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Abstract

The paper studies the convergence of the numerical solutions for pantograph stochas-
tic functional differential equations which was proposed in [16]. We also show that the
approximate solutions have the properties of almost surely polynomial stability and
exponential stability.
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1 Introduction

Throughout this article, let (Ω,F ,F := {Ft}t≥0, P ) be a complete probability space, which
satisfies the usual conditions. B(t) is a standard d-Brownian motion defined on this prob-
ability space. For x, y ∈ Rn, |x| means the Euclidean norm of x, and use 〈x, y〉 or xTy
to represent the Euclidean inner product. If A is a matrix, AT is the transpose of A and
|A| represents

√
Tr(AAT ). Let bac be the integer parts of a. Moreover, for fixed constant

0 < q < 1, denote by C := C ([q, 1];Rn) the set of Rn−valued continuous functions φ de-
fined on [q, 1] with the norm ‖φ‖ = supq≤q≤1 |φ(q)|. For a constant T > 0 and a Rn−valued

stochastic process ψ, denote E sup0≤t≤T |ψ(t)|p by ‖ψ‖T,p.
In order to solve a problem on the pantograph of an electric locomotive, Ockendon and

Tayler [12] proposed pantograph differential equations (PDEs). PDEs then have used in

∗Supported in part by NNSFC (61876192, 11626236) and the Fundamental Research Funds for the Central
Universities of South-Central University for Nationalities (CZY15017, KTZ20051, CZT20020).
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many areas such as electric dynamics, the oscillation, dielectric materials and continuum
mechanics, which have the following form:

x̃(t) = x̃0 +

∫ t

0

b(x̃(s), x̃(qs), s)ds, t ≥ 0.

where q is a fixed constant satisfying 0 < q < 1. Guan et al. [3] studied the oscillatory
properties of the solutions. Hou et al. [5] applied PDEs to solve some problems in neural
networks. Ahmad and Mukhtar [1] solved a class of cell-growth model by using PDEs.
Additionally, many researchers have extended PDEs to pantograph stochastic differential
equations (PSDEs), so as to capture the practice problems more precisely. The form of
PSDEs is as follows:

x̄(t) = x̄0 +

∫ t

0

b(x̄(s), x̄(qs), s)ds+ σ(x̄(s), x̄(qs), s)dB(s), t ≥ 0

where q is a fixed constant satisfying 0 < q < 1. In real world, many events are random
and uncertain. Compared with PDEs, this type of systems including a Gaussian noise with
unbounded memory provided more realistic models to simulate phenomena that considered
the time-lag or after effect. Afterwards, it aroused great interest in studying different kinds of
phenomena in different fields of science, which had a significant impact on the investigation of
differential equation with delay incorporating memory or after-effect, especially, in studying
of financial variables, group models, corporate claim and predictions about their evolution.
For example, Ren et al. [13] used PSDEs to study multi- group models. Eissa and Tian [2]
used PSDEs to model the corporate claim value. Milošević [11] studied polynomial stable
properties of solution to a class of highly nonlinear PSDEs and the Euler-Maruyama (EM)
approximation. Shen et al. [14] investigated the exponential stable properties of highly
nonlinear PSDEs. Guo et al. [4] discussed the stable properties of numerical solutions for
the PSDEs with variable step size. Song et al. [15] analyzed the pth moment asymptotical
ultimate boundedness of PSDEs with time-varying coefficients. Hu et al. [6] established
the existence and uniqueness for a class of PSDEs. More related work can be seen in
[18, 7, 9, 10, 17].

Recently, authors [16] have developed the fundamental theories for the following panto-
graph stochastic functional differential equations (PSFDEs):

x(t) = x0 +

∫ t

0

b(xs, s)ds+ σ(xs, s)dB(s), t ≥ 0, (1.1)

where xt = {x(qt), q ≤ q ≤ 1)} and 0 < q < 1 is a fixed constant. And they have show that
this type of equation has some meaningful applications in oscillator systems. The exponential
stability and polynomial stability of solutions for PSFDEs are also investigated in [16]. Our
main contribution are as follows:

• We study a new type of stochastic functional differential equation. The PSFDEs differs
markedly from PSDEs, since the current state of PSFDEs depends on a past segment
of its solution while the current state of PSDEs depends only on a past point of its
solution (more details can be seen in Section 2 below).
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• We are the first to give the definition of the approximate solution for PSFDEs. The
approximate solution converges strongly to the analytical solution in finite time inter-
val.

• The numerical solutions preserve the exponential stability and polynomial stability of
the analytical solution under the certain conditions.

We end this part by presenting our organization in this paper. In Section 2, we show
the convergence of the numerical solutions. In Section 3, the exponential stability and
polynomial stability of numerical solutions are discussed and several examples are presented
in Subsection 3.1 and Subsection 3.2.

2 The EM Method and Strong Convergence

Consider the E.q.(1.1). For the sake of simplicity, we assume b(0, t) = σ(0, t) = 0. In [16], we
have shown that the analytic solution to (1.1) is exponential stable and polynomial stable
under some conditions. In this paper, we will prove that the Euler-Maruyama( EM) method
can inherit exponential stable properties and polynomial stable properties of the analytical
solution.

