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Abstract

A novel approach to calculating coupled-channel effects for bottomonium
in the 3P0 framework using realistic wavefunctions is introduced in which
the physical state is expanded in a basis set of harmonic oscillators. Other
techniques of solving the unquenched system are also presented including
perturbative, simple harmonic oscillator and unique valence approximations.
The resulting (spin-averaged) mass shifts are calculated for an nS → 1S+1S
transition and compared across the separate methods. It is determined that
the largest effect on the mass shift across the various approaches is the accu-
rate treatment of the wavefunction, which causes significant deviations from
the simple harmonic oscillator approximation near threshold. It is also found
that the inclusion of mixing between valence states due to meson loops has
no effect at ground state energies but induces small differences at higher
lying states. While conclusions are drawn about the relative effect each of
the methods presented have on determining the mass shift due to unquench-
ing, further research is suggested for other transitions to be assured in such
conclusions.
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1 Introduction

Quantum Chromodynamics (QCD) establishes the gauge field theory of strong

interactions, which are responsible for binding quarks into hadrons, in the

SU(3) component of the standard model [4]. There are many different tech-

niques that have been developed to perform calculations within the QCD

framework that each have their merits and limitations. One approach is per-

turbative QCD which can be effective in the high energy region and at short

distances because the strong coupling constant is small in these limits and

thus the expansion in perturbation theory converges, thereby producing a

valid approximation to the system. However, while asymptotic freedom is

a perturbative concept that is useful in describing these restricted areas of

the field, low energy behaviour (such as confinement) or processes dependent

on large-distance contributions can make the expansion parameter large and

therefore pQCD becomes unsuitable for these types of calculations [5, 6]. In

these sectors, lattice QCD provides a non-perturbative approach whereby the

characteristics of QCD are implemented onto a discretised Euclidean space-

time grid and unlike pQCD, can be used in problems involving confinement

and has a well behaved renormalisation factors as the lattice spacing ap-

proaches zero, among other features [7]. With that being said, the methods

used within this framework such as monte carlo simulations can be extremely

computationally intensive, so much so that lattice QCD systems are often

studied in the context of exploring techniques to improve numerical effi-

ciency, for example applications of mixed precision solvers on GPUs [8] and

even machine learning [9].

To avoid the large calculation work associated with LQCD, one can use

quark models to ’reproduce the behaviour of observables such as the spec-

trum and magnetic moments in the baryon and meson sector’ [10]. The first

quark models were developed in the 1960s by works from Greenberg [11] and
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Dalitz [12] in which the harmonic oscillator model of Baryons was formu-

lated. The harmonic oscillator, along with the Hydrogen atom, is one of the

few confining potentials for which the Schrödinger equation can be solved

analytically, but since these works many other potentials have been studied

such as the Morse, Pösch-Teller, complex cube, anhormonic oscillator and

quarkonium potentials, the most common of which however is the coulomb

plus linear, or Cornell, potential. Furthermore, a plethora of analytical and

numerical techniques have been implemented into finding approximate so-

lutions to these potentials including, but not limited to, super-symmetric

quantum mechanics, the WKB method, Nikiforov Uvarov’s method and the

asymptotic iteration method (AIM) [13]. However, quenched quark mod-

els neglect non-valence quark effects such as meson creation and continuum

coupling mechanisms in their formalism or absorb these phenomena into the

model parameters [14]. Because of this, and despite the fact that there

has been some successes using screened potentials to account for such ef-

fects [15], efforts have been made in unquenching the quark model to treat

these mechanisms, and the resulting mass shifts induced by meson loops,

more fundamentally. To do this, various models have been formulated to

calculate the qq̄ light mesons in the continuum. One such framework, which

will be assumed in this paper, is the 3P0 model in which the light meson pair

is created out of the vacuum thereby sharing the associated 0++ quantum

numbers causing it to be in a spin triplet state [16]. The 3P0 operator has

been used extensively in unquenched quark models for a variety of hadronic

states including Charmonia, Bottomonia, charmed mesons, bottom mesons

and baryons [17]. Other models include the flux tube model in which the qq̄

pair are formed via a breaking of the gluonic flux tube between the quarks

(which in Isgur and Paton’s work [18,19] is derived from the strong coupling

expansion of Lattice QCD) and also microscopic models wherein ’pair cre-

ation arises from the same interaction which controls the hadronic spectrum,

so that masses and decays are determined by the same parameters’ [17].
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Whilst the potential models are approximate by nature and may not appreci-

ate some of the underlying physics as much as more complicated formalisms

like lattice QCD, techniques by which to account for hadronic loop effects

are nonetheless important. Previously, it was thought they could be respon-

sible for the anomalously low masses of some charm-strange states and such

mechanisms are only partially present in quenched lattice QCD [2]. More re-

cently, this form of QCD is less justifiable as it neglects these aspects of the

calculation, whilst modern research in this area include diagrams that allow

for hadron loop effects [20]. It is therefore reasonable to argue that undertak-

ing research to make quark models more accurate is a worthwhile endeavour

that could provoke some significant results, and such improvements are not

limited to the inclusion of hadronic loop corrections.

Whilst there has been extensive research in unquenched or ’coupled-channel’

effects, particularly within the 3P0 model, most of these calculations involve a

simple harmonic oscillator approximation to the wavefunction to simplify the

problem without clear clarification on it’s validity [1]. The work presented

in this thesis aims to not only introduce a novel approach to solving the

unquenched system for bottomonium that uses more realistic wavefunctions,

but also to provide a comprehensive comparison to three other methods that

produce such solutions under various frameworks and approximations. This

novel approach involves a matrix system of solving the Schrödinger equa-

tion in which the real, orthonormal wavefunction is expanded in a basis set

of harmonic oscillators and both the discrete and continuum sectors of the

problem are solved simultaneously. Within this comparison is a perturba-

tive approach to the problem and one that is solved self consistently within

the coupled-channel equations that both adhere to the aforementioned single

SHO wavefunctions. Also included is a technique that uses the harmonic

oscillator expansion for the wavefunction, but under the single valence ap-

proximation such that there is no sum over the discrete eigenstates. By

performing the same calculation with identical parameters using four sepa-
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rate methods, conclusions will be drawn regarding the relative effect each set

of techniques and approximations has on the induced mass shift due to me-

son loops. This thesis will be organised as follows. Section 2 will derive the

methods discussed from first principles which leads onto section 3 in which

the theory is contextualised to mesons. The potential model and solution to

the discrete spectrum is discussed in section 4, followed by the computation

of the necessary matrix elements in section 5. Data and results are analysed

in section 6 and are presented alongside those in [1] for comparative purposes,

while conclusions and final thoughts are summarised in section 7.
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2 Theory

2.1 Nomenclature

In the following derivations, the notation is chosen to be general in form such

as to not disrupt the flow of the logic with unnecessary detail at this stage.

|n〉 describes the initial state of the heavy meson, whilst |λp〉 represents

the heavy-light mesons in the continuum. Here, p denotes their relative

momentum whilst the remaining relevant information, such as radial, spin,

orbital and angular momentum quantum numbers, as well as flavour, are

absorbed into the object λ. |ψ〉 represents the physical state, which is itself

an admixture of discrete and continuum states.

2.2 The Hamiltonian

The Hamiltonian for the unquenched system will be expressed as

H = H0 + U (1)

where H0 is the part of the Hamiltonian that just acts on one part of the

wavefunction, the bare state |n〉 or the continuum state |λp〉:

H0 |n〉 = Mn |n〉 (2)

H0 |λp〉 = Eλ(p) |λp〉 . (3)

with Mn denoting the mass of the state |n〉 and Eλ(p) the energy of the

continuum mesons, dependent on their relative momentum p. The following

equations define the orthogonality relations between both the discrete and
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continuum components of the wavefunction

〈n′|n〉 = δn′n, (4)

〈λ′p′|λp〉 =
δλ′λδ (p′ − p)

p2
, (5)

〈λp|n〉 = 0. (6)

The term U couples the discrete and continuum sectors via 〈λp|U |n〉. This

is the matrix element that is responsible for coupling the bare meson (Qq̄)

to the two meson state (Qq̄)(Q̄q). This term, however, does not contribute

to coupling between the valence states

〈m|U |n〉 = 0 (7)

and conversely, H0 does not contribute to mixing between discrete and con-

tinuum states

〈λp|H0|n〉 = 0. (8)

The Hamiltonian, H, used in this thesis has no spin dependence due to the

approximations discussed in Section 3.2 and therefore the results obtained

correspond to spin-averaged masses, which can be determined using the equa-

tion

M =
1

4
(3Υ + ηb) . (9)

2.3 Wavefunction and Normalisation

The time-independent Schrödinger equation is

H |ψ〉 = E |ψ〉 (10)
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where |ψ〉 is the real orthonormal wavefunction. Since H mixes |n〉 and |λp〉,
the wavefunction is an admixture of both components, in the form

|ψ〉 =
∑
n

|n〉 〈n|ψ〉+
∑
λ

∫
dp p2 |λp〉 〈λp|ψ〉 . (11)

The normalisation condition necessitates:

〈ψ|ψ〉 = 1, (12)

hence ∑
m

|〈m|ψ〉|2 +
∑
λ

∫
dp p2 |〈λp|ψ〉|2 = 1 (13)

which follows from the orthogonality relations (4), (5) and (6). In some

cases the single valence approximation is applied, where the wavefunction

constitutes only one discrete state and a range of continuum states. Thus,

there is a simpler form of (11) with no sum over the valence states.

|ψ〉 = |n〉 〈n|ψ〉+
∑
λ

∫
dp p2 |〈λp|ψ〉|2 (14)

with normalisation

|〈n|ψ〉|2 +
∑
λ

∫
dp p2 |〈λp|ψ〉|2 = 1 (15)

2.4 The Mass Shift Equation

The inclusion of coupled-channel effects, responsible for the transition of a

heavy meson (QQ̄) into two heavy-light mesons ((Qq̄), (Q̄q)), causes a change

in the mass of the state. As various methods for solving the unquenched

system are derived, the object Ω(W ) is used to obtain the mass shift and
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mixing matrix in each case, and is defined by

Ω(W ) =
∑
λ

∫
dp p2

U |λp〉 〈λp|U
Eλ(p)−W

. (16)

The argument W is an object that will be defined on a case by case basis as

different methods of deriving this relation are discussed.

2.5 Perturbation Theory

The method outlined in this section is based in perturbation theory by as-

suming the term U in the Hamiltonian, that is responsible for mixing the

valence and continuum states, is a small effect in comparison to H0 in deter-

mining the masses and properties of the states, and can therefore be modelled

as a perturbation to the system. In this setup, the Hamiltonian takes the

form

H = H0 + aU (17)

where H0 is the spectrum of base states and a is the book keeping parameter

used to track powers in the expansion. The full eigenstates, |ψ〉, are solutions

of (10). Performing a power series expansion:

|ψ〉 = |n〉+ a |φ(1)〉+ a2 |φ(2)〉+ . . .

