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The convergence rate in Wasserstein distance is estimated for the em-
pirical measures of symmetric semilinear SPDEs. Unlike in the finite-
dimensional case that the convergence is of algebraic order in time, in the
present situation the convergence is of log order with a power given by eigen-
values of the underlying linear operator.

1. Introduction. As the continuous Markov process counterpart of Wasserstein match-
ing problem for i.i.d. samples studied in [2, 5] and references within, in [11, 13, 12, 14]
we have estimated the convergence rate in Wasserstein distance for empirical measures of
symmetric diffusion processes.

Let V ∈C2(M) for a d-dimensional compact connected Riemannian manifold M , let Xt

be the diffusion process generated by L := ∆ +∇V on M with reflecting boundary if exists,
and let W2 be the L2-Wasserstein distance induced by the Riemannian metric. According to
[14], the empirical measure µt := 1

t

∫ t
0 δXsds satisfies

lim
t→∞

tE[W2(µt, µ)2] =

∞∑
i=1

2

δi
,

where {δi}i≥1 are all non-trivial eigenvalues of −L in L2(µ) counting multiplicities, with
Neumann condition if the boundary exists. Since

∑∞
i=1

2
δi
<∞ if and only if d≤ 3, so that

when t→∞

E[W2(µt, µ)2]≈ 1

t
, d≤ 3,

where we write a(t) ≈ b(t) for two positive functions a and b on (0,∞), if there exists a
constant C > 1 such that C−1a(t)≤ b(t)≤ Ca(t) holds for large t > 0. Moreover, we have
proved in [14] that

E[W2(µt, µ)2]≈

{
1
t log t, if d= 4,

t−
2

d−2 , if d≥ 5.

These results were then extended in [11, 13] for the empirical measure µt of conditional
Dirichlet diffusion processes not reaching the boundary before time t, and in [12] for diffu-
sion processes on non-compact complete Riemannian manifolds.

In this paper, we investigate the problem for semilinear SPDEs, whose solutions provide
a fundamental class of infinite-dimensional diffusion processes, see [3, 4] for details. It turns
out that for this kind of infinite-dimensional processes the convergence of empirical measures
becomes log order with a power determined by eigenvalues of the underlying linear operator.

Consider the following SDE on a separable Hilbert space H:

(1) dXt =
{
∇V (Xt)−AXt

}
dt+

√
2 dWt,
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where Wt is the cylindrical Brownian motion on H, i.e.

Wt =

∞∑
i=1

Bi
tei, t≥ 0

for an orthonormal basis {ei}i≥1 of H and a sequence of independent one-dimensional Brow-
nian motions {Bi

t}i≥1, (A,D(A)) is a positive definite self-adjoint operator and V ∈C1(H)
satisfying the following assumption.

(H1) A has discrete spectrum with eigenvalues {λi > 0}i≥1 listed in the increasing order
counting multiplicities satisfying

∑d
i=1 λ

−δ
i <∞ for some constant δ ∈ (0,1), and V ∈

C1(H), ∇V is Lipschitz continuous in H such that

(2) 〈∇V (x)−∇V (y), x− y〉 ≤ (K + λ1)|x− y|2, x, y ∈H

holds for some constant K ∈R. Moreover, ZV := µ0(eV )<∞, where µ0 is the centered
Gaussian measure on H with covariance operator A−1.

Under this condition, for any F0-measurable random variableX0 on H, (1) has a unique mild
solution, and there exists an increasing function ψ : [0,∞)→ (0,∞) such that

(3) E[|Xt|2]≤ ψ(t)
(
1 +E[|X0|2]

)
, t≥ 0,

see for instance [10, Theorem 3.1.1], or the earlier monographs [3, 4].
Let Pt be the associated Markov semigroup, i.e.

Ptf(x) := Ex[f(Xt)], t≥ 0, f ∈ Bb(H), x ∈H,

where Bb(H) is the class of all bounded measurable functions on H, and Ex is the expectation
for the solution Xt of (1) with X0 = x. In general, for a probability measure ν on H, let Eν
be the expectation for Xt with initial distribution ν.

By (H1), we define the probability measure

µ(dx) := Z−1V eV (x)µ0(dx).

Then Pt is symmetric in L2(µ). For any p≥ 1, the Lp-Wasserstein distance is given by

Wp(µ1, µ2) := inf
π∈C(µ1,µ2)

(∫
H×H
|x− y|pπ(dx,dy)

) 1

p

, µ1, µ2 ∈ P(H),

where P(H) is the set of all probability measures on H and C(µ1, µ2) is the class of all
couplings of µ1 and µ2.

