

A 3,000-yr high-resolution reconstruction of forest disturbances in the Cascade Range, Oregon, USA

Matthew Harry Watkins

Submitted to Swansea University in fulfilment of the requirements for the Degree of Doctor of Philosophy

2022

Summary

Current outbreaks of *Dendroctonus* bark beetles across the Pacific Northwest are widely regarded as unprecedented with the increased scale and severity of such outbreaks attributed to anthropogenic warming over the 19th and 20th Centuries. Despite such severe outbreaks observed in recent years, very little is known of historic occurrence of these forest pests. Much of the historic reconstructions of forest disturbance in this region are focussed on the Coastal Mountain Range and Willamette Valley, Oregon, and southwestern Washington. This thesis aimed to address important knowledge gaps associated with forest disturbances by producing a high-resolution fire history reconstruction at three sites within the crest of the Cascade Range, Oregon, along with the development of sedaDNA-methodologies for the direct detection of several key forest pests, including the mountain pine beetle (Dendroctonus ponderosae), the Douglas-fir beetle (Dendroctonus pseudotsugae), and the genus of budworm Choristoneura. The fossil charcoal records identified a period of heighted fire activity pre-700 yr BP, attributed to the Medieval Climate Anomaly, followed by a period of suppressed fire activity between 700 yr BP and present, associated with the effects of the Little Ice Age. DNA-based methods revealed the presence of D. pseudotsugae and Choristoneura occidentalis within lake sediments during periods of known outbreaks as inferred by aerial detection survey data. These results increase our understanding of fire dynamics within the Pacific Northwest and further emphasise the potential role of DNA-based methods in the field of palaeoecology.

Declarations and statements

Declaration

This work has not previously been accepted in substance for any other degree and is not being concurrently submitted in candidature for any degree.

Signed:	
Date:	14 th January 2022

Statement 1

This thesis is a result of my own investigations, except where otherwise stated. Where correction services have been used, the extent and nature of the correction is clearly marked in the footnote(s). Other sources are acknowledged by footnotes giving explicit references. A bibliography is appended.

Signed:		
Date:	14 th January 2022	

Statement 2

I hereby give consent for my thesis, if accepted, to be available for photocopying and for interlibrary loan, and for the title and summary to be made available to outside organisations.

Signed

Date: 14th January 2022

Statement 3

The University's ethical procedures have been followed and, where appropriate, that ethical approval has been granted.

Signed.

Date: 14th January 2022

Acknowledgements

I would like to thank everyone at Swansea University, the College of Science, the Geography Department, and the Biosciences Department for their continued support, guidance, and the opportunities they have provided throughout my time as a Masters' student and now as a PhD student. Thank you to everyone who has helped me throughout my project, your feedback from presentations, talks in the corridors, chats over coffee, your guidance has helped immeasurably. Thank you to everyone who I have had the pleasure of sharing a lab group and an office with over the last few years.

I cannot express the level of gratitude I have for my supervisors, Dr Cynthia Froyd. Prof. Sonia Consuegra, Prof. Stephan Woodborne, and Ms. Julie Johnson. Cindy and Sonia, you have pushed me to do things I never thought I would be capable of and supported me every step of the way. Your encouragement and expert guidance have been invaluable throughout my time here and I will always be incredibly grateful.

I would like to thank Prof. Stephan Woodborne for his kindness in hosting me in South Africa and his generosity with his time and radiocarbon dating, your contribution has really improved the scope and resolution of this project. To Ms. Julie Johnson, thank you for your incredible knowledge of the Pacific Northwest forests, your GIS expertise, and your fieldwork skills. Thank you to the Quaternary Research Association and the Royal Society of Biology for the funding opportunities provided throughout my study.

Thank you to everyone who helped with fieldwork, Molly, Bill, Julie, Ben, Iain, Stan, Ellen, Keith, Sandy, Isabella, Craig, and Glenda. To Grahame and Julian, thank you for giving me the resources to help me conduct all experiments and analyses.

I would like to thank my two incredible examiners, Prof. Mary Edwards and Dr Tamsyn Uren-Webster, for a thoroughly enjoyable and informative viva discussion. Your comments have improved this thesis and the subsequent papers immeasurably.

Last, but not least, I would like to thank my family, Mum, Dad, Nanny, Grancha, Grandma, and Poppy. You have helped and supported me every step of the way, even when you didn't realise.

Contents Page

Summary	2
Declarations and statements	3
Acknowledgements	4
Contents	5
List of tables	9
List of figures	11
Supplementary material	13
Abbreviations	14
Chapter 1: General Introduction	15
1. Research context	16
2. Forest disturbance	17
3. The Pacific Northwest	18
3.1. Geography, geology, and climate	18
3.2. Ecology	20
3.3. Disturbance and tree defences	23
4. Disturbance agents of the Pacific Northwest	26
4.1. Forest insects	27
4.2. Bark beetles and the genus Dendroctonus	27
4.3. Defoliators	31
4.4. Fire	32
5. Current methods of reconstructing historic outbreaks	33
5.1. Dendroecology	34
5.2. Palynology	38
5.3. Taxonomic identification of preserved remains	40
6. The potential role of DNA-based methodologies in palaeoecology	42
6.1. Introduction to DNA-based methodologies	42
6.2. sedaDNA	43
7. Thesis structure and aims	44
Chapter 2: Methods	46

1. Site selection	
-------------------	--

1.1. Current and recent evidence of forest disturbance	47
1.2. Final site selection and core descriptions	49
1.3. Little Monon Lake	54
1.4. Pyramid Lake	57
1.5. Summit Lake	59
1.6. Forlorn Camp Lake 3	61
2. Sediment collection	62
3. AMS radiocarbon dating	63
4. Tephrochronology	70
5. Macrofossil charcoal	71
5.1. Sampling	71
5.2. Creation of charcoal accumulation rates (CHAR)	71
5.3. The development of fire event indices	72
5.4. Fire events and fire return intervals	74
6. DNA	74
6.1. DNA extractions and qPCR primer design	74
6.2. Dendroctonus protocol	75
6.3. Choristoneura spp. protocol	76
6.4. qPCR optimisation	77
6.5. sedaDNA extractions	78
6.6. Confirmation of sedaDNA	78
6.7. Testing for potential PCR inhibition	79
Chapter 3: Results	80
1. DNA	81
1.1. Tissue extractions of target species	81
1.1.1. Dendroctonus	81
1.1.2. Choristoneura spp.	81
1.2. Quantification of sedaDNA extractions and background DNA checks	82
1.3. Primer specificity, efficiency, and limits of detection	83
1.4. sedaDNA results	86
1.4.1. Pyramid Lake	86

1.4.1.1. Dpseudo protocol861.4.1.2. Dpond protocol86

1.4.1.3. Chorist protocol	86
1.4.2. Little Monon Lake	88
1.4.2.1. All protocols	88
1.4.3. Summit Lake	88
1.4.3.1. Chorist protocol	88
1.4.3.2. Dpond and Dpseudo protocols	88
1.5. PCR inhibition trials	89
2. Charcoal	90
2.1. Summary statistics of raw charcoal counts	90
2.2. Distribution of charcoal particles	91
2.3. Charcoal accumulation rates (CHAR)	93
2.3.1. Little Monon Lake	93
2.3.1.1. 125-250µm	93
2.3.1.2. 500-250µm	93
2.3.1.3. >500 μm	94
2.3.2. Pyramid Lake	96
2.3.2.1. 125-250µm	96
2.3.2.500-250µm	96
2.3.2.3. >500 μm	96
2.3.3. Summit Lake	98
2.3.3.1. 125-250µm	98
2.3.3.2. 500-250µm	99
2.3.3.3. >500 μm	99
2.4. Fire event indices	101
2.5. Fire return intervals	103
2.6. Fire events per 100-yr period	107
2.6.1. Little Monon Lake	107
2.6.2. Pyramid Lake	107
2.6.3. Summit Lake	107
3. Tephra	109
3.1. FC3 B1	109
3.2. FC3 B2 and FC3 B3	110

Chapter 4: Discussion	112
1. Dating controls	113
1.1. Original rationale for this study	113
1.2. Radiocarbon dating and tephrochronology	114
2. DNA	117
2.1. sedaDNA	117
2.1.1. Pyramid Lake	118
2.1.1.1. 1946-2017 AD	118
2.1.1.2. Pre-1946 AD	122
2.1.2. Summit Lake	123
2.1.3. Little Monon Lake	125
2.2. Factors affecting DNA recovery	128
2.2.1. Species morphology	128
2.2.2. Biomass	130
2.2.3. Taphonomy and the DNA catchment	131
2.2.4. False negatives	132
2.2.5. DNA degradation	134
2.3. The potential role of DNA-based methodologies in palaeoecology	135
2.4. DNA conclusion	139
3. Charcoal	140
3.1. backgroundCHAR and peakCHAR	140
3.2. Fire return intervals	143
3.3. Fire history across the Pacific Northwest	145
3.4. Factors affecting charcoal production and deposition	148
3.5. Human influence on fire	151
3.6. Charcoal conclusion	152
4. Conclusion	153
Supplementary material	155
Bibliography	301

List of Tables

Table 1.1. – The main vegetation zones of the Cascade Mountain Range, Oregon.	21
Table 1.2 Key tree species of the Pacific Northwest and their typical level of fire	
tolerance and major fire adaptation strategies.	26
Table 1.3 Several key dendroecological reconstructions of bark beetle outbreaks	
in North America	35
Table 1.4 Life expectancy, height, and shade tolerance for several key tree species	
in the Pacific Northwest.	37
Table 2.1 All cores obtained during the 2016 and 2017 fieldwork season	51
Table 2.2 A summary of all outbreak data from Little Monon Lake, Pyramid	
Lake, and Summit Lake, Oregon, between 1947-2019, based on USDA Forest	
Service Annual Detection Survey Data	54
Table 2.3. – Summary table of all AMS dates used in this study	66
Table 2.4. – Primer sets designed within this study for mountain pine beetle	
(Dendroctonus ponderosae), Douglas-fir beetle (D. pseudotsugae) and Choristoneura	
spp. and those used for sequencing.	77
Table 3.1. – DNA yields from whole beetles, head and elytra tissue, and leg tissue	
from D. ponderosae and D. pseudotsugae and for Choristoneura occidentalis pupae	82
Table 3.2. – qPCR results summary showing the species-specificity of designed	
primer sets Dpond, Dpseudo, and Chorist.	85
Table 3.3 Ct values for varying concentrations of eDNA:DNA	90
Table 3.4. – Summary statistics of raw charcoal count data	91
Table 3.5 Total number of fire events identified using 100, 150, and 200-yr	
running windows	102
Table 3.6. – The number of fire events identified using 1, 1.05, 1.12, and 1.2 as a	
threshold for fire events	102
Table 3.7 Mean fire return intervals for Little Monon Lake, Pyramid Lake, and	
Summit Lake	103
Table 3.8. – Radiocarbon dates and calibrated ages for samples associated with	
tephra analyses at Forlorn Camp Lake, Washington.	109
Table 3.9 - Summary of geochemical data from Forlorn Camp Lake samples with	

9

reference material from all Mount St Helens eruptions from the last 4,000 years	110
Table 4.1 The temporal context of tephra layers obtained from Forlorn Camp	
Lake in relation to late-Pleistocene and Holocene eruptions at Mt St Helens.	115
Table. 4.2 Radiocarbon dates from Summit Lake and Pyramid Lake which overlap	
with the period associated with the ADS survey data.	118
Table 4.3 - Outbreak occurrence at Pyramid Lake and Summit Lake alongside	
samples with corresponding ages.	118
Table 4.4 Comparative summary of return fire intervals across western North	
America, by vegetation type, against Little Monon Lake, Pyramid Lake, and Summit	
Lake.	144

List of Figures

Figure 1.1 The Ecoregions of The Pacific Northwest	24
Figure 1.2 Phylogenetics of the genus Dendroctonus	29
Figure 2.1. – View of Little Monon Lake, Oregon	48
Figure 2.2. – Site locations of Little Monon Lake, Pyramid Lake, and Summit Lake,	52
Oregon.	
Figure 2.3. – Site location of Forlorn Camp Lake, Washington	53
Figure 2.4. – Little Monon Lake, Oregon	55
Figure 2.5. – GIS analysis of Little Monon Lake, Oregon	56
Figure 2.6. – Pyramid Lake, Oregon	57
Figure 2.7. – GIS analysis of Pyramid Lake, Oregon	58
Figure 2.8. – Summit Lake, Oregon	59
Figure 2.9. – GIS analysis of Summit Lake, Oregon	60
Figure 2.10. – Forlorn Camp Lake 3, Washington	61
Figure 2.11. – Core FC3_B1 obtained from Forlorn Camp Lake 3, Washington	62
Figure 2.12. – Age depth model from Little Monon Lake	67
Figure 2.13 Age depth model from Summit Lake	68
Figure 2.14 Age depth model from Pyramid Lake	69
Figure 2.15. – Sample output of the creation of event indices within CHAR data	73
Figure 3.1. – qPCR output of MatK assay	83
Figure 3.2. – sedaDNA yields from Little Monon Lake	84
Figure 3.3. – sedaDNA yields from Pyramid Lake	84
Figure 3.4. – sedaDNA yields from Summit Lake	84
Figure 3.5 HRM analyses of Dpsuedo protocol at Pyramid Lake indicating three	
positive amplifications matching Tm of the target species (D. pseudotsugae)	87
Figure 3.6 HRM analyses of Dpond protocol at Pyramid Lake indicating the	
multiple amplifications of an unknown target	87
Figure 3.7 HRM analyses of Dpsuedo protocol at Summit Lake indicating the	
amplification of an unknown target	89
Figure 3.8. – Violin plots	92
Figure 3.9 Little Monon Lake - CHAR 125 – 250 µm size class	94

11

Figure 3.10 Little Monon Lake - CHAR 250 - 500 µm size class	95
Figure 3.11 Little Monon Lake - CHAR >500 µm size class	95
Figure 3.12. – Pyramid Lake - CHAR 125-250 µm size class	97
Figure 3.13.– Pyramid Lake - CHAR 250 - 500 µm size class	97
Figure 3.14 – Pyramid Lake - CHAR > 500 µm size class	98
Figure 3.15- Summit Lake - CHAR 125-250 µm size class	100
Figure 3.16 Summit Lake - CHAR 250 - 500 µm size class	100
Figure 3.17. – Summit Lake - CHAR >500 µm size class	101
Figure 3.18 – Little Monon Lake CHAR series 200-yr running average	104
Figure 3.19 – Little Monon Lake CHAR series 150-yr running average	104
Figure 3.20 – Little Monon Lake CHAR series 100-yr running average	104
Figure 3.21 – Pyramid Lake CHAR series 200-yr running average	105
Figure 3.22 – Pyramid Lake CHAR series 150-yr running average	105
Figure 3.23– Pyramid Lake CHAR series 100-yr running average	105
Figure 3.24– Summit Lake CHAR series 200-yr running average	106
Figure 3.25 – Summit Lake CHAR series 150-yr running average	106
Figure 3.26 – Summit Lake CHAR series 100-yr running average	106
Figure 3.27 - The number of events per 100-yr period at Little Monon Lake,	
Pyramid Lake, and Summit Lake as identified by the 100-yr running window	108
Figure 3.28. – PCA of FC3 B1, FC3 B2, and FC3 B3 with reference data for Mt St Helens	s 111
Figure 3.29 - PCA of FC3 B1, FC3 B2, and FC3 B3 with reference data for Mt St Helens	s 111
Figure 3.30 PCA of FC3 B1, FC3 B2, and FC3 B3 with reference data for Mt St Helens	s 111
Figure 3.31 PCA of FC3 B1, FC3 B2, and FC3 B3 with reference data for Mt St Helens	s 111
Figure 4.1 The location of Pyramid Lake and known outbreaks of D.	
ponderosae, D. pseudotsugae and Choristoneura occidentalis obtained from ADS data.	119
Figure 4.2. – Topographic map of Pyramid Lake	120
Figure 4.3. – Schematic of the Pyramid Lake catchment showing potential source	

areas for DNA 120 Fig. 4.4. - The location of Summit Lake in relation to the extent of the known outbreak of Choristoneura occidentalis in 1993. 124 124

Fig. 4.5. – Schematic of Summit Lake

Fig. 4.6. - The location of Little Monon Lake in relation to D. ponderosae outbreaks

obtained from ADS data, and the effects of the most recent fire at within the Olallie	
catchment	126
Fig. 4.7. – Schematic of Little Monon Lake	126

Supplementary material

Table S.1. – Raw Radiocarbon dates obtained from iThemba LABS, Gauteng,	
South Africa	156
Table S.2. – Raw charcoal counts for Pyramid Lake	157
Table S.3. – Raw charcoal counts for Little Monon Lake	160
Table S.4. – Raw charcoal counts for Summit Lake	152
Table S.5. – Calculation of event indices from CHAR data at Little Monon Lake	
using the 100-yr running mean	210
Table S.6. – Calculation of event indices from CHAR data at Pyramid Lake using	
the 100-yr running mean	265
Table S.7. – Calculation of event indices from CHAR data at Summit Lake using	
the 100-yr running mean	295
Table S.8. – Events per 100-yr period BP based on the 200-yr running mean	296
Table S.9. – Events per 100-yr period BP based on the 150-yr running mean	297
Figure S.1. – R Script for the package 'Paleofire' used to generate CHAR and	
corresponding figures	165
Figure S.2. – Figure S2. R Script for the package 'rBacon' used to generate age	
depth models	170

List of abbreviations

- AB Alberta, Canada
- AD Anno Domini
- aDNA Ancient DNA
- ADS Aerial detection survey
- BLAST Basic Local Alignment Search Tool
- **bp** Base pairs
- **BP** Before present (1950 AD)
- Cal. yr. BP Calendar years before present
- CHAR Charcoal accumulation rate
- eDNA Environmental DNA
- FC3 Forlorn Camp Lake 3
- GIS Geographic information systems
- HRM High resolution melting
- LIA Little Ice Age
- LML Little Monon Lake, Oregon
- LOD Limits of detection
- MCA Medieval Climate Anomaly
- MSH Mount Saint Helens
- MT Montana, USA
- NCBI National Centre for Biotechnology Information
- OR Oregon, USA
- **PCA** Principal components analysis
- \mathbf{PCR} Polymerase chain reaction
- PYR Pyramid Lake, Oregon
- qPCR Quantitative polymerase chain reaction
- sedaDNA Sedimentary DNA
- Spp. Species
- SUM Summit Lake, Oregon
- USDA FS United States Department of Agriculture Forest Service
- WA Washington, USA
- WY Wyoming, USA

CHAPTER ONE

GENERAL INTRODUCTION

1. Research context

The detection of historic insect and disease outbreaks within palaeoecological records was recently identified as one of the top fifty priority research areas within the field of Quaternary science (Seddon et al., 2014), further emphasising the demand for widely applicable, standardised methodologies, capable of the direct detection of historic outbreak dynamics highlighted in the current literature (Morris and Brunelle, 2012; Morris et al., 2010; Brunelle et al., 2008; Raffa et al., 2008). The demand for a deeper understanding of historic outbreak occurrence has been heightened by the increased scale, severity, and synchronicity of current outbreaks of *Dendroctonus* spp. bark beetles (Coleoptera, Scolytinae) within coniferous forest ecosystems of North America, Europe, and Asia, which are widely regarded as unprecedented (Brunelle et al., 2008; Raffa et al., 2008; Bentz et al., 2010; Morris et al., 2015; Mitton and Ferrenberg, 2012). As relatively little is known of historic outbreak dynamics (Morris et al., 2015), our understanding of the spatial and temporal dynamics of past forest disturbances and of the naturally occurring resistance and resilience of these forest ecosystems remains limited (Morris et al., 2017; Hessburg et al., 2019).

Past dynamics of some key disturbance agents, such as fire, are relatively well understood (Long et al., 1998; Flannagan et al., 2001; Long et al., 2007; Brunelle et al., 2008; Bergeron et al., 2010) and methodically assessed within the palaeoecological record, e.g., the presence and morphology of charcoal particles which can indicate occurrence and severity of historic fire events. However, unlike wildfires, unequivocal evidence of insect pest outbreaks is rarely preserved (Jenkins et al., 2008; Hebertson and Jenkins, 2008; Morris et al., 2013), therefore, we can typically only measure the inferred indirect effects these agents inflict on forest communities. In addition, the reconstruction of insect outbreaks has been largely neglected due to the absence of an effective detection tool (Girona et al., 2018). Consequently, most of our understanding is derived from proxy evidence of recent known, large-scale, highly destructive events, such as the 1940's spruce beetle (*Dendroctonus rufipennis*) outbreak in Colorado, USA which killed over 90% of Engelmann spruce (*Picea engelmanii*) in White River National Forest (Eisenhart and Veblen, 2000). This bias towards primarily large-scale events results in a skewed understanding of forest pathogen occurrence and impact (Tittiger and Blomquist, 2016).

The knowledge gaps associated with historic forest pathogen occurrence are compounded by a lack of standardised detection methods, within which there are no commonly accepted

quantitative thresholds used to identify periods of outbreak, and a bias towards calibrating such methods on large-scale outbreaks. The ability of these methods to directly detect smaller, more localised outbreaks which still impact the overall forest ecology or create ideal conditions for subsequent outbreaks is unknown. Therefore, I argue the development of more sensitive, direct detection of disturbance agents over longer timescales is required to better understand historic outbreak dynamics. The study sites chosen for this thesis are all located within the Cascade Range of the Pacific Northwest of North America, a region whereby disturbance, notably by fire and insects, is very much a natural part of the ecosystem, and where over the last few decades, evidence suggests that the scale and severity of these disturbance events are increasing. The aims of this thesis are to explore current methods of detecting and reconstructing historic disturbance by a wide range of agents, and explore the potential role of DNA-based methodologies in the field of palaeoecology.

2. Forest disturbance

This thesis aims to focus primarily on one aspect of forest ecology, disturbance. Defined as a discrete event in time that disrupt ecosystems, changes resources, substrate availability, or the physical environment, disturbances play vital roles in determining forest composition, structure, and patterns of succession (Minckley and Long, 2016; Masek et al., 2008; White and Pickett, 1985). The frequency, severity, and scale of disturbance events through time are referred to as a disturbance regime (Suffling and Perera, 2008; Turner, 2010; White and Pickett, 1985) and an understanding of 'natural' disturbance regimes is integral to our understanding of how natural forest ecosystems function, how they change through time, and the impact humans inflict on these regimes (Suffling and Perera, 2008). Therefore, the accurate reconstruction of such disturbances forms one of the fundamental aspects of ecology and palaeoecology.

Disturbance events can be seen as facilitators of both destruction and renewal for example, the selective clearing of older, weakened trees by bark beetles facilitates regeneration of new growth (Burton, 2008), and are integral to maximise biological diversity and promote successional patterns (Burton, 2008; Resh et al., 1988; Brookes, 2019). The organisms or processes that cause disturbance, referred to as disturbance agents, can be broadly split in to selective- and non-selective agents. Selective agents, such as forest insects, often induce mortality in single and/or small group of species, as they have evolved to exploit a narrow

group of species or tissue types (Raffa et al., 2015). Perhaps some of the most studied examples of widespread, selective forest disturbance during the Holocene, include the Elm decline which led to an almost synchronous decline in Ulmus spp. across much of Britain and continental Europe around 5.5 ka BP (Parker et al., 2002) and the mid-Holocene hemlock decline observed as an almost instantaneous decline of *Tsuga canadensis* across much of eastern North America around 5,000 yr BP (Bennett and Fuller, 2002: Fuller 1998). These rapid, species-specific declines have recently been attributed to a highly successful symbiotic relationship of fungi, transported via a bark beetle vector to viable hosts (Santini and Faccoli, 2015). In contrast, non-selective agents, such as fire, often result in widespread mortality of multiple or all species. Each of these agents will, therefore, differ in their observed impacts on stand structure, composition, and age (Burton, 2008) and influence the magnitude and duration of the event as well as the timeframe of recovery (Amiro et al., 2010). Regardless of specificity, each type of forest disturbances typically results in some level of stand modification, and it is the ability to detect these effects, within a wide range of archives, through time, that form the basis of historic reconstructions. These distinguishing features facilitate the detection and reconstruction of historic events within palaeoenvironmental samples.

3. The Pacific Northwest

3.1. Geography, geology, and climate

The Pacific Northwest of North America comprises British Columbia, Oregon, Washington, and Idaho, and covers nearly 20 degrees of latitude, extending from the Gulf of Alaska to northern California. This region is characterised by high topographic variability arising from the north-south trending mountain ranges including the Cascade Range, Coast Range, Olympic Mountains, and the British Columbia Mountain Range, and several lowland areas, including the Willamette Valley and the Puget Trough (Franklin and Dyrness, 1973). Altitudes range from sea-level to up to the highest point of 4,440m at the summit of Mt. Rainier, Washington. This high level of topographic variability within a relatively small geographical area results in highly variable geological, climatic, and ecological zones. The Pacific Northwest contains many lakes and bogs making it highly suitable for palaeoecological research (Whitlock, 1991). Consequently, there have been a number of reconstructions of historic disturbance events throughout this region, however, these are limited to the Coast Range and the Willamette Valley, leading to major knowledge gaps among the Cascade Range. The sites chosen for this study are all based within the northern Cascade Range of Oregon and the southern Cascade

Range of Washington, with the aim of extending our knowledge of disturbance into these understudied regions.

The geology of the Cascade Range consists of two major Cenozoic Age units: the underlying, older, more abundant section consists of largely deformed flows and pyroclastic rocks of Eocene origin, and the younger, volcanic rocks, consisting of andesitic and basaltic flows and breccia, which range in age from Pliocene to present (Peck et al., 1964). This combination of geologies has resulted in a high level of topographic variation within the Cascade Range with areas ranging from high plateaus to river cut valleys and slopes. High levels of volcanicity are also a predominant feature of the Cascade Range, with many highly documented eruptions over the last 40,000 years, including the eruption of Mt Mazama 7,700 yr BP and the eruption of Mt St Helens, in May 1980 AD, both of which are commonly used as time markers within palaeoenvironmental samples (Minckley and Long, 2016; Long et al., 2014; Whitlock et al., 2008; Brunelle and Whitlock, 2003; Millspaugh et al., 2000; Zdanowicz et al., 1999; Sea and Whitlock, 1995; Cwynar, 1987; Barnosky, 1985; Lichti-Federovich, 1970). On the timescale of palaeoenvironmental reconstructions, volcanism acts as both a driver of environmental change (landscape modification) and as an agent of disturbance (ash deposits and lahar flows) in this region (Figure 1.1).

The climate of the Pacific Northwest has undergone many changes since the last glacial maximum (LGM) (Sea and Whitlock, 1995). These dramatic shifts between glacial and interglacial environments over the last 20,000 years have greatly influenced the distribution and composition of plant, soil, and geological communities (Franklin, 1988; Whitlock, 1992). The present climate is driven by western maritime air masses and their interaction with the north-south trending mountains of the Cascade Mountain Range. Complex interactions between large-scale (latitude, longitude, and altitude) and small-scale (slope, aspect, hydrology) environmental factors produce many diverse climatic niches. The predominant climate for the Cascade Range is characterised by warm dry summers and cool wet winters (Peck et al., 1964). Precipitation patterns exhibit strong east-west, seasonal, and altitudinal gradients. The western side of the Cascades receives up to 3,800mm annual precipitation while a strong rain-shadow effect results in less than 500mm on the eastern side (Sproles et al., 2013). There is also a high seasonal effect, with up to 80% of precipitation falling between November and March. At higher elevations, over half of this precipitation falls as snow with annual snowpacks accumulating up to 5,000mm deep in some areas (Serreze et al., 1999). The average

winter temperatures at high elevation sites average ~0°C, making these sites particularly vulnerable to climate change as small temperature shifts can greatly alter snow and ice dynamics. Spring snowmelt forms a principal component of the hydrological regime in these areas. Several small glaciers are present on the highest peaks (Peck et al., 1964). Recent warming has resulted in less overall snowfall, decreased snow cover, and earlier snow melt (Mote, 2006; Sproles et al., 2013). In the McKenzie River basin, central Oregon, current spring runoff occurs an average of 17-days earlier than in the mid-20th Century (Sproles et al., 2013). Earlier spring run-off and warmer summer temperatures lead to an increase in the number of warm and dry days, which create drought-like conditions conducive to both fire and insect outbreaks (Westerling et al., 2006).

