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Abstract. We present results from the rastsum collaboration’s programme to
determine the spectrum of the bottomonium system as a function of tempera-
ture. Three different methods of extracting spectral information are discussed:
a Maximum Likelihood approach using a Gaussian spectral function for the
ground state, the Backus Gilbert method, and the Kernel Ridge Regression ma-
chine learning procedure. We employ the FAsTSUM anisotropic lattices with 2+1
dynamical quark flavours, with temperatures ranging from 47 to 375 MeV.

1 Introduction

There has been a great deal of interest in onia systems in the context of heavy-ion collision
experiments, particularly since the proposal they behave as a proxy for the temperature [1].
While initial work concentrated on the charmonium system, interest turned to bottomonium
for several reasons: these mesons are produced copiously in LHC heavy-ion collision experi-
ments, they act as probes of the quark-gluon plasma, and results from the CMS Collaboration
indicate sequential suppression in this system [2].

The rasTsum collaboration has had a long programme of studying the bottomonium spec-
trum at non-zero temperature using the NRQCD method [3], principally using the Maximum
Entropy Method [4]. We have determined both S- and P-wave masses and determined up-
per bounds for the state’s widths. We extend this work here to include three new analysis
techniques to determine the bottomonium spectrum, including the widths of the states. These
approaches are: a Maximum Likelihood approach using a Gaussian spectral function for the
ground state (see sec. 3), the Backus Gilbert method (sec. 4), and the Kernel Ridge Regres-
sion machine learning procedure (sec. 5). This contribution contains a progress report on this
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project, in which the long-term aim is to test and compare these and other methods, using
the same lattice dataset in order to extract the best estimates of the bottomonium spectrum at
finite temperature.

2 Lattice Method

Because the b-quark’s mass is larger than any other mass scale, it can be approximated as a
non-relativistic particle and the NRQCD effective theory can be used for its dynamics. Note
that this effective theory also holds in the case of thermal QCD since the temperature reached
in heavy-ion collisions is less than the b-quark mass. We use an O(v*) lattice implementation
of NRQCD where v = |p|/M is the velocity of the b-quark in the bottomonium’s rest frame.
Details of the action and the tuning of the b-quark parameters can be found in [3].

NRQCD has simpler time evolution properties compared to relativistic theories, it is an
“initial value” problem with the quark propagating forward in time only. The missing back-
ward movers lead to a simpler spectral decomposition. The meson correlator, G(7), can be
expressed in terms of the spectral function, p(w), via

Dmax d
G(r) = f S K wp@), K(r,w) = e, )

'min

In NRQCD the kernel K(7, w) takes the simple exponential form, whereas in the relativistic
case it is cosh[w(t — 1/2T)]/ sinh(w/2T).

The challenge is to reconstruct p(w) from G(7). Eq. (1) illustrates the “ill-posed” nature
of this problem: G(7) is typically known at O(10 — 100) data points, whereas p(w) is a contin-
uous function which requires O(1000) points to correctly represent it. This is a well-known
problem and many techniques have been developed across several research fields to solve this
problem. In the lattice context, it is important to compare and test these methods to ascertain
which one(s) are most applicable.

FASTSUM’s “Generation 2L anisotropic lattice ensembles are used, with a physical size of
(32a,)? x (N;a,) where a; 1'=5.997(34) GeV and a,/a, = 3.453(6) [5-7]. The simulation is
performed with 2+1 dynamical Wilson-clover quark flavours where the pion mass is M, =
236(2) MeV. There are O(1000) configurations for all temperatures and the pseudocritical
temperature is 162(1) MeV, as measured from the inflection point of the renormalised chiral
condensate [8]. The temperatures and corresponding N, values are shows in Table 1.

N. || 16 [ 20 | 24 | 28 | 32 | 36 | 40 | 48 | 56 |
T [MeV] || 375 | 300 | 250 | 214 | 187 | 167 | 150 | 125 | 107 |

Table 1: Temporal lattice sizes and corresponding temperatures for the Fastsum Generation
2L ensembles [8]. The N, = 128 ensemble was kindly provided by the Hadron Spectrum
Collaboration [5-7].

