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Fully Connected Networks on a Diet With the
Mediterranean Matrix Multiplication

Hassan Eshkiki , Benjamin Mora , and Xianghua Xie , Senior Member, IEEE

Abstract— This article proposes the Mediterranean matrix
multiplication, a new, simple and practical randomized algorithm
that samples angles between the rows and columns of two matri-
ces with sizes m, n, and p to approximate matrix multiplication
in O(k(mn + np + mp)) steps, where k is a constant only related
to the precision desired. The number of instructions carried out
is mainly bounded by bitwise operators, amenable to a simplified
processing architecture and compressed matrix weights. Results
show that the method is superior in size and number of operations
to the standard approximation with signed matrices. Equally
important, this article demonstrates a first application to machine
learning inference by showing that weights of fully connected
layers can be compressed between 30× and 100× with little
to no loss in inference accuracy. The requirements for pure
floating-point operations are also down as our algorithm relies
mainly on simpler bitwise operators.

Index Terms— Matrix multiplication, neural networks, ran-
domized algorithms.

I. INTRODUCTION

MATRIX multiplication is at the heart of various crucial
algorithms and is used by a large variety of applica-

tions. It supports many applications and scientific fields such as
physics (e.g., lattice QCD), machine learning, and data science
in general, where calculating correlation between variables
can be important; and also, information retrieval algorithms
indirectly used by many people through search engines. One
aspect with matrix multiplication is that the basic algorithm’s
complexity does not scale linearly, which becomes problematic
when processing large datasets, hence requiring expensive
computational resources. Indeed, while square matrices require
O(n2) storage space, O(n3) computational steps are executed
by the basic algorithm.

Since the pioneering work by Strassen [1] demonstrating a
subcubic complexity, many deterministic and nondeterminis-
tic techniques for matrix multiplication have been proposed,
as any progress made on such a fundamental concept can
have a large impact. Nevertheless, there are issues plaguing
the more theoretically optimal algorithms, especially the deter-
ministic ones. Typically, the presence of very large complexity
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constants coupled with algorithms, which do not benefit much
from the stream-oriented modern processor architectures (ver-
sus random access), makes these low-complexity algorithms
difficult to use in practical applications. In the last decade or
so, randomized iterative algorithms that are able to get closer
to an optimal complexity of O(n2) have gained attention.
These algorithms also exhibit a run-time complexity constant
as a nonlinear function of the desired precision and usually
in the order of �−2. Nevertheless, there is a point to using
approximation algorithms as some applications that handle
large datasets do not necessarily need an exact solution. For
instance, finding approximate correlations quickly may be
preferred to finding exact solutions in firm real-time systems
(e.g., financial services and high-frequency trading), especially
if the error variance can be easily quantified or at least
estimated. Drineas and Mahoney [2] have recently shown that
various scientific areas can benefit from randomized linear
algebra algorithms.

In the following, we therefore introduce a new, simple iter-
ative randomized algorithm called the Mediterranean matrix
multiplication (M3) and show a first application to the com-
pression of fully connected (FC) layers. In particular, our
M3 runs in O(k(mn + np + mp)) steps for approximating
any matrix multiplication, where k is the number of trials
required to reach a given accuracy. In particular, it is shown
that this error decreases at a rate of O(k−0.5). The first part of
this article demonstrates some important theoretical properties
of the algorithm, including reducing the approximation for
square matrix multiplications to either O(n2+� ) [3] or n2 +
O(n2) steps [4] using fast rectangular matrix multiplication
algorithms. This article then demonstrates that one can advan-
tageously use the M3 in the FC layers of a neural network
when inferring from data.

To facilitate the understanding of the following, we enumer-
ate some of the symbols used hereafter.

1) A, B, C, Y, W, and X : Matrices and vectors (X and Y )
such that C � AB and Y = W X (W is a weight matrix,
X is a layer input, and Y is its output).

2) Ai and Wi : Rows i of respective matrices A and W .
3) B j : Column j of matrix B.
4) k: Number of trials/hyperplanes used [and the main

tradeoff factor between precision and complexity, with
the error decreasing at a rate of O(k−0.5)].

5) m: Number of rows of A, C , W , and Y .
6) p: Number of columns of B and C .
7) n: Number of columns of A and W , and number of rows

of B and X . When discussing square matrices, we will
assume that all dimensions are of size n.
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8) �: Error made on the approximation.
9) � �: A constant arbitrarily close to zero used for the

complexity notation.
10) 1 − γ : Confidence level for the error being made.
11) ω: A complexity constant for square matrix multiplica-

tion algorithms such that their complexity is expressed
as O(nω).

12) α: A complexity constant for rectangular matrix multi-
plication such that the product of an n × n matrix by an
n×nα matrix is known to be achievable in O(n2+��

) [5].

II. RELATED WORK

A. Advances in Matrix Multiplication

Deterministic algorithms for “exact” multiplication of two
matrices with a reduced O(nω) complexity bound have been
intensively investigated in the past. Since the original work by
Strassen [1] (ω < 2.808), many improvements to this upper
bound have been made. One can cite [6] (ω < 2.796)), [7]
(ω < 2.78), [8] (ω < 2.53), [9] (ω < 2.52), [10] (ω <
2.5), [11] (ω < 2.4785), [12] (ω < 2.375), [13] (ω <
2.374), [14] (ω < 2.373), and [15] (ω < 2.3728639). Interest-
ing results have also been obtained in the area of rectangular
matrix multiplication. For instance, the R

n×n×R
n×log n product

of two matrices can be implemented in n2 + O(n2) steps [4].
It has then been demonstrated that multiplying an n × n
matrix by an n × nα matrix can be completed in O(n2+� )
arithmetic operations [3] for any � > 0 (and any sufficiently
large matrices with n > N� ) if α is less than 0.172. Later, the
value of α was raised to approximately 0.29462 [5]. Recently,
Le Gall [16] demonstrated that multiplying an n×nα matrix by
an nα ×n matrix could exhibit an O(n2+� ) complexity with α
being less than 0.30298. Finally, there is an important duality
theorem for matrix multiplications stating that the number
of multiplications involved for computing matrix products
involving three fixed dimensions m, n, and p in any order is
constant [17]. As such, computing an R

n×n ×R
n× f (n) product

requires as many multiplications as computing an R
n× f (n) ×

R
f (n)×n product. These results on rectangular matrices are

essential to demonstrate an improvement on the current bounds
of approximated matrix multiplication algorithms.