In the following two sections, we investigate the upper bound and lower bound estimates
on Wp(µt, µ) for the empirical measures

µt :=
1

t

∫ t

0
δXsds, t > 0

of solutions to (1), where δx stands for the Dirac measure at point x. Concrete examples are
given to illustrate the resulting estimates, which show that in the present setting the conver-
gence rate is of log order in t with a power given by the growth of λi as i→∞. In particular,
when |V (x)| ≤ c(1 + |x|) for some constant c > 0 and all x ∈H, and λi ≈ ip for some p > 1
and large i, Example 2.1 and Example 3.1 below imply

c1(log t)1−p∧3 ≤ Eµ
[
W2(µt, µ)2

]
≤ c2(log t)

1

p
−1

for some constants c1, c2 > 0 and large t > 0.
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To conclude this section, we compare the present study with the corresponding ones in
[11]-[14] where finite-dimensional diffusion processes are investigated. Due to the lack of
sharp estimates on heat kernel and eigenvalues for the generator, new techniques have been
developed for the present infinite-dimensional setting. In particular, for the upper bound esti-
mate we apply the dimension-free Harnack inequality established by the author (Section 2),
while for the lower bound estimate we present a general result on the Wasserstein distance
for discrete measures which applies to infinite-dimensions (Section 3). To derive a reasonable
convergence rate, optimization methods are applied for Wasserstein distances of regularized
and discretized approximations of empirical measures.

2. Upper bound estimate. We first observe that (H1) implies the following dimension-
free Harnack inequality:

(4) (Ptf(x))p ≤ (Ptf
p(y)) exp

[ pK|x− y|2

2(p− 1)(1− e−2Kt)

]
, t > 0, x, y ∈H, f ∈ B+(H),

where B+(H) is the class of all nonnegative measurable functions on H. Indeed, by (H1),
the operator (λ1 − A,D(A)) satisfies (A3.3) in [10], while b(s,x) := ∇V (x) − λ1x and
S(t) := e(λ1−A)t satisfy (A3.1) and (A3.2) in [10]. So, (4) follows from [10, Theorem 3.2.1].

Next, according to [10, Theorem 1.4.1(6)], (4) implies that Pt has a (symmetric) heat
kernel pt(x, y) with respect to µ such that

µ
(
pt(x, ·)

p

p−1

)p−1
= sup
µ(|f |p)≤1

(Ptf(x))p

≤
(∫

H
e−

pK|x−y|2

(p−1)(1−e−2Kt)µ(dy)

)−1
, x ∈H, t > 0, p > 1.

(5)

In particular, by taking p= 2 we obtain

(6) p2t(x,x)≤ c(t, x) :=

(∫
H

e−
2K|x−y|2

1−e−2Kt µ(dy)

)−1
<∞, t > 0, x ∈H.

We assume that for any t > 0,

α(t) := Eµ
[
|X0 −Xt|2

]
=

∫
H×H
|x− y|2pt(x, y)µ(dx)µ(dy)<∞,

β(t) :=

∫
H
p2t(x,x)µ(dx) =

∫
H×H

pt(x, y)2µ(dx)µ(dy)<∞, t > 0.

(7)

In particular, β(t)<∞ implies the uniform integrability of Pt in L2(µ), so that by [6, Lemma
3.1], Pt is compact in L2(µ) and the generator L has discrete spectrum. Since the associated
Dirichlet form is irreducible, this implies that L has a spectral gap λ0 > 0, such that

(8) µ(|Ptf − µ(f)|2)≤ e−2λ0tµ(|f − µ(f)|2), t≥ 0, f ∈ L2(µ).

In the following theorem, we use α and β to estimate the convergence rate of E[W2(µt, µ)2]
as t→∞.

THEOREM 2.1. Assume (H1) and (7), and let c(t, x) be in (6). We have

(9) Eµ
[
W2(µt, µ)2

]
≤ inf
ε∈(0,1)

{16β(ε)

λ20t
+ 2α(ε)

}
=: ξt, t > 0.

Consequently, for any x ∈H,

(10)
(
Ex[W2(µt, µ)]

)2 ≤ inf
r>0

{8r

t
sup
s≥0

Ex|Xs|2 + 2c(r,x)ξt

}
, t > 0.
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PROOF. (a) We will use the following inequality due to [8, Theorem 2]:

(11) W2(fµ,µ)2 ≤ 4µ(|∇(−L)−1(f − 1)|2), f ≥ 0, µ(f) = 1.

This estimate was proved using the Kantorovich dual formula and the Hamilton-Jacobi equa-
tions, see [2] for an alternative estimate.

To apply (11), we consider the modified empirical measures

(12) µε,t := µtPε = fε,tµ, ε > 0, t > 0,

where

(13) fε,t :=
1

t

∫ t

0
pε(Xs, ·)ds.

