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Abstract
Heat-induced hypo-hydration (hyperosmotic hypovolemia) can reduce prolonged skeletal muscle performance; however, the 
mechanisms are less well understood and the reported effects on all aspects of neuromuscular function and brief maximal 
contractions are inconsistent. Historically, a 4–6% reduction of body mass has not been considered to impair muscle function 
in humans, as determined by muscle torque, membrane excitability and peak power production. With the development of 
magnetic resonance imaging and neurophysiological techniques, such as electromyography, peripheral nerve, and transcra-
nial magnetic stimulation (TMS), the integrity of the brain-to-muscle pathway can be further investigated. The findings of 
this review demonstrate that heat-induced hypo-hydration impairs neuromuscular function, particularly during repeated and 
sustained contractions. Additionally, the mechanisms are separate to those of hyperthermia-induced fatigue and are likely a 
result of modulations to corticospinal inhibition, increased fibre conduction velocity, pain perception and impaired contrac-
tile function. This review also sheds light on the view that hypo-hydration has ‘no effect’ on neuromuscular function during 
brief maximal voluntary contractions. It is hypothesised that irrespective of unchanged force, compensatory reductions in 
cortical inhibition are likely to occur, in the attempt of achieving adequate force production. Studies using single-pulse TMS 
have shown that hypo-hydration can reduce maximal isometric and eccentric force, despite a reduction in cortical inhibition, 
but the cause of this is currently unclear. Future work should investigate the intracortical inhibitory and excitatory pathways 
within the brain, to elucidate the role of the central nervous system in force output, following heat-induced hypo-hydration.
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fMRI	� Functional magnetic resonance imaging
HRT	� Half-relaxation time
MFVC	� Muscle fibre conduction velocity
Mmax	� Maximum motor unit potential
MNS	� Motor nerve stimulation
MVC	� Maximum voluntary contraction
PNS	� Peripheral nervous system
ROS	� Reactive oxygen species
RWL	� Rapid weight loss
SERCA​	� Sarco/endoplasmic reticulum ATPase
VA	� Voluntary activation
VAMNS	� Voluntary activation measured using motor 

nerve stimulation
VATMS	� Voluntary activation measured using motor 

cortex stimulation
TMS	� Transcranial magnetic stimulation

Introduction

With growing concerns of occupational heat-stress, 
increased recreational and sports participation in hotter cli-
mates, there is increasing interest in the challenges posed 
by high ambient temperatures and the ensuing threat of 
hypo-hydration on aspects of physical function, such as that 
of the neuromuscular system. Indeed, water plays a crucial 
role in cellular homeostasis, with transient loss of dissolved 
substances in body fluid leading to alterations in osmolality 
and, consequently, water distribution across neural and skel-
etal muscle cell membranes. Increases in body temperature, 
incurred due to exercise-induced metabolic heat gain, or 
high ambient temperatures, triggers a thermo-effector sweat-
ing response (Romanovsky 2007). Typical thermoregulatory 
sweating, coupled with inadequate fluid intake, can result 
in hypotonic fluid losses from extracellular fluid in relation 
to blood plasma, leading to an osmotic gradient, thus facili-
tating transmembrane flow of fluid from the intracellular 
fluid space towards the extracellular fluid space (Costill 
et al. 1976; Durkot et al. 1986). This process of fluid loss in 
intracellular fluid (and the hypertonic characteristics of the 
extracellular fluid) is referred to as hypertonic hypovolemia 
or intracellular dehydration (Adolph et al. 1947; Lee and 
Mulder 1935; Pearcy et al. 1956) and has likely implications 
on neuromuscular function.

In addition to autonomic feedback loops regulating bodily 
fluid balance (Andreoli et al. 2010), it is thought that several 
complex regulatory mechanisms protect neuronal tissue from 
transient fluid-shifts. However, recent studies employing 
functional magnetic resonance imaging (fMRI) have dem-
onstrated transient brain anatomical alterations, consistent 
with fluid loss (Kempton et al. 2009, 2011; Streitburger et al. 
2012) and increased neuronal activation to achieve a similar 
cognitive output (when euhydrated) (Kempton et al. 2011). 

Furthermore, hypo-hydration results in a reduction of maxi-
mal isometric force (Bowtell et al. 2013; Ross et al. 2012), 
time to exhaustion during repeated submaximal contractions 
(Montain et al. 1998; Bigard et al. 2001; Barley et al. 2018), 
and reductions in endurance performance (El Helou et al. 
2012; James et al. 2017; Adams et al. 2018; Funnell et al. 
2019; Campa et al. 2020). Interestingly, force decrements are 
observed despite reported increases in muscle excitability, 
unchanged corticospinal excitability (Bowtell et al. 2013), 
unchanged voluntary activation (Del Coso et al. 2008; Peri-
ard et al. 2012; Barley et al. 2018) or increased central acti-
vation (Bigard et al. 2001). Though hypo-hydration notably 
reduces exercise performance via increased cardiovascular 
strain (González-Alonso et al. 1997), reduced blood flow, 
aerobic metabolism (Cheuvront et al. 2010) and thermoregu-
latory function (Casa 1999), the neuromuscular responses 
to hypo-hydration are less well understood—in part, due to 
the combined effects of hyperthermia—and speculated to 
be a result of ionic imbalances (Sjoogard et al. 1985; Casa 
1999), reduced muscle contractility and increased central 
fatigue (Bigard et al. 2001). Whilst some work has reported 
electromyographical (EMG) responses to hypo-hydration, 
the corticospinal, supraspinal, and morphological changes 
(in the central nervous system [CNS]) observed following 
heat-induced hypo-hydration have received less attention. 
With the increased specificity of neurophysiological tech-
niques, such as transcranial magnetic stimulation (TMS) and 
motor nerve stimulation (MNS), the current review aims to 
summarise these findings and shed light on the integrity of 
the brain-to-muscle pathway following heat-induced hypo-
hydration (with and without the effects of hyperthermia). 
Furthermore, we propose the various sites and mechanisms 
of neuromuscular impairment following intracellular dehy-
dration, and briefly discuss the methodological limitations 
and scope for future studies.

