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Abstract. Recent face reenactment paradigm involves estimating an
optical flow to warp the source image or its feature maps such that pixel
values can be sampled to generate the reenacted image. We propose a
one-shot framework in which the reenactment of the overall face and in-
dividual landmarks are decoupled. We show that a shallow Vision Trans-
former can effectively estimate optical flow without much parameters and
training data. When reenacting different identities, our method remedies
previous conditional generator based method’s inability to preserve iden-
tities in reenacted images. To address the identity preserving problem in
face reenactment, we model landmark coordinate transformation as a
style transfer problem, yielding further improvement on preserving the
source image’s identity in the reenacted image. Our method achieves the
lower head pose error on the CelebV dataset while obtaining competitive
results in identity preserving and expression accuracy.

Keywords: Face reenactment · Vision Transformer · optical flow · facial
landmark.

1 Introduction

Face reenactment is an image generation task. In the one-shot setting, given a
pair of human face images, called the source and the driving, respectively, the
face in the generated image should not only have the same identity as the source
image, but also share the same pose and expression in the driving image. Prac-
tical applications of face reenactment include video conferencing and film pro-
duction. In video conferencing, the speaker’s face can be reenacted to match the
face motion of a translator [20]. For film production, substitute actors can dub
an iconic character with mouth movements and expressions properly mapped to
the original character’s face.

Early studies [4, 12, 19, 20, 22] on face reenactment primarily focused on fit-
ting faces from images to 3D models, then morphing 3D faces and rendering
the reenacted results. These methods require a large quantity of video frames as
inputs and are limited to reenacting specific identities. More recent studies [7,
17, 18, 24, 26, 27, 29] propose one-shot or few-shot face reenactment and utilise
optical flow to map pixels from the source image to the reenacted image, image
warping then becomes an essential operation for these methods. Image warp-
ing on convolutional neural networks (CNN) was first proposed in [10], where
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the model can estimate an optical flow map that warps skewed digits back to
the regular view, improving the classification accuracy. For face reenactment,
image warping means estimating an optical flow that determines how pixel val-
ues should be sampled from the source image or its feature maps such that the
desired reenacted image can be generated.

Since obtaining images for different people with the exact same poses and
expressions is infeasible in practice, a now widely adopted self-supervised learn-
ing paradigm was proposed in [24]. Given a source image sampled from a video
sequence, a corresponding driving image of the same person is randomly cho-
sen from the same video, this makes supervised learning possible as the driving
image is the expected reenactment result. The self-supervised strategy subse-
quently leads to the identity preserving problem described in [7]. The model is
only supervised from optical flow estimation for the same person. When applied
to reenacting faces with different identities, defected images may be generated,
making the person in the reenacted image looks more similar to the one in the
driving image. Inspired by 3DMM[3], authors of [7] approached this issue by
proposing the landmark transformer, which breaks down 3D facial landmark
coordinates into a base 3D face, and principal components that controls the
person-specific shape and expression of the face. By estimating corresponding
principal component coefficients, landmark transformer modifies landmark coor-
dinates of the driving image to be more fitting to the identity of the source image.
However, the performance of [7] is limited by the expressiveness of derived prin-
cipal components. The work of [27] estimates 3DMM parameters for source and
driving images, the authors explicitly exclude the identity information of driving
images by constructing reenacted 3D faces using only the identity parameters of
source images. This method achieves the state-of-the-art performance in iden-
tity preserving, yet currently there is no 3DMM annotaion for face reenactment
datasets, and the optical flow estimation module in [27] requires heavy compu-
tational resource, because it is a graph convolutional neural network [16] that
runs on the source and the reenact mesh each with 53,215 vertices.