Noting that

Ps{pε(x, ·)}(y) = ps+ε(x, y), x, y ∈H, s≥ 0,

by the spectral representation we obtain

µ(|∇(−L)−1(fε,t − 1)|2) =

∫ ∞
0

µ(|Ps/2(fε,t − 1)|2)ds

=

∫ ∞
0

ds
∫
H

(
1

t

∫ t

0

(
pε+s/2(Xu, ·)− 1

)
du
)2

dµ

=
2

t2

∫ ∞
0

ds
∫ t

0
ds1

∫ t

s1

µ
(
{pε+s/2(Xs1 , ·)− 1} · {pε+s/2(Xs2 , ·)− 1}

)
ds2

=
2

t2

∫ ∞
0

ds
∫ t

0
ds1

∫ t

s1

{
p2ε+s(Xs1 ,Xs2)− 1

}
ds2.

(14)

Next, by (8) we have

(15) pr+s(x,x)− 1 = µ
(
|P s

2
{p r

2
(x, ·)} − 1|2

)
≤ e−λ0s

{
pr(x,x)− 1

}
, s, r > 0.

Combining this with the Markov property we derive

Eµ
{
p2ε+s(Xs1 ,Xs2)− 1

}
=

∫
H
Ps2−s1

{
p2ε+s(x, ·)− 1

}
(x)µ(dx)

=

∫
H

{
p2ε+s+s2−s1(x,x)− 1

}
µ(dx)≤ e−λ0(s+s2−s1)β(ε).

Therefore, (11) for f := fε,t and (14) imply

Eµ
[
W2(µε,t, µ)2

]
≤ 8β(ε)

t2

∫ ∞
0

ds
∫ t

0
ds1

∫ t

s1

e−λ0(s+s2−s1)ds2

=
8β(ε)

t2

∫ ∞
0

ds
∫ t

0

e−λ0s − e−λ0(s+t−s1)

λ0
ds1 ≤

8β(ε)

t2

∫ ∞
0

ds
∫ t

0

e−λ0s

λ0
ds1

=
8β(ε)

tλ0

∫ ∞
0

e−λ0sds=
8β(ε)

tλ20
, t, ε > 0.

(16)

On the other hand, by Jensen’s inequality and that δxPε = LXε for X0 = x, we obtain

W2(µε,t, µt)
2 ≤

(
1

t

∫ t

0
W2(δXs , δXsPε)ds

)2

≤ 1

t

∫ t

0

{
Ex
[
|x−Xε|2

]}∣∣
x=Xs

ds.
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Since LXs = µ for LX0
= µ, this implies

Eµ
[
W2(µε,t, µt)

2
]
≤ Eµ

[
|Xε −X0|2

]
= α(ε).

Combining with (16), we derive

Eµ
[
W2(µt, µ)2

]
≤ 2Eµ[W2(µε,t, µ)2] + 2Eµ[W2(µε,t, µ)2]≤ 16β(ε)

tλ0
+ 2α(ε), ε ∈ (0,1).

Therefore, (9) holds.
(b) For any r > 0, let

µ
(r)
t :=

1

t

∫ t+r

r
δXsds, t > 0.

By the Markov property, Schwarz inequality, (6) and (9), we obtain(
Ex[W2(µ

(r)
t , µ)]

)2
=

(∫
H
Ey[W2(µt, µ)]pr(x, y)µ(dy)

)2

≤ p2r(x,x)

∫
H
Ey
[
W2(µt, µ)2

]
µ(dy)

≤ c(x, r)Eµ
[
W2(µt, µ)2

]
≤ c(x, r)ξt, t > 0.

(17)

On the other hand, it is easy to see that

πt :=
1

t

∫ r∧t

0
δ(Xs,Xs+ tr

t∧r
)ds+

1

t

∫ t

r∧t
δ(Xs,Xs)ds ∈ C(µt, µ

(r)
t ),

so that

Ex
[
W2(µt, µ

(r)
t )2

]
≤ Ex

∫
Rd×Rd

|y− z|2πt(dy,dz)

=
1

t

∫ t∧r

0
Ex|Xs −Xr+ ts

r∧t
|2ds≤ 4r

t
sup
s≥0

Ex|Xs|2.

This together with (17) and the triangle inequality for W2, we prove (10).

Since the heat kernel pt(x, y) is usually unknown, the estimate presented in Theorem 2.1
is not explicit. To derive explicit estimates, we make the following assumption.

(H2) There exists an increasing function γ : (0,∞)→ [0,∞) such that

|V (x)| ≤ 1

2

(
γ(ε−1) + ε|x|2

)
, x ∈H, ε > 0.

(H3) There exist constants c > 0 and θ ∈ [0, λ1)

|∇V (x)| ≤ c+ θ|x|, x ∈H.

COROLLARY 2.2. Assume (H1) and (H2). Then:

(1) There exists a constant c0 > 0 such that

(18) Eµ
[
W2(µt, µ)2

]
≤ c0 inf

ε∈(0,1)

(
1

t
ekε
−1+γ(kε−1) +

∞∑
i=1

1− e−2λiε

λi

)
=: ηt, t > 0.