Choose a step size ∆ ∈ (0, 1) and define the discrete EM approximate solution y(m) =
y(m∆) ≈ x(m∆) by setting y(0) = x0, y0 = x0 and forming

y(m+ 1) = y(m) + b(ȳm,m∆)∆ + σ(ȳm,m∆)∆B(m), m = 0, 1, 2, . . . (2.1)

where y(m) = y(m∆),∆B(m) = B((m + 1)∆) − B(m∆), and ȳm is a C ([q, 1];Rn)−valued
random variable given as follows:

ym(u) =


y((bmqc+ j)∆) +

u−(bmqc+j)∆
∆

[y((bmqc+ j + 1)∆)− y((bmqc+ j)∆)],

for (bmqc+ j)∆ ≤ u ≤ (bmqc+ j + 1)∆, j = 1, · · · ,m− bmqc − 1;

y(bmqc∆) +
u−bmqc∆

∆
[y((bmqc+ 1)∆)− y(bmqc∆)],

formq∆ ≤ u ≤ (bmqc+ 1)∆,

(2.2)
ȳm(q) = ym(qm∆). (2.3)

Thus,

|ym(u)| ≤ |y((bmqc+ j)∆)| ∨ |y((bmqc+ j + 1)∆)|, (bmqc+ j)∆ ≤ u ≤ (bmqc+ j + 1)∆,

(2.4)

where bac is the integer parts of a. From (2.4), we have

‖ym‖ ≤ sup
q∈[q,1]

|y(bmqc∆)|. (2.5)
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In order to analyze the continuous-time approximation , for t ∈ [0, T ], we define

z(t) =
∞∑
m=0

y(m)1[m∆,(m+1)∆)(t), t̄ =
∞∑
m=0

m∆1[m∆,(m+1)∆)(t),

z̄(q, t) =
∞∑
m=0

y(bqmc)1[m∆,(m+1)∆)(t),

where 1[a,b)(·) represents the indicator function on interval [a, b). We also define z̄t a segment
process on C ([q, 1];Rn) as the following

z̄t(q) =
∞∑
m=0

ym(qm∆)1[m∆,(m+1)∆)(t), q ∈ [q, 1].

The continuous-time approximation {Y (t), t ≥ 0} is defined as Y (0) = x0 and

Y (t) = x0 +

∫ t

0

b(z̄s, s̄)ds+

∫ t

0

σ(z̄s, s̄)dB(s). (2.6)

For the future use, we make the following hypothesis.

(H) For any ϕ1, ϕ2 ∈ C ([q, 1];Rn), we have

|b(ϕ1, t)− b(ϕ2, t)|2 ∨ |σ(ϕ1, t)− σ(ϕ2, t)|2 ≤ K‖ϕ1 − ϕ2‖2,

in which K a positive constant.

Lemma 2.1. Assume (H). Then, we have

‖Y (t)‖T,p ∨ ‖x(t)‖T,p ≤ K1,p,

in which K1 > 0 is a constant only depending on K, x0, T, p ≥ 2 but being independent of ∆.

By similar method to that of Lemma 3.2 in Mao [8], this lemma can be easily proved. We
omit it here. Now, we state the second lemma in this section.

Lemma 2.2. Assume (H). Then, we derived

‖Y − z‖T,2 ≤ K2∆, E sup
0≤t≤T

‖Yt − z̄t‖2 ≤ K2∆,

in which K2 > 0 is a constant only depending on K,K1,2, K1,4, x0, T but being independent

of ∆, i.e., K2 = 9

[
2KK1,2 + d

3
2K2K1,4

32
3
√

3

]
.
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Proof. ∀t ∈ [0, T ], let m = b t
∆
c, l = b T

∆
c, obviously, m ≤ l. Then, t ∈ [m∆, (m+ 1)∆), thus,

we have

Y (t)− z(t) = b(z̄m∆,m∆)(t−m∆) + σ(z̄
m∆
,m∆)(B(t)−B(m∆)).

According to assumption (H), we obtain

|Y (t)− z(t)|2 ≤ 2K‖z̄m∆‖2∆2 + 2|σ(z̄
m∆
,m∆)(B(t)−B(m∆))|2.

Thus,

E sup
m∆≤t≤(m+1)∆

|Y (t)− z(t)|2 ≤ 2KE[ sup
m∆≤t≤(m+1)∆

‖z̄t‖2]∆2

+ 2E[ sup
m∆≤t≤(m+1)∆

|σ(z̄
m∆
,m∆)(B(t)−B(m∆))|2]

≤ 2KE[ sup
m∆≤t≤(m+1)∆

‖z̄t‖2]∆2

+ 2(E sup
m∆≤t≤(m+1)∆

|σ(z̄
m∆
,m∆)|4)

1
2 (E sup

m∆≤t≤(m+1)∆

|B(t)−B(m∆)|4)
1
2

≤ 2KK1,2∆2 + 2KK
1
2
1,4(E sup

m∆≤t≤(m+1)∆

|B(t)−B(m∆)|4)
1
2

≤ 2KK1,2∆2 + 2d
1
2KK

1
2
1,4

(
E sup
t∈[m∆,(m+1)∆∧T ]

|Bj(t)−Bj(m∆)|4
) 1

2

(2.7)

According to Doob’s martingale inequality, we get

E sup
m∆≤t≤(m+1)∆

|Bj(t)−Bj(k∆)|4 ≤ 256

27
∆2. (2.8)

By (2.7) and (2.8), we arrive at

E sup
m∆≤t≤(m+1)∆

|Y (t)− z(t)|2 ≤ 2KK1,2∆2 + 2d
3
2KK

1
2
1,4

16

3
√

3
∆

≤
[
2KK1,2 + d

3
2K2K1,4

32

3
√

3

]
∆. (2.9)

Next, we prove the second result.