While not improving theoretical bounds, research restricted
to Boolean matrix multiplication has nevertheless led to spe-
cific complexity results and produced more practical algo-
rithms. The famous four-Russian algorithm [18] led to a
reduced complexity of O(n3/ log2 n) for multiplying Boolean
matrices. This result was superseded by a complexity of
O(n3(log log n)2/ log9/4 n) in [19]), O(n3(log log n)3/ log3 n)
in [20], and finally Ô(n3/ log4 n) in [21]—currently the best
known bound of this type.1

From a purely theoretical point of view, other ways to
reduce the strict number of arithmetic operations used for per-
forming matrix multiplication exist. O(n2 log n) was demon-
strated in [22], while a better bound of O(n2) was achieved
in [23] and [24]. However, these results are achieved by using
extra-large integers or real values that usually have a binary

1The Ô notation is used to remove the poly(log log n) factor in the
expression of the complexity.

size in the order of O(n). This allows “packing” several
operations into a single theoretical arithmetic operation that
cannot, however, be executed in O(1) steps on a regular
computer. In general, while the lowest bound value for ω is
not yet known, many have conjectured that the true value for
ω is 2 for a deterministic algorithm.

Nondeterministic algorithms have also been studied exten-
sively. If one wants to compute an actual product of two matri-
ces to a given precision, there are several iterative solutions
exhibiting an O(n2) complexity per iteration for calculating
the estimation. This obviously implies a tradeoff between the
complexity constant and the final precision wanted, with the
precision factor until now being included in the complexity
result as a representation for the extra number of iterations
needed. While not all applications using matrix multiplica-
tions are able to deal with some error margins, there are
important areas where such an error could be acceptable. For
instance, one can approach the row/column dot product value
defined as

�n
k=1 aikbk j by considering a random subset of

all the products aikbk j as an approximation, with increasing
accuracy as n → ∞. This selective sampling approach is
sensitive (i.e., exhibiting unbounded variance), however, to the
input values of the two matrices [25], [26], usually when
high frequencies are present in the data. To circumvent this
problem, it was proposed in [27] and [28] to select a limited
number of dimensions using an importance sampling scheme
in accordance with the lengths of rows of A and columns of B ,
which guarantees a bounded variance for the estimation.

A different, more streaming-oriented approach is the one
proposed in [26] and based on random projections principles
as described by Johnson and Lindenstrauss [29]. At the heart
of this technique is the computation of an ASS� B product,
where S is a Johnson–Lindenstrauss transform (JLT) sign
matrix. Indeed, Sarlos [26] demonstrated that to achieve an
error less than � with a confidence level of 1−γ (i.e., ensuring
Pr(||AB−C||F < �||A||F ||B||F) ≥ 1−γ ), the number of steps
required is of the order of O((mn + np + mp) × (log(1/γ ) ×
�−2 + log(1/γ )2)). This bound was further improved [30] to
O((mn +np +mp)× log(1/γ )×�−2), which can theoretically
be reduced to O(n2) steps for sufficiently large n values if fast
rectangular matrix multiplications are used.

B. Compression of Neural Networks

Matrix multiplication is the most time-consuming operation
in neural networks, especially when using FC layers, and
therefore, it is not surprising that extensive work has been done
to optimize this part of the learning process. One popular way
to do so is to use lower precision calculations, with register
sizes between 4 and 16 bits being implemented nowadays on
specialized hardware. A popular format showing little loss in
overall precision is bfloat16, which is currently preferred to the
more standard IEEE 16-bit half-precision floating-point format
in machine learning applications [31].

While it is unclear what the best precision to use is and
what are the reasons behind this, some researchers have
been able to push it to a limit of 1 bit by using binary
network models. In Binary-Connect, Courbariaux et al. [32]
provided a training algorithm to restrict weights to { 1,-1 },
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therefore improving storage by a factor of 32 (compared to
FP32) with little impact on the error rate. As integer or
Floating Point (FP) precision calculations were still required
in some calculations, XNOR-Nets were proposed in [33],
allowing binarized (0 or 1) weights, operations, and input.
Recently, a more flexible model using a variable number of bits
(e.g., 1–3) has been proposed in [34].

As reducing precision reaches its limits quickly, other
approaches have focused on compressing matrices as a whole.
A survey of some of the approaches is provided in [35].
A typical way to compress matrices in scientific applications
is to use a low-rank approximation, where the less important
eigenvectors of the kernel are typically removed [36]–[38].
Novikov et al. [39] improved on low-rank approximation by
proposing tensor decomposition and demonstrated several-fold
improvements in the compression of FC layers.

Random projection methods in machine learning have been
popularized with kitchen sinks [40], making kernel methods
more scalable. The fastfood transform [41] and then deepfried
networks [42] improved on kitchen sinks by reducing memory
space and processing time. At the heart of these methods
is a diagonal random matrix [thus reducing storage costs
from O(nd) to O(n)] combined with fast transforms that can
approximate the weight matrix of an FC network [42].

Overall, the Mediterranean diet we are introducing
in Section IV has similar advantages to some of these
approaches [33], [40]–[42] for inference as it combines pre-
dominant binary operators, low-rank matrices, and random
projections in one framework.

III. MONTE CARLO SAMPLING OF ANGLES

BETWEEN VECTORS

This section introduces a complexity analysis for the
M3 algorithms proposed in this article. At the heart of
these algorithms is a relatively simple principle of randomly
sampling the angle between two vectors. This principle was
initially introduced in [43] to provide a good approximation to
the solution of the max-cut problem, but curiously never found
its way into a matrix multiplication algorithm. In this article,
it was noticed that the probability of having a random plane
separating two vectors (i.e., the probability of getting opposite
dot-product signs) was proportional to the angle formed by
these two vectors. Others have since used this principle
successfully and applied it to produce algorithms identifying
similarities (e.g., [44] with the aim of providing good hash
functions). This work finds a new scope of application for this
idea by subsequently integrating it inside a simple Monte Carlo
process, eventually leading to a lower matrix multiplication
complexity bound.