(2) If (H3) holds, then for any k >K+ there exists a constant c(k)> 0 such that

(19)
(
Ex[W2(µt, µ)]

)2 ≤ c(k)ek|x|
2

ηt, t≥ 1.
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To prove this result, we need the following two lemmas.

LEMMA 2.3. Assume (H1) and (H3). There exists a constant k > 0 such that

sup
t≥0

Ex[|Xt|2]≤ k(1 + |x|2), x ∈H.

PROOF. For X0 = x we have

Xt = e−Atx+

∫ t

0
e−A(t−s)∇V (Xs)ds+

√
2

∫ t

0
e−A(t−s)dWs, t≥ 0.

By (H1) and (H3), we obtain

E|Xt|2 ≤ (1 + ε−1)Ex
∣∣∣∣e−Atx+

√
2

∫ t

0
eA(t−s)dWs

∣∣∣∣2
+ (1 + ε)Ex

∣∣∣∣ ∫ t

0
e−A(t−s)∇V (Xs)ds

∣∣∣∣2
≤ 2(1 + ε−1)

(∣∣e−Atx∣∣2 + 2Ex
∣∣∣∣ ∫ t

0
e−A(t−s)dWs

∣∣∣∣2)
+ (1 + ε)

(∫ t

0

∣∣e−A(t−s)∇V (Xs)
∣∣ds)2

≤ 2(1 + ε−1)

(
e−2λ1t|x|2 + 2

∞∑
i=1

∫ t

0
e−2λi(t−s)ds

)

+ (1 + ε)Ex
(∫ t

0
e−λ1(t−s)(c+ θ|Xs|

)
ds
)2

, ε > 0, t≥ 0.

(20)

Noting that (H1) implies
∞∑
i=1

∫ t

0
e−2λi(t−s)ds≤

∞∑
i=1

1

2λi
<∞,

and that by Jensen’s inequality

Ex
(∫ t

0
e−λ1(t−s)(c+ θ|Xs|

)
ds
)2

≤ 1

λ1
Ex
∫ t

0
e−λ1(t−s)(c+ θ|Xs|

)2ds

≤ (1 + ε−1)c2

λ1
+

(1 + ε)θ2

λ1

∫ t

0
e−λ1(t−s)Ex[|Xs|2]ds,

for any ε > 0 we find a constant C(ε)> 0 such that (20) yields

E|Xt|2 ≤C(ε)(1 + |x|2) +
(1 + ε)2θ2

2λ1

∫ t

0
e−λ1(t−s)E[|Xs|2]ds, ε > 0, t≥ 0.

Since θ < λ1, we may take ε > 0 such that λε := (1+ε)2θ2

λ1
< λ1, so that

eλ1tEx[|Xt|2]≤C(ε)(1 + |x|2)eλ1t + λε

∫ t

0
eλ1sE|Xs|2ds, t≥ 0.
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By Gronwall’s lemma, we obtain

eλ1tEx[|Xt|2]≤C(ε)(1 + |x|2)eλ1t + λε

∫ t

0
C(ε)(1 + |x|2)eλ1seλε(t−s)ds

≤ λ1C(ε)

λ1 − λε
eλ1t(1 + |x|2), x ∈H, t≥ 0.

Therefore, the proof is finished.

LEMMA 2.4. Under (H1) and (H2), there exists a constant k > 0 such that

(21)
∫
H

µ(dx)∫
H e−λ|x−y|2µ(dy)

≤ eγ(kλ)
∞∏
i=1

λi + kλ√
λ2i −

1
2λ

2
1

, λ≥ 1.

PROOF. Let {ei}i≥1 be the eigen-basis of A, i.e. it is an orthonormal basis of H such that

Aei = λiei, i≥ 1.

Each x ∈H is corresponding to an eigen-coordinate

(xi)i≥1 := (〈x, ei〉)i≥1 ∈ `2 :=
{

(ri)i≥1 ⊂R∞ :

∞∑
i=1

r2i <∞
}
.

Under this coordinate we have

(22) µ0(dx) =

∞∏
i=1

√
λi√
2π

e−
λix

2
i

2 dxi.

Combining this with (H2) and µ(dx) = Z−1V eV (x)µ0(dx), we obtain

I :=

∫
H

µ(dx)∫
H e−λ|x−y|2µ(dy)

≤ eγ(ε
−1)

∞∏
i=1

{∫
R

e−
λi−ε

2
x2
i∫

R e−λ|xi−yi|2−
λi+ε

2
y2i dyi

}
dxi, ε > 0.