E = Mn + aE(1) + a2E(2) + . . . .
(18)

This can then be substituted into (10), and since this must be true for any a,

the coefficients can be equated. The O (a0) result is just the defining equa-

tion of the base states (2). However, powers of a give the following equations:

O (a):

H0 |φ(1)〉+ U |n〉 = Mn |φ(1)〉+ E(1) |n〉 (19)
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O (a2):

Ho |φ(2)〉+ U |φ(1)〉 = Mn |φ(2)〉+ E(1)
n |φ(1)〉+ E(2)

n |n〉 (20)

First Order

Multiplying (19) on the left with 〈n| gives

〈n|H0 |φ(1)〉+ 〈n|U |n〉 = Mn 〈n|φ(1)〉+ E(1). (21)

Then, using the relations (2) and (7) this becomes

Mn 〈n|φ(1)〉+ 0 = Mn 〈n|φ(1)〉+ E(1) (22)

and so the first order contribution to the energy is zero. Now, multiplying

(19) on the left with 〈λp| and using equations (2) and (6) gives the expression

Eλ(p) 〈λp|φ(1)〉+ 〈λp|U |n〉 = Mn 〈λp|φ(1)〉+ 0 (23)

which when simplified forms the equation:

〈λp|φ(1)〉 =
〈λp|U |n〉
Mn − Eλ(p)

. (24)

This is the continuum component of the first order correction to the wave-

function. As for the discrete component, rearranging (19) and multiplying

on the left with 〈m| gives

〈m|H0 −Mn |φ(1)〉 = 〈m|E(1) − U |n〉 . (25)

Since the first order correction to the energy is zero, and using (2), this can

be expressed as

(Mm −Mn) 〈m|φ(1)〉 = 0. (26)
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Equation (26) implies that, for m 6= n, 〈m|φ(1)〉 = 0, i.e. to first order

there is no mixing between different valence states. On the other hand, if

m = n, equation (26) does not have any constraint on 〈n|φ(1)〉. This can also

be seen by noting that, given a solution |φ(1)〉 to equation (19), the linear

combination |φ(1)〉 c |n〉 is also a solution, for arbitrary c. This freedom in the

definition of the first order wavefunction is a generic feature of non-degenerate

perturbation theory, as discussed in [21]. The usual approach is followed of

insisting the first order correction to the wavefunction is orthogonal to the

zeroth order wavefunction, in that 〈n|φ(1)〉 = 0. As happens in the case of

ordinary first order perturbation theory, other definitions are possible and

these unfold differently at the point of normalising the wavefunction, which

is beyond the scope of this thesis. Using equations (11) and (24),

|φ(1)〉 =
∑
λ

∫
dp |λp〉 〈λp|U |n〉

Mn − Eλ(p)
. (27)

Second Order

From (20),

(H0 −Mn) |φ(2)〉 − E(2) |n〉 = (E(1) − U) |φ(1)〉 . (28)

Using (11), and the fact that E(1) = 0, gives

(H0 −Mn) |φ(2)〉 − E(2) |n〉 = −
∑
λ

∫
dp p2 U |λp〉 〈λp|φ(1)〉 . (29)

Multiplying on the left with 〈m| and simplifying produces the relation

(Mm−Mn) 〈m|φ(2)〉 −E(2) 〈m|n〉 = −
∑
λ

∫
dp p2 〈m|U |λp〉 〈λp|φ(1)〉 . (30)
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If m = n,

E(2) =
∑
λ

∫
dp p2 〈n|U |λp〉 〈λp|φ(1)〉

=
∑
λ

∫
dp p2

|〈λp|U |n〉|2

Mn − Eλ(p)

(31)

by virtue of (24). If m 6= n, then due to (4), the equation becomes

〈m|φ(2)〉 =
1

Mn −Mm

∑
λ

∫
dp p2

〈m|U |λp〉 〈λp|U |n〉
Mn − Eλ(p)

, (32)

and thus, using (11):

|φ(2)〉 =
∑
m

|m〉 1

Mn −Mm

∑
λ

∫
dp p2

〈m|U |λp〉 〈λp|U |n〉
Mn − Eλ(p)

. (33)

In summary, the correction to the energy to second order is

E = Mn +
∑
λ

∫
dp p2

|〈λp|U |n〉|2

Mn − Eλ(p)
. (34)

Since the context of this framework is below threshold, Mn < Eλ(p) for all p

and thus E is real. Equation (16) then becomes

Mn − E = 〈n|Ω(Mn)|n〉 =
∑
λ

∫
dp p2

〈n|U |λp〉 〈λp|U |n〉
Eλ(p)−Mn

(35)

where 〈n|Ω(Mn)|n〉 is the mass shift. While this appears to be a transcen-

dental equation, Mn can be calculated using the methods outlined in section

4 and thus can be inserted into (35) to find E. This setup corresponds to

Case 1 in the results and discussion.
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2.6 Single Valence Approximation

In this approach, the problem is solved self consistently by varying E to find

a solution whilst using the single valence approximation such that there is

no sum over discrete states, i.e. look for solutions to (10) of the form

E |ψ〉 = H |n〉 〈n|ψ〉+
∑
λ

∫
dp p2H |λp〉 〈λp|ψ〉 . (36)

As before, multiplying on the left with 〈n|, and using (2) and (8) to simplify,

produces the relation

(E −Mn) 〈n|ψ〉 =
∑
λ

∫
dp p2 〈n|U |λp〉 〈λp|ψ〉 . (37)

Now, multiplying (36) on the left with 〈λ′p′| and using (8) gives

E 〈λ′p′|ψ〉 = 〈λ′p′|U |n〉 〈n|ψ〉+ Eλ(p) 〈λ′p′|ψ〉 (38)

which can be simplified using (5) and re-arranging:

(E − Eλ(p)) 〈λp|ψ〉 = 〈λp|U |n〉 〈n|ψ〉 . (39)

Substituting the above into (37) gives the familiar mass shift equation (16)

Mn − E = 〈n|Ω(E)|n〉 =
∑
λ

∫
dp p2

|〈λp|U |n〉|2

Eλ(p)− E
(40)

except now with argument E instead of the discrete mass Mn. Since E is

unknown at this point, (40) becomes a transcendental equation and is there-

fore somewhat difficult to solve, requiring a graphical or numerical approach,

which will be detailed in due course. This method is represented by Case 2

in following sections of the thesis.
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2.7 Treating the Discrete Wavefunction

In the previous two approaches, the wavefunction at the point of coupling

between the valence and continuum states, i.e. in 〈n|Ω(W )|n〉, is assumed to

be a single simple harmonic oscillator as is often done in the literature [2].

Thus, writing |N〉 as a harmonic oscillator state,

〈n|Ω(W )|n〉 → 〈N |Ω(W )|N〉 (41)

in Cases 1 and 2. However, one can treat the discrete wavefunction as an

eigenstate of H0 at this point, as in equation (2), via an expansion in the

harmonic oscillator basis:

|n〉 =
∑
N

|N〉 〈N |n〉 . (42)

Since perturbation theory is inherently approximate anyway, this treatment

of the wavefunction is more appropriately applied to the ’coupled-channel’

setup and so from equation (40)

〈n|Ω(E)|n〉 =
∑
N ′N

〈n|N ′〉 〈N ′|Ω(W )|N〉 〈N |n〉 . (43)

This forms a matrix equation

Mn − E =(
〈n|1〉 〈n|2〉 . . .

) 
〈1|Ω(E)|1〉 〈1|Ω(E)|2〉 . . .

〈2|Ω(E)|1〉 〈2|Ω(E)|2〉 . . .
...

...
. . .



〈1|n〉
〈2|n〉

...

 (44)

where the eigenvectors of H0 are dot multiplied with the full Ω(E) matrix.

This method of applying the single valence approximation using realistic

wavefunctions will be referred to as Case 3.
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2.8 Summing Over Discrete Eigenstates

In contrast to the previous sections, the following technique for solving the

problem discusses a general case in which the single valence approximation

is not assumed. Thus, solutions of (10) are searched for in the form

E |ψ〉 =
∑
n

H |n〉 〈n|ψ〉+
∑
λ

∫
dp p2H |λp〉 〈λp|ψ〉 . (45)

Multiplying the above on the left with 〈m| and using (4), (2) and (8) to

simplify gives

E 〈m|ψ〉 =
∑
n

δmnMn 〈n|ψ〉+
∑
λ

∫
dp p2 〈m|U |λp〉 〈λp|ψ〉

= Mm 〈m|ψ〉+
∑
λ

∫
dp p2 〈m|U |λp〉 〈λp|ψ〉 .

(46)

Hence, with m→ n:

(E −Mn) 〈n|ψ〉 =
∑
λ

∫
dp p2 〈n|U |λp〉 〈λp|ψ〉 . (47)

Multiplying (45) on the left with 〈λ′p′| and using (4), (5) and (8) to simplify

produces the relation

E 〈λ′p′|ψ〉 =
∑
n

〈λ′p′|U |n〉 〈n|ψ〉

+
∑
λ

∫
dp p2Eλ(p)

δλ′λδ(p
′ − p)

p2
〈λp|ψ〉 ,

=
∑
n

〈λ′p′|U |n〉 〈n|ψ〉+ Eλ′(p
′) 〈λ′p′|ψ〉 .

(48)
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Hence,

(E − Eλ(p)) 〈λp|ψ〉 =
∑
n

〈λp|U |n〉 〈n|ψ〉 . (49)

Substituting this into (47) gives

(E −Mn) 〈n|ψ〉 =
∑
λ

∫
dp p2

〈n|U |λp〉
E − Eλ(p)

×
∑
m

〈λp|U |m〉 〈m|ψ〉

=
∑
m

Ωmn(E) 〈m|ψ〉
(50)

with

Ωmn(E) =
∑
λ

∫
dp p2

〈n|U |λp〉 〈λp|U |m〉
E − Eλ(p)

. (51)

This can also be written as∑
m

(δmnMm + Ωmn(E)) 〈m|ψ〉 = E 〈n|ψ〉 (52)

which is a matrix equation

M1 0 . . .

0 M2 . . .
...

...
. . .

+


Ω11(E) Ω12(E) . . .

Ω21(E) Ω22(E) . . .
...

...
. . .




〈1|ψ〉
〈2|ψ〉

...

 =

E


〈1|ψ〉
〈2|ψ〉

...


(53)

or, more simply (
M + Ω(E)

)
Φ = EΦ. (54)
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The eigenvalues are found by solving

∣∣M + Ω(E)− EI
∣∣ = 0. (55)

The practical difficulty with this method is that it requires the discrete wave-

functions to be obtained numerically which is cumbersome to implement as

an input into the matrix, especially at large dimensions. Consequently, one

typically uses harmonic oscillator wavefunctions as an approximation to make

the computation viable, particularly when considering a wide range of states

and transitions. This is a limiting feature of this approach that is related

to the separation of discrete and mixing components of the calculation, thus

the following technique is suggested.

