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The convergence rate in Wasserstein distance is estimated for the em-
pirical measures of symmetric semilinear SPDEs. Unlike in the finite-
dimensional case that the convergence is of algebraic order in time, in the
present situation the convergence is of log order with a power given by eigen-
values of the underlying linear operator.

1. Introduction. As the continuous Markov process counterpart of Wasserstein match-
ing problem for i.i.d. samples studied in [2, 5] and references within, in [11, 13, 12, 14]
we have estimated the convergence rate in Wasserstein distance for empirical measures of
symmetric diffusion processes.

Let V € C?(M) for a d-dimensional compact connected Riemannian manifold M, let X;
be the diffusion process generated by L := A + VV on M with reflecting boundary if exists,
and let Wy be the L?-Wasserstein distance induced by the Riemannian metric. According to
[14], the empirical measure i := % fg dx.ds satisfies

2
. 21 _ =
Jim B [Wa (e, )] = E—1: 5

where {4;};>1 are all non-trivial eigenvalues of —L in L?(y) counting multiplicities, with
Neumann condition if the boundary exists. Since Zfil % < oo if and only if d < 3, so that
when ¢ — oo ’
1

E[WQ(MHM)2] ~ t? d§37

where we write a(t) =~ b(t) for two positive functions a and b on (0,00), if there exists a
constant C' > 1 such that C~1a(t) < b(t) < Ca(t) holds for large ¢t > 0. Moreover, we have
proved in [14] that

Llogt, ifd=4
B[Wo (g, )] =t 5 ’
[Wa (e, )7 ~7E,  ifd>5.

These results were then extended in [11, 13] for the empirical measure y; of conditional
Dirichlet diffusion processes not reaching the boundary before time ¢, and in [12] for diffu-
sion processes on non-compact complete Riemannian manifolds.

In this paper, we investigate the problem for semilinear SPDEs, whose solutions provide
a fundamental class of infinite-dimensional diffusion processes, see [3, 4] for details. It turns
out that for this kind of infinite-dimensional processes the convergence of empirical measures
becomes log order with a power determined by eigenvalues of the underlying linear operator.

Consider the following SDE on a separable Hilbert space H:

(1) dX, = {VV(X;) — AX; }dt + V2dW;,
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where W; is the cylindrical Brownian motion on H, i.e.
o
W, :ZB;ei, t>0
i=1

for an orthonormal basis {e; };>1 of H and a sequence of independent one-dimensional Brow-
nian motions { B} };>1, (A, D(A)) is a positive definite self-adjoint operator and V € C'' (H)
satisfying the following assumption.

(Hp) A has discrete spectrum with eigenvalues {\; > 0};>1 listed in the increasing order

counting multiplicities satisfying 25:1 )\i_‘s < oo for some constant § € (0,1), and V' €
C(H), VV is Lipschitz continuous in H such that

) (VV(2) = VV(y),z —y) < (K +M)le—yl, z,ycH
holds for some constant K € R. Moreover, Zy := pg(e")
Gaussian measure on H with covariance operator A~

< 00, where i is the centered

Under this condition, for any Fy-measurable random variable X, on H, (1) has a unique mild
solution, and there exists an increasing function ¢ : [0,00) — (0, 00) such that

3) E[| X < (1) (1 +E[| Xo|]), >0,

see for instance [10, Theorem 3.1.1], or the earlier monographs [3, 4].
Let P; be the associated Markov semigroup, i.e.

P f(z) :=E*[f(Xy)], t>0,feBy(H), zeH,

where B, (H) is the class of all bounded measurable functions on H, and E” is the expectation
for the solution X; of (1) with Xy = «. In general, for a probability measure v on H, let E¥
be the expectation for X; with initial distribution v.

By (H1), we define the probability measure

p(dz) == Z‘;lev(x)uo(dx).