Noting that

λ|xi − yi|2 +
λi + ε

2
y2i =

2λ+ λi + ε

2

(
yi −

2λxi
2λ+ λi + ε

)2
+
λ(λi + ε)x2i
2λ+ λi + ε

,

we derive

(23)
∫
R

e−λ|xi−yi|
2−λi+ε

2
x2
i dyi =

( 2π

2λ+ λi + ε

) 1

2 e
−λ(λi+ε)x

2
i

2λ+λi+ε , ε > 0.

So, for ε > 0 such that λ21 − 4λε− ε2 > 0, we have

I ≤ eγ(ε
−1)

∞∏
i=1

{(2λ+ λi + ε

4π

) 1

2

∫
R

e−(
λi−ε

2
− λλi+λε

2λ+λi+ε
)x2
i dxi

}

= eγ(ε
−1)

∞∏
i=1

{(2λ+ λi + ε

4π

) 1

2
(4π(2λ+ λi + ε)

λ2i − 4λε− ε2
) 1

2

}
, ε > 0.

(24)

Taking ε :=
√

4λ2 + 1
2λ

2
1 − 2λ, we have

ε ∈
(

λ21

2
√

16λ2 + 2λ21
,
λ21
8λ

)
,

λ2i − 4λε− ε2 ≥ λ2i −
1

2
λ21 > 0, i≥ 1.
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Then for any λ≥ 1,

ε−1 ≤
2
√

16 + 2λ21
λ21

λ,
(2λ+ λi + ε

4π

) 1

2
(4π(2λ+ λi + ε)

λ2i − 4λε− ε2
) 1

2 ≤
λi + (2 + λ2

1

8 )λ√
λ2i −

1
2λ

2
1

.

Therefore, (24) implies (21) for some constant k > 0.

PROOF OF COROLLARY 2.2. (1) By (6) and the second formula in (7), we find a constant
c1 > 1 such that

β(ε)≤
∫
H

µ(dx)µ(dy)∫
H e−c1ε−1|x−y|2 , ε ∈ (0,1).

Combining this with Lemma 2.4, we find constants c2, c3, c4 > 0 such that

β(ε)≤ eγ(c2ε
−1) exp

[ ∞∑
i=1

log

(
1 +

λi + c2ε
−1 − (λ2i − 1

2λ
2
1)

1

2

(λ2i −
1
2λ

2
1)

1

2

)]

≤ eγ(c2ε
−1) exp

[
c3ε
−1
∞∑
i=1

1

λi

]
≤ eγ(c2ε

−1)+c4ε−1

, ε ∈ (0, c1).

Noting that β(ε) is decreasing in ε, we find a constant k > 0 such that

(25) β(ε)≤ eγ(kε
−1)+kε−1

, ε ∈ (0,1).

On the other hand, by the definition of the mild solution and that of α in (7), we have

α(ε) = Eµ
[
|Xε −X0|2

]
= Eµ

[∣∣∣∣e−AεX0 −X0 +

∫ ε

0
e−A(ε−s)∇V (Xs)ds+

√
2

∫ ε

0
e−A(ε−s)dWs

∣∣∣∣2],
≤ 3Eµ

[
|e−AεX0 −X0|2

]
+ 3ε

∫ ε

0
Eµ
[
|∇V (Xs)|2

]
ds+ 6

∫ ε

0
‖e−A(ε−s)‖2HSds.

(26)

Moreover, by (H1) and (H2), ∇V (x) is Lipschitz continuous hence has a linear growth in
|x|, and µ(| · |2) <∞. So, (3) implies sups∈[0,1]Eµ[|∇V (Xs)|2] <∞. Thus, by (H1) and
(H2) which imply

Eµ[〈X0, ei〉2] = µ(|xi|2)≤
c

λi
, i≥ 1

for some constant c > 0, we find constants c5, c6 > 0 such that

ε

∫ ε

0
E[|∇V (Xs)|2]ds+Eµ[|e−AεX0 −X0|2] +

∫ ε

0
‖e−A(ε−s)‖2HSds

= c5ε
2 +

∞∑
i=1

(
(1− e−λiε)2

λi
+

∫ ε

0
e−2λi(ε−s)ds

)
≤ c6

∞∑
i=1

1− e−2λiε

λi
, ε ∈ (0,1).

Substituting into (26), we find a constant k > 0 such that

(27) α(ε)≤ k
∞∑
i=1

1− e−2λiε

λi
, ε ∈ (0,1).

Combining this with (25) and applying Theorem 2.1, we prove (1).
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(2) According to the first assertion and (10), it suffices to show that for any k >K+ there
exist constants r, kr > 0 such that

c(r,x)≤ krekr|x|
2

, x ∈H,

which follows from (H2) and (23) with λ= 2K
1−e−2Kr and ε= 0.

2.0.0.1. Example 2.1.. Let∇V be Lipschitz continuous, λi ≥ c0ip for some constants c0 >
0 and p > 1, and there exists a constant c > 0 such that

(28) |V (x)| ≤ c(1 + |x|), x ∈H

holds. Then there exists a a constant κ > 0 such that

(29) Eµ[W2(µt, µ)2]≤ κ(log t)p
−1−1, t≥ 2.

