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Abstract

Epidemiologists use individual-based models to (a) simulate disease spread over dynamic contact networks and (b) to investi-
gate strategies to control the outbreak. These model simulations generate complex ‘infection maps’ of time-varying transmission
trees and patterns of spread. Conventional statistical analysis of outputs offers only limited interpretation. This paper presents
a novel visual analytics approach for the inspection of infection maps along with their associated metadata, developed col-
laboratively over 16 months in an evolving emergency response situation. We introduce the concept of representative trees
that summarize the many components of a time-varying infection map while preserving the epidemiological characteristics
of each individual transmission tree. We also present interactive visualization techniques for the quick assessment of different
control policies. Through a series of case studies and a qualitative evaluation by epidemiologists, we demonstrate how our
visualizations can help improve the development of epidemiological models and help interpret complex transmission patterns.

CCS Concepts
* Applied computing — Health informatics; » Human-centered computing — Visualization design and evaluation methods;

Visual analytics;

1. Introduction

In March 2020, COVID-19 became a pandemic which prompted
the introduction of a variety of different and often intrusive policies
by various governments to curb the spread of the disease. During
this time, the scientific community was called to action to under-
stand the effectiveness of these policies before and while they are
being applied and to model future policy scenarios. One type of
model used by epidemiologists is an individual-based model where
the disease spreads through inter-person contacts. The contacts are
modelled as a temporal network [HS12] — a network where each
edge has its own timestamp when the contact occurred. If an infec-
tious individual comes into contact with a susceptible individual,
the disease can be transmitted. Policies can be modelled on top of
these networks to evaluate their effectiveness. The result is a for-
est of disconnected trees, or an infection map. Each individual tree
in these maps models the varying dynamics and topology of infec-
tions in a “local” network. In addition, the nodes and edges carry
associated metadata, such as the location that the transmission took
place (e.g., workplace, restaurant, school, etc.), the disease status
of the infector at the time of infection (e.g., pre-symptomatic or
symptomatic) or the demographics (e.g., age of the individuals).
Even though this metadata is valuable for both validating models
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and comparing multiple policy scenarios, the interpretation of these
model results often resorts to statistical analysis that aggregate, or
sometimes even discard, the rich metadata within these trees. In-
stead, they focus solely on the eventual aggregate indicators, such
as the number of deaths or hospitalizations. This reliance on aggre-
gate statistics is primarily due to a lack of effective visualization
approaches that can support the epidemiological modelling work-
flow through an in-depth analysis of the infection maps. This paper
responds to this gap in knowledge.

Our visualization team began its interactions with the epidemi-
ologists in May 2020, to create visualization solutions to help with
the setting of model parameters and making sense of the output of
model runs. The primary task here was to create visualizations to
help understand the model outputs and the effect of model param-
eters and policies. Our 16 months engagement has led to a series
of prototypes, including the one presented in this paper, and also a
way of interacting with end users in emergency response situations.
As part of our contribution, we document our interactions with our
end users in this emergency scenario.

The primary contribution of this paper is a novel technique that
visualizes infection maps of disease spread using the concept of
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representative trees. These representative trees cluster local out-
break patterns based on their similarity in disease spread and allow
for an aggregated overview while preserving epidemic structures
for large infection maps. The technique was developed in collab-
oration with epidemiologists interested in understanding the effect
of parameters and policies for their individual-based simulator of
COVID-19. We evaluate and demonstrate the effectiveness of our
approach through a series of use cases and a qualitative evalua-
tion with epidemiologists where tasks supportive of their modelling
workflow are conducted. Through these evaluation activities, we
observe that our visualization approach facilitates richer and effec-
tive interactions with model outputs thatenables epidemiologists to
better understand the results of the models, identify issues with the
models, explore the impact of parameters on disease outcomes and
policy effectiveness, and allow for comparison and identification of
effective policies that reduce disease transmission.

2. Background and Related Work

In this section, we will briefly introduce epidemiological modelling
and related visualization techniques.

2.1. Disease Modelling and Individual-Based Models

Contact tracing and testing have a direct impact on epidemic con-
trol (e.g. through isolation of contacts of symptomatic individuals)
and improve our understanding of control measures and wider dis-
ease transmission in general [JPH*21]. There are a number of mod-
els that explicitly represent how contact tracing together with other
non-pharmaceutical interventions affect the dynamics of COVID-
19 from various perspectives: the effectiveness of digital contact-
tracing [FWK*20, HPN*20], the impact of quarantine length and
test-and-release strategies [QCH*21], heterogeneous contact net-
works as drivers of the epidemic [FWK*20], or the required speed
for effective contact-tracing [He20, Ke20, KRB*20].

Typically, aggregate statistics are used to quantify the epidemio-
logical transmission potential in specific settings. These aggregate
statistics can be useful for assessing the overall societal burden of
contact tracing, but do not allow for the investigation of the im-
pact of complex contact-tracing policies on individual-level trans-
missions. In our visual analytics approach, we pair an individual-
based model with a visual analytics system. Similar visual analyt-
ics systems have been developed for individual- and agent- based
models, but usually they are aimed at models with hundreds of
nodes [MFM*18,GBA20] and do not help users understand the net-
work structures at an aggregated level [CAD* 14], or have explicit
spatial components in the data [BWMM15, GPLR21, WXL*21].