Then P; is symmetric in L? (). For any p > 1, the LP-Wasserstein distance is given by

1

W)= ot ([ o yPatanan)’s e P,
7€C(p1,p2) \ JHXH
where P(H) is the set of all probability measures on H and C(uq,pu2) is the class of all
couplings of p1 and .
In the following two sections, we investigate the upper bound and lower bound estimates
on Wp,(p, i) for the empirical measures

1 t
,ut::/ 0x.ds, t>0
tJo

of solutions to (1), where ¢, stands for the Dirac measure at point . Concrete examples are
given to illustrate the resulting estimates, which show that in the present setting the conver-
gence rate is of log order in ¢ with a power given by the growth of \; as ¢ — co. In particular,
when |V (z)| < ¢(1 4+ |z|) for some constant ¢ > 0 and all € H, and \; ~ ¥ for some p > 1
and large 7, Example 2.1 and Example 3.1 below imply

cl(logt)l_p/\3 <EH [Wg(,ut,,u)Q] < @(logt)iil

for some constants c;,co > 0 and large ¢ > 0.
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To conclude this section, we compare the present study with the corresponding ones in
[11]-[14] where finite-dimensional diffusion processes are investigated. Due to the lack of
sharp estimates on heat kernel and eigenvalues for the generator, new techniques have been
developed for the present infinite-dimensional setting. In particular, for the upper bound esti-
mate we apply the dimension-free Harnack inequality established by the author (Section 2),
while for the lower bound estimate we present a general result on the Wasserstein distance
for discrete measures which applies to infinite-dimensions (Section 3). To derive a reasonable
convergence rate, optimization methods are applied for Wasserstein distances of regularized
and discretized approximations of empirical measures.

2. Upper bound estimate. We first observe that (H;) implies the following dimension-
free Harnack inequality:

pK|z —y|?
2(p—1)(1 —e2KY)

where BT (H) is the class of all nonnegative measurable functions on H. Indeed, by (H;),
the operator (A\; — A, D(A)) satisfies (A3.3) in [10], while b(s,z) := VV(z) — \jx and
S(t) := et satisfy (A3.1) and (A3.2) in [10]. So, (4) follows from [10, Theorem 3.2.1].

Next, according to [10, Theorem 1.4.1(6)], (4) implies that P, has a (symmetric) heat
kernel p;(x,y) with respect to u such that

wpi(z, )7 1) = sup  (Pif(x))?
w(lfP)<1

@) (Pf(@)? < (PfP(y)) exp , t>0,z,y €H, f € BT (H),

(5) o 1
< </ e <P1)<1?2Kt>u(dy)> , xeH,t>0,p>1.
H

In particular, by taking p = 2 we obtain

_2K|z—y]|?

—1
© el scra)= ([ EF @) <o t>00eh
H

We assume that for any ¢ > 0,

a(t) == B4 [| Xy — X, %] = /H o=y puldo)n(dy) < oc,

(7
B(t) == /szt(w,a?)u(dx)—/H Hpt(x7y)2ﬂ(dx)u(dy)<oo7 £>0.

In particular, 3(t) < oo implies the uniform integrability of P, in L? (1), so that by [6, Lemma
3.1], P; is compact in L?(p) and the generator L has discrete spectrum. Since the associated
Dirichlet form is irreducible, this implies that L has a spectral gap Ag > 0, such that

(8) w(|Pof = p(F)P) e u(|f — u(f)?), t>0,f€L(w).

In the following theorem, we use a and 3 to estimate the convergence rate of E[Ws(uy, 11)?]
as t — oo.

THEOREM 2.1.  Assume (Hy) and (7), and let c¢(t,x) be in (6). We have

. 165(¢)
9 E“W,2<f{ 2 }::,tO.
)] [Wa (g, p1)?] _86%71) jen +2a(e) e, t>
Consequently, for any x € H,
8
(10) (EI[WQ(Mt7M)])2 < inf {lsupEﬂXs’Q + 2C(T7$)§t}7 t>0.
>0 U ¢ >0



PROOF. (a) We will use the following inequality due to [8, Theorem 2]:
(11) Wa(fp,n)? <4u(|V(=L)"'(f = DP), f20,u(f)=1.

