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Abstract: Hydrophobicity on steel-based metallic surfaces provides an advantage in limiting cor-
rosion and debris buildup on the surface, thereby, improving the substrate performance. An ex-
perimental investigation was conducted on the development of zinc stearate and silicon dioxide
coatings on the surface of hot-dipped galvanised zinc-coated steel substrates, which could be used
to induce superhydrophobicity. Under optimal formulation and processing conditions, a contact
angle of 146◦ could be produced within a 120-min processing window. This represents a reduction in
processing time of 67% over previous literature using similar chemistry. In addition, we proved that
costly nano silicon dioxide can be replaced by lower cost micro silicon dioxide without decreasing
the performance of the coating contact angle. Under standard accelerated exposure tests, the coating
was shown to reduce oxide build up by a factor of 3 compared to uncoated galvanized steel.

Keywords: hydrophobic coating; functional coating; zinc stearate; hot-dipped galvanised steel

1. Introduction

Zinc (Zn)-based galvanised steel coatings provide anodic corrosion protection to
underlying steel substrates and have been used extensively in the automotive and construc-
tion industries. The zinc coating is applied to the steel strip at speeds of up to 200 m/min
with commonly applied zinc coating weights of 275 g/m2. Conversion coatings are typ-
ically employed to improve the atmospheric corrosion resistance by the formation of a
non-conducting precipitate on the zinc substrate surface. These coatings have previously
contained hexavalent-chromate, which provides excellent corrosion resistance but due to
their toxicity have been replaced with phosphate- or titanate-based solutions [1,2]. However,
recent research has focused on more environmentally friendly processes [3].

There has been growing interest in the use of hydrophobic coatings (HCs) to im-
prove corrosion resistance of metallic substrates and to provide functionality, such as
self-cleaning [4–9]. These coatings are inspired by the natural surface of lotus leaves, which
have nano-structured surfaces coated with low-surface-energy materials that provide an
interface between the coating and liquid [10]. The interface is created by retaining air within
the nano-scale topography of the surface, which reduces the contact area of water droplets,
producing a highly non-wetting, low adherence surface [6,7,11]. A superhydrophobic
surface (SHS) refers to a surface with a contact angle of more than 150◦ [8,12,13]. SHSs
have been shown to provide effective corrosion protection on a range of metallic substrates,
such as steel [14,15], copper [16], magnesium [17] and zinc [9,18–21].

The preparation of superhydrophobic coatings on metallic substrates can be achieved
using a variety of methods, such as electrodeposition, chemical etching and hydrother-
mal growth [7,22–25]. However, many of these methodologies require complex two-step
processes that would be difficult to implement in an industrial application. Due to these
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issues, there has been recent advances to develop simple one-step methods to produce
a superhydrophobic surface. Li et al. implemented a one-step immersion method to
produce a superhydrophobic coating on zinc using a solution of stearic acid containing
silver nitrate [26].

The coating was applied at room temperature within 1 min, and the reported re-
sults indicated excellent corrosion protection; however, the use of silver nitrate would
be prohibitive for industrial applications due to cost. Chen et al. used a rapid one-step
electrodeposition process to produce a superhydrophobic coating on copper using a nickel
chloride-based electrolyte solution. The resulting surface was reported to achieve up to
a 164◦ contact angle and less than 2◦ rolling angle; however, the corrosion resistance was
not reported [27].

