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Abstract 

In this paper, we present a new computationally-efficient and high-resolution depth-averaged 

two-phase flow model for hydro-sediment-morphydynamic processes, featuring an advance 

over existing models in terms of accuracy and efficiency of numerical solution. Under the 

framework of finite volume method (FVM) on unstructured grids, the Harten-Lax-van Leer-

Contact (HLLC) approximate Riemann solver is proposed to compute inter-cell fluxes by 

applying the classical upwind HLLC approach to the water-sediment mixture and the 

sediment phases separately, in contrast to previous two-phase flow models using centered 
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schemes. Moreover, to improve computational efficiency, the local-time-stepping (LTS) 

approach is implemented, the first attempt in the field of two-phase flow modelling. After a 

convergence rate study, the model is tested against a series of flow-sediment-bed evolutions 

induced by (1) two refilling processes of dredged trenches, (2) two instantaneous dam-break 

flooding flows, and (3) one levee breaching process by overtopping flows. It features 

encouraging performance when compared to a two-phase flow model based on a centered 

scheme and global time bound, characterized by more accurate results and much less 

computational cost. The present modelling framework shows promise in practical shallow 

water hydro-sediment-morphodynamic modelling applications.  

 

Keywords 

hydro-sediment-morphodynamic process; two-phase flow modeling; HLLC Riemann solver; 

Local-time-step; Globally maximum-time-step 

 

1. Introduction 

Refined and efficient modelling of shallow water hydro-sediment flows is important for not 

only river engineering practice, but also flood risk management. The last two decades have 

witnessed increasingly widespread applications of shallow water (depth-averaged) hydro-

sediment-morphodynamic (SHSM) models and their variants (Cao et al. 2017). However, 

existing SHSM models are mostly based on the single-phase premise (Hoey and Ferguson, 

1994; Armanini and DiSilvio, 1998; Cao et al. 2011, 2017; Guy and Castelltort, 2006; Wu 

and Wang, 2008; Canestrelli and Toro, 2012; Hu et al. 2012, 2014, 2018, 2019; Juez et al. 

2014; Zhao et al. 2019; Meurice and Soares-Frazão, 2020). In these models, the velocities of 
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the sediment phases are assumed equal to the mixture velocity or are empirically determined 

by the mixture velocity along with a modification coefficient less than unity. Consequently, 

the relative motions and interactions between water and sediment phases are not 

incorporated. In fact, not only is the advection velocity of bedload appreciably lower than the 

flow (Greimann et al. 2008), but also a velocity lag between the flow and the suspended 

sediments has been observed (Muste et al. 2005). In this regard, a two-phase model is 

certainly warranted.  

There have been different types of two-phase models for shallow water hydro-sediment 

flows. For example, vertical 2D two-phase models were used to investigate the vertical 

sediment concentration distributions (Bakhtyar et al. 2009; Chen et al. 2011); meshfree SPH 

two-phase models were used to tackle problems with strong free surface variations (Shi et al. 

2017, 2019); the two-phase SHSM models, which are the present topic, have been developed 

for not only fluvial processes (Greco et al. 2012; Di Crisco et al. 2016; Li et al. 2018, 2019, 

2020), but also earth surface flows such as debris flows and granular flows (e.g., Pitman and 

Le, 2005; Pudasaini, 2012). It is appreciated that bedload occurs mainly in a thin layer on the 

top of the erodible bed surface, where the sediment concentration is much higher than the 

depth-averaged value. In this regard, a two-layer two-phase model may also be appealing 

(Zech et al. 2008; Martínez-Aranda et al. 2019), which is reserved for future study. Unless 

otherwise stated, the present two-phase SHSM models are all depth-averaged versions. In the 

last decades, the shock-capturing finite volume method has been widely used to deal with 

shallow water modeling challenges such as wet/dry treatments, capturing shock/contact 
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discontinuities (Greco et al. 2012; Di Crisco et al. 2016; Li et al. 2018, 2019, 2020). 

However, existing two-phase SHSM models have still suffered from two major shortcomings.  

First, existing two-phase SHSM models exclusively employ the centered schemes or more 

simplified method to estimate the inter-cell numerical flux (Greco et al. 2012; Di Crisco et al. 

2016; Li et al. 2018, 2019, 2020). While using a centered scheme avoids the difficulty of 

managing complex wave structures by minimizing the use of eigenvalues, they tend to spread 

the solution more than upwind schemes (e.g., the HLLC Riemann solver and the Roe 

Riemann solver). In particular, when multi-dimensional problems are studied, vortices are 

excessively dissipated by numerical diffusion, as well as any shear flow (Canestrelli and Toro 

2012). Moreover, when passive scalars are conveyed, centered schemes may also spread the 

solution. The HLLC Riemann solver, which represents a classical upwind scheme by making 

full use of the eigen-structures, will be adopted for the present two-phase SHSM model. A 

major challenge for applying the HLLC solver in two-phase SHSM models is their complex 

eigen-structures arising from the additional momentum equations of the sediment phases. 

Briefly, the HLLC Riemann solver was developed for 3-wave Riemann structures (Toro, 

2001, 2019), whereas the two-phase flow model, even if a single-sized sediment transport is 

assumed, would produce 6 wave speeds and 7 Riemann fields. Moreover, if the momentum 

source terms are included into the Riemann structures, an additional stationary wave may 

appear (Murillo and García-Navarro, 2012). Furfaro and Saurel (2015) also appreciated the 

difficulty for applying the HLLC solver to the compressible fluid-fluid two phase flows that 

have seven wave speeds. Furfaro and Saurel (2015) proposed to use the HLLC solver 
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separately for different phases because each fluid phase has its own set of mass, momentum 

and energy balancing equations. This strategy is extended to present two-phase SHSM model. 

Specifically, the entire system is split into a mixture part and several parts of different 

sediment sizes, facilitating usage of the HLLC solver.  

Second, the attractiveness of existing two-phase SHSM models is limited by its relatively 

high computational cost. Specifically, existing two-phase SHSM models have employed the 

globally minimum time step (GMiTS) for variable updating. That is, the globally minimum 

value of all locally allowable maximum time steps, which are computed by the Courant–

Friedrichs–Lewy (CFL) stability condition, is used. For most cells, however, the GMiTS is 

much smaller than the locally allowable maximum time steps. In contrast to the GMiTS, an 

alternative appealing method is the hybrid local-time-step (LTS)/globally maximum time step 

(GMaTS). By this hybrid approach, updating of the hydro-sediment module is completed by 

using local time steps close to the locally maximum time steps as much as possible (Sanders, 

2008), whereas updating of the morphodynamic model is completed by using the GMaTS. It 

has been demonstrated that this hybrid approach can bring significant reduction in the 

computational cost of quasi-single phase SHSM models (Hu et al. 2019). However, it has 

been rarely reported for two-phase SHSM models. Furthermore, GPU-acceleration is also an 

important option for improving the computational efficiency (Ingelsten et al. 2020; Conde et 

al. 2020; Martínez-Aranda et al. 2022; Sweet et al. 2018), which is reserved for future study. 