Model to be visualized. The COVID-19 Contact-Tracing Model
(developed as part of the COVID-19 RAMP response) visualized in
the paper is an individual-based stochastic network model used to
explore flexible contact tracing and testing policies [git] originally
developed from Mohr et al. [MDC™*18]. The model for spread-
ing the disease over the contacts is a modified SEIR model with
asymptomatic and pre-symptomatic transmission. It operates on
the underlying network of dynamic contact data, a temporal net-
work without spatial components, stratified by setting (home, work,
school, etc.) to spread the disease. Nodes in this network represent

individuals classified by age; edges occur at a specific time and are
represented by weighted contacts where the weight represents the
duration of a contact. Parameters used in the model were derived
from literature [CBGM*21, BMC*20, GCC*20, MCH*20]. The re-
sult of the simulation is an infection map: a forest of rooted directed
transmission trees. Each transmission tree has a root node repre-
senting an index case that was exposed to the disease at the start of
the simulation. A directed edge e = (u,v,t) in the tree indicates that
node u has transmitted the disease to node v at time ¢.

2.2. Visualization for Public Health and Pandemics

Visual analytics systems have been used in the public health do-
main, for example through health records [HHO*16, GXZ*18,
RWA*13, MLL*13] and epidemiological data [PL20]. For infec-
tious disease control in particular, visual analytics approaches have
been used for simulated disease data from spatio-temporal perspec-
tives [BWMMI15], used as decision support tools for pandemic
management [MLR*11, YDH*17] and used to trace back disease
outbreaks to their origin in hospitals [BPW*21, MPW*20].

For COVID-19 specifically, a number of visual analytics sys-
tems for situational awareness and policy decisions have been pro-
posed [MHW*21, DHA*20,LSC*20], including from a geospatial
perspective for simulations [AGJS*20]. In terms of visual analyt-
ics systems to support contact tracing visualizations, there has been
some work that has integrated link prediction with visualizations to
visualize potential clusters of COVID-19 contacts [ASGK21]. Al-
though there has been significant work on the dynamics of a pan-
demic from a variety of perspectives at a high level, this work fo-
cuses on visual analytics to support the dynamic relationships in
an individual based simulation supporting contact tracing. An un-
derstanding of these simulations can help with understanding and
developing new contact tracing policies.

2.3. Visualizing Graphs of Many Components

Methods have been created to summarize collections of
graphs [LSDK18]. Techniques have been explored and evaluated
for summarizing graphs and for labeled trees where one-to-one
matching [Arc09, APP10, MGT*03] or limited matching via node
label [KZA10] is available. Koop et al. [KFS13] superimposes a
number of labeled graphs to construct a visual summary. The labels
here provide a one-to-one correspondence for all graphs in the set,
meaning that they can be overlaid onto a supergraph containing all
nodes and edges from the set. However, for our specific problem
no such labels are available and hence graphs cannot be matched
directly in this way. Additionally, making a supergraph (or in our
case, a supertree) has the disadvantage that it contains a larger num-
ber of nodes than the trees from which it is composed, and the num-
ber of nodes is an important indicator of epidemic impact.

Graphlets is a similar, but slightly different method compared
to our technique. Graplets are small (n < 5) subgraphs of a larger
graph through which the structure of larger graphs can be character-
ized [RPS*21]. They have been used to gauge structural similarity
in egocentric networks for visualization [HACH12]. While these
graphlets could be used similarly to summarize transmission trees,
they lend themselves less easily to visualizing the metadata of the
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nodes and viewing the structure of the trees themselves. Moreover,
being limited to small subgraphs is problematic, as the most inter-
esting trees are those that have many transmissions.

Methods to visualize highly disconnected graphs by cluster-
ing the components on structural similarity have also been de-
vised [SBTKO08, vLGS09]. Statistics or features for each compo-
nent are recorded and self-organising maps (SOMs) are used to
detect clusters of components with similar attributes. Although we
solve a similar problem in this paper and suggest representatives for
each cluster of components, our components are dynamic instead
of static, and we use domain-specific knowledge for clustering.

3. Emergency Response: Early Days to Prototypes

The design of visualizations in this paper is the result of a collab-
oration of an interdisciplinary team of domain experts in epidemi-
ology and visualization. Over a 16-month period, we conducted
bi-weekly meetings during which we discussed the models, their
parameters, the data emerging from the models, as well as key pol-
icy questions in relation to the modelling results. At the beginning
of our collaboration in May 2020, we did not have the opportu-
nity to select our collaborators or the problem: our contact tracing
team was formed through a national-level organization, RAMPVIS
through the Royal Society, for the COVID-19 response; all we
had was our enthusiasm to help and our respective expertise. Also,
the expectation was to respond quickly to the modelling needs by
developing visualization prototypes in an environment where the
requirements and priorities were constantly changing (our defini-
tion of emergency response and that of RAMPVIS [CARA*21]).
A carefully designed visualization would have taken too long and
would be less useful in an evolving pandemic situation. The epi-
demiologists had limited experience with visualizing graph data;
one mentioned that they had not known of visualization as a dis-
cipline before, and the visualization experts had limited knowl-
edge in epidemiology. In normal circumstances, the appropriate
way to approach the design process would be to adopt the design
study methodology (DSM) [SMM 2] and rigorously follow its nine
stages. However, due to the challenges outlined above, we signifi-
cantly shortened its initial stages.

Our emergency response design study methodology did not in-
clude any of the stages before the discover stage [SMM12]. The
reason for the exclusion of these stages is due to the fact our collab-
orator and problem were selected for us in an emergency situation.
This leaves us prone to several pitfalls of the design study method-
ology, in particular: unsuitable problem due to potential for au-
tomation and collaboration with the wrong people. However, these
risks were necessary given the situation. These modifications are
similar to those in the lite methodology [SMR*20], the choose a
collaborator stage does not exist, as our collaborators could not be
selected due to the nature of the response. Secondly, the abstract
phase has been heavily modified.