The starting point of our Monte Carlo evaluation is the
expression of a dot product between two vectors as

Ci, j = Ai B j = ||Ai || · ||B j || · cos θi j . (1)

From there, one notices that the angle value θi j is the only
limiting factor in establishing a minimal complexity result for
matrix multiplication. Indeed, all the necessary ||Ai || · ||B j ||
vector norm products can be calculated in O(n2) steps. If we

Fig. 1. Illustration of Monte Carlo sampling of an angle between two angles,
which accumulates results from random tests (Algorithm 1). Left: both points
are on the same side of the hyperplane and test will return 0. Right: hyperplane
is separating the two points and the test will return +1.

can estimate the angle for every entry Ci, j in k steps with
a simple Monte Carlo sampling process, then we know that
the variance in the estimation will be proportional to 1/k.
Furthermore, if we can compute a given number of k trials
“for free” (i.e., in constant time per entry) as n increases, with
a relationship k = f (n) and f being a monotonic function that
tends to infinity, the relative error made can then be factored
out of the complexity expression. This allows the existence of
a lower complexity bound for matrix multiplication approxi-
mation, with our main theorem expressed as follows.

Theorem 1: Let �, � �, and γ be three positive real values
arbitrarily close to 0. The product of two square matrices A
and B can be approximated as a matrix C with an algorithmic
complexity equivalent to that of a rectangular matrix mul-
tiplication (i.e., either O(n2+��

) or n2 + O(n2) steps) while
satisfying Pr(||C − AB||F < �||A||F ||B||F) ≥ 1 − γ .

While a similar result has already been given in [30], we will
demonstrate that it is still valid when sampling angles instead
of using randomly signed matrices.

A. Sampling Principles

Lemma 2: Let Ai and B j be two noncollinear vectors of
any length and P be the 2-D plane defined from a linear
combination of these two vectors and the origin, as shown
in Fig. 1. The angle between these two vectors can be
approximated with a Monte Carlo simulation (Algorithm 1)
that initializes the angle to 0 and then repeats k times:
1) choosing a random line Lφ of P crossing the origin and
2) adding π/k to the angle when Lφ separates the two vertices
Ai and B j .

The reason for this lemma to hold is straightforward and
many aspects are already developed in [43]. We will detail the
proof and analyze some properties further for inclusiveness.

Proof: Let θ be the angle between two unit vectors as
defined by the arc cosine of the vectors’ dot product and within
the range [0..π] (i.e., the complement of the reflex angle). This
angle can be defined as shown in Fig. 1 by the integral over
the section related to the angle

θ = 1

2

� 2π

0
Box

�
Ai , B j ,Lφ

�
dφ (2)

where Box is a box function that returns 1 if the line Lφ

separates the two vertices Ai and B j and 0 otherwise. Note
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Algorithm 1 Iterative Dot Product Approximation by Angular
Sampling

Input: Row Ai , column B j and a number of iterations k.
Output: An approximation Ci j such as Ci j � Ai B j .

C �
i j = 0

Norm Ai = ||Ai ||
Norm B j = ||B j ||
for s = 1 to k do

Es = Random Normal Distn(σ = cst, μ = 0)
Dot Ai = Ai · Es

Dot B j = ET
s · B j

if (Dot Ai · Dot B j < 0) then
C �

i, j = C �
i, j + 1

end if
end for
Ci, j = cos( π

k C �
i, j ) · Norm Ai · Norm B j

that since Lφ is equivalent to Lφ+π , the final result needs to
be divided by a factor of 2. The mathematical principles to
estimate this integral using a Monte Carlo simulation are well
established and θ can be evaluated as

θ̂ =
k�

t=1

π

k
Box

�
Ai , B j ,Lφt

�
) = π

k

k�
t=1

Box
�
Ai , B j ,Lφt

�
)

(3)

where k is the number of random tests desired, with k > 0.
Finally, we have been assuming that the vectors are not
collinear as we would not be able to define a 2-D plane
otherwise. If this is the case, Ai and B j will always be either
on the same or opposite side of the separating line, and the
approximated value for the angle will respectively be either 0
or π , which is as expected. �

It is useful to determine the statistical properties of such
a test (Algorithm 1), which can be established from classical
statistical analysis. If we assume that the Lφ space is sampled
uniformly, then our box test is a Bernoulli trial of well-known
success probability θ/π and performing k samplings will result
in a binomial distribution, which leads to the following lemma.

Lemma 3: There exist a sufficient number of iterations k,
an error margin � decreasing as k increases, and a confidence
level 1 − γ such that

Pr
�|Ci, j − Ai B j | ≤ � · ||Ai || · ||B j ||

� ≥ 1 − γ. (4)

Proof: The main statistical property of interest to us is
the evaluation of the error made for the estimation within
some level of confidence. First, as we are dealing with
a well-established sum of Bernoulli trials (i.e., a binomial
distribution), the variance on the estimation θ̂ is given by

Var
�
θ̂
� = Var

	
k�

t=1

π

k
Box

�
Ai , B j ,Lφt

�


= k
π2

k2
Var

�
Box

�
Ai , B j ,Lφt

�� = π2

k

θ

π

�
1 − θ

π

�
. (5)

Also, the expected value E(θ̂ ) is trivially equal to θ . Note that

θ

π

�
1 − θ

π

�
≤ 1

4
, θ ∈ [0..π]. (6)

Therefore, the maximum variance is achieved for θ = π/2
and is bounded by

Var
�
θ̂
� ≤ π2

4k
. (7)

Hence, the error on the real angle is expected to decrease
proportionally to the square root of the number of trials k.
Note that we have voluntarily removed the θ/π (1 − θ

π
) factor

when generalizing this result to all possible angles later on.
Should we have some a priori knowledge about the minimal
or maximal values of the row–column angles, such a constant
could be reintroduced in the subsequent estimation of the error
bound.

A similar 1/k convergence rate is encountered in algorithms
exposed in [28] and [30], with the exception that it is now
weighted by a constant in the range [0..π2/4]. Small angles
will therefore require fewer iterations, while angles close to
π/2 will need 2.46× more samples to reach the same error
level.

We are now interested in the statistical error � that results
from approximating an angle with k trials, in conjunction with
a confidence level of at least 1 − γ . This can be expressed as

Pr
�|θ̂ − θ | ≤ �

� ≥ 1 − γ. (8)

From the variance and expected value of the Bernoulli trials,
one can use Chebyshev’s inequality to obtain a bound for the
error defined as

Pr
�|θ̂ − θ | ≤ �

� ≥ 1 − θ(π − θ)

k�2
. (9)

The � value is therefore linked to the chosen number of
iterations k and the confidence level γ as follows:

�k,γ =


θ(π − θ)

kγ
, γ�,k = θ(π − θ)

k�2
and k�,γ = θ(π − θ)

γ �2
.