Central and peripheral responses 
to hypo‑hydration

Brain and spinal cord‑specific responses

In contrast to the intracellular fluid losses observed in most 
mammalian tissue (i.e., muscle, skin, gut) during dehydra-
tion, early research conducted in animal models reported 
that severe hypo-hydration (10–15% total body weight) and 
hyperosmolality, elicited minimal (Hamilton and Schwartz 
1935; Wallace et al. 1970) or no reductions in brain water 
content (Nose et al. 1983; Arieff et al. 1977). However, 
recent research investigating the effects of hydration status 
on brain and spinal cord tissue have observed transient ana-
tomical alterations in moderately hypo-hydrated humans 
(Duning et al. 2005; Nakamura et al. 2014; Wittbrodt et al. 
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2018; Streitburger et al. 2012; Kempton et al. 2009, 2011; 
Dickson et al. 2005; Biller et al. 2015; Wang et al. 2014; 
Tan et al. 2019). Hypo-hydration is consistent with reduc-
tions in spinal cord cross-sectional area (Wang et al. 2014), 
brain volume (Duning et al. 2005; Nakamura et al. 2014; 
Wittbrodt et al. 2018; Streitburger et al. 2012), and brain 
ventricular expansion (proportionate to body mass loss; 
Kempton et al. 2009, 2011; Dickson et al. 2005), indicat-
ing in vivo fluid losses from brain and spinal cord tissue. 
Therefore, heat-induced hypo-hydration leads to a reduction 
in brain and spinal cord volume and ventricular expansion, 
resulting in acute anatomical alterations. In addition, the 
increase in PaCO2 secondary to heat-induced hypo-hydra-
tion may lead to reductions in cerebral blood volume and 
flow during exercise (Trangmar et al. 2014, 2015), which in 
turn, increases oxygen extraction, suggesting a heightened 
cognitive effort to maintain physiological output (Trangmar 
and Gonzalez-Alonso 2017, 2019). Indeed Kempton et al. 
(2011) demonstrated hypo-hydration resulted in increased 
ventricular volume and neuronal activity in the fronto-pari-
etal region (using blood-oxygen-dependent-level functional 
magnetic resonance imaging [fMRI] signal), during a cogni-
tive task; however, the effect of acute anatomical alterations 
and reduced cerebral blood flow on neuromuscular func-
tion remains unknown. Furthermore, given the poor tempo-
ral resolution of MRI for rapid movement (Asakawa et al. 
2003), it is possible that alternative techniques are required 
to measure rapid muscle contractions.

Brain activation (in the context of skeletal muscle func-
tion) can be further investigated by measures of corticospi-
nal excitability (CSE), utilising TMS; however, little is 
known of corticomotor activity (elicited through TMS) after 
hypo-hydration. CSE is determined using the EMG-derived 
amplitude of a motor evoked potential (MEP), and when 
normalised to the compound muscle action potential (Mmax; 
using MNS) represents the summed excitability along the 
brain-to-muscle pathway (MacKinnon and Rothwell 2000; 
Pascual-Leone et al. 1995). The corticospinal silent period 
(cSP), elicited during contraction, is also an EMG-derived 
measurement of inhibition, referring to an interruption of 
voluntary EMG in the presence of a muscle contraction, and 
is most likely related to increased corticospinal inhibition, 
mediated by inhibitory γ-aminobutyric acid (GABAB) recep-
tors (Wolters et al. 2008; Yacyshyn et al. 2016). In addition, 
voluntary activation (VA) can be assessed by superimposing 
TMS (VATMS) on a maximal voluntary contraction (MVC), 
thus when TMS evokes an increase in force production, 
it signifies a suboptimal output from the motor cortex to 
maximally activate the motoneurone pool (i.e., supraspinal 
fatigue; Gandevia 2001). Bowtell et al. (2013) investigated 
the effects of hypo-hydration and euhydration (after exer-
cise in the heat) on corticomotor output. No changes were 
observed in VATMS, CSE and cSP among hypo-hydrated 

subjects despite a reduction in force; however, the cSP was 
lengthened in euhydrated subjects, indicating reduced corti-
cospinal inhibition after hypo-hydration. Collectively, it can 
be suggested that hypo-hydration does not elicit any changes 
to motor cortical output but could reduce cortical inhibition 
during active muscle contractions; however, the reasons for 
this are unclear.