2.9 Valence Mixing

The procedure by which the mass shift is derived in this case is a novel

approach to the problem that takes advantage of the full set of harmonic

oscillator basis states by allowing a self-contained treatment of the discrete

and unquenching parts simultaneously, without the need to compromise on

the discrete component of the wavefunction at the point of coupling with the

continuum. As before, the wavefunction is defined using the completeness

relation (11), except now the harmonic oscillator state |N〉 is used as opposed

to a discrete eigenstate of H0. Thus, instead of having (2), which implies the

relation

〈m|H0|n〉 = Mnδmn, (56)
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the equation becomes

〈N ′|H0|N〉 =


〈1|H0|1〉 〈1|H0|2〉 . . .

〈2|H0|1〉 〈2|H0|2〉 . . .
...

...
. . .

 . (57)

From here, the same process is followed with solutions found for (10) in the

form of (45). Multiplying on the left with 〈N ′| gives

E 〈N ′|ψ〉 =
∑
N

〈N ′|H0|N〉 〈N ′|ψ〉+
∑
λ

∫
dp p2 〈N ′|U |λp〉 〈λp|ψ〉 . (58)

Multiplying on the left with 〈λ′p′| gives

E 〈λ′p′|ψ〉 =
∑
N

〈λ′p′|U |N〉 〈N |ψ〉+
∑
λ

∫
dp p2 〈λ′p′|Ho|λp〉 〈λp|ψ〉 (59)

which, using (5) and (3) and removing primes, reduces to

(E − Eλ(p)) 〈λp|ψ〉 =
∑
N

〈λp|U |N〉 〈N |ψ〉 . (60)

Substituting this into (58) produces the equation

E 〈N ′|ψ〉 =
∑
N

〈N ′|H0|N〉 〈N |ψ〉+
∑
Nλ

∫
dp p2

〈N ′|U |λp〉 〈λp|U |N〉
E − Eλ(p)

〈N |ψ〉

=
∑
N

(〈N ′|H0|N〉+ 〈N ′|Ω(E)|N〉) 〈N |ψ〉

(61)

where Ω(E) is identical to that of (51). Defining

H(E) = H0 + Ω(E) (62)
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means the system of equations can be expressed as∑
N

〈N ′|H(E)|N〉 〈N |ψ〉 = E 〈N ′|ψ〉 (63)

which is a matrix equation
〈1|H(E)|1〉 〈1|H(E)|2〉 . . .

〈2|H(E)|1〉 〈2|H(E)|2〉 . . .
...

...
. . .



〈1|ψ〉
〈2|ψ〉

...

 = E


〈1|ψ〉
〈2|ψ〉

...

 , (64)

or

H(E)Φ = EΦ, (65)

with solutions found by solving

∣∣H(E)− EI
∣∣ = 0. (66)

The benefit of this setup is not only that it allows the full problem to be solved

concurrently, making computation much simpler, but it also allows mixing

between the different valence states by not conceding the discrete aspect of

the wavefunction to simple harmonic oscillator forms. This mixing arises

from the unquenching where coupling between the various valence states is

due to meson loops. This method will be referred to as Case 4 in the sections

to follow.

In summary, Case 1 is a perturbative approach to the problem by using a

power series expansion to find solutions to (10). Case 2 involves using the

single valence approximation such that the system is described by one dis-

crete state and a range of continuum states, and the resulting transcendental

equation is solved by varying E to find a solution. Case 3 is also derived and

solved in this manner, except the discrete wavefunction is also expanded in

a basis set of harmonic oscillators to better approximate the true wavefunc-
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tion. As described, case 4 is a novel approach that does not assume a single

valence model and allows mixing between various discrete states whilst also

allowing both aspects of the problem to be solved simultaneously.
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3 Contextualisation

3.1 Mesons in this Framework

At this stage, it is necessary to map the previous notation to the context

of mesons, and in doing so, classify both aspects of the problem using the

appropriate quantum numbers and approximations. Previously, |n〉 was used

to describe the bare (QQ̄) state whilst |λp〉 was used to describe the heavy-

light mesons in the continuum ((Qq̄), (qQ̄)). Now, the relevant quantum

numbers will be added to this nomenclature in the following way:

|n〉 → |nSLJ〉

|λp〉 → |n1S1L1J1, n2S2L2J2, jl, f, p〉
(67)

where n,S,L and J denote the usual radial, spin, orbital and angular mo-

mentum quantum numbers respectively. Furthermore,

J1 + J2 = j (68)

and l is the relative orbital angular momentum of mesons 1 and 2 in the

continuum. To conserve angular momentum,

j + l = J. (69)

Moreover, in order to conserve parity, l is constrained by

(−)l = (−)L+L1+L2+1. (70)
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3.2 Simplifying the Model

In principle, one should sum over all possible continuum states in equation

(67), but since the largest contributions to Ω(E) come from the continuua

with the smallest masses, due to the energy denominator in (16), the model

can be simplified. This can be done by restricting the continuum mesons to

radial ground states (n1 = n2 = 0) and S-wave states (L1 = L2 = 0). Since

Si + Li = Ji (71)

it follows that

Si = Ji (72)

and thus keeping both Si and Ji quantum numbers becomes unnecessary, so

Ji is discarded. Now,

|λp〉 → |S1S2, jl, f, p〉 (73)

and so equation (16), with the appropriate bra and ket vectors applied, be-

comes

〈n̂ŜL̂J |Ω(E)|nSLJ〉

=
∑

S1S2jlf

∫ ∞
0

dp p2
〈n̂ŜL̂J |U |S1S2jlfp〉 〈S1S2jlfp|U |nSLJ〉

E − ES1S2f (p)

(74)

with

ES1S2f (p) =
√
m2
S1f

+ p2 +
√
m2
S2f

+ p2 (75)

and angular momentum J conserved in the interaction.

27



3.2.1 Angular Momentum Coefficients and Spatial Factors

At this point, it is useful to utilize some other works in this field in order

to further simplify the problem. The results presented in [17] show that

the matrix element pertaining to the unquenching aspect of the problem

factorises into three terms: a quark flavour factor, a coefficient dependent

upon the quark spin degrees of freedom of the mesons and a term relating to

their spatial wavefunctions. This allows the numerator in (74) to be expressed

as

〈S1S2jlfp|U |nSLJ〉 = Cfξjl(SLJ → S1S2)Ml(nL) (76)

where Cf , ξjl and Ml(nL) are the flavour, angular momentum and spatial

factors respectively. The angular momentum factor is simply a coefficient

which can be directly taken from tables in [17], whilst the spatial factors

are explicitly given in the appendix of [2] for each 3P0 transition amplitude

and will be specified later. Using these properties allows the calculation to

become more straightforward since the flavour and angular momentum terms

can be taken outside the integral to avoid direct computation. Not only does

this simplify the solution to such integrals, but reduces computation time

which is very beneficial in numerical calculations.

3.2.2 Mass Splitting and Spin

Now, due to the above, (74) takes the form

〈n̂ŜL̂J |Ω(E)|nSLJ〉 =
∑
S1S2jl

ξjl(ŜL̂J → S1S2)ξjl(SLJ → S1S2)

×
∑
f

C2
f

∫ ∞
0

dp p2
Ml(n̂L̂)Ml(nL)

E − ES1S2f (p)
.

(77)
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However, the calculation can become simpler still if the mass splitting be-

tween continuum states of a given flavour are ignored, ie

MB∗ = MB

MBs∗ = MBs

(78)

where MB and MBs denote the masses of the associated B mesons in the

continuum. The continuum masses and energies are therefore independent

of S1 and S2, i.e.

mS1f = mS2f ≡ mf (79)

and

ES1S2f ≡ Ef . (80)

As a result, the integral no longer depends upon S1 or S2 and because of this,

the orthogonality property of the angular momentum terms, which ultimately

derives from the orthogonality of Clebsch-Gordan coefficients, can be utilized

[17]: ∑
S1S2j

ξjl(ŜL̂J → S1S2)ξjl(SLJ → S1S2) = δŜSδL̂L (81)

which would not have been possible if the integral had spin dependence.

Equation (74) therefore becomes

〈n̂ŜL̂J |Ω(E)|nSLJ〉 = δŜSδL̂L
∑
f

C2
f

∑
l

∫ ∞
0

dp p2
Ml(n̂L̂)Ml(nL)

E − Ef (p)
. (82)

Moreover, if H0 is also taken to be spin-independent then

〈n̂ŜL̂J |H0|nSLJ〉 = δŜSδL̂L 〈n̂L|H0|nL〉 . (83)

Since there are δŜS and δL̂L functions in both the discrete and continuum

terms, there is no mixing between states with different spin or orbital angular

momentum, which means when constructing basis sets, S and L are fixed and
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are thus good quantum numbers.

Now, the relevant expressions for the calculation have no dependence on S or

J and so these quantum numbers can be ignored, simply constructing bases

|nL〉. Equation (82) therefore becomes

〈n̂L|Ω(E)|nL〉 =
∑
f

C2
f

∑
l

∫ ∞
0

dp p2
Ml(n̂L)Ml(nL)

E − Ef (p)
. (84)

Since the equations are now independent of S and J , the solutions, or eigen-

states, will also be independent of S and J and thus states that only share

the same L will be degenerate.

3.2.3 Justification of Approximations

In order to perform the aforementioned approximations to the model, it is

necessary to provide the appropriate line of reasoning in order to ensure their

usage does not detract from the use of the model itself, especially when the

approximations are not consistent with experimental data.

Firstly, it has been shown in relevant literature that the unquenching effects

that cause these mass shifts being studied are approximately spin indepen-

dent, in that states within a given L set with different S and J quantum

numbers are affected in the same way [22]. Furthermore, residual spin de-

pendent effects can be understood using [17] without it being imperative to

perform the full calculation for all S and J . Secondly, this work is primarily

focused on the overall effects on a given L multiplet as opposed to the differ-

ences within it as this is already understood. In essence, unquenching effects

reduce the spin splittings such that the splittings in the physical state are

suppressed with respect to those in the valence state by a spin-averaged va-

lence component [23] and thus it becomes unnecessary to repeatedly perform
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the calculation for all S and J . Lastly, while they are in no way essential

to the method of calculation, the approximations put forth in this section

do make the calculation significantly simpler to perform. This may not be a

justification per se, but it is nonetheless a worthwhile endeavour, especially

if one were needed to perform the calculation numerous times for different

transitions and decays.