Liang et al. produced a superhydrophobic coating on a zinc surface implementing a
simple one-step hydrothermal growth technique using stearic acid and silicon dioxide (SiO2)
particles [13]. The authors reported excellent corrosion performance when the coating was
immersed in aqueous sodium chloride solution and contact angle measurements were
recorded of up to 160◦. The zinc layer on the surface of hot-dipped galvanized (HDG) steel
reacted with stearic acid to form low surface energy zinc stearate. The chemical reaction for
this is observed below [13]:

Zn − 2 e− = Zn2+ (1)

Zn2+ + 2 CH3(CH2)16COOH = Zn[CH3(CH2)16COO]2 + 2 H+ (2)

However, the coating required up to 6 h to form, which would be impractical for
industrial applications. The work described here employs a simple one-step hydrother-
mal growth method using stearic acid and silicon dioxide particles to produce a highly
hydrophobic coating on a hot-dipped galvanised (HDG) steel. The methodology described
by Liang et al. provides a foundation for further improvements to reduce the time required
to produce a suitable coating, thereby, making the coating more appropriate for industrial
applications [13].

Furthermore, the nano-SiO2 used in the method proposed by Liang et al. is compared
with fumed-SiO2, which is more readily available and commonly used in organic coat-
ings [28]. Corrosion resistance has previously been studied by Liang et al. using EIS and
potentio-dynamic polarisation, and in comparison, an industrially relevant accelerated
corrosion test was used here to corroborate these previously published results. This work
aims to produce a simple one-step hydrophobic coating on a HDG steel substrate, which
may be scalable for industrial applications.

2. Materials and Methods
2.1. Materials

Sodium hydroxide, hydrogen peroxide (30%), stearic acid and silicon dioxide (9–20 nm)
were purchased from Sigma Aldrich (St. Louis, MO, USA), and ethanol was purchased
from Fisher Scientific (Hampton, VA, USA). Fumed silicon dioxide (Aerosil 300, Essen,
Germany, 0.2–0.3 µm) was obtained from Evonik. All chemicals used were of reagent grade.
Hot-dipped galvanized (HDG) steel was provided by Tata Steel (Port Talbot, Wales) and
cut into 10 × 10 mm samples for the initial systematic study. Later, samples were cut into
80 × 80 mm coupons to scale up the coating formulation and for humidity testing.

2.2. Methods
2.2.1. Coating Production

A one-step immersion method was used to coat HDG steel samples. First, the HDG
samples were prepared by degreasing using ethanol. They were then submerged in 1 M
sodium hydroxide solution for 15 s at 50 ◦C, which replicates the industrial cleaning
process [29]. The coating formulation used either ethanol or isopropyl alcohol (IPA) as the
solvent, which is given in Table 1. The formulation was prepared by adding 0.05 M stearic
acid to 100 mL of the relevant solvent.



Coatings 2022, 12, 895 3 of 14

Table 1. Formulations used to produce hydrophobic coatings.

Formulation Solvent Molarity of Stearic Acid (M) SiO2 Size (nm) NaOH Addition

1 Ethanol 0.05 200–300 %
2 IPA 0.05 200–300 %
3 Ethanol 0.05 200–300 X
4 Ethanol 0.1 200–300 %
5 Ethanol 0.2 200–300 %
6 IPA 0.05 200–300 X
7 IPA 0.1 200–300 X
8 IPA 0.2 200–300 X
9 Ethanol 0.05 9–20 X
10 Ethanol 0.1 9–20 X
11 Ethanol 0.2 9–20 X
12 IPA 0.05 9–20 X
13 IPA 0.1 9–20 X
14 IPA 0.2 9–20 X

Hydrogen peroxide (2 mL) was added dropwise to the formulation whilst magnetically
stirred for 1 min. Silicon dioxide (1% wt.) was added to the formulation and magnetically
stirred for 30 min to ensure the stearic acid was fully dissolved and the silicon dioxide was
evenly dispersed. The particle size of silicon dioxide was a variable investigated, which can
be seen in Table 1. The formulation was heated and held at 70 ◦C using a hotplate before
HDG samples were immersed for up to 360 min. The samples were then removed, rinsed
with ethanol and blown dry.