To start the discussion we show in Fig.1 the effective mass in lattice units for the I’ meson,
defined via

G
Mea(o) = log (%) : @

for all the temperatures considered. Some evidence of thermal effects can be observed.
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Figure 1: Effective mass plot in the Y channel, for all temperatures considered.

3 Gaussian Maximum Likelihood

In this approach the bottomonium spectral function is parametrised by a Gaussian ground

state (see also [9]) and a single d-function to account for all spectral weight beyond the
ground state,

w—-M 2
Pansaz(W) = Aground €Xp (%) + Aexcited 0(w — Mexcite)- 3)
The Gaussian ansatz for the ground state is chosen to allow for a finite width, which
is expected in a thermal medium. The spectral weight beyond the ground state could
be modelled with a function more sophisticated than a -function, but the extra param-
eters in any such function would reduce the method’s predictability. Inserting Eq. (3)
into Eq. (1) leads to a closed form expression for the correlation function G, (7). We
then apply the standard Maximum Likelihood method to determine the best fit parameters
{M ground/excited» Aground/excited, 0-}-

In the Maximum Likelihood method, we need to chose a time window 7 € [71,T2] to
perform the fits. This introduces a systematic effect which we study in Fig. 2 (left). Here
the full width at half maximum (FWHM) is plotted against 1/7, for the T channel at 7 = 47
MeV with 7; = 8 throughout. Note that we use temporal lattice units here, a, = 1, such that
the 7’s are integers. We expect the best estimate of the width to be given as 1/7, — 0, since
this isolates the ground state. However, at non-zero temperature the temporal extent of the
lattice is naturally restricted. As can be seen, the width heavily depends on the time window.
We consider two extrapolations 1/7, — 0; the blue line is a linear fit to the eight leftmost
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Figure 2: Left: Full width at half maximum (FWHM) for the Y at 7 = 47 MeV as a function
of the inverse time window parameter 1/7,, with 71 = 8 fixed. The red (blue) line is a
linear extrapolation on all (eight leftmost) data points. Right: FWHM of the Y state for all
temperatures for various 7, values. The pseudo-critical temperature, T, = 162(1) MeV, is
shown by vertical dashed line. The lower pane contains a close-up using 7; = 8§ and 7, = 19
for all temperatures.

(blue) data points, whereas the red line is a linear fit to all (blue and red) points. Taking these
extrapolations at face-value yields a width estimate of ~ 10 MeV.

The effect of varying the time window 7 € [8, 75] is shown in Fig. 2 (right) for all temper-
atures. Note that results from the same time window are plotted with the same colour. The
variation in the width as the fit parameter 7, is varied is substantial. Further details can be
found elsewhere [10], including a more detailed analysis of the systematic effects. As a pre-
liminary result we note from the right lower pane the indication that the width increases above
Ty when results from the same time window but at different temperatures are compared.

4 Backus Gilbert

The Backus-Gilbert method was introduced originally to solve an ill-posed problem relevant
to geology [12]. It estimates a solution to Eq. (1), f(w), in a point-wise manner by sampling
the target spectrum, p(w), using a basis of resolution functions, A(w, wy), that are peaked
around some wg € [Whins Wmaxl,

plwn) = f " Aw, wo)p(w)dw. @)

min

Ideally, these resolution functions are as close to the delta function 6(w — wy) as possible.
They are expressed as a linear combination of the kernel function,

Aw,w0) = ) @)K (,7), )

T

where the coefficients, c;(wy) are to be determined. This means that, by combining Egs. (4)
and (5), the solution estimate p(wy) is obtained from a linear combination of the original
correlation functions, G(7),

Plwo) = ) celw)G (), ©)

T
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Figure 3: Left: Reconstructed spectral functions of Y from the Backus-Gilbert method for
a sample of temperatures. Right: The ground state’s FWHM against temperature with the
vertical dashed line indicating Tp.. The grey band shows the minimum resolution, and its
error band, that the resolution functions could achieve at a given temperature.