In a latest work [26], the authors also utilised landmark transformer to trans-
form landmark coordinates of the driving image. They estimated an global op-
tical flow for the source image based on landmark heatmaps [1] derived from
transformed coordinates, while facial landmarks such as the nose and the mouth
are separately reenacted. Inspired by this strategy, we also decoupled the reenact-
ment of the entire face and facial landmarks. NeuralHead[28] is another reenact-
ment method that relies on facial landmark coordinates. Compared to [7, 17, 18,
24, 26, 27], NeuralHead obtained competitive results on head pose and expression
accuracy, however, the performance on identity preserving is significantly lower.
Authors of [7] believe that this is an indirect evidence of the lack of identity-
preserving capacity in methods based on adaptive instance normalization[9], we
argue that this is the immediate effect of feeding a conditional GAN with in-
appropriate conditions. The image generator of NeuralHead directly takes face
sketches generated by landmark coordinates of driving images as input. When
reenacting different identities, no information on the identity of the source im-
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age is encoded into NeuralHead’s input. This suggests that when a reenactment
method, e.g. NeuralHead, is conditioned on unmodified landmark coordinates
of the driving image, such method can achieve great performance in reenacting
poses and expressions without considering the identity of the source image. In
contrast, a method that does not require any landmark coordinates, such as
X2face, can easily outperform the conditioned method on identity preserving
though poses and expressions are less accurate.

Considering the implication of performance and limitations of [28], our method
directly estimate the global optical flow from the source and driving image with-
out any prior. Additionally, we use Vision Transformer [6] for optical flow estima-
tion. Vision Transformer is an extension of the attention-based neural network
[21] to computer vision tasks. Unlike CNNs that are characterised by weight
sharing and locality, Vision Transformer has less inductive bias [13], attention
weights are dynamically computed depending on the input and features are ag-
gregated from all elements in the input sequence instead of an neighbouring
area. Although experiments show that Vision Transformer would require much
more parameters and tens of millions training examples to reach the same level
of performance as CNN[6], we show that a shallow Vision Transformer is also a
good optical flow estimator for face reenactment.

As for individual landmark components, we use face sketches generated by
landmark coordinates of the driving face for reenactment. Our approach to the
identity preserving problem is aligning the mean and variance of the driving
face’s landmark coordinates with those of the source face. Experiments show
that this approach effectively improve the performance of our models on identity
preserving.

2 Methods

Figure 1 shows the overall framework of our proposed one-shot face reenactment
method. The source and driving image are first fed into the facial feature extrac-
tor, extracted features for the source and driving image are concatenated and
sent to a multi-layer perceptron (MLP) and transpose convolutional layers to
estimate an optical flow map, which later warps the feature map of the source
image in the face reenactment module. The landmark reenactment module is
responsible for individually reenacting the left eye, the right eye, the nose and
the mouth of the source image. As shown in Figure 1, only cropped parts in the
source image and the face sketch are sent to this module. The face reenactment
module takes the source image, the estimated optical flow map and reenacted
landmark parts as input and generates the reenacted face image.

2.1 Facial Feature Extractor and Optical Flow Estimation

Facial feature extractor is responsible for extracting and aggregate image features
for optical flow estimation. The extractor is comprised of a Vision Transformer
with three layers. The architecture of this module is shown in Figure 2. An
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Fig. 1. The overall architecture of proposed method.
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Fig. 2. Architecture of Facial Feature Extraction Module

input image i with size 224× 224 is divided into 256 patches with size 14× 14.
Each image patch is embedded into a 768-dimensional vector, resulting in a
256 × 768 tensor vi for an input image. In addition, a tensor t ∈ R3×768 with
learn-able initial values are concatenated to vi, the first two rows of t store
features for the optical flow estimation, and the third row of t contains features
for landmark coordinate regression, which acts as an auxiliary task that helps
the model perceive human faces. After an input image being embedded into vi ∈
R259×768, it further goes through three self-attention layers. The self-attention
process is given as follows.

Q = viWq, K = viWk, V = viWv (1)

α = softmax(QKT /
√

dk), v∗i = αV (2)

where Wq ∈ R768×dq , Wk ∈ R768×dk and Wv ∈ R768×dv are learn-able parame-
ters, dq = dk = dv = 768, α ∈ R259×259 is the attention score given the input
tensor vi, and v∗i ∈ R259×768 is the output of the self-attention operation, it
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further goes through an MLP layer to yield the final result of a transformer
block.