Now that the methods by which to solve the unquenched system have been

presented and the necessary approximations made, the discrete part of the

problem pertaining to the initial heavy meson (QQ̄) state can be solved. A

solution for the matrix element in 84 will then be found and the mass shift

due to the (QQ̄)→ (Qq̄)(Q̄q) loop can be determined.
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4 Potential Model and Discrete Spectrum

4.1 Cornell Potential Model

At this stage, it is necessary to solve the Hamiltonian of the bare state and

therefore specify the potential model used for this aspect of the calculation.

Since this section is concerned with solving the Schrödinger equation in the

quenched limit, there is no coupling term U in the Hamiltonian, which for

the non-relativistic potential model is defined as

H = T + V (r) + Vsd(r) + 2mq + c (85)

where c denotes the mass renormalization factor. In this model, the Cornell

potential will be used which has the form

V (r) = −4

3

b

r
+ σr (86)

with b representing the strength of colour Coulomb potential and σ the

strength of linear confinement. Also in the Hamiltonian is the spin depen-

dent term Vsd(r) which determines the mass splitting within the multiplets.

However, as stated in the previous section, this work is focused on the overall

effects on a given L multiplet as opposed to the mass splitting within it and

therefore this term will be ignored for the main body of the thesis. Neverthe-

less, one can account for this by treating it as a perturbation to the system

in a similar fashion to the coupling term in Case 1. A derivation of this is

included in the appendix.

32



4.2 Model Parameters

mb = 4.5GeV mu = md = 0.33GeV ms = 0.5GeV
b = 0.34 σ = 0.22GeV2 c = 0.435GeV2

γ = 0.205

Table 1: The parameters used in the calculations to produce the bare mass
Mn and mass shift −∆M as shown in table 2, taken from [1] for comparative
purposes. These were chosen in such a way to ’reproduce the dielectric decay
widths of Υ(nS), n = 1, 2, 3’ wherein a comparison was made to [2] and data
from the Particle Data Group (PDG) [3]

Table 1 contains the relevant masses of bottomonium, mb, and the constituent

quarks mu = md and ms for the up/down and strange variations respectively.

It also includes values for parameters in the Cornell potential model and the

dimensionless coupling constant, represented by γ. This parameter selection

was taken from [1] so that the methods and corresponding data presented

in this thesis can be compared such that any differences can be analysed

knowing it did not arise due to the choice of potential model parameters.

4.3 Expansion in Harmonic Oscillator Basis

In order to solve the Schrödinger equation for this Hamiltonian, the real,

orthonormal wavefunctions are expanded in the harmonic oscillator set of

basis functions.

Ψnlm(r, θ, φ) =
∑
NLM

Cnlm
NLMΦNLM(r, θ, φ) (87)

Since V (r) is a central potential, in that it depends on the magnitude of r

but not the vector, l is a good quantum number as states are not mixtures of

different orbital angular momentum. Using the reduced mass, the potential
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of the harmonic oscillator is

Vho(r) =
4α4

mb

r2 (88)

where α controls the width of the potential. The harmonic oscillator wave-

functions are expressed as

ΦNLM(r, θ, φ) =

√
N !× 2L+

5
2α2L+3(

N + L+ 1
2

)
!
rLe−α

2r2L
L+ 1

2
N

(
2α2r2

)
Y M
L (θ, φ) (89)

with L
L+ 1

2
N (2α2r2) representing an associated Laguerre Polynomial and Y M

L (θ, φ)

the usual spherical harmonic [21]. In general, the associated Laguerre poly-

nomial is defined as [24]

Lkn(x) =
n∑

m=0

(−1)m
(n+ k)!

(n−m)!(k +m)!m!
xm (90)

With the first few polynomials given by

Lk0(x) = 1 (91)

Lk1(x) = −x+ k + 1 (92)

Lk2(x) =
1

2

(
x2 − 2 (k + 2)x+ (k + 1) (k + 2)

)
. (93)

Multiplying equation (87) by the conjugate harmonic oscillator wavefunction

and integrating produces delta functions on the right hand side pertaining to

the quantum numbers N ,L and M due to the orthogonality principle. This

gives rise to the relation

Cnlm
NLM =

∫
Φ∗NLM(r)Ψnlm(r)d3r. (94)
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The spherical harmonics contained within the wavefunctions above are also

orthogonal and as such, can be reduced to delta functions when being inte-

grated:

Cnlm
NLM = δLlδMm

∫ ∞
0

RNL(r)Rnl(r)r
2dr. (95)

Substituting this into equation (87) gives

Ψnlm(r, θ, φ) =
∑
N

Cnl
N ΦNLM(r, θ, φ) (96)

which produces the following radial Schrödinger equation after cancelling the

associated spherical harmonics∑
N

Cnl
N ĤRNl(r) = EnlRnl(r). (97)

Multiplying this by the primed radial wavefunction and integrating produces

the relation∑
N

Cnl
N

∫ ∞
0

RN ′l(r)ĤRNl(r)r
2dr = Enl

∫ ∞
0

RN ′lRnl(r)r
2dr

= EnlCnl
N ′

(98)

creating a matrix equation
H11 H12 · · ·
H21 H22 · · ·

...
...

. . .




Cnl
1

Cnl
2
...

 = Enl


Cnl

1

Cnl
2
...

 . (99)

by denoting HN ′N as
∫∞
0
RN ′l(r)ĤRNl(r)r

2dr. To solve this, one simply

constructs the HN ′N matrix and finds the associated eigenvalues Enl and

corresponding eigenvectors, but first a method of calculating the matrix el-

ement HN ′N , or 〈N ′l|H|Nl〉, is required. The Hamiltonian of the harmonic
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oscillator is

Hho = T + Vho(r) (100)

which can be rearranged to account for the kinetic term T , thus (85) can be

replaced with

H = Hho − Vho(r) + V (r) + 2mq + c. (101)

This is a useful substitution because the eigenvalues of Hho are known and

therefore using the Schrödinger equation, and the fact that the associated

wavefunctions are orthonormal, 〈N ′l|Hho|Nl〉 can be evaluated:

〈N ′l|Hho|Nl〉 =
2α2

mb

(
2N + l +

3

2

)
δN ′N . (102)

By introducing the change of variables x = 2α2r2, 〈N ′l|Vho|Nl〉 can be ex-

pressed as

〈N ′l|Vho|Nl〉 =
2α2

mb

√
N !(

N + l + 1
2

)
!

√
N ′!(

N ′ + l + 1
2

)
!
×∫ ∞

0

xl+
1
2xe−xL

l+ 1
2

N (x)L
l+ 1

2

N ′ (x)dx.

(103)

In this form, it is useful to employ the recurrence relations of associated

Laguerre Polynomials [24]:

(N + 1)L
l+ 1

2
N+1(x) =

(
2N + l + 3

2
− x
)
L
l+ 1

2
N (x)−

(
N + l + 1

2

)
L
l+ 1

2
N−1(x). (104)

By solving the recurrence relation for xL
l+ 1

2
N+1(x), and using the orthogonality

property of associated Laguerre Polynomials [24]∫ ∞
0

xl+
1
2 e−xL

l+ 1
2

N (x)L
l+ 1

2

N ′ (x)dx =

(
N + l + 1

2

)
!

N !
δN ′N , (105)
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the integral in (103) can be written as

IVho(r) =

(
2N + l + 3

2

) (
N + l + 1

2

)
!

N !
δN ′N −

(N + 1)
(
N + l + 3

2

)
!

(N + 1)!
δN ′N+1

−
(
N + l + 1

2

) (
N + l − 1

2

)
!

(N − 1)!
δN ′N−1.

(106)

Combining this expression with equations (103) and (102) allows the matrix

element of the kinetic term T to be obtained

〈N ′l|T |Nl〉 =
2α2

mb

[ (
2N + l + 3

2

)
δN ′N − (N + 1)

1
2 ×(

N + l + 3
2

) 1
2 δN ′N+1 −N

1
2

(
N + l + 1

2

) 1
2 δN ′N−1

]
.

(107)

Since the Cornell potential is dependent on powers of r, it is useful to find a

solution to

〈N ′l|rq|Nl〉 = 2l+
5
2α2l+3

√
N !(

N + l + 1
2

)
!

√
N ′!(

N ′ + l + 1
2

)
!
×∫ ∞

0

r2l+2+qe−2α
2r2L

l+ 1
2

N

(
2α2r2

)
L
l+ 1

2

N ′

(
2α2r2

)
dr

(108)

which can be achieved by utilising an expansion of the associated Laguerre

Polynomials

L
l+ 1

2
N

(
2α2r2

)
=

N∑
k=0

(−1)k
(N + l + 1

2
)!

k!(N − k)!(k + l + 1
2
)!

(
2α2r2

)k
. (109)
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Because of this expansion, the remaining integral is of Gaussian form which

has a known solution

∫ ∞
0

rpe−2α
2r2dr =


√
π(p− 1)!!

2p+
3
2αp+1

, for p even[
1
2
(p− 1)

]
!

2
p+3
2 αp+1

, for p odd

(110)

where p = 2 + 2l + 2k + 2k′ + q. The factors of α can be taken out of this

integral resulting in the expression

〈N ′l|rq|Nl〉 =

√
N !(

N + l + 1
2

)
!

√
N ′!(

N ′ + l + 1
2

)
!
×

N∑
k=0

N ′∑
k′=0

(−1)k+k
′

(N + l + 1
2
)!

k!(N − k)!(k + l + 1
2
)!

(N ′ + l + 1
2
)!

k′!(N ′ − k′)!(k′ + l + 1
2
)!
×

(2α2)−
q
2 × Ir

(111)

with

Ir =


√
π(p− 1)!!

2p+
3
2

, for p even[
1
2
(p− 1)

]
!

2
p+3
2

, for p odd.

(112)

The term V (r) (and indeed the spin dependent term Vsd(r)) can now be

calculated from equation (111) and thus the Schrödinger equation for the

quenched limit can be solved. Combining the evaluated matrix elements for

these terms in the Hamiltonian of the bare state, the discrete H0 matrix can

be constructed.
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4.4 α Optimisation and Matrix Dimensionality

Once the matrix elements have been computed, there are two aspects of

the calculation that need to be considered, namely the treatment of the

harmonic oscillator parameter α and the dimensions of the matrices used. In

theory, if the matrices were infinitely large α would not need to be treated

because equation (87) is exact. However, since performing an infinite sum

is unviable in practice, the matrix needs to be truncated and this causes α

to have a significant effect on the calculation. Approximately, the value of α

needs to be chosen such that the matrix elements on the diagonal are much

larger than those furthest from it, otherwise matrix elements neglected due

to the truncation may have a sizeable effect on the spectrum such that stable

results will be unachievable when varying the size of the matrices. Although

the harmonic oscillator parameter affects both aspects of the problem, for

these calculations it is optimised according to the discrete spectrum only for

reasons that will be discussed in due course.