Our methodology begins at a heavily modified discover stage
(known as the abstract phase in the lite methodology) where we
focus on problem analysis and task abstraction. We began this
stage by meeting with our collaborators and understanding the
data produced by the contact tracing simulation. As our collabora-
tors had no experience working with visualization researchers, we
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performed rapid prototyping with existing visualization tools that
were at our disposal: GMap [GHK10] to demonstrate areas in the
data where the infection location was the same, temporal dynamic
graph animations of the data drawn in the space-time cube [SAK?20,
SAK17, AMA21], time-to-colour encodings [BDA*17] of the data
in Jupyter notebooks, and using tools such as Gephi [BHJ09] (see
supplementary material for prototypes). These pre-prototypes pro-
vided an initial grounding in the visualization field and allowed us
to begin work on visualizations that fit their needs, finding out what
worked and what did not work, and most importantly, as mediums
to build a healthy dialogue within the team.

From our discussions and inspection of the related literature, we
observed that epidemiologists rarely use visualizations more com-
plex than line charts to investigate their data. Moreover, intermedi-
ate artifacts such as how the disease spreads throughout their model
were underutilized. Thus, this initial application of existing visu-
alization tools to their simulation data was crucial for buy-in and
turned out to be very successful. Our collaborators were quite in-
terested in these results and expressed their appreciation publicly
during RAMP consortium meetings. To our surprise, even these
initial design explorations using existing tools were helpful in lead-
ing to useful findings in relation to the simulation data, and several
bugs and inconsistencies in the simulation were discovered. For ex-
ample, in early runs of the simulator the number of random infec-
tions (infections from outside sources) was set to too high a value,
giving unexpected results, confirming that visualization techniques
can help with debugging and analyzing the results. We also found
that the cast phase [SMM12] had significantly more informal roles.

Our discovery phase found that the graph structure of the infec-
tion map was atypical (see supplementary material). Instead of the
graph consisting of few components, it consists of a large forest of
trees with many small trees and a few larger trees. The epidemiol-
ogists are mostly interested in the larger trees, as these show pat-
terns where the disease spreads, providing a basis to tailor policies
for preventing spread at a larger scale. However, the large number
of small trees should not be simply discarded. While a single small
tree does not hold interesting information, many small trees com-
bined do as they for example indicate that the disease has low reach
in many areas of the infection map.

Subsequently, we entered more traditional core phases of agile,
inward-facing validation. We gradually moved away from existing
prototypes and moved towards custom prototypes as the tasks of
our end users became clear.

4. Visualization Problem and Tasks

During the explorative phase of the project outlined above, we fol-
lowed Roger et al.’s [RPH*20] recommendations for rigorous and
rich note-taking, and made use of regularly revised project diaries
that mix visualizations and narrative. These were shared on an open
repository and used as mediums for exchange during the meetings.
Through these interactions, we consolidated our understanding and
learnings in the form of a number of requirements that a useful vi-
sualization for our epidemiologist collaborators should adhere to.

The input for our problem is a stochastic simulator developed by
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the epidemiologists and their collaborators that generates an infec-
tion map, including COVID-prevention policies that can be mod-
elled using the simulator. We identified three main requirements
for the visualization. First of all, the visualization should be able
to give a concise overview of the infection map, which often con-
tains tens of thousands of nodes. Secondly, we should be able to
visually explore the metadata for each node. Thirdly, we should be
able to show the impact of different policies on the same infection
map. By using the same infection map as a base instead of com-
paring multiple runs of the model, we aim to investigate different
policies quicker and allow for a direct comparison of potential pol-
icy impact that without being biased by the inherent randomness in
the simulation. Aside from these requirements, we consider three
higher level tasks that our visualization should support, aimed at the
middle phases ("Model validation", "Comprehension of causes and
effects within the model" and "Perception and detection of patterns
in a simulation for later formal quantification") of an agent-based
modelling project as Dorin et. al’s [DG14] identifies:

T1 Observe and confirm whether the model is behaving as expected.
Model parameters for new diseases are usually adapted rapidly
to handle a new outbreak, and this can involve a lot of poten-
tially error-prone parameter tuning. The epidemiologist has a
clear mental model of the simulator and some expectation of the
results. The visualization of the behavior of the model should
match their mental model and expectation. If not, it means that
either the simulation requires further parameter tuning (e.g.,
there is some error in the current setting) or there are some un-
expected behaviors that require further investigation.

T2 Explore how the disease spreads through the network. Providing
insight into the dynamics of the transmission of the disease helps
epidemiologists in coming up and developing control policies
to prevent the spread of disease. By giving a more informative
insight via a visualization, this is both easier to communicate to
policymakers and allows for more detailed understanding of the
behavior of the disease and the impact of a specific policy.

T3 Compare the effect of policy settings. The policies considered by
the epidemiologists all have multiple parameters such as when a
person isolates, how long a person isolates, how many contacts
of the person are warned given a positive test, etc. The epidemi-
ologists should be able to quickly compare the effect of different
settings to understand the role and impact of the settings.

5. Visual Analytics of Infection Maps

In order to analyze many transmission trees, we designed a visual
analytics system that clusters trees based on epidemic similarity.
We calculate representative trees for each cluster, and visualize the
effect of policies for these clusters on these trees.

5.1. Representative Trees

There are many disconnected components and nodes, and hence
it is not feasible to display all the data using a standard node-link
diagram. Therefore, we cluster the trees in such a way that the ag-
gregated structure characterizes the set of trees it represents. We
achieve this via the concept of a representative tree. A represen-
tative tree represents a number of different trees with similar epi-
demic structure. These representative trees can be viewed as the

<a> <b>

Figure 1: Two transmission trees with the time of infec-
tion inscribed within the nodes. The R; values of the trees
are (a) [2,0,0,0,9.0,0,0,1,9] and (b) [1.,0,%,0,0,0,0,0,0,3].
Smoothening the R, values over 7 timesteps gives (a) [%, % %, %]

and (b) [%, %, %, g]for a smoothed R; distance of%.

center of a cluster, where the trees within the cluster have a small
“epidemic distance” to this center. To compute these representative
trees, we first define a distance measure to measure the similarity
between two trees. A commonly used tree distance measure is the
tree-edit distance that measures how many insertions and deletions
are needed to turn one tree into another under some constraints.
However, trees with low tree edit-distance can be quite different
in how a disease spreads through them over time. Moreover, the
epidemiologists in our team found the tree-edit distance difficult to
grasp during testing. Therefore, we introduce the R; distance mea-
sure, which measures how similar the disease develops in two trees.