(10)

The actual property we are interested in is the estimation
of the error made on cos θ̂ as it is the value needed to compute
the final dot product evaluation. The cos function is monotonic
in the range [0..π], with | cos� θ | ≤ 1. Therefore,

∀θ1, θ2 ∈ [0..π] : | cos θ1 − cos θ2| ≤ |θ1 − θ2| (11)

which simply implies

Pr
�| cos θ̂ − cos θ | ≤ �

� ≥ 1 − θ(π − θ)

k�2
≥ 1 − γ. (12)

We conclude that for any � and γ in the range ]0..1[, there
exist a number of iterations k�,γ such that one can estimate
the value cos θ̂ with an error margin � at a level of confidence
1 −γ . For any given confidence level, the decrease rate in the
error is proportional to 1/

√
k. It follows that the error made on

the evaluation of each Ai · B j product is bounded with a given
confidence level expressed as

Pr
�|Ci, j − Ai B j | ≤ � · ||Ai || · ||B j ||

� ≥ 1 − θ(π − θ)

k�2

≥ 1 − γ. (13)

�
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Supposing that there is an algorithm allowing this bound for
every entry of the result matrix, the global error bound needs
to be expressed in relationship with the Frobenius norms of
A and B to be comparable with other results in the area.

Lemma 4: There exists a sufficient number of iterations k
that verifies

Pr(||AB − C||F ≤ �||A||F ||B||F) ≥ 1 − γ. (14)

Proof: We have

Pr(||AB − C||F ≤ x)

≥ Pr

⎛
⎝ m,p�

i=1, j=1

�||Ai || · ||B j || · | cos
�
θ̂i j

� − cos
�
θi j

�|�2 ≤ x2

⎞
⎠

≥ Pr

⎛
⎝ m,p�

i=1, j=1

�||Ai || · ||B j || · |θ̂i j − θi j |
�2 ≤ x2

⎞
⎠ (15)

where x is a positive value. We now calculate the expected
value of the inner sum

E

⎛
⎝ m,p�

i=1, j=1

�||Ai || · ||B j || · |θ̂i j − θi j |
�2

⎞
⎠

=
m,p�

i=1, j=1

�
||Ai ||2||B j ||2 · E

��
θ̂i j − θi j

�2
��

=
m,p�

i=1, j=1

�
||Ai ||2||B j ||2 ·

�
Var

�
θ̂i j − θi j

� + E
�
θ̂i j − θi j

�2
��

=
m,p�

i=1, j=1

�||Ai ||2||B j ||2 · Var
�
θ̂i j

��
. (16)

We know from (7) that the variance on every angle estimation
can be bounded, leading to

E

⎛
⎝ m,p�

i=1, j=1

�||Ai || · ||B j || · |θ̂i j − θi j |
�2

⎞
⎠

≤ π2

4k

m,p�
i=1, j=1

||Ai ||2||B j ||2 ≤ π2

4k
||A||2F ||B||2F . (17)

Markov’s inequality can now be used to finalize an upper
bound. Combining (15), (17), and (18), we get

Pr(||AB − C||F ≤ x)

≥ 1 − x−2E

⎛
⎝ m,p�

i=1, j=1

�||Ai || · ||B j || · |θ̂i j − θi j |
�2

⎞
⎠. (18)

Let x be �||A||F ||B||F . We finally obtain

Pr(||AB − C||F ≤ �||A||F ||B||F) ≥ 1 − π2

4k�2
≥ 1 − γ.

(19)

We therefore conclude that for any values � and γ in the
range ]0..1[, there exists a large enough integer k verifying
the hypothesis. �

Even though this proof requires k to be in the order of
O(�−2γ −1) as it is derived from a Markov inequality, it is well

known that binomial distributions will lead to a �−2 log(1/γ )
bound when k is finite, which is similar to the best known
bound given in [30].

B. Basic Algorithm

We now extend the randomized Algorithm 1 respecting the
bound described in Section III-A to all entries of matrices
A and B . Let vectors Ai , B j , and Es be three noncollinear
vectors of R

n , with Es chosen randomly on the hypersphere
centered on the origin and defining a unique orthogonal
hyperplane Ps . The intersection of Ps with the 2-D subspace
P �

i, j —defined from a linear combination of vectors Ai and
B j —provides a random line Li, j,s in P �

i, j that crosses the
origin. It also ensures randomness with a uniform distribution
over the angle, as initially demonstrated by [43]. As such,
Li, j,s is our random, uniformly distributed line that can be
used for sampling the angle, which also follows the statistical
convergence properties enunciated earlier. We can now make
the whole process efficient with O(mn + np + mp) steps
per iteration by reusing the very same Ps hyperplane for all
dot products occurring in a matrix multiplication. Note that
choosing a random plane ensures the uniform distribution of
Li, j,s for all the P �

i, j planes. Hence, the basic test simply
consists first of computing the signs of all dot products Ai Es

and ET
s B j , which requires O(mn+np) operations per random

split. Obtaining opposite signs at a given s iteration, with s ∈
[1..k], means that Ps is a plane separating vectors Ai and B j .
This sign test will need to be repeated O(mp) times (or O(n2)
times in the context of square matrices) to cater for all possible
dot product combinations (Ai , B j). Hence, the complexity of
the basic algorithm over k iterations is O(k(mn + np + mp)).
Finally, once all the angle cosines have been sampled, a scaling
process of complexity O(mn + np + mp) will multiply each
result entry by the respective norms ||Ai || and ||B j ||.

To generate a uniform and unbiased distribution on the
hypersphere as required by the algorithm, it suffices to gen-
erate vector Es entries randomly using a random number
generator (RNG) following a normal distribution (i.e., with
a fixed parameter σ and μ = 0) for each dimension indepen-
dently. Importantly, the likelihood of choosing Es orthogonal
to Ai or B j becomes infinitely small as the range of distinct
floating-point values tends to infinity. One limitation with this
algorithm though is that the error made on each Ci, j entry will
decrease at a rate of k−1/2, similar to results obtained in [28]
and [30].