This paper presents a new computationally-efficient and high-resolution depth-averaged two-

phase model for hydro-sediment-morphodynamic processes. Mathematical formulations are 
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presented in Section 2. Specifically, the governing equations are solved by the finite volume 

method on unstructured triangular cells. The inter-cell numerical flux is estimated by the 

HLLC solver, which is novel as compared to previous two-phase SHSM models that are 

mostly based on centered schemes. For variable updating, the hybrid LTS/GMaTS approach 

is implemented, which, to the authors’ best knowledge, has rarely been reported for two-

phase SHSM modelling. Moreover, the model is parallelized by using the OPEN MP 

technique. In Section 3, the convergence rate studies are firstly conducted; afterwards, the 

new two-phase SHSM model is tested against a series of flow-sediment-bed evolutions due to 

(1) two refilling processes of dredged trenches, (2) two instantaneous dam-break flooding 

flows, and (3) one levee breaching process by overtopping flows. Particular attention is given 

to its improved quantitative accuracy and enhanced computational efficiency, as compared to 

previous two-phase SHSM models (Greco et al. 2012; Di Cristo et al. 2016). The paper is 

concluded in Section 4. 

 

2. Mathematical formulations 

2.1 Governing equations and empirical closures 

Consider shallow water-sediment flows over an erodible bed composed of non-cohesive 

sediment with NSPS  size classes. Let 
kd  denote the diameter of the k -th sediment size, 

where subscript =1,2,.....,k NSPS . The proposed model is a two-dimensional extension of the 

one-dimensional depth-averaged two-phase flow model (Li et al. 2019). The governing 

equations comprise mass and momentum conservation equations for the water-sediment 

mixture, the sediment phases, and the mass conservation equations for the bed material. The 
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resulting system of equations can be expressed in standard, well-structured conservation form 

as follows:  
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and bed deformation equation:  
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where U  represents the vector of the conserved variables; F,G are the vectors of the flux 

variables; 
bS  denotes the vector of the bed slope; S  denotes the vector of the friction source 

terms; fS  is the vector containing physically-based contributions from the interactions 

between the water and sediment phases and sediment-sediment phases; 
mS  is the vector of 

the source terms representing mass and momentum contributions from bed exchange; and 
sS  
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is the vector of the source terms representing momentum contributions derived of decoupling 

the flow density from the mass and momentum conservative variables; t  is the time; ,x y  are 

the spatial horizontal coordinates in the Cartesian coordinate system; h  is the depth of the 

water-sediment mixture; 
bz  is the bed elevation; g  = 9.8 m

2
/s is the gravitational 

acceleration; ,u v  are the depth-averaged velocities of the water-sediment mixture in the x  

and y directions respectively; ,sk sku v  are the depth-averaged size-specific velocities of the 

sediment phase in the x  and y  directions ; 
kc  is the depth-averaged size-specific 

volumetric sediment concentration; ( ) /s fR     ; (1 )f sC C      is the density of 

the water-sediment mixture; f  = 1000 kg/m
3
 and 

s  are the densities of water and sediment 

respectively; kC c  is the depth-averaged total sediment concentration; 
bx bS z x   ,

/by bS z y    are the bed slopes in the x  and y  directions; +bx fbx skbx     and 

+by fby skby    are the total bed shear stresses for the hydro-sediment mixture, by which 

the total bed shear stresses for the water-sediment mixture are divided into the bed shear 

stress components exerted respectively on the water and sediment phases; fbx  and fby  are 

the bed resistance stresses for the water phase in the x  and y directions; ,skbx skby   are the 

bed shear stresses for sediment phases in the x  and y directions; 0( ) / (1 )T TF E D p   ; 

T kE E  and T kD D are the total sediment entrainment and deposition fluxes; 
kE  and 

kD  are the size-specific sediment entrainment and deposition fluxes; 
0p  is the bed sediment 

porosity; bz    is the bottom elevation of the active layer, 
84ha d   is the thickness of 

the active layer, 
ha  is an empirical coefficient ranging from 1 to 4, 

84d  is a characteristic 

sediment size, the subscript 84 means that 84% sediments are finer than 
84d ; 

akf  is the 

sediment fractions within the bed active layer; 
skf  is the sediment fractions at the interface 
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between the active layer and those below the active layer. , , , ,m mx my skx skyN N N N N  are 

components of the vector fS , which are expressed as follows: 
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where 0 0 0(1 )f sp p      is the density of bed materials; =
ks x ski u u , =

ks y ski v v are 

inter-phase velocity discrepancy between the size-specific sediment phase and the water-

sediment mixture;  =fx fi u u , =fy fi v v  denote velocity discrepancy between the water 

phase and the water-sediment mixture; fu and fv  are the depth-averaged velocity of the 

water phase (Eq. 6); = ( )skfx f rk f skF D h u u  , ( )skfy f rk f skF D h v v   are the size-specific 

depth-averaged interphase interaction forces; 
rkD  is a function related to the drag coefficient 

(see Eq. 7); 
ks s xF 

 and kys sF   are the size-specific depth-averaged particle-particle interactive 

drag forces (Eq. 8):  
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where 
2 2

eR (1 ) ( ) ( )k f sk f sk k fC u u v v d      ; f = 6 210  /m s  is the kinematic 

viscosity of fluid phase; 
-16.3 ssdc   is the liner drag coefficient; 

-5 2 2=1.26 10 m sdv   is the 

linear diffusive coefficient (Hill and Tan, 2014); s k sku c u C ,
s k skv c v C  are mean 

sediment velocity. By Eq. (7), the interphase drag force is determined by combining the 

Ergun equation for dense water-sediment mixtures and the power law for dilute suspensions 

(Gidaspow, 1994); By Eq. (8), the inter-grain size interaction force includes a linear velocity-

dependent drag force, an inter-grain size surface interaction force and a remixing force (Gray 

and Chugunov, 2006; Hill and Tan, 2014). Eqs. (9, 10) present empirical relations for bed 

resistance from the water phase (using the Manning roughness) and for the sediment phase 

(using the Coulomb friction law, Savage and Hutter, 1989), respectively: 
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where n  is the Manning roughness; (1 )fh h C   is the depth of the water phase; the 

parameter tan bed  expresses the collinearity of shear stress and normal stress; 
bed  is s the 

friction angle of the sheared granular material. While it has been demonstrated that the 

dynamic pore-fluid pressure, i.e. the excess of pressure within the liquid phase respect    to the 
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hydrostatic value, is important for  very dense-packed water-solid flows (McArdell et al. 

2007, Iverson et al. 2010) such as debris flows (Hungr and Mcdougall, 2009; George and 

Iverson, 2014), the present study used the Coulomb-relation (Savage and Hutter, 1989) for 

the sediment resistance, which expresses the collinearity of shear stress and normal stress 

through a friction coefficient. This relation implicitly indicates that the pressure within the 

liquid phase at the bed surface is hydrostatic, which is reasonable because in the present 

cases, all sediment volume concentrations are below 0.1. Sediment exchange with the bed is 

estimated by Eqs. (11)  

,k k k k k k ek kD c E c     ,                                              (11) 

where 
k  is the settling velocity for sediment of diameter 

kd , which is calculated using the 

Zhang (1961) formulation; 
ekc  is the size specific depth-averaged sediment transport 

capacity, of which the estimation will be introduced in the specific case study; and the 

parameter 
k  represents the difference between the near-bed concentration and the depth-

averaged concentration is estimated with an upper limit 
k kh t    derived by Hu et al. 

(2014). Eq. (12) presents empirical relation for the fraction 
skf  at the lower boundary of the 

active layer (Hoey and Ferguson, 1994) 
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where 
0

skf  is the sediment fraction of the k -th size sediment in the substrate layer.  