E sup
m∆≤t≤(m+1)∆

sup
q≤q≤1

|Y (qt)− z̄t(q)|2

≤ 3

[
2KK1,2 + d

3
2K2K1,4

32

3
√

3

]
∆ + 3E sup

t∈[m∆,(m+1)∆∧T ]

sup
q≤q≤1

|z(qt)− z̄(t, q)|2

+ 3E sup
t∈[m∆,(m+1)∆∧T ]

sup
q≤q≤1

|z̄(t, q)− z̄t(q)|2 =: I1 + I2 + I3. (2.10)
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It is obvious that qt ∈ [mq
t∆, (m

q
t + 1)∆], where mq

t = b qt
∆
c. Thus, for m = b t

∆
c, we get

|z(qt)− z̄(q, t)| = |y(mq
t∆)− y(bqmc∆)|. (2.11)

Since qt
∆
∈ [qm, q(m + 1)), it can be seen that bqmc ≤ mq

t ≤ bq(m + 1)c ≤ bqmc + 1. Then,
mq
t − bqmc ≤ 1. By (2.11), one has

I2 = 3E sup
t∈[m∆,(m+1)∆∧T ]

sup
q≤q≤1

|z(qt)− z̄(t, q)|2 ≤ 3E sup
0≤k∆≤T

|y((k + 1)∆ ∧ T )− y(k∆)|2.

(2.12)

Next, we calculate I3. From (2.2), we have

I3 = 3E sup
t∈[m∆,(m+1)∆∧T ]

sup
q≤q≤1

|z̄(t, q)− z̄t(q)|2 ≤ 3E sup
0≤k∆≤T

|y((k + 1)∆ ∧ T )− y(k∆)|2.

(2.13)

By using similar procedure as used method in the proof of first result, one can see that

E sup
0≤k∆≤T

|y((k + 1)∆ ∧ T )− y(k∆)|2 ≤
[
2KK1,2 + d

3
2K2K1,4

32

3
√

3

]
∆. (2.14)

(2.10), (2.11), (2.13), (2.12) and (2.14) lead to the second result.

The following result reveals that the numerical solutions converge to the true solution.

Theorem 2.3. Assume (H). It holds that

‖x− Y ‖T,2 ≤ K4∆,

where x is the solution of E.q. (1.1), Y is defined in (2.6) and

K4 := (4T 2KK2 + 16KTK2)e(4TK+16K)T .

Proof. By (H), Lemmas 2.1 and 2.2, we compute

‖x− Y ‖t,2

≤ 2TE
∫ t

0

|b(xr, r)− b(z̄r, r)|2dr + 2E sup
0≤r≤t

∣∣∣∣ ∫ r

0

σ(xr, r)− σ(z̄r, r)dB(r)

∣∣∣∣2
≤ 2TE

∫ t

0

|b(xr, r)− b(z̄r, r)|2dr + 8E
∫ t

0

|σ(xr, r)− σ(z̄r, r)|2dr

≤ 4TKE
∫ t

0

‖xr − Yr‖2dr + 4TKE
∫ t

0

‖Yr − z̄r‖2dr

+ 16KE
∫ t

0

‖xr − Yr‖2dr + 16KE
∫ t

0

‖Yr − z̄r‖2dr
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≤ 4TKE
∫ t

0

‖x− Y ‖r,2dr + 4TKE
∫ t

0

‖Yr − z̄r‖2dr

+ 16K

∫ t

0

‖x− Y ‖r,2dr + 16KE
∫ t

0

‖Yr − z̄r‖2dr

≤ (4T 2KK2 + 16KTK2)∆ + (4TK + 16K)

∫ t

0

‖x− Y ‖r,2dr.

Gronwall’s inequality leads to required result.

3 Stability of Numerical Solutions

In the section, we shall investigate the exponential stable properties and polynomial stable
properties for the numerical solutions.

3.1 Exponential Stable Properties of Numerical Solution

We need the following assumptions.

(H1) For any ϕ, φ ∈ C ([q, 1];Rn), there exists a probability measures ν on [q, 1] with positive
constants λ1, λ2 such that

2〈ϕ(1)− φ(1), b(ϕ, t)− b(φ, t)〉+ |σ(ϕ, t)− σ(φ, t)|2

≤ −λ1|ϕ(1)− φ(1)|2 + λ2

∫ 1

q

e−βt|ϕ(q)− φ(q)|2dν(q). (3.1)

(H2) For any ϕ, φ ∈ C ([θ, 1];Rn), there exists a probability measures ν on [θ, 1] with positive
constants λ3 and λ4 such that

|b(ϕ, t)− b(φ, t)|2 ∨ |σ(ϕ, t)− σ(φ, t)|2

≤ λ3|ϕ(1)− φ(1)|2 + λ4

∫ 1

θ

e−βt|ϕ(q)− φ(q)|2dν(q),

where β > 0 is a constant satisfying 0 < 1−β
q
< 1.

We can see that (H2) implies (H).

Theorem 3.1. Assume (H1) and (H2). If the following conditions are established:

i) there exist some positive constants C̄, α0 < 1 satisfying 1 < C̄ ≤ eα0 and a sufficiently
small constant λ0 > 0 such that

H(C̄, λ0) = −λ1 + α0 + 2λ2

(⌊
1

q

⌋
+ 1

)
C̄

λ0
q + λ3λ0 + 2λ4

(⌊
1

q

⌋
+ 1

)
C̄

λ0
q λ0 ≤ 0.
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ii) ∆ ∈ (0, λ0) is small enough satisfying the following inequality:[
λ2

(⌊
1

q

⌋
+ 1

)
C̄

∆
q + λ4

(⌊
1

q

⌋
+ 1

)
C̄

∆
q ∆

]
C̄∆∆ ≤ 1

2
.