C. Reformulated Algorithm and Complexity Bounds

As mentioned by Clarkson and Woodruff [30], to improve
on the trivial complexity bound obtained in (19), one needs
only to notice that: 1) the error decreases as the number of
iterations k increases and 2) Algorithm 1 can be broken down
into three rectangular matrix multiplications, which allows
us to compute k iterations for “free” (i.e., with the same
algorithmic complexity of computing one iteration,) where
k << n but k also increases with n. To do so, we can write the
whole algorithm using matricial products as in Algorithm 2.
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To allow acceleration of rectangular matrix multiplications,
an integer k must be chosen for instance such that k =
floor(nα) (cf., algorithms from [5] and [16]) or such that
k ≤ log n [4]. Indeed, Algorithm 2 in its first stage multiplies
the R

n×n matrix A with an R
n×k matrix E made of k

random vectors of R
n and similarly multiplies B with E�.

The second stage, which counts the number of separating
planes, will require 2kn sign extraction operations to be
performed beforehand. This thresholding will process every
entry of the two temporary matrices AE and E� B such that
their respective entries are set to 1 when (AE)i, j > 0 and
(E�B)i �, j � < 0, and −1 otherwise. Finally, the two thresholded
sign matrices of respective sizes R

n×k and R
k×n will be

multiplied together, which, if implemented as a rectangular
matrix product, is also doable with a complexity of either
O(n2+��

) if k < 0.30298 [16] or n2 + O(n2) for k ≤ log n [4].
This also completes the proof for Theorem 1.

Algorithm 2 Algorithm 1 Rewritten as a Product of Three
Rectangular Matrix Multiplication Resulting in a Theoretical
O(n2+��

) or n2 + O(n2) Algorithmic Complexity for Square
Matrix Multiplication

Input: Matrix A of rows Ai , Matrix B of columns B j .
Output: The resulting matrix entries Ci j such as C � AB .

for i = 1 to n do
Norm Ai = ||Ai ||
Norm Bi = ||Bi ||

end for
k = f (n) � k = f loor(nα) or k = f loor(log2(n))
E = Random Normal Distn,k(σ = cst, μ = 0) � O(n2)
A� = AE � Rectangular Matrix multiplication
B � = E�B � Rectangular Matrix multiplication
for i = 1 to n do

for j = 1 to n do
A�

i, j = (A�
i, j > 0) ? 1 : −1

B �
i, j = (B �

i, j < 0) ? 1 : −1
end for

end for
C � = A�B � � Rectangular Matrix multiplication
for i = 1 to n do

for j = 1 to n do
Ci, j = cos(

π(C�
i, j +k)

2k ) · Norm Ai · Norm B j

end for
end for

IV. COMPRESSING FC LAYERS

A. Inferring With the M3

Section III has defined a way to reduce the number of
operations for multiplying matrices at a cost of introducing a
noticeable error in the solution. A natural question is whether
this algorithm can still find a place in applications bounded
by tensor operations, such as deep neural networks (DNNs).
While training models will be discussed later on, we also
interestingly managed to compress the FC layers of a DNN
satisfactorily for inferring data.

Fig. 2. Pipeline of operations for estimating the product Y ≈ W X . Operations
needed during inference are shown in blue. Note that the entries of the constant
matrix E follow a normal distribution and do not require storing.

As an input X is progressing through the layers of a neural
network, it follows a sequence of matrix multiplications. For
an FC layer, we can write this operation as Y = W X , where
matrix W represents the weights an FC layer and X represents
the input. Replacing a standard matrix multiplication with the
M3 one requires the calculation of W E and E�X , where E
is a random matrix of k columns, and binarizing these results
similar to Algorithm 2. The pipeline for this is given in Fig. 2.
We therefore need to calculate first Bin (W E) and Bin (E� X),
with

Bin(X) = { Bin(Xi) }, with Bin(Xi ) =
�

1, Xi ≥ 0

0, otherwise.
(20)

Note that the Bin operator, unlike in Algorithm 2, is applied
symmetrically to both matrices as we will later optimize code
with XOR (⊕) and POPCOUNT operators instead of using
multiply and add operators. It is now trivial that Bin(W E)
can be precalculated before inferring as both matrices W and
E are already known. Therefore, we can store the FC layer as
a stream of binary data that, depending on the chosen number
of hyperplanes k, may become significantly smaller than the
original weight matrix W . We also need to store the vector of
norms {|Wi |} for the last step of the algorithm, but this space is
almost negligible as this represents only a single floating-point
value per row of W .

We would logically need to store a copy E as well to
multiply it with the input X that is unknown at this stage.
We do, however, have two options here given the random
nature of this matrix. We can either create the random numbers
deterministically and on the fly or store a single column
vector of random numbers and rotate this vector to generate
up to n − 1 extra columns of E , in the same spirit as the
FastFood transform [41] or Deep Fried networks [42]. It is
important to notice that the latter gives us the opportunity to
compute the product E� X with a low number of floating-point
operations by computing it in the frequency domain. As such,
the complexity of the FC layer is mainly bounded by the
operation combining the two binary streams obtained, which
is represented in Algorithm 2 by a standard matrix multipli-
cation but can be implemented from simple XOR (⊕) and
POPCOUNT operators. These two operators require far fewer
transistors than floating-point units and can be done on 32 or
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64 bits at a time on modern hardware. Hence, the M3 does
not only provide a way to compress FC layers when inferring
but also provides a simplified logic with far less emphasis on
floating-point operations.

B. Practical Considerations

As improvements in the complexity of matrix multipli-
cations are sometimes not practical, this section discusses
the details behind an implementation of matrix multiplication
approximation algorithms on modern architectures such as
GPUs. Algorithm 2 can be broken down into three stages. The
first stage will compute W E and E�X , where E is a matrix
made of k columns. It would therefore seem natural for k to
be smaller than n as, otherwise, the computing effort would
be similar to that of a basic “exact” matrix multiplication
algorithm. This, however, is not a strict requirement for
our algorithm as it performs most operations bitwise, and
therefore, any value k < 32n could be beneficial. One could
also use an RNG to create E , removing the need to store
this matrix. However, we can actually process up to k = n
separating hyperplanes by convolution in mn log n (W E) and
n log n steps (E�X) if E is chosen as a Toeplitz matrix with
columns defined from a rotated random vector. Indeed, our
hyperplanes must be chosen independently, and it is easy to
see that the columns of a randomized Toeplitz matrix satisfy
E(Ei E j) = 0, i �= j . Furthermore, using a Toeplitz matrix,
we only need to create and store the first column E0 of E and
possibly every subsequent column Ei such that i (mod n) = 0
(n is the number of columns of our weight matrix W ).