3.2. Ecology

Over one-third of Oregon and Washington is covered by forests (Brookes et al., 1996), making this region one of the most densely vegetated areas of North America (Franklin and Dyrness, 1973). The complex climatic niches produced by localised variability in geology, soils, elevation, aspect, slope, are reflected in vegetation patterns across this region. Dense forests dominated by some of the largest and longest-lived coniferous species, result in some of the highest productivity and greatest biomass anywhere in the world (Franklin, 1988). The current climate of mild, wet winters and warm, dry summers greatly favours the growth of evergreen and needle-leaved vegetation as these species capitalise on extended growing seasons while minimising transpiration during dry summer months (Waring and Franklin, 1979). These prolonged periods of warm and dry weather which facilitate extended growing seasons also provide optimal conditions for wildfire occurrence. Consequently, fire is and always has been an important catalyst for environmental change in this region, with the historic impacts of fire and fire suppression greatly influencing current forest composition. When describing such ecosystems, it is common to highlight several aspects of fire behaviour, notably, fire return time (frequency and time between fires), fire types and intensity (crown fires vs. ground fires and fire severity), and size/extent of fires (Heinselman, 1981). These are collectively referred to as a fire regime and can differ greatly by region/subregion (which will become evident during the charcoal analysis section of this thesis).

Large expanses of productive temperate forest ecosystems make the Cascade Range highly suitable for timber harvest. Consequently, industrial levels of timber harvest have been one of the primary land use types in this area for at least the last 100 years (Grant and Wolff, 1991).

Activities associated with logging (e.g. felling, road construction, slash disposal) have greatly altered stand structure, age, and composition, with wider impacts on soil erosion and hydrological dynamics (Beschta, 1978). These activities, more commonly found at lower elevations, would also impact characteristic signatures associated with other proxy methodologies typically used to reconstruct environmental change, such as pollen/macrofossil data. Therefore, to allow these types of analyses to be conducted on my samples in the future, higher elevation sites were favoured for this study to reduce the potential for significant levels of human influence on reconstructive signatures.

With the exception of several niche areas whereby large stands of single species are found for example, the Olallie Scenic Area, in the central Cascade Range, which is dominated by dense *Pinus contorta* stands, three major vegetation 'zones' or 'series' exist in the sampling region, named after the dominant climax species with many localised variations in understory species (See Table 1.1. for a summary of dominant species within these zones.).

Zone	Tsuga heterophylla	Abies amabilis	Tsuga mertensiana
Altitude	< 1,000m a.s.l.	1,000 – 1,500m a.s.l.	> 1,500m a.s.l.
Main species	Tsuga heterophylla	Abies amabilis	Tsuga mertensiana
	Pseudotsuga menziesii	Tsuga heterophylla	Abies amabilis
	Thuja plicata	Abies procera	Abies lasiocarpa
	Abies grandis	Pseudotsugae	Picea engelmanii
	Pinus monticola	Thuja plicata	Pinus contorta
		Pinus monticola	Pinus monticola
			Pseudotsuga menziesii

 Table 1.1. The main vegetation zones of the Cascade Mountain Range, Oregon. Adapted from Sea and

 Whitlock, 1995 and Franklin and Dyrness, 1988. Also see Figure 1.1. for the distribution and extent of the

 above zones.

The *Tsuga heterophylla* (western hemlock) Zone (Franklin and Dyrness, 1988) is found in the low-to-mid elevations of the westside Cascades (<1,000m a.s.l.). *Tsuga heterophylla*, a highly shade-tolerant species is the dominant or co-dominant climax-species, alongside *Pseudotsuga menziesii* or *Thuja plicata*, in this ecological zone. *Tsuga heterophylla* grows in dense stands, and their thin bark, shallow root systems, and highly flammable bark increase their susceptibility to fire. Despite such high vulnerability to fire, the fire regime in this zone ranges

between 150 and 400 years, owing to the cool, wet climates that dominate these altitudes (Arno and Davis, 1980; Parminter, 1983.

Above the Tsuga heterophylla zone, the Abies amabilis (pacific silver fir) Zone (Franklin and Dyrness, 1988) extends into the middle elevations of this region (1,000 - 1,500 m a.s.l.). The climax species of Abies amabilis is often found alongside smaller proportions of Pseudotsuga menziesii, Tsuga mertensiana, Abies procera, and Thuja plicata. Abies amabilis is not a fire tolerant species (Agee, 1991) due to its thin bark, shallow root systems, and highly flammable foliage (Parminter, 1998). Here, the fire regime ranges from 200 to 500 years and are primarily controlled by levels of precipitation. These altitudes are characterised by high humidity and high levels of precipitation; however, prolonged drought-like conditions can lead to an increased occurrence of fire. The Tsuga mertensiana (mountain hemlock) Zone (Franklin and Dyrness, 1988) occupies the higher elevations, greater than 1,500m a.s.l., and represents the highest forested zone in Oregon and Washington. Tsuga mertensiana often occurs as a dominant or co-dominant, with Abies amabilis, Abies lasiocarpa, or Chamaecyparis nootkatensis. Despite having thicker bark than Tsuga heterophylla, dense stands and lowhanging, highly flammable foliage make Tsuga mertensiana stands highly susceptible to fire. While fire occurrence in this zone is relatively low, often occurring every 600 to 800 years, fires that do occur are predominantly stand replacing events. Above the timber line of the *Tsuga* mertensiana Zone, there exists areas of meadow or parkland (Franklin and Dyrness, 1988). This area is characterised by open boggy marshes, meadows, and moors, which form in poorly drained depressions. The dominant species include Eriophorum polystachion, Equisetum palustre, Viola palustris, Sphagnum squarrosum, Sphagnum magellanicum, Scirpus cespitosus, and Trientalis arctica.

In addition to the ecological 'climax species' classifications described by Franklin and Dyrness, (1988), Thorsen et al., (2003), developed the Ecoregions of Oregon, which denotes areas of general similarity in vegetation but also includes similarity in geology, physiography, climate, soil, land use, and hydrology (See Figure 1.1). A comprehensive understanding of the ecological zones and the species and features therein are vital in understanding the dynamics of forest disturbances i.e., how these forests respond to and recover from disturbance events. For example, mixed conifer forests will behave very differently to fire and insect outbreaks than single species stands, or how steep slopes can facilitate the rapid spread of fire and insect outbreaks. Each region consists of a two-character code made up of a number and a letter (i.e.

4a). The Cascade Range, denoted by the number 4, is divided into 6 Ecoregions, a, b, c, d, e, and f, all of which are characterised as having a moist, temperate climate that supports dense, extensive, highly productive coniferous ecosystems, with highly variable topography.

Sites chosen for this study lie within subdivisions 4b – The Western Cascades Montane Highlands and 4c – The Cascade Crest Montane Forest. Region 4b is similar to the Tsuga heterophylla zone outlined above, whereby abundant precipitation supports dense forests of Pseudotsuga menziesii, Tsuga heterophylla, Abies amabilis, and Abies procera. The topography in this zone is characterised by steeply sloped mountains dissected by river and stream valleys. Region 4c, which is akin to the Abies amabilis and Tsuga mertensiana zone outlined above, sits at slightly higher elevation than 4b, and is dominated by *Tsuga mertensiana* and Abies amabilis. The topography here consists of more open, undulating plateaus intersected by volcanic peaks, in comparison to the steep, stream cut slopes observed in region 4b. The combination of differing vegetation and topography will result in varying taphonomic and source area considerations for both fire and insect remains at sites found across different Ecoregions. For example, fossil charcoal is typically transported aerially or via surface hydrological processes. The topography of an area greatly influences the dynamics of these processes, with steeper areas effectively producing barriers for charcoal transportation while more open environments lead to greater potential source areas as charcoal can be blown in or washed in from a wider area (Scott and Damblon, 2010).

3.3. Disturbance and tree defences

In regions such as the Pacific Northwest which are characterised by disturbance, repeated historic exposure often results in physiological adaptations in host species which allow the ecosystem to persist through and recover from disturbance events (See Table 1.2) (Burton et al., 2008). These adaptations vary from fire 'loving' behaviour to preventative measures. For example, *Pinus contorta* exhibits serotinous cones, encased in a thick resin which require intense heat associated with wildfires to release their seeds (Teste et al., 2011; Hellum and Wang, 1985). The additional advantage of this fire strategy is that seeds germinate in the fresh ash beds of the preceding fire(s). Therefore, the general fire ecology of areas dominated by *Pinus contorta* are typically infrequent, high severity, stand replacement fires. In contrast, *Pseudotsuga menziesii* has evolved thick, cork-like bark which protects the delicate cambium during fire events and results in much longer intervals between destructive events (Kohnle et al., 2012). Knowledge of how individual species interact with fire is critical to our

understanding of how varying forest compositions react to and recover from fire events, which form a key component of assessing fire dynamics.

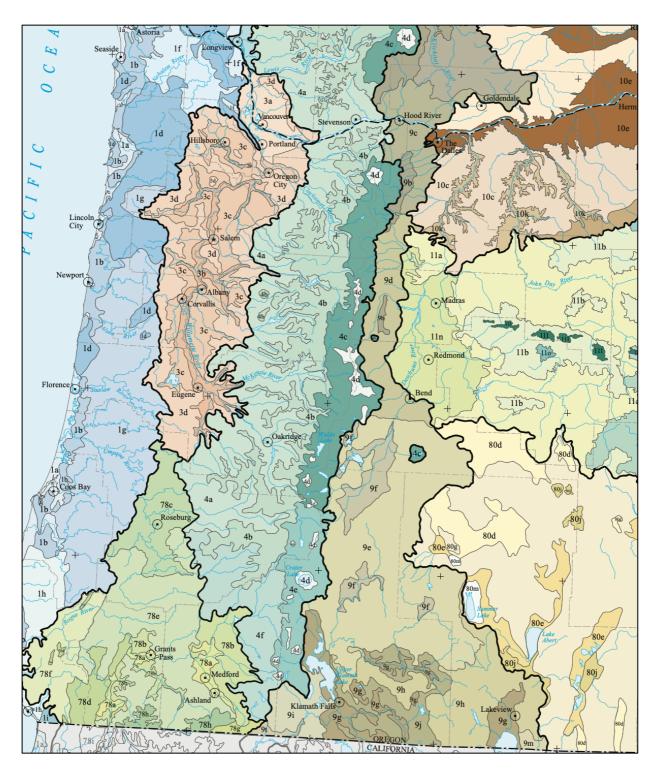


Figure 1.1. The Ecoregions of The Pacific Northwest (Thorsen et al., 2013). The Cascade Range consists of 6 ecoregions 4a – Western Cascades Lowlands and Valleys, 4b – Western Cascades Montane Highlands, 4c – Cascade Crest Montane Forest, 4d – Cascades Subalpine/Alpine, 4e – High Southern Cascades High Montane Forest, 4f – Low Southern Cascades Mixed Conifer Forest.

With regards to tree defences against insect attacks, the primary defence mechanism of Pinaceae (including Pinus, Abies, Picea, Tsuga, Larix, and Cedrus), is the production of oleoresin (Ferrenberg et al., 2014; Himejima et al., 1992; Smith et al., 1963). Resin exudation provides physical defences against attack, essentially reducing mobility or trapping insects, but also a chemical defence as resins are commonly laden with monoterpenes and diterpene acids, both of which have been shown to reduce bark beetle vigour (Raffa et al., 2005). Coniferous trees exhibit formidable defences against insect attack (Franceschi et al., 2005), with some species displaying defences strong enough to overcome epidemic-level outbreaks (Strom et al., 2002). These resin defence capabilities appear to be heritable genetic traits (Ferrenberg et al., 2014) with resin duct characteristics (flow rate, chemistry and duct number, density, and size) highly associated with host resistance to attack (Moreira et al., 2012; Gaylord et al., 2013). Outbreak mitigation strategies are often based on the assumption that slow-growing trees are 'weaker' trees compared to fast growing trees, and are therefore, at greater risk of being killed by insects. However, plant defence theory (Kant et al., 2015) suggests that defence mechanisms require high energy investment, thus, fast growing trees must be compromising the allocation of resources to developing defences (Heil and Baldwin, 2002).

Climate change is also drastically affecting tree defence capabilities in two principal ways (Huang et al., 2020; Raffa et al., 2015; Bentz et al., 2010). Firstly, drought-like conditions induced by a greater occurrence of warm and dry weather patterns, drastically limit the moisture available to assign to resin production of these species, greatly reducing their defence capabilities against insect attacks (Raffa et al., 2015; Negron et al., 2009). Secondly, warmer temperatures effectively extend the climatically accessible range of bark beetle outbreaks to higher elevation sites in the Cascade Range, whereas historic temperatures were too low to facilitate the breeding and development of bark beetle eggs and larvae (Morris et al., 2015). As such the trees in these habitats naturally have supressed and or underdeveloped resin defences, leaving these individuals potentially disproportionately vulnerable to attack (Morris et al., 2015; Morris et al., 2012).

Tree species	Fire tolerance	Fire 'strategy'	Mortal fire 'type'
Lodgepole pine (<i>Pinus contorta</i>)	Low	Late-opening (serotinous) cones keep the seedbank protected until the end of the fire season. Cones then open and release seeds into fresh ash bed.	Scorching of cambium layer or crown
Douglas-fir (Pseudotsuga menziesii)	High	Thick, cork-like bark that insulates the cambium layer. This species is slow growing, effective fire adaptation occurs after ~40 years growth.	Crown fires
Western hemlock (<i>Tsuga heterophylla</i>)	Very Low	Little to no fire adaptation. Thin bark (even on mature individuals), thin shallow roots, and highly flammable foliage. Seed dispersal distance is very high (>3,500 ft)	Root char, crown fire, or core burn
Western larch (<i>Larix occidentalis</i>)	Very high	Thick bark, high open crown, and deep roots. Annual regrowth of needle result in high water content	Survives all but the most severe fires. Widely regarded as the most fire-tolerant tree species in western North America.

Table. 1.2. Key tree species of the Pacific Northwest and their typical level of fire tolerance and major fire adaptation strategies (Adapted from Agee, 1993; Hood et al., 2018)

4. Disturbance agents of the Pacific Northwest

Evidence derived from archival records (Marlon et al., 2012), tree-ring records (Lauvaux et al., 2016; Merschel et al., 2018), and the analysis of particulate charcoal matter derived from lake sediments (Long et al., 1998; Hoffman et al., 2016) suggests that the conifer-dominated forests of the Pacific Northwest were historically strongly influenced by various natural disturbances such as fire, insect outbreaks, and volcanic activity. Palaeoecological reconstructions in this region show that fire has likely had both the greatest severity and occurrence, with the natural fire regime providing the primary control on patterns of community structure, composition, succession, and diversity (Taylor and Skinner, 1998). Current observations of the Pacific Northwest show a landscape overwhelmed with large areas of burnt vegetation or stands which exhibit the characteristic discolouration of the canopy associated with insect attacks. This dramatic shift in the dynamics of all disturbance agents is widely attributed to high levels of fire suppression since European settlement in the mid 17th Century, although the levels of suppression have drastically increased in the recent Century (Minckley and Long, 2016; Voelker et al., 2019; Columbaroli and Gavin, 2010; Walsh et al., 2008; Weisberg and Swanson, 2003; Skinner et al., 2002; Long et al., 1998; Teensma, 1988). The next section discusses the notable agents responsible for both current and historic disturbance events, their role within this ecosystem, and the current methods of detecting historic occurrence of these agents.

4.1. Forest insects

Under normal conditions, bark beetles perform highly valuable roles within forest ecosystems (Müller *et al.*, 2008), notably, thinning of weakened trees, promoting ecological succession, initiating decomposition processes which contribute to nutrient cycling, and provide nesting opportunities for other organisms, and, perhaps more directly, provide a food source for birds and other vertebrates (Harvey *et al.*, 2013; Raffa et al., 2016). Natural constraints, including the cool and wet winters typical of the Cascade Range, usually prevent most species from undergoing wide-scale population eruptions (Raffa *et al.*, 2008). Forest insect pests can be broadly split into two distinct groups based on the types of tissue they exploit. These groups consist of bark beetles, which as their name suggests, spend the majority of their life history beneath the bark of host trees, and defoliators, which reproduce in needle, cone, or seed tissue. These insects compete with humans for resources and their life cycle often leads to tree mortality and are, therefore, both considered pests. The next section explains the physiology, life history, and behaviour of both groups and explores how they have caused widespread tree mortality across much of the Pacific Northwest in recent years.

4.2. Bark beetles and the genus Dendroctonus

The order Coleoptera is the most species-rich order of insects, containing 400,000 described species (Hammond, 1992) across 257 genera. Of these, a third are categorised as bark beetles (Six, 2020) as they spend the majority of their life cycle in the trees' phloem, the nutrient rich tissue underlying the bark (Raffa et al., 2015). One genus, Dendroctonus, contains only 19 described species (Six and Bracewell, 2015) yet, is disproportionately responsible for high levels of tree mortality, making them one of the most destructive disturbance agents of coniferous ecosystems in the world (Six and Bracewell, 2015). This genus contains a wide range of life history strategies, from highly aggressive tree-killers to facultative colonisers of weak and weakened trees, to saprophagous exploiters of dead trees (Paine et al., 1997; Klepzig and Six, 2004; Rene, 2016). Bark beetle attacks induce significant physiological effects on their host species and the surrounding forest communities and environments. These key physiological effects include the disruption of nutrient and water transport between the roots and canopy during bark beetle egg gallery construction and the introduction of pathogenic fungi during entry to the new host tree, both leading to rapid, synchronous, species-specific mortality (Raffa et al., 2015; Fuller et al., 1998). Crucially, these physiological stresses result in a characteristic discolouring of canopy foliage (from healthy green to red, orange, purple, or

grey), allowing the remote monitoring of the proportion of trees within a stand that are affected or have succumbed to an attack.

The term bark beetles refer solely to species who establish galleries in the phloem of woody plants (Lindgren and Raffa, 2013) and must be distinguished from the closely related ambrosia beetles (Coleoptera, Curculionidae) which depend entirely on cultivated fungi and similar species that feed on other plant tissues, such as cone beetles (Conophthorus Hopkins) (Lindgren and Raffa, 2013). All Dendroctonus species are morphologically similar (Wood, 1982). Adult beetles have cylindrical bodies with steep convex declivity, enlarged heads to accommodate large mandibles, and short retractable legs and antennae (Hulcr et al., 2015; Six and Bracewell, 2015), features that are perfectly adapted to tunnelling. Colours range from reddish brown, through brown, to black. While body shapes are very similar between Dendroctonus species, body size fluctuates greatly. The smallest species, the southern pine beetle (Dendroctonus frontalis) is three times smaller than the largest species, the red turpentine beetle (Dendroctonus valens), averaging 2.8mm and 7.3mm, respectively (Wood, 1982) and is likely correlated to the climate in which they are found, i.e., warmer regions facilitate growth of larger individuals. The genus has undergone several reclassifications since they were first described in 1836 (Erichson, 1836), however, recent molecular analysis of mtDNA COI sequences (Reeve et al., 2012) reveal 6 clades (See Figure 1.2) (Six and Bracewell, 2015). The growing number of DNA-based assessments of Dendroctonus spp. has generated a sufficient library of DNA sequences to expand the possibilities of further molecular methodologies to address other aspects of Dendroctonus dynamics. To date, there have been no attempts to use molecular methods (PCR, qPCR, or metabarcoding) to directly detect Dendroctonus within environmental samples in either a monitoring or reconstructive capacity.

While bark beetles often adapt to exploit localised environmental conditions, leading to slight variations in reproductive behaviours, feeding strategies, and interactions with other organisms (Schebeck et al., 2017), most species share general life attributes, each stage of which affords an opportunity for detection within palaeoenvironmental archives (Six and Bracewell, 2015). Bark beetles develop through four stages – egg, larva, pupa, and adult (Gibson et al., 2009). Adult beetles emerge from their brood galleries in late spring/early summer to find a mate and a new host (Raffa et al., 2015). This dispersal is typically limited to several hundred metres as the pheromone-mediated 'mass-attack' strategy is a key component in overwhelming new host tree defences mechanisms (Six and Bracewell, 2015; Reeve, 1997; Salom and McLean, 1989).

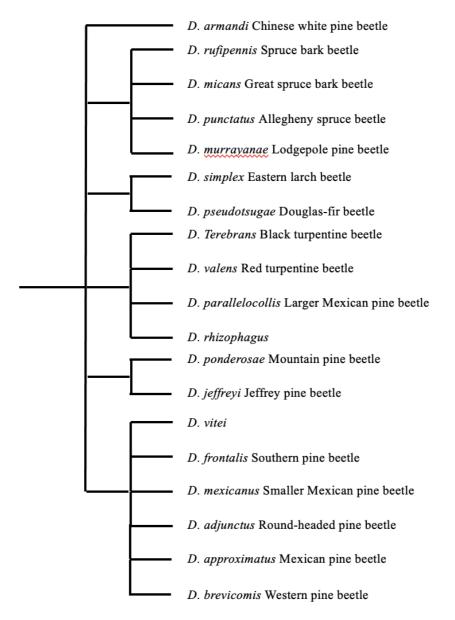


Figure 1.2. Phylogenetics of the genus Dendroctonus, adapted from Six and Bracewell, 2015.

Bark beetles face numerous challenges at all aspects of host selection, from highly toxic resin defences of the host, ensuring the host can support nutritional requirements of sustaining a brood, intense competition for less well-defended trees, vulnerability to predation *en route* to the new host, and time constraints due to the relatively short lifespan of the adult beetles (Raffa et al., 2016). Only a small proportion of bark beetles attack live trees (Lindgren and Raffa, 2013) and, of these, an even smaller proportion risk entering healthy live trees (Raffa et al., 2016). In addition, the host must be the right species, suitable age, adequate size, and be within a relatively narrow set of physiological conditions. Consequently, finding a poorly suited host (i.e. healthy, high resin capacity) inevitably always ends in death of the beetle (Six and Bracewell, 2015).

Once a new host has been selected, adult beetles burrow through the bark tissue and enter the phloem. Reproductive strategies broadly fall into two categories: monogamous species (e.g. *Dendroctonus* spp.), whereby the female initiates the attack on the new host and is joined by a single male, and, polygamous species (e.g. *Ips* spp.), whereby, the male initiates the attack on the new host and is joined by, and mates with, several females (Raffa et al., 2015). The difference in reproductive strategies significantly alters the brood size, which ultimately controls the outbreak dynamics of the next generation.

Gallery morphology and oviposition patterns differ between these groups and can be used to taxonomically identify most species (Wood, 1982). Monogamous species construct a single nuptial chamber constructed by the male, while polygamous species exhibit multi-chamber galleries constructed by each of the females. Eggs are deposited singly along these galleries and typically hatch between 10 and 14 days (Gibson et al., 2009). The construction of egg galleries within the fragile phloem greatly disrupts nutrient and water transport, which severely affects growth dynamics and/or results in the death of host trees (Brunelle et al., 2008). The disrupted growth dynamics or death of the host tree facilitates the most widely implemented methods of reconstructing insect outbreaks through the identification of divergence from 'expected' growth patterns in tree rings as the host tree is affected by the attack, or the loss in pollen abundance as a result of the death of the host tree(s).

Once hatched, larvae feed on phloem tissue and, occasionally, symbiotic fungi (Six and Bracewell, 2015; Raffa et al., 2015). Larvae develop in 3-5 stages, with the final instar constructing a small chamber in which to pupate (Six and Bracewell, 2015). Metamorphosis is completed in less than 10 days (Raffa et al., 2015) before the cycle begins again as adults flee the host tree to find a new host. The variation in body size discussed above is also a key control on the generational time and also the development rate (Six and Bracewell, 2015). Larger species, such as the mountain pine beetle (*Dendroctonus ponderosae*) are univoltine or semivoltine (one generation per year or one generation every two years), while smaller species such as the western pine beetle (*Dendroctonus brevicomis*) can be bivoltine or multivoltine (two, or more, generations per year) (Six and Bracewell, 2015).

Various disturbance agents, such as fire, have been widely studied in regards to their relationships to climatic factors (Brunelle et al, 2008; Westerling et al., 2006), however, the effects of climate change on the morphology, survival rates, and spatial distribution of insects

is a rapidly increasing area of research. Temperature has the greatest influence on the timing, development, survival, and dynamics of the bark beetle life cycle (Gibson et al., 2009) with the number of generations per year the key control on growth and population dynamics (Schebeck et al., 2017). Cold-induced mortality is a key factor driving *Dendroctonus* population dynamics (Regniere and Bentz, 2007). All *Dendroctonus* species are capable of overwintering in any life stage; certain species have a preference for specific life stages. For example, *Dendroctonus ponderosae* favours overwintering in the larval stage, while *Dendroctonus pseudotsugae* typically overwinter as adults (Wood, 1963). While the physiology of overwintering is not well understood (Lester and Irwin, 2012), it is thought that winter survival plays a critical role in range limitation and expansion, outbreak frequency, and severity (Logan and Powell, 2001; Campbell et al., 2007; and Aukema et al., 2008). Warmer winter temperature across much of the PNW has resulted in a greater proportion of bark beetle species successfully overwintering, leading to exponential growth patterns (Morris et al., 2015).

The morphology of individual beetles, their development rates, and their reproductive rates affect the amount of biomass available while dispersal strategies determine the period/duration of time by which insects are freely available in the environment to become incorporated into depositional environments. Therefore, understanding the dynamics of the bark beetle life history is critical in identifying the likelihood and mechanisms responsible for their remains, and therefore, their DNA being freely available in the environment to become deposited. The earliest example of *Dendroctonus* spp. presence in north-western America is attributed to a taxonomically identified macrofossil retrieved from a sedimentary core at Baker Lake, Montana, dating to 8,331 BP (Brunelle et al., 2008). However, between this early Holocene example and the current epidemic, very little information is known on historic outbreak occurrence.

4.3. Defoliators

In addition to bark beetles, defoliators are another highly destructive group of biological disturbance agents in the Pacific Northwest (Stehr, 1967; Carolin and Coulter, 1959). Of the defoliators, the most destructive species belong to the *Choristoneura* genus of budworms. Unlike bark beetles, who spend the majority of their life cycle beneath the bark of host trees, *Choristoneura* develop within external tissues, such as needles, seeds, or cones (Royama, 1984). While *Choristoneura occidentalis, C. lambertiana,* and *C. rosaceana* are native to the Pacific Northwest (Carolin and Coulter, 1958), an increase in conditions favourable for

outbreaks (warm and dry), has led to a shift in equilibrium, resulting in dramatic levels of mortality in *Pseudotsuga menziesii* and true firs across Oregon and Washington, suggesting their dynamics are changing (Swetnam, 1995; Franklin et al., 1995; Powell, 1994; Fellin, 1982).

Balsam woolly adelgid (*Adelgies picea*) is also a significant pest among the true fir (*Abies* spp.) forests of North America (Matthews, 1990). While not considered a pest in Europe, a lack of natural enemies has led to vast areas of true fir (mostly, *Abies lasiocarpa*) mortality across much of North America, since its' accidental introduction in the early 20th century (Matthews, 1990). Several widespread outbreaks of balsam woolly adelgid have occurred in this region over the last 100 years (Mitchell and Buffam, 2001; Smith, 1967; Tunnock and Rudinsky, 1959).

