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Abstract
We study Choquard type equation of the form

—Au+cu— Iy * ) |ul”>u+u?2u=0 in RV, (P,)

where N > 3, I, is the Riesz potential with « € (O,N), p > 1, g > 2 and ¢ > 0.
Equations of this type describe collective behaviour of self-interacting many-body systems.
The nonlocal nonlinear term represents long-range attraction while the local nonlinear term
represents short-range repulsion. In the first part of the paper for a nearly optimal range of
parameters we prove the existence and study regularity and qualitative properties of positive
groundstates of (Pg) and of (P.) with ¢ > 0. We also study the existence of a compactly
supported groundstate for an integral Thomas—Fermi type equation associated to (P;). In the
second part of the paper, for ¢ — 0 we identify six different asymptotic regimes and provide
a characterisation of the limit profiles of the groundstates of (P;) in each of the regimes. We
also outline three different asymptotic regimes in the case ¢ — 00. In one of the asymptotic
regimes positive groundstates of (P;) converge to a compactly supported Thomas—Fermi
limit profile. This is a new and purely nonlocal phenomenon that can not be observed in
the local prototype case of (P) with @ = 0. In particular, this provides a justification for
the Thomas—Fermi approximation in astrophysical models of self-gravitating Bose—Einstein
condensate.
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1 Introduction
1.1 Background

We are concerned with the asymptotic properties of positive groundstate solutions of the
Choquard type equation

—Au+eu— Ty u|?)ul”2u+ufu=0 in RV, (Py)

where N > 3, p > 1,q > 2 and ¢ > 0. Here I,(x) := Aalxl’w’”‘) is the Riesz
potential with & € (0, N) and * denotes the standard convolution in R¥ . The choice of the

normalisation constant A, = % ensures that I, (x) could be interpreted as the

Green function of (—A)%/? in RV, and that the semigroup property Ioyp = Iy * Ig holds
for all @, B € (0, N) such that @ + B < N, see for example [22, pp. 73-74].
Equation

—Av+ev— (g x v|P)vP2v=0 in RY (%)
is often known as the Choquard equation and had been studied extensively during the last

decade, see [42] for a survey. In this work we are interested in the case when the standard
Choquard equation is modified by including the local repulsive |u|?~2u term.
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If u, is a solution of (P) with N = 3,0 =2, p =2 and ¢ = 4 then ¥ (1, x) := &'* u,(x)
is a standing wave solution of the time-dependent equation

iy = —AY — (L x|y )Y + [Y1Py, (1,x) e R x R (1.1)

Equation of this form models, in particular, self-gravitating Bose—Einstein condensates with
repulsive short-range interactions, which describe astrophysical objects such as boson stars
and, presumably, dark matter galactic halos. In this context, (1.1) was introduced and studied
under the name of Gross—Pitaevskii—Poisson equation in [8, 16, 53], see a survey paper [17].

More generally, Eq. (P.) can be seen as a stationary NLS with an attractive long range
interaction, represented by the nonlocal term, coupled with a repulsive short range interaction,
represented by the local nonlinearity. While for the most of the relevant physical applications
p = 2, the values p # 2 may appear in several relativistic models of the density functional
theory [2—4].

In this work we are specifically interested in the case where ¢ > 0 is a small (or large)
parameter and all other parameters are fixed. Our main goal is to understand the behaviour
of groundstate solutions of (P;) when ¢ — 0. We also discuss the case ¢ — oo, which is to
some extent dual to ¢ — 0. The local prototype of (P.) and a formal limit of (P;) aso — 0
is the equation

—Au+eu—|u*?u+u?u=0 in RV, (1.2)

It is well-known that this equation admits a unique positive solution in H!'(RY) for any
1 < 2p < g < oo provided that ¢ > 0 is sufficiently small, and has no finite energy
solutions for large . This result goes back to Strauss [51, Example 2] and Berestycki and
Lions [6, Example 2] (see [41, Theorem A] for a precise existence statement and further
references). A complete characterization of all possible asymptotic regimes in (1.2) ase — 0
was obtained in [41], see also earlier work [46]. Essentially, three different limit regimes were
identified in [41], depending on whether p is less, equal or bigger than the critical Sobolev
exponent p* = % Recently, (1.2) had been revisited in [28] where nondegeneracy of
ground-sates and sharp asymptotics of the L2-norm of the ground states as ¢ — 0 had been
described in connection with the uniqueness conjecture in the L2-constraint minimization
problem associated to (1.2). See also [39], where the same problem is studied with the
opposite sign of the |u|92u-term.

1.2 Existence and properties of groundstates for (P,)

We are not aware of a systematic study of ground-sates of Choquard Eq. (P;). First existence
results seem to appear in [45] in the case N = 3, o = 2, p = 2. See also [7, 23, 27, 29]
and references therein for further results which however do not cover the optimal ranges of
parameters. The planar case with the logarithmic convolution kernel was studied in [19] but
since the kernel is sign-changing this requires different techniques. Near optimal existence
results for the Choquard equation of type (Pg) with an attractive local perturbation (the
opposite sign of the local nonlinear term) were recently obtained in [30, 31].

Our first goal in this work is to establish the existence of ground-sate solutions of Choquard
Eq. (P;) for an optimal range of parameters. By a groundstate solution of (P;) we understand
a weak solution u € H'(RV) N L4(R") which has a minimal energy

1 . e ) 1 1
Te(u) == = |Vu|“dx + = lu|"dx — — (I * |u|P)|u|Pdx + — lu|?dx
2 RN 2 RN 2p RN q JRN
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amongst all nontrivial finite energy solutions of (P.). Remarkably, and in contrast with its
local prototype (1.2), we prove that ground states for (P.) exist for every ¢ > 0. We also
establish some qualitative properties of the solutions (P.) such as regularity and decay at
infinity. These properties are similar to the standard Choquard Eq. (¥¢’). Note that we do not
study the uniqueness or non-degeneracy of the groundstates of (P.) and we are not aware of
any even partial results in this direction. We believe this is a very difficult open problem. Our
results do not rely and do not require the uniqueness or non-degeneracy.

Essential tools to control the nonlocal term in Z, are the Hardy-Littlewood—Sobolev (HLS)
inequality

2p 2Np. N
(I * [u|P)u|Pdx < Cyllulyy, Yue LN+ (RY), (1.3)
RN N+a
which is valid for any p > 1 (and C, is independent of p); and the Sobolev inequality
IVull3 = Sllull3e VYu € D'®RY), (1.4)
where 2% = % is the critical Sobolev exponent and D' (R") denotes the homogeneous
Sobolev space with the norm [[u||p1rry = [|Vullz2. The values of the sharp constants

S« > 0and C, > 0 are known explicitly [34, 35]. HLS and Sobolev inequalities can be used
to control the nonlocal term in the two cases:

2N, *
o if Mt < ) < NI phep [ ¥5e (RY) € 12N L2 (RY)

2N,
o if p= M andg = 22 then L% RY) C L2 N LI(RY)

The two cases have non-empty intersection but this is not significant for us at this moment.
In each of these two cases, Z, : HL(®RY) N L7 (RY) — R is well defined and critical points
of Z, are solutions of (P;).

Our main existence result for (P;) is the following.

Nio NY ond g > 2, or p > %f% and q > 2ND. Then

Theorem 1.1 Let =% < p < 375 Mo
for each ¢ > 0, Eq. (P;) admits a positive spherically symmetric ground state solution
ue € H' 0 L' N C*(RN) that is a monotone decreasing function of |x|. Moreover, there

exists Cy > 0 such that

e ifp>2
lim e (x)|x] T VPR = ¢,
|x|]—o00
o ifp=2
N-1 x| N—a N T
lim ue(x)|x| 2 exp/ Ve — Sy ds =Ce, where v:=(Aqllugl3) ¥,
|x|— 00 v s
o ifp<2

N—«o 1
. = —1 —
lim ue(x)|x| 277 = (e Agllucllp) > .
X—> 00

The existence range of Theorem 1.1 is optimal. This follows from the PohoZaev identity
argument, see Corollary 4.1. We emphasise that no upper restrictions on p and ¢ are needed
and in particular, ¢ could take Sobolev supercritical values, i.e. ¢ > 2* (see Fig. 1). The
decay rates of ground states at infinity are exactly the same as in the standard Choquard case,
compare Theorem 2.4 below or [43, Theorem 4]. For a discussion of the implicit exponential
decay in the case p = 2 we refer to [43, pp. 157-158] or [44, Section 6.1].
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Fig. 1 Six limit regimes for (Pg) [}
as ¢ — 0 on the (p, g)-plane 9= Nta

Critical Choquard
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e—0
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1 N+a Nia 9% i
N N-2

Our main goal in this paper is to understand and classify the asymptotic profiles as ¢ — 0
and ¢ — oo of the groundstates u,, constructed in Theorem 1.1. Remarkably, our study
uncovers a novel and rather complicated limit structure of the problem, with six different
limit equations (see Fig. 1) as e — 0:

e Formal limit when the family of ground states u, converges to a groundstate of the formal
limit equation

—Au— Iy x| ul’2u+ u??u=0 in RV. (Po)

The existence and qualitative properties of groundstate for (Pp) for the optimal range
of parameters is new and is studied in Sect. 5, see Theorem 2.1. The convergence of the
groundstates to the limit profile is proved in Theorem 2.2.

e Choquard limit when the rescaled family

_ _2ta 1
Ve(x) :=¢ 4Dy, (8_7)6)
converges to a groundstate of the standard Choquard equation
—Av+v— (g * PP 20 =0 in RY, (%)
which was studied in [43]. The convergence is proved in Theorem 2.5.
e Thomas—Fermi limit when the rescaled family
N __4-q_
Ve(x) :=¢ 92u, <8 W*Z)x)
converges to a groundstate of the Thomas—Fermi type integral equation
v— Iy * ")) v+ v 2v=0 in RV. (TF)

The existence and qualitative properties of groundstate for (7F) for p # 2 will be studied
in the forthcoming work [26]. In this paper we consider only the case p = 2 which is
well known in the literature when o« = 2 [1, 5, 36] and was studied recently in [11, 12]
for the general @ € (0, N), yet for the range of powers g which is incompatible with our
assumptions. In Theorem 2.6 we prove the existence and some qualitative properties of
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a groundstate for (7F) with p = 2 for the optimal range g > ,\f—fa. This extends some
of the existence results in [11, 12]. The convergence of v to a groundstate of (TF) is
proved in Theorem 2.7 for p = 2 and o = 2 (the general case p # 2 and o # 2 will
be studied in [26]). Remarkably, for p = 2 the limit groundstates of (7F) are compactly
supported, so the rescaled groundstates v, develops a steep “corner layer” as ¢ — 0!

e Critical Choquard regime, when the family of ground states u, converges after an implicit
rescaling

N-2

ve(x) 1= )H;“Tus()\ax)
to a groundstate of the critical Choquard equation
—Av = (I * Pl V)| 2, v e DIRY). )

A detailed characterisation of the ground states of (¢ 1) was recently obtained in [18,
21]. In Theorem 2.8 we derive a sharp two-sided asymptotic characterisation of the
rescaling A, following the ideas developed in the local case in [41].

o Self-similar regime g = 222” J:y ® when ground states u, are obtained as rescalings of the
groundstate u1, i.e.

_ 24« 1
ui(x) =¢ *»-by, (e 2x)
o the Critical Thomas—Fermi regime, when the family of ground states u, converges after
an implicit rescaling

N+a
ve(x) 1= )"621) ug(Aex)

to a groundstate of the critical Thomas—Fermi equation
|70 = (o * | v v, v e LIRY). (TFy)

Groundstates of this equation correspond to the minimizers of the Hardy—Littlewood—
Sobolev inequality and completely characterised by Lieb in [34]. In Theorem 2.9 we
derive a two-sided asymptotic characterisation of the rescaling X;.

Self-similar, Thomas—Fermi and critical Thomas—Fermi regimes are specific to the non-
local case only. When o = 0 they all “collapse” into the case p = ¢, which is degenerate for
the local prototype Eq. (1.2). Three other regimes could be traced back to the local Eq. (1.2)
studied in [41].

When ¢ — oo the limit structure is simpler. Only Choquard, Thomas—Fermi and self-
similar regimes are relevant (see Fig. 2) and there are no critical regimes. In particular, the
Thomas—Fermi limit with ¢ — oo appears in the study of the stationary Gross—Pitaevskii—
Poisson Eq. (1.1), see Remark 3.1.

The precise statements of our results for e — 0 are given in Sect. 2. In Sect. 3 we outline the
results for ¢ — oo and discuss the connection with astrophysical models of self-gravitating
Bose-Einstein condensate. In Sect. 4 we prove Theorem 1.1. In Sects. 5 and 6 we establish
the existence and basic properties of groundstates for the “zero-mass” limit equation (Pp)
and for the Thomas—Fermi Eq. (TF). In Sects. 7 and 8 we study the asymptotic profiles of
the groundstates of (P.) in the non-critical and critical regimes respectively. Finally, in the
Appendix we discuss a contraction inequality which was communicated to us by Augusto
Ponce and which we used as a key tool in several regularity proofs.
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Asymptotic notations

For real valued functions f(¢), g(t) > 0 defined on a subset of R, we write:

f@) < g() if there exists C > 0 independent of ¢ such that f () < Cg(t);
f@) 2 g@)if g(t) < f(1);
@) ~g@if f(1) S g() and f(1) Z g(1);

f(t) ~ g(1)if f(t) ~ g(¢) and lim,_, ;:g)) =1
Bearing in mind that f(¢), g(¢) > 0, we write f(r) = O(g(?)) if f(¢) ~ g(t), and f(¢) =
o(g(t))iflim g((t’)) =0.Asusual, Bg = {x e RV : |x| < R}and C, ¢, ¢; etc., denote generic
positive constants.

2 Asymptotic profilesas € — 0

Our main goal in this work is to understand the asymptotic behaviour of the constructed in
Theorem 1.1 groundstate solutions u, of (P.) in the limits ¢ — 0 and ¢ — oo.

2.1 Formal limit (Pyp)

Loosely speaking, the elliptic regularity implies that #, converges as ¢ — 0 to a nonnegative
radial solution of the formal limit equation

—Au— Iy % ") ul”2u+ u?>u=0 in RV, (Po)

However, (Py) becomes a meaningful limit equation for (P;) only in the situation when
(Po) admits a nontrivial nonnegative solution. Otherwise the information that u, converges
to zero (trivial solution of (Py)) does not reveal any information about the limit profile of u.
We prove in this work the following existence result for (Pp).

2Np.
N+a’

Eq. (Po) admits a positive spherically symmetric groundstate solutlon ug € D! ﬂLq ﬂC 2 (RN )
which is a monotone decreasing function of |x|. Moreover,

N+Ot

Theorem 2.1 Let 4% < p < orp > 8% and g > 52 Then

sand2 < q <

o ifp< %fg thenu € L'(RY),

o ifp> %t‘; then

uo 2 1x|”N"2 as x| - oo,

+a % (1 + N“‘)] then

0~ lx7H

and if p > max{
as |x| — oo.

The restrictions on p and ¢ in the existence part of the theorem ensures that the energy
To which corresponds to (Pp) is well-defined on D'(RV) N LI(RN), see (5.1) below. A
Pohozaev identity argument (see Remark 5.2) confirms that the existence range in Theorem
2.1 is optimal, with the exception of the “double critical” point p = N *"‘ andg = 1%,111; =2*
on the (p, ¢)-plane (see Remark 5.3).
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160 Page 8 of 59 Z.Liu, V. Moroz

Note that

N+o if Nta o 2.

2 N+a : N+o
(1 ) f 2,
IIlaX[%Jﬂ;’%(l—"%Jﬂ;)}:{S( +N—2 ! N-2 =

N+a

The upper bound on ug in the case <2and Y% < p <3 (1 + %J_“;) remains open.

We conjecture that our restriction on p for the upper decay estimate is technical and that
ug ~ x|~ V=2 a5 |x| - oo forall p > %f‘;

Observe that the energy Z is well posed in the space D! (RY) N L4 (RY), while Z, with
e > 01is well-posed on HY(RM) N L7(RY). Since H'(RN) C DY(RY), small perturbation
arguments in the spirit of the Lyapunov—Schmidt reduction are not directly applicable to the
family Z, in the limit ¢ — 0. Using direct variational analysis based on the comparison of

the groundstate energy levels for two problems, we establish the following result.