2.2.2. Characterization Techniques

Surface morphology and analysis of the hydrophobic surface has visualised using
scanning electron microscopy (SEM) (Hitachi TM3000) (Tokyo, Japan) equipped with
electron dispersive spectroscopy (EDS). The wettability of the surface was determined by
analysing the contact angle (CA) of de-ionised water in contact with the coating film. The
CA measurement system comprised of a camera, and FTA32 software 2.0 (FTA1000 manual
system, First Ten Angstroms) (Portsmouth, VA, USA) for analysis with an error measure of
±1◦ under optimized illumination and optical conditions.

Fourier-transform infrared spectroscopy (FTIR) (PerkinElmer spectrum-100) (Waltham,
MA, USA) and x-ray diffraction (XRD) (Bruker D8 Discover with copper source 40 kV and
40 mA) (Billerica, MA, USA) were used to characterise the surface chemical constituents.
XRD was conducted with a glancing angle setup consisting of a 2◦ incidence angle in true
parallel beam configuration and increments of 0.02◦. Atomic force microscopy (AFM) (JPK
nanowizard 3) (Berlin, Germany) was used to measure the topography of the substrate
surface. Lastly, the corrosion resistance was evaluated via subjecting the samples to 1000 h
humidity testing.

2.2.3. Initial Studies

An initial study investigated the feasibility of reducing the time required to produce
a hydrophobic coating using the experimental procedure published by Liang et al. [13].
Samples of HDG steel were immersed in formulation 1 and removed at regular intervals.
The initial study revealed that the time required to achieve a suitably hydrophobic surface
using the parameters published by Liang et al. [13] was after an immersion time of 120 min
whereby a contact angle of >100◦ was measured. The contact angle versus immersion time
is given in Figure 1a. The 120 min required to produce a suitably hydrophobic coating
is used as a minimum time for the systematic study with a maximum time of 360 min as
published by Liang et al.
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Figure 1. (a) CA vs. immersion time for formulation 1 over 360 min immersion, (b) recorded CA
of HDG steel, which has been “as received”, cleaned in NaOH, cleaned in NaOH and immersed in
ethanol and cleaned and immersed in the coating formulation.

The contact angle of HDG steel samples with each surface treatment is shown in
Figure 1b. There was very little change in CA for HDG samples that were cleaned or
rinsed in ethanol compared to the as received HDG steel sample. However, there was a
significant increase in CA (>120◦) recorded for HDG steel immersed in formulation 1. This
demonstrates that the surface cleaning conditions typically employed in industry do not
contribute to increased CA.

The minimum time of 120 min was used in a systematic study to investigate variables
including the solvent, the addition of NaOH, stearic acid molarity and SiO2 particle size.
Surface morphology and CA were assessed as a function of the formulation shown in
Table 1. Throughout the systematic study, 14 formulations were investigated; however, the
key findings and trends will be reported by examining a subset of these.

3. Results and Discussion
3.1. Surface Morphology and Wettability

The published methodology used by Liang et al. used ethanol to dissolve stearic acid.
However, stearic acid has been shown to be more soluble in isopropyl alcohol (IPA) than
in ethanol [30,31]. The increased solubility provided by using IPA would allow for higher
concentrations of stearic acid to be used and may also have different morphology of the
resultant hydrophobic coating when compared to that produced using ethanol.

Hydrophobic surfaces were produced through submerging HDG steel samples in
formulations 1–3 given in Table 1 for up to 360 min. The surface morphology was observed
using SEM imaging, which is shown in Figure 2a–d. Figure 2a shows a HDG steel surface
that has been cleaned in 1 M sodium hydroxide solution for 15 s at 50 ◦C. Figure 2b–d
shows that the surface morphology of the HDG steel dramatically alters after immersion in
the experimental formulation compared to that of the cleaned HDG steel surface shown
in Figure 2a. Figure 2b shows the surface morphology consists of lamellar structures
when using ethanol as the solvent. Liang et al. reported similar structures in their work
and suggested that the structures observed here are zinc stearate with silicon dioxide
entrapped amongst the structure, shown by the lighter areas [13]. The surface morphology
observed in Figure 2c is produced from formulation 2, whereby IPA is used as the solvent,
replacing ethanol.