In the next stage, thresholding of W E and E�X can be
performed in O(2kn) operations and thus has no influence
on the overall complexity of the process. The last stage is
what differentiates our algorithm in practical terms from other
algorithms such as Clarkson and Woodruff’s approach [30].
As thresholding is not embedded in the random matrix but
comes later in the pipeline, the final operation is a pairwise
computation of Hamming distances of complexity O(kmn),
which is simpler to carry out than a full-blown matrix multi-
plication. It can, for instance, be implemented with Boolean
matrix multiplication algorithms such as the four-Russian algo-
rithm [18], which would reduce the amount of computations
by a log n or even a log2 n factor for practical matrix sizes.
However, this will require implementing lookup tables and
adding various barriers in the flow of operations, therefore
limiting parallelism. Modern processor architectures, however,
include population count instructions that can output sums
of 32 bits (e.g., NVIDIA CUDA cores) or 64 bits (e.g., all
modern X86 CPUs) integers at every clock cycle. Being able
to process so many elements at once natively is likely to be
competitive with any algorithmic speedup we could get from
Boolean matrix multiplications. All in all, our Mediterranean
multiplication requires one XOR, one POPCOUNT, and one
ADD to process 64 planes in parallel, instead of requiring
a single fused multiply–add (FMA) [30] for every plane,
but also requires approximately 2.46× more samples in the
worst case to obtain the same variance as in [30]. While we
will not analyze energy efficiency, we also hypothesize that

the underlying circuits to implement ⊕, integer ADDs, and
POPCOUNT operations are much simpler than FMA circuits
and could consume less energy overall if implemented on a
specialized circuit.

C. Training the Compressed Neural Network

Training needs to reflect the changes we have made to the
way our FC layers work. This section describes how we ensure
that a graph-based tool like Tensorflow is still able to learn
patterns correctly once we are introducing our Mediterranean
multiplication.

We initially train the neural network in a standard way.
For some datasets (MNIST), we also augment the training
dataset by adding rotated and translated samples to provide
better results [45]–[47]. We then consider that convolutional
layers (CLs), if present in the model, are trained and we focus
on replacing the standard FC layers’ multiplications with the
new M3. Indeed, FC layers are usually located at the end
of a neural network. For each FC layer l, we associate a
unique constant random matrix El with entries following a
normal distribution. This matrix is in our tests generated from
a deterministic RNG along with a unique seed and is created
either on the fly (no storage requirement) or just from the
stored columns El

i (mod n)=0 of El as all other columns El
i

can be calculated from a single-hop rotation of El
i−1. Rotating

columns is preferable to just generating all the numbers from
an RNG as it allows making use of the FFT algorithm to
perform matrix multiplications efficiently as mentioned in
Sections IV-A and IV-B.

From there, we can process forward propagation and back-
propagation as follows, assuming that the CLs are already
trained and the output they produce will not change for
the training dataset. The forward propagation is calculated
by simply replacing the regular matrix multiplication by our
M3 variant in the FC layers, hence computing W E and ET X at
this stage. We, however, keep the regular matrix multiplication
algorithm when performing backpropagation because the M3-
based pipeline used for compression is not differentiable,
which has also the benefit of learning the extra level of
error introduced in the forward pass without introducing new
errors in the backpropagation step. We then simply use the
weight matrix W as the gradient for backpropagation in our
Tensorflow implementation.

V. RESULTS

A. Testing Environment

All tests are performed on an Intel 4770 K processor running
at 3.9 GHz and coupled with 16 GB of RAM and an Nvidia
GeForce GTX 1080Ti Graphics card (11 GB). Tensorflow
2.0 is used as the artificial intelligence (AI) framework and
runs on a Linux distribution.

B. Synthetic M3 Results

1) Error Analysis: To test the M3, we create two matrices A
and B using RNGs that are part of the C++11 standard library.
Entries of these two matrices match a normal distribution with
θ = 1 and μ = 0, except for one specific test where we
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analyze the effect of μ on the final error obtained. While it
is difficult to allow for all possible distributions arising from
specific circumstances, a normal distribution was thought to be
representative of various processes. It must be noted that the
content of the two matrices A and B itself should not affect
performance but could potentially affect the accuracy of final
approximation.

All floating-point computations are performed using the
standard IEEE 32-bit precision. Errors in the approximation
are measured after executing a full matrix multiplication and
computing ||C − AB||F/||A||F ||B||F , where AB is obtained
from a CUBLAS kernel call and C is the final estimation.
Results are compared both to standard matrix multiplication
and to ASS�B [30], where S is a random sign matrix.

As expected from our theoretical analysis, the error
decreases linearly according to the square of the number of
iterations when using normally distributed inputs (Fig. 3).
It can also be seen that Clarkson and Woodruff’s method
exhibits a lower error for the same number of iterations, with
a measured error ratio close to π/2. This means that to get a
similar error, one needs to compute 2.46× more planes with
our algorithm, which still compares favorably as our pipeline
is processing 32 or 64 bits per instruction versus one. However,
these variance results are obtained for the worst case scenario
where rows of A and columns of B are generated with μ = 0,
resulting in almost orthogonal vectors. By varying μ (Fig. 3(e)
so that these rows and columns become more correlated, the
error produced by our technique is actually reduced dramat-
ically and tends to 0, a direct consequence of the Bernoulli
trials [cf. (5)]. This is an important fact as it demonstrates
the significant superiority of sampling angles when processing
correlated data over the original method of signed matrices.
One can also observe some variance in the final error made
when the μ parameter becomes large. This can be explained
as follows. In general, the obtained errors are very close to
the theoretical ones for μ = 0 as there is usually very little
variation over the error measured due to the large number of
entries in the final matrices. However, signed matrices perform
badly in that regard when rows of A and columns of B become
similar as the entries of C tend to be highly correlated due
to computations becoming very similar for all entries. Our
algorithm may also more subtlety inherit this problem, but
as the error tends to zero, so does the error variance, which
makes it more stable than the standard ASS�B approach.
It must finally be noted that we used n = k = 8192 in
this particular test as using single-float precision provides
limited accuracy, which may affect the error calculation. This
comes to light in Fig. 3(d) where the error ratio between the
two techniques starts differing noticeably from the theoretical
π/2 for n = 16384 but in the favor of our algorithm.