Then, the approximate solution y(m) has the properties as follows:

lim sup
m→∞

1

m
ln |y(m)|2 ≤ −α,

lim sup
m→∞

1

m
lnE[|y(m)|2] ≤ −α,

where α is a constant satisfying eα = C̄.

Proof. By virtue of (2.1), we have

|y(m+ 1)|2 ≤ |y(m)|2 + |b(ȳm,m∆)|2∆2 + 2yT (k)b(ȳm,m∆)∆

+ |σ(ȳm,m∆)|2∆ + |σ(ȳm,m∆)|2((∆B(m))2 −∆)

+ 2yT (m)σ(ȳm,m∆)∆B(m) + 2b(ȳm,m∆)σ(ȳm,m∆)∆B(m)∆

≤ |y(m)|2 + |b(ȳm,m∆)|2∆2 + 2yT (m)b(ȳm,m∆)∆

+ |σ(ȳm,m∆)|2∆ +M(m),

(3.2)

where

M(m) = |σ(ȳm,m∆)|2((∆B(m))2 −∆) + 2yT (m)σ(ȳm,m∆)∆B(m)

+ 2b(ȳm,m∆)σ(ȳm,m∆)∆B(m)∆.

By (H1) and (H2), one can see that

|y(m+ 1)|2 − |y(m)|2 ≤
(
− λ1|y(m)|2 + λ2

∫ 1

q

e−βm∆|ym(mq∆)|2dν(q)

)
∆

+

(
λ3|y(m)|2 + λ4

∫ 1

q

e−βm∆|ym(mq∆)|2dν(q)

)
∆2 +M(m). (3.3)

Multiplying C(j+1)∆ on both sides of the inequality (3.3) yields that

C(j+1)∆|y(j + 1)|2 − Cj∆|y(j)|2

= C(j+1)∆(1− 1

C∆
)|y(j)|2

+

(
− λ1C

(j+1)∆|y(j)|2 + λ2

∫ 1

q

C(j+1)∆e−βj∆|yj(jq∆)|2dν(q)

)
∆

+

(
λ3C

(j+1)∆|y(j)|2 + λ4

∫ 1

q

C(j+1)∆e−βj∆|yj(jq∆)|2dν(q)

)
∆2 +M(j), (3.4)
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where C is a constant satisfying 1 < C ≤ eα0 . Since 1−C−∆ < α0∆, summing both sides of
(3.4) from j = 0 to j = m− 1, we obtain

Cm∆|y(m)|2

= x0 +
∑

0≤j≤m−1

C(j+1)∆(1− 1

C∆
)|y(j)|2 +

(
− λ1

∑
0≤j≤m−1

C(j+1)∆|y(j)|2

+ λ2

∑
0≤j≤m−1

∫ 1

q

C(j+1)∆e−βj∆|yj(jq∆)|2dν(q)

)
∆

+

(
λ3

∑
0≤j≤m−1

C(j+1)∆|y(j)|2 + λ4

∫ 1

q

∑
0≤j≤m−1

C(j+1)∆e−βj∆|yj(jq∆)|2dν(q)

)
∆2

+
∑

0≤j≤m−1

M(j), (3.5)

where
∑

0≤j≤m−1M(j) is a martingale. Firstly, we compute

∑
0≤j≤m−1

∫ 1

q

C(j+1)∆e−βj∆|yj(jq∆)|2dν(q) =

∫ 1

q

∑
0≤j≤m−1

C(j+1)∆e−βj∆|yj(jq∆)|2dν(q). (3.6)

It is not difficult to see that∑
0≤j≤m−1

C(j+1)∆e−βj∆|y(bjqc)|2

= |y(0)|
∑

0≤j≤m−1

1bqjc=0C
(j+1)∆e−βj∆ + |y(1)|

∑
0≤j≤m−1

1bqjc=1C
(j+1)∆e−βj∆

+ · · ·+ |y(bq(m− 1)c)|
∑

0≤j≤m−1

1bqjc=bq(m−1)cC
(j+1)∆e−βj∆, (3.7)

and ∑
0≤j≤m−1

C(j+1)∆e−βj∆|y(bjqc+ 1)|2

= |y(1)|
∑

0≤j≤m−1

1bqjc=0C
(j+1)∆e−βj∆ + |y(2)|

∑
0≤j≤m−1

1bqjc=1C
(j+1)∆e−βj∆

+ · · ·+ |y(bq(m− 1)c+ 1)|
∑

0≤j≤m−1

1bqjc=bq(m−1)cC
(j+1)∆e−βj∆. (3.8)

Additionally, noting that bqjc = i⇔ i
q
≤ j < i+1

q
, for any i = 0, 1, · · · , bq(m−1)c, which

implies {
i
q
≤ j ≤ i+1

q
− 1, 1

q
∈ N,

b i
q
c+ 1 ≤ j ≤ b i+1

q
c ≤ b i

q
c+ b1

q
c+ 1, 1

q
/∈ N.
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Then, it yields that the number of those j ∈ {0, 1, 2, · · · ,m−1} such that bqjc = i, for some
i ∈ {0, 1, 2, · · · , bq(m− 1)c}, is at most b1