This estimate was proved using the Kantorovich dual formula and the Hamilton-Jacobi equa-
tions, see [2] for an alternative estimate.
To apply (11), we consider the modified empirical measures

(12) Het := Mt-P&:f&‘,t/’Lv E>07t>07
where
1 t
(13) fa,t = 75/ pa(X57 ')dS'
0

Noting that

Ps{pe(xa )}(y) :ps+5(x,y), z,y €H,s>0,

by the spectral representation we obtain

WV (L) (for — DP) = /0 T U1Pya(fes — DP)ds

/ ds/< / (Pets/2(Xu, ~)—1)du>2d

/ dS/ d51/ ({Ders/2(Xs1s) = 1} - {Pegsja(Xspr-) — 1})ds2

= t2/ dS/ dSI/ {p25+5(X51,X82) — 1}d82
0 0 51

Next, by (8) we have
(15) Pris(z,2) —1= M(\Pg{pg (z,)} — 1‘2) < e_AOS{pr(-%x) - 1}7 s, > 0.

Combining this with the Markov property we derive

Eu{p25+S<X517X52) - 1} :/ P52—S1 {p25+5($, ) - 1}($)N(dx
H
= [ Apresasesmn(00)  Lplde) <410 5(e)
H
Therefore, (11) for f := f. ; and (14) imply

ds o(sts2—s1)qg,

t 7)\()8 _ 7)\[) s+t— 81 8 o) t 7)\[]8
dsy < 5(5)/ ds/ © sy

0
( )/ Y 86(6)
= °*ds = t,e>0.
YA 5= 0z € >

On the other hand, by Jensen’s inequality and that 6, P = Lx_ for Xy = x, we obtain

Wo(pte,t, pit) _< /W25X,5XP > /{Ex |$_X|:|}‘1'X

E* [Wa (e,

(16) =
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Since Lx, = p for Lx, = p, this implies
B [Wa (e,0, 1)) <BH[|Xe = Xof*] = ale).

Combining with (16), we derive

EH [Wa(ue, 1)?] < 2EF[Wa (e, 10)*] + 2B [Wo (e, 1)?] <

Therefore, (9) holds.
(b) For any r > 0, let

1 t+r
MY) = / dx.ds, t>0.
tJ, ’

By the Markov property, Schwarz inequality, (6) and (9), we obtain

(E W), )))° = ( / Ey[wm,mmm,y)u(dw)

a7 §p2r($ax)/HEy [W2(‘ut“u)2}'u(dy)

< e, 1) EM [Wajue, )] < ol 1), > 0.
On the other hand, it is easy to see that

1 TN\t 1 t ()
7Tt::¥ 5(Xs,Xs+t7r)d8+¥ 5(X5,X5)dsec(ﬂt7u15 ),
0 AT rAt
so that
B (Wl ) SB[y sPruldy.dz)
R4 xR¢
1 tAT 4
— / E*|X, — X, e [2ds < — supE®| X, |2
tJo A t s>0
This together with (17) and the triangle inequality for W9, we prove (10). O

Since the heat kernel p;(z,y) is usually unknown, the estimate presented in Theorem 2.1
is not explicit. To derive explicit estimates, we make the following assumption.

(H2) There exists an increasing function ~ : (0, 00) — [0, c0) such that
1
V(x)| < 5(7(5_1) +elz?), z€H,e>0.
(Hs3) There exist constants ¢ > 0 and 6 € [0, A;)

IVV(2)| <c+0lz], zeH.

COROLLARY 2.2. Assume (Hy) and (H2). Then:

(1) There exists a constant co > 0 such that

1 —1 -1 > 1-— C_2>\"’E
18) EH[W 2l <y inf [ Zeke (ke - )=, t>0.
( ) [ 2(:“15)”) ] =~ Co 561%(1),1) <te + Zz:; A'L Tty >

(2) If (H3) holds, then for any k > K™ there exists a constant c¢(k) > 0 such that
(19) (B [Wa(pue, p)])° < e(k)e e, ¢21.



To prove this result, we need the following two lemmas.
LEMMA 2.3.  Assume (H1) and (Hs). There exists a constant k > 0 such that