4.4. Fire

Fire is not a recent phenomenon. Fire is, and always has been, an integral process within all North American forest ecosystems (Agee, 1993). Evidence of fire can be found as early as the Carboniferous Period, aptly named for its' extensive coal deposits that contain a significant amount of fusain, a form of fossilised charcoal. Evidence suggests that fire has been the primary driver of changes to community structure, composition, succession, and diversity in the Pacific Northwest across many temporal and spatial scales (Merschel et al., 2018; Lauvaux et al., 2016; Long et al., 1998; Whitlock et al., 2010; Taylor and Skinner, 1998; Franklin, 1988). While the interactions between vegetation, fire, and climate are well understood on short timeframes, i.e., recent individual events (Westerling et al., 2006), comparatively little is known about historic interactions (Minckley and Long, 2016; Long et al., 2007). Dendrochronology-based assessments of fire are limited by the lifespan of the tree species; therefore, the examination of fossil charcoal remains preserved in depositional environments extend our knowledge of wildfire occurrence over longer timescales (Long et al., 2007). Several other major disturbance agents, including insect and disease activity and volcanic eruptions have undoubtedly played a key role in shaping vegetation change throughout the Holocene in the Pacific Northwest (Long et al., 2007; Agee, 1993), however, fire has historically had the greatest influence. A combination of low precipitation and high levels of thunderstorm development mean that the primary ignition source for fires in the PNW is lightning strikes (Agee, 1993). Recently, however, the number of fires attributed to anthropogenic ignition has exceeded those by natural

sources, for example, in 2018, 65% of fires in Oregon were attributed as 'human-caused' while 35% were 'lightning-caused' (Bureau of Land Management, 2018).

Fire regimes in the Pacific Northwest are broadly categorised into three types: low severity, whereby only small percentage of trees are killed, moderate severity, where some are killed and a similar percentage survive, and high severity, whereby most, if not all, trees are killed (Wetzel and Fonda, 2000; Agee, 1993). Areas with short fire intervals, often have fire regimes where low to mid severity fires are dominant, as there is less time for fuel loads to accumulate. In contrast, longer periods of time between fires allow fuel loads to build and the resulting fires are typically high severity, stand replacement fires (Wetzel and Fonda, 2000).

5. Current methods of reconstructing historic outbreaks

Our baseline knowledge of historic bark beetle dynamics comes from traditional palaeoecological-based methods such as dendroecology (Berg et al., 2006; Alfaro et al., 2009; Smith et al., 2012), palynology (Morris et al., 2010; Morris and Brunelle, 2012), and the identification of subfossil remains (Brunelle et al., 2008; Morris et al., 2015), which provide information on long-term population dynamics, while GIS/remote sensing methods give insights into current outbreaks or the repercussions of those in the recent past (Meddens and Hicke, 2014). Very few of these reconstructions pre-date the 20th Century (Brunelle et al., 2008; Morris et al., 2015) and each have associated limitations. Fossil pollen can provide long records of ecological disturbance, however, fluctuations in pollen abundance largely only 'infer' impacts, while dendroecological assessments require trees to survive and subsequently recover, which is a rare occurrence during particularly severe outbreaks. These studies do, however, highlight an important principle, that when insect outbreaks reach epidemic levels, they can be 'directly' (their remains) or 'indirectly' (their effects) detectable within environmental samples (Brunelle et al., 2008). Yet, the reconstruction of insect outbreaks, including bark beetles and defoliators, has been largely neglected due to the absence of effective direct detection tools (Girona et al., 2018). This section aims to provide a review of the most widely applied methodologies of reconstructing insect outbreaks within the current literature and highlight how a lack of standardised methods and an absence of quantitative thresholds indicative of periods of infestation have contributed to our relatively poor understanding of insect outbreaks beyond recorded history.

5.1. Dendroecology

Bark beetles spend most of their life history within host trees (Raffa et al., 2008). As such, measuring the effects beetles induce on attacked trees and the surrounding vegetation forms a significant proportion of bark beetle research. The tree ring sampling methods (see Young et al., 2010 for further information) associated with dendroecological assessments are relatively standardised (Davis and Loader, 2020; Alfaro et al., 2010; McCarroll and Loader, 2004). It is, therefore, the interpretation of the tree ring measurements where some level of disparity within these methodologies arises.

To identify historic disturbance events, tree ring data are typically deconstructed into a background component and a peak component. The background component usually consists of a running mean or a statistical analysis to identify the expected levels of tree growth, while the peak component is calculated using an index to assess the rate of growth in relation to expected levels. These indices identify periods whereby tree growth diverges from expected i.e. values >1 indicate a period whereby a tree is growing more than expected, while values <1 indicated periods where a tree is growing less than expected. These are termed accelerated or restricted growth, respectively. This type of analysis constitutes the most widely implemented measurement of outbreak events as measurements serve as a proxy for canopy disturbance (Reid and Robb, 1999; Alfaro et al., 2003). Periods of accelerated growth, termed release, occur as disturbance creates openings within which surviving host trees, non-attacked individuals of the host species, non-host canopy species, or understory species can thrive (Morris et al., 2010). As surviving hosts are rare, particularly during severe outbreaks, most assessments focus on heightened growth rates in non-host species or non-attacked individuals (Alfaro et al., 2003; Campbell et al., 2007; Zhang and Alfaro, 2002).

Table 1.3. highlights several examples of published dendroecological reconstructions of bark beetle outbreaks. While each set of growth rate parameters successfully observed known outbreaks in the 20th Century or identified several previously unknown outbreaks, I think that the parameters chosen show high levels of variation which may have led to key ecological data being lost. Alfaro et al., 2004, chose to dismiss release periods less than 5 years in duration, suggesting severe outbreaks would likely cause opening of the canopy for at least 5 years. In this instance, it is possible that low-level, short duration, or more isolated/scattered outbreaks or outbreaks within mixed species stands may remain undetected, reemphasising the bias towards large-scale outbreaks. During a reconstruction of mountain pine beetle (*Dendroctonus*)

ponderosae) outbreaks in lodgepole pine across British Columbia and Alberta, Canada, a series of 121 host and non-host stand chronologies was constructed (Alfaro et al., 2010). Growth release rate was defined as a period in which 30% of trees within a stand exhibited a 25% increase in growth in mean ring width for 3 consecutive years. Outbreaks in this region were known to occur between 1977 and 1983 (from aerial detection survey data) and in the late 1930's (from historical records) and were reflected in relative growth rates

Agent	Host	Location	Growth rate def.	Reconstructed outbreaks	Ref.
Mountain pine beetle (D. ponderosae)	P. contorta	Chilcotin Plateau, BC, Canada	50% increase in relation to mean ring width of previous 5 years	1890's AD 1940's AD 1980's AD	Alfaro et al., 2003
Mountain pine beetle (D. ponderosae)	P. contorta	White River Plateau, CO, USA	30% of trees within a stand exhibit a 25% increase in growth in mean ring width for 3 consecutive years	1930's AD 1977-1983 AD	Alfaro et al., 2010
Spruce beetle (<i>D. rufipennis</i>)	P. engelmanni i	BC and Alberta, Canada	200% increase in mean ring width between consecutive groups of 5 years	1716-1750 AD 1827-1845 AD 1860-1870 AD 1940-1960 AD	Eisenhart and Veblen, 2000
Spruce beetle (D. rufipennis)	P. engelmanni i	White River Plateau, CO, USA	250% increase in the mean ring width when consecutive groups of 5 years or more	1716 AD 1827 AD 1949 AD	Veblen et al., 1994

Table 1.3. Several key dendroecological reconstructions of bark beetle outbreaks in North America,
 emphasising the disparity in agreed definitions for growth release.

No other periods of outbreaks were identified within the time series. A reconstruction of *Picea engelmanii* (Engelmann spruce), outbreaks in Colorado, USA termed growth release as a 200% increase in mean ring-width between consecutive groups of 5 years (Eisenhart and Veblen 2000). Using these parameters, several outbreak occurrences were identified, in 1716–1750 AD, 1827–1845 AD, 1860–1870 AD, and 1940–1960 AD. In a reconstruction of spruce beetle outbreaks in Engelmann spruce, White River Plateau, Colorado, growth release was defined as a 250% increase in the mean ring width when consecutive groups of 5 years or more are

compared against the mean ring width for the entire series (Veblen et al., 1994). Standing dead trees were also sampled and successfully cross-dated, extending the length of the chronology to 500 yr BP. Evidence of outbreaks was found in 1716 AD, 1827 AD, and 1949 AD. While expected outbreak periods were identified, these examples emphasise a lack of standardised thresholds for several parameters associated with growth release. The amount of growth, the proportion of trees affected, and the period over which these effects must be observed to be deemed a period of disturbance all vary between these studies. Variations in localised conditions, community structure, the subject of the study (host or non-host species), make standardised methods difficult, and subsequently fair comparison problematic.

Tree-ring records are highly suitable for reconstructing disturbance events, as they offer annual resolution and therefore the possibility of identifying single events over multiple centuries, beyond recorded history (Morris et al., 2017). Trees of the family Pinaceae, which form the primary host of bark beetles, are relatively long-lived species, although there is a high level of variation among several key bark beetle host taxa (See Table 1.4). Douglas-fir (Pseudotsuga menziesii), the primary host of the Douglas-fir beetle (Dendroctonus pseudotsugae), are not only long-lived species, typically average ~1,200 years, but are also resistant to low- to moderate-level fires due to their thick bark. Long-term survival of the tree is critical for the longevity of the record. In contrast, the mountain pine beetle (*Dendroctonus ponderosae*) favour lodgepole pine (Pinus contorta), a much shorter-lived, typically around 200 years, firedependent species (Lotan and Brown, 1985). Communities comprising fire-dependent species that exhibit stand-replacement fire behaviour, such as lodgepole pine, impact the ability to reconstruct disturbance events as there are frequently no surviving trees available to produce records. These examples show how variation in event duration, host, stand composition, agent, expected fire regime, complicate uniform analysis, highlighting the difficulty in assigning standardised threshold for release for all stands.

Tree species	Life expectancy (years)	Typical Height (metres)	Shade Tolerance
<i>Abies amabilis</i> (Pacific silver fir)	400	45-55	Very tolerant
<i>Abies lasiocarpa</i> (Subalpine fir)	250	25-35	Tolerant
Picea engelmanii (Engelmann spruce)	500	45-55	Tolerant
Picea sitchensis (Sitka spruce)	800	70-75	Tolerant
<i>Pinus contorta</i> (Lodgepole pine)	250	25-35	Intolerant
Pinus monticola (Western white pine)	400	60	Intermediate
Pseudotsuga menziesii (Douglas-fir)	750	70-80	Intolerant
<i>Thuja plicata</i> (Western red cedar)	1000	60	Tolerant
<i>Tsuga heterophylla</i> (Western hemlock)	400	50-65	Very tolerant
<i>Tsuga mertensiana</i> (Mountain hemlock)	400	25-35	Tolerant

Table 1.4. Life expectancy, height, and shade tolerance for several key tree species in the Pacific Northwest. Shade tolerance is an important factor in determining how species respond to post-disturbance canopy opening and closing. Adapted from Franklin and Dyrness, 1988.

One method of increasing the temporal resolution of dendroecological methods, involves matching diagnostic features, such as a unique ring-width pattern or a fire scar, shared between dead standing trees and live trees (Fritts, 1976), extending the chronologies far beyond recorded history. One notable example of successful cross-dating (Perkins and Swetnam, 1996) facilitated the reconstruction of mountain pine beetle in whitebark pine (*Pinus albicaulis*) in central Idaho over the last 1,000 years. A series of narrow ring structures (the diagnostic feature within the series which allowed matching of tree rings) in the late 19th Century enabled successful cross-dating of records of multiple age. To identify outbreak periods, each ring width was divided by the mean width for the entire series (the expected growth) to identify periods of enhanced or restricted growth. Three outbreak periods were identified, one well documented period in the 1920's and two previously unknown occurrences, in 1730 and 1887. This example is, to our knowledge, the longest dendroecological reconstruction of bark beetle outbreaks.

Areas in North America where bark beetle outbreaks occur are typically also impacted by a variety of disturbance agents (fire, snow, avalanche, flooding) and climatic influences. While

indirect methods infer periods of outbreak, we cannot always discount the effects of these other agents, or the combination of several agents, on forest structure, therefore, growth dynamics.

5.2. Palynology

Unlike fire, which is a largely non-selective agent, forest pathogens often adapt to exploit a single host species (Marajo et al., 2007). Measurements of single species decline, inferred through fossil pollen abundance, allow the identification of shifts in vegetation, and therefore, possible periods of pathogenic outbreaks through time. One major advantage of palynology is that under favourable conditions, pollen seemingly preserves indefinitely, often providing the longest records of environmental change (Bennett and Willis, 2002) with some of the greatest forest disturbances identified through these methodologies. Notable examples include the mid-Holocene elm decline, during which levels of elm (Ulmus spp.) pollen decreased by 73% in less than ten years across much of northwest Europe (Peglar, 1992; Parker et al., 2002) and the mid-Holocene hemlock decline observed as an almost instantaneous decline of Tsuga canadensis across much of eastern North America around 5,000 yr BP (Bennett and Fuller, 2002: Fuller 1998). These have both since been attributed to pathogenic outbreaks likely carried by bark beetle vectors (Parker et al., 2002). More recently, the introduction of balsam woolly adelgid (Adelgies picea) to eastern North America in the early 20th Century, has led to a rapid and widespread decline in *Tsuga canadensis* which is reflected in pollen records across this region (Allison et al., 1986; Calcote, 2003).

While not all events result in such dramatic fluctuations as those outlined above, quantification of these vegetational shifts, and the associated pollen fluctuations, during periods of known outbreaks, allow the identification of these characteristic signatures through time, extending our knowledge of historic occurrences (Parducci et al., 2017). These fluctuations can be assessed through qualitative (relative abundances of pollen) or quantitative (set thresholds for periods of infestation) measurements, both of which are employed in the current literature.

A calibration of a known 1986 spruce beetle outbreak in Wasatch Plateau, Utah, (Morris et al., 2010), against pollen signatures retrieved from lake sediments, aimed to qualitatively identify periods of outbreak using a sharp decline in pollen of host *Picea engelmanii*, coinciding with an increasing relative abundance non-host fir and understory species, as a parameter for identifying periods of infestation. While the 1986 outbreak was identified within the pollen sequence, no other dramatic fluctuation was observed within the 750-year sedimentary

sequence (Morris et al 2010). It is possible that purely qualitative parameters, e.g. sharp declines in host species, may fail to identify lower level outbreaks as not all outbreaks result in such observable dramatic shifts in pollen abundances.

Pollen-based methods often calculate ratios between key taxa to identify vegetational shifts indicative of disturbance. A high-resolution pollen analysis of the 1939-1951 spruce beetle outbreak at Antler Pond, CO, which killed >90% of *Picea engelmanii*, by volume, in the area was used to calibrate a Picea/Abies ratio during severe outbreaks (Anderson et al., 2010). A pre-outbreak ratio of 1.36 was reduced to 0.45 for the 40 years (1955-1996) following the outbreak. A ratio of 0.45 used to identify periods of outbreak pre-1939, although no other periods were identified. Morris and Brunelle, (2012), scaled up the basin-level approaches of Morris et al., (2010) and Anderson et al., (2010), discussed above, to determine whether palynological responses are robust at landscape-level assessments. In addition to Wasatch Plateau discussed in Morris et al., (2010), Morris and Brunelle, (2012), assessed a further six sites across Utah. Combinations of percentage data, influx data, and pollen ratios were assessed to provide the closest association with changes in vegetation during known period of outbreak during the 20th Century (a decline in spruce coinciding with an increase in fir and understory species). Within this study, the ratio of spruce and fir to total non-arboreal pollen (NAP) most closely reflected these changes, yet no quantitative threshold (i.e. no specific ratio) was determined to identify historic outbreaks.

There are several factors that complicate the direct relationship between pollen abundances/percentages and vegetation biomass (Birks and Berglund, 2018), the first of which is the ability, or perhaps more importantly, the inability, to distinguish pollen grains to the desired taxonomic level. Palynology has historically suffered with the inability to identify taxa to the lowest possible level. As such, there are several groups of taxa, particularly within coniferous species, that have largely indistinguishable pollen grains (Birks and Birks, 2000), some of which are only differentiated through the presence/absence of very subtle features which may or may not be preserved (Moore et al., 1991). This is the case for several *Pinus* spp., the principal host of bark beetles. As such, they are often grouped into two pollen types: diploxylon-type in western North America e.g. lodgepole pine (*P. contorta*), Ponderosae pine (*P. ponderosae*), and Jeffrey pine (*P. jeffreyi*) and haploxylon-type e.g. whitebark pine (*P. albicaulis*), western white pine (*P. monticola*), and sugar pine (*P. lambertiana*) (Brunelle et al., 2008). While these species mostly occupy distinct ecological zones, there are communities

where multiple species are found, and consequently, reconstructing historic outbreaks in these areas based on palynological assessments alone are particularly problematic. For instance, if an outbreak occurs in a single host, the pollen abundance from this single species declines, yet the surrounding vegetation, including a palynologically indistinguishable non-host species, increases as a result of the newly available canopy space. The overall net pollen production for that pollen type may therefore remain consistent through the period of infestation and the outbreak remains undetected. A mountain pine beetle outbreak reconstruction in the northern Rocky Mountains (Brunelle et al., 2008), measured the ratio of host lodgepole pine pollen (diploxylon-type) to non-host whitebark pine pollen (haploxylon-type) to identify periods of infestation. During the analysis, the authors concluded that the possibility of Ponderosae pine contributing to diploxylon-type, and western white pine and limber pine (*Pinus flexilis*) contributing to haploxylon-type pollen, cannot be completely dismissed as they both occupy the northern Rocky Mountains.

The amount of pollen produced varies between species (Birks and Birks, 2000), with anemophilous (wind-dispersed) species generally producing significantly more pollen than entomophilous (insect-dispersed) species. As such, pollen deposited with an environment can be over- or under- representative of the contemporary vegetation. It is therefore vital to consider the source of pollen (local signal vs. regional signal). The literature shows signals vary greatly by catchment characteristics and vegetation composition i.e., dense forests comprise more vegetation typical represent local taxa, while open tundra, with very little vegetation, depicts more regional, wind-blown signals. Bark beetle outbreaks occur in dense coniferous ecosystems, so it is possible that the signals of low-level outbreaks, a decline in a local population, is masked by the regional signal. In addition, many bark beetle hosts, including Tsuga, Abies, and Picea are fast growing species. As such, they can recover from reduced pollen production (associated with death of a population or supressed pollen production during periods of attack) to full production in less than 20 years (Cruz and Alexander, 2010). If sampling resolutions are too coarse, they can essentially 'miss' periods of supressed pollen production associated with the disturbance event, with the pollen record showing consistent abundances of these taxa across the sampling intervals.

5.3. Taxonomic identification of preserved remains

Assessments of tree ring growth rates and pollen assemblages are indirect measurements of beetle events, i.e., they observe the effects of the agent on the surrounding vegetation.

Taxonomic identification of sufficiently preserved bark beetle remains within depositional environments is, to date, the only reconstructive method of analysis aimed at the direct detection of this disturbance agent. Adult dispersal typically occurs in June, and is particularly brief, with beetles leaving the inner bark for only several days within their 1- to 2-year life cycle (Raffa et al., 2008; Alfaro et al., 2010) and typically travelling less than 300m from their original host (Seidl and Rammer, 2017). Unfavourable conditions during this short window, such as heavy rainfall, can lead to interrupted flight patterns, and the subsequent incorporation of beetle remains within depositional environments (Brunelle et al., 2008). For example, the 1949 spruce beetle epidemic on the White River Plateau, Colorado, coincided with the wettest June on record (NCDC, 2010), resulting in an accumulation of adult beetle carcasses six inches deep, six feet wide, and more than a mile along the eastern shore of Trappers Lake (Frye et al., 1977; Morris et al., 2010).

It seems however, that the conditions required for large masses of beetle remains to be incorporated, preserved, and recovered to a level which is taxonomically identifiable, are rare. There are only two notable examples (Brunelle et al., 2008) of successful recovery of taxonomically identifiable remains (head and elytra) of adult bark beetles from lake sediments that provide information on historic occurrence - remains at Baker Lake, Montana, corresponding to the highly cited 1920/30's outbreak and three early Holocene examples, dating to 8331, 8410, and 8529 cal yr BP, along with two further early Holocene examples recovered from Hoodoo Lake, Idaho, dating to 7954 and 8163 cal yr BP (Brunelle et al., 2008). These early Holocene examples significantly pre-date any other known example from any type of reconstructive archive and provide the earliest examples of physical bark beetle presence in North America. A later assessment (Morris et al., 2013) found that within 30 sedimentary sequences from British Columbia, Montana, Idaho, Wyoming, Utah, and Colorado, no diagnostic remains for primary bark beetles were recovered, which seems to confirm the rare nature of these conditions. The major limitation of this method is that even when remains are found, they can often be too poorly preserved for taxonomic identification. Taxonomic analysis of the remains, consisting of beetle elytra and head capsules, were deemed 'most likely' to be associated with adult mountain pine beetle. This raises two points that are worth elaborating on. Firstly, bark beetles are morphologically very similar and, therefore, require a high level of taxonomic skill to distinguish, and secondly, diagnostic features are not always preserved. This can be seen in Morris et al., 2010, whereby chitinous remains that temporally correspond to

very recent outbreaks were recovered, however, preservation levels were too poor to allow taxonomic identification.

While the examples of taxonomically identifiable remains are rare, they highlight a fundamental principle, that bark beetle remains can become incorporated into depositional environments. I, therefore, hypothesise that DNA-based methods could be used to identify such remains with a higher level of sensitivity than taxonomic identification alone.

6. The potential role of DNA-based methodologies in palaeoecology

6.1. Introduction to DNA-based methodologies

Since the revolutionary work on the retrieval, extraction, and analysis of ancient DNA (hereafter aDNA) from ancient samples in the 1980's (Pääbo, 1989; Pääbo, 1985), the field of DNA-based methodologies to address key environmental and ecological questions has expanded exponentially (Crump 2021; Edwards, 2020; Parducci et al., 2019; Taberlet et al., 2018; Parducci et al., 2017; Pansu et al., 2015; Pedersen et al., 2015; Thomsen and Willerslev, 2015; Bohmann et al., 2014; Giguet-Covex et al., 2014; Rees et al., 2014; Pedersen et al., 2013; Epp et al., 2012; Jorgensen et al., 2012; Yoccoz et al., 2012; Ficetola et al., 2008; Bennett and Parducci, 2006; Coolen and Overmann, 1998). This type of DNA is characteristically found in low abundance and is subject to degradation through time and consequently, initially requires amplification to produce a sufficient quantity and quality of DNA molecules to be detected and analysed (Nichols et al., 2019). The breakthrough technique which facilitated such analysis was the polymerase chain reaction (PCR), an enzymatic reaction which exponential increases the number of copies of DNA molecules (Kelly et al., 2019; Nichols et al., 2019; Mullis and Faloona, 1987).

Of the various types of PCR, quantitative PCR (qPCR) is highly advantageous for such applications due to its cost effectiveness, high-sensitivity, high sequence specificity, and little to no post-amplification processing (Tsuji et al., 2019; Cao and Shockey, 2012). qPCR differs from traditional PCR in that it incorporates a fluorescent dye into the reaction which binds to double-stranded DNA, allowing the measurement of fluorescence within the reaction which can be used as a proxy for DNA abundance or level of gene expression (Robinson et al., 2018). In addition to the quantitative aspect of this technique, qPCR also allows the incorporation of post amplification high-resolution melt curve analysis (HRM), a technique used to differentiate species due to the variation in their melting temperatures (Tm), associated with changes in

fragment length and sequence composition between species (Ririe et al., 1997). For this study, a SYBR Green qPCR assay with HRM was favoured as the various assays were designed to produce species-specific melting temperatures and it was hypothesised that the scale/severity of the insect outbreak could be estimated by the quantitative aspect of qPCR. In addition, my research group has previously validated the use of SYBR Green verses other polymerases and it has been shown to produce less amplification artifacts and produce more accurate levels of expression (see Robinson et al., 2018; Cao and Shockey, 2012).

6.2. sedaDNA

One branch of DNA-based methodologies involves the extraction of DNA from such sediments, referred to as sedaDNA. Lake sediments are a well-established source of long-term biological and environmental information (Brunelle et al., 2008; Arnaud et al., 2016) and have been widely used to provide proxy evidence of past biological communities and environmental change (Birks and Birks, 2008 Parducci et al., 2017) as evidence of this change is preserved for thousands of years. Additionally, lakes are found in almost all environments, making these methodologies widely applicable. Sediments typically contain varying levels of organic matter (Meyers and Teranes, 2001; von Wachenfeldt et al., 2008), sourced from within lake (autochthonous) biological processes, as well as material in-washed (allochthonous) from the surrounding catchment and the atmosphere (Giguet-Covex et al., 2019).

These ubiquitous DNA molecules are released from a wide range of sources and can persist in the environment for periods of several hours to several millions of years, depending on depositional conditions (van der Valk et al., 2021; Taberlet et al., 2018; Thomsen and Willerslev, 2015; Bohmann et al., 2014; Taberlet et al., 2012; Willerslev et al., 2007). The analysis of DNA from sediments is still a relatively new and exciting tool within this field (Edwards, 2020; Nichols et al., 2019) with the majority of research focussed on the identification of taxa and the reconstruction of plant communities (Sjögren et al., 2017; Alsos et al., 2016; Willerslev et al., 2014; Boessenkool et al., 2014; Jørgensen et al., 2012; Bennett and Parducci, 2006). As the previous literature review has highlighted, macrofossil remains of forest pests, notably bark beetles, have been successfully recovered from lake sediments (Morris et al., 2015; Brunelle et al., 2008) and are currently our oldest direct record for historic presence of these species. The preservation of beetle remains highlights the potential for the successful recovery of DNA from decomposed and/or indistinguishable remains from sedimentary archives, aiding in our understanding of historic outbreak occurrence.

While the combination of the wide range of depositional environments on a wide range of timescales makes DNA-based methodologies highly suitable for addressing palaeoenvironmental questions, these techniques have remained largely underutilised in historic detection or reconstructive capacities. To date, there have been no published investigations using DNA-based methodologies to detect forest pathogen outbreaks, current or historic. Of the few DNA-based studies of bark beetles that exist, most concern phylogenetics, the relatedness within and between species and populations (Stauffer et al., 2001; Schrey et al., 2005; Maroja et al., 2007; Peters et al., 2014; Godefroid et al., 2019). Analysis of mtDNA COI sequences and allele frequency for 9 microsatellite loci across the present-day population of spruce beetle has been used to assess timing of divergence and possible introduction, the results of which suggest these pathogens have been impacting North American forest ecosystems far longer than previously thought (Maroja et al., 2007). Two haplotypes were identified between Newfoundland and Alaska where white spruce is a primary host, and a third haplotype in the Rocky Mountains, where Engelmann spruce is favoured. The two northern lineages were 3-4% divergent from each other and from the Rocky Mountain population. Together with pollen records, used to confirm the historic availability of suitable hosts, it is highly possible that spruce beetles have been present in North America for the last 1.7 million years (Maroja et al., 2007).

7. Thesis structure and aims

Whether an insect outbreak occurs in preferred hosts or occasional hosts, in weakened trees or healthy trees, is curtailed by tree defences or causes widespread mortality, some level of stand modification occurs, and it is the ability to detect these effects, within a wide range of archives, through time, that form the basis of historic reconstructions. The vast majority of the current bark beetle ecological literature states that current outbreaks of forest insects are unprecedented in both scale and severity, and while modern outbreaks suggest this to be true, without adequate reconstructions, this cannot be confirmed. What has become apparent during this review is that a lack of standardisation in the quantification of these stand modifications associated with bark beetle outbreaks, a combination of highly variable outbreak dynamics, and no standardised method of assessing them is partly responsible for our failing to fully understand the true occurrence and dynamics of past events at all levels.