Here, the zinc stearate has formed in a dense needle-like precipitate compared to
Figure 2b allowing larger floccules of silicon dioxide to be entrapped. Figure 2d shows the
surface morphology produced from formulation 3, which is ethanolic-based containing an
addition of 2% wt. 1 M NaOH (aq). The morphology shown here is similar to that shown
in Figure 2b; however, the lamellar structures appear to be larger and less densely packed
compared to that shown in the non-NaOH addition shown in Figure 2b.
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Figure 2. SEM images of fabricated coatings after immersion (a) uncoated, (b) formulation 1 (ethanol,
0.05 M stearic acid and micro-SiO2) for 360 min, (c) formulation 2 (IPA, 0.05 M stearic acid and
micro-SiO2) for 360 min and (d) formulation 3 (ethanol, 2% wt. 1 M NaOH (aq), 0.05 M stearic acid
and micro-SiO2) for 360 min.

CA measurements for HDG steel samples immersed in formulations 1–3 for up to
360 min are shown in Figure 3. The maximum CA recorded for each sample generally
occurred after 360 min of immersion with 125◦ for formulation 1, 135◦ for formulation 2 and
125◦ for formulation 3. The increase in CA recorded for formulation 2 can be attributed
to the different surface morphology compared to that formed by samples immersed in
formulation 1 or 3. Studying Figure 2b,c, the morphology is significantly altered when
using IPA as a solvent compared to that of ethanol. The dense needle-like precipitate
entraps more silicon dioxide and would provide a rougher surface, which could explain
the increase in CA observed. Increased surface roughness can impart functionality to the
surface via hydrophobicity. A higher density of surface features entraps air, which limits
the liquid droplet’s ability to rest on the surface and permeate through to the underlying
substrate. This increase in surface roughness corresponds to an increase in CA [32,33].
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Formulation 3 has an addition of 2% wt. 1 M NaOH (aq) compared to that of formu-
lation 1. Figure 3 showcases the difference in coating homogeneity when an addition of
2% wt. 1 M NaOH is present within the coating formulation. NaOH was introduced to
increase the pH, which acts to activate the HDG steel surface and assist in increasing the
homogeneity of the coating across the substrate surface. Zinc stearate structures form in
similar lamellar plate shapes to those formed from formulation 1.

The maximum CA recorded is the same as that for formulation 1, which can be
explained by the very similar surface morphology. However, the main advantage of the
addition of NaOH was that of improved coating homogeneity. The improved coating
homogeneity can be attributed to the increased activation of the HDG surface through the
introduction of NaOH [34]. Due to the increased homogeneity of coating formation, it was
decided to include 2% wt. 1 M NaOH within all subsequent formulations (Figure 4).
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Figure 4. Image taken of hydrophobic samples coated with formulation 1 (left) and 3 (right) without
and with 2% wt. 1 M NaOH addition, respectively.

Altering the molarity of stearic acid within the solution provided improved results
by increasing surface CA whilst simultaneously decreasing immersion time. Additions of
Stearic acid at concentrations of 0.05, 0.1 and 0.2 were evaluated within ethanol and IPA.
Figure 5a–c shows the increase in molarity visibly affects the crystalline structure formed
after a 360-min immersion period. Molarity increases over the three samples showed zinc
stearate transition from needle-like structures to form lamellar structures. There is an
increase in the population of zinc stearate and SiO2 over the sample’s surface, filling in
open crevices left within the coating. CA measurements, shown in Figure 6, show that
0.2 M gave a negligibly higher CA in comparison to 0.1 and 0.05 M, recorded at 128◦, 127◦

and 126◦, respectively, when immersed for 360 min.
However, with increased molarity, higher CA was achieved in a shorter immersion