Theorem 2.2 (Formal limit (Py)) Let % <p< Nf% and 2 < g < %, or p >

N
max[%Jr% 2 (1 + NJ“")} and q > 2Np

N+ao-
Then as ¢ — 0, the family of ground states ug of (Ps) converges in D' (RN) and L7 (RN)
to a positive spherically symmetric ground state solution ug € D' 0 LY(RN) of the formal
limit Eq. (Py). Moreover, 8||u£||% — 0.

The restriction p > max [ Nia 2 (1 + X +°‘) } is related only to the upper decay bound

N-2°3
N+a
N-2

on uq in Theorem 2.1, i.e. we could establish the convergence of u, to ug for p > as

soon as we know that ug ~ |x|~ (N=2) 5 |x] = oo.

2.2 Rescaled limits
When 832 < p < O£ > 2N F1= the formal limit problem (Pp) has no nontrivial
sufficiently regular finite energy solutlons (see Remark 5.3). As a consequence, u, converges
uniformly on compact sets to zero. We are going to show that in these regimes u, converges
to a positive solution of a limit equation after a rescaling

v(x) = e'ule'x),
for specific choices of s, ¢ € R. The rescaling transforms (P, ) into the equation

— e T Av 4 &Sy — eGP (s D) PP+ "D p 92y =0 in RV,

2.1)

Ifg # 221’ +% then there are three natural possibilities to choose s and 7, each achieving

the balance of three different terms in (2.1). Note that the choice ¢ 572 = g=(@p—Dstar —
e~@=Ds Jeads to s = t = 0, when (2.1) reduces to the original equation (Pg).

I First rescaling. The choice e 75 ™% = g! =% = ¢ =P~ Ds+e Jeadstos = —

and rescaled equation

Tt = —1/2
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qQ2+a)— 2(2[1+D()

—Av+v— g x V") 2v+e  30- 72 =0 in RV, (%:)
2 +a . qQ2+a)—22p+a) . Lo
Ifg >2 p , we have lim,_,ge  4»-D = 0, and we obtain as a formal limit the
Choquard equatlon
—Av+v— g *v|")wP 20 =0 in RV. (%)

II. Second rescaling. The choice &'~ = g=(GP=Dstert — ¢=(@=Ds Jeads to s = ——

q-2°
— _2p=q ;
e ) and rescaled equation
2Q2p+a)—q(2+a) 2 0 N
g @D (=AwH+v—Uyx )P v+ ¢ v =0 in R (TF,)

) +a . 2Q2p+a)—q(2+a) . L.
If2<qg<?2 P we have lim,_,g&  ¢@2 = 0 and we obtain as a formal limit the

Thomas—Fermz type integral equation

v— Iy * ") P v+ ! v =0 in RV, (TF)

III. Third rescaling The choice g5 — gl=s — ¢=(@=Ds Jeads to s = —q—lz, = —% and
rescaled equation

22p+a)—q(a+2) A
—Av+v—¢c 202 (Iyx )P v+ w9 2v=0 in RN

22p+a)—q(a+2)

If2<qg<?2 ZPL we have lim,_,g&e 202 = 0, and we obtain as a formal limit the

nonlinear local equation

—Av+v+ w9 %2v=0 in RV,

Such equation has no nonzero finite energy solutions and we rule out the third rescaling as
trivial.

2
— p2pta

2.3 Self-similar regime q ra

In this special case the choice s = — 4(2;_"1) and t = —1/2 leads to the balance of all four

terms in (2.1), i.e. e 572 = gl=5 = g=@p=Ds+at — ¢=@=Ds_The rescaled equation in this
case becomes

—Av+ v — (g * ") |" 2o+ 920 =0 in RV, (P1)

and any solution of (P;) is a rescaling of a solution of (P;). For completeness, we include
this obvious observation in the following statement.

2p+a
24a *

N+‘)‘<p<%+°‘ and g = 2

Theorem 2.3 (Self-similar regime) Let
e >0,

Then for any

2+a
ue(x) = ™D uy(ex),

where u is a ground state solution of (P1).
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2.4 First rescaling: Choquard limit

The following result describes the existence region and some qualitative properties of the
groundstates of (%).

Theorem 2.4 [43, Theorem 4] Let N;“ <p< N+°‘ . Then Choquard’s Eq. (€) admits a

positive spherically symmetric ground state solutlon ve H' NnL'nC?RN) such that v(x)
is a monotone decreasing function of |x|. Moreover, there exists C > 0 such that

e ifp>2,
\lllm v(x)|x| el =C,
o ifp=2
N-1 Ix] N—a -
lim v(x)|x| 2 exp/ V91— Y—=ds=C, where v:= (Aa||v||%)N‘“ ,
|x]— 00 v s
e ifp <2,

lim o)l = (Aglvl})

m v(x)|x|>r = v P,

|x|—o00 ¢ p

The existence interval in this theorem is sharp, in the sense that (¢") does not have finite

energy solutions for p ¢ (N ; <, %fg ) The uniqueness of the ground state solution is known

only for N = 3, p = 2 and @ = 2 [33] and several other special cases [38, 49, 54].
In this paper we prove that after the 1st rescaling, groundstates of (P.) converge to the
groundstates of the Choquard Eq. (%), as soon as (%") admits a nontrivial groundstate.

Theorem 2.5 (Choquard limit) Ler 8¢ < p < M% and g > 22222 As e — 0, the
rescaled family of ground states

_ 24«
ve(x) i= & TN (I2) 2.2
converges in D' (RN) and L9 (R") to a positive spherically symmetric ground state solution

vo € D' N LYIRN) of the Choquard Eq. (¢).

2.5 2nd rescaling: Thomas-Fermi limit forp = 2

In this paper we consider the 2nd rescaling regime only in the case p = 2. The general case
p # 2 is studied in the forthcoming work [26].

When p = 2 the formal limit equation for (P;) in the 2nd rescaling is the Thomas—Fermi
type integral equation

v— (g xv)v+ v 2v=0 in RV, (TF)

One of the possible ways to write the variational problem that leads to (TF) after a rescaling
is

sTF;=inf{||v||g+||u||§:OSUGLZqu(RN),/ (Ia*vz)vzdx=1}. (2.3)
RN

By a groundstate of (TF) we understand a rescaling of a nonnegative minimizer for s7r that
satisfies the limit Eq. (TF).
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To study nonnegative minimizers of the s7 it is convenient to substitute

for an equivalent representation

sTF:inf{/ ,o'"dx-i—/ pdx:OfpeLlﬂLm(RN),/ (Ia*p)pdx:l}.
RN RN RN

Form > m. := 2 — «/N it is not difficult to see that, after a rescaling, minimizers for sr
are in the one-to-one correspondence with the minimizers of

arpz=inf{/ lpl’"dx—/ (Ia*p)pdx:OSpeLlﬂL’”(RN),Ilplll=1}-
RN RN

The existence and qualitative properties of minimizers for o7r in the case N = 3, =2
and for m > 4/3 is classical and goes back to [1, 36]. The case N > 2, « € (0, N) and
m > mc it is a recent study by Carrillo et al. [12]. If m < m_ then o7r = —o0 by scaling,
while m = m, is the L!-critical exponent for o7r (this case is studied in [11]). Note that
me > ‘2‘% so in the 2nd rescaling regime we always have orr = —oo when ¢ — 0!

In the next theorem we show that, unlike for o7, minimization for s7f is possible for all
m > A?—L The existence and qualitative properties of the minimizers are summarised below.

2N
N+o-
nonnegative spherically symmetric nonincreasing minimizer p, € L' N L®RN) for str.

The minimizer p, satisfies the virial identity

Theorem 2.6 (Thomas—Fermi groundstate) Let m >

Then str > 0 and there exists a

f "d —l—/ d i 24
m X xX=s .
o ? P N
and the Thomas—Fermi equation
2N
mp" ! = (sTF Iy % p — 1) ae in RV, (2.5)
N+« I

Moreover, supp(px) = BR* for some Ry, € (0,400), py is C* inside the support, and
px € COV (RN with y = min(l, L ifa > (m—Z) ,orforany y < %= if m > 2 and
+

m—1 m—2

m—1
o < (u>+ Moreover, if a > (%>+ then I % p, € COY(RY) and pfk”_l e COLRM).

m—1
i = (4)7 \/p* (@7 () "), .6)

is a nonnegative spherically symmetric nonincreasing ground state solution of the Thomas—
Fermi Eq. (TF).

Meanwhile,

Only the existence part of the theorem requires a proof. The Euler-Lagrange equation,
regularity and qualitative properties of the minimizers could be obtained by adaptations of
the arguments developed for m > m, in [11, 12]. We outline the arguments in Sect. 7.3.

In the case m > m_ the uniqueness of the minimizer for orr was recently proved in [10]
for o < 2, see also [13] for « = 2 and a survey of earlier results in this direction. For the full
range m > A%—i'a and for o < 2 the uniqueness of a bounded radially nonincreasing solution
for the Euler—Lagrange Eq. (2.5) (and hence the uniqueness of the minimizer p, for s7r) is
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160 Page 12 of 59 Z.Liu, V. Moroz

the recent result in [14, Theorem 1.1 and Proposition 5.4]. For &« = 2 the same follows from
[24, Lemma 5]. For @ € (2, N) the uniqueness of the minimizer for st or for orr seems to
be open at present.

Next we prove that in the special case « = 2, groundstates of ( P.) converge to a groundstate
of the Thomas—Fermi Eq. (TF).

Theorem 2.7 (Thomas—Fermi limit fora =2)Let N <5, p =2, « = 2 and 1\%\[2 <q <3
As ¢ — 0, the rescaled family of ground states
_ 1 _4=q
ve(x) :=¢ 4 2u, (5 2<‘1*2>x) 2.7

converges in L*(RN) and L1(RN) to a nonnegative spherically symmetric compactly sup-
ported ground state solution vy € L*> N LY(RN) of the Thomas—Fermi Eq. (TF).

Remark 2.1 While the uniqueness of the Thomas—Fermi groundstate vy fora > 2 is generally
open, it is clear from the proof of Theorem 2.6 that every ground state of (7F) must have
the same regularity and compact support properties as stated in Theorem 2.6. In particular,
v always exhibits as ¢ — 0 a “corner layer” near the boundary of the support of the limit
groundstate of (TF).

Remark 2.2 The case p # 2 and @ # 2 is studied in our forthcoming paper [26]. We are
going to show that the minimization problem

STF = inf{||U||Z +vl3:0<ve LzﬂLq(RN),/ Iy * vP)vPdx = 1}.
RN

admits a nonnegative spherically symmetric nonincreasing minimizer v, € L' N L®(R")

for any p > % and g > I%L_‘_';{ and this range is optimal. Moreover,

(a) if p > 2 then Supp(vs) = Bg, and Vx = Axp, + ¢, where R, > 0, A > 0if p > 2 or
A =0if p =2,and ¢ : B — Ris Holder continuous radially nonincreasing, ¢ (0) > 0
and limy|— g, ¢ (|x]) = 0;

(b) if p < 2then v, € D'(RY) and Supp(v,) = RV.

We will prove in [26] that such a minimizer is the limit of the rescaled groundstates v, (x) as
& — 0 in the Thomas—Fermi regime.

2.6 Critical Choquard regime p = ’l\vi—(zl
When p = %Jjg and ¢ > % = 2%, neither (%) nor (Py) have nontrivial solutions. We

prove that in this case the limit equation for (P;) is given by the critical Choquard equation
N+ao N+ao
—Av = (I 0| V|72, v e D'RY). (GL)
A variational problem that leads to (¢’ ) can be written as

. Vw3
SHL = inf (28)

weDL(RN)\ {0} {

N-2°

S U 1] V) [w| V5 x| 5
It is known [21, Lemma 1.1] that

N2
Sur = 8Co '
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where S, is the Sobolev constant in (1.4) and C, is the Hardy—Littlewood—Sobolv constant
in (1.3) (with p = &%)

By a groundstate of (¥y1) we understand a rescaling of a positive minimizer for Sy,
that satisfies Eq. (¢ 1). Denote

Us(x) = (7VN(N_2)> ’

1+ |x]? 9)
a groundstate of the Emden—-Fowler equation —AU, = U*z*_1 in RY. Then (see e.g.
[21, Lemma 1.1]) all radial groundstates of (4%, ) are given by the function
V(x) = (sgcg)"“%% Uy (x) (2.10)
and the family of its rescalings
Vi) = AT V(A (> 0). @2.11)

In fact,if N =3,4orif N > 5and @ > N — 4 then all finite energy solutions of (¢xr)
are given by the rescalings and translations of U,, see [21, Theorem 1.1].

We prove that in the critical Choquard regime the family of ground states u. converge in
a suitable sense to V after an implicit rescaling \.. Note that V € LZ(RN) only if N > 5
and hence the lower dimensions should be handled differently, as the L%-norm of Ug must
blow up when N = 3, 4. Our principal result is a sharp two-sided asymptotic estimate on the
rescaling A, as & — 0. Similar result in the local case o = 0 was first observed in [46] and
then rigorously established in [41]

Theorem 2.8 (Critical Choquard limit) Let p = N +°‘ and q > % = 2%, There exists a

rescaling A¢ : (0, 00) — (0, 00) such that as ¢ — O the rescaled family of ground states

B N-2
Ve(X) 1= A¢ : ug(Aex)
convergesto 'V in D! (]RN ). Moreover, as € — 0,

1

e a4 if N=3,
1
e~ (eln )" if N =4, (2.12)
PR ) z)zuv D if N=>5.
- - 2N
2.7 Critical Thomas-Fermi regime g = W‘c’r

When 232 < p < M2 and g = Nli , neither (TF) nor (Py) have nontrivial solutions. We
show that in this case the limit equation for (P, ) is given by the critical Thomas—Fermi type
equation

[v[7720 = (Io * [v|")|v]P 20, v e LIRM). (TF)

By a groundstate of (TF,) we understand a positive solution of (7F,) which is a rescaling
of a nonnegative minimizer for the Hardy-Littlewood—Sobolev minimization problem
2Np
Jry [w| Ve dx - e
= Ca

STF = inf s (2.13)

N N
wer M1 @V \(0) | gy Lo * [w|P)|w|Pdx } Ve
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160 Page 14 of 59 Z.Liu, V. Moroz

where C, is the optimal constant in (1.3). It is known [34, Theorem 4.3] that all radial
groundstates of (TF;) are given by

N+a

~ 2p
Fx) = (1‘3&'2) , (2.14)

for a constant o,y > 0, and the family of rescalings

Tox) =275 Tx/a) =210 x/x) (> 0). 2.15)

We prove that, similarly to the critical Choquard regime, in the critical Thomas—Fermi regime
the family of ground states u, converge in a suitable sense to U after an implicit rescaling A;.
Note that U € L2(RN) and U e D! (RM) only if N > 4, so N = 3 is now the only special
dimension. Our main result in the critical Thomas—Fermi regime is the following.

Theorem 2.9 (Critical Thomas—Fermi limit) Let N;\;“ <p< %f‘; and g = ]%,11’; There
exists a rescaling Ag : (0, 00) — (0, 00) such that as ¢ — 0, the rescaled family of ground
states

N+ta

Te(x) 1= he " tp(heX)

converges to Vin L4 (RN), where Vis defined by (8.17). Moreover, if N > 4 then as ¢ — 0,

D=

Ae ~ e 2, (2.16)
while if N = 3 then
he el Pe(3G+.36+).
e r(nhy "2 Sae Sernbye, p=2G+w, @2.17)
p=0G+a) G+e)(G+a=2p)
e P § Ae S g PBp=GHa) | pE ( (3 —}-()[) 3 +0[)
Remark 2.3 We expect that the upper asymptotic bounds (2.17) with p > w could be

refined to match the lower bounds, but this remains open at the moment.

3 Asymptotic profiles as € — 0o and Gross-Pitaevskii-Poisson model

The behaviour of ground states u, as ¢ — oo is less complex than in the case ¢ — 0. Only
the 1st and the 2nd rescalings are meaningful, separated by the g = 2 2]’ + line, however the
limit equations “switch” compared to the case ¢ — 0. There are no crltlcal regimes.