The rapid growth of molecular techniques and the occurrence of beetle remains within lake sediments highlight why DNA-based methodologies have been widely 'called for' by several

high-profile bark beetle research groups (Morris and Brunelle, 2012; Morris et al., 2010; Brunelle et al., 2008; Raffa et al., 2008) to deepen our understanding of historic occurrence. It must be emphasised that due to the relative infancy of the use of DNA-based methods to address environmental change questions, these techniques are not without associated limitations and there are still some key fundamental ideas which need a deeper understanding. This thesis aims to extend our knowledge of several of these limitations, including the assessment of the effects cellular degradation (fragmentation and deamination) has on the recovery of DNA from historic samples, the factors associated with DNA taphonomy and catchment area, and how reliably DNA-based methods detect historic outbreak dynamics.

The underlying aim of this thesis is to deepen our understanding of historic disturbance in the previously unstudied crest area of the Cascade Mountain Range in the Pacific Northwest and assess the potential role of DNA-based methodologies in palaeoenvironmental reconstructions. To achieve these aims, this thesis has the following objectives:

To review the current methods of assessing historic disturbance in this region, outlining the associated strengths and weaknesses of each method, to better understand why we have such a limited knowledge of past disturbance occurrence in this region.

To assess the role of tephrochronology in providing key time markers associated with historic disturbance events and develop the reference database for such types of analyses.

To produce a continuous high-resolution fire reconstruction at three ecologically important, previously understudied sites within the Crest area of Cascade Range, Oregon, USA using a novel method of statistically analysing charcoal accumulation data.

To assess the degree to which DNA-based methodologies have the potential to better our understanding of historic outbreak dynamics, through the development of species-specific qPCR protocols for the direct detection of *D. ponderosae, D. pseudotsugae* and a genus-specific qPCR protocol for *Choristoneura* spp. within modern and palaeoenvironmental samples.

To identify the key areas within DNA-based methodologies which require further assessment and use the results generated within this thesis to attempt to develop these ideas.

CHAPTER TWO

METHODS

1. Site selection

1.1. Current and recent evidence of forest disturbance

Much of the current literature concerning the reconstruction of forest disturbance in this region is focussed on the Coast Range and the Willamette Valley areas of Oregon (Walsh et al., 2010a; Walsh et al., 2010b; Long and Whitlock, 2002; Long et al., 1998). Therefore, the first set of criteria for site selection was to focus on sites within the higher elevation, Cascade Range, with the aim of addressing important data gaps and extending our understanding of historic disturbance regimes into these previously understudied regions. The effects of recent, largescale, highly destructive disturbance events are evident across much of the Cascade Range with nearly all forested areas exhibiting signs of recently burnt vegetation and/or the characteristic discolouring of the forest canopy associated with insect and disease. For example, Fig 2.1. shows Little Monon Lake, Jefferson County, Oregon, on the day of sediment collection in July 2016. In the foreground, standing burnt trees can be seen in the immediate vicinity of the lake. This area of burnt vegetation extends 2 km east and 3.5 km south and are the remnants of a major fire in the Olallie catchment in 2001. The mountainous peak observable in the background of the photograph is Olallie Butte, a shield volcano which sits 2,200m a.s.l. At the time of sampling, major signs of discolouration were evident along the entire western slope, attributed to from a D. ponderosae outbreak in Pinus contorta, which has been ongoing since 1995. The second set of criteria was the choice of sites, such as Little Monon Lake, whereby there was evidence of recent disturbance in the immediate vicinity of the lake as it was hypothesised that the ongoing/recent disturbance could be used as a positive control to check the reliability of any signals observed in the sedimentary archives i.e., evidence of recent fire at the site should be reflected in the charcoal record.

In addition to current observations and published reconstructions, the Pacific Northwest has a relatively unique, highly detailed record of historic disturbances which cover the last 75 years (1946 to 2021). Since 1946, a co-operative comprised of the USDA Forest Service, Forest Health Protection (FHP), Oregon Department of Forestry (ODF), Forest Health Management Section (FHMS), and the Washington Department of Natural Resources (WDNR), have been performing annual aerial surveys of forest disturbances across all forested federal, state, and private land within the Pacific Northwest. The surveys are conducted by entomologists aboard light aircraft and follow a gridded system to allow comparison between the data from multiple years. The dataset contains information on the responsible agent (which include insects, disease, fire, wind-throw, snow, drought, mammals), the host tree species, the area affected,

and the severity of the outbreak. The duration of the event(s) and their movement through time can be inferred by analysing data over multiple years. Publicly available as Geographic Information Systems (GIS) datasets, these surveys have served as a highly valuable resource of disturbance trends within this area and are regularly used in land management plans and forest service reports. It seems, however, that this comprehensive database has been largely underutilised for research purposes. This dataset firstly helped with site selection as it identified sites recently affected by disturbance, but also allowed a deeper understanding of the dynamics associated with recent outbreaks, their extent, duration, and the responsible agent, which would provide invaluable in the interpretation and discussion of results generated in this thesis.

Figure 2.1. A view of Little Monon Lake, Olallie, Oregon, showing areas of burnt trees associated with the 2001 fire in the foreground, with characteristic canopy discolouring associated with insect outbreaks on the western slopes of Olallie Butte in the background.

To construct insect outbreak maps, individual annual polygon shapefiles of ADS data were combined in ArcMap (ESRI, 2021) to produce yearly records of disturbance from 1947 to 2016 across the Mount Hood National Forest and Willamette National Forest, Oregon, and the Gifford Pinchot National Forest, Washington. The resulting analysis presented a series of maps consisting of forested areas, topography, and hydrological features, overlain with outbreak data, including the responsible agent(s), the year of outbreak, with the extent of the outbreak marked with a translucent red polygon. The use of these polygons to demarcate area affected by outbreak facilitated the identification of outbreak extent and also areas repeatedly associated

with outbreaks, as the accumulation of these translucent layers over multiple years result in darker shaded regions on the output files (See Final Site Selection below for final analyses). To identify potential geographical features (such as catchments, valleys, slope features etc.) that may influence dispersal/spreading behaviour of disturbance agents, taphonomic processes, and potential source areas for charcoal and DNA, Hydrological Unit Code 10 (HUC 10) boundaries which represent watershed level units were used in combination with 10-metre contour lines. Watersheds with the United States are categorised into a standardised hierarchical drainage system, known as Hydrological Units, with each representing varying levels of hydrologic features i.e. Hydrological Unit Code 2 represent regional level drainage, while Hydrological Unit 12 represents sub watershed drainage (Johnson, J. pers. comm.). HUC 10, or watershed-level boundaries, were used in this study as they likely best represented the source areas of palaeoenvironmental data, while 10-metre contour lines highlights subtle features within the immediate lake vicinity that may influence taphonomic processes. GIS analysis identified that the primary agents of tree mortality in this region since 1946 have been fire, bark beetles (Curculionidae: Scolytinae), and tree defoliation attributed to the genus of budworm, Choristoneura (Coleman et al., 2018). As such, the final sites chosen for full analyses were located within watersheds which have been inundated with either fire, bark beetles, and/or budworms, with suitable catchments that would likely lead to in-washing of material, including charcoal, pollen, and DNA.

1.2. Final site selection and core descriptions

GIS analysis of ADS data and consultation with the US Forest Service identified fifteen small, shallow lakes within the Cascade Range with no major inlets or outlets which exhibit high levels and/or distinct periods of disturbance associated with *Dendroctonus ponderosae*, *Dendroctonus pseudotsugae*, *Choristoneura* spp., and/or fire in the immediate vicinity, either from current observations or ADS data (See Table 2.2. for a summary of outbreak data obtained from GIS analysis of ADS data). All sites avoided any major human influences (notably, timber harvest) to reduce the potential influence these activities may have on the interpretation of results, while being accessible on foot and with topographic characteristics likely to lead to the inclusion of palaeoenvironmental material becoming incorporated into lake sediments. From these fifteen sites, a total of thirty-eight individual lake sediment cores and two peat cores were retrieved from the Mt Hood National Forest and Willamette National Forest, Oregon, and the Gifford Pinchot National Forest, Washington, across two field seasons in 2016 and 2017 (See Table 2.1 for the full list of cores obtained). The target time-period for this study was the mid-

to late-Holocene. As such, only single-drives were collected at each site as it was thought that this depth of sediment would provide sufficient coverage for this time-period.

Of the forty total cores, six sites were chosen due to their proximity to recent insect, disease, and/or fire events, ecological interest, and core length. These included Little Monon Lake (44°47'50"N, 121°47'17"W), Pyramid Lake (45° 8' 48" N, 121° 55' 35" W), Summit Lake (45°01'53"N, 121°47'17"W), Scorpion Lake East (44°49'54.9"N 121°59'16.2"W), Little Shadow Camp Lake (43°41'55.0"N 122°01'55.8"W), and Forlorn Camp Lake (45°57'19.7"N 121°45'31.8"W). Radiocarbon dating of middle and basal levels revealed poor sedimentation rates at both Little Shadow Camp Lake and Scorpion Lake East and, therefore, both sites were omitted from final analyses.

The cores obtained from Little Monon Lake, Pyramid Lake, Summit Lake, and Forlorn Camp Lake 3 consisted of homogenous light brown (5YR 3/6) lake sediments with very little variation except for the visible tephra bands observed at Forlorn Camp Lake 3. No macrofossils were observed during subsampling of sediment cores.

Site	Cores obtained
Beargrass Lake	BGL_B1
	BGL_D2
Little Shadow Camp Lake	LSCL_B1
	LSCL_L2
Gold Lake Bog	GLB_L1
	GLB_L2
	GLB_L3
Forlorn Camp Lake 3*	FC3_B1
	FC3_D2
Hidden Big Lake	HBL_B1
	HBL_B2
	HBL_D3
Horseshoe Lake	HSH_B1
	HSH_D2
Rock Island Lake	RIL_B1
	RIL_B2
	RIL_D3
	RIL_D4
Barefoot Lake	BFL_B1
	BFL_D2
Little Monon Lake*	LML_B1
	LML_D2
	LML_L3
	LML_L4
Little Three Creeks Lake	LTC_B1
	LTC_B2
	LTC_D3
	LTC_B4
Hideaway East Pond	HEP_L1
	HEP_L2
	HEP_D3
Pyramid Lake*	PYR_L1
	PYR_B2
	PYR_L3
	PYR_D4
Scorpion Lake East	SCO_B1
Summit Lake*	SUM_B1
	SUM_D2
Little Fish Lake	LFL_D1
	LFL_B2

Table 2.1. All cores obtained during the 2016 and 2017 fieldwork season. Code B refers to cores obtained with a Bolivia-style corer. Code L refers to cores obtained with a Livingstone-style corer. Code D refers to cores obtained with a Bolivia corer with the addition of a full decontamination of the PVC barrel prior to core collection. *Sites used in this thesis

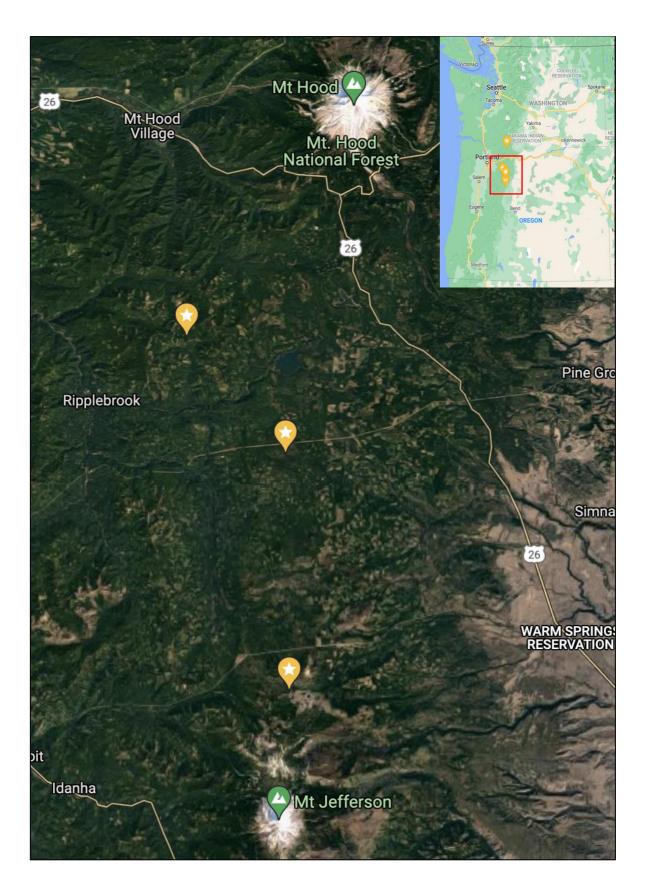


Figure 2.2. Site locations of (from north to south) Pyramid Lake, Summit Lake, and Little Monon Lake, Oregon.

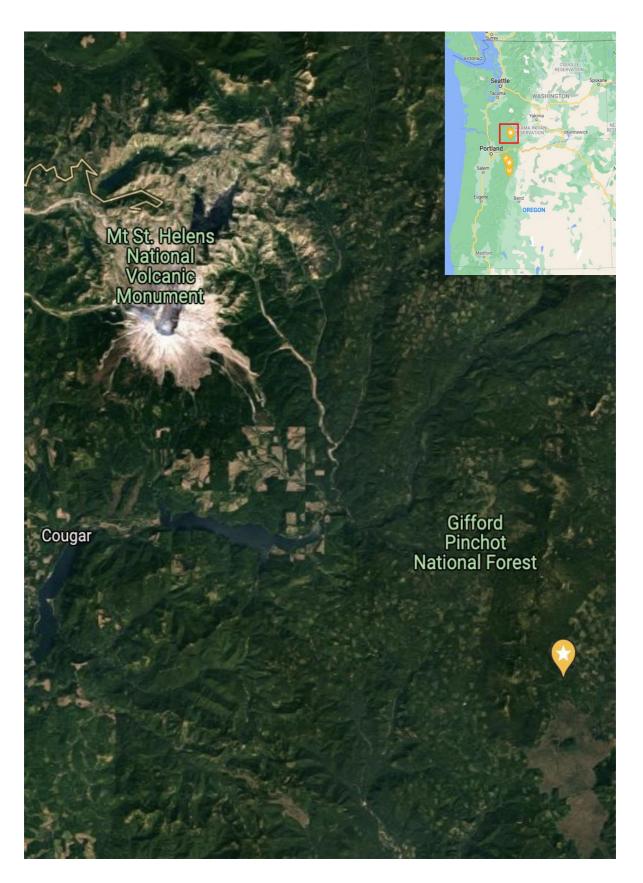


Figure 2.3. Site location of Forlorn Camp Lake, Gifford Pinchot National Forest, Washington.

Site	Agent	Outbreak year(s)	
Little Monon Lake			
	D. ponderosae (Mountain pine beetle)	1950, 1980, 1986, 1989, 1991, 2000, 2001, 2003, 2004, 2005, 2006, 2007	
	D. pseudotsugae (Douglas-fir beetle)	1987, 1999	
	Adelgies picea (Balsam woolly adelgid)	1957, 1958, 1964, 1966, 2008, 2010, 2011, 2012, 2015	
	<i>Scolytus ventralis</i> (Fir engraver)	1997, 2003, 2004, 2007	
	<i>Pseudohylesinus sericeus</i> (Silver fir beetle)	2004	
Pyramid Lake			
	<i>D. ponderosae</i> (Mountain pine beetle)	2006, 2007, 2008	
	<i>D. pseudotsugae</i> (Douglas-fir beetle)	1992	
	Adelgies picea (Balsam woolly adelgid)	2011	
	Scolytus ventralis (Fir engraver)	2004, 2016	
	Choristoneura occidentalis (Western spruce budworm) Pseudohylesinus sericeus (Silver	1986, 1987, 1988, 1989, 1991, 1992 2012	
Summit Lake	fir beetle)	2012	
	<i>D. ponderosae</i> (Mountain pine beetle)	1962, 1962, 1963, 1965, 1971, 1972, 2006, 2007, 2008, 2009, 2010, 2011, 2012	
	D. pseudotsugae (Douglas-fir beetle)	1954, 1995	
	Adelgies picea (Balsam woolly adelgid)	1968, 1970, 1973, 2003, 2011	
	Scolytus ventralis (Fir engraver)	1971, 1981, 1995, 2008	
	Choristoneura occidentalis (Western spruce budworm)	1987, 1992, 1993	

Table 2.2. A summary of outbreak data at Little Monon Lake, Pyramid Lake, and Summit Lake, obtained from GIS analysis of ADS data. As a consequence of the frequent, widespread outbreaks of *D. ponderosae, D. pseudotsugae,* and *Choristoneura occidentalis,* these species were chosen to be the targets of qPCR protocols designed within this thesis.

1.3. Little Monon Lake

Little Monon Lake (44°47'50"N, 121°47'17"W, 1,511m elevation) is situated within Jefferson County, Mt Hood National Forest, Oregon. It is a shallow, 150m wide, 5-acre lake situated within Ecoregion 4c - Cascade Crest Montane Forest (Thorson et al., 2003) with the dominant catchment vegetation consisting of *Pinus contorta* (lodgepole pine), *Tsuga*

mertensiana (mountain hemlock), and Callitropsis nootkatensis (Alaska yellow cedar), all of which are either fire-dependent or not well adapted to fire (Minckley and Long, 2016). Beyond the immediate vicinity of Little Monon Lake, the extra-local vegetation is characterised by widespread single species stands of *Pinus contorta* forests to the east and south of the site, which are relatively uncommon in the Cascade Range and will likely impact the behaviour and response to disturbance regimes. At the time of sampling, Little Monon Lake was surrounded by open areas and standing dead trees to the south and east, the remnants of a widespread fire in 2001, and there was evidence of an ongoing D. ponderosae outbreak in Pinus contorta on the western slope of Olallie Butte. Little Monon Lake is bordered to the south by Monon Lake (65 acres) and to the north by Olallie Lake (240 acres). A Holocene fire reconstruction exists for a core obtained from Breitenbush Lake, 4km south of Little Monon Lake (Minckley and Long, 2016; Gavin et al., 2006) which would serve as a good comparison of fire regimes in this region. ADS data from Little Monon Lake shows this watershed has been inundated with disturbance since the origins of the survey, in 1947. Frequent and widespread outbreaks of D. ponderosae, D. pseudotsugae, Scolytus ventralis, Adelgies picea, and Pseudohylesinus sericeus can be observed for the duration of the survey period (See Figure 2.2. and Table 2.3. for more information).

Figure 2.4. Little Monon Lake, Jefferson County, Oregon.

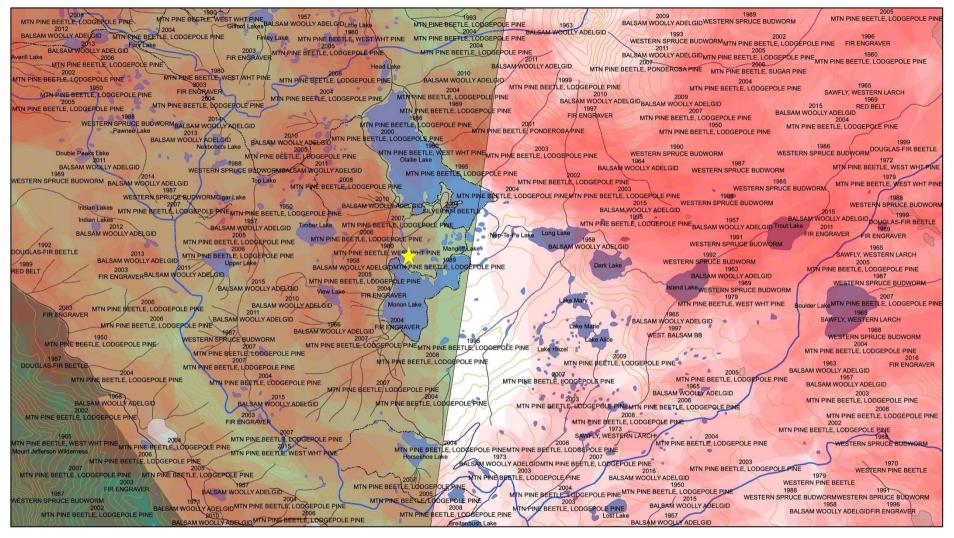


Figure 2.5. GIS analysis of ADS data at Little Monon Lake, Olallie, Oregon. This watershed has observed highly frequent and widespread outbreaks *D. ponderosae*, *D. pseudotsuga*, *Scolytus ventralis*, *Adelgies picea*, and *Pseudohylesinus sericeus* since the origins of the ADS survey in 1947.

1.4. Pyramid Lake

Pyramid Lake (45° 8' 48" N, 121° 55' 35" W, 1,213m elevation) is a 283m wide, 5-acre high elevation site situated within the Roaring River Wilderness Area, Mt Hood National Forest, Oregon. site is situated within ecoregion 4b – Western Cascades Montane Highlands (Thorson et al., 2003). Dominant watershed vegetation consists of *Tsuga mertensiana* (mountain hemlock), *Tsuga heterophylla* (western hemlock), *Abies procera* (noble fir), *Pseudotsuga menziesii* (Douglas-fir), *Abies amabilis* (Pacific silver fir), *Pinus monticola* (western white pine), with *Alnus rubra* (red alder), *Salix* spp. (willow), *Pteridium* spp. (bracken), and *Rhododendron macrophyllum* (Pacific rhododendron) forming the main understory species. The lake sits within a niche of a small west to east trending slope. Recent timber harvest is evident to the south. GIS analysis of the ADS insect and disease database shows Pyramid Lake has experienced several severe insect outbreaks in the last 70 years, including a series of *D. ponderosae* events in the 2006, 2007, and 2008, a *D. pseudotsugae* outbreak in 1992, and a period of widespread *Choristoneura occidentalis* (western spruce budworm) outbreaks throughout the 1980's and 1990's.

Figure 2.6. Pyramid Lake, Mt Hood National Forest, Oregon.

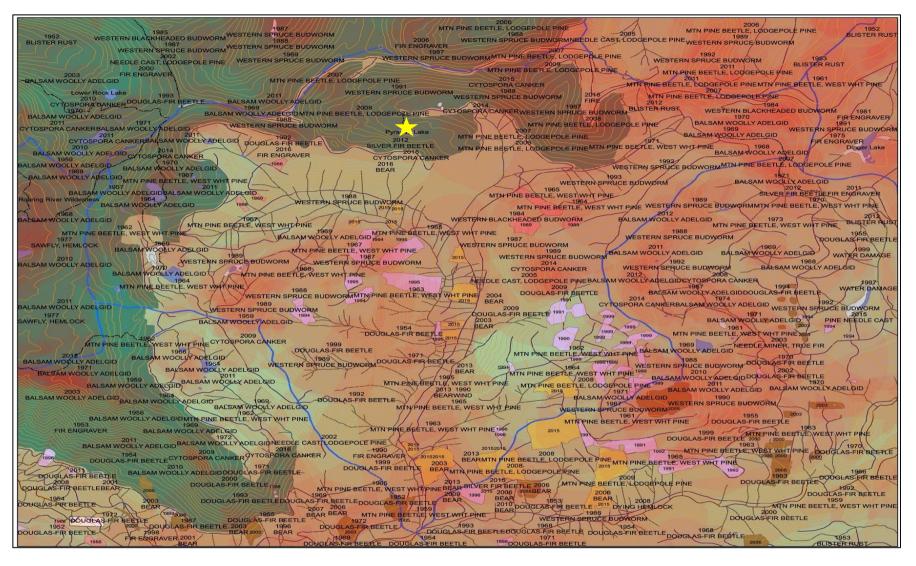


Figure 2.7. GIS analysis of ADS data at Pyramid Lake, Mt Hood National Forest, Oregon. Similar to Little Monon Lake, this watershed has observed highly frequent and widespread outbreaks *D. ponderosae*, *D. pseudotsuga*, *Scolytus ventralis*, *Adelgies picea*, and *Pseudohylesinus sericeus* since the origins of the ADS survey in 1947. Pyramid Lake has also experienced highly severe *Choristoneura occidentalis* outbreaks in the immediate vicinity of the lake.

1.5. Summit Lake

Summit Lake (45°01′53″N, 121°47′17″W, 1,275m elevation) is a 10-acre, 320m long lake situated ~10km south of Timothy Lake, Mt Hood National Forest, Oregon. The site is located within Ecoregion 4c – Cascade Crest Montane Forest (Thorson et al., 2003) with dominant stand species consisting of *Pinus contorta* (lodgepole pine), *Tsuga mertensiana* (mountain hemlock), *Cupressus nootkatensis* (Alaska yellow cedar). The catchment within which Summit Lake sits is the largest and most open of the three sites characteristic of the undulating plateaus found throughout Ecoregion 4c, rather than the river-cut valleys found throughout Ecoregion 4b. Therefore, Summit Lake potentially has the largest catchment out of the three sites chosen for full analysis, producing signals more associated with regional change than local change. At the time of sampling, a large area of standing burnt trees were evident across the north shore of Summit Lake, however, the timing of this burn is unknown.

ADS data shows that Summit Lake has been subject to outbreaks of *D. ponderosae* in nearly every decade since the beginning of the ADS survey, along with *Choristoneura occidentalis* outbreaks in 1989, 1992, and 1993. There have been two outbreaks of *D. pseudotsugae*, the first in 1954 and a second in 1995. There are also outbreaks from other notable agents including *Adelgies picea* (Balsam woolly adelgid), *Scolytus ventralis* (fir engraver), however, these species were not chosen to be target species for DNA-based methodologies.

Figure 2.8 - Summit Lake, Oregon (obtained from google image search. Credit: Skeels, J)

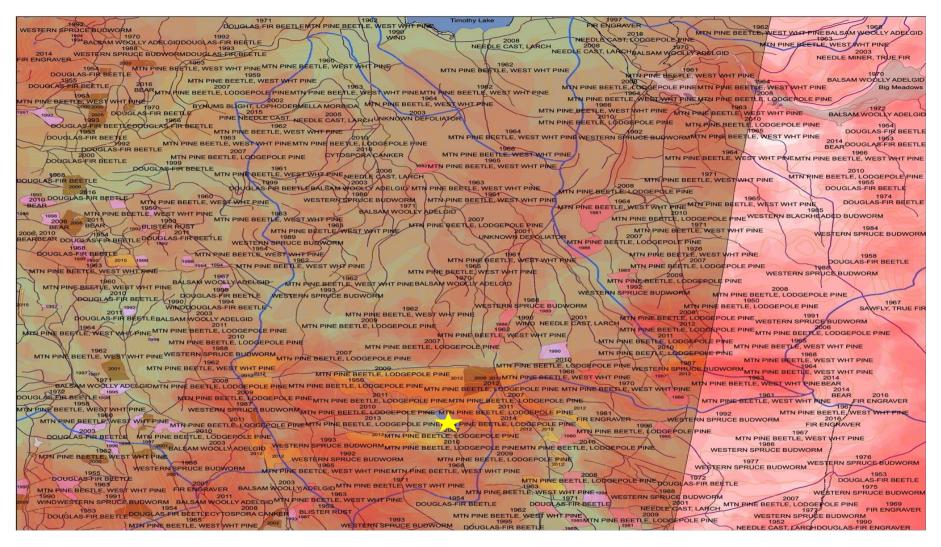


Figure 2.9. GIS analysis of ADS data at Pyramid Lake, Mt Hood National Forest, Oregon. Similar to Little Monon Lake, this watershed has observed highly frequent and widespread outbreaks *D. ponderosae*, *D. pseudotsuga*, *Scolytus ventralis*, *Adelgies picea*, and *Pseudohylesinus sericeus* since the origins of the ADS survey in 1947. Pyramid Lake has also experienced highly severe *Choristoneura occidentalis* outbreaks in the immediate vicinity of the lake.