Optical flow features for the source and the driving image are denoted by
us, ud ∈ R2×768 respectively. us and ud are first compressed to R2×128 then re-
shaped to R1×256, next, these two features are concatenated and sent to an MLP,
resulting in f ∈ R1×6272, f is reshaped to R7×7×128 and after going through a se-
ries of transpose convolutional layers, the estimated optical flow f∗ ∈ R2×224×224

is obtained.

2.2 Landmark Reenactment Module

Landmark reenactment modules reenacts individual facial landmarks, it contains
four convolutional neural networks that share the same architecture, however,
each of them is dedicated to reenacting a different part of the face, namely the
left eye, the right eye, the nose and the mouth. The architecture of each neural
network is similar to an autoencoder. Figure 3(a) shows the crop of the mouth
from the source image, along with its counterpart from the face sketch of the
driving image are first sent to three convolution layers, with the size of feature
maps reduced by half through max pooling, then feature maps of the RGB mouth
crop and that of the face sketch are element-wise added and sent to transpose
convolution layers to generate the reenacted parts. All crops are fixed-sized and
they are cropped around the centre point of corresponding landmark coordinates.
The sketch of a face is obtained by first drawing 68 facial landmark points on a
224 × 224 image with pure black background, then points are connected by B-
spline curves, drawing the outlines of the face, eyes, eye brows, nose and mouth.

Convolution + Max Pooling

Transpose Convolution

Convolution + Max Pooling

Element-wise Summation

Original Sketch Style-transferred Sketch

(a) (b)

Fig. 3. (a) The architecture of landmark reenactment module. (b) An example of
landmark style transfer.

When all parts are reenacted, they are directly placed on another blank
224 × 224 image Ip, and their centre point all align with the centre point of
corresponding parts in the driving sketch.
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Landmark Style Transfer Although our landmark reenactment module relies
on the face sketch generated by driving landmark coordinates, no modification
on landmark coordinates is needed during training as source images and driving
images share the same identity. When we reenact faces with different identities,
this leads to the identity preserving problems described in Section 1 due to the
identity mismatch between the source image and the driving sketch. To remedy
this, we modify driving landmark coordinates by treating it as a style transfer
problem. Inspired by [9], to adapt the driving person’s landmark coordinates to
the landmark style of the source person, we align the mean and variance of the
driving coordinates lmkdriving with those of the source coordinates lmksource,

lmkreenact =
lmkdriving − µdriving

σdriving
× σsource + µsource (3)

µsource, σsource, µdriving, σdriving can be obtained by computing the mean and
variance of each person’s landmark coordinates in the dataset, no learning is
involved in this process. We also shift lmkreenact such that its centre point is at
the same location as lmkdriving. Figure 3(b) shows an example the driving face
sketch generated by the original landmark coordinates and the one generated by
style-transferred coordinates.

2.3 Face Reenactment Module

The face reenactment module is a U-Net-like convolutional neural network with
only one skip-connection in the middle, Figure 4 shows its overall architecture.
The source image is first sent to three convolutional layers with the size of its
feature map r being reduced to 58 × 58, then the estimated optical flow map
f∗ (Section 2.1) with size 224× 224 is resized to match the size of r and warps
r, yielding the warped feature map r∗. The image Ip with reenacted landmark
parts from the landmark reenactment module (Section 2.2) is also resized to
58×58 and concatenated to r∗. The concatenated feature map r∗cat. continues to
go through intermediate convolutional layers with no change in feature map size,
then r∗ is concatenated to r∗cat. through the skip connection, the resulting fea-
ture map is further upsampled through bilinear interpolation and processed by
convolution layers to generate the final reenacted image. The use of bilinear up-
sampling is aiming for alleviating the checkerboard artifact in images generated
by convolutional neural networks [14].