We base the distance between two trees on R; (more commonly
known as R as used in the media), the effective reproduction num-
ber [NCO09]. This parameter is often used by epidemiologists to cap-
ture how a disease spreads over time. As we have access to whom
infected whom in the infection map, we can calculate R; for each
time ¢ and each transmission tree T as follows [STM*22]:

{0, if [X(1)] =0

Re=9 ol :

X0 otherwise

where X (¢) is the set of all nodes that are newly exposed at time ¢,
|X(¢)] is the amount of nodes newly exposed at time ¢, and |Y (¢)]
is the amount of children of X (r). Note that while R; can be cal-
culated as a total over all trees as well, we only calculate it for
each tree separately in this paper. To decrease the effect of noise
when calculating distances between trees, we average the value of
R; over a time window. In our implementation, we smoothen over
7 timesteps. Using these smoothed averages, we calculate the Ry
distance between two trees by summing the absolute difference be-
tween the smoothed R; values of both trees for each timestep 7.
The smaller this distance, the more similar the trees are from an
epidemiological viewpoint. This is illustrated in Figure 1.

With this distance measure, we can calculate the representative
trees and their associated clusters. We do not set a fixed level of ag-
gregation, as different data and different tasks require different lev-
els of aggregation. Instead, we allow the user to specify the maxi-
mum R; distance within the trees of a cluster. With a small distance,
few trees will be aggregated and many representative trees will be
required, allowing for a detailed view. By increasing the distance,
the user can reduce the amount of representative trees on-screen
and aggregate them to gain a higher level view of the data.

As the user changes the distance parameter, representative trees
can appear and disappear in the visualization. To prevent trees from
flickering in and out of the visualization, representative trees should
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Figure 2: Graph of R; distances between representative trees (left).
Graphs Gy for d = {0,1,2,3} with nodes in dominating sets Dy
colored black, and edges not in G, grayed out (right).

be stable with regard to the changing distance parameter: when in-
creasing the distance parameter, trees should only ever appear and
never disappear. This is achieved by finding a base set of represen-
tative trees and removing representative trees from this set as the
distance increases as long as all trees remain represented (this will
be explained in more details shortly). For each distance d, we rep-
resent our forest of transmission trees as a graph G,. Each tree x in
the forest represents a node n(x), and there is an edge in G4 between
two nodes (n(x),n(y)) if node n(x) has an R; distance of less than d
from node n(y). Moreover, x and y should have the same number of
nodes to prevent smaller trees from being clustered together, as our
domain experts indicate that there is an epidemiological difference
between trees with different amount of nodes.

To find our base set of representative trees, we calculate a dom-
inating set Dy for distance O on the graph Gy. A dominating set D
is a set of nodes such that every node not in D is adjacent to D. We
say that a node v dominates a node u if u is adjacent tovand v € D.
To calculate our base set of representative trees, we select a repre-
sentative tree y for each tree x, such that n(x) is dominated by n(y)
and the R; distance between x and y is minimal among all possible
dominating nodes n(y) € D. We then increase the distance value d
by 1 and calculate D;. Initially, D; = Dg. We then iteratively go
through each node n(y) € Dy, removing n(y) from Dy if Dy \ y re-
mains a dominating set of G;. After each removal, we reassign any
nodes n(x) that were dominated by n(y) to another node n(z) in Dy
that dominates n(x). We incrementally increase the distance d by 1
and repeat this process until d equals the maximum R; distance be-
tween two nodes. When this process completes, any tree x will be
represented by a representative tree y for any distance d. Moreover,
as we only delete nodes from the dominating set when increasing
the distance, no new representative trees appear, and hence our rep-
resentative trees are stable with regard to the distance parameter.
An example of this process is shown in Figure 2.

Finally, we map the vertices of each tree x to its representative
tree y by finding a mapping with minimal tree edit distance which
preserves the structure of the tree as best as possible. As a result,
each node in a representative tree represents a number of nodes
from different transmission trees, whose metadata we visualize us-
ing a stacked bar chart in our visualization. The concept of repre-
sentative trees and the visualization of them is shown in Figure 3.

Using these representative trees, we can explore how the dis-
ease spreads throughout the network by investigating the structure
of the trees (T2). By visualizing the metadata, the domain experts
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Figure 3: (a) Four transmission trees. The number in each node
denotes the time of infection. The color of a node denotes which
node in the representative tree it is mapped to. White nodes are not
represented as they are deleted in the minimal tree edit distance
mapping. (b) Representative tree of the transmission trees. (c) Visu-
alizing the infection time of the represented nodes using a stacked
bar chart. The time stamps for the middle represented nodes are
8,2,2,7, thus the aggregated node has light blue in the bottom half
(two '2’s) and two dark sections on top (for the 7’ and ’8’).

can verify that the model is working as expected and there is no
unexpected behavior (T1). Thus, we propose that the visual analyt-
ics design above supports the first two tasks. We describe how to
support the final task (T3) in the next section.