1.6. Forlorn Camp Lake 3

Forlorn Camp Lake 3 (45°57'19.7"N 121°45'31.8"W, 1132m a.s.l.) is a 200m wide lake situated within the Gifford Pinchot National Forest, Washington. The site sits within Ecoregion 4b – Western Cascades Montane Highlands (Thorsen et al., 2003). The dominant overstorey vegetation at this site consists of *Tsuga mertensiana* (mountain hemlock), *Tsuga heterophylla* (western hemlock), *Pinus contorta* (lodgepole pine), *Pseudotsuga menziesii* (Douglas-fir), and *Abies amabilis* (Pacific silver fir), with *Vaccinium membranaceae* (black huckleberry), *Cornus canadensis* (dogwood), and *Rosa gymnocarpa* (dwarf rose) forming the main understory species.

Figure 2.10. Forlorn Camp Lake 3, Gifford Pinchot National Forest, Washington.

Forlorn Camp Lake 3 lies 42km southeast of the summit of Mount St Helens and upon extrusion of core, three distinct tephra bands were observed. The uppermost band, termed FC3 B1, is located ~5cm from the surface and consists of dark grey, dense pumice. As there were no observable tephra bands above this layer it was assumed that it must derive from the most recent eruption of Mt St Helens, in 1980 AD. This would provide a critical dating control within the period covered by the ADS dataset and therefore this site was chosen for tephrogeochemical analyses. Should these observable tephra layers be associated with Mt St Helens, then analysis of cryptotephra would provide an additional dating control within this study. Two deeper tephra

bands, termed FC3 B2 and FC3 B3 consisted of two yellowish grey layers of ash which occur in quick succession 23cm deep within the core.

Figure 2.11. - Core FC3_B1 obtained from Forlorn Camp Lake 3, Gifford Pinchot National Forest, Washington. Extraction revealed three distinct ash bands, the upper layer around 5cm from the surface, and two further layers between 23 and 25cm deep.

2. Sediment collection

Three lake sediment cores obtained from Little Monon Lake, Summit Lake, Pyramid Lake, Mt Hood National Forest, Oregon, were selected for charcoal and sedaDNA analyses. Single Bolivia cores were obtained from each site as it was believed that these would cover the relatively short time-period associated with this study. At all sites, the shallow bedrock and/or thick tephra layers prevented coring beyond the first Bolivia section. Cores measured 230 mm, 600 mm, 670 mm respectively. In addition, a fourth lake sediment core retrieved from Forlorn Camp Lake, Gifford Pinchot National Forest, Washington, measuring 360mm, was selected for tephrogeochemical analysis due to its' proximity to Mt St Helens and several observable tephra layers. All sediment cores were obtained using a Bolivia corer, a modified Livingstonetype rod piston corer (Livingstone, 1955). The replacement of the steel coring barrel with a single-use, decontaminated PVC pipe (Wright, 1967; Wright and Myrbo, 2008), is more suited to unconsolidated/watery sediments, limits the need to extrude the sample in the field and, critically for samples intended for DNA methodologies, allows the decontamination of all sampling equipment prior to collection (Morris et al., 2015). A traditional Livingstone corer was used to retrieve two peat cores from Gold Lake Bog, Oregon, however, these were not used for final analyses as there was no decontamination protocol implemented prior to sampling with this corer.

All sediment cores were obtained from the deepest part of the lake using a stabilised inflatable dingy. Once retrieved, sediments (which remained in their PCV pipes) were capped with floral foam to protect the sediment-water interface and prevent mixing of sediments and sealed with plastic caps and duct tape. All cores were refrigerated while on fieldwork and frozen at -20°C on return to Swansea University until sub-sampling, to limit DNA degradation. For subsampling, cores were sawn into 10 cm sections and left to thaw horizontally overnight to prohibit sediment mixing while thawing. During thawing, no fracturing or loss of sediment coherence occurred. High-resolution, contiguous 2mm sampling strategy was chosen to provide a comprehensive reconstruction of disturbance regimes and to address concerns in the literature that coarse sampling methodologies lead to a bias towards only detecting large-scale, destructive events (Long et al., 1998). Samples were taken every 2mm and isolated into the required volumes for charcoal, DNA, and radiocarbon dating, with the remaining sediment moved into falcon tubes and refrigerated. For DNA analyses, three replicates for each depth (each weighing 0.25g) were placed directly into the first step lysis tube of the QIAGEN PowerLyzer PowerSoil Kit (QIAGEN, UK). All subsampling equipment was decontaminated with a bleach, water, ethanol wash in between samples. DNA extractions were performed immediately after subsampling to limit the potential of DNA degradation.

3. AMS radiocarbon dating

A total of forty-three 1 cm³ bulk-sediment samples were taken across four sites to be AMS dated by myself at iThemba LABS, University of the Witwatersrand, Johannesburg, South Africa, via the 6MV Tandem AMS system (Mbele et al., 2017). The six provisional cores were sampled for dates at the surface, middle, and base, in addition to several further samples taken near the surface (See Table 2.3 or Supplementary Material for full AMS analyses) to provide robust chronologies with an emphasis on the last few hundred years for which there is ADS

data and published reconstructions of forest disturbance with which to compare results. No macrofossils were obtained for dating.

At iThemba LABS, samples were subjected to a standard Acid-Base-Acid (A-B-A) pretreatment (De Vries and Barendsen, 1952; Brock et al., 2010). The sediments were treated with hot 1% HCl (70°C for 45 minutes), washed with deionised water, treated with 0.4% NaOH (20°C for 30 minutes), washed with deionised water until pH was neutral, before a final reacidification of the sediment in 1% HCl (20°C for 10 minutes) and washed with distilled water. Samples were weighed and transferred into a combustion tube along with 80mg each of copper oxide and silver. Combustion tubes were connected to a vacuum and sealed using a blowtorch. Sealed samples were then placed in a furnace at 500°C for 6 hours to generate CO_2 and then graphitized. Samples were analysed using standard 6MV Tandem AMS system protocol (Mbele et al., 2017).

Raw radiocarbon dates were converted (two sigma) to calendar ages (cal. yr. BP) in OxCal (Bronk Ramsey, 2009) using the Bomb13NH1 calibration curve (Hua et al., 2013) which is prepended with IntCal13 (Reimer et al., 2020) (See Table 2.3). Before present (BP) refers to 1950 AD. Age depth models were constructed using Bayesian statistics in the R package "rBacon" (Blaauw et al., 2021) (See Figures 2.12, 2.13, and 2.13). Several iterations of age depths models were calculated using varying sampling slices and interpolation methods. Each iteration used the same the Bomb13NH1 calibration curve (Hua et al., 2013) which is prepended with IntCal13 for any pre-1950 dates (Reimer et al., 2020). Final age depth models were selected on goodness of fit and the determination of realistic transitions in sedimentation rates, using linear interpolation, with a 95% confidence interval.

Each age-depth model output contains four plots. The main plot shows the distribution of individual radiocarbon dates in blue, with the age-depth model outlined in grey. The red curve shows the mean age value, and the dashed grey lines show 95% confidence intervals. The upper left plot shows the goodness of fit of all Markov Chain Monte Carlo (MCMC) iterations and is used to identify the robustness of the age-depth model. The upper middle plot depicts average sedimentation rate. The upper right plot indicates variation in accumulation rates. Basal ages at each site were 2494-2307 cal. yr. BP at Little Monon Lake, 5441-5221 cal. yr. BP at Pyramid Lake, and 3595-3439 cal. yr. BP at Summit Lake. Average sedimentation rates at each site were 10.45 yr mm⁻¹ at Little Monon Lake, 9.57 yr mm⁻¹ at Pyramid Lake, and 5.71 yr mm⁻¹ at

Summit Lake. This temporal resolution is comparable to published sedimentation rates from the lower elevation Coastal Range and Willamette Valley due to the fine-resolution sampling intervals chosen for this study. Upon the discovery of slow sedimentation rate, Pb210 dating was considered, however, no financial budget was available to complete this additional analysis due to the abundance of radiocarbon dates already obtained. Due to such high sampling resolution we instead chose to reconstruct the last 2-3,000 years of disturbance at each site, as inferred by the age-depth model, as the underlying theme of this thesis is to move from long-term, coarse sampling methodologies, and aim to produce high-resolution, continual records, capable of detecting all levels of disturbance.

Site	Depth (mm)	Age	Age error	Age BP	Age AD/BC
Summit Lake					
	4	-80	66	2607	1700-1957 AD
	8	0	60	149-20	1804-1936 AD
	32	930	79	959-684	861-1176 AD
	40	230	34	317-142	1761-1804 AD
	54	300	66	503-267	1652 AD
	60	300	60	498-273	1651 AD
	300+	2110	36	2152-1991	230-90 BC
	600^*	3290	49	3595-3439	1439-1244 BC
Little Monon					
Lake					
	2	120	30	151-9	1800-1898 AD
	8	70	30	140-32	1810-1920 AD
	14	150	31	283-0	1717-1789 AD
	20	360	40	496-314	1510-1669 AD
	26	670	38	676-555	1204-1355 AD
	32	900	45	917-727	960-1139 AD
	38	910	33	910-735	974-1105 AD
	44	1030	33	977-902	854-985 AD
	50	1170	34	1176-974	712-847 AD
	58	1220	48	1278-1055	634-825 AD
	115+	1610	46	1586-1382	248-431 AD
	230^{*}	2350	42	2494-2307	485-318 BC
Pyramid Lake					
5	2	-500	31	-53	2004 AD
	8	40	31	256-33	1867-1918 AD
	16	90	32	266-22	1806-1930 AD
	24	460	34	543-473	1422-1557 AD
	36	590	36	649-532	1288-1431 AD
	40	590	42	651-529	1276-1433 AD
	340+	2160	35	2307-2004	281-142 BC
	670 [*]	5330	55	5441-5221	3492-3272 BC
Forlorn Camp Lake		2220			2.72.5272.80
Cump Lune	Above B1	1080	81	1154-900	774-1050 AD
	Below B1	660	39	676-554	1274-1396 AD
	Above B2	2510	53	2746-2436	796 -486 BC
	Below B3	4380	55 61	5665-5452	3715-3502 BC
	DEIOW D3	4380	01	5005-5452	3/13-3302 DC

Table 2.3. Summary of AMS dates at sites used in this study. Each site contained a surface, middle, and basal date. Forlorn Camp Lake core FC3_B1 was used for tephrogeochemical analyses. Above B1 refers to a bulk sample taken above the grey ash layer found 5cm from the core surface. Below B1 refers to a bulk sample taken below this layer. Above B2 refers to a bulk sample taken from the younger of the two lower ash bands found at 25 and 28cm depth. Below B3 refers to a bulk sample taken below the older of two ash layers found between 25 and 28cm deep. *Middle date, *Basal date

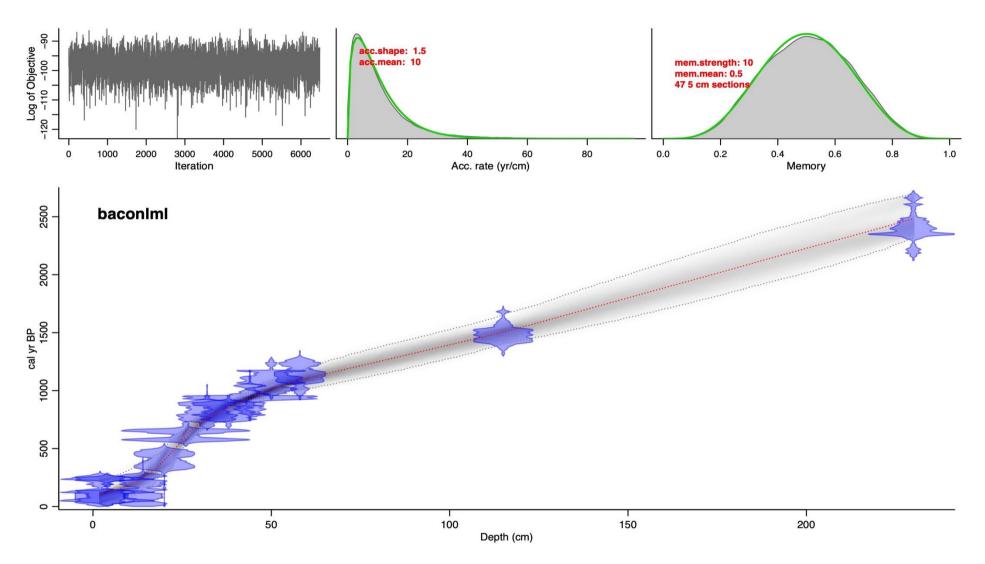


Figure 2.12. Age-depth model from Little Monon Lake, constructed using the R package "rBacon" (Blaauw et al., 2021).

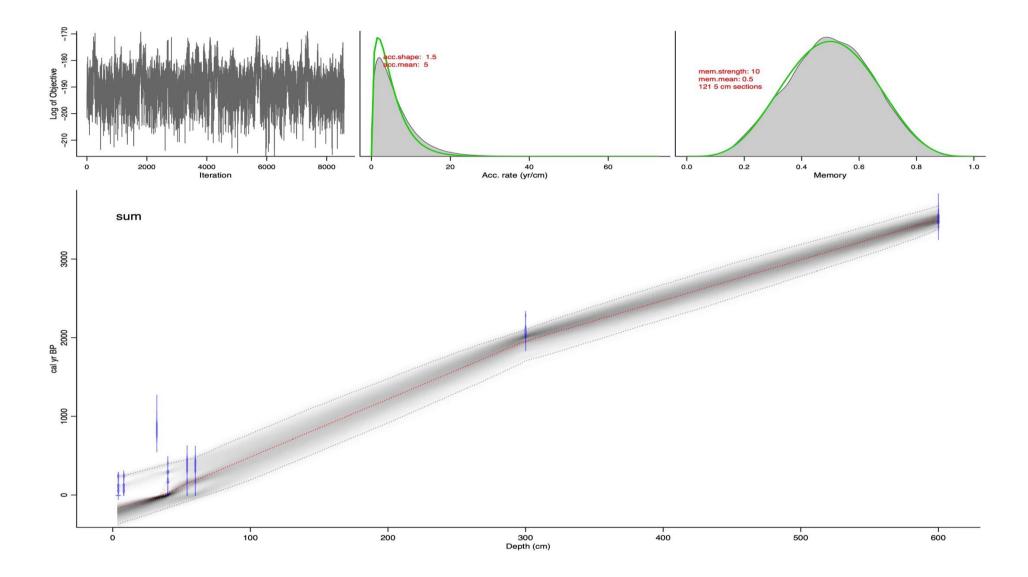


Figure 2.13. Age-depth model from Summit Lake, constructed using the R package "rBacon" (Blaauw et al., 2021)

68

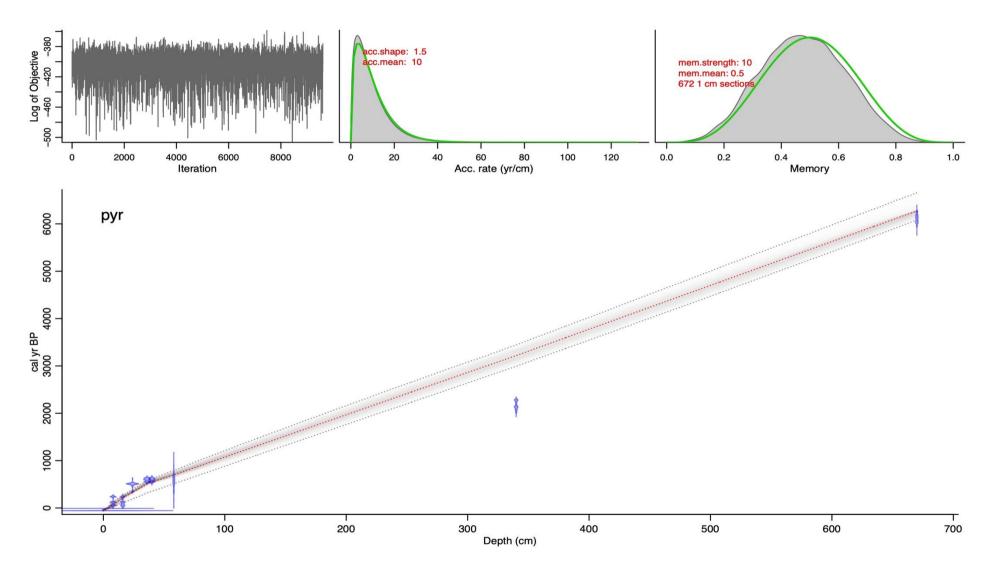


Figure 2.14. Age-depth model from Pyramid Lake constructed using the R package "rBacon" (Blaauw et al., 2021)

4. Tephrochronology

The Cascade Volcanic Arc is a prominent feature within the Pacific Northwest, ranging from northern California to British Columbia. Several catastrophic eruptions have occurred during the Holocene including the 7,700 BP eruption of Mt Mazama and the May 1980 eruption of Mt St Helens, both of which provide critical time markers within published palaeoenvironmental reconstructions (Minckley and Long, 2016; Long et al., 2014; Whitlock et al., 2008; Brunelle and Whitlock, 2003; Millspaugh et al., 2000; Zdanowicz et al., 1999; Sea and Whitlock, 1995; Cwynar, 1987; Barnosky, 1985; Lichti-Federovich, 1970. Consequently, much research has been conducted on the geochemical composition of these ash layers, for example, Mount St Helens has over 100 chemically described tephra layers from the past 40,000 years (Mullineaux, 1986). Geochemical correlation of such tephra layers to reference databases facilitate not only the dating of sedimentary records but to transfer ages across multiple sites/sequences by linking geochemically unique tephra layers (Fiebel, 1999; Lowe, 2011). Upon retrieval of core FC3 B1 from Forlorn Camp Lake, Gifford Pinchot National Forest, Washington, three separate and distinct layers of volcanic ash were observed. Sediment cores obtained from sites near Forlorn Camp (Chamber's Lake, Washington and Elk Pass, Washington (Zobel and Antos, 1991) report similar ash bands which correlate to 1980's eruption of Mt St Helens. Successful matching of the tephra found within FC3 B1 to reference data for Mt St Helens would provide a key time marker for the reconstruction of recent forest disturbances.

At Forlorn Camp Lake, 1 cm³ tephra samples were taken from three distinct bands, each measuring between 3 and 5cm, observable within the stratigraphy. In addition, separate 1 cm³ bulk sediment samples were taken above and below the visible tephra layers to provide radiocarbon dating constraints for all events. Samples were freeze-dried, weighed to 0.5g, and then ashed at 550°C for 4 hours to remove any organic contamination (Turney, 1998; Jones et al., 2018). The ashed samples were then soaked overnight in 10% HCl to disaggregate the sediment and remove any carbonates. Samples were sieved through 80 and 25µm mesh. The 80-25µm fraction was density separated following the heavy liquid separation technique (Turney, 1998; Blockley et al., 2005). The 2.3 to 2.5g cm⁻³ fraction were mounted onto microscope slides and encased in epoxy resin (Stevenson et al., 2012; Lakeman et al., 2008; Davies et al., 2005). A polarised light microscope was used to confirm the presence of tephra shards. Where present, samples were polished using progressively finer grades of silica carbide

paper to expose a cross section of the shards for geochemical analysis (Jones et al., 2018). Major and minor element composition of the tephra shards were measured at the Tephra Analytical Unit (TAE) at the University of Edinburgh using a wavelength dispersive spectrometer electron microprobe (WDS EMPA) following standard running protocol (Hayward, 2012). A second set of analyses on FC3 were conducted at The University of Alberta, Canada, as the first set of analyses produced inconclusive results. Raw tephra results were normalised to 100%, a method commonly employed within tephra research to eliminate the variability of post deposition hydration and to make signatures comparable between published assemblages (Jones et al., 2018; Lowe et al., 2017; Eastwood et al., 2009; Smith and Westgate, 1968).

5. Macrofossil charcoal

5.1. Sampling

In the laboratory, 0.5cm³ samples were taken at contiguous 2 mm intervals at Little Monon Lake, Pyramid Lake, and Summit Lake, except for the uppermost 30 mm at Little Monon Lake, in which 0.25 cm³ was used due to a lack of sediment. Several samples across three sites (27 samples from 433 depths) yielded insufficient sediment and were omitted from final analyses. Samples were taken using a calibrated syringe. Samples were soaked in 10% sodium hexametaphosphate for 7 days to deflocculate the sediment, prior to washing with a shower head tap attachment through a nest of sedimentology sieves at 500, 250, and 125 microns with each size class reserved to provide three sets of analyses for each depth (Schlacter and Horn, 2010; Froyd, 2006; Whitlock and Larsen, 2002; Patterson et al., 1987). A small sable paint brush was used to gently break up any remaining sediment. Prepared samples were washed onto a gridded petri dish and tallied under a 40x stereomicroscope to produce total counts for the following size classes - 125-250µm, 250-500µm, and >500µm. Identification of charcoal fragments were based on morphology, reflectance, and the nature of the fragment when crushed (Froyd, 2006; Whitlock and Larsen, 2002).

5.2. Creation of charcoal accumulation rates (CHAR)

Raw charcoal counts do not account for variation in sedimentation rates; therefore, each size class was combined with an age-depth model (constructed using the R package "rBacon" (Blaauw et al., 2021)) to produce charcoal accumulation rates (CHAR) using the R package "paleofire" (Blarquez et al., 2014). CHAR was calculated for each size class and presented in particles mm⁻¹ yr⁻¹. Sample depths whereby a lack of sediment resulted in the absence of

charcoal data were interpolated by the R package "paleofire" (Blarquez et al., 2014) to produce contiguous records. The input volume within the CHAR construction model was amended to account for a smaller sample volume throughout the top 30mm at Little Monon Lake, whereby a lack of sediment resulted in sampling volumes of 0.25cm³.

5.3. The development of 'fire event' indices

It has been highlighted in the literature that the comparison of fire episodes between studies is problematic due to the variation in the resolution of different reconstructive methods i.e., tree rings provide annual resolution, whereby analysis of sediments typically analyse periods of time, dictated by the sampling methodology. The use of a contiguous sampling methodology and robust dating controls throughout facilitated the development of a novel method of identifying peak components within the charcoal record, associated with fire events. A spreadsheet was constructed with each row accounting for an individual year. Using age-depth models constructed in the R packages "OxCal" (Bronk Ramsay, 2009) and "rBacon" (Blaauw et al., 2021), each sampling depth was placed onto the corresponding age along with the CHAR value for that sample depth. CHAR values were then repeated to the next sampling point, for example, the 4mm sample at Little Monon Lake, which dates to 121 yr BP, has a CHAR value of 19.81 particles mm⁻¹ yr⁻¹. The value of 19.81 was ascribed to every year until we reach the next sampling point, at 6mm which dates to 142 yr BP and, whereby the CHAR value was 1.9 particles mm⁻¹ yr⁻¹ (See Figure 2.15). This method of analyses generated a charcoal history with a simulated annual resolution, akin to those constructed by dendroecological methods (See Figure 2.15). The aim of this approach was to test whether this method could identify peaks in charcoal data as well as calculate return intervals comparable with those calculated from annual tree ring datasets from nearby sites (Minckley and Long, 2016) using data already used for fire reconstruction (CHAR values and an age depth model).

In order to identify fire events, we must first determine what is classed as a fire event. The most widely implemented method of identifying fire events is to determine periods of time within the charcoal records whereby the fire activity at any depth exceeds that of the background fire behaviour. The creation of event indices within the CHAR series involved a three-step decomposition of the dataset (Higuera et al., 2010). Firstly, to construct the background component, or *backgroundCHAR*, three variations of running mean were constructed for the series using moving windows of 100, 150, and 200 years i.e. for the 100-yr window, an average for the values 50 years above and 50 years below a given value, excluding that given value

were used. CHAR values at each depth were then divided by this background component to create a ratio, known as *peakCHAR* (Hawthorne and Mitchell., 2016; Finsinger, 2014; Leys et al., 2013; Higuera et al., 2005; Whitlock and Larsen, 2002; Long et al., 1998).

Depth of sed sample	Age (yr BP)	CHAR value	Running av. 200 yr	Ratio	Events
4	121	19.81	7.3504	2.695091424	
	122	19.81	7.3504	2.695091424	
	123	19.81	7.3504	2.695091424	
	124	19.81	7.3504	2.695091424	
	125	19.81	7.3504	2.695091424	
	126	19.81	7.3504	2.695091424	
	127	19.81	7.3504	2.695091424	
	128	19.81	7.3504	2.695091424	
	129	19.81	7.3504	2.695091424	
	130	19.81	7.3504	2.695091424	
	131	19.81	7.3504	2.695091424	
	132	19.81	7.3504	2.695091424	
	133	19.81	7.3504	2.695091424	
	134	19.81	7.3504	2.695091424	
	135	19.81	7.3504	2.695091424	
	136	19.81	7.3504	2.695091424	
	137	19.81	7.3504	2.695091424	
	138	19.81	7.3199	2.706321125	
	139	19.81	7.2894	2.717644799	
	140	19.81	7.2589	2.729063632	
	141	19.81	7.2284	2.740578828	
6	142	1.9	7.28745	0.2607222	
	143	1.9	7.25695	0.261817981	
	144	1.9	7.22645	0.262923012	
	145	1.9	7.19595	0.26403741	
	146	1.9	7.19495	0.264074108	
	147	1.9	7.19395	0.264110815	
	148	1.9	7.19295	0.264147533	
	149	1.9	7.19195	0.264184262	
	150	1.9	7.19095	0.264221	
	151	1.9	7.18995	0.264257749	
	152	1.9	7.18895	0.264294508	
	153	1.9	7.18795	0.264331277	
	154	1.9	7.18695	0.264368056	
	155	1.9	7.18595	0.264404846	
	156	1.9	7.18495	0.264441645	
	157	1.9	7.18395	0.264478455	
	158	1.9	7.18295	0.264515276	
	159	1.9	7.1991	0.263921879	
	160	1.9	7.21525	0.263331139	
	161	1.9	7.2314	0.262743037	
	162	1.9	7.24755	0.262157557	

Figure 2.15. Sample output of the novel method of identifying event indices within CHAR data. Samples were placed onto their corresponding ages along with their associated CHAR values. These values were then extrapolated to the sample below to provide simulation annual resolution of CHAR data. Running means were then constructed from these continual records to produce the background component. Individual CHAR values were then divided by the background component to produce a ratio. Ratios greater than or equal to 1 were classed as fire events.

There is no agreed upon threshold for indices which represent fire events. In a simplistic manner, indices greater than or equal to 1 indicate periods whereby the signal at a given depth is greater than or equal to the background component and one could argue that this alone could be considered a fire event. Methods outlined in Long et al., 1998, ascribed a range of values to determine which threshold best suited the data with regards to the 'real life' behaviour and expected fire patterns of the vegetation type found at a given site. Therefore, an additional test, using a range of values, 1, 1.05, 1.12, and 1.2, as thresholds for fire events, were compared,

using the 100-yr window as the source of backgroundCHAR. Throughout all CHAR analysis, periods whereby a lack of sediment led to zero charcoal values, a linear interpolation was used to fill in missing data and prevent any division by zero within the dataset.

5.4. Fire events and return fire intervals

Due to the variation in age and sedimentation rate among sites, the CHAR records for Little Monon Lake, Pyramid Lake, and Summit Lake were split into 100-year periods before present (i.e., 0-99, 100-199 yr BP, with BP fixed at 1950 AD) as identified using age depth models. This additional set of analysis allowed the comparison of the total fire events between sites. Accurate mean return intervals are typically limited to dendroecological methodologies with annual resolution. To test whether continuous, high-resolution records are capable of producing return fire intervals comparative to those derived from tree ring data, mean fire return intervals were calculated by measuring the periodicity of fire events as identified by the time between events identified by *peakCHAR* and then temporally compared to events identified within published reconstructions using age-depth models.