2) M3 CUDA Implementation: While highly optimizing
the M3 for Tensorflow was not an option, this section pro-
vides test results for a simple CUDA implementation of the
multiplication (Fig. 2) of two random matrices with varying
parameters. Kernels are currently optimized for power of two
sizes, with a minimum size n of 256. A maximum matrix
size of 16384 (1 GB per matrix) has been tested, due to GPU
memory limitations. Results (single floating-point precision)

are compared both to standard matrix multiplication and to
ASS� B , where S is a sign matrix. Computing ASS�B just
requires three CUBLAS calls and therefore can be considered
optimal and optimized.

Table I summarizes the factors affecting performance
between the use of signed matrices [30] and the proposed
method. While our technique requires more samples to esti-
mate dot products at angles close to π/2 due to a higher
variance, it also benefits from most operations being done
by binary operators that can process 64 bits at a time (as
implemented) to calculate the Hamming distance. However,
a breakdown of the performance of the different components
of the pipeline (Fig. 4) also shows that operations with a
theoretically negligible complexity have a significant impact
on performance, especially when the matrix size is small.

Fig.5 shows the performance gains obtained with our new
technique and compare them to both a standard multiplication
and Clarkson and Woodruff approach [30]. As expected, some
significant speedup is obtained for large matrix multiplications,
where our method is measured to be up to 4.64× as fast as
the use of signed matrices [30] after correcting for the higher
variance per iteration and as implemented. When compared
to a standard matrix multiplication, we can be up to 10×
as fast depending on the error required. For small matrix
sizes, our algorithm is actually slower, which may not have a
practical impact as most concerns with matrix multiplication
performances arise from the use of large matrices.

3) Using the M3 for Training: We study in Fig. 6 the effect
of directly replacing the standard matrix multiplications with
our M3 version in the training of two DNN models with two
and three dense layers of the MNIST models (no data augmen-
tation) being replaced. The replacements are made in either the
forward pass, the backward pass, or both passes. Unless stated
otherwise, we use a batch size of 1024 to be representative
of a real-world application as our algorithm can only replace
matrix–matrix multiplications efficiently (speedwise), but not
matrix–vector multiplications. This large batch size does not
affect the convergence rate but may be impractical in some
situations as this increases the memory requirements. The
best results have been obtained by reusing the same random
matrices (matrix E in Algorithm 2, one unique matrix per
layer) in the forward passes, while these random matrices
are always regenerated for every multiplication performed
during the backpropagation phase. All other combinations
have severely degraded performance, but we do not have
currently an explanation for this.

Fig. 6 shows that both convergence rate and accuracy
improve as we are using more planes for the approximation.
The algorithm converges more or less closely to the refer-
ence model as expected. Combining both forward propagation
and backpropagation passes also logically results in a lower
accuracy than only using one of them. These are important
results as training with k = 1024 requires approximately
the same number of operations for calculating the Hamming
distance as floating-point operations with the standard matrix
multiplication to obtain similar results. The Hamming distance
code can, however, process up to 64 operations per instruction
as they operate on single bits. This performance may, however,
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Fig. 3. Left: error comparison between our method and [30]. Results are given by either varying the sizes of matrix A and B with the number of samples p
equal to n (n = p) or by fixing n and varying the number of samples used for the approximation. (e) Comparison of the final error obtained with our method
and [30] after varying the μ parameter of the Gaussian RNG used (with σ = 1) when approximating AB . (a) Measured ε error with n = k. (b) Measured ε
error with n = 16384, k variable. (c) Measured ε error with n = 8192, k variable. (d) Error ratio between our algorithm and ASSTB. (e) Error with n = k =
8192, and μ variable.

TABLE I

COMPARISON OF THE DIFFERENT PRACTICAL FACTORS INFLUENCING THE PERFORMANCE OF THE SIGNED MATRIX APPROXIMATION [30]
AND OUR OWN HAMMING DISTANCE KERNEL (GPU: NVIDIA 1080TI)

be overshadowed by the overhead created by lower complexity
stages (e.g., the FFT stage). Fig. 5 tells us indeed that
our current CUDA implementation of the M3 would only
perform at 0.4× the speed of a standard matrix multiplication
and therefore be impractical in this example. Furthermore,
our matrix multiplication may only be workable on shallow
networks as the approximation error is likely to be amplified
with the extra layers, as demonstrated by the impact of moving
from two to three layers. Finally, we observe most often from
the different graphs that the differences between the reference
models and the approximated ones seem to be approximately
halved every time one doubles the number of planes. Although
not a proof at all, this would indicate a somehow surprising
linear convergence to the true model. This may, however, not
be in contradiction with the convergence rate of a Monte Carlo
approximation as we are measuring the accuracy of the model
and not that of the matrix multiplication.

C. Compression of FC Layers

We tested our Mediterranean diet on the FC layers of
standard neural network models such as VGG16 and are

mainly concerned in observing the effect of replacing the
standard matrix multiplication in the pipeline of these models
with our M3. As such, the low error obtained in our tests,
while satisfactory, may be beaten by other networks not using
FC layers. We use VGG16 on three datasets (CIFAR10,
CIFAR100 [47], and CINIC-10 [46]) and use two other
standard models for MNIST [45]. In particular, VGG16 has
three FC layers that represent 56% of the total size of the
model when having 3 × 322 input images.

Details of the networks used are given in Table III. For
training, we have used a weight decay of 5 × 10−4, batch
normalization, and dropout between CLs. We have used ReLU
activation functions after each layer, except for the last layer
where a softmax function has been used. In addition, data
augmentation was created by rotating images 15◦ for CIFAR
and CINIC datasets and 8◦ for MNIST. Furthermore, images
were shifted by 10% randomly on both the x- and y-axes.
Results with and without augmentation are given for MNIST.
Experiments have been carried out with a varying number k of
hyperplanes. The size of the compressed layers is calculated
from the size of the bit representation of the layers, the norms
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TABLE II

COMPARISON OF THE COMPRESSION RATE WITH BINARY-CONNECT [32] AND XNOR-NET [33]. OUR TECHNIQUE ALLOWS
CHANGING THE COMPRESSION RATE TO FAVOR EITHER COMPRESSION OR QUALITY

Fig. 4. Breakdown of performance for the various kernels used in our GPU
implementation. (a) Breakdown of kernel times according to the matrix size
(n = k). (b) Breakdown of kernel times according to the number of iterations
(n = 16384, k variable).

||W l
i || of the weight matrix rows, and the seed value that is

negligible. As our random numbers are calculated from the
seed value, they do not need to be stored. We, however, include
the storage requirements for the tests where random numbers
are further obtained by rotation of columns of E (i.e., Toeplitz
case) as this may have some practical implications, including
removing the need of calculating these random numbers on
the fly when inferring. Table III shows the results for the
four datasets and Fig. 7 shows the convergence to the original
network according to the number of planes.