5.2. Displaying Policies

The remaining task that we set out to solve is to compare differ-
ent policy settings (T3). Running the full simulation to determine
the effects of changing a setting can change *whom-infects-whom’
between scenarios due to the stochastic nature of the simulation.
Therefore, in order to visualize the differences in transmission be-
tween settings, we apply a policy on the infection map of a baseline
scenario, i.e., without any policy, in a post-hoc manner.

This reflects a retrospective look at what could have happened
if a policy had been applied on a particular real-world example.
It does have the disadvantage that it does not give a completely
accurate view of how effective a policy is on its own: while a trans-
mission path from person u to person v might be prevented on the
infection map due to the policy, a different transmission path to in-
fect person v can exist while not being in this infection map. The
choice of applying policies post-hoc is thus a trade-off between bet-
ter understanding how policy settings influence the simulation, and
getting the complete picture of the effect of a single policy.

To facilitate the comparison of two
policies’ settings, we adapt the visu-
alization of the representative trees.
Instead of showing a single stacked
bar chart per node of the represen-
tative tree, we show two stacked bar
charts, one for each policy setting,
such that they can be compared. We
encode the policy using a separate
color (green) that is not shared with
the color schemes for the attributes,
which allows us to combine visualiz-
ing attributes with visualizing policies
to better understand the impact of a
setting. An example of a representative
tree being used to compare two policy settings A (left stacked bar

Figure 4: Comparing
two policy settings
(green) and time of
infection (blue).
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chart) and B (right stacked bar chart) along with the time of infec-
tion is shown in Figure 4. The green bars in a representative node
n indicate how many transmission events have been prevented by
a policy setting for the nodes represented by n. In this example,
policy setting A is preventing slightly more transmission events at
the low levels in the tree, and many more transmission events at the
higher levels in the tree compared to policy setting B. To demon-
strate how we support all three tasks, we work through a number of
use cases with these representative trees in Section 7.

6. Implementation

The implementation of our tool is split into two parts, both available
online [imp]. In the first part, we preprocess the data using Java
by calculating the representative trees. In the second part, we use
JavaScript and D3.js [BOH11] to visualize the representative trees.

To calculate the representative trees for the first part of our im-
plementation, we need approximate solutions to two NP-hard prob-
lems: calculating a minimal dominating set [Kar72], and calculat-
ing the mapping that minimizes the tree-edit distance [Bil05]. To
calculate a dominating set, we use a simple greedy approximation
algorithm: iteratively add the node which dominates the most non-
dominated nodes to the dominating set. An approximate solution is
sufficient here, as the dominating sets are necessarily not minimal
due to our stability requirement when we increase the distance.

For the mapping of trees to their representative trees, we use the
linear program as presented by Kondo et al. [KOI'Y14] to calculate
an exact solution. While the problem is NP-hard, the linear program
is fast enough in practice as most of our trees are relatively small.
Thus, while inexact algorithms exist [AFH* 13] that can be used for
larger trees and datasets, they are not required for our use case. Us-
ing IBM CPLEX 20.1.0 as our solver and a standard computer with
16GB memory, we can map two trees with up to 24 nodes within a
second, 46 nodes within a minute, and only starting from 74 nodes
it starts becoming infeasible for our use case taking more than an
hour to map two trees. As we have few large trees in the data, and
we can preprocess the data, we can calculate most mappings ex-
actly. For the largest pairs of trees (19 out of 5.000 mappings) the
LP runs into the timeout limit we set of 1 hour, and we use the best
solution the LP has found so far instead of an optimal solution. If
more scalable approaches are required, other mapping algorithms
for rooted unordered unlabeled trees could be also be used [Bil05].

As all policies and parameter settings that the epidemiologists
were interested in (3 different durations of self-isolation, 4 different
time periods for backward contact tracing, and 10 different percent-
ages of app-uptake, for a total of 120 settings combinations) were
known in advance, we preprocessed the calculations and stored the
results to use in the second part of our implementation. However,
calculating a single policy post-hoc is quick, and it would be fairly
straightforward to calculate these interactively if required.

In the second part of our implementation, we visualize the rep-
resentative trees using two stacked bar charts for each node, which
requires around 15.000 svg elements. In our implementation, there
is a small delay before the visualization gets updated. While this de-
lay could be mitigated by further optimization, it was not deemed a
hindrance from our expert user feedback.

6.1. Visual Design

Figure 5 shows the interface of our visual analytics approach. In
area 1, we visualize the infection map using representative trees.
The number of trees in the cluster is shown below each represen-
tative tree. Clicking on a representative tree reveals all the trees it
represents (area la).

In area 2, we can select different visualization settings. In area
2a, the maximum R; distance within a cluster is set. A scented wid-
get [WHAOQ7] is provided showing how many representative trees
will remain on-screen for each distance. Adjusting the slider gives
immediate feedback by fading out the representative trees that will
disappear with the new setting. In area 2b, the base size of nodes
can be adjusted with the layout of the representative trees adjusting
as required. Area 2c specifies the node properties to be visualized
on the left and right stacked bar charts of each node. In area 2d,
policy settings and the parameter setting app-uptake (how many
people have a COVID-tracking application) can be selected for vi-
sualization. When selecting a specific policy, nodes that are pre-
vented from being infected in this infection map by these settings
are given a green color. A "detailed" checkbox has been included
after feedback from the domain experts that splits the prevention
into people whose infector is isolating due to the policy, and peo-
ple who no longer get infected due to the transmission chain being
broken earlier in the chain. Area 2e has a button that launches the
recalculation of the layout of the trees and the color schemes. It is
not automatic as it takes a few seconds to recalculate the represen-
tative trees, which could confuse the user when the visualization is
changing when they are still changing other settings.