If moreover (H3) holds, then for any k >K+ there exists a constant c(k)> 0 such that

(30)
(
Eµ[W2(µt, µ)]

)2 ≤ c(k)ek|x|
2

(log t)p
−1−1, t≥ 2, x ∈H.

PROOF. Let

(31) h(ε) =

∞∑
i=1

1− e−2ελi

λi
, ε ∈ [0,1].

When λi ≥ cip for some constants c > 0 and p > 1, we find a constant c1 > 0 such that

h′(ε) =

∞∑
i=1

2e−2ελi ≤ 2 + 2

∫ ∞
1

e−2cεs
p

ds≤ c1ε−p
−1

, ε ∈ (0,1].

Thus, there exists a constant c2 > 0 such that

(32)
∞∑
i=1

1− e−2ελi

λi
=

∫ ε

0
h′(s)ds≤ c2ε1−p

−1

, ε ∈ (0,1].

On the other hand, (28) implies (H2) with

γ(s) = c3s, s≥ 1

for some constant c3 > 0. Then by taking ε= 2(c3+k)
log t , we find constants c4, c5 > 0 such that

inf
ε∈(0,1)

{
1

t
ekε
−1+γ(kε−1) +

∞∑
i=1

1− e−2λiε

λi

}
≤ c4 inf

ε∈(0,1)

{1

t
e(k+c3)ε

−1

+ c2ε
1−p−1

}
≤ c5(log t)p

−1−1, t≥ 2.

Therefore, the desired assertions follow from Corollary 2.2.
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2.0.0.2. Example 2.2.. Let ∇V be Lipschitz continuous, λi ≥ cei
p

for some constant c > 0
and p > 0, and (28) holds for some constant c > 0. Then there exists a a constant κ > 0 such
that

(33) Eµ[W2(µt, µ)2]≤ κ(log t)−1 log log t, t≥ 4.

If moreover (H3) holds, then for any k >K+ there exists a constant c(k)> 0 such that

(34) Eµ[W2(µt, µ)2]≤ c(k)ek|x|
2

(log t)−1 log log t, t≥ 4, x ∈H.

PROOF. Let h be in (31). When λi ≥ ceci
p

for some constant c > 0 and p > 0, by using
the integral transform r = εecs

p

, we find constants c1, c2 > 0 such that

h′(ε) = 2

∞∑
i=1

2e−2ελi ≤ 2

∫ ∞
0

exp
[
− 2cεecs

p]
ds

= 2

∫ ∞
ε

e−2cr
d
dr
{
c−1 log[rε−1]

} 1

p dr

≤ c1
∫ 1

ε

{
log r+ log ε−1

} 1

p
−1d log r+ c1

{
log(1 + ε−1)

} 1

p
−1

= c1 log(1 + ε−1)
1

p
−1 + c0

∫ 0

log ε

{
u+ log ε−1

} 1

p
−1du

≤ c2 log(1 + ε−1)
1

p , ε ∈ (0,1].

Thus, there exists a constant c3 > 0 such that
∞∑
i=1

1− e−2ελi

λi
=

∫ ε

0
h′(s)ds≤ c3ε log(1 + ε−1)

1

p , ε ∈ (0,1].

So, as in the proof of Example 2.1, we find constants c4, c5 > 0 such that

inf
ε∈(0,1)

{
1

t
ekε
−1+γ(kε−1) +

∞∑
i=1

1− e−2λiε

λi

}
≤ c4 inf

ε∈(0,1)

{1

t
e(k+c4)ε

−1

+ c3ε log(1 + ε−1)
1

p

}
≤ c5(log t)−1(log log t)

1

p , t≥ 4.

Therefore, the desired assertions follow from Corollary 2.2.

3. Lower bound estimate. We first present a lower bound estimate on

(35) Wp(µ,ν) := inf
π∈C(µ,ν)

{∫
E×E

ρ(x, y)pπ(dx,dy)

} 1

p

, p > 0, µ, ν ∈ P(E)

for a metric space (E,ρ), where P(E) is the set of all probability measures on E. As a gen-
eralization to [7, Proposition 4.2] which essentially works for the finite-dimensional setting,
we have the following result which also applies to infinite dimensions.

LEMMA 3.1. Let µ ∈ P(E) such that

(36) sup
x∈E

µ(B(x, r))≤ ψ(r), r ≥ 0
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holds for some increasing function ψ, where B(x, r) := {y ∈E : ρ(x, y)< r}. Then for any
N ≥ 1 and any probability measure µN supported on a set of N points in E,

(37) Wp(µN , µ)≥ 2−
1

pψ−1
( 1

2N

)
,

where ψ−1(s) := sup{r ≥ 0 : ψ(r)≤ s}, s≥ 0.