6. DNA

6.1. DNA extractions and qPCR primer design

Taxonomically confirmed positive controls are vital in all aspects of DNA research, used for sequencing, primer design, and for validating successful amplification within PCR protocols. Ten taxonomically identified individuals of mountain pine beetle (*Dendroctonus ponderosae*), Douglas-fir beetle (*Dendroctonus pseudotsugae*), and western spruce budworm (*Choristoneura occidentalis*) were obtained by Beth Willhite, Regional Entomologist for USDA FS Region 6, Oregon. DNA was extracted using a QIAGEN DNeasy Blood and Tissue Kit (QIAGEN, UK) following manufacturer's instructions. Tissues samples were preserved in molecular grade ethanol upon collection to reduce enzymatic degradation until time of DNA extraction (Srinivasan et al., 2002). Several published examples of successfully recovered macrofossil beetle remains from lake sediments (Brunelle et al., 2008; Morris et al., 2015) suggest the most commonly preserved body parts consist of head and elytra, likely due to a high content of chitin, a robust biopolymer, which forms the basis of the insect exoskeleton. Chitinous remains are, therefore, becoming increasing used as a source of ancient DNA (aDNA) (Campos and Gilbert, 2011; Stankiewicz et al., 1997; Miller et al., 1993). The extraction of DNA from modern specimens for the use of positive PCR controls and to test the

efficacy of DNA protocols would also facilitate the analysis of DNA yields from different tissue types, as these would be the source material of any fossil DNA.

The morphology of the target species chosen for DNA analyses within this study are highly different. The bark beetles, *D. ponderosae* and *D. pseudotsugae*, are characterised by hard exoskeletons, while the budworms of *Choristoneura* spp., are formed primarily of soft body parts with only a few chitinous components. To test how various types of remains and digestion times impact the potential for DNA release, which ultimately determines the likelihood of recovering target species DNA within environmental samples, a series of whole beetles, head and elytra, and leg tissue samples from *D. ponderosae* and *D. pseudotsugae* and whole pupae of *C. occidentalis* were extracted using a QIAGEN Blood and Tissue Kit to use as positive controls for PCR reactions. Samples were extracted after 4 hours digestion and 20 hours digestion in proteinase K to assess how longer incubation periods affected DNA yields from chitinous remains. DNA concentrations were measured using a Qubit dsDNA HS Assay Kit with a Qubit 3.0 Fluorometer (Invitrogen, Inc.). High resolution melting (HRM) analysis from the above extractions were used to provide reference melting temperature (Tm) of target species (Tm $\pm 0.1^{\circ}$ C) to confirm any successful amplifications within sedaDNA samples.

Modern tissue samples of *D. ponderosae, D. pseudotsugae* and *C. occidentalis* were sequenced at IBERS (Aberystwyth University). The primer pairs used were Pat and Jerry and Rust and Marty (See Table 2.4 for primer pairs used in sequencing) which amplify ~650bp fragments of the COI mtDNA gene (Simon et al., 1994; Sperling et al., 1994) and the Cole01F and Cole01R (Taberlet et al., 2018) primer set which amplify a ~115bp fragment of the 16s mtDNA. These various primer sets were used to help identify regions whereby *D. ponderosae* and *D. pseudotsugae* differ to aid in the design of species-specific protocols. PCR conditions for all sequencing reactions were as follows: 95°C for 5:00, followed by 30 cycles at 95°C for 00:10 and 54.5°C for 00:30, with a final elongation stage at 72°C for 5:00. All amplified PCR products were checked for expected amplicon size using 2% gel electrophoresis. Sequences were aligned with BioEdit v. 5.0.9 using Clustal W.

6.2. Dendroctonus protocol

Sanger sequencing revealed no regions within the 16s mtDNA obtained using Cole01 primer sets (Taberlet et al., 2018) with sufficient difference to design species-specific primers. Primer sets DpondF and DpondR and DpseudoF and DpseudoR (see Table 2.4) were designed to

amplify 84 bp fragments of the cytochrome c oxidase subunit I (hereafter COI) mtDNA gene of *D. ponderosae* and *D. pseudotsugae*, respectively. All primer sets were designed using Oligo ArchitectTM (Sigma-Aldrich Co.) and checked for cross-amplification using NCBI Primer-BLAST (Ye et al., 2012). While the product of DpondF and DpondR has a similarity of 98% with *D. simplex* (Eastern larch beetle), and the product of DpseudoF and DpseudoR has a similarity of 98% with *D. simplex* (Eastern larch beetle) and 90.48% similarity to *D. rhizophagus* (Mexican pine beetle), the geographical distribution of *D. ponderosae* and *D. pseudotsugae* in relation to the other amplified species do not overlap, therefore, the potential for cross-contamination is extremely unlikely.

6.3. Choristoneura spp, protocol

Choristoneura spp. primers were designed using sequences from modern *Choristoneura occidentalis* (Western spruce budworm) pupae obtained through Sanger sequencing using the Cole01F and Cole01R primer set (Taberlet et al., 2018) which amplifies a ~115 bp fragment of the 16s mtDNA gene. ChoristF and ChoristR are a genus-specific primer set designed to amplify an 82 bp fragment of the 16s mtDNA gene in all 49 described *Choristoneura* species. This primer set was designed at genus-level as the distribution of *Choristoneura* species in the Pacific Northwest is largely unknown, yet all are defoliators and considered pests. Therefore, information about the presence of any species within this genus would be insightful.

Primer set	Target species	Target gene	Sequence (5' to 3')	Product length
DpondF	D. ponderosae	COI	GCA GTT CCA ACC GGA ATT AAA A	84 bp
DpondR	"		TCA AAG GGA GGA GGG AGT TAA T	
DpseudoF	D. pseudotsugae	COI	GCA GTT CCT ACC GGA ATT AAA A	84 bp
DpseudoR	"		CCA AAG AGA AGA AGG AGT TAG A	
ChoristF	Choristoneura	16s	TGT GAT GAG CTC AAA CTA CAA ACC	82 bp
ChoristR	"		AAA GAA ACT TTC GGA TGT TTA GGA	
Jerry ^a	Univ.	COI	CAA CAT TTA TTT TGA TTT TTT GG	632 bp
Pat ^a	"		TCC AAT GCA CTA ATC TGC CAT ATT A	
Rust ^a	"	COI	ACT GTG AAT ATA TGA TGG GCT CA	650 bp
Marty ^a			TAC AAT TTA TCG CCT AAA CTT CAG CC	
Cole01F ^b	Coleoptera	16s	TGC WAA GGT AGC ATA ATM ATT AG	115 bp
Cole01R ^b	"		TCT ATA GGG TCT TCT CGT C	
matKF ^c	Plants	matK	TCG GCA ATG TTA TTT CC	97 bp
matKR ^c	"		CCT CAG AAA ATA ACC TGG	

Table 2.4. Primer sets for mountain pine beetle (*Dendroctonus ponderosae*), Douglas-fir beetle (*D. pseudotsugae*) and *Choristoneura* spp. matK, and those used in NGS. ^aSimon et al., 1994, ^bTaberlet et al., 2018, ^cKim et al., 2018.

6.4. qPCR optimisation

All primers sets were designed to amplify short fragments to accommodate for DNA degradation in older samples, allowing the same qPCR protocol to be applied in both modern biodiversity assessments and for historical reconstructions. Primers were assessed using positive control tissue from the initial sequencing reactions. Temperature gradient tests for all primer sets were performed between 55-65°C to provide optimum annealing temperatures and increase specificity, as higher annealing temperatures reduce the risk of non-specific amplification. Limits of detection (LOD) were identified using a ten-fold dilution series with tissue DNA from each species. Dilutions ranged from 1:1 to 1:1,000,000, extended to 1:10,000,000 in the case of DpondF and DpondR assay. All qPCR runs were carried out in 10 μ l reactions with 1 μ l of template DNA. For all PCRs and qPCRs, three PCR replicates were used throughout unless otherwise stated. The amplification master mix contained 5 μ l SYBR Green, 1 μ l of each primer and 2 μ l of molecular grade H₂O. Optimised qPCR protocols are as follows:

DpondF and DpondR (Target: *D. ponderosae*): 95°C for 5:00, followed by 45 cycles at 95°C for 00:10 and 61.5°C for 00:30. High resolution melt (HRM) curve analysis ran from 60 to 90°C in 0.1°C increments.

DpseudoF and DpseudoR (Target: *D. pseudotsugae*): 95°C for 5:00, followed by 45 cycles at 95°C for 00:10 and 61.5°C for 00:30. High resolution melt (HRM) curve analysis ran from 60 to 90°C in 0.1°C increments.

ChoristF and ChoristR (Target: *Choristoneura* spp.): 95°C for 5:00, followed by 45 cycles at 95°C for 00:10 and 61.5°C for 00:30. High resolution melt (HRM) curve analysis ran from 60 to 90°C in 0.1°C increments.

6.5. sedaDNA extractions

All sediments were subsampled at 2mm resolution under sterile conditions consistent with established sedaDNA extraction methodologies (Pedersen et al., 2015; Parducci et al., 2017; Taberlet et al., 2018). At each depth, three replicates, weighing ~0.25g, were extracted within a UV treated hood using a Qiagen Powerlyzer PowerSoil Kit (Qiagen, UK) according to manufacturer's instructions, except for a final elution volume of 60 µl used to increase DNA yield. DNA concentrations from sedaDNA extractions were quantified using a Qubit dsDNA HS Assay Kit with a Qubit 3.0 Fluorometer (Invitrogen, Inc.). All qPCRs were run in triplicate, unless otherwise stated, and a positive result was classed as at least one positive from three replicates with a melt rate above 200 -d(RFU)/dt. Positive controls for each species were included in each PCR run along with extraction blanks and PCR blanks. Any samples containing potential amplifications using the qPCR protocols were re-run as conventional PCRs using the same protocols and sent for Sanger sequencing to confirm species.

6.6. Confirmation of sedaDNA

As the historic presence of these *D. ponderosae*, *D. pseudotsugae* and *C. occidentalis* is largely unknown within this region, beyond the time-period associated with the ADS survey, these species could not be used to check the presence and preservation of useable DNA within the sedimentary cores. Palynological reconstructions (Long et al., 1998; Long et al., 2002; Briles et al., 2005; Walsh et al., 2010; Minckley and Long, 2016) from northwest Oregon show this region has been continuously vegetated for the timescale of this study. Therefore, a maturase K assay (Kim et al., 2018), which amplify a 97 bp fragment of the plant plastidial gene, was used to assess the levels of DNA preservation within the sediment i.e., if vegetation was not detected, this would suggest issues with DNA preservation. *Pinus lambertiana* was used as a positive control within the matK assay with DNA extracted from a positively identified seed cone obtained from Little Monon Lake using a QIAGEN DNeasy Plant Mini Kit (QIAGEN,

UK) following manufacturer's instructions. qPCR was conducted in 10µl reactions containing 0.25µl each of forward and reverse primer, 5µl SYBR Green and 4.5µl sedaDNA. The qPCR conditions consisted of an initial denaturation phase of 5 mins at 95°C, followed by 40 cycles of 10 seconds at 95°C and 30 seconds at 55°C. High resolution melt curve analysis ran between 60 and 90°C in 0.1°C increments. In addition to the matK assay, a second control of DNA preservation was used. As Coleoptera are commonly preserved in lake sediments (Elias, 2010; Smol et al., 2001; Coope, 1977), the general Cole01 primer pair (Taberlet et al., 2018) used in sequencing were also used to confirm the presence of Coleopteran DNA within sedaDNA samples.

6.7. Testing for potential PCR inhibition

Humic acids are known to be very potent PCR inhibitors which could present false negatives within sedaDNA results (Sidstedt et al., 2015). To assess the level of PCR inhibition within sedaDNA samples, varying concentrations of sedaDNA from the uppermost samples at Little Monon Lake, Pyramid Lake, and Summit Lake were added to various volumes of molecular grade H₂O, and 1µl of *D. ponderosae*. Final volumes measured 5.5µl. All samples were amplified using the Dpond protocol. The hypothesis for this experiment was that samples with higher concentrations of sedaDNA would likely introduce a greater abundance of PCR-inhibiting humic acids into the reaction, potentially delaying or preventing the amplification of pure *D. ponderosae* DNA i.e., samples with no difference in Ct value between no sedaDNA and 4.5 µl sedaDNA would suggest no PCR inhibition.

CHAPTER THREE

RESULTS

1. DNA

1.1. Tissue extractions of target species

1.1.1. Dendroctonus

To test how target species morphology and the source tissue type affects DNA recovery, the DNA extractions from D. ponderosae and D. pseudotsugae were performed on various combinations of body parts. During this test, DNA extracted from intact whole adult specimens of D. ponderosae and D. pseudotsugae generated the highest overall DNA yields, while extractions of leg tissue only consistently had the lowest yields (See Table 3.1.). In addition, these combinations of body parts were subjected to varying periods of digestion in proteinase K, ranging from four hours to twenty hours, to assess the degree to which organisms characterised by high levels of chitin may require additional levels of digestion to release DNA. Tissues subjected to a twenty-hour digestion in proteinase K did not always lead to higher DNA yields over four-hour incubation times. While longer digestion periods resulted in almost double the DNA yield in whole beetles in both D. ponderosae and D. pseudotsugae, increasing from 48.0 to 100.2 ng/µl and 51.6 to 91.5 ng/µl, respectively, longer digestion periods led to lower yields in combined head and elytra and leg tissues in both species. While whole beetles vielded higher quantities of DNA, combined head and elytra tissues are typically the body parts recovered from palaeoenvironmental samples (Morris et al., 2015; Brunelle et al. 2008), and since sufficient levels of DNA were obtained from these tissue types, these extractions were used at all stages of primer design, protocol optimisation, sequencing, and as PCR and qPCR positive controls.

1.1.2. Choristoneura spp.

As only taxonomically confirmed larvae of *Choristoneura occidentalis* was obtained from colleagues in the USDA Forest Service, a 'body part' test was not conducted, instead whole larvae were used for DNA extractions, sequencing, and as PCR and qPCR controls. Interestingly, despite a short digestion time of 4 hours, DNA yields were higher than those obtained from whole adult specimens in both beetle species (based on 10 individuals per 'body part' type) highlighting the variation in DNA recovery from 'hard' bodied species versus those comprised of mostly soft tissues. See Discussion for further interpretation of how these results may influence the recovery and detectability of DNA between these two different groups of forests insects.

Species	Body part	Digestion period (hrs)	DNA yield (ng/µl)	σ
D. ponderosae				
•	Whole	4	48.0	2.13
	Head and elytra	4	46.2	1.96
	Leg	4	6.1	0.88
	Whole	20	100.2	4.79
	Head and elytra	20	35.5	2.70
	Leg	20	4.2	0.48
D. pseudotsugae				
	Whole	4	51.6	3.67
	Head and elytra	4	19.5	1.08
	Leg	4	0.4	0.10
	Whole	20	91.5	3.19
	Head and elytra	20	3.6	0.56
	Leg	20	0.3	0.09
C. occidentalis	-			
	Whole	4	110.1	7.76

Table 3.1. DNA yields from whole beetles, head and elytra tissue, and leg tissue samples for *D. ponderosae* and *D. pseudotsugae* and for *Choristoneura occidentalis* pupae. 10 individuals were used in each scenario.

1.2. Quantification of sedaDNA extractions and background DNA checks

Quantification of DNA yields using Qubit 3.0 assays indicated DNA was present in nearly all sedaDNA samples and exhibit declining levels of total DNA concentration through time, typical of expected levels of DNA degradation with age (See Figures 3.1 to 3.3). Sufficient levels of DNA preservation were confirmed as the matK (Kim et al., 2018) assay evidenced vegetation at all depths at all sites, while general Coleoptera primers (Cole01 protocol, outlined in Taberlet et al., 2018), also indicated the presence of Coleopteran DNA within the sedimentary cores.

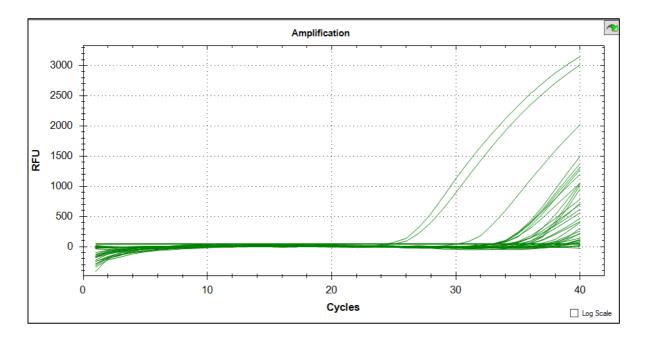
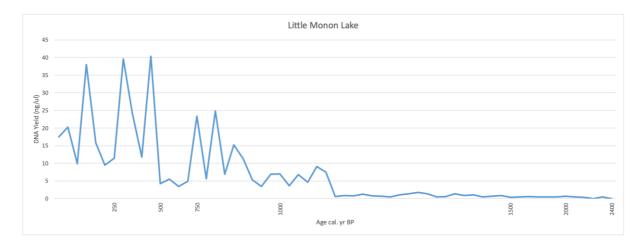



Figure 3.1. Output of MatK qPCR assay indicating presence of DNA throughout the sediment cores obtained at Little Monon Lake, Pyramid Lake, and Summit Lake.

1.3. Primer specificity, efficiency, and limits of detection

Primer sets DpondF and DpondR and DpseudoF and DpseudoR are designed to be speciesspecific and were tested in vitro against positive controls for *D. ponderosae* and *D. pseudotsugae* obtained from the Mt Hood National Forest, Oregon, U.S.A. These individuals were obtained from locations nearby to the sites chosen within this thesis to ensure any sequences recovered from sedaDNA would be comparable to modern specimens from local populations. Dpond, Dpseudo, and Chorist qPCR protocols were run with tissue of both target and non-target species to highlight specificity (Table 3.2). Primer pairs Dpond and Dpseudo demonstrated high levels of species-specificity amplifying only the target species and not the closely related non-target species. ChoristF and ChoristR were designed to be genus specific and were validated with *C. occidentalis* as a positive control and *D. ponderosae* as a negative control. Amplicons were Sanger sequenced (Men et al., 2008) and the resulting sequences were checked against published reference material for target species using NCBI-BLAST. All amplified sequences matched expected corresponding reference sequences within the NCBI database.

Figures 3.2. sedaDNA yields from Little Monon Lake with corresponding age inferred from age-depth model

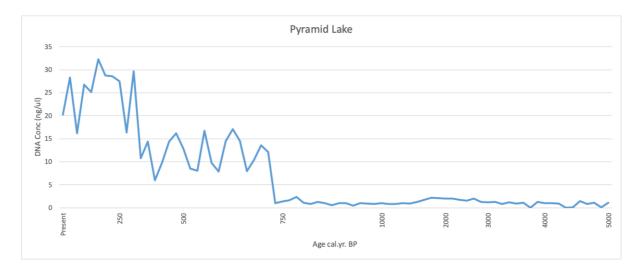
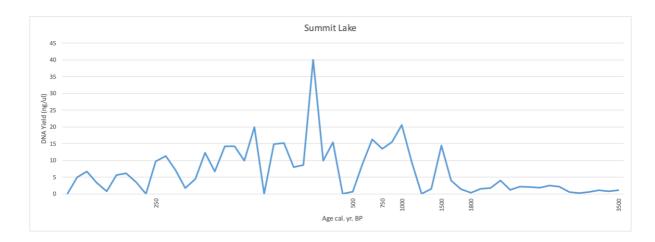



Figure 3.3. sedaDNA yields from Pyramid Lake with corresponding age inferred from age-depth model

Figures 3.4. sedaDNA yields from Summit Lake with corresponding age inferred from age-depth model

Primer set	Samples	Ct value
DpondF and DpondR		
	D. ponderosae #1	17.3
	D. ponderosae #2	16.2
	D. ponderosae #3	16.4
	D. pseudotsugae #1	No amp.
	D. pseudotsugae #2	No amp.
	D. pseudotsugae #3	No amp.
DpseudoF and DpseudoR		-
	D. ponderosae #1	No amp.
	D. ponderosae #2	No amp.
	D. ponderosae #3	No amp.
	D. pseudotsugae #1	17.9
	D. pseudotsugae #2	17.7
	D. pseudotsugae #3	17.7
ChoristF and ChoristR		
	C. occidentalis #1	16.7
	C. occidentalis #2	16.6
	C. occidentalis #3	16.6
	D. ponderosae #1	No amp.
	D. ponderosae #2	No amp.
	D. ponderosae #3	No amp.

Table 3.2. qPCR results summary showing the species-specificity of designed primer sets Dpond, Dpseudo, and Chorist.

Temperature gradient tests were run between 55 and 65°C revealed primer efficiencies were optimal at both 60 °C and 61.5 °C, and so annealing temperatures for all primer sets were optimised at 61.5°C to provide increased specificity. High resolution melting (HRM) analysis of *D. ponderosae, D. pseudotsugae*, and *C. occidentalis* tissue samples using the newly designed primer sets yielded consistent melting temperatures of 71.7°C, 72.8°C, and 70.7°C, respectively. These melting temperatures were used to indicate presence of target species in any positive sedaDNA samples. A ten-fold dilution series of positive controls of *D. ponderosae, D. pseudotsugae*, and *C. occidentalis* DNA obtained from taxonomically verified modern samples show that primer efficiencies for each primer set were 104.0%, 89.3%, and 91.1%, respectively, with limits of detection of 0.00000462 ng/µl, 0.000195 ng/µl, and 0.00011 ng/µl, respectively.

1.4. sedaDNA results

1.4.1. Pyramid Lake

1.4.1.1. Dpseudo protocol

Two positive sets of amplifications of *D. pseudotsugae* were identified using the Dpseudo protocol (target: *D. pseudotsugae*) at Pyramid Lake. The first at 2mm (in 2/3 replicates, Tm: 72.6°C) and the second at 22mm (in 1/3 replicates, Tm: 72.0°C). The Tm of these amplifications correspond to the Tm of *D. pseudotsugae* (Figure 3.4). Age depth models indicate these depths correspond to 1955 - 2004 AD and 543 - 473 cal. yr. BP, respectively. The uppermost sample, 2mm, shows a high level of amplification, with positives occurring in 2 out of 3 replicates. This sample coincides with the period associated with ADS data, during which there was a known outbreak of *D. pseudotsugae* in 1992 within the immediate vicinity of Pyramid Lake.

1.4.1.2. Dpond protocol

Six positive sets of amplifications were identified using the Dpond protocol (target: *D. ponderosae*) at Pyramid Lake. These amplifications occurred at 64mm (in 2/6 replicates, Tm: 74.0°C), 66mm (in 1/6 replicates, Tm: 74.1°C), 70mm (in 1/6 replicates, Tm: 74.1°C), 72mm (in 1/6 replicates, Tm: 73.5°C), 74mm (in 3/6 replicates, Tm: 73.9°C), 80mm (in 2/6 replicates, Tm: 73.9°C) (Figure 3.5). Age depth models indicate these depths correspond to a period between 752 cal. yr. BP (64mm) and 896 cal. yr. BP (80mm). The Tm of the replicates was consistent in all cases, but different from that from modern reference material from the target species.

1.4.1.3. Chorist protocol

No positive amplifications of *Choristoneura* spp. occurred at any depth at Pyramid Lake using the Chorist protocol. All positive controls amplified in all qPCR reactions and there were no amplifications in the negative controls.

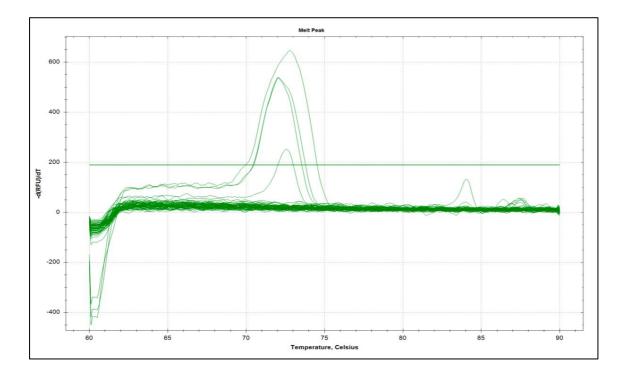


Figure 3.5. HRM analyses of Dpseudo protocol at Pyramid Lake indicating three positive amplifications matching Tm of the target species (*D. pseudotsugae*)

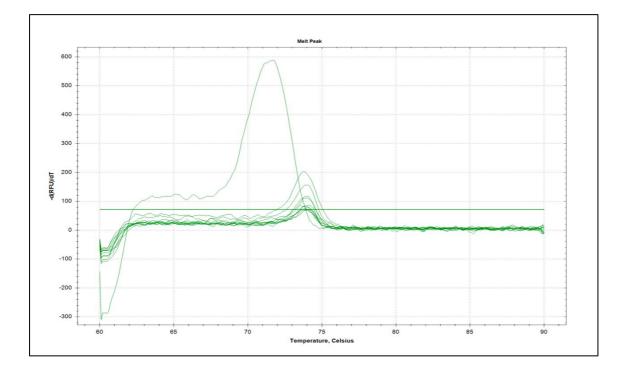


Figure 3.6. HRM analyses of Dpond protocol at Pyramid Lake indicating the multiple amplifications of an unknown target

1.4.2 Little Monon Lake

1.4.2.1. All protocols

The use of the Dpond, Dpseudo, and Chorist qPCR protocols resulted in no positive amplifications of *D. ponderosae*, *D. pseudotsugae* or *C. occidentalis* at any sample depth at Little Monon Lake. All qPCR positive controls amplified successfully and there was no evidence of contamination in any negative controls. The surface sample predates the period covered by the ADS survey dataset, as such, there is no information on which, if any, species were expected at Little Monon Lake.

1.4.3. Summit Lake

1.4.3.1. Chorist protocol

One positive amplification from three replicates was identified using the Chorist qPCR protocol in the uppermost (2mm) sample at Summit Lake. While no radiocarbon date exists for the uppermost sample, the sample directly below dates to 1810-1925 AD, which suggests the uppermost sample could originate from the early-to-mid 20th Century. High resolution melting (HRM) analyses indicated that the Tm of the positive amplification (72.4°C) was different from the positive control of *Choristoneura occidentalis*, however, several other *Choristoneura* species are known to inhabit the Mt Hood National Forest, including sugar pine tortrix (*C. lambertiana*) and the Obliquebanded leafroller (*C. rosaceana*) (Figure 3.4). Samples which showed potential amplifications using the qPCR protocols were re-run as conventional PCR with the Chorist protocol. This PCR produced four positive amplifications that matched the expected product length of the *Choristoneura* spp. The resulting sequences were not clear enough to distinguish the species, therefore, the presence of the target species cannot be confirmed. Several repetitions to reproduce the positive amplification were attempted, however, no further positive amplifications occurred.

1.4.3.2. Dpond and Dpseudo protocols

Neither *D. ponderosae* or *D.* pseudotsugae were detected at any depth using the Dpond and Dpseudo protocols.