2p+a

Theorem 3.1 (Choquard limit) Let N*"‘ <p< N*“ and?2 <q <2 .As ¢ = o0, the

rescaled family of ground states

ve(x) 1= & T D u () 3.1)

converges in D'(RN) and L1 (RN) to a positive spherically symmetric ground state solution
vg € D' N LYIRN) of the Choquard Eq. (¢).

2p+oz

Clearly, for g = the self-similar regime of Theorem 2.3 is valid also as ¢ — oo.

2p+a

For p=2and g > we have the following.
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Fig.2 Three limit regimes for ap -
(Pg) as & — oo on the . 9= Ny
(p. q)-plane : q=2%2

& —

24

Selfrescaling

1 Nta N+a 2%
N N-2

=

Theorem 3.2 (Thomas—Fermi limit for « = 2) Assume that p =2 and « = 2. Let N < 5

andq > 3,or N > 6and q > 1\4/‘741\-]2' As & — 00, the rescaled family of ground states
1 o/
ve(x) =€ 1 2u.(e 2@2x) 3.2)

converges in L2(RY) and L4(R™N) to a nonnegative spherically symmetric compactly sup-
ported ground state solution vy € L?> N LY(RN) of the Thomas—Fermi Eq. (TF).

The proofs of Theorems 3.2 and 3.1 are very similar to the proofs of Theorems 2.7 and
2.5. We only note that the proof on Theorem 3.2 will involve the estimate (7.25) with g > 4
when the the right hand side of (7.25) blows-up. However the rate of the blow-up in (7.25)
isn’t strong enough and all quantities involved in the proof remain under control. We leave
the details to the interested readers.

Remark 3.1 Note that the nature of rescaling (3.2) changes when ¢ = 4: for ¢ > 4 the mass
of u, concentrates near the origin, while for ¢ < 4 it “escapes” to infinity. In particular,
the stationary version of the Gross—Pitaevskii—Poisson Eq. (1.1) (¢ = 4, N = 3, a = 2)
fits into the Thomas—Fermi regime as ¢ — oo. The rescaling (3.2) in this case takes the
simple form vg(x) = e_l/zug(x) and u. (x) ~ /evp(x), or we can say that u, concentrates
towards the compactly supported vg. This is precisely the phenomenon which was already
observed in [8, 53], where the radius of the support of vy has the meaning of the radius of
self-gravitating Bose—Einstein condensate, see [16]. The limit minimization problem s7r in
the Gross—Pitaevskii—Poisson Eq. (1.1) case becomes

STF =inf“ ,ozdx—l-/ pdx:0<pelL! ﬂLz(]R3),/ (I % p)pdx = 1},
R3 R3 R3
and the Euler-Lagrange Eq. (2.5) in this case is linear inside the support of p:

Zp = (gSTFIZ * 0 — 1)+ a.c. in R3. (33)

sin(|x|)

To find explicitly the solution of (3.3) constructed in Theorem 2.6, we use the ]

ansatz as in [8, 53], [15, p. 92].
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For A > 0 and |x| < 7 /A consider the family

i . sin(|Ax])
prlx) =} Vax A
0, |x| > m/X.

x| < /A,

Then —Ap,; = )szA in By;, and

5
A2 (m(x) + ﬁ) . lx] < w/A,
2.
DL * pa(x) = ! v
A2 DL(xD

V2 h(w/h)?

[x| > m/A.

We compute
/q L* pr(x)pr(x)dx = 1. (34
R‘

Optimising in A > 0, we find that

)\.2 2«/§7T 5 3
— i 2 — i I Sl I
sTp_ir;fo(/ﬂ@p)\(x)dx—l—/wp,\(x)dx) _i§%<3 + 3«/X) G 251

. . AUCI .
and the minimum occurs at the optimal A, = (”7) . Taking into account the uniqueness of

il
[SFN

the spherically symmetric nonincreasing minimizer for s7r in the case « = 2, which follows
from [13, Theorem 1.2] (see also [14, Lemma 5.2]), the function

12
sin| 2 57r5|x|)
pellx)) = pr () = 53

3
0, x| >=25m5.

is the unique spherically symmetric nonincreasing minimizer for s7r and a solution of (3.3).
The solution of the limit Thomas—Fermi Eq. (TF), which is written in this case as

v+ 2 = (I % vz)v ae.inR? 3.5)
is given by the rescaled function in (2.6),

1 /sin(|x|)
v (x) = \/2/’* (\6 (Ss7r) 2 |x|> - [ I (3.6)

0, x| > 7.

This is (up to the physical constants) the Thomas—Fermi approximation solution for self-
gravitating BEC observed in [8, 16, 53] and the support radius Ryp = m is the approximate
radius of the BEC star. Our Theorem 3.2 provides a rigorous justification for the convergence
of the Thomas—Fermi approximation.

4 Existence and properties of groundstates for (P;)

4.1 Variational setup

It is a standard consequence of Sobolev and Hardy-Littlewood—Sobolev (HLS) inequalities
[35, Theorems 4.3 and 8.3] that for % <p < %f‘; and 2 < g < % the energy
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functional Z, € C'(H'(RY), R), cf. [42]. For p > {42 the energy Z, is not well-defined on

H'(RN). In this case an additional assumption ¢ > % ensures the control of the nonlocal

term by the L7 and L2-norm via the HLS inequality and interpolation, i.e.

2p0 2p(1—-6
/ (I % [u”) || Pdx <C||u|| L < Clul? u P, (4.1)

+a

N+a

foraf € (0, 1). As a consequence, for p >
on the space

and ¢

H, = H'®RY)N LT (RY), ¢* := max{q,2*).
Clearly, H, endowed with the norm
Nl = IVullg2 + lull2 + (@ =2 lull o+
is a Banach space, H, <> L%(RN) forany ¢ > 2 and H, = H'(RY) when2 < ¢ < 2*.

It is easy to check that 7, € C 1 (H4, R) and the problem (P;) is variationaly well-posed, in
the sense that weak solutions u € H,; of (P;) are critical points of Z, i.e.

(TL), 9, = / Vi - Vodx +¢ / ugdx — / (Lo # Jul?)|ul P pdx
RN RN RN
+f |u|?2ugpdx = 0,
RN
for all ¢ € H,. In particular, weak solutions u € H, of (P.) satisfy the Nehari identity
f |Vul?dx +e/ lu|>dx +/ lu|9dx —/ Iy * |u|P)|u|Pdx = 0. (4.2)
RN RN RN RN

It is standard to see that under minor regularity assumptions weak solutions of (P;) also
satisfy the PohoZaev identity.

2Np
Proposition 4.1 (PohoZaev identity) Assume p > 1 andq > 2. Letu € Hy N L¥+a (RN be
a weak solution of (Pg). If Vu € L N*“ RN HE (RY) then

loc

N-2 N N
7/ IVulzdx—I—g—/ Iulzdx—l——/ u|7dx
2 Jry RN q Jrvy

N
+“/ (I % [u|”)|u|Pdx = 0.

loc

Proof The proof is an adaptation of [43, Proposition 3.1], we omit the details. O

As a consequence, we conclude that the existence range stated in Theorem 1.1 is optimal.

Corollary 4.1 (Nonexistence) Let 1 < p < X2 andq > 2, 0rp > 3% and2 < g < 1%,13’_’;
Then (Pg) has no nontrivial weak solutions u € HyNL W RN W[ o CN +a RMNHNW, s (RN ).
Proof Follows from Pohozaev and Nehari identities. ]
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4.2 Apriori regularity and decay at infinity

We show that all weak nonnegative solutions of (P;) are in fact bounded classical solutions
with an L'-decay at infinity. We first prove a partial results which relies on the maximum
principle for the Laplacian.

Lemma 4.1 Assume p > NTH and g > max{p, 2}. Let s > % andu € Hy N LS(RN) be a
nonnegative weak solution of (Ps). Then u € L®(RN).

Proof The assumption s > % imply that 1, * |u|? € L®(RN). Thenu > 0 weakly satisfies
—Au < CuP7'— 4= inRV, 4.3)
where C = C(u) = || 1y * |u|”||oo. Choose m = m(u) > 0 such that CmP~1 — m9=1 = 0.

Testing against u,, = (u —m)4 € H'(RV), we obtain

/ | Vit |>dx =/ Vu - Viydx 5/ (CuP™' —u? Y u,dx <0, (4.4)
RN RN RN

sO [lulloo < m. o

The proof of the next statement in the case p < %f‘; is an adaptation of the iteration
arguments in [43, Proposition 4.1]. We only outline the main steps of the proof. The case
p > IX,J_”; is new and relies heavily on the contraction inequality (A.3), which is discussed

in the appendix.

N+4a N+4a N+
N <P <jyyandq >20rp> 55

and q > I%IL-i-pa If 0 < u € Hy is a nontrivial weak solution of (P.) then u € L' N C3RN)
and u(x) > 0 for all x € RV,

Proposition 4.2 (Regularity and positivity) Let

Proof Since u € H, we know that u € L* (RM) forall s € [2, ¢*]. O
Step 1. u € L' (RY).
Proof Note that u > 0 weakly satisfies the inequality

—Au+eu < (I xuP)uP~" in RV, 4.5)

Since (—A 4+ &)~ : LY(RN) — L*(R") is a bounded order preserving linear mapping for
any s > 1, we have

u< (=A+e)"" (o xuP)uP™") in RV, (4.6)
Then, by the HLS and Holder inequalities, u € L& (RY) with 0 < ? — % < 1implies
u € LE+1 (RN), where

I 2p—-1 «

St S N
Since p > N;f“, we start the s, -iteration with 5, = % < ZN(O{LD, as in [43]. Then we
achieve s, | > 1 after a finite number of steps. This implies u € L' (RV). o

Step 2. u € L¥(RV).
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Proof Assume that g < NP otherwise we conclude by Lemma 4.1. We consider separately

o
%J_rg and p > %J:“ , which use different structures within the Eq. (Ps).

the cases p <

A. Case p < %f‘; Note that u > 0 weakly satisfies the inequality
—Au < (g xuP)uP™" in RV, .7
Since u € L' (RN), we have (I * u?)u?~' e L'(RN) with % =2p—-1-%5 > % We
conclude that
u < b ((Ig *uP)uP~") in RV, (4.8)

Then, by the HLS and Holder inequalities, u € L% (R) with 0 < 221 — 82 < ] implies
u € LS+ (RN), where
I 2p—1 a+2

§n+l En N
: N+a S : shov — 2Np 2N(p=1) ;
Since p < =5, we start the 5,-iteration with 59 = Nta = T a3 -asin [43]. Then we
achieve 5,1 > % after a finite number of steps. (Orif 5,41 = % we readjust 5¢.)

B. Case p > %f% and g > ,%,LJ;. Note that u > 0 weakly satisfies the inequality

—Au+u?"" <y xuP)uP~' in RV, 4.9)
Then, by the HLS and Holder inequalities, and by the contraction inequality A.3, u €
L5(RY) with 0 < 221 — & < I implies u € L%+ (RV), where

q—1 2p—1 «

Sntl S N

We start the s, -iteration with 5o = ¢. If ¢ > 2p we achieve 5,41 > % after a finite number

of steps. If ¢ < 2p we note that since p > %fg‘, we have 50 = ¢ > éﬁ’; Then we again
achieve 5,11 > % after a finite number of steps. (Or if 5,41 = % we readjust s¢.) ]

Step 3. u € WZ”(RN)for everyr > landu € CX(RM).
Proof Since u € L' N L®(RY), we have
—Au+esu=F in ]RN,

where F := (I *u”)uP~' —u?~! € L°(R"). Then the conclusion follows by the standard
Schauder estimates, see [43, p. 168] for details. O

Step 4. u(x) > 0 forall x € RV,
Proof We simply note that u > 0 satisfies

—Au+V@u=>0 in RY, (4.10)
where V := ¢ + u9=2 € C(RY). Then u(x) > 0 forall x € RV, e.g. by the weak Harnack
inequality. O
Proposition 4.3 (Decay asymptotics) Let 2X¢ < p < ¥4% and g > 2 or p > J+% and

q > i,jipa Let 0 < ug € L' N C2(RN) be a radially symmetric solution of (Py). Then

Hm (I % u?)(0)]x [N~ = Ay lluclp. (4.11)
|x|—o00

Moreover, there exists C, > 0 such that
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o ifp>72
lim e (x)|x] T Ve = ¢,

|x|—o00

o ifp=2
N— |X‘ vN—a 2 1
‘hm ue(x)|x| = exp e~ tyg ds = Ce, where v:= (Aallugllz) ¥,

v

e ifp <2,

N—a #
lim ue(0)|x] 27 = (67 Aglluc15) 7
X—> 00

Proof To simplify the notation, we drop the subscript ¢ for u, in this proof.

Letu € L' N C*(RY) be a positive radially symmetric solution of (P;). By the Strauss’
radial L'-bound [6, Lemma A.4], u”(|x|) < C|lull{|x|~™? for all x € RY. Then by
[43, Propositions 6.1], there exists ;« € R such that

[l * uP (x) — Iy (o) Jullh| < i ad for x e RV, 4.12)

N—a+48

with 0 < § < min(1, N(p — 1)). In particular, this implies (4.11).

Case p > 2. The derivation of the decay asymptotic of u in the case(s) p > 2 requires
minimal modifications of the proofs of [43, Propositions 6.3, 6.5]. Indeed, (4.11) implies
Iy * [u|P)uP=2(x) < %s for all |x| > p, for some p > 0. Therefore, u satisfies

—Au—l—%uso in |x| > p.
As in [43, Propositions 6.3] we conclude that
w(x) < clx|" e T, (4.13)
Therefore, u is a solution of
—Au+ We(x)u =0 in|x| > p,
where

W) = & — o uP)uP=2(x) + 1972 () = & — 7‘&”“; r2x)

+u?2(x) as |x| - oo.

The initial rough upper bound (4.13) implies that the term %4 ~2(x) in the linearisation poten-
tial W, (x) has an exponential decay and is negligible in the subsequent asymptotic analysis
of Propositions 6.3 and 6.5 in [43]. We omit the details.
Case p < 2. This proof is an adaptation of [43, Propositions 6.6].

To derive the upper bound, we note that by Young’s inequality,

pP—

(o * uPyuP ™! < g7 2= P(2 YUy * |u|”)? "+8(P—1)M-

By (4.12), we have

1

(o # | P)(0)) 7 < Iq (X)%(IlullerCIXI %)=
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1
< la(x)>r <|Iu|| +clx|™ ) for |x| > 1.

Therefore, u satisfies the inequality

_p=

1
—Aut+e2—pu<e > (2 P o (x)>r (Ilull +clx|” ) if x| >1.
Define now i € C2(RY \ By) by

1
—Aii+ 62— pii = 572 = pl()TT (nunp P clx|” 5) it [x] > 1,
u(x) = u(x) if |x]=1,
lim|y|— o0 t(x) = 0.

We now apply [43, Lemma 6.7] twice and use the linearity of the operator —A + (2 — p)
to obtain

lim u(x)l — || ”2 ]7.
[x|—=00 I, (x) >

By the comparison principle, we have u < i in RV \ Bj. Thus

. u> P (x)
lim sup (4.14)

=& ullp.
|x|—00 Iy (x) r
To deduce the lower bound, note that by the chain rule, u>~? € C*(RV) and
—AwPTP = =2 = pyu' P Au+ 2= p)(p - DIVul’.

Since p € (1, 2) and ¢ > 2, by the equation satisfied by u and by (4.12) and (4.14), for some
ce > 0 we have

— AP 4 62— putP > 2 — p) ) (lullh — x| %) = 2 — pud=?
> 2= p) () (llullfy — elx| ™)
9=z N
—cely(x)2-r for x € R™.
Let u € C2(RN \ Bj) be such that
p - = .
—Au+eQ2—pu <2 —p)la) (Jullh — p1lx|™8) — colo(x) =7 if |x] > 1,

u(x) = u(x)*r if |x| =1,
limyy|— 00 u(x) = 0.