 

2.2 Time step estimations 

Fig. 1 shows sketches of internal triangular cells: a triangular cell has three nodes, three faces, 

and three neighboring cells (Fig. 1a) and a face has two nodes and is shared by two 

neighboring cells (Fig. 1b). The total number of cells is 
cN  and the total number of faces is 

fN ; In Fig. 1a, ijR  is the distance from cell - i  center to its j -th face, where the i  indicates 
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the sequence of the cells and j  indicates the j -th face of the cell i  with 1,2,3j  ; 
iA  is the 

area of the cell- i ; ijL  is the length of the j -th face of the cell- i ; ( , )ij x y ijn nn  represents 

the normal outward direction of the j -th face of the cell- i . Physical conserved variables 

shown in Fig.1 will be introduced when they appear in the mathematical formulations below.  

 

Figure 1. Sketches of the unstructured triangular meshes: (a) a cell surrounded by three cells 

and (b) a face shared by two neighboring cells 

 

The locally allowable maximum time step 
amit  (where the subscript ‘am’ indicates allowable 

maximum) is firstly estimated as follows: 

am
2 2 2 21,2,3

1,...,

min ( ), 1,2,3,~,
0.5

ij ij

i c
j
k NSPS ij ij i skij skij i i s

R R
t Cr i N

u v gh u v gh 


  
   

，    (13) 

where Cr  is the Courant number, which is set as 0.9 in this paper;  and ,i ih   are the depth 

and the density for the hydro-sediment mixture at cell- i . , , ,ij ij skij skiju v u v  are velocities of the 

j -th face of the cell- i . Traditional models always use the globally minimum time step 
Gmit  

to update the physical variables and here we use the approach of the local graded time step 

presented by Hu et al. (2019). The potential graded LTS level for every cell is computed as: 
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log( / )
min int( ), , 1,2,3,~,

log(2)

ami Gmi
i user c

t t
m m i N

  
  

 
                (14a) 

1,
min( )

c
Gmi ami

i N
t t


                                                            (14b) 

where userm  is a user-defined upper limit value. Setting 0userm   means the graded levels of 

all cells are zero, which will make the model equivalent to the GMiTS model. The model 

further modifies the LTS level of neighboring cells that are characterized by abrupt flow 

regime changes (i.e. the wet/dry front and the static/dynamic front of both sediment and 

water). Specifically, LTS level of such neighboring cells are set to a locally minimum value. 

The actual grade level fMm  for face- M  is computed as follows  

min( , ), 1,2,3,~,fM ML MR fm m m M N                                  (15) 

where ,ML MRm m  represent the potential graded levels of two neighboring cells of face- M

(see Fig. 1b). The potential graded time step level of each cell is finally computed in the 

following 

*

1 2 3min( , , , ), 1,2,3,~,i i i i i cm m m m m i N                            (16) 

where 
1 2 3, ,i i im m m  represents the potential graded level of the three neighboring cells of cell-

i . Afterwards, the graded local-time-step is computed as: 

*

2 , 1,2,3,~,im

L i Gmi ct t i N                                                  (17) 

Finally the GMaTS can be computed as: 

max( ), 1,2,3,~,L i cT t i N                                                 (18) 
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2.3 Finite volume discretization 

As shown in Eqs. (19-21), the hybrid LTS/GMaTS approach is used for variable updating. 

Specifically, the hydro-sediment part is updated by the LTS and the morphodynamic part are 

updated by GMaTS (see Fig. 2 for a summary): 

3
** * * * * * *

1

( )L i
bii i nij ij L i i fi mi si

ji

t
L t

A








       U U E S S S S S                         (19) 

0 0

1

[( ) ( ) ]
( ) ( )

1

p

c

N Sc Sc
t T t L i T i T i

b i b i

S o

t D E
z z

p

 



 
 


                                 (20) 

0 0

,

1 1

[( ) ( ) ] [( ) ( ) ]
( ) ( )

1 1

p p

c c

N NSc Sc Sc Sc
t T t L i k i k i L i T i T i

ak i ak i sk i

S So o

t D E t D E
f f f

p p
   

 

   
  

 
      (21) 

where  *

nij x y ij
n nE F + G  is the numerical flux crossing the j -th face of the cell- i , which is 

estimated by approximate Riemann solvers (see Section 2.4); the superscripts ‘*’ and ‘**’ 

represents two consecutive sub-time levels (the temporal interval is 
L it  ) between 

0t  and 

0t T . The temporal interval between the two synchronized time levels 
0t  and 

0t T  is 

termed a full cycle; /p GmiN T t    is the maximum number of sub-cycles in the full cycle; 

and the symbol 
cS  is used to indicate the sequence of sub-cycles with 1,2,~,c pS N . Within 

a full cycle, the hydro-sediment-morphodynamic system will be updated from one 

synchronized time level to the next. To complete such update, the morphodynamic part at all 

cells is updated only once (Eqs. 20, 21), whereas the times that the hydro-sediment part has to 

be updated at a specific cell- i  is equal to the ratio / L iT t    (Eq. 19). If 
*

min2 im

L it t   , the 

times that the hydro-sediment part at cell- i  is updated are 
*

/ 2 im

pN , indicating that hydro-

sediment part in cell- i  will be updated every 
*

2 im
 sub-cycles. In a specific sub-cycle 

cS , the 
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implementation of the hydro-sediment part is activated if this inequality * ( )i s cm l S  is 

satisfied, where 
sl  is a function of the sequence 

cS  (see Hu et al. (2019) for the function), 

whereas estimation of numerical fluxes in a specific sub-cycle depends on whether 

 MOD ( 1) / 2 0fMm

cS   . If the hydro-sediment part is to be updated in the cS  sub-cycle, the 

source terms would also be estimated; otherwise the source terms in the cS  sub-cycle take 

zero-value. Specifically, the source terms for the bed slope biS  are evaluated using the slope 

flux method (Hou et al. 2013) with flow variables at the sub-cycle but bed elevations at the 

initial synchronized time level ‘ 0t ’ as input. The vectors 
*

siS , *

iS , 
*

fiS  and 
*

miS  are evaluated 

explicitly using empirical relations with flow variables at the time level after updating biS  

and 
*

nijE  as input. To overcome numerical instabilities arising from the relatively large spatial 

and time steps that lead to an issue of stiff source term, the following numerical treatments 

are proposed to attach the implementation of theoretically-derived lower and upper limits for 

the inter-phase interactive forces. For updating momentum equations of hydro-sediment 

mixture, modified source term 
* * * *(2) (2) (2)mixture

xi i si fi  S S S S  and 

* * * *(3) (3) (3)mixture

yi i si fi  S S S S  in the ,x y  direction can be defined as: 

* * *
*

* * *

max[ , / ] 0

min[ , / ] 0

mixture
mixture xi i i L i i
xi mixture

xi i i L i i

h u t u

h u t u





   
 

  

S
S

S
                                  (22a) 

* * * *

*

* * * *

max[ , / ] 0

min[ , / ] 0

mixture

yi i i i imixture

yi mixture

yi i i i i

h v t v

h v t v

   
 

  

S
S

S
                                    (22b) 

For updating momentum equations of sediment phase with the size kd , modified source term 

can be defined as: 
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* * *

* * *

*

* ** * *

* ** *

max[ ( ), ( ) / ]  0

min[ ( ), ( ) / ]  0
( )

min[ ( ), (( ) ( ) ) / ]  0

max[ ( ), (( ) ( ) ) / ]  

sed

xi k sk i L i ski

sed

xi k sk i L i skised

sedxi

xi k f i k sk i L i ski

sed

xi k f i k sk i L i ski

k hc u t u

k hc u t u
k

k hc u hc u t u

k hc u hc u t u









  