Area 3 shows a global overview of the data and a color legend.
In area 3c, the legend for the current selections in area 2 is shown
(colors selected using colorbrewer [HBO03]). Area 3b shows the dis-
tribution of node properties using the settings in area 2 through
stacked bar charts. This distribution can either be from all nodes or
all nodes from a specific level in the trees which can be selected
via the two selectors in 3a. The user can decide to show absolute
values or normalize them using a toggle button.

7. Use cases

To demonstrate how our proposed solution supports the underlying
tasks (Section 3) and reveals relevant observations to an expert user
(denoted as E in this section), we present three use cases, each of
which addresses one of the tasks.

Use case 1: For the first task (T1: Observe and confirm whether
the model is behaving as expected) user E will verify that the com-
partmental model overlaid on the temporal network is working cor-
rectly. For this, E first visualizes the infector state. Looking at the
global overview (Figure 6a), E sees that the distribution of infec-
tious states is as expected. Next, E looks at the representative trees
and picks one of the larger trees (Figure 6a) to verify that the nodes
go through all compartments, which is indeed the case. Moreover, £
sees that the root node of the tree correctly goes through one branch
of the compartmental model having infected nodes in the Presymp-
tomatic, Symptomatic and Severely Symptomatic states, and none
in the Asymptomatic state which would have indicated an error in
the model. Finally, E verifies that there is no strange behavior in the
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duration between infection times by visualizing these times. For ex-
ample, an overly consistent coloring between siblings, or too large
jumps in colors between a parent and a child node would indicate to
E that there are errors or unknown insights in the underlying model.

Use case 2: We illustrate the second task (T2: Explore how the
disease spreads through the network) by letting E explore the lo-
cation of a transmission. When E looks at the overall distribution
(Figure 6c¢), it is clear that school transmissions should have a de-
cent presence in the representative trees. Yet, when E looks at the
smaller trees (Figure 6¢), there are barely any school transmissions.
When E scrolls down and the trees become larger, more and more
school transmissions (Figure 6d) become apparent, but these trans-
missions are generally at the start of the tree. This indicates to E
that school transmissions have a larger impact than they appear to
have from the distribution: Infections at schools often seem to re-
sult in large outbreaks, which spread further into the community,
and thus result in more indirect infections than other places.

Use case 3: We illustrate the third task (T3: Compare the ef-
fect of policy setting) by letting E compare the effect of two policy
settings on school transmissions: a policy setting where the time a
person isolates is set to 3 days, and a policy setting where this time
is 7 days instead. In Figure 6e E sees in the bar charts that this ex-
tra isolation time has a large impact overall. When E looks in more
detail at the larger trees, the extra isolation time seems to have a
large impact on preventing school transmissions for most of these,
but for some subtrees it seems to have no effect at all. E hypotheses
that this is due to the root node of the subtree being asymptomatic,
and this is indeed the case when E switches view to verify their
hypotheses.

8. Qualitative Expert Evaluation

In order to understand and assess how epidemiologists use our
tool in conducting the analytical tasks, as well as gather reflec-
tions on the analytical process facilitated by the tool and on the
emergency design process, we report here on a qualitative evalua-
tion conducted. Our evaluation approach can be considered as an
instance of the "Evaluating Visual Data Analysis and Reasoning"
scenario within Lam et al. [LBI*11] framework for visualization
evaluation. We conducted the evaluation in two sessions with two
epidemiology experts in each. The two participating experts in the
first session (indicated as E1 and E2) are also co-authors on this
publication and participated in the co-design process, the other two
experts (E3 and E4) who joined the second session encountered the
tool for the first time in the evaluation session.

Both evaluation sessions followed the same structure and the
same script, although the second session deviated from the script
as E3 and E4 were seeing the tool for the first time and had to ask
more questions to get an understanding of the underlying model,
the approach, and the tool. The evaluation session was split into
two parts, first a think-aloud case study with a series of activities
to conduct, followed by a semi-structured interview reflecting on
the design, the design process (only in the first session), and the
role of visualization in epidemiological modelling. One of the vi-
sualization researchers introduced the activities, asked prompting
questions, responded to practical queries, and asked the interview

questions, while all visualization researchers took notes during both
parts. Both parts were done online via Zoom. In the following, we
report the results from both the sessions after a joint analysis.

8.1. Think-Aloud Case Study

For the first part of the evaluation, the experts conducted four ac-
tivities that require them to make use of the tool while follow-
ing a thinking-aloud process [AAP*05, Lew82]. Participants were
specifically asked to talk through their analytical thinking and rea-
soning in relation to the actions they were taking. The session took
place online over an hour with one of the experts sharing screen
with the tool open, while the analysis was steered collaboratively
by both experts. The experts were tasked to carry out the following
four activities that are aligned with the analytical tasks in Section 3:

Al: How would you use the tool to assess the model, i.e., is it doing
what you expect it to do? (aligned with T1 and T2)

A2: Are there any interesting patterns that you spot in the simulation
about how the disease spreads? If so, why? (T1 and T2)

A3: Would you be able to compare two policies that are of interest?
(T2 and T3)

A4: Could you identify a policy setting that is interesting to test in a
Sfull simulation run? (T1, T2, and T3)

In the following, we report observations derived through a close
reading and analysis of the notes gathered by the visualization re-
searchers during the think-aloud case-study. We start with observa-
tions about general usage patterns, and afterwards we go through
any remaining task-specific observations. Wherever relevant, we
indicate when a visualization task (Sec. 3) is supported by the tool.