time. This is demonstrated by formulations 7 and 8. Formulation 8 returned the greatest
CA of 146◦, in an immersion time of 120 min. Reducing the immersion time required to
produce the coated surface is a crucial factor in improving the coating’s industrial viability.
Figure 6d shows the surface morphology of this sample, zinc stearate is formed in needle-
like structures encapsulating floccules of SiO2. The smaller needle structures are distributed
more evenly across the surface, thereby, achieving better coating surface homogeneity. This
enables air to be retained between zinc stearate and SiO2 molecules. In turn, this contributes
to a rougher surface that stops water droplets from permeating between pores, increasing
the CA measured and surface hydrophobicity [13,35].
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Figure 5. SEM images of fabricated coatings after immersion in (a) formulation 6 (IPA, 2% wt. 1 M
NaOH (aq), 0.05 M stearic acid and micro-SiO2), (b) formulation 7 (IPA, 2% wt. 1 M NaOH (aq), 0.1 M
stearic acid and micro-SiO2), (c) formulation 8 (IPA, 2% wt. 1 M NaOH (aq), 0.2 M stearic acid and
micro-SiO2) all for 360 min and (d) formulation 8 (IPA, 2% wt. 1 M NaOH (aq), 0.2 M stearic acid and
micro-SiO2) for 120 min.
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The particle size of additive SiO2 was also assessed. Particle sizes of 9–20 nm were
used, compared to the 0.2–0.3 µm that was used throughout the systematic study. Figure 7
demonstrates that a similar trend was found between CA and immersion time for the
nanoparticles and microparticles of SiO2. When the molarity is low, there is a positive
relationship between immersion time and CA. As the molarity is increased, the initial CA is
found to be higher but then decreases with increased immersion time. This is demonstrated
by formulation 12, which has a CA of 118◦ and 129◦ at 120 and 360 min, respectively. In
comparison, formulation 14 has a CA of 135◦ and 131◦ at 120 and 360 min, respectively.
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Figure 7. Relationship between CA against immersion time for formulations 12–14 from Table 1.

One theory for why CA decreases with increased immersion time is due to the SiO2
formation blanketing the crystalline structure on the substrate surface. Increased SiO2
deposition leads to decreased surface roughness and contributes to reducing the hydropho-
bicity of the substrate surface over time. The surface morphology is demonstrated in
Figure 8a,b, and the change in structure with increased immersion time is attributed to
the increased SiO2 deposition. AFM was utilised to validate this theory by evaluating the
surface roughness of the specimens from formulation 8 at 120 min and formulation 14 at
120 and 360 min. When analysing the data on formulation 14 from Table 2, we observe that
the roughness values decreased between the two samples. This validates the previous as-
sumption showing that hydrophobicity can be negatively impacted in comparison to when
lower concentrations are used within solution. The AFM maps for the surface roughness
are shown in Figure 9.
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Table 2. Surface roughness data via AFM from samples coated in formulation 8 and 14.

Surface Roughness
Formulation 8 Formulation 14

120 min 120 min 360 min

Average, Sa 194 nm 77 nm 47 nm
RMS, Sq 243 nm 101 nm 64 nm
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Figure 9. Topographical images produced by AFM of samples coated (a) in formulation 8 for 120 min,
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3.2. FTIR Analysis

FTIR analysis was conducted to determine the changes in the different functional
groups that form due to the reaction of stearic acid and zinc. Figure 10 shows FTIR spectra
for SiO2, the hydrophobic surface formed and stearic acid. Peaks at 1099 and 810 cm−1 in
Figure 10a relate to the symmetric and asymmetric stretching vibration of Si-O-Si bonds,
whilst 462 cm−1 relates to the Si–O bending vibration absorption [36,37]. The 2915 and
2850 cm−1 peaks in Figure 10b,c correspond to C–H bonds on the hydrophobic surface and
in stearic acid, respectively.
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Figure 10. FTIR spectra of (a) SiO2 (b) hydrophobic sample and (c) stearic acid.