q
c+ 1. Moreover, the greatest j for which bqjc = i

is less than i+1
q

and greater that i
q
. By (3.7), we derive that∑

0≤j≤m−1

C(j+1)∆e−βj∆|y(bqjc)|2

≤
(⌊

1

q

⌋
+ 1

) ∑
0≤j≤bq(m−1)c

C( j+1
q

+1)∆e−β
j
q

∆|y(j)|2

≤
(⌊

1

q

⌋
+ 1

) ∑
0≤j≤bq(m−1)c

C( 1−β
q
j∆+ ∆

q
+∆)|y(j)|2

≤
(⌊

1

q

⌋
+ 1

)
C

∆
q

∑
0≤j≤bq(m−1)c

C(j+1)∆|y(j)|2

≤
(⌊

1

q

⌋
+ 1

)
C

∆
q

∑
0≤j≤m−1

C(j+1)∆|y(j)|2, (3.9)

and ∑
0≤j≤m−1

C(j+1)∆e−βj∆|y(bqjc+ 1)|2

≤
(⌊

1

q

⌋
+ 1

) ∑
0≤j≤bq(m−1)c

C( j+1
q

+1)∆e−β
j
q

∆|y(j + 1)|2

≤
(⌊

1

q

⌋
+ 1

) ∑
0≤j≤bq(m−1)c

C
( 1−β
q
j∆+ ∆

q
+∆)|y(j + 1)|2

≤
(⌊

1

q

⌋
+ 1

)
C

∆
q

∑
0≤j≤bq(m−1)c

C(j+1)∆|y(j + 1)|2

≤
(⌊

1

q

⌋
+ 1

)
C

∆
q
∑

1≤j≤m

Cj∆|y(j)|2, (3.10)

Combining with (3.7) and (3.8), one has

Cm∆|y(m)|2

≤ x0 +
∑

0≤j≤m−1

C(j+1)∆

(
1− 1

C∆

)
|y(j)|2 +

[
− λ1

∑
0≤j≤m−1

C(j+1)∆|y(j)|2

+ λ2

(⌊
1

q

⌋
+ 1

)
C

∆
q

∑
0≤j≤m−1

C(j+1)|y(j)|2
]
∆

+

[
λ3

∑
0≤j≤m−1

C(j+1)∆|y(j)|2 + λ4

(⌊
1

q

⌋
+ 1

)
C

∆
q

∑
0≤j≤m−1

C(j+1)|y(j)|2
]
∆2
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+ λ2

(⌊
1

q

⌋
+ 1

)
C

∆
q
∑

1≤j≤m

Cj∆|y(j)|2∆ + λ4

(⌊
1

q

⌋
+ 1

)
C

∆
q
∑

1≤j≤m

Cj∆|y(j)|2∆2

+
∑

0≤j≤m−1

M(j)

≤ x0 +

[
− λ1 + α0 + λ2

(⌊
1

q

⌋
+ 1

)
C

∆
q

+ λ3∆ + λ4

(⌊
1

q

⌋
+ 1

)
C

∆
q ∆

] ∑
0≤j≤m−1

C(j+1)∆|y(j)|2∆

+

[
λ2

(⌊
1

q

⌋
+ 1

)
C

∆
q + λ4

(⌊
1

q

⌋
+ 1

)
C

∆
q ∆

] ∑
1≤j≤m

Cj∆|y(j)|2∆ +
∑

0≤j≤m−1

M(j)

≤ x0 +

[
− λ1 + α0 + 2λ2

(⌊
1

q

⌋
+ 1

)
C

∆
q

+ λ3∆ + 2λ4

(⌊
1

q

⌋
+ 1

)
C

∆
q ∆

] ∑
0≤j≤m−1

C(j+1)∆|y(j)|2∆

+

[
λ2

(⌊
1

q

⌋
+ 1

)
C

∆
q + λ4

(⌊
1

q

⌋
+ 1

)
C

∆
q ∆

]
Cm∆|y(m)|2∆ +

∑
0≤j≤m−1

M(j). (3.11)

Set

H(C,∆) = −λ1 + α0 + 2λ2

(⌊
1

q

⌋
+ 1

)
C

∆
q + λ3∆ + 2λ4

(⌊
1

q

⌋
+ 1

)
C

∆
q ∆. (3.12)

Then,

H(C̄, λ0) = −λ1 + α0 + 2λ2

(⌊
1

q

⌋
+ 1

)
C̄

λ0
q + λ3λ0 + 2λ4

(⌊
1

q

⌋
+ 1

)
C̄

λ0
q λ0. (3.13)

By condition i), we have
H(C̄, λ0) ≤ 0.

Using condition ii) and choosing a constant α > 0 with eη = C̄, one has

eηm∆|y(m)|2 ≤ 2x0 + 2
∑

0≤j≤m−1

M(j).

Since
∑

0≤j≤m−1M(j) is a martingale, we get

lim sup
m→∞

eηm∆E|y(m)|2 <∞.

Furthermore, by the semi-martingale convergence theorem in [11], we have

lim sup
m→∞

eηm∆|y(m)|2 <∞. (3.14)

The proof is therefore complete.
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Remark 3.1. Under the conditions of Theorem 3.1, Theorem 3.3 in [16] has shown that
the analytical solution of (1.1) has the property of exponential stability. This means that the
EM numerical solutions of (2.1) preserves the property of exponential stability.

Now, we give an example to explain Theorem 3.1.

Example 3.2. Consider PSFDEs as follows:

x(t) = x0 +

∫ t

0

b(xs, s)ds+

∫ t

0

σ(xs, s)dB(s), t ≥ 0 (3.15)

where

b(ϕ, t) = −1.1ϕ(1) + 0.04

∫ 1

3
4

e−0.7t|ϕ(q)|dν(q).

and

σ(ϕ, t) = 0.2

∫ 1

3
4

e−0.7t|ϕ(q)|dν(q).