The coefficients c,.(wp) can be determined by the Dirichlet least-squares criterion of minimis-
ing the distance between the resolution functions and the delta function,

J(wo) = f A, wp) - 8w — wo)do, %)

'min

leading to

Ko - o) = K(wo, T) where K. = f " K(w, DK (w, 7)dw. ®)

'min

The variance in the solution is also a function of ¢.(wg) and is given by

Var[p(wo)l = ) erEqrcr, ©)

7,7

where 2, is the covariance in G(1).

Reconstructed spectral functions for a sample of temperatures are shown in Fig. 3 (left).
From this we can see little change in the spectrum between 47 and 97 MeV, but then an
increase in mass and a large apparent increase in width at larger temperatures. We note that
the features below 9 GeV are artefacts of the method. In Fig. 3 (right) the FWHM is plotted
against temperature where the error bars are statistical only. At first sight, there appears a
clear increase in the FWHM with temperature. However, also plotted in the grey band is the
FWHM of the resolution function A(w, wp) and its error bound calculated at wy = Mround-
This represents the lower bound in the width that the method can resolve — the method is
incapable of predicting widths below this bound, and only widths which lie above this bound
can be taken as predictions. Since the bottomonium widths calculated using this method
follow this lower bound, the Backus Gilbert method is currently incapable of resolving the
bottomonium width. Further discussion can be found in [11, 13].

5 Kernel Ridge Regression

As is common in machine learning paradigms, kernel ridge regression (KRR) infers a pre-
diction of a quantity based on previously observed training data. In the case of solving the
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Figure 4: Left: Frequency of central values generated to form the set of mock correlation
functions overlaid with the actual correlation functions, the data is constrained to lie within
the dashed lines and be most frequent near the true data. Right: Reconstructed spectral
functions at a sample of temperatures with a zoom in of the ground state peak highlighted to
observe the temperature dependence.

inversion problem for NRQCD, mock data with known spectral functions are generated as
training data.

Details of the KRR approach in the context of NRQCD can be found in [15]. Here
we note that we modified our method how the input data, the set of correlators G;(7) (where

i=1,2,..., Nyain), is combined into the matrix (or kernel) C before the regression procedure.
In contrast to [15], we use here the following encoding for the matrix elements of C,
Gi(ty) = G;(t) |
Cij=exp|—y , (10)
! ( Z [ G(t,)

where the sum 7 runs over all time slices (starting at n = 4), vy is a hyperparameter that sets
the correlation length in the space of correlators, and G(,) = 1/Nyain 3.; Gi(7,) is the average
correlator of the training data at time 7,,.

We continue with some remarks on the generation of mock data, which has applications
beyond KRR. KRR works by inferring a spectral function from a training set of mock spectral
functions weighted by how much the concomitant correlation function resembles the true
lattice correlation function. Clearly then, the closer the training correlation functions are to
the actual lattice correlation functions obtained via numerical simulations, the more relevant
training spectral functions the KRR has to draw upon to infer a spectral function. Building
on [15], work has been done to increase the overlap of the training data and the lattice data.
The overlap between the new training data and the actual lattice correlators is shown in Fig. 4
(left). Here, the solid lines are the lattice correlators obtained in the simulations at a given
temperature (N; = 128 in this case). The heatmap shows the distribution of the training data
around these values and the dashed lines enclose the region inside which all training data lies.
As can be seen, the mock data tracks the actual correlators well. More details can be found

n [16].

Resulting spectral functions are shown in Fig. 4 (right). We observe ground state peaks at
all four temperatures shown, with some temperature dependence visible in the left pane. It is
noted that the mass of both the ground state and first excited state lie below the experimental
values. Further discussion is presented in [11, 16].
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6 Conclusion

This work presents a progress report of the rasTsum collaboration’s programme to apply a
number of methods to reconstruct the bottomonium spectral functions from NRQCD lattice
correlation functions. The three methods used are a Maximum Likelihood approach using a
Gaussian spectral function for the ground state; the Backus Gilbert method; and the Kernel
Ridge Regression machine learning procedure. The results presented are preliminary and
indicate the substantial systematic uncertainties.

Further work to analyse these systematic effects is in progress [11].
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