sup B7[| X¢|?] < k(1 +|z[?), z€H.
>0

PROOF. For Xy = x we have

X, =e Ay +/ A=)V (X, ds+f/ Alt=s)aw,, ¢ > 0.
0

By (H;) and (Hs), we obtain

t
EIX:*<(1+e HE” eAtx+\/§/ el
0

2

t
+ (1 +¢)E® / e A=IVV(X,)ds
0

t
/eA(ts)dWS
0
t 2
+(1+¢) < / \eA<tS>VV(XS)\ds)
0

0 t
< 2(1 + 8_1) <6_2)\1t|fb|2 + 22/ e—2)xi(t—s)d8>
i=1"0

t 2
+(1+5)E$(/ e’\l(ts)(c—i-H]Xs\)ds) , e>0,t>0.
0

Noting that (H;) implies
o0t
z:/jgaxa
i=1"0

and that by Jensen’s inequality

t 2 t
1
EIB</ eAl(tS)(C+6‘XS|)dS> S}\E‘r/ eiAl(t*S)(c+9|Xs‘)2dS
0 0

1

1 —1),.2 1 92 t
< ( +§ )e 4 ( 7:\5) / ef)\l(tfs)ExHXS’Q]dS
1 1 0

for any € > 0 we find a constant C'(¢) > 0 such that (20) yields

(1+¢)%6?
2A1

<2(1+eh) <}eAtx|2 + 2E*

)

(20)

o0

i=1

t
E|X,> < C(e)(1+|a*) + / e MUEIE[| X []ds, €>0,t>0.
0

202
Since 6 < A1, we may take € > 0 such that A, := (1+;1) < A1, so that

t
eMUET[|X,[%) < C(e) (1 + |z |2)eM? +As/ eMOE|X,|2ds, t>0.
0
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By Gronwall’s lemma, we obtain
t
MET[| X, 2] < Ce)(1 + |z)?)eMt + As/ Cle)(1 + |z]?)eMer=9ds
0

< )\10 (8)
o )\1 - /\a
Therefore, the proof is finished. O

eM (1 + |z[?), zeH, t>0.

LEMMA 2.4. Under (Hi) and (Hs), there exists a constant k > 0 such that

A +RA > 1

/feAlxdey 11/)\ )\ N

PROOF. Let {e;};>1 be the eigen-basis of A, i.e. it is an orthonormal basis of H such that
Aei = )\iei, ) Z 1.

Each z € H is corresponding to an eigen-coordinate

o0

2h

(z:)iz1 = ((z,€:))i>1 € €% = {(m)izl CR>: er < oo}.

Under this coordinate we have

(22) H

=1
Combining this with (Hg) and p(dz) = Z;'e V(@) 119 (dz), we obtain

e

oo
— dz;, €>0.
/f e‘“”“ y' u dy Hl{ *W —yilP =2 yzdyi} '

Noting that

/\!x-—y'\z—F/\i+€y2:2)‘+/\i+€< 2w )2 AN +e)af
v 2 7 2 RE) N Wy A+ N\ +¢’
we derive

2 Aite o o 1 aute)s?
23 e Mzi—vil A+xd 7(7)2 i <0
(23) /R Y=\ otnte) € r €

So, for € > 0 such that )\2 —4)Xe — 2 >0, we have

I<e,7 1)1—[{(2)\“‘)\ +€) /e_(/\i2_€_2§:—i;/f5)x?d$i}
R
- 2/\+)\ +eNs AT(2A+ N Fe)\ 5
=TI )'( )y >0
=€ H{ X e ) 7
Taking € := |/4A2 + 1A — 2), we have

A2 2
(2 1672 + 227 8A>

A3—4A5—e22A3—5A%>0, i>1.

(24)
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Then for any A > 1,

1 1 )\%
el< MA, (2>‘+)‘i+5)5<477(2)\+)\i+6)>5 < i+ (2+ @))\.
< )\% 4 )\12 —4he — &2 )\12 - %)\%
Therefore, (24) implies (21) for some constant k& > 0. 0

PROOF OF COROLLARY 2.2. (1) By (6) and the second formula in (7), we find a constant

c1 > 1 such that

Combining this with Lemma 2.4, we find constants ¢, c3, c4 > 0 such that

- .- Ai 1 (A2 1a2):
B(e) < eleee )exp[Zlog<1+ +Caf ( 1)12 1) )]

2 142
i=1 (A7 —3A7)2

o
<ees Dexp [036_1 Z ;} <erleTres™ e e (0,¢y).
— A

Noting that 3(¢) is decreasing in £, we find a constant £ > 0 such that

(25) Ble) <ertke ke o e (0,1).