  


  

 

S

S
S

S

S
* 0






 

.               (23a) 

* * *

* * *

*

* ** * *

* ** *

max[ ( ), ( ) / ]  0

min[ ( ), ( ) / ]  0
( )

min[ ( ), (( ) ( ) ) / ]  0

max[ ( ), (( ) ( ) ) / ]  

sed

yi k sk i L i ski

sed

yi k sk i L i skised

yi sed

yi k f i k sk i L i ski

sed

yi k f i k sk i L i ski

k hc v t v

k hc v t v
k

k hc v hc v t v

k hc v hc v t v









  

  


  

 

S

S
S

S

S
* 0






 

                 (23b) 

For the subcritical inflowing boundary face, the unit discharge and unit-width sediment 

transport rate (or the sediment concentration) must be given. The tangential velocity to the 

face is set to zero. The water depth and the normal flow velocities are estimated by the 

method of characteristics. For supercritical outlet boundary face and a wall boundary face, all 

physical variables at the face are set equal to the values at the neighboring cell.  

 

Figure 2. Numerical structure of for the new two-phase SHSM model 
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2.4 Estimation of numerical flux using the HLLC Riemann solver 

Estimation of the inter-cell numerical fluxes (e.g., 
*

nijE  for the j -th face of the cell- i ) is of 

high importance for high-resolution two-phase SHSM modeling. One aim of this paper is to 

apply the HLLC Riemann solver to estimate the numerical flux, which makes full use of the 

eigen-structures and thus is more accurate than the widely adopted centered schemes. To 

derive the eigenvalues, the governing equations are rewritten in the Jacobian matrix form as 

follows: 

( )( ) b f s m
t x y



  
      

  

U U U
J U S S S S S                             (24a) 

with the Jacobian matrix reads: 

51 1 54 1 55 1 56 1

51

2

54 55 56

51 54 55 56

21 2 23

31 32 33

0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0

0

0 0 0 0 0 0 0( )
0 0 0 0 0

0 0 0 0 0

x y

y

x y

x y

k k k k

NSPS NSPS NSPS

x

x y

a a a
a

n n

n n

n n

n n

a a a a
a a a a

a a a

a a

a

n n

   

   

  







J U
(F + G )

U

61 1 64 1 65 1 66 1

61 64 65 66

61 64 65 66

0 0 0 0 0

0 0 0 0 0

NSPS

k k k k

NSPS NSPS NSPS NSPS

a a a a
a a a a

a a a a



   

   

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (24b) 

where 21 xna gh uu  , 22 xna u u  , 
23 ya un , 

31 yna gh vu  , 32 xa vn , 
33 ya u nv  ,

51
2 s

k x
k

ghc n
a




  , 61

2 s

k y

k

ghc n
a




  , 

54
2

x
k sk k

s

s

n
a

gh
uu




  , 64

2

y

k sk k

s

s

n
a

gh
v u




  , 

55 k sk x ska u n u  , 65 vk sk xa n  ,
56 k sk ya u n  ,

66 sk sk yk vu na
  ; and =sk sk x sk yu u n v n  , 

= x yu un vn   are the velocities perpendicular to the cell face. The eigenvalues   can be 

estimated from 0 J I  (where I  is the unit matrix) and thus are the roots of the 

following characteristic polynomial: 
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2 2

1

( )(( ) ) ( )( ) 0
2

NSPS

sk sk

k s

gh
u u gh u u


   


   



 
       

 
 （ ）                      (25) 

There are 3 3NSPS   roots for Eq. (25), corresponding to the 3 3NSPS   distinct eigenvalues. 

However, the HLLC Riemann solver was designed for 3-wave system. To overcome this 

challenge, these distinct eigenvalues are grouped into 1NSPS   parts: one part for the water-

sediment mixture (Eq. 26), and NSPS part for the NSPS  sediment sizes (Eq. 27):  

For the hydro-sediment mixture: 
1

mixture u  , and 

2,3

mixture u gh                                                  (26) 

For the k -th sediment phase: 
1

Sed k

sku 

 , and  

2,3   
2

Sed k

sk

s

gh
u








                                           (27) 

where 1 2,3

mixture，  are eigenvalues related to the motion of the hydro-sediment mixture and 1 2,3

Sed k 

，

for the k -th sediment size, respectively. It is obvious from Eqs. (26, 27) that each part 

consists of three eigenvalues, which can be used to construct an independent 3-wave system 

and thus facilitates the implementation of the HLLC Riemann solver. Take the estimation of 

the numerical flux nME  at the face- M  as an example, the numerical flux should be also split 

into 1NSPS   parts (Eq. 28): one part for the hydro-sediment mixture ( ( , )mixture

HLLC L RF W W ) , 

and NSPS  part for the NSPS  sediment sizes ( ( , )sed k

HLLC L R


F W W , 1,  k NSPS ): 

mixture

1

( , )

( , )

( , )

( , )

mixture

nM HLLC L R

sed sed k

nM HLLC L R
nM sed k sed k

nM HLLC L R

sed NSPS sed k

nM HLLC L R

 

 

 

   
   
    
   
   
      

E F W W

E F W W
E

E F W W

E F W W

                                         (28) 

where ,L RW W  are the two conservative variable vectors at the left and right side of the face-

M , which are used by the HLLC-type Riemann solver (see the Appendix); the subscripts 
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“ ,L R  ” indicates the left and right sides, respectively. For convenience in description, the 

three elements of the vector W  are represented by 1 1 2w w w， , and 1 3w w :  

For the mixture part:  

1 2 3,  ,  w h w u w v                                                                                          (29) 

For the k -th sediment size part:  

1 2 3,  ,  k sk skw hc w u w v                                                 (30) 

In the present model, the first-order method is used by setting the Riemann states ,L RW W  

directly equal to the values of the conserved variables at the neighboring cell center. To 

ensure non-negative water depth reconstruction, the following modifications on the left and 

right Riemann states must be implemented (Audusse et al. 2004). Firstly, the bed elevations 

at two sides are estimated as follows: 

,bML bML ML bMR bMR MRz h z h                                       (31a) 

Secondly, the water depth at two sides are modified as: 

max(0, ), max(0, )ML bML bM MR bMR bMh z h z                             (32b) 

where max( , )bM bML bMRz z z . 

The specific expressions for the classical HLLC-type Riemann solver can be found in the 

literature (Toro 2001, 2019) and in the Appendix. To demonstrate the advantages of the 

upwind HLLC solver for two-phase SHSM modeling, another two-phase SHSM model is 

also developed with the centered FORCE solver, for which no information of the eigenvalues 

and wave structures are needed. The details of the FORCE solver can also be found in the 
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Appendix. 