2.4 Loss Function

All modules of our method are jointly trained in the adversarial and self-supervised
fashion. Adversarial [15] loss is essential for image generation tasks, and since
driving images are groundtruths for training face reenactment models, L1 loss
on pixel values and the perceptual loss [11] are adopted. We also use the GAN
feature matching loss [23], as it can stabilize and speed up the training of image
generation tasks when groundtruth images are available. Lastly, we also consider
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Fig. 4. The Overall architecture of Face Reenactment Transformer

the L1 loss for landmark coordinate regression for the auxiliary task described in
Section 2.1. A linear combination of above losses is suffice to train our proposed
method, the loss function J is given by,

J =

5∑
k=0

λiJi (4)

where J0 is the L1 loss of regressed landmark coordinates, J1 is the GAN
feature matching loss, J2 is the adversarial loss, we let λ0 = λ1 = λ2 = 1; J3
is an L1 loss for pixel values of reenacted landmark parts in Section 2.2, and
λ3 = 5; J4 is the perceptual loss of reenacted images, λ4 = 10; J5 is the L1 loss
for pixel values of the entire reenacted image, λ5 = 20. We find that putting
more weight on the L1 loss of pixel values prevents the model from generating
unexpected artifacts, and the emphasis on perceptual loss helps obtaining faces
and shoulders with more realistic shapes.

3 Experiments

We evaluated our methods on the CelebV[25] dataset following protocols in [7].
CelebV is a dataset with video frames for five celebrities, each of them has around
40k images. The evaluation focuses reenactment with different identities, namely
the person in the source image is different from the one in the driving image.

3.1 Model Variants

We tested two model variants: the baseline model, denoted by ViT, has three Vi-
sion Transfomrer layers for facial feature extraction, and the ResNet-34 model
with all Vision Transformer layers in the baseline model replaced by a ResNet-
34 [8] backbone for feature extraction. In [6], a modified ResNet-50 (25M pa-
rameters) outperforms the base 12-layer Vision Transformer (86M parameters)
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on ImageNet top-1 accuracy by 10% with a pre-training dataset of 10M im-
ages. Given that there are three Vision Transformer layers (19M parameters) in
our baseline model, we hence choose ResNet-34 (21M parameters) for compari-
son, which is shallower than ResNet-50. Additionally, we applied landmark style
transfer described in Section 2.2 to both models and evaluated their performance
accordingly. Models with landmark style transfer are denoted by ViT+LSt and
ResNet-34+LSt.

3.2 Metrics

Cosine similarity (CSIM) measures the quality of identity preserving by compar-
ing the distance between face embedding vectors of source images and reenacted
images, where embedding vectors are estimated by the pre-trained face recog-
nition model ArcFace[5]; the root mean square error of the head pose angles
(PRMSE), and the ratio of identical facial action unit values (AUCON) com-
pares driving images and reenacted images, PRMSE tells how accurately the
head pose is reenacted, and AUCON represents how close the reenacted expres-
sion is to that of the driving image. Both head pose angles and action unit values
are estimated by OpenFace[2].

Table 1. Evaluation results of reenactment with different identities on CelebV follow-
ing protocols in [7]. Values in bold stands for the best results, underlined values are
the second best ones. The upward arrow indicates the larger the value, the better the
performance, the downward arrow means a smaller value is better.

Model CSIM↑ PRMSE↓ AUCON↑ Source of Optical Flow

Mesh Guided GCN[27] 0.635 3.41 0.709 3D faces

MarioNETte[7] 0.520 3.41 0.710 raw coordinates

MarioNETte+LT[7] 0.568 3.70 0.684 transformed coordinates

NeuralHead-FF[28] 0.108 3.30 0.722 no optical flow

X2face[24] 0.450 3.62 0.679 raw images

ResNet-34 0.570 2.57 0.695 raw images

ResNet-34+LSt 0.616 3.78 0.650 raw images

ViT 0.568 2.77 0.692 raw images

ViT+LSt 0.620 3.87 0.646 raw images

3.3 Analysis

Table 1 shows the metrics of our methods compared to other methods evaluated
under the same protocol, including types of input that the optical flow estima-
tion is based on. Figure 5 shows the qualitative results of our model variants
as well as typical failure cases. Among our proposed methods, the model with
ResNet-34 as the backbone of optical flow estimator shows the best performance,
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achieving lower head pose error than previous work. The use of landmark style
transfer significantly boosts the identity preserving capability of our methods
while decreasing the head pose and expression accuracy. Distorted input and
large head pose are two challenging cases for our method, a distorted driving
image results in a face which is more similar to the distorted shape, and a large
head pose induces misaligned facial landmarks in the reenacted image. Detailed
analysis is presented in following sections.