We apply now [43, Lemma 6.7] to deduce
u(x

[x]—=o00 Iy (x)

l[ullp-

By the comparison principle, # < «>~7 in R \ Bj. We conclude that

2—p
Jiminf ) e ul? (4.15)
|x|—00 Ia (x)
and the assertion follows from the combination of (4.15) and (4.14). ]

@ Springer



160 Page 22 of 59 Z.Liu, V. Moroz

4.3 Proof of the existence

Throughout this section, we assume that either 2% < p < 244

q > fﬁa . We construct a groundstate of (P;) by mlnimising over the Pohozaev manlfold of

(P;). Similar approach for Choquard’s equations with different classes of nonlinearities was
recently used in [25, 32].
Set

N+

sandg > 2orp >

Pe = {u € Hg \ {0} : Pe(u) = 0},

where P : H, — Ris defined by

N -2 N N
Pe(u) = 7/ |Vu|2dx+5—/ Iulzdx—i——/ lu|?dx
RN q JRN
N
+“/ (Lo # |ul?)lu[Pdx.

For each u € H, \ {0}, set
wi(x) ==u(%). (4.16)

Then

Ju (@) = Ze(uy)
N-2

5 etN ) tN
= — |Vu|"dx + — lu|"dx + — lu|?dx
2 Jry RN q Jry

tNJrOl

/ Iy * |u|P)|u|Pdx. 4.17)

Clearly, there exists a unique t, > Osuch that f, (t,) = max{f,(¢) : t > O}and f,(t,)t, =0,
which means that u(x/t,) € .. Therefore &2, # (.
Define M : Hy; — R as

M) = ([Vull3 + llull3 + lluld. (4.18)

Then M (u) = 0 if and only if u = 0. Taking into account the definition of M and the norm
I - 7, we can check that

4 q 2 . .
272 ”””Hq <M(u) < C”“”H,, ifeither M(u) <1 or |lullx, <1, (4.19)
where C > 0 is independent of u € H,.

N+ta N+a 2Np

Lemma 4.2 Assume that either =3~ < p < y=5 and q > 2, or p >
Then there exists C > 0 such that for all u € 'H,,

N+

/ (Ip * |u|?)|u|Pdx < C max {M(u) M) v z}

Proof For each u € H, \ {0}, let u, be defined in (4.16). If M(u) < 1 then we set t =

M(u)_% > 1, and we have M (u;) < ZNM(u) = 1. Thus it follows from the HLS inequality,
2N,

the embedding H,; — L (RV), and (4.19) that
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/ (o * |u|P)|u|Pdx = t_(NW)/ (Lo ug|P) uy [P dx
RV RV

—(N+ 2p
< CtmNFO 1R,

—(N 2
< Citm VO, 157
N+a q

N+a
< CM®u) .

To clarify the last inequality, note that M (u;) < ¥ M (1) = 1. Then using (4.17), we obtain
2p

— 2 Nta
Crm Ot 137 < eM@) ¥ (Jueldy, ) *

2
N+ta L

CM@)"¥ (2%M(u,))7 <2rC M@u)'F*.

IA

If M(u) > 1 then we sett = M(u)_ﬁ < 1, and we have M (u;) < tN 2M@u) = 1.
Similarly as before, we conclude that

f<Ia*|u|P>|u|de=r—(N+“>/ (Lo * |ug)?)us|Pdx
RN RN

(N 2 —(N 2
< Com MO g1, < Cotm MO g 59,
N+a

Neto
= CoM@u)~N-2,
which completes the proof. O

To find a groundstate solution of (P.), we prove the existence of a spherically symmetric
nontrivial nonegative minimizer of the minimization problem

ce = inf Z.(u), (4.20)
UeP

and then show that &2, is a natural constraint for Z, i.e. the minimizer uy € 22, satisfies
T.(uo) = 0. Such approach for the local equations goes back at least to [50] in the local case
and to [48] in the case of nonlocal problems.

We divide the proof of the existence of the groundstate into several steps.
Step 1.0 ¢ 0.2,

Proof Indeed, for u € 2., we have, by using the HLS and Sobolev inequalities,

N—-2 eN N
0= 7)é‘(u) = min :77 A 7} M(M) - C“"[HZZII)Vp
2 2 q N+a
. N—-2 eN N Nta
>miny———,—,— ¢ Mu) - C(Mu)) v,
2 2 ¢q
which means that there exists C > 0 such that M (u) > C forallu € &2,. O
Step 2. ¢, = infycp, Z,(u) > 0
Proof For each u € &,, we have
Ze(u) = iIIVMII2 + L/ (o * |ul?”)|u|Pdx (4.21)
¢ N 2 2pN RN “ ’ '

therefore ¢, > 0. If ¢, = 0, then there exists a sequence {u,} C  such that Z, (u,) — 0,
which means that ||Vun||§ — 0 and f]RN (Iy * |un|P)|uy|Pdx — 0. Recall that P, (u,,) = 0.
Then we conclude that ||u, ||% — 0 and ||u,,||g — 0. This implies that ||u,,||%iq — 0, which
contradicts to 0 ¢ 0.2;. O
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Step 3. There exists ug € P, such that I, (ug) = c,.

Proof Since c, is well defined, there exists a sequence {u,} C 2, such that Z. (u,) — c..
It follows from (4.21) that both {||Vu, ||%} and {fRN (Iy * |y |P)|un|Pdx} are bounded. Note
that P, (u,,) = 0. Then we see that {||u,,||%} and {||u,,||Z} are bounded, and therefore {u,} is
bounded in H,.

Let u}; be the Schwartz spherical rearrangement of |u,|. Then u}; € H, ;qq, the subspace
of H, which consists of all spherically symmetric functions in H,, and

2 2 2 2
IVunlly = IVug 3, Nuallz = lluylls, lunllg = luylig, /N(Ia * |un|”) |un |Pdx
R

< / (Lo # 5Pt P,
]RN

cf. [35, Section 3]. For each u};, there exists aunique t,, € (0, 1) such thatv, = uj;(%) € P,.
Therefore we obtain that

Te(uy) > Is(un(%)) > Ze(vy) > Ce,

which implies that {v, } is also a minimizing sequence for c,, that is Z.(v,) — c. (In fact,
we can also prove that 7, — 1.)

Clearly {v,} C Hy,raq is bounded. Then there exists v € Hy rqq such that v,—v weakly
in H, and v,(x) — v(x) forae. x € RN, by the local compactness of the emebedding
Hy — L? (RM) on bounded domains. Using Strauss’s L*-bounds with s = 2 and s = ¢*,

loc
we conclude that

v (]x]) < U(x) := C min {|x|_N/2, |x|—N/q*} _

Since U € L*(RVN) for s € (2, ¢*), by the Lebesgue dominated convergence we conclude
that for s € (2, ¢%),

lim |vn|sdx=/ lv|*dx.
RN RN

n—oo

2N, 2N, .
Note that g* > N—Jr’; and hence we can always choose s > N—Jr’; > p such that {v,} is

bounded in L*(R"). Then by the nonlocal Brezis-Lieb Lemma with high local integrability
[40, Proposition 4.7] we conclude that

lim (Ia*|vn|l’>|vn|f’dx=f (g * [vP) o] dx.
]RN

n—0o0 JpN

This means that v # 0, since by Lemma 4.2 the sequence { M (v,,)} has a positive lower bound.
Then there exists a unique zp > 0 such that v( %) € 7. By the weakly lower semi-continuity
of the norm, we see that

Ze(vy) = Ie(vn(%)) > IE(U(%)) > Cg,
which implies that 7, (v(%)) = c.. We conclude this step by taking ug(x) := v(%). m]
Step 4. P/ (uo) # 0, where ug is obtained in Step 3.

Proof Arguing by contradiction, we assume that P/ (19) = 0. Then u is a weak solution of
the following equation,

— (N =2)Au+eNu— (N +a)Iy * uP)|ul’>u+Nul?>=0 in RY. 4.22)
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By Propositions 4.1 and 4.2, ug satisfies the PohoZaev identity

(N —2)? , eN> ., (N+a)? / N?
— v — -— Lo * |uo|P)ug|Pdx + — |luolld = 0.
5 [IVuollz + ——lluollz 2 RN(a ol ™)luol"dx + p lluollg

This, together with P, (ug) = 0, implies that
(N +o)a
(N =DIVugll5 + ———— [ (Lo * lugl")uo|”dx =0,
2p RN
which contradict ug # 0. O
Step 5. I/ (uo) = 0, i.e., ug is a weak solution of (Py).

Proof By the Lagrange multiplier rule, there exists s € R such that 7 (ug) = uP;(uo). We
claim that 1 = 0. Indeed, since Z/ (1) = uP,(uo), then ug satisfies in the weak sense the
following equation,
—(U(N —2) = DAu + (uN — Dew — (u(N +a) — DIy * [u|P)|ul”*u
+(uN = Du|??u=0 in RV,

By Propositions 4.1 and 4.2, ug satisfies the PohoZaev identity

N—-2)—1)(N -2 N —-1N
(1( )2 )( )||WO||%+8(M . )

N+4+o)— DN+«

S S DD [ s ool +
2p RN

By using P, (1) = 0 again, we conclude that

2
lluoll2

(uN — DN
——lluollg =0.

a(N + «a)
W(N — 2)[Vuol3 + ”“7/ (L # o) "ol dx =0,
2p RN

which means that ;. = 0. Therefore 7} (ug) = 0. ]

5 Existence and properties of groundstates for (Py)
In this section we study the existence and some qualitative properties of groundstate solutions
for the equation

—Au — (T # JulP)|ul”u+ " 2u =0 in RY, (Po)

where N > 3, ¢ € (0, N), p > 1 and g > 2. Equation (Py) appears as a formal limit of
(Pg) with ¢ = 0. The natural domain for the formal limit energy Zy which corresponds to
(Pp) is the space

D, := D'(RY) N L1(RY).
Clearly, D, endowed with the norm

lullp, == IVull L2 + llullLa

, 2* N , FE RN N+a
is a Banach space, and D; — L9 N L= (R™). In particular, D, < L ¥+« (R™) for == <
N+ta 2Np N 2Np

=0Np. +a =0Np
P < ymand2 <gq < 5o, v and g > 774 . However, H; C D,. Hence

or p >
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(P;) can not be considered as a small perturbation of (Py), since the domain of Zj is strictly
bigger than the domain of Z,.

If p € (N“‘, %Jr‘;) and g € (2, ZN" 2y or p > %f"‘ and g > 2/:/_,7 then the HLS,
Sobolev and interpolation inequalities ensure the control of the nonlocal term by the L4 and

D!-norms,

2p0 2p(1—-6 2p0 2p(1—-6
/ (I * [ul))|uPdx < Cllul R, < Clull?? 1ul3?" ™ < Cllullg?’ Va3~
N+a
2 2
< Clullg” + IVull3”) < Cllul3y, (5.1)

with a @ € (0, 1). Then it is standard to check that Zy € C! (Dy, R) and the problem (Pp) is
variationaly well-posed, in the sense that weak solutions u € D, of (P;) are critical points
of 7, i.e.

(To@w). ¢)p, = f Vi Vodx — / (L Jul ")l pdx + f Jul?"2updx =0,
RN RN RN

for all ¢ € Dy . In particular, weak solutions u € D, of (Pp) satisfy the Nehari identity

/ |Vu|>dx +/ lu|?dx —/ Iy * |u|P)|u|Pdx = 0. (5.2)
RN RN RN
2Np
As in Proposition 4.1, we see that weak solutions u € D, N LN+« N+vt ®RM N Wl LN RN N
WI o (]RN ) of (Py) also satisfy the PohoZaev identity
N-=-2

N N
/ |Vul?dx + —/ lu|?dx — ﬁ/ (I * [u|P)|u|Pdx = 0. (5.3)
2 RN q RN 2p RN

We are going to prove the existence of a ground state of (Pg) by minimizing over the
Pohozaev manifold Py. This requires apriori additional regularity and some decay properties
of the weak solutions.

Lemma 5.1 (L!-decay) Let NIJ\;O‘ <p<i%and2 <q < 1%,}1‘; If0 < u € Dy is a weak
solution of (Py) then u € L'(RN).

Proof Note that u > 0 weakly satisfies the inequality (4.9). Then, by the HLS and Holder
inequalities, and by the contraction inequality A.3, u € L% (RN) with 0 < 2’:—71 -5 <1

2n

implies u € Lén+1 (RN), where

g—1 2p-1 «

Sp41 Sp N

We start the s, -iteration with 55 = g < I%ILJF‘;. Then we achieve s, | < 1 after a finite

number of steps. O

N*"‘ <p<%+gand2<q<§/¥;,orp>1v+2and

Proposition 5.1 (Regularity) Let
qg > /%,LJFI‘; If0 <ueDisa nontrtwal weak solution of (Po) then u € C*(RVY) and

u(x) > 0forallx € RN,

Proof Since 0 < u € D, we know thatu € L9 N L (RM). Assume that qg < %, otherwise

we conclude that u € L>°(RY) by a modification of the comparison argument of Lemma
4.1.
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N+a

Ifp > andg > i,ij we can show that u € L% (RY) by repeating the same iteration
argument as 1n the proof of Proposition 4.2, Step 2(B).

If N;O‘ <p< %“" and2 < g < ZN” we know additionally that u € L' N L?" (RV) by

Lemma 5.1. Then we can conclude that u e L% (RN) by repeating the iteration argument in
the proof of Proposition 4.2, Step 2(A).

Finally, u € L7 N L°(RN) implies u € C2(RN) by the standard Holder and Schauder
estimates, while positivity of u(x) follows via the weak Harnack inequality, as in the proof
of Proposition 4.2, Steps 3 and 4. O

Unlike in the case ¢ > 0, for p > xfg we can not conclude that u € LY(RY) via

a regularity type iteration arguments. In fact, the decay of groundstates of (Pp) is more
complex.

Proposition 5.2 (Decay estimates) Assume that either p < ¥+% and q < fﬁfx orp > Nt%
and g > % Let u € Dy rqq be a nontrivial nonnegative weak solution of (Py). Then:

o if p < Nt% thenu € L'(RY),
o ifp> N+o‘ then

uo 2 |x|_(N_2) as |x| — oo,

: +o 2 N+
andlfp>maxi -, §<1+N°‘)]then

—(N-2)

0~ |x| as |x| — oo. 5.4)

N+a

Proof The case p < is the content of Lemma 5.1.

Assume p > %f‘; Then uel¥n CZ(RM). By the Strauss’s radial L*-bounds with
s = 2%,

u(x) < el + xD~" T (x e RY). (5.5)
Since g > 2*, u > 0 satisfies
—Au+V&xu=>0 in RV,
where
0< V@) :=ul"2(x) <c(l+|x)~ D (x e RY),

for some § > 0. By comparing with an explicit subsolution c|x|~™V=2(1 4 |x|7%/?) in
|x| > 1, we conclude that

ux) > c(l+|x)~ N2 (x eRV). (5.6)

N+a
N-2>

Assume now that p > max [ 2}. Using again (5.5) and we conclude that

(I % u?)uP?) (x) < W(x) := c(1 + |x|)~ V=D p-Dre
c(+1xh~ @ (x e RY), (5.7)

A

for some 6 € (0, 1). Therefore, u > 0 satisfies

—Au—Wx)u <0 in RV,

@ Springer



160 Page 28 of 59 Z.Liu, V. Moroz

By comparing with an explicit supersolution ¢|x| =™ =2 (1 —|x|7%?) in |x| > 2, we conclude
that

u(x) < C(1+xP~ N2 (x e RV).
Next we assume that « < N — 4 and N +“ < p < 2. Using again (5.5), the lower bound
(5.6) and taking into account that p < 2, we conclude that

W) = (1 4 [x]) = 7 etV 0o)

(o % uPu?=?) (x) <
<c(l+x) % (x e RY), (5.8)
where § > 0 provided that p > % (1 + X +“) Then we conclude as before. O
Proof of Theorem 2.1 We assume that either %3¢ < p < 2% and 2 < ¢ < ffi’; or
p>2*%andg > 1%,/1'; Set
P = {u € Dy \ {0} : Po(u) =0},

where Py : D; — R is defined by

N =2 N

P = 25 [ 1vupas+ 2 [ty = S5 [ sl lulrds,
2 Jry q Jr¥

As in the case ¢ > 0, it is standard to check that &y # 0 (see (4.17)). To construct a
groundstate solution of (Pp), we prove the existence of a spherically symmetric nontrivial
nonegative minimizer of the minimization problem

= inf Zy(u), 5.9
co ulenyo o(u) (5.9)

and then show that & is a natural constraint for Zy, i.e. the minimizer uy € 2 satisfies
T (up) = 0. The arguments follow closely the proof of Theorem 1.1, except that instead of
the quantity M defined in (4.18), we use M : D, — R defined by

M) == |Vul| + lluld.
It is easy check that
_4q _— . . -_—
2712 ||u||qu <M@u) < C||u||2Dq if either M(u) <1 or |lu|lp, <1, (5.10)

where C > 0 is independent of u € D,. Similarly to Lemma 4.2, we also can prove that
there exists C > 0 such that for all u € Dy,

[RNUO, s lulP)lulPdx < € max(M(w) ', M) V%),

which allows to control the nonlocal term. The remaining arguments follow closely Steps
1-5 in the proof of Theorem 1.1. We omit further details. O

Remark 5.1 An equivalent route to construct a groundstate solution of (Pp) is to prove the
existence of a minimizer of the problem

1 1
aozinf{fHVwII%—i-fllwIIZ : wqu,/ (Ia*lulp)lwlpdx:Zp}. (5.11)
2 q RN
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This does not require apriori regularity or decay properties of the weak solutions. It is standard
but technical to establish the relation

(N=2)g—2N  (a+2)g—2(2p+a)
(a+2)qg—2Q2p+a) (N—=2)qg—2N q-2 a (N+a)(g—2)—4p
(N+a)(g=2)—4p \ (N+a)(g—2)—4p 0

)

co =

and to prove that the minimization problems for ag and co are equivalent up to a rescaling.
Moreover, if wg € D, is a minimizer for ap then

-2 -2 N
—Awo + |wo |7 wo = p(ly * |wol?)lwo|”~“wo, x € RY,

2 q=2
where 1 > 0 and ug(x) = pu*P=D-©+G=2) y, <M 4<p71)7(a+2)<q*2>x) is a solution of (Py).