 

3. Model Performance 

To demonstrate the performance of the new two-phase SHSM model, convergence rate study 

is firstly conducted; afterwards, the new model is tested against a series of flow-sediment-bed 

evolutions due to (1) two refilling processes of dredged trenches (Van Rijn, 1986; Armanini 

and Di Silvio ,1988), (2) two instantaneous dam-break flooding flows (Spinewine and Zech, 

2007; Soares-Frazão et al., 2012), and (3) one levee breaching process (Tingsanchali and 

Chinnarasri, 2001). It is appreciated that these flow scenarios have been intensively simulated 

by quasi-single phase SHSM models (Zhao et al. 2019; Juez et al. 2014; Meurice and Soares-

Frazão 2020 and Hu et al. 2019) or two-phase SHSM models that are based on the centered 

schemes (Greco et al. 2012; Di Cristo et al. 2016). As compared to quasi-single phase SHSM 

models, the present new model can shed lights on the role of inter-phase interaction between 

water and sediment. For example, the velocity discrepancy between the sediment phase and 

the water phase can be resolved by the present two-phase SHSM model. However, such inter-

phase interaction is ignored by the previous single-phase SHSM models. From a perspective 

of physics, this velocity lag may significantly alter bed topography evolution. Nevertheless, 

comparisons of numerical solutions between the quasi-single phase model and the two-phase 

model are not shown in this paper because the focus of this paper is to advance existing two-

phase SHSM modeling capabilities. As compared to previous two-phase SHSM models, the 

present model features improvements in both numerical accuracy and the ability to capture 
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key flow features, which will be demonstrated in the following.  

 

3.1. Convergence rate study  

An idealized dam-break flow over a frictionless dry bed is simulated on successively refined 

meshes (the averaged mesh sizes are 0.2 m, 0.1 m, 0.05 m and 0.025 m, respectively): a 

square domain of [20, 1] m
2
 is considered: the bed is initially dry for 0x   m, and the initial 

water depth 0h  for 0x   m is set to 0.6 m. The analytical solution for the water depth is as 

follows 

0

20
0

                ( )

4
( , , ) ( ) ( ) ( )   

9 2

0                   ( )

A

A B

B

h x x t

x x
h x y t gh x t x x t

g t

x x t

 



   

 

 (33) 

where 
0( )Ax t t gh   and 

0( ) 2Bx t t gh . Fig. 3 presents comparisons between the exact 

solutions and the numerical solutions (water depth) on successive refined meshes by the two-

phase SHSM model using (a) the HLLC solver and (b) the FORCE solver. From Fig. 3, the 

computed water depth by both solvers agree with the analytical solutions quite well, for 

which the discrepancy between the numerical and the analytical solutions decreases as the 

mesh size is refined. Standard norms (
1L  and L

) between the computed and analytical 

solutions of the water depth are computed, based on which the relative convergence rates are 

estimated. Table 1 shows the mesh statistics (cell number, averaged cell sizes), the standard 

norms 
1L , L

 and the relative convergence rates at 0.5 t s . From Table 1, the orders (0.68, 

0.73, 0.75) of accuracy of the HLLC solver are consistently higher than those (0.58, 0.65, 

0.73) of the FORCE solver. Moreover, the discrepancies between numerical solutions and 

analytical solutions (e.g., about 1.61E-2, 2.71E-2, 4.49E-2, 7.2E-2 for different meshes) for 

the HLLC solver are consistently smaller than those (e.g., about 2.98E-2, 4.93E-2, 7.74E-2, 

1.16E-1 for different meshes) for the FORCE solver. The computed convergence rates for 

dam-break flow problems using the HLLC solver is consistent with previous evaluations 

                  



 

22 

 

(Prebeg et al. 2018; Daude et al. 2014). 

Afterwards, a pure scalar advection process in a horizontal square domain of [10000, 1000] 

m
2
 (Petti and Bosa, 2007) is numerically simulated on successively refined meshes (the 

averaged mesh sizes are 200 m, 100 m, 50 m, 25 m and 12.5 m, respectively). The bed slopes 

are 0.001,  0bx byS S   ; and the bed Manning roughness 0.025n  . At the upstream 

boundary a steady flow rate 
20.1243 m /sq   is imposed to obtain a uniform flow: 

 
3/5

/ ( )bxh qn S   and /u q h . An initially distribution of scalar concentration is 

imposed at the domain: 

2 2-1400 -2400
0.5 0.5

264 264
0( , ,0) 10 6.5

x x

c x y e e
 

 
（ ） （ ）

 (34) 

which is a linear superposition of two Gaussian distribution, the first centred at 1400 m with a 

peak value of 10 m and the second centred at 2400 m with a peak value of 6.5; both having a 

standard deviation of 264 m. The analytical solution of the scalar concentration is 

0( , , ) ( , , )c x y t c x ut y t  . The simulation time is 9600 s. Fig. 4 illustrates comparisons 

between the analytical and numerical (at 9600 s) solutions of scalar concentration on 

successively refined meshes by the two-phase SHSM model using (a) the HLLC solver and 

(b) the FORCE solver. Table 2 summarizes the mesh statistics (cell number, averaged cell 

sizes), the standard norms 1L  and L , as well as the relative convergence rates. It is obvious 

from Fig. 4 and Table 2 that the HLLC solver is advantageous in simulating sediment 

advection process, as compared to the FORCE solver. Specifically, the order (about 0.32, 

0.41, 0.58, 0.74; 0.24, 0.36, 0.53, 0.70) of the HLLC solver is higher than the order (about 

0.32, 0.32, 0.31, 0.40; 0.17, 0.21, 0.25, 0.35) of the FORCE solver. The discrepancy (about 

1.60E-01 for a mesh of 151040) between numerical solutions and analytical solutions for the 

HLLC solver is much smaller than that (about 4.04E-01 for a mesh of 151040) for the 

FORCE solver. This confirms previous understanding that a centred solver may spread 

solution when scalar transport is concerned (Canestrelli and Toro, 2012). 
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Figure 3. Comparisons between the analytical and numerical (at 0.5 s) solutions of water 

depth on successive refined meshes by the two-phase SHSM model using (a) the HLLC 

solver and (b) the FORCE solver 

 

 

Figure 4. Comparisons between the analytical and numerical (at 9600 s) solutions of 

sediment concentration on successive refined meshes by the two-phase SHSM model using 

(a) the HLLC solver and (b) the FORCE solver 

Table 1. Convergence rate study: error norms and experimental convergence rates. 

Solver 
cN   (m)L  1L  1( )O L

 
L  ( )O L  

HLLC 1010 0.2 7.20E-02  4.08E-02  

4040 0.1 4.49E-02 0.68 3.06E-02 0.41 

16160 0.05 2.71E-02 0.73 2.34E-02 0.39 

64640 0.025 1.61E-02 0.75 1.67E-02 0.49 

FORCE 1010 0.2 1.16E-01  5.23E-02  

4040 0.1 7.74E-02 0.58 4.05E-02 0.37 

16160 0.05 4.93E-02 0.65 3.18E-02 0.35 

64640 0.025 2.98E-02 0.73 2.37E-02 0.42 

 

Table 2. Convergence rate study: error norms and experimental convergence rates. 

Solver cN   (m)L  1L  1( )O L  L  ( )O L  
HLLC 590 200 6.61E-01  5.39E+00  

2360 100 5.30E-01 0.32 4.56E+00 0.24 

9440 50 4.00E-01 0.41 3.55E+00 0.36 

37760 25 2.68E-01 0.58 2.46E+00 0.53 
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151040 12.5 1.60E-01 0.74 1.52E+00 0.70 

FORCE 590 200 1.03E+00  7.08E+00  

2360 100 8.23E-01 0.32 6.30E+00 0.17 

9440 50 6.61E-01 0.32 5.45E+00 0.21 

37760 25 5.33E-01 0.31 4.59E+00 0.25 

151040 12.5 4.04E-01 0.40 3.60E+00 0.35 

 

3.2. Refilling of dredged trench  

Two scenarios about refilling of dredged trench are numerically simulated. The first scenario 

concerns the laboratory experiment carried out at a flume of dimensions 30 m length × 0.5 m 

width × 0.7 m height by van Rijn (1986) at Delft Hydraulics Laboratory (case 3.2.1). The 

geometry of the trench was 0.15 m depth with a slope gradient of 1:10. During the 

experiment, a constant unit inflow discharge of 0.2 m
2
/s was specified at the inlet, with the 

mean flow depth and velocity stabilizing at 0.39 m and 0.51 m/s respectively. The bed was 

composed of fine sand (0.16 mm, 2650 kg/m
3
) with a setting velocity of 0.013 m/s, a porosity 

of 0.4. The bed roughness is set to 0.011. During the experiment, equilibrium sediment 

transport was maintained at the inlet boundary, thus the corresponding equilibrium rate was 

0.03 kg/m/s and the sediment concentration by weight at the cross section was 0.1508 kg/m
3
. 