Then,

2〈ϕ(1)− φ(1), b(ϕ, t)− b(φ, t)〉+ |σ(ϕ, t)− σ(φ, t)|2

= 2〈ϕ(1)− φ(1),−1.1(ϕ(1)− φ(1)) + 0.04

∫ 1

3
4

e−0.7t(ϕ(q)− φ(q))dν(q)〉

+

∣∣∣∣0.2 ∫ 1

3
4

e−0.7t(ϕ(qt)− φ(qt))dν(q)

∣∣∣∣2
≤ −2.2|ϕ(1)− φ(1)|2 + 0.08(ϕ(1)− φ(1))

∫ 1

3
4

e−0.7t(ϕ(q)− φ(q))dν(q)

+

∣∣∣∣0.2 ∫ 1

3
4

e−0.7t(ϕ(qt)− φ(qt))dν(q)

∣∣∣∣2
≤ −2.16|ϕ(1)− φ(1)|2 + 0.08

∫ 1

3
4

|e−0.7t(ϕ(q)− φ(q))|2dν(q),

and

|b(ϕ, t)− b(φ, t)|2 ∨ |σ(ϕ, t)− σ(φ, t)|2

≤ 1.23|ϕ(1)− φ(1)|2 + 0.17

∫ 1

3
4

e−0.7t|(ϕ(θ)− φ(θ))|2dν(θ).

We can find that

λ1 = 2.16, λ2 = 0.08, λ3 = 1.23, λ4 = 0.17, q =
3

4
.

Choosing C̄ = 1.1, λ0 = 1
300
, α0 = 1

10
, it is obvious that (i) and (ii) of Theorem 3.1 are satis-

fied. Then, we conclude that the numerical solutions of (3.15) are almost surely exponential
stable, and exponential stable in mean square.
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3.2 Polynomial Stable Properties of Numerical Solutions

Next, we will study polynomial stable properties of numerical solution to (2.1). In this
subsection, we assume that there exists a fixed constant q satisfying 1

2
∨ q < q̄ < 1. We need

the following assumptions.

(H3) For any ϕ1, ϕ2 ∈ C ([q, q];Rn), there exists a probability measure ν on [q, q] and positive

constants λ̄1, λ̄2 such that

2〈ϕ1(1)− ϕ2(1), b(ϕ1, t)− b(ϕ2, t)〉+ |σ(ϕ1, t)− σ(ϕ2, t)|2

≤ −λ̄1|ϕ1(1)− ϕ2(1)|2 + λ̄2

∫ q

q

|ϕ1(q)− ϕ2(q)|2dν(q). (3.16)

(H4) For any ϕ1, ϕ2 ∈ C ([q, q];Rn), there exists a probability measure ν on [q, q] and two

positive constants λ̄3, λ̄4 such that

|b(ϕ1, t)− b(ϕ2, t)|2 ∨ |σ(ϕ1, t)− σ(ϕ2, t)|2

≤ λ̄3|ϕ1(1)− ϕ2(1)|2 + λ̄4

∫ q

q

|ϕ1(q)− ϕ2(q)|2dν(q).

Theorem 3.3. Assume (H3) and (H4). If the following conditions hold:

1◦ λ̄1 − 2λ̄2(b1
q
c+ 1) > 0.

2◦ Assume that

λ̄1 − ζ = 2λ̄2

(⌊
1

q

⌋
+ 1

)
q−ζ . (3.17)

has a unique solution ζ∗ > 0.

3◦ ∆ is sufficiently small such that:[
λ̄2

(⌊
1

q

⌋
+ 1

)
q−ζ

∗−1 + λ̄4

(⌊
1

q

⌋
+ 1

)
q−ζ

∗−1∆

]
∆ <

1

2
. (3.18)

Then, ∀ ε ∈ (0, ζ
∗

2
), there exists a sufficiently small ∆∗ ∈ (0, 1) such that the numerical

solution y(m) satisfies

lim sup
m→∞

ln |y(m)|
ln |(m+ 1)∆|

≤ −ζ
∗

2
+ ε, a.s.

and

lim sup
m→∞

lnE[|y(m)|2]

ln |(m+ 1)∆|
≤ −ζ∗ + 2ε, a.s.
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Proof. According to (3.2), (H3) and (H4), we get

|y(m+ 1)|2 − |y(m)|2 ≤
(
− λ̄1|y(m)|2 + λ̄2

∫ q

q

|ym(mq∆)|2dν(q)

)
∆

+

(
λ̄3|y(m)|2 + λ̄4

∫ q

q

|ym(mq∆)|2dν(q)

)
∆2 +M(m). (3.19)

Multiplying (1 + (1 +m)∆)γ on both sides of the inequality (3.19) yields that

(1 + (1 +m)∆)γ|y(m+ 1)|2 − (1 +m∆)γ|y(m)|2

≤ (1 + (1 +m)∆)γ
(

1− (1 +m∆)γ)

(1 + (1 +m)∆)γ

)
|y(m)|2

+

(
− λ̄1(1 + (1 +m)∆)γ|y(m)|2 + λ̄2

∫ q

q

(1 + (1 +m)∆)γ|ym(mq∆)|2dν(q)

)
∆

+

(
λ̄3(1 + (1 +m)∆)γ|y(m)|2 + λ̄4

∫ q

q

(1 + (1 +m)∆)γ|ym(mq∆)|2dν(q)

)
∆2 +M(m),

(3.20)

where γ is a positive constant. Observing that 1− |x|γ ≤ −γ ln |x|, one has

1− (1 +m∆)γ

(1 + (1 +m)∆)γ
≤ γ ln

1 + (1 +m)∆

1 +m∆
≤ γ∆

1 +m∆
≤ γ∆.