PROOF. Let D = suppµN which contains N many points, so that from (36) we conclude
that Dr := ∪x∈DB(x, r) satisfies

µ(Dr)≤
∑
x∈D

µ(B(x, r))≤Nψ(r), r ≥ 0.

Therefore, for any π ∈ C(µN , µ), we get∫
E×E

ρ(x, y)pπ(dx,dy)≥
∫
D×Dc

r

rpπ(dx,dy) = rpµ(Dc
r)≥ rp{1−Nψ(r)}, r ≥ 0.

Combining this with (35) we obtain

Wp(µ,ν)p ≥ sup
r≥0

rp[1−Nψ(r)]≥ 1

2

{
ψ−1(1/(2N))

}p
.

Now, let E = H and consider

W̃1(µ,ν) = inf
π∈C(µ,ν)

∫
H×H
{|x− y| ∧ 1}π(dx,dy), µ, ν ∈ P.

THEOREM 3.2. Assume (H1). Then there exists a constant k > 0 such that

(38) Eµ[W̃1(µt, µ)]≥ sup
N∈N

{
1

2
ψ−1

(
(2N)−1

)
−
(
k

∞∑
i=1

1− e−2λit/N

λi

) 1

2

}
, t≥ 1.

If moreover (H2) holds, then there exists a constant k > 0 such that for any x ∈H,

(39) Ex[W̃1(µt, µ)]≥ sup
N∈N

{
1

2
ψ−1

(
(2N)−1

)
−
(
k(1+ |x|2)

∞∑
i=1

1− e−2λit/N

λi

) 1

2

}
, t > 0.

PROOF. For any t > 0 and N ∈N, let

ti =
(i− 1)t

N
, 1≤ i≤N + 1.

Take

µt,N =
1

N

N∑
i=1

δXti =
1

t

N∑
i=1

∫ ti+1

ti

δXsds.

Noting that

π(dx,dy) :=
1

t

N∑
i=1

∫ ti+1

ti

δXti (dx)δXti (dy)ds ∈ C(µt,N , µt),
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we obtain

Eµ
[
W̃1(µt,N , µt)

]
≤ Eµ

[
1

t

N∑
i=1

∫ ti+1

ti

{
|Xs −Xti | ∧ 1

}
ds
]

≤ 1

t

N∑
i=1

∫ ti+1

ti

Eµ[|X0 −Xs−ti |]ds≤ sup
s∈[0,t/N ]

(
Eµ[|X0 −Xs|2]

) 1

2 .

(40)

This together with (27) implies

Eµ
[
W̃1(µt,N , µt)

]
≤
(
k

∞∑
i=1

1− e−2λit/N

λi

) 1

2

.

Therefore, by combining with (37) for E = H and ρ(x, y) = |x− y| ∧ 1, we arrive at

Eµ
[
W̃1(µ,µt)

]
≥ Eµ

[
W̃1(µt,N , µ)

]
−Eµ

[
W̃1(µt,N , µt)

]
≥ 1

2
ψ−1

( 1

2N

)
−
(
k

∞∑
i=1

1− e−2λit/N

λi

) 1

2

, N ∈N.
(41)

Then (38) holds.
On the other hand, by Lemma 2.3 and the linear growth of |∇V |, we find constants c1, c2 >

0 such that for any s ∈ [ti, ti+1],

Ex|Xs −Xti |= Ex
∣∣∣∣ ∫ s

ti

e−A(r−ti)∇V (Xr)dr+
√

2

∫ s

ti

e−A(r−ti)dWr

∣∣∣∣
≤
∫ s

ti

e−λ1(r−ti)Ex[|∇V (Xr)|]dr+
√

2

( ∞∑
j=1

∫ s

ti

e−2λj(r−ti)dr
) 1

2

≤ c1(1− e−λ1N/t)

λ1
(1 + |x|) +

√
2

( ∞∑
j=1

1− e−2λjt/N

2λj

) 1

2

≤ c2(1 + |x|)
( ∞∑
j=1

1− e−2λjt/N

λj

) 1

2

.

(42)

where the last step follows from the fact that( ∞∑
j=1

1− e−2λjt/N

λj

) 1

2

≥
(

1− e−2λ1t/N

λ1

) 1

2

≥ 1− e−2λ1t/N

√
λ1

.

Moreover, by the same reason leading to (40) we have

W1(µN,t, µt)≤
1

t

N∑
i=1

∫ ti+1

ti

|Xs −Xti |ds.

This together with (42) yields

Ex[W1(µt,N , µt)]≤
1

t

N∑
i=1

∫ ti+1

ti

Ex[|Xs −Xti |]ds

≤ c2(1 + |x|)
( ∞∑
j=1

1− e−2λjt/N

λj

) 1

2

, t≥ 1,N ∈N.
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Therefore, as in (41) we prove (39) for some constant k > 0.