Muscle contractility‑specific responses

As with the brain and spinal cord, morphological altera-
tions are observed in skeletal muscle (reduced cross-sec-
tional area and overall volume) during hypo-hydration (Nose 
et al. 1983; Hackney et al. 2012; Farhat et al. 2018) which 
could explain a reduction in maximum force production 
(Ikai and Fukunaga 1968; Knuttgen 1976). Muscle contrac-
tion time and half-relaxation time (HRT) reflect the rate 
of cross-bridge cycling and the release/uptake of calcium 
ions (Ca2+) from the sarcoplasmic reticulum (SR), respec-
tively (Close 1972). In rats, 96 h of water deprivation led to 
increased tetanic tension relative to euhydrated rats, with 
no change in muscle contraction time and HRT, despite a 
10% reduction of the soleus mass, indicating a compensa-
tory pathway to preserve neuromuscular function (Farhat 
et al. 2018). Additionally, VA measured with motor nerve 
stimulation (VAMNS) can elicit extra force during an MVC, 
when voluntary drive of α-motoneurones is inadequate. 
VAMNS is notably unaffected by hypo-hydration (2–5% body 
mass) (Barley et al. 2018; Bowtell et al. 2013; Periard 2012; 
Stewart et al. 2014), therefore it is unlikely that fluid losses 
lead to a reduction in spinal motor neuron discharge (i.e., 
spinal fatigue). Minshull and James (2013), reported a ~ 8% 
reduction in maximal voluntary contraction (MVC) force 
following 24-h fluid restriction, yet no changes in evoked 
force, rate of force development, and electromechanical 
delay, indicating minimal changes to the excitation–contrac-
tion coupling (ECC) process. Interestingly, data are varied 
in humans, with reports of no changes (Greiwe et al. 1998; 
Montain et al. 1998; Evetovich et al. 2002; Barley et al. 
2018; Periard et al. 2012) or reductions in peak strength 
and voluntary force production in response to heat-induced 
hypo-hydration (Bosco et al. 1968; Torranin et al. 1979; 
Webster et al. 1990; Judelsen et al. 2007; Hayes and Morse 
2010; Schofstall et al. 2001; Bigard et al. 2001; Bowtell 
et al. 2013). Bowtell et al. (2013) reported an increase in 
sarcolemma excitability (M-Wave amplitude) during MVCs, 
yet there was a reduction in muscle torque and increased 
HRT. This indicates a disruption to the ECC process and 
efficiency of the release and reuptake of Ca2+ from the SR, 
irrespective of neural drive and a compensatory increase in 
muscle membrane excitability. A plausible mechanism for 
why muscle force is reduced, despite increased sarcolemma 
excitability, has not been proposed. However, this suggests 
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that force production, despite increased neural drive and sar-
colemma excitability after hypo-hydration, may be impaired 
at a contractile level.

Distinguishing between specific responses 
of hyperthermia and hypo‑hydration

A methodological limitation of inducing intracellular dehy-
dration is the use of heat stress and exercise, resulting in 
the possible effects of hypo-hydration being masked or 
exacerbated by that of hyperthermia and exercise-induced 
fatigue (Judelsen et al. 2007). This section will summarise 
the independent effects of hyperthermia and hypo-hydration 
on measures of neuromuscular function.

Cerebral neuronal activity can be ascertained from elec-
troencephalography (EEG), which is notably distinguished 
from neural imaging techniques, such as MRI, due to supe-
rior resolutions in temporal neural networks (Crosson et al. 
2010). In clinical practice, cerebral activity obtained from 
EEG is subdivided into several bandwidths to signify the 
location of the acquired signal and brain state. Beta waves 
are predominantly located in the frontal region and represent 
a state of alertness and focus, whilst alpha waves are associ-
ated with relaxation and inhibition (Tatum 2007). Several 
studies have investigated the effects of hyperthermia with 
dehydration and exercise (Ftaiti et al. 2010) and without 
dehydration (Nielsen et al. 2001; Nybo and Nielsen 2001) 
on EEG activity, reporting an increased alpha and decreased 
beta power during prolonged exercise, potentially indicat-
ing increased inhibitory activity in pyramidal neurons. This 
agrees with van den Heuvel et al. (2020), who investigated 
EEG changes after passive hyperthermia with and without 
dehydration, and found no independent effect of hypo-
hydration on resting EEG, suggesting neural alterations to 
be related to thermoregulatory factors. In addition, Caputa 
et al (1986) reported heightened hypothalamic temperatures 
(42–43 °C) led to a reduction in exercise capacity in animals; 
however, trunk temperatures (below 43.5 °C) were unrelated 
to exercise capacity, indicating a failure of central origin 
during hyperthermia. These data may partially explain the 
observations of supraspinal fatigue, after exercise in the heat 
(Goodall et al. 2015; Todd et al. 2005; Ross et al. 2012; 
Periard et al. 2014a, b). Collectively, passive and exercise-
induced hyperthermia results in increased inhibitory brain 
activity during rest and prolonged exhaustive exercise. How-
ever, this is independent of hypo-hydration and might not 
reflect brain activity during brief and sustained MVCs. Fur-
ther studies are required to elucidate brain activity during 
brief and sustained bouts of maximal strength, and to estab-
lish if there are differing mechanisms of hypo-hydration and 
hyperthermia which lead to force decrements.