Summing both sides of (3.20) from j = 0 to j = m− 1, we obtain

(1 +m∆)γ|y(m)|2

≤ x0 +
∑

0≤j≤m−1

(1 + (j + 1)∆)γγ∆|y(j)|2

+

(
− λ̄1

∑
0≤j≤m−1

(1 + (j + 1)∆)γ|y(j)|2 + λ̄2

∑
0≤j≤m−1

∫ q

q

(1 + (j + 1)∆)γ|yj(jq∆)|2dν(q)

)
∆

+

(
λ̄3

∑
0≤j≤m−1

(1 + (j + 1)∆)γ|y(j)|2 + λ̄4

∫ q

q

∑
0≤j≤m−1

(1 + (j + 1)∆)γ|yj(jq∆)|2dν(q)

)
∆2

≤ x0 +
∑

0≤j≤m−1

(1 + (j + 1)∆)γγ∆|y(j)|2

+

(
− λ̄1

∑
0≤j≤m−1

(1 + (j + 1)∆)γ|y(j)|2 + λ̄2

∑
0≤j≤m−1

∫ q

q

(1 + (j + 1)∆)γ|y(bjqc)|2dν(q)

+ λ̄2

∑
0≤j≤m−1

∫ q

q

(1 + (j + 1)∆)γ|y(bjqc+ 1)|2dν(q)

)
∆

+

(
λ̄3

∑
0≤j≤m−1

(1 + (j + 1)∆)γ|y(j)|2 + λ̄4

∑
0≤j≤m−1

∫ q

q

(1 + (j + 1)∆)γ|y(bjqc)|2dν(q)
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+ λ̄4

∑
0≤j≤m−1

∫ q

q

(1 + (j + 1)∆)γ|y(bjqc+ 1)|2dν(q)

)
∆2

+
∑

0≤j≤m−1

M(j). (3.21)

Firstly, we compute∑
0≤j≤m−1

∫ q

q

(1 + (j + 1)∆)γ|y(bjqc)|2dν(q) =

∫ q

q

∑
0≤j≤m−1

(1 + (j + 1)∆)γ|y(bjqc)|2dν(q),

(3.22)

and ∑
0≤j≤m−1

∫ q

q

(1 + (j + 1)∆)γ|y(bjqc+ 1)|2dν(q)

=

∫ q

q

∑
0≤j≤m−1

(1 + (j + 1)∆)γ|y(bjqc+ 1)|2dν(q). (3.23)

Let ∆0 = 1−q
q
. Since q > 1

2
, ∆0 < 1. Moreover, and for any ∆ ∈ (0,∆0), q ≤ q, we can derive

q + q∆ ≤ 1. Using the similar method in (3.9), (3.10), we have the follow two inequalities:∑
0≤j≤m−1

(1 + (j + 1)∆)γ|y(bqjc)|2 ≤
(⌊

1

q

⌋
+ 1

) ∑
0≤j≤bq(m−1)c

(
1 +

(
j + 1

q
+ 1

)
∆

)γ
|y(j)|2

≤
(⌊

1

q

⌋
+ 1

)
q−γ

∑
0≤j≤bq(m−1)c

(q(1 + ∆) + (j + 1)∆)γ|y(j)|2

≤
(⌊

1

q

⌋
+ 1

)
q−γ

∑
0≤j≤m−1

(1 + (j + 1)∆)γ|y(j)|2

≤
(⌊

1

q

⌋
+ 1

)
q−γ

∑
0≤j≤m−1

(1 + (j + 1)∆)γ|y(j)|2, (3.24)

and ∑
0≤j≤m−1

(1 + (j + 1)∆)γ|y(bqjc+ 1)|2

≤
(⌊

1

q

⌋
+ 1

) ∑
0≤j≤bq(m−1)c

(
1 +

(
j + 1

q
+ 1

)
∆

)γ
|y(j + 1)|2

≤
(⌊

1

q

⌋
+ 1

)
q−γ

∑
1≤j≤m

(1 + j∆)γ|y(j)|2. (3.25)

Combining with (3.21), we arrive at

(1 +m∆)γ|y(m)|2
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≤ x0 +
∑

0≤j≤m−1

(1 + (j + 1)∆)γγ∆|y(j)|2

+

[
− λ̄1

∑
0≤j≤m−1

(1 + (j + 1)∆)γ|y(j)|2 + λ̄2

(⌊
1

q

⌋
+ 1

)
q−γ

∑
0≤j≤m−1

(1 + (j + 1)∆)γ|y(j)|2

+ λ̄2

(⌊
1

q

⌋
+ 1

)
q−γ

∑
1≤j≤m

(1 + j∆)γ|y(j)|2
]
∆

+

[
λ̄3

∑
0≤j≤m−1

(1 + (j + 1)∆)γ|y(j)|2 + λ̄4

(⌊
1

q

⌋
+ 1

)
q−γ

∑
0≤j≤m−1

(1 + (j + 1)∆)γ|y(j)|2

+ λ̄4

(⌊
1

q

⌋
+ 1

)
q−γ

∑
1≤j≤m

(1 + j∆)γ|y(j)|2
]
∆2

+
m−1∑
j=0

M(j)

≤ x0 +

[
− λ̄1 + γ + λ̄2

(⌊
1

q

⌋
+ 1

)
q−γ + λ̄3∆

+ λ̄4

(⌊
1

q

⌋
+ 1

)
q−γ∆

] ∑
0≤j≤m−1

(1 + (j + 1)∆)γ|y(j)|2∆

+

[
λ̄2

(⌊
1

q

⌋
+ 1

)
q−γ + λ̄4

(⌊
1

q

⌋
+ 1

)
θ−γ∆

] ∑
1≤j≤m

(1 + j∆)γ|y(j)|2∆

+
∑

0≤j≤m−1

M(j)

