− σ̄W (X̄(s),L (X̄(s)))

)
dWs

∣∣∣∣2
)

+ 3E

(
sup
t∈[0,r]

∣∣∣∣∫ t

0

(
σH(

s

ε
,L (Xε(s)))− σ̄H(L (X̄(s)))

)
dBH

s

∣∣∣∣2
)

:= 3V1 + 3V2 + 3V3.

(4.17)

By Hölder inequality and Remark 4.2, we have

V1 = E

(
sup
t∈[0,r]

∣∣∣∣∫ t

0

(
b(
s

ε
,Xε(s),L (Xε(s)))− b̄(X̄(s),L (X̄(s)))

)
ds

∣∣∣∣2
)

≤ 2E

(
sup
t∈[0,r]

∣∣∣∣∫ t

0

(
b(
s

ε
,Xε(s),L (Xε(s)))− b̄(Xε(s),L (Xε(s)))

)
ds

∣∣∣∣2
)

+ 2E

(
sup
t∈[0,r]

∣∣∣∣∫ t

0

(
b̄(Xε(s),L (Xε(s)))− b̄(X̄(s),L (X̄(s)))

)
ds

∣∣∣∣2
)

≤ 2E

(
sup
t∈[0,r]

∣∣∣∣∫ t

0

(
b(
s

ε
,Xε(s),L (Xε(s)))− b̄(Xε(s),L (Xε(s)))

)
ds

∣∣∣∣2
)

+ 2rE
∫ r

0

|b̄(Xε(s),L (Xε(s)))− b̄(X̄(s),L (X̄(s)))|2ds

≤ 2E

(
sup
t∈[0,r]

∣∣∣∣∫ t

0

(
b(
s

ε
,Xε(s),L (Xε(s)))− b̄(Xε(s),L (Xε(s)))

)
ds

∣∣∣∣2
)

+ 2TL

∫ r

0

ψ(2E|Xε(s)− X̄(s)|2)ds.

(4.18)
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By Doob’s martingale inequality and Remark 4.2, we have

V2 = E

(
sup
t∈[0,r]

∣∣∣∣∫ t

0

(
σW (

s

ε
,Xε(s),L (Xε(s)))− σ̄W (X̄(s),L (X̄(s)))

)
dW (s)

∣∣∣∣2
)

≤ 4E
∫ r

0

‖σW (
s

ε
,Xε(s),L (Xε(s)))− σ̄W (X̄(s),L (X̄(s)))‖2ds

≤ 8E
∫ r

0

‖σW (
s

ε
,Xε(s),L (Xε(s)))− σ̄W (Xε(s),L (Xε(s)))‖2ds

+ 8E
∫ r

0

‖σ̄W (Xε(s),L (Xε(s)))− σ̄W (X̄(s),L (X̄(s)))‖2ds

≤ 8E
∫ r

0

‖σW (
s

ε
,Xε(s),L (Xε(s)))− σ̄W (Xε(s),L (Xε(s)))‖2ds

+ 8L

∫ r

0

ψ(2E|Xε(s)− X̄(s)|2)ds.

(4.19)

For the term V3, by Remark 4.2, we have

V3 = E
(

sup
0≤t≤r

∣∣ ∫ t

0

[σH(
s

ε
,L (Xε(s)))− σ̄H(L (X̄(s)))]dBH(s)

∣∣2)
≤ Cλ,Hr

2H−1
∫ r

0

‖σH(
s

ε
,L (Xε(s)))− σ̄H(L (X̄(s)))‖2ds

≤ Cλ,Hr
2H−1

∫ r

0

‖σH(
s

ε
,L (Xε(s)))− σ̄H(L (Xε(s)))‖2ds

+ Cλ,Hr
2H−1

∫ r

0

‖σ̄H(L (Xε(s)))− σ̄H(L (X̄(s)))‖2ds

≤ Cλ,Hr
2H−1

∫ r

0

‖σH(
s

ε
,L (Xε(s)))− σ̄H(L (Xε(s)))‖2ds

+ Cλ,Hr
2H−1L

∫ r

0

ψ(E|Xε(s)− X̄(s)|2)ds.