The sediment transport capacity is estimated by the Wu et al. (2000)’s formula with the 

threshold Shields parameter equal to 0.03, which is calibrated using the inlet sediment 

transport rate. The empirical parameter  is calibrated as 18. The computational domain 

covers the entire flume channel. Based on a sensitivity study on the mesh sizes, a total of 

3084 triangular cells are used with an averaged cell size of 0.1 m.   

Fig. 5 shows the bed elevation profiles computed by the models based on HLLC and FORCE 

solvers along with the measurements at t   7.5 h and 15 h. Despite the observed slight 

discrepancy between model predictions and measured data, the process of refilling of a 

dredged trench is well reproduced by the two models with bed aggradation due to sediment 

input occurring in the front end of the trench and bed degradation due to erosion appearing 
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around the tip of the rear edge of the trench. As time go on, a small amount of the sediment 

are gradually deposited at the bottom of the trailing edge, causing the slope gradient to 

gradually decrease. The relative discrepancy between model prediction and the measured data 

is quantified by 
1 1

( ) /
Mea MeaN N

bi bmi bmi

i i

z z z
 

    : the relative discrepancy is reduced from 

9.56% for the FORCE solver to 6.36% for the HLLC solver. Note that this relation of relative 

discrepancy is used also in the following sections. 

 

Figure 5. Refilling of a dredged trench: bed elevation profiles at (a) t= 7.5 h and (b) t= 15 h: 

model predictions by the HLLC solver (red lines) and the FORCE solver, as well as the 

superimposed measured data (open circles). 

 

To further evaluate the capability of the two-phase model in modelling non-uniform sediment 

transport and morphological evolution, an extended case of trench refilling designed by 

Armanini and Di Silvio (1988) is revisited (case 3.2.2). In this case, a trench of the rather 

steep side slope (1:3) was set up and the sediment mixture consisted of two fractions: 1d   

0.075 mm (50%) and 2d   0.3 mm (50%). The sediment density is 2650 kg/m
3
. The unit 

inflow discharge was kept constant as 0.2 
2 /m s . The computational domain covers the entire 

flume channel, therefore generating a total of 3084 triangular cells and 1853 nodes. The 
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following parameters are used (Li et al. 2019): 0 0.4p  , 0.011n  , 25a   and 0.03c  ; 

the sediment transport capacity is estimated by the Wu et al. (2000)’s formula. Fig. 6 shows 

the bed elevation profiles computed by the models based on HLLC and FORCE solver along 

with the Armanini solution at t   7.5 h and 15 h. The process of refilling of a dredged trench 

can be also well reproduced by the two models which can demonstrate the two-phase models’ 

ability to evaluate the non-uniform sediment transport. Rather limited differences in the bed 

profiles are observed for this case, featuring similar performances of the HLLC solver, 

FORCE solver and Armanini and Di Silvio (1988). 

 

Figure 6. Refilling of a dredged trench for non-uniform sediment transport: bed elevation 

profiles at (a) t= 7.5 h and (b) t= 15 h: model predictions by HLLC solver (red lines) and 

FORCE solver (blue lines) and simulated data by Armanini and Di Silvio (1988) (open 

circles). 

 

3.3. Instantaneous dam-break flooding flows and sediment transport 

In this section, two scenarios about instantaneous dam-break flooding flows and sediment 

transport are numerically simulated. The first scenario (case 3.3.1) concerns full dam-break 

flows in an abruptly widening erodible channel, which was conducted at the Civil 

Engineering Laboratory of the Universite Catholique de Louvain (Spinewine and Zech, 
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2007): the 6 m-long flume has a sudden asymmetrical enlargement in the channel width from 

0.25 m to 0.5 m at x   4 m (Fig. 7). Dam break flows was created by the rapid removal of a 

thin gate, representing an idealized dam, which is located at the middle of the flume ( x   3 

m). Initially, the bed was horizontal, composed of fully saturated non-cohesive sediments 

(diameter: 1.82 mm; density: 2680 kg/m
3
; porosity: 0 0.47p  ) with a thickness of 0.1 m, and 

extended both sides of the gate. The initial water depth was 0.25 m upstream of the dam, and 

the bed was dry downstream of the dam. At the outlet of the flume, a weir was installed to 

control the downstream water level. Following previous calibration efforts (Hu et al. 2019), 

the MPM formula is used for the sediment transport capacity and the following parameters 

are used: bed roughness 0.024n  , 10a   and 0.047c  . The computational domain covers 

the entire flume channel. Based on a sensitivity study on the mesh sizes, a total of 5182 

triangular cells are used with an averaged cell size of 0.03 m. A free-slip, non-permeable 

condition was employed in the upstream boundary and side walls. It was observed during the 

course of the experiment that a hydraulic drop occurred downstream of the weir, so the 

outflow did not affect flow upstream of the weir. Hence, a transmissive condition was 

imposed at the downstream boundary. Measurements of stage time series and final bed 

topography were carried out at several gauges and cross sections. The measured data at three 

gauges, labelled P1, P2 and P3, and two cross sections, labelled CS1 and CS2 are selected to 

compare with the model predictions. The locations of P1, P2 and P3 as well as CS1 and CS2 

were indicated in Fig. 7.  

Fig. 8 shows water level time series computed from models using the HLLC and FORCE 

solvers as well as two-phase flow model of Greco et al. (2012), along with the measured data. 

In general, as the dam-break flow bore propagates downstream, water levels at gauges P1 and 

P3 undergoes a rapid initial rising followed by a gradual decrease. For the gauge P2 at the 

corner of the enlarged cross-section, water level experiences a relatively slow increase. As 

can be seen from Fig. 8, at gauge P1 which is immediately downstream of the dam, the water 

level time series predicted by the three model agree rather well with the observed data. 
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However, at P2 and P3 located in the abruptly widening area, the model using HLLC solver 

performs appreciably better than the other two models when compared to the measured data. 

This phenomenon demonstrates the superiority of HLLC solver in shock capturing. 

Fig. 9 presents measured and computed bed level profiles from these aforementioned models. 

Although appreciable discrepancy can be identified, the model based on HLLC solver agrees 

well with the measured data as compared to the other models. This is further quantitatively 

confirmed by the relative discrepancy: the relative discrepancy by the HLLC solver (36.9% 

for CS1, 44.2% for CS2) is much smaller than those by the FORCE solver (64% for CS1, 

60% for CS2) and those (45% for CS1, 65% for CS2) from Greco et al. 2012. Most notably, 

the discrepancy value of model based on HLLC solver is about 20% percent smaller than that 

of its counterpart using FORCE solver. Fig. 10 shows the contour plots of final bed 

deformation depth with flow velocity vectors for the water-sediment mixture and the 

sediment phase predicted by models based on HLLC solver and FORCE solver, respectively. 