Studies in which hyperthermia is induced either pas-
sively (Morrison et al. 2004; Racinais et al. 2008; Saboisky 
et al. 2003; Todd et al. 2005) or actively (Del Coso et al. 
2008; Periard et al. 2011, 2014a, b; Goodall et al. 2015) 
without hypo-hydration, suggest a significant contribution 
of spinal and peripheral components to fatigue. Passive or 
active hyperthermia result in a reduction of MVCs, which is 
accompanied by reduced VA, H-reflex and M-wave ampli-
tudes implicating altered supraspinal, spinal and peripheral 
excitatory output, respectively (for review, see Racinais and 
Oksa 2010). Therefore, it is likely that a reduction of VA 
is attributed to hyperthermia only; as evidenced by Morri-
son et al. (2004), who demonstrated the restoration of VA to 
baseline values after cooling. In addition, despite a reduction 
of VA after hyperthermia and hypo-hydration, fluid restora-
tion had no effect on VA (Del Coso et al. 2008). This is in 
agreement with various hypo-hydration studies (Periard et al. 
2012; Bowtell et al. 2013; Barley et al. 2018) and suggests 
VA is unaffected by hypo-hydration (2–5% body weight). 
Interestingly, hyperthermia also leads to an increased mus-
cle relaxation rate and decreased muscle half-relaxation time 
(Todd et al. 2005; Periard et al. 2014a, b), yet it is reported 
that a centrally mediated rate of activation is sufficient to 
overcome the faster relaxation rate (Periard et al. 2014a, 
b). Conversely, hypo-hydration leads to an unchanged half-
relaxation time (Barley et al. 2018), muscle relaxation rate 
or increased half-relaxation time (Bowtell et al. 2013). In 
addition, Bowtell et al (2013) reported an increased M-wave 
amplitude and reduced corticospinal inhibition (relative to 
euhydrated participants) during an MVC after hypo-hydra-
tion, yet a deficit in muscle torque persisted, indicating an 
inadequate voluntary drive to activate sarcolemmal action 
potentials and the cross-bridge cycle as a potential site of 
contractile failure. While the reports of reduced maximal 
strength are varied, it is important to note that this is the 
result of a mixed body of work examining exercise perfor-
mance, alongside factors which might mask, or exacerbate, 
the effects of hypo-hydration (e.g., ambient temperatures and 
caloric restriction) (Judelsen et al. 2007). When accounting 
for these factors, Judelsen et al. (2007) concluded that hypo-
hydration caused a 2 and 3% reduction in strength and power, 
respectively. These findings indicate distinctive mechanisms 
(related to contraction failure) when intracellular water has 
not been restored, which may differ from neural and contrac-
tile alterations during hyperthermia.

The next section summarises some of the proposed physi-
ological mechanisms that explain the modulation of intra-
cortical circuitry and reduction of force after heat-induced 
hypo-hydration.



European Journal of Applied Physiology	

1 3

Potential physiological mechanisms

Disrupted fibre conduction velocity

A reduction in muscle fibre conduction velocity (MFCV) 
indicates reduced membrane excitability, and is attrib-
uted to blood flow reduction (Sjogaard et al. 1988; Zwarts 
and Arendt-Nielsen 1988), reduced pH (Mortimer et al. 
1970) and the simultaneous increase of extracellular K+ 
and intracellular Na+ (Hodgkin and Katz 1949; Overgaard 
et al. 1997). Therefore, reports of MFVC and membrane 
excitability in humans may vary with the use of (a) rest-
ing membrane potential (Hodgkin and Horowicz 1959), 
(b) EMG spectral parameters or (c) M-wave amplitude. 
Costill et al. (1976) calculated the resting muscle mem-
brane potential and reported no change in membrane excit-
ability after dehydration of ~ 6% of body mass; however, 
these findings were taken from rested muscle. At warm 
(~ 37 °C) muscle temperatures, the opening and closing of 
voltage-gated Na+ channels is accelerated, which allows 
less Na+ to enter the cell, leading to a more rapid onset 
depolarization and faster MFVC (Rutkove et al. 1997). 
Hypo-hydration (independent of heat) is reported to reduce 
MFCV (Bigard et al. 2001) as indicated by reductions in 
EMG mean power frequency (Lindstrom and Magnus-
son 1977). Conversely, Bowtell et  al. (2013) reported 
an increase in sarcolemma excitability in active muscles 
after hypo-hydration despite a reduction in HRT and peak 
force production. This was not observed in the euhydrated 
group and similar to Costill et al. (1976), was not observed 
during rest, indicating increased MFCV to be an insuffi-
cient driver of force production during a MVC after hypo-
hydration. Therefore, it is suggested that independent of 
heat, hypo-hydration may lead to an increased MFCV, yet 
despite this, muscle contractility is reduced.