Remark 5.2 Combining (5.2) and (5.3), we conclude that

(N—=2)p—(N+a) (N +a)qg —2Np
IVul3 = —Ilullq,
2p 2pq

2Np
wh1ch implies that (Pp) has no nontrivial solutions u € Dy N L NHY RM) N Wl o CN @RV N

2(RN) either if p < Nt and g > Iip orif p > N“‘ and ¢ < % Moreover, if
N+a

p = =5 then (P) has no nontr1v1a1 solution for g # & 2N p Th1s confirms that the existence
assumptions of Theorem 2.1 on p and g are optimal, w1th one exception of the double-critical

case p = 4% and ¢ ]%,ﬁ';

loc

N+oz

Remark 5.3 In the double critical case p = and g = i,lip the PohoZaev argument does
not lead to the nonexistence. In fact, it is not dlfﬁcult to check (cf. [21, Lemma 1.1]) that the
Emden-Fowler solution U, defined in (2.9) satisfies

. _a N+a a+2
—AU,+UZ 1 =28, %¢;! <1a * U*N’2> Ul?, xeRV.

and the “Lagrange multiplier” can not be scaled out due to the scale invariance of the equation.
Itis aninteresting open problem to show that a rescaling of U is a minimizer of the variational
problem (5.11) in the double-critical case.

6 The Thomas-Fermi groundstate

To simplify notation we set in this section m := g /2. Denote

E(p) :=f |p|mczx+/ pldx. Dalp) =f (o * oDl dx.
RN ]RN RN
and
A= [0 <peLl'NL"®RN): Dy(p) = 1} .
We first establish the following.

Proposition 6.1 Letm > W Then the minimization problem

STF = inf E
Ay
admits a nonnegative spherically-symmetric nonincreasing minimizer p, € L' 0 L™ (RN).
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Proof Let {p,} C A; be a minimizing sequence for s7r. Let {p,} be the sequence of
symmetric-decreasing rearrangements of {o,}. Then

E(pn) = E(p,), Da(py) = Da(py) =1,

see [35, Section 3]. Set o (x) = p; ((Da(p;))ﬁax) Then p;f € Aj and as n — oo,

_N
str < E(py) = (Da(py)) ¥ E(py) < E(pn) = str,

which means that {0/} C A; is a minimizing sequence for s7r. Moreover, {p,} is bounded
in L'(RY) and L™ (R"). By Strauss’s lemma,

5X(1x]) < U(lx]) = Cmin{lx|™, |x|"n} forall |x| > 0. 6.1)

By Helly’s selection theorem for monotone functions, there exists a nonnegative spherically-
symmetric nonincreasing function p,.(|x|) < U(|x|) such that, up to a subsequence,

P (x) = pe(x) ae.in RY as n— oo.

Since U € L*(RV) foralls € (1, m), by the Lebesgue’s dominated convergence we conclude
that for every s € (1, m),

lim/ |,6,’:|de:/ los*dx.
n—oo RN RN

Note that A%—fg € (1, m). Then by the nonlocal Brezis-Lieb lemma [40, Proposition 4.7] we
conclude that

1im D (77) = Dulpe) = 1,
which implies that 0 # p, € A;. Therefore, using the standard Brezis—Lieb lemma,
stp = lim E(5p) = lim_ (lpalli +115; = pelli) + (loslly + 155 = pxl7)
= E(p) + E5} — po) = 517 (1 + Do} — pM) ™% = s71,
that is, E(px) = s7r. Moreover, 5 — py strongly in L' (RY) and L (RV). m]

Proof of Theorem 2.6 Let p, € L' N L™(RN) be a minimizer for sy, as constructed in
Proposition 6.1. It is standard to show that p, satisfies

mo" V41 =2l % py ae.in supp(p),
m/o;’“l 4+ 1> A, % ps ae.in RN (6.2)

for a Lagrange multiplier > € R. The proof can be adapted from [1] or [11, Proposition 3.6]
and we omit it here. Since p, > 0, (6.2) is equivalent to the Thomas—Fermi equation

mo" = (Wl * pp — 1)1 ae.in RV, (6.3)
Testing (6.3) against p, we conclude that
mll ol + sl = 2, 6.4)
or taking into account the definition of s7r we conclude that

A= s7r+ (m — Dl pslly,- (6.5)
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To prove the virial identity (2.4) consider the rescaling p;(x) = t‘w px(x/t). Then

N—«a

g Ne
Do(p) =1, E(p)=t"""2 |lpll+1"2 |lpll1,

and
d N +a N —«
EE(pt)!,zl = <N —mT) Il ol + THP*”] =0,
since m > /\%—i’a and hence ¢t = 1 is the minimum of the differentiable function E (p;), which
implies that
m(N +a) —2N
————— el = Nl (6.6)

N —
Therefore we have
(m—1)(N+ ) .

str = loully + llpslh = == lloull}.
m(N +a) — 2N 2N(m — 1)
A=mlpaly + ol = (m+ —————— ) lpclly = ——— ol
N — N —
2N
= STF -
N +o TF
It follows from (6.3) that p, satisfies
2N
m,o;”_1 = ( STF Iy * Py — 1) ae.in RY, (6.7)
N + o +
and the virial identity
m||,0*||$ + ol = STFm'

To prove the L°°-bound on p,, in view of the Strauss’ radial bound (6.1) we only need to
show that p, is bounded near the origin. Observe that

0< ,ofk”’l < I, * py ae.in RN, (6.8)
Ifm > g then I, * px € CO’“_% (RM) and hence psx € L®RY) in view of (6.3).
Ifm < % we employ an L*-iteration of the same structure as in our proof of Proposition

4.2, Step 2(B). Indeed, by the HLS and Holder inequalities applied to (6.8), px € L5 (RM)

with 0 < i — % < limplies p, € L5 +1(RN), where

m—l_l o

Sp+1 Sn N

We start the s, -iteration with 5o = m. If m > 2 we achieve 5,41 > % after a finite number
of steps. If m < 2 we note that 5o = m > A%—i’a by the assumption. Then we again achieve
Sp+1 > % after a finite number of steps. (Or if 5,41 = % we readjust 5¢.)

The compact support property is standard (cf. [11, Corollary 3.8]). We sketch the argu-
ment for completeness. Indeed, since p, € L' (RV) is a nonnegative radially nonincreasing
function, it is known that for any o € (0, N),

Iy * ps(Ix]) = Clo(Ix)(1 +0(1)) as [x| — oo,
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(and C = || p«ll1 if &« > 1), cf. [20, Corollary 2.3]. This is incompatible with (6.2), unless
px has a compact support. Since ps is nonincreasing we also conclude that supp(ps) is a
1

connected set and hence must be a ball of radius R, > 0 (and if & > 1 then Ry < || p«| ]Nj .
Ifo > (ﬁ—j)+ then the Holder regularity p, € C%7(RY) with y = min(1, -1}

follows exactly as in [12, Theorem 8]. We only note that the iteration steps (3.26), (3.27) in
[12, p. 127] remain valid for any m < 2, as soon as py € L% (RY), which is ensured by our

assumption m > iiva Ifm>2anda < (Z’;?)Jr then p, € CO7(RN) forany y < m2_2

by the same argument as in [12, Remark 2]. Further, p. € C*°(Bg,) can be deduced as in
[12, Theorem 10].
Finally, keeping in mind that ¢ = 2m, the function

w0 = ()7 o (0 () )

is a groundstate of the Thomas—Fermi equation in the form

v—(y*v)v+ )¢ ?v=0 in RV, (TF)
by direct scaling computation and in view of the properties of p,. O

Remark 6.1 In [14, Proposition 5.16] the authors establish the existence of a unique bounded
nonnegative radially nonincreasing solution to the Euler-Lagrange Eq. (6.7) in the range
o€ (0,2)andm € <%, mc> (for o = 2 the existence of a radial solution is classical, see
e.g. [36, Theorem 5.1], while the uniqueness follows from [24, Lemma 5]). These existence
results do not include an explicit variational characterisation of the solution in terms of s7r.
However once the existence of a minimizer for s7r is established (see Proposition 6.1),
solutions constructed for o € (0, 2] in [14, 36] coincide with the minimizer for s7z in view
of the uniqueness.

7 Asymptotic profiles: non-critical regimes

In this section we prove the convergence of rescaled groundstates u, to the limit profiles in
the three noncritical regimes.

7.1 Formal limit (Pg)

. . N+a 2Np N+a N+«
Through0121t this section we assume that p > §=5 and ¢ > §7o, or == < p < {5 and
Np
2<9< §iq-

Let u, be the positive spherically symmetric groundstate solution of (P.) constructed
in Theorem 1.1, and ¢, = Z.(u;) > 0 denotes the corresponding energy level, defined in
(4.20). We are going to show that u, converges to the constructed in Theorem 2.1 positive
spherically symmetric groundstate ug of the formal limit Eq. (Py), which has the energy
co = Zo(ug) > 0, as defined in (€ 1).

Below we present the proof only in the supercritical case p > %f‘; and g > NP The

N+a
s N+a N-+a 2Np ; ;
subcritical case 3= < p < {5 and 2 < ¢ < 7 follows the same lines but easier,
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because in this case ug € L'(RY). The proof in the supercritical case relies on the decay
estimate (5.4), which needs an additional restriction p > max { %J“‘; 2 (1 + 5 N s ) }

Lemma7.1 Letp>max[%+“ 2(1—|—N+°‘)}andq > ]%,ﬁZ.ThenO<c8—co—>0as

e — 0.
Proof First, we use u, with ¢ > 0 as a test function for Py. We obtain
Ne Ne
Po(ue) = Pelue) = —-luell3 = ==~ luell3 < 0.

Hence there exists a unique #; € (0, 1) such that u.(x / te) € Hy, and we have
N-2

t p p
co < Zo(ue(x/te)) = * |ug ") |ue|Pdx

< Ze(ue (x)) = ce, (7.1

which means cg < c;.
To show that ¢, — cg as € — 0 we shall use ug as a test function for P,. According to
(5.4), ug € LERY) iff N > 5. The dimensions N = 3, 4 require a separate consideration.

Case N > 5. Since Pg(ug) = %||uo||% > 0, there exists 7, > 1 such that ug(x/t;) € 2,
ie.,

N-2 N N

(N —2)t, e

fIIVMOII% + T‘Elluollz + — Nuolld
_ W +(x)tN+“

/ (L # lito]P)\ue | dx.

This, combined with (5.3) and ug € L2(RN), implies that

(N —I—ot)(t

-2
. 1)/ (L * uo|Puo|Pdx — =D =D

Vuoll?
> Vuollz

Ne
= 7||Vuo||§ — 0.

Therefore, ., — 1 as ¢ — 0. Moreover,
fe <1+ Ces,

where C > 0 is independent of ¢. Thus we have

-N
_ _ Net
e < Te(uo(x/e)) < To(ug) + CAY — 1) + —|luo|l3
< co—+ Ce.

This, together with (7.1), means that ¢, — cyp — Oas e — 0.

To consider the case N = 3,4, given R > 1, we introduce a cut-off function ng €
Cé’o(RN) such that nr(r) = 1 for |r| < R,0 < nr(r) < lforR < |r| < 2R, ng(r) = 0 for
|| > 2R and |n/R (r)] < R/2. It is standard to compute (cf. [52, Theorem 2.1]),

/R , IV (nguo)Pdx = | Vuol3 + O(R~N2), (7.2)
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» _|onR), N=4,
Inguolld = lluolld — ORN=IN=2), (7.4)

/RN(IO, * [nruol?) nruo|Pdx = fRN(Ia % [uo|?)|ug|Pdx + O(R*~PN=2)  (7.5)

We will use ngug with a suitable choice of R = R(¢) as a family of test functions for P;.

Case N = 4. By (7.2), (7.5), (7.4) and (7.3), for R > 1 we have

N
Pe(nruo) = Po(ug) + O(R~N=2) 4 {O(ln R) — O(RN—1(N=2)
—O(R* PNy 5 .

Set R = ¢!, Thenforeache > 0small, there exists7, > 1such that P, (ng (x/?;)uo(x/t:;)) =
0. Similarly to the case N > 5, we can show that 7. — lase — 0and

7, <1+ Ce.
We conclude that ¢, < ¢g + Ce.

Case N = 3. By (7.2), (7.5), (7.4) and (7.3), for R > 1 we have

N
Pe(nruo) = Polug) + O(R~N-2) 4 {O(m — O(RN—4N-2))

—O(R*PIN=2)y 5 .

Set R = & Y2 Then for each ¢ > 0 small, there exists 7 > 1 such that
P:(nr (x@)uo(x/f;)) =0and7 — 1| ase — 0. We conclude as in the previous case.
[m}

Corollary 7.1 Let p > max { Ma 2 (1 + %fg)} and q > /%,L:;. Then the quantities

IVuell3, elluell3, lluellf, /R (Lo # |ue|P)ue |Pdx,
are uniformly bounded as ¢ — 0.
Proof From PohoZaev and Nehari identities for 7, and Lemma 7.1 we have

1 o
o+ o) = € = Ty(us(s) = o IVue B+ 5 fR (o # lue ] ute P lx,

N(pp—-1

N /RN(Ia s e | uelPdx = co + q2; lue 2,
2N — g(N —2) NQ2—q) (N 4+ a)g —2Np
e Vil + ——— e fue3 + ——————
2q 2q 2pq

[ o s P 7 =

[m}

Lemma7.2 Let p > max{%f‘;, % (l+ %t‘;)} and q > ]%,]_V,_’; Then ellugl3 — 0 as

e — 0.
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Proof Lemma 7.1 implies that there exists a unique 7, € (0, 1) such that u.(x/t;) € .
Indeed, assume that . — 79 < 1 as &€ — 0. Then by (7.1) we have, as ¢ — 0,
N-2

co < To(ue(x/te)) = = Yug|Pdx

<tV 2T (ue) = 1N e, — 1) "2co < co, (7.6)

which is a contradiction. Therefore . — 1 as ¢ — 0. Using Po(u:(x/t:)) = 0 again, we
see that

(N = 2)iN-2 NN (N +a)tNte
0= %Ilwell?r £ : 7/ (I * lug|?)|ug|Pdx
(N=2)aN"2-1) NN -1
= Pe(ute) — > IVuell3 + STnuanZ

(N +a)(Nte —
2p

This implies that e|[u, |3 — 0 as ¢ — 0, since P, (u;) = 0.