α is optimised by calculating the appropriate energy eigenvalue of H0 and

varying α over a specified range, extracting the corresponding value that

gives the minimum energy. Since this technique produces an overestimate,

an accurate method of finding the minimum is required to give the best

approximation to the true energy eigenstate. This can be achieved by writing

a function that calculates the appropriate eigenvalue of H0 and plotting over

a range of values of α to find the minimum graphically. Alternatively, one

can simply perform this calculation and compile the data points into a list,

sorting by the lowest energy to give the minimum and thereby best value of

α.
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Figure 1: An example of optimising α for the 1S, 2S and 3S states with a
15× 15 matrix.

Figure 2: An example of optimising α for the 1S state with a 15×15 matrix.

Figure 1 displays this optimisation technique for both the ground state and
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the first two excited states, indicating that higher energy levels have both a

lower optimal α and smaller region of stability for the minima, which is to

be expected as the error in this approximation increases with each successive

excited state. From figure 1 it seems as though there is a large region of

stability and hence a wide range of acceptable values for α. However, upon

closer inspection the scale on the Y axis is of order 100 MeV and because this

research focuses on comparing different methods of calculating the mass shifts

arising from the effect on unquenching, it is imperative to be as accurate as

possible to be able to draw meaningful conclusions between them, especially

when the disparities are only in the order of a few MeV. Figure 2 has been

scaled to 1 MeV on the Y axis for the 1S state and shows a stable region of

roughly 1 − 1.5 GeV for α, with both α and the minimum getting smaller

with each excited state. In short, the optimal value for α (corresponding

to the minima on the curve) changes for each successive energy level and

the curves themselves become increasingly sensitive to α, such that the same

change in this parameter results in a larger change in the Energy in excited

states. It is therefore necessary to re-optimise α for each energy state and

ensure the minima is selected to a suitable degree of accuracy for accurate

results.

When increasing the size of the matrix, the curves in Figures 1 and 2 shift to

the right, with the minima becoming flatter and wider. This is demonstrated

in figure 3 by comparing the optimisation curves of the 1S state for Nmax =

5, 15 and 25, showing that whilst it is very important to optimise according

to the state, it should also be optimised to the dimensions of the matrix as

well.
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Figure 3: A comparison of optimising α for different matrix sizes in the 1S
state.

Figure 3 also illustrates the fact that larger dimensionalities provide more

stable results that are less sensitive to the harmonic oscillator parameter

which is logical because more accurate approximations to equation 87 will

cause the energy eigenvalues to be less sensitive to α. This feature is further

exemplified in Figure 4 in which the eigenvalues of the 1S state are plot-

ted against the corresponding matrix dimensions. The orange scatter plot

shows this relation with α only optimised for the 4 × 4 matrix whilst the

blue set of points show the eigenvalues when α is re-optimised at each ma-

trix size. Both scatter curves approach stability at larger dimensions with

the difference between them decreasing at each successive increase in matrix

size. This behaviour is exhibited in figure 3 as the widening of the minima

region essentially begins to incorporate the optimal value of α for the smaller

matrices. While it is clear that larger dimensionalities provide better numeri-

cal approximations to (87), it is difficult to assign an exact uncertainty to the

order of truncation. Since calculating an infinitely large matrix is impossible,
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Figure 4: A comparison between optimising α for a 4×4 matrix only (orange)
and for each matrix size (blue) when calculating the energy eigenvalue of H0

in the 1S state.

one would need a suitably large matrix as a reference point, which has it’s

own uncertainty that would be different for each excited state. Furthermore,

even if this could be accounted for, assigning uncertainty values to these

results would be misleading as they would be calculated according to the

discrete part of the problem since it would be impossible to perform for the

full calculation. This would also neglect the inherent uncertainty associated

with the model itself and the approximations made within it, which cannot

be accurately measured.

In summary, to ensure the highest degree of accuracy for the calculations, α

is optimised for both each state and matrix size, and the dimensions of the

matrices themselves made as large as feasibly possible. This re-optimisation

procedure is also used in other works involving the harmonic oscillator. For

example, in [25] a similar technique is described in which the Hylleraas-

43



Undheim theorem is referenced to describe how each minimum is separately

an upper bound for each energy eigenvalue, and thus tuning α to this min-

imum is required for a reasonable approximation. However, this does bring

into question the orthogonality of the wavefunctions for the separately tuned

excited states with respect to the initial ground state. In this regard, if α was

constant across all considered energy levels, all of the associated wavefunc-

tions pertaining to those states would be automatically orthogonal because

they are constructed from the eigenvectors of a Hermitian matrix. However,

since this is not the case, the orthogonality between the wavefunctions is not

exact, but becomes exact in the limit Nmax → ∞. Therefore, the orthog-

onality of the wavefunctions in the calculation depends on the size of the

matrices used, that is, it becomes subject to the numerical accuracy of the

method, which is another motivation for making the method as accurate as

possible.

However, while the H0 matrix can be made quite large with little issue, there

are computational challenges with constructing the Ω(E) matrix that will be

discussed later on. This is one of the reasons why α is optimised according

to the discrete part of the problem because the procedure of optimising for

the full spectrum would be immensely inefficient considering the number of

times the optimisation would need to be repeated. Furthermore, optimising

this parameter for the full spectrum is only relevant to case 4 because cases

1-3 involve calculating the eigenvalues of H0 separately instead of forming

a matrix of harmonic oscillator states and combining it with the continua

spectrum. Using the same optimisation technique across all four cases is

a more coherent approach seeing as the aim is to analyse the differences

between each method and form conclusions based on the data acquired from

the calculations. In this case, the way in which the harmonic oscillator

parameter is optimised is a control across the different methods of calculation

which allows a more direct comparison. Nonetheless, α does have an impact

on the both aspects of the problem and it’s effect on the full calculation will
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also be investigated.

It is worth noting that the optimisation procedures discussed here are by no

means the only ones that can be used for these calculations. For example, [1]

use techniques to fit the spatial wavefunctions of the relevant state by us-

ing Gaussian expansion methods and also make simple harmonic oscillator

approximations by matching 〈r〉 and maximising wavefunction overlap. It

is natural that other models and methods of solving the Schrödinger equa-

tion for this problem will employ different techniques for fitting the respective

wavefunctions and optimising parameters which are likely to cause some vari-

ance in results. It is also worth noting that purely numerical methods could

be employed to solve this aspect of the problem without the use of basis

functions and optimisation parameters, such as those mentioned in [13].
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5 Matrix Elements

5.1 Building the Ω Matrix

5.1.1 Energy Denominator

Before solving, some treatment of the ’energy denominator’ in the integral is

required. The term Ef (p) in (84) can be expressed as

Ef (p) =
√
m2
f + p2 +

√
m2
f + p2

= 2mf

√
1 +

p2

m2
f

,
(113)

and since this project is working within the non-relativistic approximation,

one can perform a Taylor series expansion where, for small x

√
1 + x = 1 +

x

2
− x2

8
+ . . . . (114)

This means Ef (p) can be approximated as

Ef (p) ≈ 2mf

(
1 +

p2

2m2
f

)

= 2mf +
p2

2µf

(115)

where µf is the reduced mass:

µ =
mfmf

mf +mf

=
mf

2
(116)
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In cases 2-4, the ’energy denominator’, after the appropriate approximations,

is

E − Ef (p) = −ε− p2

2µf
(117)

in which ε is the binding energy, defined as

ε = 2mf − E (118)

where

E < 2mf . (119)

The matrix element is therefore

〈n̂L|Ω(E)|nL〉 = −
∑
f

C2
f

∑
l

∫ ∞
0

dp p2
Ml(n̂L)Ml(nL)

ε(mf ) + p2

2µf

. (120)

It is convenient for the calculation to isolate the term for a given flavour f

Ω(E) =
∑
f

C2
fΩf (E) (121)

so

〈n̂L|Ωf (E)|nL〉 = −
∑
l

∫ ∞
0

dp p2
Ml(n̂L)Ml(nL)

ε(mf ) + p2

2µf

. (122)

5.1.2 Recursion Relations

With this integral, a solution has been found for the n = 0 case. How-

ever, in order to build the matrix 〈n̂L|Ω(E)|nL〉, a method of obtaining

the n = 1, 2 . . . Nmax, and indeed n̂ = 1, 2 . . . Nmax, cases is required for an

Nmax × Nmax matrix. Fortunately, due to orthogonality properties of the

Laguerre Polynomials found in the harmonic oscillator wavefunctions of the
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discrete states, one can construct recursion relations between them relat-

ing the ground state to those of higher order. This property was originally

derived in [26]. The recursion relation is defined as

〈r|nL, α〉 =

√
(n− 1)

(
n+ L− 1

2

)
n
(
n+ L+ 1

2

) 〈r|n− 2, L, α〉

+
1√

n
(
n+ L+ 1

2

)α d

dα
〈r|n− 1, L, α〉 .

(123)

The spatial factors,Ml(nL), given in [2] have a dependence on both harmonic

oscillator parameters α and β of the initial and final state mesons respectively.

However, since the recursion relation involves a differential with respect to

α, it is necessary to make this dependence explicit by making α an argument

of the function:

Ml(nL)→Ml(nL, α). (124)

Thus, the recursion relation becomes

Ml(nL, α) =

√
(n− 1)

(
n+ L− 1

2

)
n
(
n+ L+ 1

2

) Ml(n− 2, L, α)

+
1√

n
(
n+ L+ 1

2

)α d

dα
Ml(n− 1, L, α).

(125)

For the treatment of (122), one option would be to obtain the required spatial

factors from the recursion relations and then integrate to obtain the matrix

element. However, it would be convenient, not to mention more computa-

tionally efficient, to apply the recursion relation outside the integral to avoid

needlessly computing different integrals for each element in the matrix. To

do this, one must distinguish the oscillator parameters for the |nL〉 state (α)

and the |n̂L〉 state (α̂) to apply the recursion relation to them separately,
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and so (122) becomes

〈n̂L|Ωf (E)|nL〉 = −
∑
l

∫ ∞
0

dp p2
Ml(n̂L, α̂)Ml(nL, α)

ε(mf ) + p2

2µf

. (126)

This is an incredibly powerful feature because for a given L, one can simply

compute the integral once for the n = n̂ = 0 case and all other matrix

elements can be deduced using the appropriate recursion relation from

〈n̂L|Ωf (E)|nL〉 =

√
(n− 1)

(
n+ L− 1

2

)
n
(
n+ L+ 1

2

) 〈n̂L|Ωf (E)|n− 2, L〉

+
1√

n
(
n+ L+ 1

2

)α d

dα
〈n̂, L|Ωf (E)|n− 1, L〉

(127)

and

〈n̂L|Ωf (E)|nL〉 =

√
(n̂− 1)

(
n̂+ L− 1

2

)
n̂
(
n̂+ L+ 1

2

) 〈n̂− 2, L|Ωf (E)|nL〉

+
1√

n̂
(
n̂+ L+ 1

2

) α̂ d

dα̂
〈n̂− 1, L|Ωf (E)|nL〉 .