A higher MFVC is associated with higher ATP hydroly-
sis by myofibrillar ATPase at the myosin heads (Gray et al. 
2006). In addition, an increase in action potential propaga-
tion results in the efflux of extracellular K+ (Sjogaard et al. 
1985). Therefore, there is an increased demand for ATP 
hydrolysis for the ECC process, as well facilitating the Na+ 
K+ adenosine triphosphatase (Na+/K+/ATPase) pump, to 
restore ionic balance. The combination of cellular shrink-
age, increased need for ATP hydrolysis and extracellular 
K+ accumulation may explain a reduction in contractility, 
through a reduced cross-bridge cycle function and ability 
to repolarise and hyperpolarise the cell membrane in time 
to propagate further action potentials (Allen et al. 2008). 
Perhaps, a slower Ca2+ reuptake and longer repolarisa-
tion times [as indicated through prolonged half relaxation 
time (Bowtell et al. 2013)], is a result of reduced capacity 
or slower activation of Na+/K+/ATPase pumps to defend 

intracellular water volume (Fig.  1A, B). In summary, 
maintaining adequate force production after hypo-hydra-
tion, may rely on higher ATP hydrolysis, which may be 
limited as a result of protecting intracellular water.

Impaired Ca2+ reuptake and excitation–
contraction‑coupling

Since the lengthening of muscle relaxation time is related to 
reduced Ca2+ re-uptake (Gollnick et al. 1991), it is of inter-
est that the production of reactive oxygen species (ROS) 
inhibits sarco/endoplasmic reticulum ATPase (SERCA) 
pump activity, subsequently reducing Ca2+ reuptake into the 
SR (Powers and Jackson 2008). Indeed, hyperthermia and 
hypo-hydration are reported to increase ROS production via 
various mechanisms, such as increased blood viscosity and 
endothelial shear stress (van der Poel and Stevenson 2007; 
Paik et al. 2009; Hillman et al. 2011; Laitano et al. 2012; 
Georgescu et al. 2017). In addition, sweat losses, fluid shifts 
and increased blood osmolality leads to a change haemo-
concentration and viscosity (Vandewalle et al. 1988), result-
ing in shear stress along the vascular walls and the subse-
quent release of nitric oxide (Connes et al. 2013) and ROS 
(Lehoux 2006). Irrespective of an increase in peripheral and 
corticospinal excitability, it is hypothesised that the muscle 
contractile units are unable to utilise the neural drive, owing 
to reduced intra-cellular Ca2+ reuptake (Fig. 1C). This would 
result in decreased force production and increased muscle 
HRT (Bowtell et al. 2013) or accelerated fatigue during 
repeated contractions (Bigard et al. 2001).

An alternative hypothesis related to reduced Ca2+ han-
dling consists of specialised water channels in skeletal mus-
cle (aquaporins). Aquaporin-4 (AQP4) is a crucial water 
channel of the neuromuscular system, particularly found in 
the sarcolemma of fast twitch fibres and determines mus-
cle permeability (Frigeri et al. 1995, 1998). Farhat et al. 
(2018) observed more than a 50% decline in AQP4 expres-
sion in rodent fast-twitch fibres after 96-h water depriva-
tion. In animals, the absence of AQP4 channels in muscle 
fibres has been reported to alter protein expression related to 
Ca2+ handing, buffering and glycolytic metabolism (Basco 
et al. 2011), resulting in impaired voluntary exercise (Basco 
et al. 2010). In addition, Gulati and Babu (1982) observed 
a reduction in maximal isometric force after exposing frog 
muscle fibres to a hypertonic solution; this was associated 
with reduced fibre width and altered lattice spacing of thick 
and thin filaments in the sarcolemma. Lattice spacing is a 
crucial regulator of force generation via the muscle length-
tension relationship (Williams et al. 2013). It is hypothesised 
that AQP4 may determine muscle-specific responsiveness 
to hyperosmolality, thus reducing cross-sectional area and 
altering lattice spacing in fast-twitch muscle fibres, subse-
quently reducing muscle force (Farhat et al. 2018) (Fig. 1D). 
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However, further research is required on human muscle 
fibres to determine the effects of in vivo hypo-hydration.

Altered neural drive and contraction‑specific fatigue

It is also possible that the effect of hypo-hydration on 
skeletal muscle is dependent on contraction and/or fibre 
type, which further rely on glycogen breakdown or a sus-
tained Ca2+ re-uptake in the SR (Farhat et al. 2018). Hypo-
hydration has not been shown to reduce muscle strength, 
nor alter phosphocreatine recovery or H+ concentration 
(Montain et al. 1998); though, it could feasibly increase 
phosphocreatine and muscle glycogen utilisation (Montain 
et al. 1998; Hargreaves et al. 1996). However, reductions 
are notably observed during the performance of repeated, 
strength-endurance protocols (Montain et al. 1998; Bigard 
et al. 2001; Barley et al. 2018) and high-intensity endurance 
performance (Judelsen et al. 2007). Approximately 2.7 g of 
water are bound to 1 g of glycogen (Sherman et al. 1982); 