Note that the velocity plots produced using the original triangular mesh look ugly. We have 

interpolated the velocity on  structured meshes, based on which the velocity plots are 

produced. Both models have reproduced the phenomenon that intense bed erosion occurs 

downstream of the dam, and then the eroded sediments are deposited downstream of the right 

side of the enlarged cross-section and form a stripe of bed aggradation. Moreover, the depth-

averaged velocity of the sediment phase is shown to be remarkably lower than that of the 

water-sediment mixture. According to the results by model using HLLC solver, a vortex is 

formed at the corner of the enlarged cross-section, whereas this behavior is not exhibited 

from the results due to model based on FORCE solver. 

 

                  



 

29 

 

 
Figure 7. Sketch of the UCL dam-break experiment in a widening channel 

 

 
Figure 8. The full dam break scenario: computed and measured stage time series at three 

gauges: (a) P1, (b) P2 and (c) P3. 

 

 
Figure 9. The full dam break scenario: computed and measured cross-sectional bed profiles 
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at (a) CS1 and (b) CS2. 

 

 
Figure 10. The full dam break scenario: model predictions of final bed deformation contours 

and flow velocity vectors for water-sediment mixture and sediment phase using (a) FORCE 

solver and (b) HLLC solver at t= 4 s. 

 

 

The second scenario (case 3.3.2) concerns partial dam break flows in a straight erodible 

channel by Soares-Frazao et al. (2012). The flume is of 35 m length and 3.6 m width (Fig. 

11). The partial dam break was created by rapid lifting the 1-m wide gate, which was 

originally located in the middle of the flume and between two imperious blocks. The rigid 

bed of the flume was covered by a 0.85 m-thick layer of fully saturated sands with median 

diameter 1.61 mm and density 2630 kg/m
3
, which extended from 1 m upstream of the gate to 

9 m downstream of the gate. The outlet of the flume consisted of a weir and sediment 

entrapment system. Initially, the water level inside the reservoir was 0.47 m and the 

downstream reach was dry. The experiment lasted for 20 s. Measurements of water levels and 

final bed elevations were conducted in two repeated experiment runs given the above 

experimental setup, labelled ‘Mea. 1’ and ‘Mea. 2’ respectively. Water level measurements 

were undertaken at eight gauges during the course of both experiment runs. Gauges 1-4 were 

located along x   0.64 m, with y   -0.5, -0.165, 0.165 and 0.5 m, respectively. Gauges 5-8 

were along x   1.94 m , with y   -0.99, -0.33, 0.33 and 0.99 m. Bed elevation 

measurements were carried out at the end of the two experiments (i.e., t = 20 s), with data 

available for three longitudinal lines ( y  0.2, 0.7 and 1.45 m). Following calibrations by Hu 

et al. (2019): 0 0.47p  , 0.0165n   for the sand bed region and 0.01n   for otherwise; and 
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parameter   is set equal to 5; the sediment transport capacity is estimated by the MPM 

relation with 0.04c  . The computational domain covers the entire flume channel with a 

total of 21440 triangular cells with the average cell size of 0.1 m. 

Fig. 12 presents the computed water level time series at four gauges computed from the 

HLLC solver, the FORCE solver and Di Cristo et al. (2016), along with the measured data. In 

general, with the propagation of dam break flow toward to the outlet, water levels at all 

gauges undergo a rapid increase at the early stage and then decrease gradually. Fig. 13 shows 

the measured and predicted final bed elevation profiles along three longitudinal lines, i.e., (a) 

y   0.2 m, (b) y   0.7 m and (c) y   1.45 m from the aforementioned three models. In Fig. 

13, considerable discrepancies between the two sets of measured bed elevation profiles are 

observed especially in the near downstream of the dam, although the two experiment runs are 

conducted under the same setup. It indicates the bed change near the dam region is very 

sensitive and uncertain even to trivial disturbances in doing the experiments. As can be seen 

from Figs. 12 and 13, less accurate results are observed in the near-downstream region of the 

dam. This is arguably because the flow region around the corners of the expansion are 

characterized by strong and complicated 3-D flow structure, which however cannot be well 

captured by the depth-averaged models. Moreover, as compared to the other models, 

numerical predictions of maximum values of bed scouring and deposited depth by HLLC 

model are closer to measured data. In the far downstream region where close agreement is 

observed between the two sets of measurement, the accuracy of the predicted bed level is 

much improved in all models. This is further quantitatively confirmed by the relative 

discrepancy: the relative discrepancy by the HLLC solver (about 62.5%) is much smaller than 

those by the FORCE solver (74.7%) and those (72.1%) from Di Cristo et al. (2016). Fig. 14 

presents the flow velocity vectors for the water phase and the sediment phase at different time 

instants computed from HLLC sovler and FORCE sovler. In general, the water phase moves 
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faster than the sediment phase. At the early stage (i.e., t   2 s), the velocity difference 

between the water and sediment phases is relatively small as the dam-break flow is energetic 

enough to carry the sediments at almost the same velocity. Later when the flow energy 

decreases (i.e., t   5 s), such difference grows as the grains decelerate more rapidly and 

move slower as compared to the water phase. Comparatively, the HLLC model is able to 

capture the vortex when dam-break flow hits the sidewalls, echoing the findings from Di 

Cristo et al. 2016. However, the FORCE model fails to reproduce such behavior, possibly 

leading to the distortion of deposition and erosion.  

 

 
Figure 11. Sketch of the UCL partial dam-break experiment. 
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Figure 12. The partial dam break scenario: predicted (solid lines) and measured (open 

circles) water level time series at four gauges (a) G1, (b) G2, (c) G5 and (d) G6. 

 
Figure 13. The partial dam break scenario: predicted (solid lines) and measured (open 

symbols) cross-sectional bed profiles at (a) y = 0.2 m; (b) at y = 0.7 m; (c) y = 1.45 m. 
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Figure 14. The partial dam-break scenario: model predictions of flow velocity vectors for 

water-sediment mixture and sediment phase by (a1-a3) the FORCE solver; and (b1-b3) the 

HLLC solver. 

 

3.4. Levee breaching by overtopping flows 

Here, the experimental levee breaching process by overtopping flows, which was reported by 

Tingsanchali and Chinnarasri (2001), is numerically simulated (case 3.4). This experiment 

has been widely applied to verify the performance of the hydro-sediment model (Wu and 

Wang, 2008, Zhao et al. 2019, Martínez-Aranda et al. 2019, Mahdizadeh and Sharifi, 2021). 

The flume is 35 m long and 1 m wide, a dyke of 0.8 m high and 1 m wide is placed at the 

middle of the flume with a crest width of 0.3 m. The upstream and downstream slopes of the 

dyke are 1:3 and 1:2.5 (See Fig. 15). The bottom of upstream and downstream of the dyke is 

fixed and unmovable, and the dyke is made of medium sand with a diameter of 1.13 d mm  

and 32650 / s kg m  . The sediment transport capacity is estimated by MPM formulation; 
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0 0.47p  , 0.024n  , h t    and 0.047c  . Based on a sensitivity study on mesh sizes, 

a total of 5182 triangular cells and 2802 nodes is generated with an averaged size of 0.01 m. 