D
/ (L # [ute| ") e dx.
]RN

Proof of Theorem 2.2 (case p > max { Mte 2 (1 + X +°‘)} and g > 42 ). From Corollary

7.1 and (7.6), we see that {u.(x/t;)} is a mlmmlzlng sequence for c¢g which is bounded in
Dlad N L2(RY). Then there exists Wy € D N LY (RN) such that

ue (x/te)—wo inD d(RN) and u.(x/t;) — wy ae. inRY,

by the local compactness of the emebedding D' (RV) — L? Toc (R™) on bounded domains.
Using Strauss’ radial L*-bounds with s = 2* and s = ¢, we conclude that

ug(x/te) < U(x) :== Cmin {|x|*N/2*, |x|*N/q} .

Similarly to Step 3 in Sect. 4, using Lebesgue dominated convergence and nonlocal Brezis—
Lieb Lemma [40, Proposition 4.7], we can show that u (x/t;) — wo in D' N L9(RN) and
wo is a groundstate solution of (Pp). ]

7.2 1strescaling: Choquard limit

2pta
24a

N+o N+a
N

Throughout this section we assume that <p<iyadg > 2

corresponding to the 1st rescaling

— a4l X
v(x) :==¢ Dy 7 ,
€

1 1
7D W) = f/ Vo> + |v|?dx — —/ (I * |v|P)|v|Pdx
2 JrN 2p JrN

. The energy

is given by

q(2+a)—22p+a)
g Ap-D
+— | |v)dx, (7.7)
q RN

and the corresponding Pohozaev functional is

N -2 N N
PO () = —f |Vv|2dx+—f |v|2dx—ﬁ/ Ly * [0IP)v)Pdx
2 RN 2 RN 2p RN
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q(2+zx) 2(2p+a)

Ne -0
+7 / lv|9dx. (7.8)
q RN
Wte)—pV=2) 1) . L
Note that Z,(u) = ¢  2»-D  Zp’(v) and consider the rescaled minimization problem
M= 1nf I“)(u) (7.9)

veﬂ

where 2V .= (v € HI@®RM)\ {0} : PV (v) = 0} is the PohZzaev manifold of (%,). When
e =0, we formally obtain
c((]l) = mfl)Iél)(v) (7.10)

ve”)

Itis known that c(()l) > O and c(()l) admits a minimizer vg € H'(RV), whichisa groundstate
of the Choquard Eq. (¥’) characterised in Theorem 2.4 (see [43, Propositions 2.1 and 2.2]).

Let u. be the positive spherically symmetric groundstate solution of (P.) constructed in
Theorem 1.1. Then the rescaled groundstate

__at2 X
ve(x) i=¢ =Dy, N
&

is a groundstate solution of (%), i.e. Ig(l) (vg) = c ) We are going to show that v, converges
to the groundstate vg of the Choquard Eq. (%).

Lemma?7.3 0 < cél) — cél) — 0ase — 0.

Proof Clearly, E(I)(US) = 0 implies that P(()l)(vg) < 0. Let we;(x) = vg(f), then

(N —2)V-2 NtV 5 (N +ayVte

1
P (we,r) = 5 ||Vvs||%+7||v£u2— %>

/RN(IO, # [vel ) ve P dx

has a unique maximum and Pé]) (we,1) < 0, thus there exists #,,, € (0, 1) such that we ,, €
W(g]). Therefore we have

N-2
1) S I(()l)(wgytvg) — V.

12+ —r“"‘/ (g # [v6]”) [ve]?

< Live ||2+if (L * v P) v P
N T oNp Jeu e T N TE
— 20 () = O,

On the other hand, let vy € 9 (D be a radially symmetric ground state of (%), that is
I(gl)(vo) = c(l) ThenPél)(vo) > Oand there exists #,,,(¢) > 1suchthatvy(x/t,,(¢)) € 9’(1)
This implies that 1y, () is bounded, up to subsequence, we assume that t,,, (6) — £,,(0). Recall

that P(gl)(vo) = 0, we can conclude that #,,(0) = 1. Set « := W We obtain

N + N -2 _ N
rv0<e>/ (o ool wolPdx = ~—2 Vol 2e) + 5 vl + o Ivollae

IA

-2 N N
—nwon% + —||vo||% + ;Ilvollgsk

N—i—a
_ /(Ia*|vo|!’)|vo|"dx+—||vo|| ,
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which means that 7 (¢) < 1+ Ce*, or equivalently

typ () < (14 Ce")/* < 1+ Ce~.

Therefore
tN_2 N+a( )
e < I(l)(vo(t &)= oY 3 7f (Lo * |vo|”)|vo | Pdx
vo
(&) — a(@htee) —1)

:cél>+mT||vUo||§+27/ (Lo # |u|P)|u|Pdx

<c (]) + Cé".
It follows that cél) — c(()l) ase — 0. ]

Corollary 7.2 The quantities

2 2
Vel Bl et [ Gax i,
R
are uniformly bounded as ¢ — .

Proof Follows from PohoZaev and Nehari identities for Z.'" and Lemma 7.3, as in Corollary
7.1. O

Proof of Theorem 2.5 Since

N N
1
PP we) = PV () — ge“nvs 1% = —;sk el <0,

there exists ¢, € (0, 1) such that Pél) (ve(x/te)) = 0. Using Lemma 7.3, as ¢ — 0 we obtain

N 2 a

=< Zol)(vs(x/te)) = Np

Bt gt [ elDpuel? < 700
R

= cgl) — c(()l).

Thus {ve(x/te)} C 97’(()1) is a minimizing sequence for cél) and we may assume that 7, —
fo € (0,11 (If  — O then 0 < ¢p < Z3" (ve (x /1)) — 0, which is a contradiction.) From
Corollary 7.2 we see that {v:(x/f¢)} is bounded in Hrla g NL? (RM). Then similarly to the
argument in Step 3 of Sect. 4, using Strauss’ radial bounds, Lebesgue dominated convergence

and nonlocal Brezis—Lieb Lemma [40, Proposition 4.7], we conclude that ve(x) — vg in
D'NLI@®RN) and vy is a groundstate solution of (%%). ]

Remark 7.1 We claim that in fact 7y = 1. Indeed, if 7y < 1 then there exists § > 0 such that
forall € € (0, §), it holds z, < % Therefore,

| ! Z‘N_2
eV < I (e (x /1)) = £

® N
W /RNua s [vel 7)o |7

2
fo+ 1\ V2 fo+ 1\ V2 fo+ 1\ V2
< ( . ) IO = (= = ()«
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as ¢ — 0, which is a contradiction. In particular, since

N N
1 a 1,
e < I8 e /1)) = IO (ve (x /1)) — ;wnvm<d“ quwm

we conclude that || v, ||Z — 0ase — 0.

7.3 2nd rescaling: Thomas-Fermi limit for a = 2

Throughout this section we assume that N < 5, ¢ = 2, p = 2 and
energy corresponding to the 2nd rescaling

. _4-q
v(x):=¢ a2ule 2@y
26-¢)

4=2 1 1
P () = £ / [Vv|?dx + f/ lv]2dx — f/ (I * [v]?)|v|*dx
) 2 RN 2 RN 4 RN

N+2 < g < 3. The

is given by

1
+f/ lv|9dx, (7.11)
q JRN

and the corresponding Pohozaev functional is

2(3—¢

G—q)
N —2)g a2 N
ﬂ%w:g—ii—fiwww+*f|wm
RN 2 JrN

N N
N /(12*|u|2)|v|2dx+—/ lv|?dx. (7.12)
4 Jry q JrV

g(N+2)—4N
Note that Z,(u) = ¢ 242 7, 2 )(v) and consider the rescaled minimization problem

(2)_ 1nf 1(2)(,)) (7.13)
ve]

where 3”;2) = {u #0: P,gz)(v) = 0} is the PohoZaev manifold of (TF;). When ¢ = 0, we
formally obtain

P = inf zg%) (7.14)
veﬁﬂ

By using an appropriate rescaling, it is standard to see that the minimization problem for c(()z)

is equivalent to the minimization problem srr, defined in (2.3). In particular, c(z) > 0 and

(2) admits a minimizer vo € L*> N L9(RY), which is a groundstate of the Thomas—Fermi
Eq (TF) characterised in (2.6) of Theorem 2.6.
Let u, be the positive spherically symmetric groundstate solution of (P;) constructed in
Theorem 1.1. It is clear that the rescaled groundstate

_ 1 _4=q
ve(x) i=¢e 9 2u, <e 2<4-2)x>

is a groundstate solution of (T'F;), i.e. ng) (ve) = (2) . We are going to show that v, converges
to a groundstate of the Thomas—Fermi Eq. (TF), characterlsed in Theorem 2.6.
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Before we do this, we deduce a two-sided estimate on the “boundary behaviour” of the the
nonnegative radially symmetric Thomas—Fermi minimizer p,, constructed in Theorem 2.6.
Recall that supp(ps) = BR for some R, > 0 and p, is C* inside the support. Moreover,
since we assume that p = 2, « = 2 (and denote m = q/2), we see that p’” I e cOLRN)
and p, € COV(RN), where y = min{l, -1 —L_}. In particular, p, € H}(Bg,) and we can
apply —A to the Euler-Lagrange Eq. (2.5) considered in Bg,, to obtam

— A (mp"™ 1):—A(STF%IQ*/O*—l):srp%p*zo in Bp. (7.15)

m—1

We conclude that pJ'~" is superharmonic in Bg, and by the boundary Hopf lemma

"1 > ¢(Ry — |x]) in Bg,. (7.16)

Hence we deduce a two-sided bound
¢(Re — [x™T < p, < C(Re — |x])? in Bg,. (7.17)
Similar estimates should be available for & # 0, at least under the assumption o < 2. We

will study this in the forthcoming paper [26].

— 0ase — 0.

Lemma74 0 < céz) — c(()z)

Proof Let v, € 9(2) be a solution of (P,) with Ig(z)(vg) = c§2) and ¢ > 0. Then

(N —2)e" , (N—=2)"

5 IVwel3 = ———=—1IVuel3 <0,

Py (ve) = P (ve) —

2(3 q)

where we denoted v := .Let wg s (x) = va( ), then we obtain that

NtV NN (N +2)tV+2
PO wer) = M velZ + Y et - 7f (I # Jve P v [Pdx
2 q 4 RN

has a unique maximum and 7362) (we,1) < 0. Thus there exists f, € (0, 1) such that w,;, €
9’(%2). Therefore we have

I®) 1
P < 1P (we ) = T /RNUQ % Jve ) e |2

—/ (I e el* = TP (ve) = ¢, (7.18)

N RN

S0 c((J ) < cg . We are going to prove that c(
Let vy € Jé ) be a groundstate (2.6) of the Thomas—Fermi Eq. (TF), as constructed in

Theorem 2.6. From (2.6) and (7.17) we conclude that vl > € €% (R") and

N (())ass—>0

1
c(Rx — |x[)7% < vg < C(R — |x)? in Bg,, (7.19)
where R, is the support radius of vy and
yo =min {4, L5}

Note that if ¢ > 4 then vg ¢ D'(RV) because of the singularity of the gradient on the
boundary of the support, even if v% is Lipschitz.
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Given n > 1, we introduce the cut-off function n, € C&° (RM) such that 1, (x) = 1 for
[x] < R*—%,O < n(x) < lforR*—% < |x| < Ry — ﬁﬂ)n(x) =0 for |x| > Ry — ﬁ

Furthermore, ], (x)| < 4n and |}, (x)| = % for R, — =

< |x| < Ry — 2. Set
U (x) 1= 1 (X) o (X).

It is elementary to obtain the estimates

/ (I % [va|?) |val?dx = / (I2 % |vol?) voldx + O (1), (7.20)
RN RN

loalld = llvolld + O (1), (7.21)
lvall3 = lloll3 + O (3) - (7.22)

To estimate the gradient term, note that since vg s Lipschitz on R and smooth inside
the support, we have vg _3|Vv0| € L*®(RN) and then it follows from (7.19) that

[Vuol < C(Ry — [x)0C~9.

Then we have

/ n%|Vvo|2dx
RN

IA

Ri—5
/ |Vo|?dx < C/ (Ry — r)0B=D gy
‘xlfR**ﬁ 0

C, 2<q <4,
Cl+lnm, g=4, (7.23)
CA+ni), ¢ >4,

IA

On the other hand, using the right hand side of (7.19), we have

Ri—5
/ |Vn,,|2v(2)dx = / |Vn,,|2v%dx < Cn2/ (Re — r)20rN=1gy
RN Ri— 3 SIX|<Ra— 5 R.—1

2n

_ C, 2<qg <4,
<Cn ™M < g4 (7.24)
Cni2, q >4.

Therefore

/ [V, |2dx < 2] |vnn|2u3dx+2/ 2|V *dx
RN RN RN

C, 2 <q <4,

C(l1+ lnnz, q =4, (7.25)
==

C(l+na2), g >4,

IA

Recall that N < 5, =2, p = 2 and 1\4117112 < ¢ < 3 in this section, and hence yg = 1/2
(g > 31in (7.25) is needed to study the case ¢ — o0). Then

/ |V, |2dx < 2/ IV Pv3dx + 2/ n%|Vug|*dx < C.
RN RN RN

Setn = 8_%". Then for ¢ > 0 small enough, we have

(N —2)&”

PR @) =Py we) + ——

2
Velly
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N —2)¢g"
> PP () + LD / Vuo[2dx | — Ce3” > 0,
2 |X‘E%R*

and there exists 7, > 1 such that ’Péz)(vs (x/ tg)) = 0. This implies that

N —
taz/RN(IZ*|U€|2)|Ua|2dX— 3 e Ve 3, 2(e)+—|lva||2+ ||va||q

IA

-2 », N, N
> SVIIVvsllerEllvsllﬁgllvsllq

N-2 N+2 3
= —"&"|Vue |3 + 7/ (I % |vo|*)|vo|*dx + Ce2".
2 4 RN
It follows from (7.25) and (7.20) that 7, — 1 as ¢ — 0. Moreover, we also have
te <14 Cée".

Therefore, we have
N 2 v

¢® < I (e (x /1)) = T (vo) + = IVvel3 + @y —1) —ca¥ 2 —1)

(2) +Ce",

@ _, @
o

which means that c; ase — 0. O

23—q)
Lemma?7.5 ¢ a2 |V, ||% — 0ase — 0.

Proof According to Lemma 7.4, there exists a unique 7. € (0, 1) such that v, (x/t;) € (@(2).
Now we claim that . — 1 as ¢ — 0. If not, we assume thatr, — fyp < 1 asas e — 0, then
by (7.1), we have, as ¢ — 0,

l‘N+2

2N
< V21D (v) = (V2D 5 (2

2
¢ < 1P (e (x /1)) = " (I * |vel»)|ve |*dx

< Cp,

this is a contradiction. Therefore our claim holds, ie., t; — 1 as ¢ — 0. Using
’P(gz) (ve(x/te)) = 0 again, we see that

NN N +2)tN+2
0=l —%/ (I # [ve P)lve Pl
2 4 RN
(N —2)¢" NN —1) NN —1)
= PO () — = [IVUe 13 + — [0 13 + ——L v ||
2 2 q
(N+2)@N*t2 -1
- n / (I * |ve ) |ve | *dx,
RN
which implies that &” | Vo, |2 — 0 as & — 0 since P (vs) = 0. O

Proof of Theorem 2.7 By Lemmas 7.4 and 7.5, we see that {v, (x /#;)} is a bounded minimizing

sequence of c(()z) . Then similarly to the arguments in the proof of Proposition 6.1 and Theorem
2.6, there exists Tp € L2(RY) N L4(RN) such that

ve(x/ts) = o in LZRY)Nn LIRY)

and vy is a weak solution of (TF).
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8 Asymptotic profiles: critical regimes

8.1 Critical Choquard case

Throughout this sub-section we assume that p = N +°‘ and ¢ > 2% = zyz. Consider the
minimization problem
Vul3
Syp = inf IVuls
ueD(RM)\{0}

N-2
(o o ¥ 5 ¥
defined in (2.8). Combining Sobolev inequality (1.4) and HLS inequality (1.3),

N=2
_N=2 N+a N+a N+a
||Vu||%zs*||u||%*zs*ca”“( N(Ia*|u|*~f2)|u|wfzdx) A
R

_N=2
hence Sy > SiCy V**. It is not difficult to check (cf. [21, Lemma 1.1]) that Sg; =
N-2

S*C; N+ and Sy is achieved by the function
2—-N
V(x) = (84C3) ¥ U, (x), (8.2)
and the family of rescalings
Vi(x) == A" V(x/k) x>0,
here U, is the Emden—Fowler solution in (2.9). Up to a rescaling, V) is a solution of the
critical Choquard Eq. (¥ 1) and satisfies
2 2 N+ta N+a N+ta Nta
VB = 1VVIB = | (L VIFE) VIV ax = | (T Vil ¥) V] ¥ dx
RN RN

N+g
— a+!
- SHL :

The energy functional associated to (€ ) is

1 » N-2 Nia\ ~ Nto
T = SVl = 5 [ (Lol 3 ) 1l ¥ dx,
2 2(N +a) Jry
We define

cyr = inf J(u) = inf max J (u(x/t)),
ueZ gL ueD!' (RN)\{0} >0

where
1N 2 N+o N+a
Py = u € D R)\ {0} : Pur() = [[Vulz — (Lo * [u| N=2)|u|V=2dx =0 .
RN

Nta
By a simple calculation, we see that ¢y, = 2(N+a)8}‘;z2 .