(4.20)

Therefore,

E

(
sup
t∈[0,r]

|Xε(t)− X̄(t)|2
)

≤
[
6E
(

sup
t∈[0,r]

∣∣∣∣∫ t

0

(
b(
s

ε
,Xε(s),L (Xε(s)))− b̄(Xε(s),L (Xε(s)))

)
ds

∣∣∣∣2 )
+ 24E

∫ r

0

‖σW (
s

ε
,Xε(s),L (Xε(s)))− σ̄W (Xε(s),L (Xε(s)))‖2ds

+ Cλ,HT
2H−1

∫ r

0

‖σH(
s

ε
,L (Xε(s)))− σ̄H(L (Xε(s)))‖2ds

]
+ (6T + 24 + Cλ,HT

2H−1)L

∫ r

0

ψ

(
2E( sup

l∈[0,s]
|Xε(l)− X̄(l)|2)

)
ds.

(4.21)
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By Lemmas 4.2-4.4, we get

lim
ε→0

E

(
sup
t∈[0,r]

|Xε(t)− X̄(t)|2
)

≤ (6T + 24 + Cλ,HT
2H−1)L

∫ r

0

ψ

(
2 lim
ε→0

E( sup
l∈[0,s]

|Xε(l)− X̄(l)|2)

)
ds

≤ ε1 + (6T + 24 + Cλ,HT
2H−1)L

∫ r

0

ψ

(
2 lim
ε→0

E( sup
l∈[0,s]

|Xε(l)− X̄(l)|2)

)
ds.

(4.22)

Hence, Bihari inequality reads

lim
ε→0

E

(
sup
t∈[0,r]

|Xε(t)− X̄(t)|2
)
≤ 1

2
G−1[G(2ε1) + 12(T + 4 + Cλ,HT

2H−1)LT ],

where G(2ε1) + 12(T + 4 +Cλ,HT
2H−1)LT ∈ Dom(G−1), G−1 is the inverse function of G(·)

and

G(v) =

∫ v

1

ds

ψ(s)
, v > 0

By Assumption 3.1, one sees that limε1↓0+ G(2ε1) = −∞ and Dom(G−1) = (−∞, G(∞)).

Letting ε1 → 0 gives

lim
ε→0

(
E sup
t∈[0,T ]

|Xε(t)− X̄(t)|2
)

= 0.

This completes the proof.

Remark 4.4 By the Chebyshev-Markov inequality and Theorem 4.5, for any given number
δ > 0, we have

lim
ε→0

P
(

sup
0≤t≤T

|Xε(t)− X̄(t)| > δ

)
≤ 1

δ2
lim
ε→0

E
(

sup
0≤t≤T

|Xε(t)− X̄(t)|2
)

= 0.

This implies the convergence in probability of the solutions Xε(t) to the averaged solution
X̄(t).
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[34] M. Röckner and X. Zhang. Well-posedness of distribution dependent SDEs with singular
drifts. Bernoulli. 27, 1131-1158 (2021).

[35] S. G. Samko, A. A. Kilbas and O. I. Marichev. Fractional Integrals and Derivatives:
Theory and Applications. Gordon and Breach Science Publishers, 1993.

[36] G. Shen, J.-L. Wu and X. Yin. Averaging principle for fractional heat equations driven
by stochastic measures. Appl. Math. Lett. 106, 106404 (2020).

[37] J. L. D. Silva, M. Erraoui and El H. Essaky. Mixed stochastic differential equations:
existence and uniqueness result. J. Theor. Probab. 31, 1119-1141 (2018).

[38] K. Sobczyk. Stochastic differential equations: with applications to physics and engi-
neering. Mathematics and its Applications (East European Series). Dordrecht: Kluwer
Academic Publishers, 1990.

28



[39] E. Sönmez. On mixed fractional SDEs with discontinuous drift coefficient. ArXiv: 2010.
14176 (2020).

[40] E. M. Stein. Singular integrals and differentiability properties of functions. Princeton:
Princeton University Press, 1970.

[41] F.-Y. Wang. Distribution dependent SDEs for Landau type equations. Stochastic Pro-
cess. Appl. 128, 595–621 (2018).

[42] Y. Xu, J. Duan and W. Xu. An averaging principle for stochastic dynamical systems
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