(128)

In other words, an entire spectrum of states can be calculated by merely

solving one integral and applying two relations (of the same structure) to

it, allowing a large number of states to be considered in the calculation

automatically. This arises from the inherent orthogonality of the harmonic

oscillator states and such properties can be a highly useful tool in these types

of numerical computations. However, there are several ways in which these

recursion relations can be implemented into the building of the matrix which

have been studied to maximise efficiency in the construction of the matrix.

These ideas will be briefly discussed presently.
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5.1.3 Solving the Integral

In order to begin building the matrix, it is necessary to solve the integral in

(126) by finding solutions of

I =

∫ ∞
0

dp p2
|Ml|2(
ε+ p2

2µ

) (129)

where, for harmonic oscillator wavefunctions, Ml can be expressed as

Ml = e−ap
2

pl
K∑
k

Ckp
2k (130)

by virtue of the spatial factors presented in [2]. From this, it can be deduced

|Ml|2 = e−2ap
2

p2l
K∑
kk′

CkCk′p
2k+2k′ . (131)

Thus, the integral can now be defined as

I(a,m, ε, µ) =

∫ ∞
0

dp
p2+2me−2ap

2(
ε+ p2

2µ

) (132)

where m = l+k+k′. Performing a change of variables with the substitution

x = p2 gives

I(a,m, ε, µ) =
1

2ε

∫ ∞
0

dx
xm+1/2e−2ax(

1 + x
2µε

) . (133)

However, it is necessary to perform a second change of variables by substi-

tuting t = x
2µt

, giving

I(a,m, ε, µ) =
(2µε)m+3/2

2ε

∫ ∞
0

dt
tm+1/2e−4aµεt

(1 + t)
(134)
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which is very similar in form to the confluent hypergeometric function of the

second kind in [27], defined as

U(f, b, z) =
1

Γ(f)

∫ ∞
0

dt e−zttf−1(1 + t)b−f−1 (135)

where Γ(f) = (f − 1)!. This is exactly the same integral as in (134) with

z = 4aµε, f = m+ 3
2

and b = m+ 3
2
, thus

I(a,m, ε, µ) =
Γ
(
m+ 3

2

)
2ε

(2µt)m+ 3
2 × U

(
m+ 3

2
,m+ 3

2
, 4aµt

)
. (136)

5.2 Specifying the Considered Transition

The spatial factor Ml(nL, α) is defined in [2] as

Ml(nL, α) =
γ
4
√
π

exp

(
−p

2(r − 1)2

2α2 + β2

)
Al(nL, α) (137)

where γ is a coefficient relating to the effective strength of the pair creation

and r = mq

mq+mb
, in which mq is the created quark mass (mu, md or ms) and

mb the mass of bottomonium. Al(nL, α) is a factor dependent on the type

of transition considered for the calculation and β is the oscillator parameter

of the final state mesons, which in this work is taken to be 0.4 GeV as is

frequently adopted in the literature [2,28,29]. This equation allows the factors

relating to the state’s spatial wavefunction to be computed and combined

with the flavour and angular momentum coefficient in (76) to calculate the

overall matrix element in (16).

At this stage, it is important to emphasise that the framework put forward

for the calculations in this thesis so far are general in form, and as such can be

used for any L wave transition by appropriating the relevant factor from [2].

This paper lists both the factors and coefficients needed to calculate each spin
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permutation of the S,P ,D,F and G transitions. However, the focus of this

thesis will be on the nS → 1S + 1S which, due to the spin approximations

made in section 3, averages over all of the transitions in the multiplet, for

example, 3S1 →1 S0 +1 S0,
3S1 →3 S1 +1 S0 etc... Thus, Al(nL, α) can be

defined:

AP (1S, α) =
−8pα3/2 (2rα2 + β2)
√

3 (2α2 + β2)5/2
. (138)

In addition, for this transition amplitude, the pertinent spatial factor coeffi-

cient is
√

12. Therefore, the overall expression for the seed matrix element

n = n̂ = 0, from which all other states are derived via the recursion relations

(127) and (128), is

〈1S|Ωf (E)|1S〉 = −
28γ2Γ

(
5
2

)
2ε
√
π

α3/2 (2rα2 + β2)

(2α2 + β2)5/2
α̂3/2 (2rα̂2 + β2)

(2α̂2 + β2)5/2

× (2µε)
5
2 U

(
5

2
,
5

2
, 2µε

(
(r − 1)2

2α2 + β2
+

(r − 1)2

2α̂2 + β2

))
.

(139)

It is important to note that since the matrix has been isolated for a given

flavour f , when the calculation is being considered for up/down quarks there

is an additional factor of 2 in the equation. This is because there is a sum

over contributions from B+B− and B0B̄0, and since it is assumed these are

degenerate, the contributions are identical and thus effectively multiplied by

2. Furthermore, when the strange quark variation is being calculated, the

effective strength of the pair creation is replaced with γs =
(
mq

ms

)
γ.

5.3 Computational Techniques and Efficiency

When building the Ω(E) matrix, there are many different approaches one can

take to implement the recursion relations once the initial (1, 1) element has

been computed. For example, a simple approach would be to calculate the

first column in the matrix and use the recursion relations to fill out the rest
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or vice versa. However, since equations (127) and (128) are equal, the matrix

is symmetric about the diagonal and therefore only one half of the elements

actually need to be calculated. In addition, another simplification is made in

which the elements furthest from the diagonal are made to be zero to further

reduce the computation time. This is not only a reasonable approximation

to make, but a beneficial one because the elements lying furthest from the

diagonal are orders of magnitude smaller than those on it and sacrificing

them allows larger matrix structures to be evaluated per unit time which

is important for both accurate and stable results. To check this, the full

calculation was conducted for δ = 4 and δ = 6, using 10×10 matrices, where

δ is the number of off diagonal elements in the matrix and no discernable

difference was found in the mass shift. This essentially becomes a trade

off between computing more elements on and around the diagonal or those

furthest away that contribute comparatively little to the calculation and so

restricting the matrices to δ = 4 is a sensible numerical decision in this

context.

Careful consideration of the way in which the derivatives are implemented in

the recursion relations is also essential for efficient computation of the matrix

elements. It was found that directly inputting (139) into the (1,1) element

and taking derivatives of that expression was extremely cumbersome and

consequentially took hours to form even relatively small matrices. To solve

this issue, a generic, undefined function f (0,0)(α′, α) was inserted into the

starting element and the recursion relations were applied. This resulted in the

matrix elements simply being constructed in terms of various combinations

of f (j′,j)(α′, α), multiplied by the appropriate coefficients and factors of α and

α′, as a consequence of the chain rule in the derivatives. For example, the

(1,3) element of the matrix would constitute a combination of f (0,0)(α′, α),

f (0,1)(α, α′) and f (0,2)(α′, α). Subsequently, once the matrix has been built in

terms of these functions, f (0,0)(α′, α) is then replaced with (139). The benefit

of this approach is that each iteration of f (j′,j)(α′, α) is only computed once
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and therefore when it is used within the expressions of the proceeding matrix

elements, it is evaluated instantly. This significantly reduced computation

time allowing larger matrix structures to be realised which is essential for

accuracy in these numerical calculations.

Other techniques included making a distinction between the first two argu-

ments of the hypergeometric function in (136) by inputting m′ as one of them

and then only evaluating m and m′ after the matrix had been constructed.

This was necessary because Wolfram Mathematica simplifies the hypergeo-

metric into an exponential and an incomplete gamma function when it’s first

two arguments are identical. As a result, the recursion relations were then

taking derivatives of a product of two functions which is significantly more

computationally intensive than simply differentiating U(f, b, z):

d

dz
U(f, b, z) = −fU(f + 1, b+ 1, z). (140)

Lastly, when calculating cases 3 and 4, equations (44) and (66) are plot-

ted by varying E over a specified range and finding the relevant intercepts

that satisfy the respective equations. The challenge with this is the Ω(E)

matrix becomes time consuming to construct at large dimensions and so re-

computing it for many energy values is not feasible. However, as shown in

figure 6, the functions plotted have an approximately linear relationship and

therefore the number of plot points can be restricted without seriously com-

promising the shape or intercepts of the graph. To improve the accuracy

and validity of this approximation, the plot range was reduced so that the

points being calculated were close to the intercept. In the final calculations,

4 data points were considered and despite these computational challenges

only really applying to cases 3 and 4, this was also implemented in solving

case 2 for consistency when comparing data.
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6 Results and Discussion

6.1 Methods of Calculation

Before analysing the mass shift data pertaining to each of the four cases

discussed in section 2, the methods by which they were implemented into

Wolfram Mathematica will be discussed. Firstly, the calculation for case

1 involved constructing H0, using the optimisation procedure outlined in

section 4.3, and extracting the relevant eigenvalue to obtain the bare mass

Mn. Then, the mass shift is calculated by building Ω(Mn) using the seed

integral and recursion relations in section 5 and inputting the bare mass as

indicated in equation (35), taking the applicable element from the diagonal

depending on the state being evaluated. Case 2 is similar in the sense that

the bare mass is calculated from H0 and the mass shift is taken from the

applicable element on the diagonal, except the continuum matrix, Ω(E),

now has energy as the argument thus forming a transcendental equation, as

expressed in (40). To solve this, the matrix element is taken to the left hand

side of equation (40) and the energy is varied over a specified plot range

to observe the intercept. As well as this, Mn − E is also plotted over the

same range and the difference between the two intercepts is the mass shift,

as illustrated in figure 5. Cases 3 and 4 are also solved in a similar fashion

through varying the energy and finding graphical solutions that satisfy the

respective equations. However, the solution to equation (55) requires building

the full Ω(E) matrix and performing a dot product with the eigenvectors of

H0, before combining it with the relevant eigenvalues to find a graphical

solution. In contrast, the mass shift in the context of case 4 is calculated

by forming the full H0 and Ω(E) matrices, summing them to form H(E)

and plotting the determinant as outlined in equation (66) while varying the

energy, as depicted in figure 6.
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Figure 5: A plot of equation (40) against energy for a 15× 15 matrix in the
1S state. The orange line represents Mn−E whilst the blue line denotes the
corrected mass once the unquenching effects are taken into account, with the
points of intersection providing a solution to (40)

When plotting to find graphical solutions in this way, it is imperative to

ensure that stable results are achieved when varying the control parameters α

and Nmax. Since these parameters are intrinsically related to one another, the

optimisation technique outlined in section 4.3 was conducted in which α was

re-calculated, and graphs plotted, for each matrix size. The intercepts and

overall mass shifts were then analysed in each plot when varying Nmax from 4

to 15. As expected, the respective intercepts and mass shifts experienced the

most change between lower dimensionalities, beginning to stabilise at values

of approximately 10 or larger for Nmax, which roughly coincides with figure

4. To ensure confidence in all of the results attained, this procedure was

repeated for each state and case being considered. The set of data presented

in 2 uses 15×15 matrices as this was found to be the best compromise between

accuracy and viability of the calculation since it provides stable results and

the best approximation to (87) whilst still being computationally viable.
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Figure 6: A plot of the left hand side of equation (66) against energy for a
15×15 matrix in the 2S state, representing the full calculation for case 4. As
before, the orange line denotes the bare mass and the blue line the corrected
mass once the unquenching effects are considered.