Source Driving ResNet-34 ViT ViT+LStResNet-34+LSt

Fig. 5. Qualitative results of proposed models. The last two rows are typical failure
cases, our method is sensitive to distortion in images and struggles with very large
poses.

Comparison of Methods Unlike other methods that involve image warping,
optical flows estimated by X2face are directly applied to images instead of fea-
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ture maps, no module is responsible for refining the warped results, hence X2face
generally performs poorly in recent literature. NeuralHead-FF was implemented
by authors of [7] without meta-learning in the original paper [28]. As described
in Section 1, NeuralHead-FF generates faces from face sketches of driving im-
ages, it does not estimate any optical flow. Mesh Guided GCN benefits from
3D models in which the driving identity is completely discarded. We believe the
3DMM parameter estimator and mesh down-sampling are the main sources of
error for [27], as there is no 3DMM annotation for face reenactment datasets and
loss-less down-sampling is not feasible for general surfaces [16]. MarioNETte es-
timates optical flows from feature maps of face sketches generated by original
landmark coordinates of source and driving images, these optical flows are ex-
erted on feature maps instead of raw images. Face sketches in MarioNETte+LT
are generated from landmark coordiantes transformed by the landmark trans-
former. Without modification on landmark coordinates, our ResNet-34 and ViT
achieve lower PRMSE than previous methods. The use of landmark style trans-
fer boosts CSIM for both ResNet-34 and ViT, though ViT benefits more from
it. Compared to the landmark transformer in [7], our landmark style transfer
better promotes the quality of identity preserving but suffers more on the accu-
racy of pose and expression, this is because our method is more closely related
to how images in the dataset are captured, and each person’s preferred poses
and expression intensity, landmark coordinates transformed by our method are
more similar to how the person behaves in the recorded video.

Performance of Vision Transformer ResNet-34 performs slightly better
than ViT, nonetheless, the shallow Vision Transformer in our proposed method
obtains satisfactory results, which is on par with pure CNN methods such as [7].
Since the estimated optical flow operates on feature maps extracted by CNN,
ResNet, which is also a CNN, can perceive optical flows that are more compatible
with these feature maps. Current architectures of Vision Transformer make them
natural feature extractors, even so, due to the need for image warping in face
reenactment, CNN is still the dominant and more direct way of image synthesis,
reenactment methods that adopt Vision Transformer for image generation need
further study.

Effects of Landmark Reenactment Module Regarding the use of landmark
style transfer, we notice the same pattern that presents in MarioNETte and
MarioNETte+LT: the improvement on the quality of identity preserving comes
at the cost of less accurate head poses and expressions. This is because both
our method and [7] leverage face sketches generated by landmark coordinates
for reenactment. When those coordinates are modified, reenacted images are
subsequently altered. We notice the alteration brought by landmark style transfer
favors faces in frontal view, but performs poorer when faces have large poses.
For instance, in the first row of Figure 5, with the landmark coordinates of the
driving image being transferred to the style of the source image, the eyes and
mouth in the reenacted image are properly opened, yet in the second row of
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Figure 5, the style-transferred coordinates make the mouth region less truthful
to the expression in the driving image. As mentioned above, we believe the
effectiveness of landmark style transfer is closely related to how training images
are captured and the preferred expression intensity of each person. In terms
of the strategy of placing reenacted landmarks at the same location as in the
driving image, the difference in CSIM and PRMSE before and after the use of
landmark style transfer indicates that this is a strong prior for lowering head
pose error, but it is leaking the driving identity to the reenacted image.

4 Conclusions

In this paper, we propose a one-shot face reenactment framework in which the
overall face and individual landmarks are reenacted separately. Vision Trans-
former is used to estimate the optical flow that warps the entire source image
while landmarks are individually reenacted by corresponding sketches through
CNN. We further propose landmark style transfer to alleviate the identity mis-
matching problem. Compared to other methods, we achieved more accurate head
poses and the proposed landmark style transfer better preserves identities that
other methods that also rely on facial landmark coordinates. One possible future
work is to investigate the use of Vision Transformer for the image synthesis stage
in face reenactment.
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