Figure 10c shows peaks located at 1705 and 940 cm−1, which represent C–O stretching
vibration and the absorption peak of the hydroxyl group (–OH) in the carboxyl group
(–COOH). These peaks are not present in Figure 10b and are instead replaced by peaks
at 1540 and 1397 cm−1. These changes demonstrate the –COOH present in stearic acid
has changed, with H replaced by Zn [13,38]. This change demonstrates the preparation of
the zinc stearate hydrophobic surface onto the HDG steel surface. The chemical reaction
observed is stated in Equations (1) and (2).

3.3. Optimal Coating Parameters

We observed that the optimal coating system was shown to be formulation 8. This
formulation consisted of 0.2 M stearic acid, 1% wt. SiO2 (0.2–0.3 µm), 2% wt. 1 M NaOH
and was immersed for 120 min achieving a mean contact angle of 146◦. This system
provided the most hydrophobic surface as well as demonstrating a more homogeneous
coating throughout.

3.4. Humidity Testing
3.4.1. Method and Results

Potentiodynamic polarisation and EIS were previously used by Liang et al. to char-
acterise similar coatings to those in the work described here. They reported that the
hydrophobic coating increased the electrode potential and reduced the corrosion current
density indicating an improvement in the corrosion resistance. Equivalent circuits also
demonstrated that the coated samples produced larger charge transfer resistance compared
to uncoated zinc, which represents the flower corrosion processes observed [13].
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High humidity can cause failure of metal substrates, and thus high humidity envi-
ronments are utilised to assess the corrosion performance of a substrate. Conditions can
be mimicked closely within laboratory settings using a humidity cabinet. Samples were
placed at 45◦ and held at 35 ◦C and 100% humidity as per Standard ASTM D2247-15.
Formulation 8 was utilised to fabricate the hydrophobic surface on HDG steel coupons
measuring 80 mm × 65 mm.

The investigation was conducted for up to 1000 h. At intervals of 0, 250, 500 and
1000 h a canon EOS 5D camera within a lightbox was used to photograph the samples, mass
measurements were taken of each sample. Epoxy resin was used to seal the cut edges of
the samples, and the water uptake of the resin was negated for and deducted from the final
mass change values to achieve accurate and concurrent readings. Figures 11a–d and 12a–d
show photographs taken of the uncoated and coated samples throughout humidity testing.
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Figure 12. Humidity samples of coated HDG at (a) 0 h (b) 250 h (c) 500 h and (d) 1000 h.

Figure 13 demonstrates the increase in mass gained by both sample sets over this
period. The uncoated sample visibly changes as a white precipitate is formed across the
substrate surface. In contrast, the coating layer formed from zinc stearate and SiO2 does
not significantly change over the testing period. The mass change differences showcase
the coated sample sees a significantly reduced mass increase and thus a higher corrosion
resistance when compared with the uncoated sample.
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3.4.2. XRD and FTIR Analysis of Humidity Results

Compositional analysis from XRD is given in Figure 14, which is used to determine the
phase structure of the hydrophobic coating. A comparison is shown between the uncoated
sample and the hydrophobic sample after 1000 h of humidity testing. By comparison, we
observed that zinc stearate (Zn(SA)2 where SA represents the stearate complex) is formed
on the hydrophobic sample surface, and this signifies the reaction of zinc and stearic acid
as shown in Equation (1). SiO2 can also be seen in the XRD pattern, showcasing that SiO2
has been encapsulated within the coating by physical action and not changing physical
composition. The notable peak, which is observed in the uncoated sample and not the
coated sample is that of zinc carbonate hydroxide and zinc hydroxide [6,13,39–41]. This is
created via the mechanisms:

5 ZnO + 2 CO2 + 3 H2O = Zn5(CO3)2(OH)6 (3)

Zn + 2 H2O = Zn(OH)2 + 2 H2 (4)
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Figure 14. XRD patterns of humidity samples after 1000 h (a) uncoated sample and (b) hydrophobic sample.