On the other hand, by the definition of the mild solution and that of « in (7), we have
ale) =E*[|Xe — Xol’]

€ 2
26) :E#[eAEXO—X0+/O A=)V (X, ds+\f/ AlE=s)qmy, ]
< 3E#[le™ ¢ X — Xo|?] +35/ E“[\VV(XS)]z]ds—s—G/ le=AE5) |2, ods.
0 0

Moreover, by (H;) and (Hs), VV (x) is Lipschitz continuous hence has a linear growth in
|z, and u(] - |*) < oo. So, (3) implies SUPse[0,1] EX[|VV (X;)|?] < oo. Thus, by (H7) and
(H2) which imply

for some constant ¢ > 0, we find constants c5, cg > 0 such that

15 15
a/ IEHVV(XS)\Q}derE“HeAEXO—X0]2]+/ le=4CE=%)||2,ods
0 0

1 e ia 5 o ) o0 1— e—2)\i£
- i(E—S
= (€ +Z< Jr/oe dS)SCG;)\i, 56(0,1).
Substituting into (26), we find a constant £ > 0 such that
1—e —2\;e
(27) <k:Z , £€(0,1).

Combining this with (25) and applying Theorem 2.1, we prove (1).
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(2) According to the first assertion and (10), it suffices to show that for any k > K there
exist constants r, k,. > 0 such that
c(r,x) < krekr‘xlg, reH,
which follows from (H2) and (23) with A = 1—3% and € = 0.
O

2.0.0.1. Example 2.1.. Let VV be Lipschitz continuous, A; > cgiP for some constants cy >
0 and p > 1, and there exists a constant ¢ > 0 such that

(28) V()| <e(l+|z]), zeH
holds. Then there exists a a constant x > 0 such that
(29) BA W (e, 10)%] < (logt)? ', > 2.
If moreover (Hs) holds, then for any k > K there exists a constant ¢(k) > 0 such that
(30) (BF[Woy (e, 1)])° < c(k)eH ™ (log )7 =1, t>2, z € HL

PROOF. Let

0 | _ a2\

(31) h(e):;)\i, ee€[0,1].

When )\; > ¢iP for some constants ¢ > 0 and p > 1, we find a constant ¢; > 0 such that

o0 00
W)= 2e7%M <242 / e 2" ds < c1e7? ', £ (0,1].
i=1 1

Thus, there exists a constant ¢y > 0 such that

o 1— e725/\i € .
(32) PR / W (s)ds < cpe ", e (0,1].
i=1 : 0

On the other hand, (28) implies (H3) with

v(s)=czs, s>1

for some constant cs > 0. Then by taking € = 2(f g;k), we find constants ¢4, c5 > 0 such that
|, R
inf { Lekeieathe ) Ly LZCTE
£€(0,1) { t ; i

1 1 .
<ecy inf {fe("”c?’)‘E + ol P }
e€(0,1) L

<cs(logt)? L t>2.

Therefore, the desired assertions follow from Corollary 2.2. U
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2.0.0.2. Example 2.2.. Let VV be Lipschitz continuous, A\; > ce” for some constant ¢ > 0
and p > 0, and (28) holds for some constant ¢ > 0. Then there exists a a constant x > 0 such
that

(33) EH[Wa(pu, 1)?] < k(logt) ' loglogt, t> 4.
If moreover (Hs) holds, then for any k > K there exists a constant ¢(k) > 0 such that

(34) BA W (g, 11)%] < e(k)e®® (log t) ' loglogt, t>4, zeH.

PROOF. Let h be in (31). When \; > ce®’ for some constant ¢ > 0 and p > 0, by using
the integral transform r = ee®"”, we find constants ¢y, co > 0 such that

o0 0
h'(e)=2 Z 2e 2N < 2/ exp [ — 2cee”|ds
i=1 0

—2/ e_QCT&{c_llog[ra_l]}P dr

1 . .
< cl/ {logr +10g5_1}5_1dlogr + c1{log(1+ 5_1)}5_1
g

1 0 1_
:cllog(1+6_1)p_1—|—co/ {u—l—loge_1}5 'du
loge

<c 1Og(1 + 6_1)%5 €€ (07 1]
Thus, there exists a constant c3 > 0 such that

& 1 _ C_QEAZ € 1
Z —_— :/ B (s)ds < czelog(1+e )7, €(0,1].
pri 0
So, as in the proof of Example 2.1, we find constants c,4, c5 > 0 such that
[e.¢]

ot [l ity SH et
e€(0,1) ( ¢ y

=1

S =

1 1
<e¢4 inf {fe(k““)8 + cselog(1l + 6_1) }
e€(0,1) L ¢

< 05(logt)*1(loglogt)i, t>4.