General Observations:

Exploring disease attributes — The mapping of different at-
tributes to the individual nodes have been used regularly, and at
different stages in the analysis. Infector state stood out as being the
most frequently used, likely due to its relevance for understand-
ing the impact of asymptomatic and presymptomatic transmission.
For instance, during A1, E2 commented "Presymptomatics seem to
be playing a disproportionate role in causing infections,” and E3
mentioned "large trees have several asymptomatic nodes" which
were considered important to understand the behavior of the model
(T1,T2). Location of infections was another factor that drew in-
terest, and particularly the impact of school infections was ini-
tially commented as "not seeming to jump out as massively im-
portant,” but upon inspection of larger chains it was observed that
school infections were featuring more, which prompted the experts
to hypothesize that "perhaps the school are important in the bigger
chains?" (T2, see also use case 2).

Degrees-of-freedom in interaction — The ability to compare mul-
tiple policy types, multiple attributes, and the impact of parameters,
such as the app-uptake, was one of the key instruments that the ex-
perts used for comparing policies and evaluating the effectiveness
of the models. However, with so many conditions to vary simul-
taneously, we observed that it became challenging to understand
the impact of any factor, e.g., comparing two different policy types
while also comparing different app-uptake values. As a result, the
comparisons were mostly conducted with a single factor being var-
ied with the other factors constant. For instance, during A1, setting
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both sides to no-policy helped make the investigation of the infector
state distributions much more straightforward.

Questioning simulation parameters — We observed that the vi-
sualizations were instrumental in exploring whether the parameters
have the anticipated impact on the simulation outcomes. A good ex-
ample was the app-uptake parameter that controls the percentage
of the population using a contact-tracing application. While app-
uptake was anticipated to have a high impact on the effectiveness
of the policies during the modelling stage, it was discovered (during
A3 and A4, and as E1 commented) that "(the impact of app-uptake
is) definitely less dramatic than expected" (T1). This was followed
by setting the parameter to extreme values, i.e, 0% and 100% up-
take. E2 commented that "There is still an awful lot of green (pre-
vented infections) on the tree, the impact seems to be coming from
isolation instead of the app." After also exploring whether the low
impact is due to the stringency of a policy by visually exploring a
few stringent policies (T3), E1 concluded by stating "it makes you
wonder if app uptake is useful to include in the simulation.”

Transmission trees — The variations within the topology and
the patterns of transmission across various transmission trees have
been one of the key foci of investigation. An immediate observa-
tion by E2, E3 and E4 during A1 was that "trees are quite short
and not many trees go on for many generations" (T2). During A3,
such shorter chains have shown to respond differently to policies as
E2 stated that "not much happening with the short chains, as they
happen quickly, not much time for policy to have impact."

Activity and Task Specific Observations:

While conducting Al, an initial strategy was to set a baseline
and a significantly more stringent policy to compare. This was,
however, found to be complicated when testing the validity of the
model, so the analysis switched to a same-policy setup where a sin-
gle variation was explored at a time. Node properties were most
widely investigated during A1l. In some cases, the exploration led
to questions on the underlying data, for instance, when the nodes
revealed very low infection levels at home, E2 asked whether this
"is this a glitch or just very few ‘family’" (T1). After further inspec-
tion, there was indeed a glitch present where the ‘family’ location
was being grouped into the ‘other’ location.

While conducting A2, a discussion on super spreading events,
events where many transmissions happen in a short period of time,
took place. E2 commented that "there is no ‘super spreader’ built
into the model, so not expected here, but there is a chance that such
persons exist," and spotted a few likely cases with E1 making a
comment that "(they might be) a person that is highly connected".
E3 asked "why are the trees so short? Expected them to be much
longer" and inquired the underlying disease parameters (T1, T2).
A2 was also the only activity where the time element was actively
explored, and it was not inspected extensively during the further
activities related to the policies.

While conducting A3, one key analytical routine was to explore
the relation between the strength of policies and their impact over
different kinds of trees. For instance, E2 commented, while point-
ing at a large tree that, "We are seeing on this part of the tree very
little impact of the policy. [The infections] Manage to occasionally
get a foothold. I guess you can see that there are branches where
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it [the policy] does not manage to curtail at all. Perhaps we com-
pare with the feeble policy.” (T2). And upon doing that, E2 further
commented "we can see the stringent policy have an impact" (T3)
where E1 hypothesized that "maybe it is the time? We are not ask-
ing them to isolate very long or looking back."(T2).

While conducting A4, observations on the impact of application
uptake parameter surfaced as a concern (as discussed above) and
E1 suggested that it could potentially be left out of consideration.
The investigation continued with a closer inspection of the x and y
parameters, i.e., days of isolation and period of alerting, within this
activity in order to propose a good trade-off between isolation time
and outbreak control. E2 suggested "14 days seem like a long time
for isolation, let’s choose 7 days" (T3) and after seeing the results,
stated that "left and right not that different, so rather than 14 days,
maybe 7 days is enough to have similar results.” This followed on
by a suggestion by E1 to compare 3 and 7 days, E2 commented that
"there is more difference between 7 days to 3 days" (T3) prompting
a decision on a good trade-off within the policy setting.

8.2. Semi-Structured Interview

Following the think-aloud case study exercise, a semi-structured
interview of around 30 minutes took place. Discussion questions
focused on eliciting reflections on four main themes: on the tool as
a whole, on the individual designs, on the design process, and on
wider and future applications of the designs.

New ways of seeing the simulation data — It took a while for
the experts to orient themselves within the tool and E2 stated that
"(they) don’t normally look at this kind of stochastic models in
this way." However, as they went through the tasks, they became
more comfortable formulating exploration routines. E2 acknowl-
edged that by saying "if we used the classic ways of looking at this
data [referring to the aggregated disease curves], we wouldn’t get
the sense of what is happening in the infection clusters" and "would
not have got that sense that sometime you completely nail clus-
ters [with a policy] and that some other clusters are continuing."”
Similarly, E4 commented that they "normally work with population
models," and as also acknowledged by E3, that "there is a lot of in-
formation in the trees" and praised the potential usefulness of these
in modelling processes.