Lemma8.1 Let o, = c, — cyy. Then as ¢ — 0, we have

g(N-2)—2N
g@2dN-2 N >5,
a4
0<oe S (sln ) =2 N =4,
—6
82(‘1 -4, N =3.
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Proof Note that u, € 22, is a solution of (P,) with Z, (u;) = cg, then Py (us) < 0, thus
there exists 7, € (0, 1) such that u.(x/t;) € Py and we have

X (¢ +2) N 2
<J — = — Vu Te =
cyL < (Mg <t€)> T ) IVuel3 < Ze(ue) = ce.
Therefore, 0, = ¢, — cyr > 0.

Case N > 5. Note that for N > 5, Vy(x) € L2(RY) for each A > 0, thus we see that
Pe(Vi(x)) > 0. Then for each ¢ > 0 and A > 0, there exists a unique s, ; > 1 such that
Pe(V(x/se,2)) = 0, which means that

S\ N-=2 Nex? N N2
(s = 522) S5 IVVIB = = IVIB + 2 VI = w0,

Then there exists A, > 0 such that

2N—q(N=2)

NIV IS (Nnvnz(q(zv —2) - zzv)) WDy aw

Ag) = min A) = £ @DWN=-2)
Ve (Ae) min Ye(X) 1 2NV

This implies that s, := 5.3, — 1 as & — 0. Furthermore, we have

g(N=2)—2N
se < 1+ Ce@—2

Therefore, we obtain that

2 2N—g(N-=2)
X a+2 2 N 2 o eAg Ae 2 a) W
<Z. | Vi | — = —||VV — |V — |V
[ g( A<s€)> 2N+ )|| lI7s + Nta || ||2+ 7 1Vilg | se

g(N=2)—2N
>+C5<q 2 (N=2)

a+2
<cHL+ T )||VV||2<

g(N=2)-2N
<cHL +Cg(q -2 |

g(N=2)—2N
which means that o, < Cg «-20V-2) |

To consider the case N = 3,4, given R > X, we introduce a cut-off function ng €
CSO(RN) such that nr(r) = 1 for |r| < R,0 < nr(r) < 1forR < |r| < 2R, ng(r) = 0 for
|r] > 2R and |n/R (r)] < R/2. Similarly, e.g. to [52, Section III, Theorem 2.1], we compute

/RN VrVildx = S5 40 ((R/2=N=2). 8.3)
[, (e ¥ ) mevi #an = st o (@m ™). s
IneVally =27 % VI (140 (RN -10-2)). 8.5)
InR Vi3 = 22lng VI3 = { Qms). N4 (5.6)

Here we only sketch the proof of (8.4). We may assume that R/A > 1. Note that

sup [V ()| V3 (1+ x )V < oo

xeRN
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It follows from [43, Lemma 6.2] that

N+

(Fa e 1VIFE) @)
lim —:/ |V|¥3 dx. (8.7)
[x[—o00 Iy (x) RN

Therefore, by (8.7), we estimate

Nio Nt Nto Nto
’/ (Ioz*|URVA|N’2>|URVA|N’2dx_/ Iy * | Vo N=2)| Vi | V-2 dx
RN RV

Niw Nia
52/ (Ia*IV,\IN*2>|VA|N*2dx=2/
B, B¢

C
R/h

Neta Neta
(10,*|V|N—z)|V|~—zdx

1 [e.¢]
< cf dx < c/ r N lar = e/,
B IXIN= (1 + |x|?) 72 R/A

N+a N+a N+a N+a
[ Gt ¥ et ¥ = [ (1wt ) 1 ¥
RN RV
N+a N+a N+a N+a
(¥ ) vy = [ o evi¥hiw Fax
SR ng/x

- |
B
1 0
z C/ v dx = C/ r N lar =cr/n)7N.
B |xIN=¢(1+ |x2) 2 2R/A

Combining the above inequalities, we obtain (8.4).
When R > X, by the above estimates we conclude that P, (ngV,) > 0. Then there exists
aunique #, := (R, A) > 1 such that P;(nr(x/t:) Vi (x/t:)) = 0, which implies

N -2 o Nta N+o _2 2
— % RN(Ia*|77RV/\|N*2)|77RVA|N*2dX—l‘5 IV(nrVa)l3

Ne , N q
= THURV)\ Iz + ;HURVA”q = VYe(R, ). (8.8)

Case N = 4. For each ¢ > 0 small, by (8.5), (8.6) and choosing

1\ 72 Ae
Ae=|eln— , Re=—,
& 3

we have

—4

s R\ A 4o R\ 1\ iz
Ye(Re, 2e) <260 (22In =2 ) + 22— vid 1+ 0 (= <Cem-) .
Ae q Ae e

Then it follows from (8.8) that t, — 1 as ¢ — 0. Furthermore, we have t, < 1 +
g4

C(eln é)q‘z }

Case N = 3. For each ¢ > 0 small, by (8.5), (8.6) and choosing

1

_1
e =€ 974, R, =¢ 2

we have
3 3 6 R\ 46
Ye(Re, Ag) < ESO(Rs)\s) + —Ae’ ”V”Z 1+0 <)T> < Ce2a=9,
q &
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-6
Then it follows from (8.8) that . — 1 as & — 0. Furthermore, we have t, < 1+ Ce 2(2—4) .

Conclusion of the proof for N = 3, 4. Combining previous estimates together, we obtain

Ce < Ig(’]RE (x/ta)v)hg (x/te))

a+2 2 N-2 o € 2, ] a\,N
=—7|V 1% t — | = V + - % t
2(N + ) IV (g Viollate = + Nta 2||’7Rg e ll2 q||77Rg nellg ) 2
q—4
—v— Inl)ye2 N =4,
SCHL+O((R£/)"€) o 2))+CW5(R5,)\8):CHL+ C(Sq,ngg)
Ce2a=9, N =3,
which completes the proof of this lemma. O
Lemma 8.2
2q¢ (g —2)Ne
q 2 2 2
= N V _—
luelly = =y =g el 1Vuel3 + e
N+a Neta
= [ s e P P
RN
Proof Follows from Nehari and Pohozaev identities for (P;). ]

Lemma 8.3 q(%:%ﬂugﬂg < Co,. Moreover, we have

N-2 _ N2 N-2
lim eflusl13 =0, lim luclld =0, lim Jusl3 = S;72Co ™ = (S:Cy ') * 7,
e—0 e—0 e—0

2(N + ) Nty

lim Vg3 = lim | (le el V9 ) Jue| 75 it
1im u = l1m * U - u —ax = CHI = .
e—0 ez e—0 JrN ¢ ¢ ¢ +2 HL

Proof By Lemma 8.1, we see that
a(N —2)

(Fa # e 72 ) | 73
_— X (U - u - X.
2N(N +a) Jgy V&7 °° ¢

(8.9)

1
cur +o(l) = ¢ = Te(u;) = angn% +

This, together with Lemma 8.2, implies that there exists C > 0 such that
Neto Neto
[ (tos e ¥ ) e ¥ =
RN

for all small ¢ > 0. Note that Py (u;) < 0, then there exists t. € (0, 1) such that
Pur(ue(x/ty)) = 0, which means that

2 2 Nto N+a
Vil = 1 [ e e ¥ ) ¥ .
R

If t — 0 as ¢ — 0, then we must have ||Vu, ||§ — 0 as ¢ — 0, this contradicts
Q+oayN2
2(N +a)

Therefore, there exists C > 0 such that z, > C for ¢ > 0 small. Thus we have

0 < cpr < J(ue(x/te)) = I Ve |13

1
cur < J(ue(x/te)) = To(ue(x/te)) — 1 (%llusll’% + ;IlusIIZ)

(g —2)Ne 2
< Ze(ue) — m””a”zth
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L _@=2Ne ok
¢ g(N—2)—2N"FE
This means that
(g —2)Ne

v — —anwelh =1V (e —enr) < Co.

Moreover, we have ¢||u, ||% — 0 as e — 0. It follows from Lemma 8.2 that

luel? = 0, [Vuel? + o(1) —/ (1 % |u |%) | WSy > 2T
ellg s ell2 = RN o £ £ 2(N+O[) HL
N+l21
— o+
_SHL

ase — 0. .

Set we(x) = ug(Sﬁx), then we have, as ¢ — 0,

2-N
2 2
IVwell; = S IVuell; — Sne,
~(N+a)

Neta Neta s Neta Neta
(10, * |we| M) we| VE dx = S (10, * |1t M) e | V5 dx — 1.
RN RN

On the other hand, by the HLS inequality, we have

IVwel3 _ 42 Ve |3 N2
Ca ™ SpL =8 = > <Ca — v > Ca " SHL.

2 f—
Jwel| Ntg Nta Nta
z (fRN(Ia*|us|N_2)|”5|N_2dx) ’

This means that

lim [we 3 = Co ¥ lim ug B = S5 Vo
e—0 T 60 HL =@ ’
which completes the proof. O
Set
To(w) = 22 Vi) = Ty (s,
llwe [l2+
Then |[We |2+ = |V = 1, ||VV||% = S, and {w,} is a minimizing sequence for the critical

Sobolev constant S,.. Similarly to the arguments in [41, p. 1094], we conclude that for ¢ > 0
small there exists A, > 0 such that

/ e (x)|* dx = / V() |* dx.
B(0,A¢) B(0,1)

We define the rescaled family

N2
Ve(X) 1= A * We(Aex).
Then
lvellor =1, Vel = S + o(1),

i.e., {ve} is a minimizing sequence for S,. Furthermore,

/ [ve|¥ dx = / V()| dx.
B(0,1) B(0,1)
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Lemma8.4 lim,—¢ ||[V(ve — V)2 = limesql|[ve — Vl]2+ = 0, where v(x) :=

N-2

Ae 2 ue(Aex).

Proof Since {v.;} is a minimizing sequence of Sy, it follows from the Concentration-

Compactness Principle of P.L.Lions [52, Chapter 1, Theorem 4.9] that
lim |[V(ve — V)ll2 = lim lue = V|[2x = 0.
e—0 e—0

which, together with the definitions of w, and w,, implies that

lim V(W — V)2 = lim [[v; — V]l2» = 0.
e—0 e—0

By a simple calculation, we see that v, solves the equation
2
—Av, + A?Sﬁfsvs

2(a+2) 2N—g(N=2) 2

2—a
NTT 4 =2 = N+ta at+4—N . 5= )
= ||lwe ”2’9/ : Ag aS;]Jiz Ty * |ve| V-2)ve| V=2 ve — [lwe ”g* e C 'SID.}JrL2 [ve 7™,

By the definition of v, and w,, we obtain

g(N=2)—2N N

N
- T at2 2 —24 20" at2 2
lvellg = lwellpd e 7 Spp™luellf,  lvells = lwell32A72 Sy ™ luell3-

It follows from Lemma 8.2 and Lemma 8.3 that
ON—q(N—2) N q

q 2 a2 q
We |55 A S v =—
e 192 i el =

Therefore we can deduce the following estimates on A.

2 1
~WN-2¢—2N 1 3
Lemma8.5 o, VN <A, <e7202, ase — 0.

N
2 12 cat2 2
7 lwe 12:2eSgrp, vellz < Coe.

(8.10)

(8.11)

(8.12)

Proof Since v, — V strongly in D'(RY) and L2 (RV), we have v, — V strongly in

L; .(RN) for s € [2,2*), thus we get that

loell? > / ve|9dx > c/ oo dx — V12 dx > 0
B, 1) B(,1) B, 1)

and

loell3 = / lvs Pdx — V2dx > 0.
B(0,1) B(0,1)

Therefore, the assertion follows by (8.12), (8.13) and (8.14).

Set
g, WoaD 2 5
Qe(x) = Istllz* e ° S[L:(-Z [ve|777.
By Lemma 8.5 and since u, < Clx|~W=2/2||y, ||+, we conclude that

(N-2)(g—2)
2

Q:(x) = Qo(x) := Clx|~ )

(8.13)

(8.14)

m}
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where C > 0 does not dependon e > Qor x € RN Therefore, for small & > 0, it follows
from (8.10) that solutions v, > 0 satisfy the linear inequality

—Av; + xzsg,*;svg + Qo(x)ve 20, x eRV.
By [41, Lemma 4.8] we have the following lower estimates of v,.

Proposition 8.1 There exists R > 0 and ¢ > 0 such that for all small ¢ > 0,

1
N _ a2
Ve(x) > cla| N2 emVES L ey > R

The proof of the next resultis nearly identical to the proofsin [41, Lemma 4.6 and pp. 1097—
1098]. We outline the arguments for reader’s convenience.

Lemma 8.6 Fors — 0, we have || v, IIZ ~1,

1

T, H= S N
he ) (em )77, N =4, llve 15 ~ Inl, N =4,
& G 2>%N 5, N>S5, L, N >5.

Proof For all N > 3, (8.13) implies that ||vs||g > C for some C > 0.
Case N > 5. By Lemmas 8.1 and 8.5, we see that for N > 5

e < < e el
Moreover, ||v€||§ ~ 1 and ||v8||g ~ 1 by Lemma 8.1, (8.12), (8.13) and (8.14).

Case N = 4. By Proposition 8.1, we obtain

S = 1
lvell3 > /RN\ [ve|?dx > / Cr2e 2EShL M7 gy — CT (0, 2/eSET A6>,
Br R

where I'(0, 1) = —Int —y +O(¢) as t N\ 01is the incomplete Gamma function and y =~ 0.57
is the Euler constant. Hence, by Lemmas 8.1 and 8.5, we obtain that

1 1
>C|—In|2 S"+2 - >Cl >Cln—.
it = ¢ (-n (2vasias) =) = em () = omg

This, together with Lemmas 8.1, 8.5 and (8.12), implies that

1 1 1

1\ 42 Co 1\ 42
(Sln*> ! SASSILS/(EID*) ! .
€ e lvell2 €

Co 1
2 & 4
v < <Cln-, v <Ccr)ﬂ <C.
” 8”2 = 8)\% = e ” F”q &€

Moreover,

Case N = 3. By Proposition 8.1, we obtain

o0
llvell3 > f ve [*dx > / Ce Ve SHL kel dr >
RN\Bg R

> f)» (8.15)
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This, together with Lemma 8.5 and (8.12), implies that

1

Col [ 1
Ae < ———— <& 107A] &= e <& 20,
e |lvell2

By Lemmas 8.1 and 8.5, we obtain that

1
g at S Se it (8.16)

Furthermore, we deduce from Lemma 8.1, (8.15) and (8.16) that

_ a6 , Cog _ =6 q 46
Ce 20 < <lvel} < =% < Ce™ %, |lne|l§ < Coede? <C.
& SA'S
This complete the proof. O

8.2 Critical Thomas—Fermi case

Throughout this section we assume that NAJ;O‘ <p< %f‘; and g = 1%/1’; . Let
2Np
Srp= inf Sy 1wl ¥ dx —c v
- - o )

2N N
weL 36 @N)\(0} § [y (o * [w]P) | w]Pdx }

where C,, is the optimal constant in (1.3), as described in (2.13).
It is well-known [34, Theorem 4.3] that S7r is achieved by the function

~ ~ 1
V(x) = U(Sppx), (8.17)
and the family of rescalings
~ _N+a ~ _N ~
Vix) =1 2 V(x/A) =i ¢V(x/L) (A>0), (8.18)

here U is the groundstate solution of (T'F,) defined in (2.14). It is clear that

N+a

Tl =171 = [ s WITdx = [ o B Tiirar =,
RN RN
The energy functional which corresponds to (TF) is

1 1
H@u) = —|ulld - 7/ Iy * |u|P)|u|Pdx.
q 2p Jry
We define,

crr = inf Hu) = inf max H (u(x/t)),
UEP TR ueLd(RN)\{0} >0

where
Prr = {u e LYRM)\ {0} : Pre(u) := luld —/ (g * |u|P)u|Pdx = 0} .
]RN

N+a
By a simple calculation, we see that cyp = Z‘J‘TpSTﬁ .