Therefore, the desired assertions follow from Corollary 2.2. O

3. Lower bound estimate. We first present a lower bound estimate on
3 =t L[ pwarsnan)’s v 0 e ()
meC(wv) L JEXE

for a metric space (E, p), where P(FE) is the set of all probability measures on E. As a gen-
eralization to [7, Proposition 4.2] which essentially works for the finite-dimensional setting,
we have the following result which also applies to infinite dimensions.

LEMMA 3.1. Let u € P(FE) such that

(36) sup (B, ) < (1), 70
zeE
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holds for some increasing function 1, where B(x,r) :={y € E: p(z,y) < r}. Then for any
N > 1 and any probability measure py supported on a set of N points in F,

(37) Wy, 1) > 27 )™ ( : )
where 1~1(s) ;== sup{r > 0:9(r) < s}, s >0.

PROOF. Let D = suppuy which contains N many points, so that from (36) we conclude
that D, := U,ep B(x, ) satisfies

(D) <7 p(B(x,7)) < N(r), >0,
Therefore, for any = € C(un, 1), we get
/ p(z,y)Pr(dz,dy) > / rPr(dz,dy) =rPu(Dy) > rP{1 — Ny(r)}, r>0.
ExXE DxD¢
Combining this with (35) we obtain

Wy ()" 2 supr?{l ~ No(r)] > 2 {v 7 (1/(2N)) .

r>0
O
Now, let £ = H and consider
Wi(p,v)= inf {lz — y| A1}m(dw,dy), p,veP.
meC(wv) JHxH
THEOREM 3.2.  Assume (Hy). Then there exists a constant k > 0 such that
N 1 . —2/\ it/N !
(38)  EMWi(u,p)] zjsvté%{gw (2N (kZ — ) } t>1.
If moreover (Hs) holds, then there exists a constant k > 0 such that for any x € H,
T (%R 1 —1 o o= 1 — e 72Nt/ 5
(39) E*[Wa (g, 1)) 2 sup § 57" (2N) ) - (k(1+ ER)D )\7> , t>0.
S _ 1

PROOF. Forany ¢t >0and N € N, let

(i— 1)t
T

li= 1<i<N+1

Take

1 & 1oL [l
=— ) 0x, =~ dx.ds.
= 3y D5, tz/ x.ds

Noting that

tis
7(dx,dy) : Z/ dx, (dz)ox, (dy)ds € C(ue,N, pit),
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we obtain

EF (W (pre,v, )] < [ Z/ 1{\X — X,

|

N s
1 it+1 ,
< Z/ E“HXO _Xs—tinS < sup (ENHXO _Xs|2])2.
b ' s€[0,t/N]

(40)

This together with (27) implies

_ e—2N\it/N
B [W (e, 1)) < (kz )

Therefore, by combining with (37) for £ = H and p(z,y) = |z — y| A 1, we arrive at

X [Wi (1, )] = B (W1 (e v, 1)) — B (W (pag, s o))
1) 11 X — e /NN 3
>~y <2N>_<kzl)\ ) , NeN.

Then (38) holds.
On the other hand, by Lemma 2.3 and the linear growth of |VV'|, we find constants ¢y, co >
0 such that for any s € [t;, t;11],

E*| X, — X;,| =E”

/ A=ty (X, dr+f/ Ddw,
t;

< / e_’\l(’"_ti)]ExHVV(XT)Hdr+\/ﬁ(z / e_2’\j(””_ti)d7">2
t; j=1 ti

cl(l—e*AlN/t) 1 — e 2Nt/N 3
< —“(1 2 _
< vl VR Y DY

=1

X 1 e=2Mt/N\ 3
§02(1+|x\)<2)\,) :

j=1 J

(42)

where the last step follows from the fact that

X | _ e 2Mt/N\ 3 1 —e2Mt/N\3 | _e-2Mt/N
- > > .
5 ) =) s

J=1

Moreover, by the same reason leading to (40) we have

i+1
Wi (pnt, it) Z/ [ X5 — Xq,|d

This together with (42) yields

t+1
B (W1 (pte,n, )] Z/ E*[| X, — Xy, ||ds

o0 e—2\it/N

Zl_> t>1,NeN.
Aj

Jj=1

<t + 1ol
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Therefore, as in (41) we prove (39) for some constant k& > 0.
O