FTIR analysis was completed alongside XRD to corroborate the observation of carbon-
ate ((CO3)2−) bonds within the uncoated sample, this data is presented in Figure 15. This is
highlighted by the peaks observed at 1500 and 1390 cm−1 relating to the antisymmetric
stretching modes of (CO3)2− [42]. This data provides validation that the white precipitate
observed in Figure 11 can be mainly accounted to zinc carbonate hydroxide and zinc
hydroxide formation on the surface. The mass change of both the uncoated and coated
samples after humidity testing is assumed to be attributed to this and thus reinforces the
theory that the coated sample has a higher resistance to corrosion due to a smaller change
in mass.
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4. Conclusions

A systematic study was employed to improve the processability of a one-step hy-
drophobic coating for HDG steel and to make it more industrially appropriate. The
variables highlighted throughout the study included the immersion time, solvent used,
addition of NaOH, molarity and SiO2 particle size. The best-performing coating demon-
strated a CA of 146◦ from an immersion time in formulation of 120 min. The formulation
variables were IPA used as the solvent, 2% wt. 1 M NaOH (aq), 0.2 M stearic acid and
micro-SiO2 (0.2–0.3 µm).

Under standard accelerated exposure tests, the uncoated samples were seen to increase
in mass by approximately three times the amount of the coated samples, thus, inferring
that considerable corrosion resistance was gained from the coating. When comparing
this methodology to other one-step processes by Li et al., we observed that, despite a
longer processing time, the use of more commercially available, economically viable and
safer constituents within the formulation justifies its development. The methodology
displays significantly reduced health and safety risks and avoids the use of toxic chemical
nitrates [6,26]. In comparison to Laing et al., the processing times were reduced by 67%,
and the use of chemical additions, such as fumed silica, provided a vastly cheaper and
safer alternative to nano-silica [13].

While the processing times were reduced by 67%, the process of creating hydrophobic
coatings remains in hours not minutes. In practice, this means that it is suitable for batch
processing only given that inline residence times require processing times in tens of seconds.
The limiting factor is the kinetic rate of hydrothermal growth of the zinc stearate, and it
has been demonstrated that this cannot be manipulated through changes in stearic acid
solution concentration. Increases in temperature would be a natural step to increase the
zinc stearate creation rate; however, this is limited by several factors.

The processing temperature is limited by the solvent boiling point, which, for ethanol
and IPA, limits this to ~70 ◦C. Any further increase would risk boiling, altering the chem-
istry of the bath and producing a significant health and safety risk. Any change to a higher
boiling point solvent would need to balance the solubility of the stearic acid and zinc
stearate to ensure that the stearate can be added to the solution while retaining the insolu-
bility (or sparing solubility) of the zinc stearate. L-butanol benefits from a higher boiling
point (117 ◦C) and has stearic acid solubility similar to IPA [43]. Whether the potential
increased operating temperature would be beneficial needs to be balanced with the safety
and energy considerations.

Zinc is the dominant metal used in galvanising; however, it is also common that other
alloying materials, such as magnesium and aluminium, are added to the metallic coating
to further improve the corrosion resistance. The inclusion of these alloying compounds
offers the possible formation of other metal-organic compounds as well as zinc stearate.
The impact on hydrophobicity should also be investigated for these materials. This would
help to identify the universality of the coating across the broad range of zinc-coated steel
substrates. The coating demonstrated a significant improvement in corrosion resistance
during industry standard humidity testing; however, the physical robustness also needs
to be considered in any lifetime prediction. Further evaluation of the relative abrasion
resistance and friction would be beneficial in estimating the real-world product lifetime
extension provided by the zinc stearate coating.
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