therefore, muscle contractions relying on glycogenolysis will 
facilitate the movement of water molecules from the intra 
to extracellular space (Olsson and Saltin 1970). A reduc-
tion in AQP4 channels could present a challenge for muscle 
fibres that rely on rapid and efficient water and Ca2+ turnover 
(see “Impaired Ca2+ reuptake and excitation–contraction-
coupling” section and Fig. 1), thus reducing force output 
and time to fatigue during repeated contractions. In addi-
tion, hypo-hydration may influence specific contraction 
types, potentially indicating distinct locations and mecha-
nisms of failure. Hayes and Morse (2010) investigated the 
dose response of hypo-hydration on muscle performance 
and reported a reduction in isometric force after one expo-
sure (1% body mass loss), yet isokinetic force was either 
unchanged or reduced after three exposures or more. It was 
suggested that concentric contractions at a high velocity may 
not be as susceptible to hypohydration-induced decrements 
as slow isokinetic or isometric contractions (Hayes and 
Morse 2010). Similarly, Bowtell et al. (2013) reported the 

Fig. 1   Typical release and re-uptake of Ca2+ in the sarcolemma 
(1–5), and proposed mechanisms of impaired contractility (A–D). 
(1) Action potential propagates down the transverse tubule. (2) DHP/
LTCC senses membrane depolarization and activates RyR on SR. (3) 
RyR briefly opens to release a pulse of Ca2+. (4) Ca2+ bonds to tro-
ponin, activating cross-bridge cycle. (5) During relaxation, SERCA 
pump remove Ca2+ from the myofilaments to restore SR Ca2+ lev-
els, some may enter into mitochondria or be removed by NCX. A, B 
Combination of cellular shrinkage, increased need for ATP hydroly-
sis at myosin heads and Na+/K+/ATPase pump, and extracellular K+ 
accumulation might reduce contractility, through impaired cross-
bridge cycle function and ability to repolarise and hyperpolarise 

the cell membrane in time to propagate further action potentials. C 
The increase in ROS from increased blood viscosity and shear stress 
inhibits SERCA activity, thus reducing Ca2+ reuptake into the SR 
(Lehoux 2006; Powers and Jackson 2008; Connes et al. 2013). D A 
reduction in AQP4 channels may alter lattice spacing of myofilaments 
and alter protein expression related to Ca2+ reuptake (Basco et  al. 
2011; Farhat et al. 2018). ADP adenosine di-phosphate, AQP4 aqua-
porin 4, ATP adenosine tri-phosphate, DHP/LTCC​ dihydropyridine/
L-type calcium channel, NCX Na+/Ca2+ exchanger, RyR ryanodine 
receptor, SR sarcoplasmic reticulum, SERCA​ sarcoplasmic/endoplas-
mic reticulum calcium ATPase, ROS reactive oxygen species
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reduction of peak isometric and eccentric, but not concentric 
torque (Bowtell et al. 2013). Since eccentric and isometric 
contractions are less reliant on motor unit activation and 
energy expenditure (Coburn et al. 2006; Hoppeler 2016; 
Hody et al. 2019), this indicates performance decrements 
during brief eccentric contractions to be a result of con-
tractile failure, as opposed to a reduction in central drive or 
substrate depletion. Therefore, it is likely that hypo-hydra-
tion modulates force production according to the type of 
contraction; a supposition further supported by the selective 
responsiveness in fast-twitch muscle fibres and alterations 
to contractile elements (see “Impaired Ca2+ reuptake and 
excitation–contraction-coupling” section).

The vast majority of studies investigating neuromuscular 
function utilise isometric contractions, therefore it is impor-
tant to note that isometric exercise involves the occlusion of 
blood flow to active muscle, depending on the intensity of 
contraction (Barcroft and Millen 1939; Edwards et al. 1972). 
The metabolic and resultant ischemic environment increases 
local muscle temperature and stimulates chemo- and mech-
anoreceptor activity (Barnes 1980; Sejersted et al. 1984), 
resulting in afferent stimulation of sympathetic nervous 
activity (Seals and Victor 1991). The combination is thought 
to depress motor unit firing rates (Garland and McComas 
1990; Woods et al. 1987), thereby modifying the relation-
ship between central neural drive and motor unit recruit-
ment (Bigland-Ritchie et al. 1986, Woods et al. 1987). Motor 
unit discharge rates are proportionate to the synaptic input 
they receive (Enoka and Duchateau 2017), but in addition 
to ionotropic input, rate coding may be influenced by neuro-
modulatory input (e.g., noradrenaline) to the motor neuron 
pool via persistent inward currents (Heckman and Enoka 
2012; Perrier and Cotel 2015; Aston-Jones and Waterhouse 
2016). However, noradrenaline has not been associated with 
changes in sarcolemma excitability nor motor neuron dis-
charge activity (Plewnia et al. 2001, 2002; Ilić et al. 2003; 
Boroojerdi et al. 2001; Strahlendorf et al. 1980; Fung and 
Barnes 1981). Therefore, an alternative theory related to the 
reduction in force despite reduced cortical inhibition and 
unaltered corticospinal excitability after hypo-hydration 
(Bowtell et al. 2013), is attributed to the increase in sym-
pathetic nerve activity (to preserve vasomotor function; 
Buharin et al. 2013). In summary, sympathetic nerve activ-
ity could result in altered neural drive (i.e., reduced cortical 
inhibition or unaltered corticospinal excitability) as observed 
after hypo-hydration (Bowtell et al. 2013), yet has no effect 
on muscle function.