3.0.0.3. Example 3.1.. Assume (H;),(Hz). If there exist constants p > ¢ > 1 and kq, kg >
0 such that

(43) kpi? < A\ < koiP, i>1,

then there exists a constant ¢ > 0 such that for large ¢ > 1,

(44) M W1 (s, )] > c{logt} ("= A,

Moreover, for any x € H there exist constants ¢(z), t(x) > 0 such that
(45) B (W1 (i 1)) = () {log 8}~ M, 2 #(x).

PROOF. (a) We first consider p > 2. By (Hj) with ¢ = % and (22), we find a constant
c1 > 0 such that

° i _(y—e)s?
P(r) :=supu(B(x,7)) <c ‘
(r) = supp(B(z. 7)) 1i|:|1 T
Cﬁ Vi ( \/)\ —€ _Oyas? >
= 1 .
i1 VA —€

Since \; > koi’ and p > 2,and e = 5 < %, there exist constants cs, c3, c4 > 0 such that

1og[¢g)}Sg{élog(1+/\ii€)+log< m oo >}

> { € \/)\Z-—s/‘x’ 0y=0? }
< — e~ ds
— 2(\i—¢) Vor s,

o
]. Co —1
< <—— )<c —cyr” 7, r>0.
> (3-75)sa-a
Since (r) < 1, this implies that for some constant c5 > 0,

P(r) < 656_6“471, r > 0.
Therefore, there exist constants cg > 0 such that
(46) 471 (1/(2N)) > co{log(2N)} 1, N > 1.

On the other hand, since \; > k1i? for some ¢ > 1, (32) holds for ¢ replacing p, i.e. there
exists a constant £ > 0 such that
725}\1

o0
1— .
(47) 3 27 <kel"T) ce(0,1].
i=1 v

Combining this with (46) and (38) with N =1 + [¢]?, where [t] is the integer part of ¢, we
find a constant ¢ > 0 such that for large ¢

(48) EA W (e, 1)] > c{logt} L.

Similarly, for any = € H there exist constants ¢(z),t(x) > 0 such that

(49) E* W1 (s, )] = er{logt} ™", t > t(x).
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(b) Take € = 1 in (H3), we find a constant C'; > 0 such that for any R > 0,

2
|z

b(r) < Cy / e o(de)

B(0,r)

oo
(Rt1)r2 _R|.2 (Rt1)r2 VA
§C’1€ 2 / € 2|x\ ,U,Q(dl‘) :C’le 2 — .
H 11;[1 Vi +R

Since \; < koi? for ¢ > 1, this implies

Y(r)] _(R+1)r? 1 R Rr? 1
< — — <
O ] +5log (1 Ai+R) =

o0

Rre 1 R
2 2i:1)\i+R

log[ =79 2

— i R(1+ R7)'P

<(R+1)r2_R/°° ds <(R+1)r2
- 2 2 1 k25p+R_ 2
SR’I“Q—CQRi, r>0,R>1

—1 2
for some constants c;, co > 0. By taking rg := e and R=er »1 for small enough € > 0,
we find a constant c¢3 > 0 such that
¥(r)

log [71] < Rr?-— CQR% < —C3T‘_ﬁ, r € (0,79].

Combining this with (1) < 1 for all » > 0, we find a constant ¢4 > 0 such that

2

P(r) < cie” " T > 0.
This implies
¥ (1/(2N)) > es{log(2N)} 5, NeN

for some constant c5 > 0. Combining this with (38), (47) and taking N =1 + [t]Q for large
t > 0, we find a constant cg > 0 such that

E[W1(p1e, 11)] > c6{log t}’pT_1

holds for large ¢ > 0. This together with (48) implies (44). Similarly, (45) holds for any x € H
and some constants ¢(x),t(z) > 0. O

3.0.04. Acknowledgement.. The author would like to thank the referee for helpful com-
ments and corrections.
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