Usability — Both groups of epidemiologists were able to use the
tool without supervision quickly after working with it, requiring
little prompting from the visualization experts. E3 and E4 however
required additional explanation at the start due to unfamiliarity with
the underlying model and network visualizations.

Representative Trees — The epidemiologists found the represen-
tative trees "useful and intuitive"”, and they allow for a large amount
of trees that are not interesting individually to be summarized to-
gether. They did not feel like the representative trees overly summa-
rize the data as they accurately capture the amount of nodes in the
tree and as E2 remarked: "if is possible to see the individual trees
and how they are averaged”. This data provenance helped build
confidence that the representative trees are good representatives.

Statistics and network measures — E3 and E4 expressed clear
interest in the communication of statistics in relation to the simu-
lations as a whole, and in relation to the individual trees. Although
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visual summaries have been found to be useful, primarily due to
the prevalence of quantitative measures in epidemiological mod-
elling, statistical summaries and indicators could complement the
visual patterns observed to build a well-rounded assessment of the
policies. Similarly, there has been interest in making more use of
network measures to organize the trees, e.g., ordering the represen-
tative trees by their depths to highlight long infection chains.

Emergency design process — The epidemiologists E1 and E2
found the emergency design process and being able to view the
early visualizations overall useful to build a dialogue and gain in-
sight. E2:" think that [the emergency design process] was useful.
Very useful when we saw the length of transmission chains: How
that broke down under different policies. The idea culminated into
the visualization. Even if we aren’t ultimately using them, they cre-
ated a dialogue about the kinds of things we look for in visualiza-
tion and the kind of questions we ask."

Generalizability & future — While the current work is focused on
visualizing a model for COVID data, E1,E2 and E3 all commented
that there are "Definitely (other) settings where this can be useful
to make suggestions to change policies," such as disease outbreaks
in humans or livestock.

9. Discussion and Future Work

With our epidemiological experts, we made the decision to prune a
single run of the simulation to allow for comparative analysis visu-
alization of different policies (as opposed to having multiple runs
for comparisons). This means that we are looking at a particular run
from a stochastic model and not necessarily an average one. There
are ways of mitigating this risk, for instance, creating ensembles
and selecting the most representative/average/typical ones. Our ap-
proach only compares two policies and not multiple. Comparing
multiple policies, possibly through visual parameter space analy-
sis [SHB* 14], would be interesting future work.

The simulation that is used to generate the data for our visual-
ization builds on two different models: One model for mixing net-
works between different ages at different locations, and one model
for baseline infectiousness at different locations. Both of these
models have an inherent uncertainty within them, and it would be
an interesting area of future work to understand and visualize the
propagation of these uncertainties in the final visualizations.

While the tool is built for simulated data, it should be possible
to adapt it to real infection maps from actual contact tracing data.
One important difference is that in real data, often only potential
avenues of infections are available instead of the exact infector-
infectee relationships, but this could be resolved by using the work
of Rozenshtein et al. [RGPV16] to construct a likely infection map
from the data.

In this paper, our approach selects representative trees according
to specifics of the domain as discussed in Section 5.1. However, dif-
ferent design decisions can be made according to the area. Instead
of calculating multiple representative trees for each group of trees
of the same size, one can instead calculate a single representative
tree to represent the entire cluster. This will remove the need for
a user-specified distance measure as only a single tree per cluster

will be shown, and thus further reduce the number of trees shown
on-screen. Furthermore, in the current approach a computationally
expensive tree mapping algorithm is used to map a tree to its repre-
sentative, which could be replaced with an inexact but faster map-
ping. Finally, the distance measure we are using is domain-specific
and unlikely to work directly outside an epidemiological setting.
However, any other distance measure can be used, and thus dif-
ferent domain-specific or even generic distance measures could be
used for different application areas.

Lessons learnt — Reflecting on the discussions and evaluations,
we distill some key lessons-learnt from this design study:

e Ability to vary data and conditions in comparative visual analy-
sis is essential for evaluating multiple model outcomes but com-
parisons should not involve many varying factors at once

e Ability to concurrently compare the same data at multiple levels
of aggregation is a key strength of visualization in this problem

e [t is essential to use domain relevant metrics when constructing
representatives. Using R; values has been key in generating rep-
resentatives that experts understand and trust

e Visualizing the internal dynamics of simulations enriches the
analysis. Visualizing the infection maps through representative
trees broadened the scope of analysis away from aggregate statis-
tics and led to more nuanced discussions on comparing policies

10. Conclusion

In this paper, we present a visual analytics approach for visualizing
different contact tracing policies on the results of individual-based
model simulations for COVID-19. Our approach clusters transmis-
sion trees of similar epidemic structure together and uses represen-
tative trees to represent these clusters. The influence of different
contact tracing policies and settings can be investigated on this in-
fection map as a post-process to investigate effectiveness and facil-
itate model understanding. Through an evaluation with epidemiol-
ogists, we find that the approach helps understand the results, iden-
tify issues with the models, explore the impact of parameters, and
compare and identify effective policies for further analysis.

With this study, we demonstrate that incorporating interactive vi-
sualizations within the various stages of the epidemiological model
building process can lead to effective, better informed, and reflec-
tive model building processes, that contribute to both the quality
of the models and the policies that are assessed through them. Vi-
sualization has more to offer to contribute to data and model in-
tensive policy making scenarios, and strengthen the scientific com-
munities’ and society’s resilience against the current and the future
pandemics. To that end, we would like to stress, once again, the
importance of close multidisciplinary collaborations in delivering
effective and thoughtfully designed visual analytics approaches to
support complex situations as in the pandemic response, and call
for networks of interdisciplinary research teams to facilitate these.
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