Note that V; € L2(@RY) for N > 4, and V;, € D'@RY)if N > 3.
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Lemma8.7 Leto, =c. —crr ande — 0. If N > 4 then

. 2N—q(N-2)
0<0,Se X

while if N = 3 then

34a—p

e 2, pe(33+a),33+w).
_ 1
0<0: 3 (5111%)4, p=%(3—|—a),
(3+a—p)2 2
e 7, pe(36G+w).G+w).

Proof Note that u, € 22, is a solution of (P;) with Z, (u.) = c¢, then Prr(ue) < 0, thus
there exists 7, € (0, 1) such that u.(x/t;) € Zrr and we have

X 2
WT§11Q%<—)) P el < Totue) = .

Therefore, o, = ¢, — c7r > 0.

Casg N > 4. Note that for N > 4, \7,\(x) e L2RY) for each » > 0 and therefore,
PS(Z* (x)) > 0. Then for each ¢ > 0 and A > 0, there exists a unique s¢ ; > 1 such that
Pe(V(x/se,2)) = 0, which means that

(N 2) N-2)g=2N  ~ Ne Ng=2N
(s TN TOIVVIE+ ATV
(N _2) (N— 2)q 2N Neg Ng-2N
< ||VV||2+71 TR = o)

then there exists A, > 0 such that

2N—g(N-2)

9c(ke) = minge(2) < Ce™

Therefore s, := s¢3, — 1 as &€ — 0. Furthermore, we have

2N—q(N=2)

se <1+Ce u

Therefore, we obtain that
N-2
£

~ X
e = Ze(V2, (7)) = IV Vi 113 +
&

2N—g(N-2)
N 2N-g(N-2)
crr +erpYT =)+ Ce H
IN—g(N-2)
crr +Ce X

IA

IA

) IN—q(N—=2)
which means that o, < Ce %

Case N = 3. To consider the case N = 3, given R > A, we introduce a cut-off function

nR € CSO(RN) such that ng(r) = 1 for |r| < R, 0 < nr(r) < 1for R < |r| < 2R,

ng(r) = 0for|r| > 2R and |n/R(r)| < R/2. We then compute as in, e.g. [52, Theorem 2.1]:
N-2)~(N+a

Vo Tdx =2 7 VTR +o (RmSTE )L 8.19)
RN NRVa X = 2 / . .

~ ~ Nta
/N(Ia # IR VAP g ValPdx = Syt + O(R/M)™Y). (8.20)
R
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N+Ot

g Vi 1§ = Spf + O((R/M)™M). (3.21)
g Vs 13 = )» o ||UR/AV||2

'§p (3+a 3p 2("H~ot)

( ) pe(3G3+.533+0a),
~ Azlnf p:%(3+0{), (8.22)
3p— (3+o¢ R 3p—2(3+a) )
Py, pe(3G3+a).G+a).

When R > X, by the above estimates, we see that P, (ng ‘7/\) > 0, then there exists a
unique 7 1= t.(R, A) > 1 such that P, (ng(x/t:) V) (x/t:)) = 0, which implies that

N+« ~ ~ ~
3 (’gf (Io % InRVAIP) Ing ValPdx — ||77RV/\||Z>
p RN

Ne ~ N -2 ~
< 7||nva||% + Tnvavnu% = Ye(R, A). (8.23)

To estimate ¥, (R, A) we consider three cases.
(i) Case p € (%(3 + a), %(3 + a)). For small ¢ > 0, set

Ae=¢6 2, R.=¢"12.

S
[ST{%)

Then

p—(G+a)

] > =~ p—203+a)
Ve(Re, he) = She IVVIZ 1+ O (Re/Ae) 7

Ne 3p-G+a) 3p-26+a)
+50(k 7 (1= Re/r)

34a—p
< Cg ?r

34a—
Therefore it follows from (8.23) thatt, — lase — Oandz, <1+ Ce 2r ‘

(ii) Case p = %(3 + o). For small € > 0, set

1
1\ 2 A
)\€:<8ln7> , R.=-%.
& &
1

11 - Ne (3 !
Ve(Re he) = 5he ” Radt (1 o) ((Rg/xs) 2)) +50 (Ag ln(Rg/Ag)> <C(elnd)?

Then

Therefore it follows from (8.23) thatt, — lase — Oandt, <1+ C(eln é)%
(iii) Case p € (%(3 +a),3+ a). For small ¢ > 0, set

_34a—p )‘-8
Ae=¢e P , R,=—.
&

Then

p—G+a)

1 > ~.0 p—203+a)
Ve(Re, Ae) = Fhe IVVIZA 4+ O (Re/he) 7

Ne 3p—(3+a) 3p—2(3+0)
+—0 <)\4 P (Rg/Ag) P )

2
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3+a—p>2

SCs( P

3+a—py2
Therefore it follows from (8.23) thatt, — lase — Oandt, < 1 + ce v £

Conclusion of the proof for N = 3. From (i)—(iii) we deduce that

ce < Te(nr, (x/te) Vi, (x/1c))

o+2 ~ 9 o e ~ 5 1 ~ q\.3
= —- |V V, t — | = V. — V t
3G 1) IV(ngr, Va)llste + 3t <2||77Rg e ll5 + qllnRg e llg | 25
< crr +erp (12 —1) + O@E) + CYe(Re, 1)
3+a—p 1 )
e pe(36+a),33+w),
1
<crr+0E)+{ (em)*, p=2CG+w,
3+a—p 2
) p e (264w, Ga).
so the assertion follows. ]
Lemma 8.8
(Np — N — )¢ 2 2pe
Vi |? = i q 2
1Vl = o=~y el Mwellf + o =y oy el
= [ ot el
]RN
Proof Follows from Nehari and PohoZaev identities for (P;). O
Lemma 8.9 q((]@:%ﬂugﬂg < Co ;. Moreover, we have

. 2 . 2 . 2
lim elugll; =0, lim [Vugll; =0, lim [Jugll3: = 0.
£—0 e—0 e—0

p N+a
CTF = STI:Z .

i e = i |l e P e =
e—0 e—0 JrN
Proof By Lemma 8.7, we see that
crr +0(1) = ¢ =T (ug) = l||Vu 13 + L/ (I * lug|?)|ug|Pdx (8.24)
5 eUg N ell2 2Np - a £ £ . .
This, together with Lemma 8.8, implies that there exists C > 0 such that fRN Iy *

lue|?)|ue|?dx > C for all ¢ small. Note that Prp(u.) < 0, then there exists . € (0, 1)
such that Prr(u.(x/t:)) = 0, which means that

el =r§f (Lo # e |7 | Pdlx.
RN

If t; = 0 as ¢ — 0, then we must have ||u, ||Z — 0 as & — 0, this contradicts

(){tév * p P
Iy * |u u X.
N /N(a | s| )| s|

Therefore, there exists C > 0 such that z, > C for ¢ > 0 small. Then we have

0 <crr < H(ug(x/ty)) =

N N-2
_ _ gtg 2 ts 2
crr < H(ug(x/te)) = Ze(ue(x/1e)) > lluellz + IVuell;

2
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2pe
(N+a)—p(N-2)

2pe
~ (N+a)—p(N—-2)

2.N
< Te(ue) — ”uS”Ztg

=C8

2.N
lluellzze"

this means that

2pe
(N +a)—p(N —-2)

2 —N _
llugllz <t " (ce —crr) < Cog.

Moreover, we have e||u, ||% — 0as & — 0. It follows from Lemma 8.8 that

p N+a
crF = Srp

2N
IVuel3 = 0, Juell§ +o(1) = /RN(I"‘ # Jug|P)ue|Pdx —

ase — 0. O

1
Set we (x) = ue(Sypx). Then we have, as ¢ — 0,

N
q i, 14
lwellg = Spp lluelly — Str,

_ N+ta
/(la*lwslp)lwsl"dx:STp"’ / (Lo * lug|P)|ue|Pdx — 1.
RN RN

_ L1
Let we(x) = we(x)/|we(x)]ly and V(x) := STF? V(Sypx), then we see that ||wg||z =
[VIZ=1and

N+a

_2 -
(Lo * [We| ") [we|Pdx = [wellg * (Lo * [wel M) |we |Pdx — Spp ™
RV RV

—Cy = f (I * [VIP)[V|7dx.
]RN

Thus {w,} is an optimizing sequence for Cy. Then similarly to the arguments in [41, Sec-
tion 4.4] it follows that for &€ > 0 small there exists A, > 0 such that

/ . (0ldx = f V() dx.
B(0,A¢) B(0,1)

We define the rescaled family

Nia
ve(X) 1= Ag ? We(AeX),

then
”Ue”q =1, /I%N(Ia * [ve| ") ve|Pdx = Cy + 0(1),

i.e., {v,} is a maximizing sequence for C,. Moreover,

/ lve|9dx = / [V (x)|9dx.
B(0,1) B(0,1)
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N Nta
Lemma8.10 lim; ¢ [|[v; — Vl; = 0, where v (x) := )»52" Ug(Aex).

Proof Tt follows from Concentration-Compactness Principle of P.L.Lions [37, Theorem 2.1]
that

lim Jloe — Vg =0,
e—0
which, together with the definitions of w,(x) and w, (x), implies that

lim |7 — V|, = 0.
£—0

O
By a simple calculation, we see that
N+o
Al L
Ve(x) = ——us (A Sypx)
‘ lwelly = F
solves the equation
2
— Avg + A?S}*Fsve
2y (N+a)—p(N-=2) 24a ) )
=lwelly” e 7 Spp (G el Pluelve = el el 20, ) . (8.29)
By the definition of v, and w,, we obtain
5 o, WH=pN=D) 2y 5 ) , WHO=Np -y )
IVoellz = llwelly “2e 7 Sri IVuelly,  llvellz = llwell,“2e " Sy lluellz
(8.26)
It follows from Lemma 8.8 and Lemma 8.9 that
P(IN-2)—(N+a) pN_2 (N - N-— Ol)S Np=(N+a) N
2 P o 2 p 2 P o 2
we |5 A S Vo = we |24 Srellv
llwe I 2e e IVuell3 (N+a)_p(N_2)II ellighe rrllvellz
< 0. (8.27)
Lemma8.11 Lete — 0. If N > 4 then
1
Ae ~ &2, (8.28)

while if N = 3 then

he ~ 73, Pe(36+®,353+a),

e i Ind)T Sa Senbi, p=3G+a), (8.29)
p—(B+a) B+a)B+a—2p) 2

e 7 SAe Se pOrGRO) pe(3G+a).3+a).

Proof Since v, — V strongly in L4(RY), we have v, — V strongly in L§ (R") for
s € [2, g), thus we get that

Ve3> Cllvell3e > c[ lve|9dx — [V|9dx > 0 (8.30)
B(0,1) B(0,1)
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and

IIvEII% > / Ivglzdx — |V|2dx > 0. (8.31)
B(0,1) B(0,1)

Therefore, by (8.27), (8.30) and (8.31), we have
o » o
CEg(N*Z)p*(NJrO() < )\‘8 < CS(NT),NPE;VP*(NJW) .

Then (8.28) and (8.29) follow directly from Lemma 8.7. ]

Lemma8.12 If either N > 4, or N = 3 and p € (”T“ @) then | V|2 ~ 1,

llvell3 ~ 1.
Proof Follows from (8.27), (8.30), (8.31) and Lemma 8.11. O
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Appendix A: A contraction inequality

Consider the equation
—Au+uf?u=f in RV, (A.D)

where N > 2 and ¢ > 2. The existence for any f € Ll] oc (RN of the unique distributional
solutionuy € L llo . (RN) of (A.1) is the result in [9, Theorem 1]. The following remarkable
contraction estimate on subsolutions for (A.1) was communicated to us by Augusto Ponce.

Theorem A.1 Let 0 < f € L5(RV) for some s > 1 and let v € L}”C(RN) be a nonnegative
distributional sub-solution of (A.1), i.e.

—Av+v7 < foin 97/ RY). (A2)

Then vi~! e L*(RY) and
lvllg—1s < I fls- (A.3)

The inequality (A.3) is an extension to unbounded domains of the result in [47, Proposi-
tion 4.24], see also [47, Exercise 4.15 and a hint on p. 402]. We outline the arguments for
completeness.
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LemmaA.1l Let0 < f € LS(RN)for somes > 1. Form € N, let u,, € L}OC
unique nonnegative distributional solution of

—Au+ul"''=f in By,
u=>0 on 0B,,.

(B,,) be the

(A4)

. -1
Then u,, € L*(By,) and ”ugn s < I flls-

Proof Denote B, , := B, N {luml?~" < p}. By the Cavalieri Principle (see e.g.
[47, Proposition 1.7]), applied with the measurable function |um|‘1_] and measure dv =

q—1
Ty o1 <o

J

}dx, for every p > 0 we have

{lum |91 <p}

@0 = [ VD 0

m,p P

P
_ f D (i@ 5 1)y
0

s
— (- 1) / v({lum | > )T 2d
0

o |
_ _ s—2 q—
- (s 1)_/(; ’ (A|L’m|q_l>f} |um|X{|Mm‘q71<P}dx) dr
s
L) ( / Ifldx> dr,
0 {p>lum|971 27}

where in the last line we used the following key inequality proved in [47, (4.12) on p.67],

/ lum |7 dx < / |fldx, Vk > 0.
{lum | >k} {lum|>k}

Applying once again Cavalieri’s Principle, this time with the measurable function [u,, |9~

and measure d := | f|, (j,.js-1 <p}dx, and using Holder’s inequality, we have

priT
/ |17 dx < (s = 1) / o ( / If Ix{|um|q—l<p}dX> de
Bm.p 0 {lum‘qilzf}

s
— - 1) / Dl > TPt de
0
p
- f ({406 5 11y
0

- /B |um|(q_1)(x_l)|f|X{|'4m|"’1<p}dx
m,p

s—1
E /
Bm,p
/ @ D5 < /
Bm,/) B

Since the bound (A.5) holds uniformly for all m € N and p — oo, the assertion follows. O

s

|um|<q‘>fdx) I£1ls,

which implies

fPdx < /R IfPdx. (A5)

m,p
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Proof of Theorem A.1 Let m € N and {u,,} be the sequence of solutions to (A.4). Observe
that u,,4+1 also solves the equation on B, and u,,+; > 0 on dB,,. Thus, by the maximum
principle on By, one has u;,+1 > u,,, so {u,,} is an increasing sequence. Moreover, it follows
from (A.5) that {u,,} is locally bounded in L* (RM). Then {u,,} converges pointwise to a
function u that satisfies, by Fatou’s lemma,

luoollLsmyy < 1 1lLsmny-
By the monotone convergence theorem, uzl_l - ulSVin L*(By,), for every m € N. Hence
U satisfies, for all ¢ € C°(RN),

—/ uooAgodx—i—/ ug.fltpdx=/ fodx,
RN RV RN

i.e. Ui is a distributional solution of (A.1). Then uy, = u s is the unique solution of (A.1),
by the Brezis’s uniqueness result [9, Theorem 1].

Now let v € L}o C(RN ) be a nonnegative distributional sub-solution of (A.1) and set
w=(v— uf)f By Kato’s inequality [9, Lemma A.1],

—Aw+ (vq—l - uji]) signt(w) <0 in 2'RV).

On the other hand, there isa 8 > O such that 8(a — b)?~! < a?~! — b9~ foralla > b > 0.
Then

—Aw+w?' <0 in Z®RY)

and w = 0 by [9, Lemma 2]. O
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