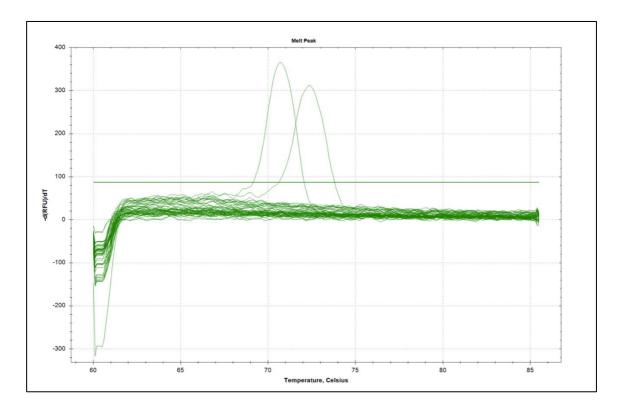


Figure 3.7. HRM analyses of Dpseudo protocol at Summit Lake indicating the amplification of an unknown target

1.5. PCR inhibition trials

To assess the degree to which PCR inhibition associated with humic acid content may have contributed to the lack of positive amplifications outlined above, a dilution series containing varying levels of sedaDNA with 1µl of *D. ponderosae* tissue DNA were run with the Dpond qPCR protocol using the uppermost sample at each site (Table 3.3). The hypothesis was that samples containing higher concentrations of sedaDNA would introduce more potential PCR inhibitors into the reaction and delay the amplification of pure *D. ponderosae* DNA.

At Pyramid Lake, the sample containing no sedaDNA + 1μ l DNA (Sample 6) amplified three cycles earlier than the sample containing 3.5μ l sedaDNA + 1μ l DNA (Sample 2). This suggests the potential for significant levels of PCR inhibition at the surface sample at Pyramid Lake. At Summit Lake, the sample containing no sedaDNA + 1μ l DNA (Sample 6) amplified at the same cycle as the sample containing 3.5μ l sedaDNA + 1μ l DNA (Sample 6) amplified at the same cycle as the sample containing 3.5μ l sedaDNA + 1μ l DNA (Sample 2) indicating there is no PCR inhibition within the surface sediment at Summit Lake. At Little Monon Lake, the sample containing no sedaDNA + 1μ l DNA (Sample 6) amplified 1.3 cycles earlier than the

sample containing 3.5μ l sedaDNA + 1μ l DNA (Sample 2). This suggests there could be moderate levels of PCR inhibition at Little Monon Lake.

Site	Sample #	sedaDNA:DNA Mixture	Ct value
Pyramid Lake	1	4.5µl sedaDNA - no DNA	0
	2	3.5µl sedaDNA - 1µl DNA	19.4
	3	2.5µl sedaDNA - 1µl DNA + 1µl H20	19.0
	4	1.5µl sedaDNA - 1µl DNA + 2µl H20	19.5
	5	0.5µl sedaDNA - 1µl DNA + 3µl H20	17.4
	6	no sedaDNA – 1 μ l DNA + 3.5 H20	16.5
Summit Lake	1	4.5µl sedaDNA - no DNA	0
	2	3.5µl sedaDNA - 1µl DNA	15.0
	3	2.5µl sedaDNA - 1µl DNA + 1µl H20	14.9
	4	1.5µl sedaDNA - 1µl DNA + 2µl H20	15.2
	5	0.5µl sedaDNA - 1µl DNA + 3µl H20	15.1
	6	no sedaDNA – 1 μ l DNA + 3.5 H20	15.0
Little Monon Lake	1	4.5µl sedaDNA - no DNA	0
	2	3.5µl sedaDNA - 1µl DNA	19.6
	3	2.5µl sedaDNA - 1µl DNA + 1µl H20	18.8
	4	1.5µl sedaDNA - 1µl DNA + 2µl H20	18.8
	5	0.5µl sedaDNA - 1µl DNA + 3µl H20	18.5
	6	no sedaDNA – 1 μ l DNA + 3.5 H20	18.3

Table 3.3. Ct values for varying concentrations of sedaDNA:DNA to test potential PCR inhibition

2. Charcoal

2.1. Summary statistics of raw charcoal counts

The maximum number of charcoal particles found within any particular depth at Little Monon Lake were 5, 35, and 181 particles in the > 500 μ m, 250 – 500 μ m, and 125 – 250 μ m size classes, respectively. The 5 particles found within the >500 μ m size class, at 114mm depth (1,497 cal. yr. BP), were the highest number of particles found within this size class at any site. All samples within the 125 – 250 μ m size class contained charcoal particles. Little Monon Lake contained the highest mean number of particles per 2mm sample across all sites in both the 250 – 500 μ m and >500 μ m size classes, with an average of 9.06 and 0.31 particles per depth, respectively. The maximum number of particles found within a particular depth at Pyramid Lake were 2, 17, and 133 particles in the > 500 μ m, 250 – 500 μ m size classes, respectively. All samples within the 125 – 250 μ m size classes, with an average of 0.12, 3.98, and 45.07 particles within the >500 μ m, 250 – 500 μ m, and 125 – 250 μ m size classes, respectively. The maximum number of particles within the >500 μ m, 250 – 500 μ m, and 125 – 250 μ m size classes, with an average of 0.12, 3.98, and 45.07 particles within the >500 μ m, 250 – 500 μ m, 250 – 500 μ m, and 125 – 250 μ m size classes, respectively. The maximum number of particles found within a particular depth at Summit Lake were 2, 22, and 182 particles in the > 500 μ m, 250 – 500 μ m, and 125 – 250 μ m size classes, respectively. All samples within the 125 – 250 μ m size classes, respectively. The maximum number of particles found within a particular depth at Summit Lake were 2, 22, and 182 particles in the > 500 μ m, 250 – 500 μ m, and 125 – 250 μ m size classes, respectively. All samples within the 125 – 250 μ m size classes, respectively. The maximum number of particles found within a particular depth at Summit Lake were 2, 22, and 182 particles in the > 500 μ m, 250 – 500 μ m, and 125 – 250 μ m size classes, respectively. All samples within the 125 – 250 μ m size class

		>500 µm	250-500 μm	125-250 μm
Little Monon Lake				
	Min	0	0	5
	Max	5	35	181
	Mean	0.31	9.06	76.31
	Var	0.46	39.50	1264.16
Pyramid Lake				
	Min	0	0	9
	Max	2	17	133
	Mean	0.12	3.98	45.07
	Var	0.13	10.78	675.28
Summit Lake				
	Min	0	0	12
	Max	2	22	182
	Mean	0.21	7.47	87.56
	Var	0.21	21.89	1908.33

contained charcoal particles. Summit Lake contained the highest mean number of particles per 2mm sample in the $125 - 250 \,\mu\text{m}$ size class at all sites with an average of 87.56 particles.

Table 3.4. Summary statistics of raw charcoal count data

2.2. Distribution of charcoal particles

The violin plots outlined in Figure 3.7 combine a typical box plot with a kernel density plot to show the frequency of sample depths which contain a given number of particles. Patterns of distribution within the $125 - 250 \,\mu$ m size classes are very different between the three sites. Little Monon Lake is normally distributed with the main population of the data grouped around the median particle count of 77 particles. The same size class at Pyramid Lake is unimodally distributed, however, the main population is skewed towards the lower end of the particle counts, with most sample depths containing between 20 and 30 particles. The data for Summit Lake shows a multimodal distribution with two main populations. The first population contains a group of samples each with around 25 particles with a second, much larger, population focused around 100 particles. The distribution of the 250 – 500 μ m size class is similar for all three sites with the main populations skewed towards a lower number of charcoal particles per depth. The distribution of the >500 μ m size class is also similar across all three sites, as most of the sampling depths contained no charcoal particles within this size class. Little Monon Lake shows the greatest variation as a single sample within this site contains 5 charcoal particles, which is the highest count within this size class at any site.

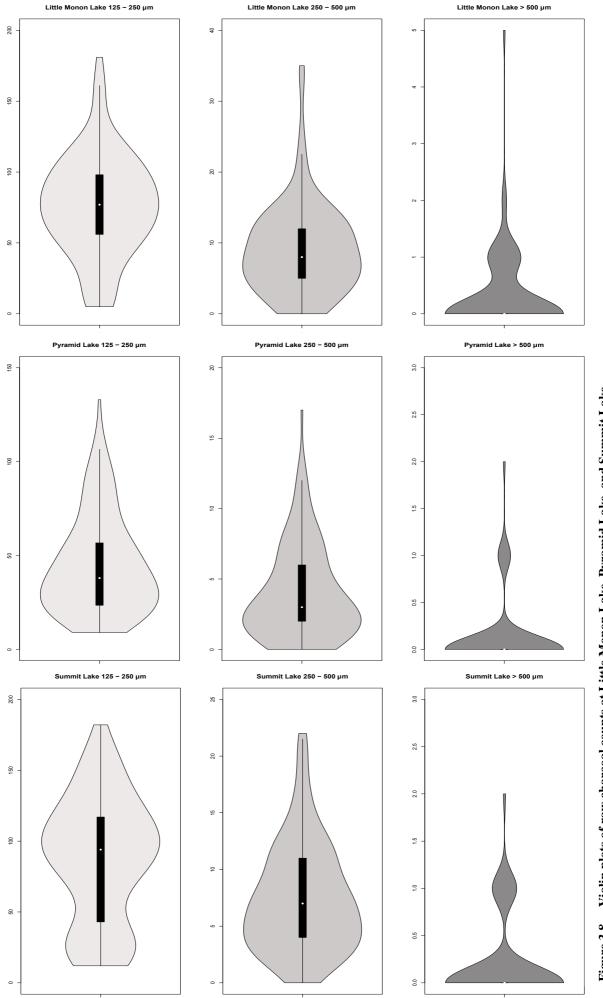


Figure 3.8. - Violin plots of raw charcoal counts at Little Monon Lake, Pyramid Lake, and Summit Lake.

9:

2.3. Charcoal accumulation rates (CHAR)

2.3.1. Little Monon Lake

2.3.1.1. 250-125µm

A total of 8,013 charcoal particles were observed in this size class across all depths. The record for Little Monon Lake begins with moderate level CHAR values around 25 particles mm⁻¹ yr⁻ ¹. These decline to 10.12 by 2,400 yr BP. This decline is followed by a steady increase in CHAR values to 36 particles mm⁻¹ yr⁻¹. By 2,200 yr BP. The peak is followed by a sharp decline in CHAR values to 11 particles mm⁻¹ yr⁻¹ by 1,900 yr BP. The next 400-year period, between 1,900 yr BP and 1,500 yr BP, sees three distinct CHAR peaks followed by rapid declines in CHAR values. The first peak in this sequence occurs ~1,850 yr BP with a value of 35 particles mm⁻¹ yr⁻¹, the second, occurs 100 years later, in 1,750 yr BP whereby values peak at 40 particles mm⁻¹ yr⁻¹. This period is followed by a period of low CHAR, falling to 10 particles mm⁻¹ yr⁻¹ between 1,700 yr BP and 1,550 yr BP. Around 1,500 yr BP, CHAR dramatically increases to the highest value for the series with CHAR around 48 particles mm⁻¹ yr⁻¹. The period 1,400 yr BP to 1,100 yr BP is characterised by a steady increase to 30 particles mm⁻¹ yr⁻¹ followed by a gentle decrease in CHAR to ~5 particles mm⁻¹ yr⁻¹ by 750 yr BP. The period 750 yr BP to 250 yr BP is characterised by very low CHAR values, less than 5 particles mm⁻¹ yr⁻¹. The most recent 250 years exhibit a rapid increase in CHAR values which range from 2 particles mm⁻¹ yr⁻¹ at 200 yr BP to 20 particles mm⁻¹ yr⁻¹ in the uppermost sample.

2.3.1.2. 500-250µm

A total of 951 particles were observed in this size class with an average of 8.29 particles (σ 6.55) observed per sample depth. The first 1,000 years (2,500 yr BP to 1,500 yr BP) of CHAR values in this size class are highly fluctuating ranging between 0.5 and 5.5 particles mm⁻¹ yr⁻¹. The distinct peak observed in the >500µm size class ~1,500 yr BP is also observed in the 500-250µm size class. This peak, which has a top value of 10 particles mm⁻¹ yr⁻¹ is the highest peak throughout the 500-250µm size class CHAR record. This peak is followed by around 800 years of similar fire activity to the first 1,000 years, fluctuating between 0.5 and 4 particles mm⁻¹ yr⁻¹. There is a noticeable decline in CHAR values around 750 yr BP whereby values fall to less than 0.3 particles mm⁻¹ yr⁻¹.

2.3.1.3. >500µm

The >500 μ m size class expectedly contains far few numbers of charcoal particles than the two smaller size classes. A total of 33 particles were observed within this size class with an average of 0.29 (σ 0.66) per sample depth. CHAR values are higher at the beginning of the record with near consistent values ranging from 0 to 0.2 particle mm⁻¹ yr⁻¹ for the period of 2,400 BP to 2,050 BP. During this period, there is a distinct peak in CHAR ~2,200 yr BP whereby values rise to 0.5 particles mm⁻¹ yr⁻¹ from a background value of 0.2 particles mm⁻¹ yr⁻¹. This interval is followed by a period of no charcoal particles between 2,000 yr BP and 1,700 yr BP. The second peak occurs at 1,500 yr BP where CHAR values rapidly increase to 1 particle mm⁻¹ yr⁻¹, which is the largest CHAR value observed in this size class at Little Monon Lake. A third peak occurs around 1,350 BP where CHAR values rise to 0.6 particles mm⁻¹ yr⁻¹. Three small peaks in CHAR are observed ~1,000 yr BP with values ~0.2. CHAR values within the last 1,000 years are much reduced compared to earlier in the record. Two periods of fire activity are observed around 500 and 250 yr BP with CHAR values ~0.1 particles mm⁻¹ yr⁻¹.

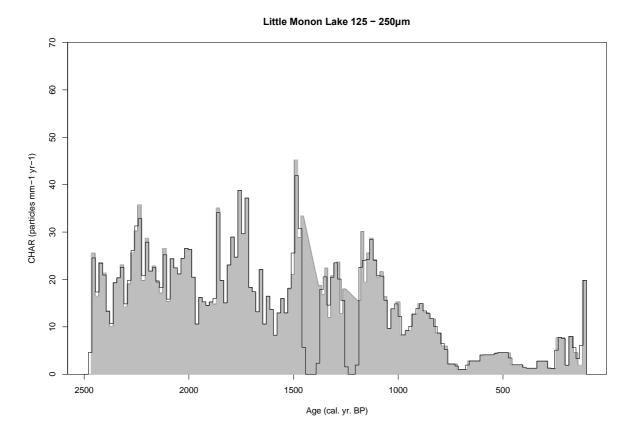


Figure 3.9 Little Monon Lake - CHAR $125 - 250 \mu m$ size class. Original accumulation rates are represented by the shaded area while the histogram represents interpolated accumulation rates at equal time intervals.

Little Monon Lake 250 - 500 µm

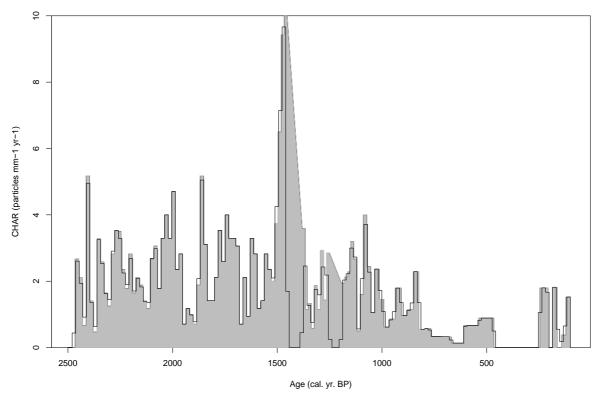


Figure 3.10. Little Monon Lake – CHAR 250 – 500 μ m size class. Original accumulation rates are represented by the shaded area while the histogram represents interpolated accumulation rates at equal time intervals.

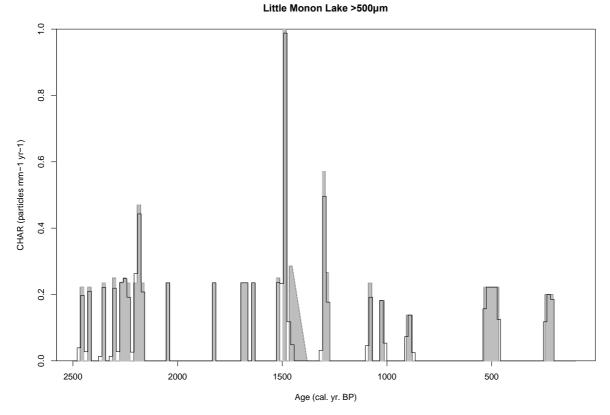


Figure 3.11. Little Monon Lake CHAR >500 µm size class. Original accumulation rates are represented by the shaded area while the histogram represents interpolated accumulation rates at equal time intervals.

2.323. Pyramid Lake

2.3.2.1. >250-125µm

CHAR values for this site are considerably lower than the records for Little Monon Lake and Summit Lake. Background CHAR levels are fairly uniform, ranging between 5-8 particles mm⁻¹ yr⁻¹ throughout. There are several episodic peaks observed throughout the record, but perhaps not as abrupt as the other sites. The largest peak occurs ~1,650 yr BP where CHAR values rise dramatically to 32 particles mm⁻¹ yr⁻¹. This peak is followed by a period of around 300 years whereby CHAR values steadily deline to a low of 4 particles mm⁻¹ yr⁻¹. By 1,200 yr BP, CHAR starts to rise again, culminating in a peak of 25 particles mm⁻¹ yr⁻¹ around 750 yr BP. An abrupt decline in CHAR values is observed after this period whereby CHAR value decrease from 20 to less that 10 particles mm⁻¹ yr⁻¹ where they remain until the present-day sample.

2.3.2.2. >500-250µm

The pattern of CHAR for this size class is characterised by relatively low background CHAR with values ~1 particles mm⁻¹ yr⁻¹, throughout. Upon these fairly stable background levels exist a series of evenly spaced peaks of equals magnitude which range between 2 and 3 particles mm⁻¹ yr⁻¹. The largest peak occurs at 800 yr BP whereby values rise above 4 particles mm⁻¹ yr⁻¹. Interestingly, this peak is not as distinct in the other size classes for Pyramid Lake. Between 800 yr BP and present, there is a distinct reduction in CHAR values with very low background levels and several low amplitude peaks of 1-1.5 particles mm⁻¹ yr⁻¹.

2.3.2.3. >500 µm

Two distinct peaks occur towards the beginning of the record. The first, at 3,000 yr BP, where CHAR rises to 0.5 particles mm⁻¹ yr⁻¹ and the second, around 2,300 yr BP, with values of 0.45 particles mm⁻¹ yr⁻¹. The remainder of the record consists of 10 evenly spaced, small peaks with values around 0.2 particles mm⁻¹ yr⁻¹. Between 750 yr BP and present, only one small peak is evident, occurring at ~350 yr BP with a value of 0.15 particles mm⁻¹ yr⁻¹.

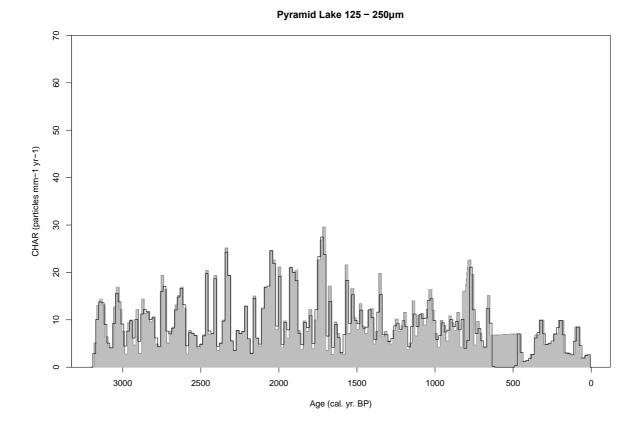


Figure 3.12. Pyramid Lake - CHAR 125-250 µm size class. Original accumulation rates are represented by the shaded area while the histogram represents interpolated accumulation rates at equal time intervals.

Pyramid Lake 250 - 500µm

Figure 3.13. Pyramid Lake - CHAR 250 - 500 µm size class. Original accumulation rates are represented by the shaded area while the histogram represents interpolated accumulation rates at equal time intervals.

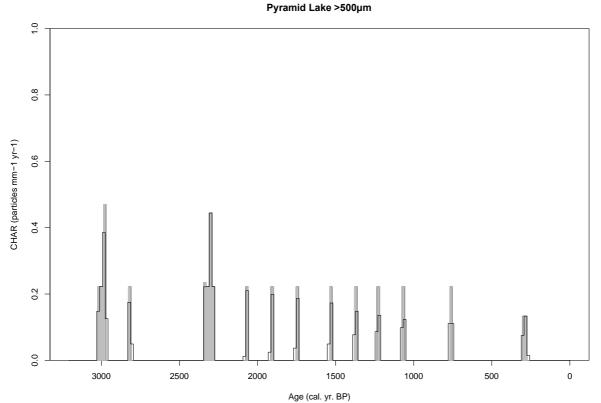


Figure 3.14. – Pyramid Lake - CHAR > 500 μ m size class. Original accumulation rates are represented by the shaded area while the histogram represents interpolated accumulation rates at equal time intervals.

2.3.3. Summit Lake

2.3.3.1. >250-125µm

CHAR values for Summit Lake are the highest between all sites, characterised by very high background signals around 25 particles mm⁻¹ yr⁻¹. Between 1,800 to 1,350 yr BP there is an apparent upward trend in CHAR values. During this period, background signals steady rise from 10 to 40 particles mm⁻¹ yr⁻¹, with several peaks reaching 50 to 55 particles mm⁻¹ yr⁻¹. Between 1,350 and 1,100 yr BP, background signals are dramatically reduced to a stable level of 30 particles mm⁻¹ yr⁻¹ throughout this brief period. While background CHAR remains relatively low, several notable peaks are observed within this period, which range 45-55 particles mm⁻¹ yr⁻¹. The period 1,100 to 900 yr BP contains the highest level of CHAR at Summit Lake. Background levels of 35 particles mm⁻¹ yr⁻¹ and peaks ranging from 55 to 68 particles mm⁻¹ yr⁻¹ represent the highest CHAR levels found at any site. Between 900 and 650 yr BP, there is an overall declining trend in CHAR following the peak values observed in the previous period. There is one distinct peak within this downward trending period, occurring at 850 yr BP where CHAR values rise dramatically to 60 particles mm⁻¹ yr⁻¹. At 650 yr BP, there is an obvious and abrupt change in the fire regime. A dramatic decline in CHAR from 40 to 5 particles mm⁻¹ yr⁻¹ occurs within a few decades. From this period to the present day, CHAR

remains low, never exceeding 15 particles mm⁻¹ yr⁻¹ and takes the form of a more background component over high variation.

2.3.3.2. >500-250µm

The record for this size class is much more fluctuating than the smaller size class. Background signals are low, ranging from 1 to 2 particles mm⁻¹ yr⁻¹, however, this record is characterised by very large and distinct peaks in CHAR. The upward trend between 1,800 and 1,300 yr BP is also observable in this record, with numerous peaks between 6 and 7.8 particles mm⁻¹ yr⁻¹ occurring throughout this period. From 1,300 yr BP onwards, there is an overall decline in CHAR values. Despite the overall decline, there are still numerous dramatic peaks within the record, although the amplitude decreases moving towards the present day. One other significant peak occurs during this period, at 1,000 yr BP with a value of 7 particles mm⁻¹ yr⁻¹. Unlike the abrupt decline observed at 650 yr BP in the smallest size class, CHAR values here trend downward more smoothly, with less of an instantaneous change and more like a smooth transition. The values for the last 650 years are less stable than those observed in the smallest size class. Although background levels are low, less than 1 particles mm⁻¹ yr⁻¹, there are numerous peaks within the period comparable with earlier in the record. Two peaks occur at 450 and 200 with values over 3 particles mm⁻¹ yr⁻¹, which are more akin with pre 650 yr BP levels. The last 200 years see a downward trend towards 1 particles mm⁻¹ yr⁻¹.

2.3.3.3. >500 µm

The >500 μ m record for Summit Lake is interesting as it does not follow the patterns observed in the two smaller size classes. Higher peaks are observed in the more recent samples, than earlier in the record. There is a clustering of CHAR peaks between 1,800 yr BP and 1,200 yr BP, mostly of equal amplitude of around 0.4 particles mm⁻¹ yr⁻¹. There is one peak of 0.7 particles mm⁻¹ yr⁻¹ around 1,300 yr BP which greatly exceeds the values surrounding it. A similar peak is observed in the 500-250 μ m record. This peak is followed by a period of very little fire activity with no CHAR between 1,250 to 1,000 yr BP. Between 1,000 and 950 yr BP there is a cluster of three CHAR peaks with values ~0.4 particles mm⁻¹ yr⁻¹. These peaks are followed by another hiatus in CHAR. Two peaks occur at 700 yr BP measuring 0.4 particles mm⁻¹ yr⁻¹. The last 500 years contain several peaks in CHAR, including the highest peak observed throughout the record. Three peaks of 0.4 particles mm⁻¹ yr⁻¹ are separated by one large peak around 400 yr BP where CHAR values rise dramatically to 0.8 particles mm⁻¹ yr⁻¹, which is the highest value for the series.

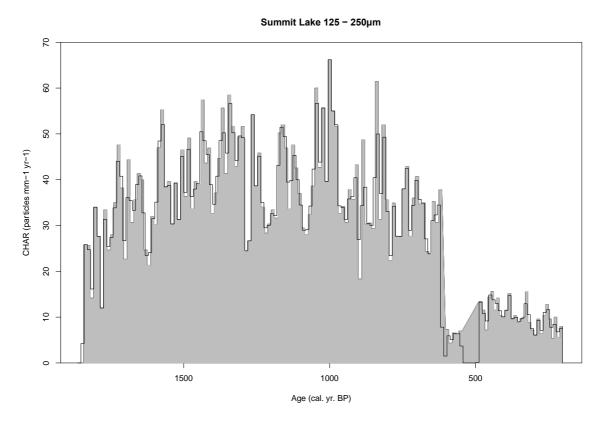


Figure 3.15. Summit Lake - CHAR 125-250 µm size class. Original accumulation rates are represented by the shaded area while the histogram represents interpolated accumulation rates at equal time intervals.

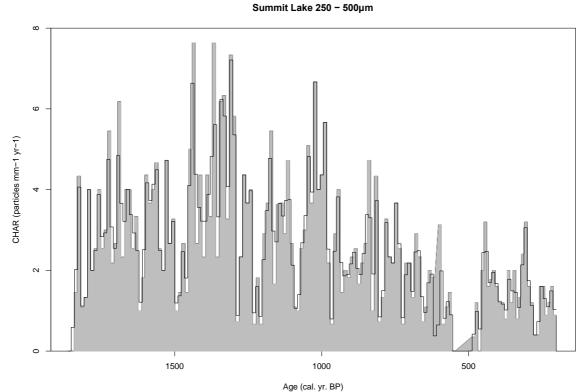


Figure 3.16. - Summit Lake - CHAR 250 - 500 µm size class. Original accumulation rates are represented by the shaded area while the histogram represents interpolated accumulation rates at equal time intervals.

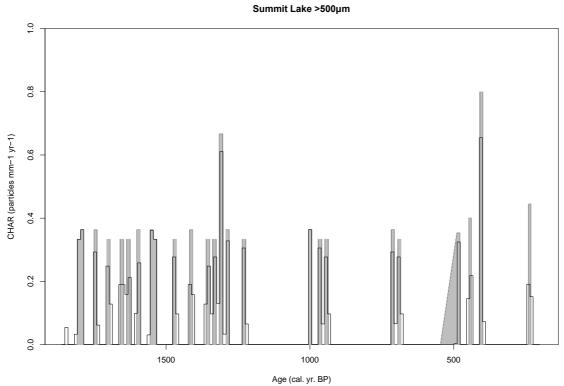


Figure 3.17. – Summit Lake - CHAR >500 µm size class. Original accumulation rates are represented by the shaded area while the histogram represents interpolated accumulation rates at equal time intervals.