All experiments on VGG16 showed that the FC layers can
be compressed to around 1% of their original size without
any meaningful loss of accuracy. The compression rate for
the MNIST models is also very satisfactory at around 50×

Fig. 5. Performance comparison between our method, ASST B [30] (b, c,
and d, CUBLAS implementation), and a direct matrix multiplication of A and
B (e and f , CUBLAS implementation). (a) Timings measured in ms for our
new algorithm. (b) Timings measured in ms for calculating ASSTB. (c) Ratio
between calculating ASSTB and our algorithm. (d) Precision-normalised ratios
between calculating ASSTB and our new algorithm - i.e. results obtained on
the left are divided by (�/2)2. (e) Timings measured in ms to calculate the
product of two n2 matrices with CUBLAS. (f) Ratios between calculating the
matrix product with CUBLAS and our angle-sampling algorithm.

without a significant degradation of accuracy, although lower
than VGG16 results in general. We conjecture that as VGG16
FC layers are larger, they become easier to compress. It,
however, looks like more hyperplanes are needed for the
augmented MNIST dataset compared to the original one.
While the compression rates are still very good, we still need
two to four times more space to see no difference with the
original network. We do not know at this stage if this result
can be improved upon, by, for instance, improving the random
number sequences.

Obviously, compressing the FC layers translates into a
significant reduction in the size of these models. For the
MNIST models, as all the layers are FC layers, the model
can easily be compressed up to 25× without any loss of
accuracy. Also, while the original VGG16 network size was
mostly dictated by the FC layers, the Mediterranean diet just
makes them negligible in size, leading to a compression of
VGG16 by more than 2. Finally, storing the random numbers
does not have a big impact on the memory footprint but still
allows faster implementations less relying on floating-point
calculations as this part of the pipeline can be now ensured
by a fast convolution performed in the Fourier space.
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Fig. 6. Effect of replacing the standard matrix multiplication with the M3 version for training the MNIST datasets in all but the last FC layer. The horizontal
axis represents the number of epochs, while the vertical axis represents the accuracy obtained on the testing dataset. We study backward-only, forward-only, and
backward–forward replacement cases. The number of planes k used is the same for each layer and each pass in a single experiment. Unless stated otherwise
(B32), the batch size used is 1024. Results show that training accuracy (test dataset) increases with the number of plane and also decreases when adding
an extra layer. (a) Forward propagation—two layers. (b) Backpropagation—two layers. (c) Forward and back—two layers. (d) Forward propagation—three
layers. (e) Backpropagation—three layers. (f) Forward and back—three layers.

Fig. 7. Convergence of accuracy according to the number of hyperplanes
used. The horizontal axis displays the compression obtained for (a) internal
FC layers and (b) neural network as a whole (full network). The vertical axis
displays the obtained accuracy of the network relative to that of the original,
unmodified network—with 100% meaning that the compressed network has
the same accuracy as the original one. All network models have been tested
with 256, 512, 1024, and 2048 hyperplanes as represented with continuous
or dashed lines.

We finally compare the compression rates we obtained
(cf. Table II) with two other techniques that are Binary-
Connect [32] and XNOR-Net [33]. The table shows that

similar levels of compression and accuracy can be obtained
by the three techniques for FC layers. While Binary-Connect
and XNOR-Net only handle a single bit of information,
our approach is more flexible as it allows to choose any
random number of planes we wish and therefore allows
parameterizing compression levels. However, we do not
propose yet a way to compress convolutional networks, and
therefore, the two techniques cited perform much better
overall in CIFAR10. The similarities in the results make us
believe that these two methods may possibly implicitly learn
the M3 pipeline while training.

VI. CONCLUSION

This article has first proposed and analyzed the M3, a new,
fairly simple, unbiased algorithm for approximating matrix
multiplications. While the theoretical bound obtained is opti-
mal and similar to the currently best known randomized meth-
ods [30], it does offer increased convergence when dealing
with nonorthogonal rows and columns. It is also amenable
to various bitwise optimizations that accelerate computations
greatly as the cost of combined XOR/POPCOUNT units could
be significantly lower than that of FMA units in terms of area
and energy consumption.

This article shows that this new algorithm can be used in
machine learning, for instance, to train the FC layers of a
neural network. We have also demonstrated a Mediterranean
diet algorithm for FC layers, allowing a compression rate
for these layers as high as 100× in the case of VGG16
and so without a drop of accuracy. This result is similar
or better to similar techniques published in the area, with
the extended benefit that most inferring operations can be
performed on a binary stream using a combination of XOR
and POPCOUNT operators. This should allow simplifying the
architecture of embedded inference processors and, as such,
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TABLE III

COMPRESSION RATES OF FC LAYERS AND OVERALL NETWORK ACCORDING TO THE NUMBER k OF HYPERPLANES CHOSEN AND WHETHER
ROTATION OF RANDOM NUMBERS HAS BEEN USED (ROT). THE MODIFIED/COMPRESSED LAYERS ARE IN BOLD. FC: FC LAYER. BN: BATCH

NORMALIZATION LAYER. RELU: RECTIFIED LINEAR UNIT LAYER. SFMX: SOFTMAX LAYER

reduce significantly their energy consumption. Our CUDA
implementation indeed demonstrates that a significant speedup
can be obtained for large matrix sizes based mainly on the sole
use of these operators.

Overall, the Mediterranean diet is a technique closely related
to recent research done in the area of random projections,

low-rank approximations, and binary nets, and combining all
the benefits of these methods into one framework. Further
investigations may include tweaking the RNG, compressing
other types of layers and networks, studying training scala-
bility for larger networks, or even accelerating other scientific
problems.
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