Continuing the discussion in section 4, the effect of α on the full calculation

was also investigated to see the extent it influences the mixing matrix which

determines the mass shift due to unquenching. This was implemented by

plotting for case 4 in the 2S state, but with one plot optimised appropriately

and another using the value of α for the 1S state.. Comparing figures 6 and

7, for which the values of α are 0.903 GeV and 1.335 GeV respectively, it

is evident that neglecting to re-optimise the harmonic oscillator parameter

causes a notable difference in not only the point of intersection with the x

axis, but also the mass shift itself. In this case the difference is approximately

3.5 MeV which is an error of ∼ 10% and this disparity is even larger when

considering the 3S state.
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Figure 7: A repeat of the plot in figure 6 but with α optimised for the 1S
state instead of appropriately for the 2S.

Since this research focuses on comparing different methods of calculating

the problem, it is crucial to be as accurate as possible in each variation of

the method to be able to draw any meaningful conclusions between them,

especially when the differences in the mass shift of the separate cases is the

order of the error just mentioned. Therefore, when controlling optimisation

parameters it is imperative to have a reliable and repeatable procedure that

can be applied to all the relevant cases to ensure that each set of data can

be compared justly. For these reasons, it is not suitable to simply optimise

α once and use that value for other energy states or matrix dimensions,

particularly if those dimensions are relatively small.
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6.2 Mass Shift Data

State 1S 2S 3S
Mn/MeV H0 9464.4 10047.2 10427.9

[1] 9465.6 10047.2 10427.6
−∆M/MeV Case 1 B 14.6 29.2 49.0

Bs 5.5 8.6 11.1
Total 20.1 37.8 60.1

Case 2 B 14.5 28.4 44.6
Bs 5.5 8.6 11.0

Total 20.0 37.0 55.6
Case 3 B 17 33.6 37.5

Bs 5.3 8.2 7.8
Total 22.3 41.8 45.3

Case 4 B 16.8 33.8 36.3
Bs 5.5 8.8 8.1

Total 22.3 42.6 44.4
[1] GEM B 15.85 33.025 48.525

Bs 6.75 10.4 10.725
Total 22.6 43.425 59.25

[1] SHO B 15.85 32.25 42.225
Bs 6.75 10.225 9.825

Total 22.6 42.475 52.05
Mexp/MeV [3] 9444.9 10017.2 n/a

Table 2: Spin-averaged mass shifts caused by the effect of unquenching for
the 1S, 2S and 3S states. Mn denotes the bare mass of the Cornell potential,
the parameters of which are taken from [1], and −∆M the mass shift for each
of the four cases discussed in section 2 as well as the two methods presented
in [1]. Mexp represents the experimentally obtained values where applicable
from [3] and B and Bs the spin-averaged contributions to the total mass shift
from the B and strange B mesons respectively.

Table 2 contains the bare mass and mass shift results for each of the four

cases in the 1S, 2S and 3S states, as well as corresponding data from [1]

pertaining to the two methods discussed in the paper. GEM denotes the

Gaussian expansion method of solving the problem whilst SHO denotes a
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simple harmonic oscillator approximation to the wavefunction by matching

〈r〉 and maximising wavefunction overlap. These results from [1] have been

spin-averaged using the model

nS =
1

4

(
n1S0 + 3 n3S1

)
(141)

so that it can be compared. Also included for reference are the experimentally

obtained values where possible, that have also been spin-averaged using the

above. It should also be noted that data was collected and checked against

that of [2], using their parameter selection, for each of the cases in table

2. However, in this thesis α is not optimised, with a constant value of the

harmonic oscillator parameters for both initial and final state mesons across

all states. For this reason, while the data set was useful for checking the

calculation using this value of α (for which results were in agreement to

within a few MeV), it is not suitable for direct comparison with the data

collected in 2 due to the optimisation procedures outlined in section 4.3

as this produced results that differed significantly. For example, the total

spin-averaged mass shift for the 1S state in [2] was 57.6 MeV whilst the

corresponding value in each of the four cases was between 44-46 MeV, and

this disparity increased for higher lying states.

Comparing the data for Mn, the masses obtained via the extraction of eigen-

values from H0 are very similar to those obtained from spin averaging the

figures included in [1] according to (141). The 1S state contains the largest

difference of only 1.2 MeV, with the 2S identical and the 3S showing a

mere 0.3 MeV disparity to 1dp. The fact that these figures are so sim-

ilar is somewhat expected considering the same potential and parameters

were used in the model. However, it is also encouraging since [1] uses Nu-

merov’s method [30] in solving the Schrödinger equation to obtain the dis-

crete wavefunctions, whereas in this work they are acquired via an expansion
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in harmonic oscillator basis functions. This shows reproducibility between

the different approaches and again highlights the importance of optimising

the harmonic oscillator parameter and using suitable matrix dimensions to

achieve stable results for the bare mass.

Analysing the mass shift data for the 1S state, the values given by [1] are

exactly identical in both the Gaussian expansion method and the simple har-

monic oscillator approximation, at 22.6 MeV, with no variation in the B and

Bs components. This therefore suggests that SHOs are a good approximation

to the real wavefunctions in determining the mass shift for the ground state

energy level. Cases 3 and 4 are congruent with these results, only off by 0.3

MeV for the overall change in mass. However, they do include a noticeably

different weighting for the B and Bs variations with the strange B mesons

contributing to a lower proportion of the total mass shift than in the cases

put forth in [1]. In contrast, cases 1 and 2 both produce a lower change in

mass of about 20 MeV, but interestingly have similar contributions for the

Bs mesons as cases 3 and 4. This is inconsistent, albeit only slightly, with

the comparison of GEM and SHO methods since cases 1 and 2 effectively

assume simple harmonic oscillator wavefunctions at the point of coupling

and find the mass shift reduced by approximately 2.3 MeV, so while this is a

reasonable approximation, it is not found to be as accurate as the methods

presented in [1] suggest. Also, comparing the incorporated mass shift to the

experimental value, it is very similar in all four cases.

This pattern is further exemplified in the 2S state, as the SHO approach

provides a compelling approximation to the GEM, having a lower mass shift

by only 0.95 MeV. However, comparing the first two cases to 3 and 4 the

difference is much larger, between 4 and 5.6 MeV, with the largest disparity

from cases 2 and 4, indicating that simple harmonic oscillators provide a less

accurate approximation to the wavefunction at higher energy levels. Further-

more, there are now also noticeable differences between all of the approaches.
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Case 1 which is derived using techniques in leading order perturbation theory

has a slightly larger downward mass shift than Case 2 which is solved self

consistently in a coupled channel approach. In addition, there is also a 0.8

MeV difference between cases 3 and 4. While both of these approaches make

use of the full Ω(E) matrix, the discrete component of the wavefunction in

case 3 is an eigenstate of H0 whereas in case 4 it is a mixture of eigenstates.

There are also larger disparities in comparison to the experimental data for

this state, but the mass shifts are the correct order of magnitude showing

approximately a 10 MeV difference in the renormalised mass.

Inspecting the 3S data, the disparity in the mass shift results across the

various approaches is much larger than in the lower two energy levels. Com-

paring the GEM and SHO methods in [1] for this state, the simple harmonic

oscillator wavefunction approximation is significantly less accurate than in

the previous states, producing a lower mass shift by 7.2 MeV. Furthermore,

larger differences are also seen between the four cases, with a 4.5 MeV smaller

mass shift in case 2 compared to case 1 and a 10.3 MeV disparity between

cases 2 and 3. This is congruent with [1] in that the discrepancy in mass shift

between SHOs and well approximated wavefunctions increases for higher ly-

ing states, and also highlights the limits of perturbation theory as a viable

approach to the problem at higher energy levels. However, the pattern in

which these differences arise has changed for the 3S. Whilst case 1 shows a

larger mass shift than case 2 across all three states, the absolute change in

mass then consistently increases between cases 2, 3 and 4 in the 2S state. This

trend is then reversed when considering the 3S as the mass shift increases

significantly for cases 1 and 2 and less so for the following two approaches,

resulting in case 4 producing the largest mass shift for the 2S state and the

smallest mass shift for the 3S state. This is somewhat inconsistent with the

findings of [1] as the Gaussian expansion method experiences both a larger

change in mass than the simple harmonic oscillator approximation and a

larger change in it’s mass shift from the 2S to 3S states.
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While these figures are very useful as a point of reference and comparison,

differences in the simplifications made, techniques by which the wavefunc-

tions are approximated and methods of finding a solution to the Schrödinger

equation are likely to have a larger impact at higher energy levels. This is

due to the energy denominator in (16) because when Eλ(p)−E is small, the

argument of the integral becomes large and therefore the elements of Ω(E)

which determine the mass shift are sensitive at near threshold states. Thus,

it is possible that some aspect of the respective calculations that cause a

small change to Eλ(p) or E could potentially translate to sizeable effects on

the overall mass shift near threshold. For example, in section 3.2 an approx-

imation was made in which the continuum mesons were restricted to S-wave,

radial ground states, i.e. n1 = n2 = 0 and L1 = L2 = 0. While a similar

approximation was made in [1] regarding the radial ground states of mesons

in the continuum, the orbital angular momentum was not restricted in this

way and thus ’coupled channel induced S-D mixing’ was taken into account

in their calculations. Although the largest contributions to Ω(E) arise from

the continua with the smallest masses, it could be possible that neglecting S

and D wave channel mixing has had some effect on the mass shift for the 3S

state.

Since the discrete wavefunction is expanded in the Gaussian basis in [1],

the oscillator parameters are set to be a geometric series [31] and varied to

fit the wavefunction. This fitting via oscillator parameters is also how the

SHO approximation is made by maximising wavefunction overlap [28] and

matching 〈r〉 [32–34]. Not only is this a different approach to the optimisation

procedures discussed in section 4, but it follows that different values for these

parameters would be used in the GEM and SHO methods, whereas the same

values are used across all four cases in table 2. An analogous approach to the

SHO fitting would be to vary α until the eigenvectors had maximum overlap

with those of the simple harmonic oscillator. This contrast in approaches to

fitting the oscillator parameters could also have contributed to the differences
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seen in table 2 for the total mass shift in the 3S state. However, since the

primary aim of this work is to analyse the effect variations in each method

have on the mass shift, it makes more sense to work under a common set of

parameters, including α.