Fig. 16 presents the measured and computed (at 30 s and at 60 s) bed level profiles from these 

aforementioned quasi-single phase models and the present two-phase models. From Fig. 16, 

model predictions by the two-phase model with HLLC solver appears to agree better with the 

measured data as compared to the two-phase model with FORCE solver and other quasi-

single-phase models. The averaged relative discrepancy is 19.06% for the two-phase model 

with the HLLC solver, whereas it is 35.27% for the two-phase model with the FORCE solver. 

As compared to these previous quasi-single phase models, the quantitative accuracy of the 

present two-phase model is not only satisfactory, but also can resolve the complex 

interactions between the water phase and the sediment phase. 

 

 
Figure 15. Sketch of the Levee breaching by overtopping flows. 

 

Figure 16. The levee breaching scenario: computed with HLLC, FORCE, Wu and Wang, 

(2008), Zhao et al. (2019), Martínez-Aranda et al. (2019), Mahdizadeh and Sharifi, (2021) 

                  



 

36 

 

and measured bed profiles at (a) t = 30 s and (b) t = 60 s. 

 

3.5. Evaluation of the computational efficiency 

While the HLLC solver is more accurate than the FORCE solver, the former is more complex 

than the later (see the Appendix). Inevitably, this will induce some extra computational cost. 

Nevertheless, it is expected that the implementation of the hybrid LTS/GMaTS can overcome 

this extra computational cost. In this regard, computational cost of three versions of two-

phase SHSM models are compared: the traditional version using the FORCE solver and the 

GMiTS, the present improved version using the HLLC solver and the hybrid approach, and 

an intermediate version using the HLLC solver and the GMiTS. Obviously, the intermediate 

version should be computationally most demanding. Therefore, computational costs of the 

other two versions is regularized against the intermediate version. The resultant statistics of 

the relative computational cost and the speed-ups of the other two versions are presented in 

Table 3. From Table 3, the following is observed. First, in terms of the computational 

efficiency, using the simple FORCE solver can only bring very negligible advantage over the 

complex HLLC solver: the speed-ups of the FORCE are about 1.07-1.1, which is negligible. 

Second, implementation of the hybrid LTS/GMaTS brings significant improvement in the 

computational efficiency: the corresponding speed-ups can be as high as 1.88 for the steady 

flow scenario (refilling of dredged channels) and 3.0-3.2 for unsteady flow scenarios (full and 

partial dam breaks, levee breaching). For simulations in Section 3.2-3.4, relatively uniform 

meshes are adopted. If the mesh is locally further refined, which is common for natural-scale 

simulations, more speed-ups can be expected. 

 

Table 3. Summaries of the efficiency performances. 

Test Features of the model Relative computational cost Speed-ups 

Case 3.2.1: Refilling 

dredged trench 

GMiTS+HLLC 1.000 1.000 

GMiTS+FORCE 0.933 1.072 

Hybrid 

LTS/GMaTS+HLLC 

0.532 1.880 
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Case 3.3.1: Full dam 

break  

GMiTS+HLLC 1.000 1.000 

GMiTS+FORCE 0.910 1.099 

Hybrid 

LTS/GMaTS+HLLC 

0.307 3.258 

Case 3.3.2: Partial 

dam break  

GMiTS+HLLC 1.000 1.000 

GMiTS+FORCE 0.920 1.083 

Hybrid 

LTS/GMaTS+HLLC 

0.332 3.008 

Case 3.4: Levee 

breaching 

GMiTS+HLLC 1.000 1.000 

GMiTS+FORCE 0.918 1.090 

Hybrid 

LTS/GMaTS+HLLC 

0.307 3.261 

 

4. Conclusions 

This paper presents a new depth-averaged two-phase flow model for hydro-sediment-

morphodynamic processes, which is computationally-efficient and high-resolution based on 

the HLLC Riemann solver, a hybrid LTS/GMaTS approach. The two-phase SHSM models 

exhibits excellent potential for direct analysis of velocity lag between water and sediment 

phases and can exhibit encouraging performance as compared to the counterpart using 

centered FORCE solver and GMiTS approach when tested against several typical cases 

concerning flow-sediment-bed evolution. The HLLC solver performs much better than 

FORCE solver, in that it not only better captures complex flow behaviors of the water and 

sediment phases, but also appreciably reduces the discrepancy between numerical solution 

and measured data. Moreover, the implementation of the hybrid LTS/GMaTS approach 

significantly reduces run time and improves computational efficiency. Further reduction in 

computational cost is expected when the hybrid approach is combined with parallel 

computing strategy such as multi-GPU and high-performance computing (HPC) clusters.  

The present work facilitates a promising modelling framework to shallow water-sediment 
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flows. Applications of the present model to hydro-sediment-morphodynamic processes in 

typical waterways of the Yangtze River, China are ongoing. Inevitably, the proposed model 

bears uncertainties arising from closures for boundary resistance and sediment exchange with 

the bed; these still require systematic fundamental investigations into the associated 

mechanisms. 
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Appendix A. the HLLC solver and the FORCE solver 

Here we presented the specific expressions of the HLLC solver and the FORCE solver.  

The HLLC solver reads: 

*
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                                               (A.1) 

where LS  RS  and MidS  are three wave speeds computed by Eq. (A.2); LE , *LE , *RE , and 

RE  are four Riemann numerical fluxes estimated by Eqs (A.5). For the hydro-sediment 

mixture, the wave speed LS  and RS  on the left and right sides are as follows: 
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The intermediate contact wave speed MidS  is calculated as follows： 
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where  , 2 3 ,L R x y L R
w w n w n    are the normal velocities, 

*w
, 

1*w  are the modified value on 

both sides of the flux with average methods, which can be calculated as follows 
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The parameters 
,L Rg  and 

*g  in Eq. (A2) should be treated differently for the mixture part 

and for the sediment part, which are as follows: 

For the mixture part: ,L Rg g , and 
*g g                                                                   (A.4a, b) 

For the k -th sediment part: , *
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Numerical flux vectors in the Eq. (A.1) can be estimated as follows 
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where 
2( )/ / L,R y 3 x L,Rw w n w n    represent tangential velocity, and the parameter 'g  in Eq. 

(A5) should also be treated separately for the mixture part and for the sediment part 
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For the mixture part: 'g g                                                                                                           

(A.6a) 

For the k -th sediment part: ' ( )
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The flux HLLE  is calculated from the HLL formula:  
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The FORCE solver reads: 

1
( , ) ( )

2
nM FORCE ML MR MLF MLW  E F U U F F  , 1,..., fM N              (A.8) 

where ,ML MRU U  are two Riemann states immediately at the left and right side of the face as 

conserved variables; 
MLFF , 

MLWF  represent the Lax-Wendroff flux and the Lax-Friedrichs 

flux, which can be estimated as follows 

( ) ( ) 2
= + ( )

( )

ML MR M MR ML M ML MR
MLF ML MR

ML MR L i ML MR M

A A A A

A A t A A L




   

Y U n Y U n
F U U      (A.9a) 

= ( )MLW MLW MF Y U n                                                     (A.9b) 

+
( ( ) ( ))

2( )

L i MMR MR ML ML
MLW ML MR M

MR ML MR ML

t LA A

A A A A

 
  

 

U U
U Y U Y U n             (A.9c) 

where ( , )M Mx Myn nn  represents the normal outward direction of the M -th face and

, , , , , ,( )ML R LW M ML R LW Mx ML R LW Myn nY U n F(U ) +G(U ) ; ML  is the length of the M -th face. 

,ML MRA A  denote the area of the triangle formed by the face and the cell center. 
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