≤ x0 +

[
− λ̄1 + γ + 2λ̄2

(⌊
1

q

⌋
+ 1

)
q−γ + λ̄3∆

+ 2λ̄4

(⌊
1

q

⌋
+ 1

)
q−γ∆

] ∑
0≤j≤m−1

(1 + (j + 1)∆)γ|y(j)|2∆

+

[
λ̄2

(⌊
1

q

⌋
+ 1

)
q−γ + λ̄4

(⌊
1

q

⌋
+ 1

)
q−γ∆

]
(1 +m∆)γ|y(m)|2∆

+
m−1∑
j=0

M(j). (3.26)

Set

H(γ,∆) = −λ̄1 + γ + 2λ̄2

(⌊
1

q

⌋
+ 1

)
q−γ + λ̄3∆ + 2λ̄4

(⌊
1

q

⌋
+ 1

)
q−γ∆. (3.27)

Immediately, one can see that

dH(γ,∆)

dγ
= 1 + 2λ̄2

(⌊
1

q

⌋
+ 1

)
q−γ log

1

q
+ 2λ̄4

(⌊
1

q

⌋
+ 1

)
q−γ log

1

q
∆ > 0,
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and

H(0,∆) = −λ̄1 + 2λ̄2

(⌊
1

q

⌋
+ 1

)
+ λ̄3∆ + 2λ̄4

(⌊
1

q

⌋
+ 1

)
∆ < 0,

for ∆ ∈ (0,∆1 ∧ ∆0),∆1 =
λ̄1−λ̄2(b 1

q
c+1)

λ̄3+λ̄4(b 1
q
c+1)

. Then, for any ∆ ∈ (0,∆1 ∧ ∆0), there exists a

constant γ∗∆ such that H(γ∗∆,∆) = 0. This together with condition 3◦ implies

(1 + k∆)γ
∗
∆ |y(m)|2 ≤ 2|x0|2 + 2

∑
0≤j≤m−1

M(j). (3.28)

Since,
∑

0≤j≤m−1M(j) is a martingale, we obtain

lim sup
m→∞

(1 +m∆)γ
∗
∆E|y(m)|2 <∞. (3.29)

From the semi-martingale convergence theorem in [11], we derive

lim sup
m→∞

(1 +m∆)γ
∗
∆|y(m)|2 <∞. (3.30)

Noting that

lim
∆→0

H(γ,∆) = −λ̄1 + γ + 2λ̄2

(⌊
1

q

⌋
+ 1

)
q−γ,

and (3.17), one has lim∆→0 γ
∗
∆ = ζ∗. Thus, for any ε ∈ (0, ζ

∗

2
), there exists ∆2 such that

γ∗∆ > ζ∗ − 2ε for any ∆ ∈ (0,∆2). Then, for any ∆ ∈ (0,∆0 ∧∆1 ∧∆2), (3.28), (3.29) and
(3.30) imply the result in the theorem.

Remark 3.2. Under the conditions in Theorem 4.3, from Theorem 3.6 in [16], we know
that the analytical solution of (1.1) has the property of polynomial stability. This shows that
the EM method inherits the polynomial stability of the true solution.

Example 3.4. Consider the following PSFDEs:

x(t) = x0 +

∫ t

0

b(xs, s)ds+

∫ t

0

σ(xs, s)dB(s), t ≥ 0 (3.31)

where

b(ϕ, t) = −0.4ϕ(1) + 0.04

∫ 4
5

3
4

|ϕ(θ)|dν(θ).

and

σ(ϕ, t) = 0.3

∫ 4
5

3
4

|ϕ(θ)|dν(θ).
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Form the above definition, it follows that

2〈ϕ1(1)− ϕ2(1), b(ϕ1, t)− b(ϕ2, t)〉+ |σ(ϕ1, t)− σ(ϕ2, t)|2

= 2〈ϕ1(1)− ϕ2(1),−0.4(ϕ1(1)− ϕ2(1)) + 0.04

∫ 4
5

3
4

(ϕ1(q)− ϕ2(q))dν(q)〉

+

∣∣∣∣0.3∫ 4
5

3
4

(ϕ1(qt)− ϕ2(qt))dν(q)

∣∣∣∣2
≤ −0.8|ϕ1(1)− ϕ2(1)|2 + 0.08(ϕ1(1)− ϕ2(1))

∫ 4
5

3
4

(ϕ1(q)− ϕ2(q))dν(q)

+

∣∣∣∣0.3∫ 4
5

3
4

(ϕ1(q)− ϕ2(q))dν(q)

∣∣∣∣2
≤ −0.76|ϕ1(1)− ϕ2(1)|2 + 0.13

∫ 4
5

3
4

|(ϕ1(q)− ϕ2(q))|2dν(q),

and

|b(ϕ1, t)− b(ϕ2, t)|2 ∨ |σ(ϕ1, t)− σ(ϕ2, t)|2

≤ 0.19|ϕ1(1)− ϕ2(1)|2 + 0.09

∫ 4
5

3
4

|(ϕ1(q)− ϕ2(q))|2dν(q).

Letting λ̄1 = 0.76, λ̄2 = 0.13, λ̄3 = 0.19, λ̄1 = 0.09, q = 3
4
, q = 4

5
, it is obvious that the

conditions in Theorem 3.6 are satisfied. We derive that the numerical solutions of (3.31) are
almost surely polynomial stable.
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