7 Summary and Conclusions

The data gathered in table 2 suggests a simple harmonic oscillator approx-

imation at the point of coupling between the discrete and continuum com-

ponents of the wavefunction is somewhat reasonable for ground state energy

levels, but diverges with less consistent results at higher lying states. In addi-

tion, within this approximation, there are noticeable differences between the

coupled channel setup and perturbative approaches to the problem in the 3S

state. This could indicate that the assumption of treating the coupling term

U in the Hamiltonian, which is responsible for mixing between valence and

continuum states, as a small effect in comparison to H0 becomes less valid

near threshold. This is consistent with the theory because the denominator

in (35) becomes smaller when the bare mass is large and thus induces a larger

effect on the mass shift, representing a higher opportunity for coupling be-

tween valence and continuum mesons. Furthermore, the data collected also

indicates that treating the discrete component of the wavefunction as a mix-

ture of eigenstates of H0 (as in case 4) as opposed to a single eigenstate of H0

has a negligible effect at the ground state, but does show some small dispari-

ties at higher energy levels. This suggests that the coupling between different

valence states due to meson loops is a small effect that becomes more signif-

icant towards threshold energies. This mixing of discrete eigenstates, which

themselves are mixtures of harmonic oscillators, seems to slightly increase

the mass shift at the 2S level, but suppress it at the 3S, possibly indicating

that mixing valence states reduces the change in mass due to unquenching
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near threshold. Nonetheless, since the differences between cases 2 and 3 are

quite small, one can not be assured in this conclusion.

These cases also correlated well with the results of [1] for the 1S and 2S

levels, but differed fairly significantly for the 3S state. However, as previously

discussed this could be due to the variations in approaches, approximations

and assumptions made, such as the restriction of orbital angular momentum

for continuum mesons, which are likely to be amplified at near threshold

energies. In summary, the results presented in this thesis show that across

the four cases studied, the largest effect on the mass shift stems from the

proper treatment of the discrete wavefunction and therefore should be a

necessary inclusion in these types of calculations, particularly near threshold,

a conclusion shared by [1].

While the incorporation of mixing between discrete eigenstates, as presented

in (66), is only shown to have a small effect in the 2S and 3S states in table

2, this does not necessarily translate for other wave transitions and there-

fore provides an opportunity for further research in this field. Moreover, the

calculations themselves would be fairly straightforward to set up because it

simply involves changing the l dependent parameters in the discrete spec-

trum and adjusting the seed integral in Ω(W ) using the appropriate spatial

factors and angular momentum coefficients from [2] and [17] respectfully. In

addition, the solution to the integral is identical regarding the confluent hy-

pergeometric function, the only difference being the coefficients and powers

of p depending on the particular wave transition being calculated. From this,

the recursion relations are applied in the same way and thus Ω(W ) can be

built and the full calculation solved for other values of L. In cases involving

L > 0, there is not one, but two partial waves, for example, a P → S + S

transition goes in both S and D wave. This does not fundamentally change

anything in the calculation, but may become increasingly numerically inten-

sive as each element is more algebraically complicated. One would expect
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larger mass shift effects in states with L > 0, for example in [1] the P wave

transitions experienced at least a further 10 MeV shift compared to the S

wave states.

Investigating the behaviour of this mixing on the mass shift for multiple

transition amplitudes is a worthwhile endeavour because it’s possible that

this effect is not as small as the nS → 1S + 1S transition in such cases and

therefore should be an important factor in these calculations when trying

to establish accurate models for the unquenched system. Conversely, if this

effect is indeed small across all transition amplitudes then it is nonetheless

useful information to have when considering the requirements of the models

and methods needed for computing these mass shifts. However, since this

approach solves both the discrete and continuum parts of the problem si-

multaneously, it can be argued that it is an advantageous technique anyway

as it does not require the discrete wavefunctions to be calculated separately

and re-inserted into the continuum matrix, and the inclusion of mixing be-

tween discrete eigenstates is an added benefit from the setup. Also, it would

be interesting to see if the effect of suppressing the mass shift near thresh-

old implied by the data in table 2 is consistent among the other transition

amplitudes.

Since the approximations made in section 3 are not essential to compute

the change in mass due to unquenching, the calculations presented in this

paper could be taken even further to include spin splittings and non-restricted

continuum mesons. Including these features of the model would allow a more

direct comparison to data in papers such as [1] and also warrant the use of

Vsd(r) in the discrete Hamiltonian, therefore negating the need for equation

(141). In addition, spin-averaging as an approximation is known to become

less accurate near threshold and thus differences between the two approaches

could be analysed in this energy region to quantify the effect it may have on

the mass shift. As well as this, not restricting continuum mesons to L1 =
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L2 = 0 could allow mixing between states of different angular momentum

which may also have an effect on the observed change in mass. Quantitative

analysis could be undertaken between the various sets of approximations to

determine the relative impact each of them have on the results of the model.

Other areas that could be investigated include the optimisation of the har-

monic oscillator parameter because the technique proposed in this thesis

involved tuning it according to the discrete spectrum, but an equally valid

approach could involve varying α with the full calculation and finding the

minimum. However, the problem with this is the computational intensity

associated with constructing Ω(E), particularly if the aforementioned ap-

proximations are not implemented, and therefore the time it would take to

re-optimise for each state and matrix size. Similarly, the matrices themselves

could arguably be extended to greater dimensionalities for a more accurate

wavefunction, but considering the exponential relationship between increas-

ing Nmax and computation time observed during calculation, at a certain

point the benefits of increasing accuracy begin to have diminishing returns.

This then raises an interesting point about the role these models have in

QCD because if they are being used, it is within the field’s interest to make

them as accurate as possible. But with that being said, since the potential

models are inherently approximate anyway, increasing accuracy to the point

of huge computation times may be redundant when there are alternative

approaches such as Lattice QCD that encapsulate the Physics to a higher

standard, particularly when a primary benefit of using models over Lattice

QCD is the significantly reduced calculation work.

One interesting approach to accounting for unquenching effects without di-

rect computation of the valence-continuum coupling could involve an inves-

tigation into the potential model parameters to discern whether they can be

adjusted to incorporate the reduction in mass. This could be achieved by

first fixing the initial parameters for the bare state as given in other works
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or through some rationale, for example, fitting the various state masses to

experimental data, such as those in [35], or indeed fitting the wavefunction

to dielectric decay widths as is done in [1]. Then, one could vary the set of

parameters to determine the effect each of them has on the mass and find

some combination of changes that incorporate the mass shifts calculated in

the relevant literature. If this process is done for many different states and

transitions, some information could be extrapolated from the data regarding

which model parameters to alter and by how much to achieve the desired

shift for each state. This could therefore produce more accurate quenched

models in the future that better approximate meson masses while signifi-

cantly reducing the computation time and calculation work associated with

continuum coupling effects. Furthermore, the work presented in this thesis is

suited for this type of investigation because the model parameters have been

taken outside of the matrices and therefore can be adjusted without needing

to recalculate the matrix elements.

Whilst the methods presented in this thesis have been applied to bottomo-

nium, they are by no means restricted to this specific context and may be

generalised to other types of mesons. This could include states with different

constituent quarks like charmonium, or potentially more exotic forms like

hybrid mesons in which the gluons binding the constituent quarks are in an

excited state. A prominent method of modelling their behaviour in this sys-

tem is via a flux tube approach where, unlike conventional mesons, the flux

tube carries non-zero angular momentum. Despite this, the angular momen-

tum coefficients in (76) can be equally applied to hybrid mesons, as discussed

in [17]. However, the spatial matrix element in (76) would be different, but

can be taken from 36 for example, which calculates the breaking of chromo-

electric flux tubes in an harmonic oscillator approximation. A complicating

factor in hybrids, however, is that they are heavier than conventional mesons

and are therefore not necessarily below threshold. Since the methods detailed

in this thesis are predicated on below threshold energies, the generalisation
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to hybrid mesons may not be as simple as appropriating the relevant spa-

tial matrix element and instead involve further calculations to incorporate

the above threshold range. This is also the reason why the 4S state is not

included in these calculations, as it too lies above the threshold energy and

therefore would require further treatment than what is considered in this

thesis.

In summary, this thesis has aimed to put forth a comprehensive comparison

of four different methods of solving the unquenched system, including a novel

approach that accounts for mixing between discrete eigenstates, and provided

a quantitative analysis of the induced mass shift due to continuum coupling

across the four cases. However, the restriction of transitions studied, as well

as various approximations and assumptions made has left significant room

for additional research to be undertaken in this field, which could enhance

the conclusions presented.
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8 Appendix

8.1 A: Derivation of Vsd(r)

The spin-dependent term Vsd(r) in the Hamiltonian can be expressed as

Vsd(r) = VSS(r) + VLS(r) + VT (r) (142)

the components of which pertain to the spin-spin, spin-orbit and tensor op-

erators respectively. The spin-orbit term has the form

VLS(r) =

(
4b

r3
− σ

r

)
L · S
2m2

b

(143)

where

〈L · S〉 =
J (J + 1)− L (L+ 1)− S (S + 1)

2
. (144)

The tensor part can be is given by

VT (r) =
4b

m2
br

3
T (145)

where T has non vanishing diagonal matrix elements between the L > 0

spin-triplet states only:

〈3LJ |T |3LJ〉 =


− L

6 (2L+ 3)
, J = L+ 1

1

6
, J = L

− (L+ 1)

6 (2L− 1)
, J = L− 1.

(146)

Since the spin-orbit and tensor force terms in Vsd(r) only contain powers

of r, computing their expectation values can also be solved using equation

(111) and applying the appropriate coefficients. However, the spin-spin term
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requires a slightly altered treatment due to the Gaussian smearing function

associated with it:

VSS(r) =
32πb

9m2
b

δ̃(r)Sq · Sq̄ (147)

where

δ̃(r) =

(
κ√
π

)3

e−κ
2r2 (148)

and

Sq · Sq̄ =
1

2
S (S + 1)− 3

4
(149)

where κ = 3.838GeV in [1]. The expectation value of VSS therefore, is the

expectation value of the exponential term in (148) with the appropriate co-

efficients applied. This is a similar calculation to that in equation (111),

except the integral takes the form∫ ∞
0

rpe−r
2(2α2+κ2)dr =

(p− 1)!!

2p+
3
2 (2α2 + κ2)

p
2

√
π

(2α2 + κ2)
(150)

since q in the power of r is zero in this case and therefore p is even.
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T. Shutt, M. Silari, T. Sjöstrand, P. Skands, T. Skwarnicki, G. F.

Smoot, A. Soffer, M. S. Sozzi, S. Spanier, C. Spiering, A. Stahl, S. L.

Stone, Y. Sumino, T. Sumiyoshi, M. J. Syphers, F. Takahashi, M. Tan-
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