During an MVC, the reported effects of hypo-hydration 
are extremely varied (see “Muscle contractility-specific 
responses” section), however, when analysing the specific 
role of the CNS and PNS, some have reported a lower 
cSP, increased sarcolemma excitability (Bowtell et  al. 
2013), unchanged (Periard et al. 2012; Barley et al. 2018) 

or increased central motor drive (Bigard et al. 2001), and 
higher mean power frequency (Vallier et al. 2005) relative to 
euhydrated controls. Despite this, force reductions continue 
to persist. Interestingly, Periard et al. (2012) and Barley et al. 
(2018) reported a decline in force production during repeated 
MVCs, not associated with VA, indicating a loss of force to 
be unrelated to voluntary central drive and more likely to be 
a result of alterations to the peripheral musculature. There-
fore, an alternative view of heat-induced hypo-hydration is 
proposed as: (a) central drive may be enhanced via reduced 
cortical inhibition or increased cortical facilitation, in an 
attempt to compensate for potential force decrements when 
hypo-hydrated but, (b) this may not be sufficient, particularly 
during sustained and repeated voluntary contractions where 
contractile function is impaired (Todd et al. 2005). This 
may explain why heat-induced hypo-hydration is notably 
reported to have ‘no effect’ on brief measures of power and 
strength (Jacobs 1980; Hoffman et al. 1995; Cheuvront et al. 
2006; Watson et al. 2005; Periard et al. 2012; Greiwe et al. 
1998; Montain et al. 1998; Evetovich et al. 2002), but con-
sistently impairs performance during repeated or sustained 
contractions (Bigard et al. 2001; Maxwell et al. 1999; Mohr 
et al. 2010; Judelsen et al. 2007; Kraft et al. 2010; Periard 
et al. 2012; Bosco et al. 1968; Torranin et al. 1979; Schof-
stall et al. 2001). Further studies are required to elucidate 
the facilitatory and inhibitory responses (in the corticospinal 
pathway) to hypo-hydration.

Supraspinal fatigue, increased perception of effort 
and activation of pain‑related networks

Supraspinal fatigue is defined as loss of force caused by 
suboptimal output from the motor cortex (Taylor et al. 
2006). Hypo-hydration also notably increases percep-
tions of fatigue, tension, and anxiety (Ganio et al. 2011; 
Sharma et al. 1986; Gopinathan et al. 1988; Tomporowski 
et  al. 2007). Conscious signals originating from both 
central and peripheral afferent pathways could mediate 
behaviour and reduce motivation to minimize discomfort 
(Cabanac 2006). Heat-induced hypo-hydration resulting 
in a 4% body weight loss resulted in no change of mus-
cle strength, despite a 15% reduction in time to fatigue. 
Interestingly, hypo-hydration did not exacerbate muscle 
pH, hydrogen ion and inorganic phosphate accumula-
tion during the fatiguing task, thus it was proposed that 
hypo-hydration may result in an inability or unwilling-
ness to sustain force production, despite adequate muscle 
strength (Montain et al. 1998). Furthermore, the negative 
psychological associations attributable to thirst may act 
as a signalling mechanism to promote a greater conscious 
perception of effort thus, invoking a behavioural change to 
reduce physical effort (Edwards et al. 2007). Alternatively, 
force may be maintained but only at the expenditure of 
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higher metabolic cost, as seen in increased blood-oxygen-
dependant-level activation (using fMRI) of the fronto-pari-
etal brain region during a cognitive task (Kempton et al. 
2011). Therefore, it is suggested that hypo-hydration may 
negatively affect motivation and increase effort perception, 
resulting in reduced central motor drive during exercise.

Hypo-hydration has also been shown to enhance acti-
vation of pain-related brain networks (Ogino et al. 2014) 
and increase pain perception (Moyen et al. 2015; Perry 
et al. 2016; Bear et al. 2016). The cold pressor test is com-
monly used to assess autonomic outflow to the extremities 

(Victor et al. 1987) and involves the immersion of a limb 
in cold water, thus inducing high levels of pain (Di Piero 
et al. 1994; Zvan et al. 1998). Perry et al. (2016) reported 
a modified cerebrovascular response to the cold pressor 
test in hypo-hydrated subjects due to increased pain per-
ception. Furthermore, Ogino et al. (2014) observed the 
effects of a 12-h fasting and 40-min exercise protocol, 
resulting in increased activation of the anterior cingulate 
cortex, insula, and thalamus, alongside increased thirst, 
and reduced pain threshold during the cold pressor test. 
Interestingly, Farrell et al. (2006) found similar brain areas 