3.0.0.3. Example 3.1.. Assume (H1), (H2). If there exist constants p≥ q > 1 and k1, k2 >
0 such that

(43) k1i
q ≤ λi ≤ k2ip, i≥ 1,

then there exists a constant c > 0 such that for large t > 1,

(44) Eµ[W̃1(µt, µ)]≥ c{log t}−(
p−1

2
∧1).

Moreover, for any x ∈H there exist constants c(x), t(x)> 0 such that

(45) Ex[W̃1(µt, µ)]≥ c(x){log t}−
p−1

2
∧1, t≥ t(x).

PROOF. (a) We first consider p > 2. By (H2) with ε = λ1

2 and (22), we find a constant
c1 > 0 such that

ψ(r) := sup
x∈H

µ(B(x, r))≤ c1
∞∏
i=1

√
λi√
2π

∫ r

0
e−

(λi−ε)s
2

2 ds

= c1

∞∏
i=1

√
λi√

λi − ε

(
1−
√
λi − ε√

2π

∫ ∞
r

e−
(λi−ε)s

2

2 ds
)
.

Since λi ≥ k2ip and p > 2, and ε= λ1

2 ≤
λi
2 , there exist constants c2, c3, c4 > 0 such that

log
[ψ(r)

c1

]
≤
∞∑
i=1

{
1

2
log
(

1 +
ε

λi − ε

)
+ log

(
1−
√
λi − ε√

2π

∫ ∞
r

e−
(λi−ε)s

2

2 ds
)}

≤
∞∑
i=1

{
ε

2(λi − ε)
−
√
λi − ε√

2π

∫ ∞
r

e−
(λi−ε)s

2

2 ds
}

≤
∞∑
i=1

( 1

λi
− c2√

λi

)
≤ c3 − c4r−1, r > 0.

Since ψ(r)≤ 1, this implies that for some constant c5 > 0,

ψ(r)≤ c5e−c4r
−1

, r > 0.

Therefore, there exist constants c6 > 0 such that

(46) ψ−1(1/(2N))≥ c6{log(2N)}−1, N ≥ 1.

On the other hand, since λi ≥ k1iq for some q > 1, (32) holds for q replacing p, i.e. there
exists a constant k > 0 such that

(47)
∞∑
i=1

1− e−2ελi

λi
≤ kε1−q−1

, ε ∈ (0,1].

Combining this with (46) and (38) with N = 1 + dte2, where dte is the integer part of t, we
find a constant c > 0 such that for large t

(48) Eµ[W̃1(µt, µ)]≥ c{log t}−1.

Similarly, for any x ∈H there exist constants c(x), t(x)> 0 such that

(49) Ex[W̃1(µt, µ)]≥ c1{log t}−1, t≥ t(x).
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(b) Take ε= 1 in (H2), we find a constant C1 > 0 such that for any R> 0,

ψ(r)≤C1

∫
B(0,r)

e
|x|2

2 µ0(dx)

≤C1e
(R+1)r2

2

∫
H

e−
R

2
|x|2µ0(dx) =C1e

(R+1)r2

2

∞∏
i=1

√
λi√

λi +R
.

Since λi ≤ k2ip for i≥ 1, this implies

log
[ψ(r)

C1

]
≤ (R+ 1)r2

2
+

1

2
log
(

1− R

λi +R

)
≤ Rr2

2
− 1

2

∞∑
i=1

R

λi +R

≤ (R+ 1)r2

2
− R

2

∫ ∞
1

ds
k2sp +R

≤ (R+ 1)r2

2
− c1R(1 +R

1

p )1−p

≤Rr2 − c2R
1

p , r > 0,R≥ 1

for some constants c1, c2 > 0. By taking r0 := ε
p−1

2p and R= εr−
2p

p−1 for small enough ε > 0,
we find a constant c3 > 0 such that

log
[ψ(r)

C1

]
≤Rr2 − c2R

1

p ≤−c3r−
2

p−1 , r ∈ (0, r0].

Combining this with ψ(r)≤ 1 for all r ≥ 0, we find a constant c4 > 0 such that

ψ(r)≤ c4e−c3r
− 2
p−1

, r > 0.

This implies

ψ−1(1/(2N))≥ c5{log(2N)}−
p−1

2 , N ∈N

for some constant c5 > 0. Combining this with (38), (47) and taking N = 1 + dte2 for large
t > 0, we find a constant c6 > 0 such that

E[W̃1(µt, µ)]≥ c6{log t}−
p−1

2

holds for large t > 0. This together with (48) implies (44). Similarly, (45) holds for any x ∈H
and some constants c(x), t(x)> 0.

3.0.0.4. Acknowledgement.. The author would like to thank the referee for helpful com-
ments and corrections.
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