Fig. 2   Summary of proposed 
afferent (A) and efferent (B) 
responses to heat-induced 
hypo-hydration during an 
MVC. A Afferent responses: 
(1) ischemia as a result of 
increased/prolonged contrac-
tions. (2) Reduced plasma 
volume due to water losses 
trigger a vasomotor response. 
(3) Upon an MVC, there is an 
increase in pain, mechano- and 
metaboreflex feedback sent to 
the thalamus and somatosensory 
cortex to alter behaviour and 
central motor drive. B Efferent 
responses: (1) increased activa-
tion of pain network due to 
reduced pain threshold (Ogino 
et al. 2014). (2) Increased 
metabolic activity in other brain 
regions (e.g., frontoparietal 
lobe) due to increased effort 
perception (Kempton et al. 
2011). (3) Reduced GABA to 
compensate for force losses 
in contractile units (Bowtell 
et al. 2013). (4) Reduced 
glutamate and central motor 
drive in conscious reduction 
of effort (loss in motivation 
or increased pain) (St Clair 
Gibson et al. 2013). (5) Volume 
changes result in increased 
blood viscosity, vascular shear 
stress and ROS production (Van 
der Poel and Stevenson 2007; 
Hillman et al. 2011; Laitano 
et al. 2012; Paik et al. 2009; 
Vandewalle et al. 1988; Connes 
et al. 2013; Lehoux, 2006). (6) 
Impaired contractile function 
(contraction-dependent) due to 
increased need for ATP hydroly-
sis and reduced Ca2+ reuptake 
in SR (see Fig. 1). GABA 
γ-aminobutyric acid, ROS reac-
tive oxygen species
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were activated after inducing pain and thirst via noxious 
pressure and infused hypertonic saline, respectively, but 
activation of the pregenual cingulate and orbitofrontal cor-
tices occurred in the combined presence of thirst and pain, 
suggesting an integrative role of thirst and pain sensation. 
Minor discomfort is also sensed at the onset of a contrac-
tion, developing into severe discomfort and pain over time 
that alters the perception of sensations in the contracting 
musculature (Bigland-Ritchie et al. 1978). Experimen-
tally induced pain (EIP) via intramuscular injections of 
hypertonic saline, is proposed to invoke similar nocic-
eptive pathways of exercise-induced pain (Laursen et al. 
1999; O’Connor and Cook 1999). Current evidence sug-
gests EIPs to reduce muscle strength (Graven-Nielsen and 
Arendt-Nielsen 2008; Henriksen et al. 2011; Stackhouse 
et al. 2013) and submaximal force steadiness (Graven-
Nielsen et al. 1997; Rice et al. 2015) indicating increased 
nociceptive activity to be a cause of force decrements. 
Interestingly, Graven-Nielsen et al. (2002) demonstrated 
that EIP reduced maximal voluntary torque, despite an 
unaffected twitch torque, implying that performance decre-
ments were due to mechanisms residing in the CNS rather 
than the peripheral musculature (Graven-Nielsen et al. 
2002). Indeed, EIP is shown to modify corticospinal and 
intracortical excitability (Le Pera et al. 2001; Schabrun 
and Hodges 2012), emphasising the strong relationship 
between the nociceptive and motor systems, however, the 
relationship with hypo-hydration is yet to be explored. A 
summary of all the proposed mechanisms can be found 
in Fig. 2.

Future directions

A major limitation to understanding the effects of hypo-
hydration on neuromuscular function is the method of 
inducing fluid loss. Typically, hypo-hydration is achieved 
using active (exercise) or passive protocols in temperate 
conditions, thus resulting in an elevated core temperature 
and exercise-induced fatigue. Such protocols represent 
ecologically valid scenarios of exercise under heat-stress, 
e.g., running/cycling in temperate conditions or methods 
of rapid weight loss in combat sports, however, it is dif-
ficult to isolate the effects of hypo-hydration. In addition, 
a methodological limitation of many heat-induced hypo-
hydration studies, is (a) to not report the return of core 
temperature to baseline and (b) not observe the effects of 
fluid restoration thereafter; this results in a lack of consist-
ency across findings attributed to hypo-hydration. Further-
more, studies utilising diuretics (e.g., furosemide) result 
in hypo-hydration (iso-osmotic hypovolemia) dissimilar to 
heat-induced hypo-hydration (hyperosmotic hypovolemia), 
meaning that the mechanisms of performance impairment 

are unlikely to be the same. Consequently, future stud-
ies should differentiate the effects of hypo-hydration from 
hyperthermia and exercise-induced fatigue, similar to the 
methods of Periard et al. (2012) and van den Heuvel et al. 
(2020). Furthermore, future studies should investigate 
the brain’s intracortical inhibitory and excitatory activ-
ity (via paired-pulse TMS) and motor unit activity (via 
high-density surface EMG) to elucidate the distinct roles 
of the central and peripheral nervous systems during force 
output, following heat-induced hypo-hydration.

Conclusion

The present evidence suggests that heat-induced hypo-
hydration leads to a notable reduction in neuromuscular 
function, particularly during repeated and sustained con-
tractions. Moreover, hypo-hydration may lead to altered 
corticospinal excitability (via reduced corticospinal inhi-
bition), which might act as a compensatory mechanism 
to minimise force loss during an MVC, but this is insuf-
ficient during repeated contractions due to failure at the 
contractile level. This review has provided an overview of 
the neurophysiological responses to heat-induced hypo-
hydration, its effects on neuromuscular function and the 
potential underlying mechanisms.
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