2.4. Fire 'event' indices

Several running mean intervals (200-yr, 150-yr, and 100-yr) were used to assess how various methods of calculating *backgroundCHAR* in the $125 - 250 \mu m$ size class affected the number of fire events identified using the event indices (Table 3.5). Little Monon Lake showed the greatest disparity in number of fire events identified between the differing lengths of running mean. The 100-yr window resulted in the identification of 65 fire events throughout the series, compared to 58 and 53 events identified using the 150-yr and 200-yr windows, respectively. Therefore, 7-12 more fire events were identified using the shorter running mean. The results for Summit Lake show much less variation in the number of fire events identified using the 100-yr window, 71 events identified using the 150-yr window, and 70 events identified using the 200-yr window. At Pyramid Lake, 69 fire events were identified using the shorter 100-yr window. This analysis was done manually using conditional formatting in Microsoft Excel, highlighting the sample depths at which the event thresholds were met.

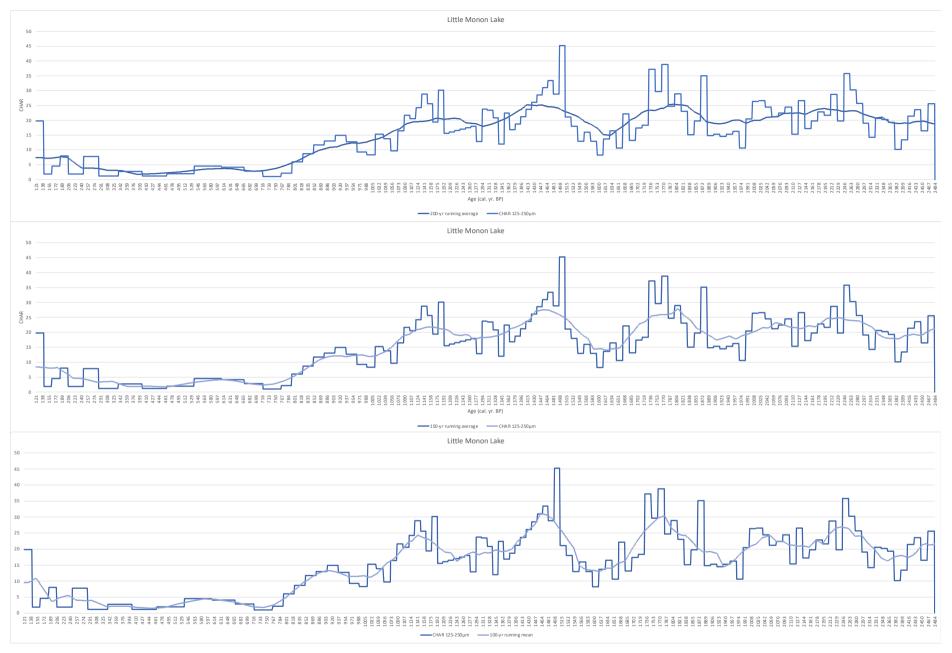
Figures 3.17 to 3.25 show the varying running means for each site, as calculated by the 100yr, 150-yr, and 100-yr windows, plotted with the values for CHAR. These results clearly demonstrate how the 100-yr window is more variable and reflective of the *peakCHAR* component. While detecting the highest number of events does not necessarily result in the highest quality reconstruction, a 100-yr running mean was used as it was relative to the 500-yr running means implemented when using 1cm sampling resolutions, cited in the literature (Minckley and Long, 2016; Walsh et al., 2008; Long et al., 2007; Long et al., 1998).

There was a high level of variation between the number of events identified using values of 1, 1.05, 1.12, and 1.2, as thresholds for fire occurrence. Table 3.6 shows the number of events identified by each threshold along with the percentage of events identified by the 1.05, 1.12, and 1.2 threshold, in comparison to a threshold of 1. At Little Monon Lake, 65 events were identified using an event index of 1, compared to just 25 events identified using a threshold of 1.2. This is a 62% reduction in the number of events between these set of thresholds, which is the greatest difference across all three sites. Summit Lake shows similar results, with 72 events identified using a threshold of 1, with only 33 events identified. At Pyramid Lake, there was much less variation in the number of events detected by the range of indices, however, there was still a 32% reduction in the number of events identified using a threshold of 1.2, in comparison to the 79 events identified using a threshold of 1.

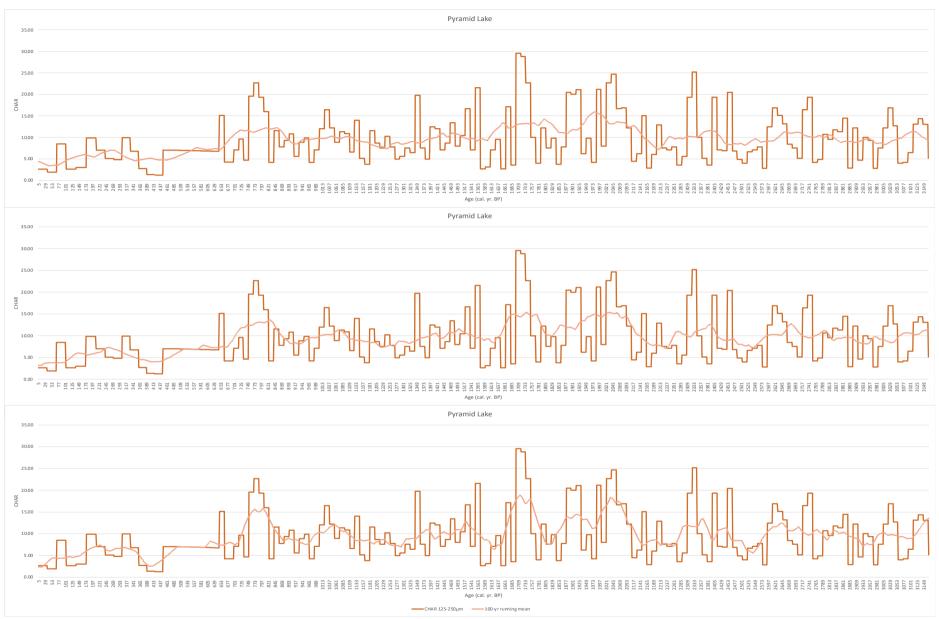
	Little Monon Lake	Pyramid Lake	Summit Lake
100-yr window	65	79	72
150-yr window	58	69	71
200-yr window	53	69	70

Table 3.5. Total number of fire events identified using 100, 150, and 200-yr running windows.

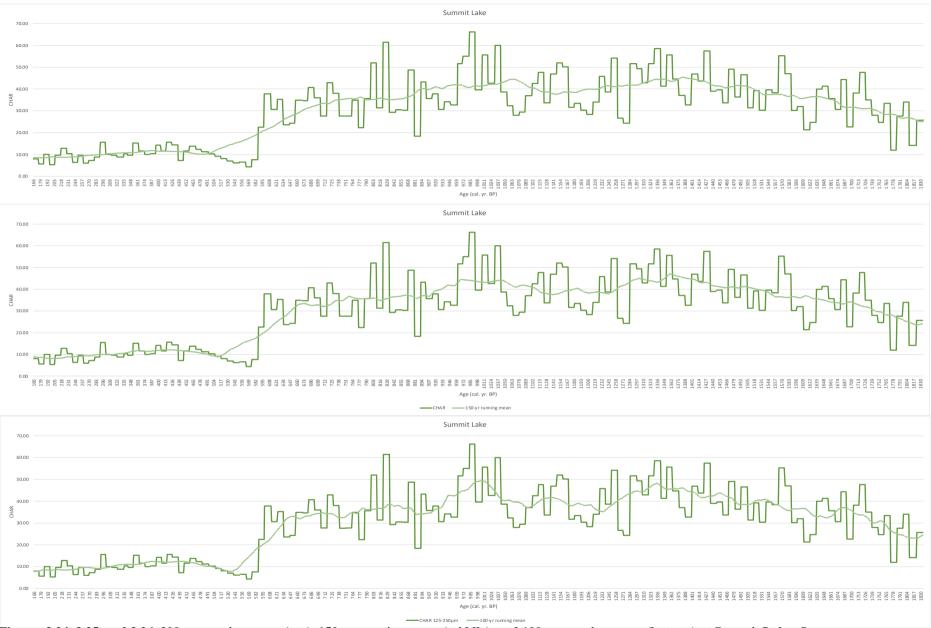
Index	Little Monon Lake	Pyramid Lake	Summit Lake
1	65	79	72
1.05	50	72	65
1.12	35	58	47
1.2	25	54	33
% of Index $= 1$			
1	100	100	100
1.05	76.92	91.14	90.28
1.12	53.85	73.42	65.28
1.2	38.46	68.35	45.83


Table 3.6. The number of fire events identified using 1, 1.05, 1.12, and 1.2 as a threshold for fire events (as used in Long et al., 1998) and the percentage of events identified by the 1.05, 1.12, and 1.2 threshold, in relation to a threshold of 1.

2.5. Fire return intervals


Fire return intervals were calculated using a 100-yr window and an event threshold of 1.0. At Little Monon Lake, the average fire return interval (FRI) for the entire series was 36.64 years (σ 36.31 years), however, there is a high level of variation in the FRI behaviour at Little Monon Lake. FRI ranges from 22.8 years between 1,000 to 1,499 yr BP to 83.2 years in the most recent 500-yr period. The Pyramid Lake record show a similar level of fluctuation. The average FRI for the entire series is 41.34 years (σ 29.17 years), however, this ranges from 28.4 years in the period between 3,000 and 3,499 yr BP, to 91.8 years in the most recent 500-year period. These dramatic increases in FRI are indicative of the fire suppression patterns observed in both CHAR records described above. The record at Summit Lake is much more consistent. The average FRI for the series was 22.45 years (σ 15.52 years) with a high of 20.2 in the most recent 500-yr period and a low of 27.8 years in the period 1,000 to 1,499 yr BP.

	Little Monon Lake	Pyramid Lake	Summit Lake
Mean fire return interval	36.6	41.3	22.4
0-499 yr BP	83.2	91.8	20.2
500-999 yr BP	68.0	32.2	20.7
1000-1499 yr BP	22.8	37.0	27.8
1500-1999 yr BP	36.8	38.5	20.8
2000-2499 yr BP	28.8	45.5	
2500-2999 yr BP		32.1	
3000-3499 yr BP		28.4	


Table 3.7. Mean fire return interval for the entire series at Little Monon Lake, Pyramid Lake, and Summit Lake with the mean fire return intervals for 500-yr periods before present. These were calculated using a 100-yr running mean and an event threshold of 1.0.

Figures 3.18, 3.19, and 3.20. 200-yr running mean (top), 150-yr running mean (middle), and 100-yr running mean (bottom) at Little Monon Lake, Oregon.

Figures 3.21, 3.22, and 3.23. 200-yr running mean (top), 150-yr running mean (middle), and 100-yr running mean (bottom) at Pyramid Lake, Oregon.

Figures 3.24, 3.25, and 3.26. 200-yr running mean (top), 150-yr running mean (middle), and 100-yr running mean (bottom) at Summit Lake, Oregon.

106

2.6. Fire events per 100-yr period

The following results are based on an event threshold of 1.0 and a running mean of 100 years.

2.6.1. Little Monon Lake

At Little Monon Lake the most common number of fire events per century is 3, with 7 100-yr periods containing 3 events. The record shows a highly fluctuating number of events with a clustering of higher fire activity within the middle of the Little Monon Lake record, between 2,099 yr BP and 999 yr BP. With the exception of 1,500 to 1,599 yr BP, every 100-yr period contains at least 2 fire events. The 100-yr period with the highest number of fire events occurs between 1,400-1,499 yr BP with a total of 7 events. One period, 1,100 to 1,199 yr BP contains 6 events. Two periods, 2,000-2,099 yr BP and 1,300-1,399 yr BP contain 5 fire events. The number of fire events per 100-yr period dramatically decreases between 800-yr BP and present, whereby mostly 0 or 1 events are observed, with the exception of 100-199 yr BP, whereby two events are identified.

2.6.2. Pyramid Lake

The record for Pyramid Lake is seemingly less variable than those observed at Little Monon Lake or Summit Lake with less dramatic fluctuation in the number of events. The most common number of fire events per century at Pyramid Lake is 2 events, which can be found within 11, 100-yr periods. No 100-yr periods contain 6 or 7 fire events as observed in both the Little Monon Lake and Summit Lake records. Two periods, 2,800-2,899 yr BP and 1,000 to 1,099 yr BP, contain the most fire events, each with 5 events observed within their respective periods. A change in fire regime is observable from the 700-799 yr BP to present as the number of events per 100-yr period is noticeable reduced to between 2, 1, or 0 events.

2.6.3. Summit Lake

The record for Summit Lake clearly highlights that fire activity is greatest and most variable at this site. Of the 19 100-yr periods within the record, 14 periods contain at least 3 fire events. One period, 400 - 499 yr BP contains 7 fire events, the most observed at Summit Lake. Two periods 1700-1799 yr BP and 600-699 yr BP contain a total of 6 events. Only the most recent 100-yr period, 0-99 yr BP, contained no events, which is attributed to a lack of sample during this time period.

Interestingly, none of the 100-yr periods contain the same number of fire events across all three sites.

	Little Monon Lake	Pyramid Lake	Summit Lake
0-99	0	2	0
100-199	2	1	2
200-299	1	0	5
300-399	1	2	4
400-499	1	2	7
500-599	1	0	2
600-699	0	1	6
700-799	1	4	4
800-899	3	4	3
900-999	2	2	5
1000-1999	4	5	2
1100-1199	6	2	5
1200-1299	4	3	5
1300-1399	3	2	3
1400-1499	7	2	5
1500-1599	1	2	2
1600-1699	3	2	4
1700-1799	3	4	6
1800-1899	2	3	2
1900-1999	3	2	
2000-2099	5	3	
2100-2199	2	1	
2200-2299	4	3	
2300-2399	3	3	
2400-2499	3	1	
2500-2599		4	
2600-2699		3	
2700-2799		3	
2800-2899		5	
2900-2999		2	
3000-3999		3	
3100-3199		3	

Figure 3.27. The number of events per 100-yr period at Little Monon Lake, Pyramid Lake, and Summit Lake as identified by the 100-yr running window.

3. Tephra

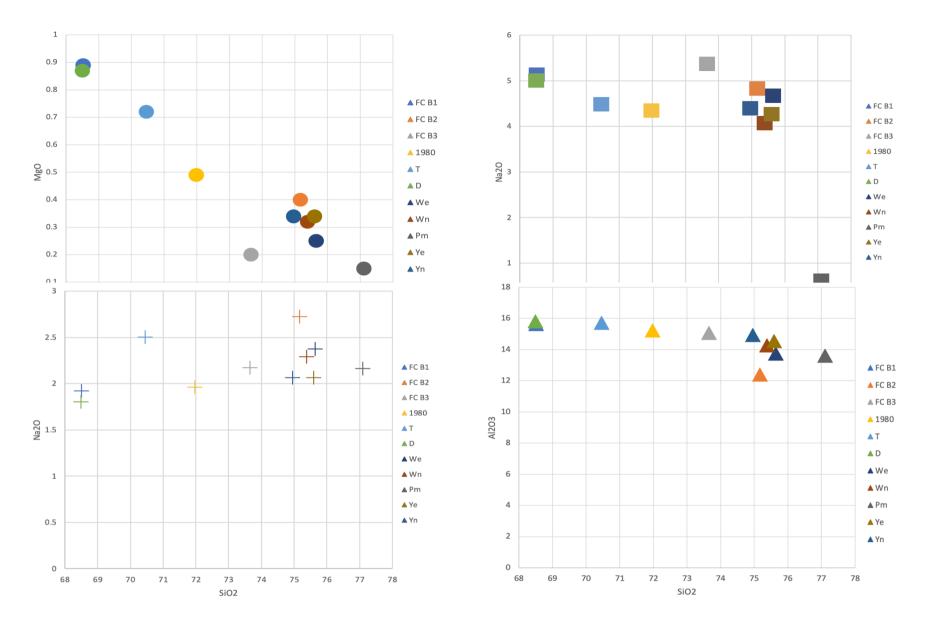
All geochemical results presented, along with reference database material, are normalised to 100% to eliminate the variability of post deposition hydration and to make signatures comparable between publications (Jones et al., 2018; Lowe et al., 2017; Eastwood et al., 2009; Smith and Westgate, 1968).

Site	Depth	Age	Age error	Age BP	Age AD/BC
Forlorn Camp					
Lake 3					
	Above B1	1080	81	1154-900	774-1050 AD
	Below B1	660	39	676-554	1274-1396 AD
	Above B2	2510	53	2746-2436	796 -486 BC
	Below B3	4380	61	5665-5452	3715-3502 BC

Table 3.8. Radiocarbon dates and calibrated ages for samples associated with tephra analyses at Forlorn Camp Lake, Washington.

3.1. FC3 B1

There are several factors which suggest with high probability that tephra layer FC3 B1 obtained from Forlorn Camp Lake 3 is derived from Mt St Helens Tephra Layer D. Firstly, reference material of Tephra Layer D obtained from the source at Mt St Helens has previously been radiocarbon dated from a charcoal macrofossil contained within the deposit to 1150 BP (Mullineaux, 1986). A radiocarbon date obtained from a bulk sample directly below FC3 B1 gives an age range of 1154-900 BP which temporally associates these layers. Secondly, Figures 3.27, 3.28, 3.29, and 3.30 below show PCA of major element geochemical signatures of FC3 B1, FC3 B2, and FC3 B3, against reference material from major eruptions over the last 4,000 years at Mt St Helens obtained from Mullineaux, 1981. The four plots which combine SiO₂ with Al₂O₃, SiO₂ with MgO, SiO₂ with Na₂O, and SiO₂ with K₂O, show major grouping of geochemical signatures of layer FC3 B1 and Tephra Layer D as a distinct population with no overlap to any other set of reference chemistry. This correlation is further confirmed by assessing one of the more abundant elements, SiO₂. Tephra layer FC3 B1 contains unusually low levels of silica, with an average value of 68.52%. Reference material for Mt St Helens Tephra Layer D also exhibits this unusually low level of silica with an average abundance of 68.5%. These uncommon values further evidence the correlation of these layers as the abundance of silica within these layers is significantly different to the higher levels, between 70-75%, found throughout the history of Mt St Helens. Therefore, a combination of the visual


similarities among these layers, their correlation in age and, strong correlation in geochemical signatures is sufficient to correlate FC3 B1 with Mount St Helens Layer D.

Tephra Set	SiO2	TiO2	Al2O3	FeO	MnO	MgO	CaO	Na2O	K2O
FC B1	68.52	0.56	15.62	2.98	0.06	0.89	4.21	5.13	1.92
σ	9.96	0.77	5.29	4.03	0.08	1.80	3.85	1.33	1.12
FC B2	75.17	0.48	12.38	2.15	0.05	0.40	1.71	4.82	2.72
σ	6.47	0.32	2.82	1.82	0.04	0.37	1.24	1.13	0.87
FC B3	73.66	0.15	15.06	0.72	0.02	0.20	2.60	5.36	2.17
σ	6.16	0.07	4.02	0.38	0.02	0.19	2.09	1.52	1.01
1980	71.98	0.44	15.22	2.62	0.06	0.49	2.78	4.34	1.96
Т	70.46	0.42	15.71	2.90	0.05	0.72	2.82	4.48	2.50
D	68.50	0.42	15.80	2.00	0.05	0.87	3.10	5.00	1.80
We	75.65	0.26	13.74	1.53	0.06	0.25	1.37	4.67	2.37
Wn	75.39	0.19	14.26	1.73	0.02	0.32	1.63	4.06	2.29
Pm	77.11	0.24	13.59	0.93	0.03	0.15	1.01	0.61	2.16
Ye	75.60	0.14	14.54	1.25	0.03	0.34	1.68	4.26	2.06
Yn	74.96	0.15	14.93	1.24	0.04	0.34	1.79	4.39	2.06

Table 3.9. – Summary of geochemical data from Forlorn Camp Lake samples with reference material from all Mount St Helens eruptions from the last 4,000 years (Mullineaux, 1996).

3.2. FC B2 and FC B3

Layers FC3 B2 and FC3 B3 both appear to have several clusters of differing geochemistry, suggesting they are each composed of numerous populations or may be contaminated. As such, significant correlation of these layers against reference material from Mt St Helens could not be achieved. Radiocarbon dates obtained from bulk sediments above and below these tephra layers result in an age range of 2,436 to 5665 cal. yr. BP, which suggests that these layers should derive from Mt St Helens Tephra Set Y or Mt St Helens Tephra Set P. However, analysis of raw geochemical data and PCA failed to provide a strong correlation between these layers. Since Layers FC3 B2 and FC3 B3 are within such close proximity to each other within core FC3, there is a possibility that FC3 B3 could have contaminated FC3 B2, or vice versa, either through reworking in the core or sediment deposition into the lake at the time from material on the landscape. Layers FC3 B2 and FC3 B3, therefore, remain uncorrelated.

Figures. 3.28. (top left), 3.29. (top right), 3.30. (bottom left), and 3.31 (bottom right). Scatter plots depicting major element geochemistry of FC B1, FC B2, and FC B3 against reference material for major eruptions of Mt St Helens over the last 4,000 years show clear correlation between Tephra Set D and FC B1.

CHAPTER FOUR

DISCUSSION

1. Dating controls

1.1. Original rationale for this study

Most of the study sites chosen within this study are located along the crest of the Cascade Range, an area which is disproportionately understudied with much of the published literature concerning the reconstruction of historic disturbance in western North America focussed on the western and eastern slopes of the Cascade Range, Oregon and the Rocky Mountains, Colorado (Long et al., 2016; Morris and Brunelle, 2012; Morris et al. 2010; Anderson et al., 2010; Colpron-Tremblay and Lavoie, 2010; Long et al., 1998). With an abundance of suitable lake sites, these higher-elevation sites would afford the opportunity to address important data gaps within this region and expand our knowledge of historic fire and insect occurrence across the western North America as a whole, which was a key factor in site selection.

The original objective for this study was to calibrate known forest disturbance events in the Cascade Range over the last 70 years, obtained from USDA Forest Service Aerial Detection Survey (ADS) data, with pollen signals obtained from near-annual/sub-decadal sampling of lake sediment cores (as per, Morris et al., 2012; Anderson et al., 2010 outlined in the General Introduction). This is important to highlight as it formed the key rationale for site selection, sampling strategy, etc. The hypothesis was that insect-induced tree mortality during periods of outbreaks would result in quantifiable changes in pollen abundances and produce 'signatures' associated with such events. These characteristic signatures could then be identified through time to provide valuable insights of historic insect occurrence. These records of historic outbreak occurrence would also facilitate exploratory analysis into the use of DNA-based methodologies in detecting forest insects during periods of outbreak, using the palynological reconstruction as a proxy for identified events. As timber harvest has been a major landscape use in the Cascade Range for the period of the ADS dataset and could interfere with the event calibration (for example, a decline in tree pollen associated with logging activity mistaken for a period of beetle-induced tree mortality), high elevation sites, often adjacent to wilderness areas, were favoured to limit the potential of human influence on forest disturbances signals, providing information on an ecosystem functioning as close to 'natural' as possible.

Robust chronologies, particularly within the 70-year calibration stage were critical in identifying insect-induced modifications, which would ultimately determine the accuracy of the historic reconstructions. An abundance of radiocarbon dates focussed near the surface of the three final sites chosen for full analyses revealed one significant and unanticipated

disadvantage of high elevation sites in the Cascade Range; slower sedimentation rates than those observed at lower elevation sites such as the Coast Range and at sites in the Willamette Valley. Sedimentation rates within published palaeoenvironmental reconstructions range from ~5 years cm-¹ in the lower-elevation Coast Range (Long and Whitlock, 2002) to ~34 yr cm⁻¹ in the lowland Willamette Valley (Minckley and Long, 2016). Radiocarbon dates and agedepth models outlined in this thesis revealed sedimentation rates at the higher elevation sites of the Cascade Range were between 50- and 360-years cm⁻¹ (based on an average of 10-72 years 2mm⁻¹ observed at Little Monon Lake, Pyramid Lake, and Summit Lake).

As a consequence of poor sedimentation rates, the number of sampling points with dates correlating to ADS data were insufficient to facilitate the original objective of producing a robust calibration of disturbance signatures over the last 70 years. Therefore, a contiguous high-resolution, 2mm sampling methodology was chosen to achieve continual records of environmental change at time intervals which still reflect the timescales of the processes occurring in these ecosystems and with those in the published literature.

1.2. Radiocarbon dating and tephrochronology

The proximity of Little Monon Lake, Pyramid and Summit Lake to several major volcanoes within the High Cascade Range, highlighted that any identified tephra layers could serve as an additional dating tool, providing distinct chronological markers within the timeframe of the ADS dataset, most notably, the May 1980 eruption of Mt St Helens. Any recovered tephra layers could also be used to cross-correlate events between cores (Lowe et al., 2011). Welldocumented tephra layers, such as the eruption of Mt Mazama, central Oregon, in 7,630 yr BP, are readily used to provide key time markers of environmental change across North America (Minckley and Long, 2016; Long et al., 2014; Whitlock et al., 2008; Brunelle and Whitlock, 2003; Millspaugh et al., 2000; Zdanowicz et al., 1999; Sea and Whitlock, 1995; Cwynar, 1987; Barnosky, 1985; Lichti-Federovich, 1970). The distinct bands of tephra found within core FC3, recovered from Forlorn Camp Lake, Washington, provided an opportunity to test the applicability of these methods. A thick band of ash found near the surface of core FC3 was believed to be associated with the 1980 eruption of Mt St Helens, as there were no other tephra bands observed above this layer, suggesting that it could only have been associated with the most recent eruption. In addition, soil samples from two nearby sites contained 53mm ash (from Chamber's Pass (22km from MSH)) and 44mm ash (from Elk Pass (44km from MSH)) which correlated to the May 1980 eruption of Mount St Helens (Zobel and Antos, 1991).

Tephra Set	Eruptive Stage	Age of onset (yr BP)
1980		1980 AD
Т	Goat Rocks	1800 AD
Χ		1500 AD
W	Kalama	1480 AD
FC3 B1		1154-900
D	Sugar Bowl	1,200
В	Castle Creek	2,500 - 1,600
FC3 B2		2746 - 2436
Р	Pine Creek	3,000 - 2,500
Y	Smith Creek	4,000
FC3 B3		5665 - 5452
J		10,500
S	Swift Creek	13,000
K		19,000
Μ	Cougar	20,500
С	Ape Canyon	50,000 - 40,000

Table. 4.1. The temporal context of tephra layers obtained from Forlorn Camp Lake (highlighted in grey) in relation to late-Pleistocene and Holocene eruptions at Mt St Helens. Tephra layer FC3 B1 was successfully geochemically matched to reference material from Tephra Set D owing to their unusually low levels of silica and close temporal association. FC3 B2 and FC3 B3 remain uncorrelated.

Analysis of major elemental chemistry and radiocarbon dating of the tephra layers recovered from Forlorn Camp Lake revealed that the sediments were much older than first thought. The uppermost tephra layer expected to match the 1980 eruption was instead successfully matched to reference material from Mt St Helens Tephra Layer D, confirmed by their close temporal association, and correlation in geochemical signatures, notably, their unusually low levels of $SiO_2 \sim 68\%$, compared to the silica abundance at adjacent levels, where values are between 70 and 75%. Layers FC3 B2 and FC3 B3 remain uncorrelated to any reference material for any eruption of Mt St Helens. The radiocarbon date obtained from above layer FC3 B2 places this layer between Mt St Helens Tephra Sets B and P (See Table 4.1), however, geochemical analysis of this layer failed to identify the origin. Interestingly, the radiocarbon date obtained from below FC3 B3 places this layer, between Mt St Helens Tephra Sets Y and J, in a period of dormancy at Mt St Helens. Tephra layer FC3 B2, which dates to between 2,746 - 2,436 yr BP, falls within a period whereby both Mt Rainier and Mt Adams, Washington, have documented eruptions (Sisson and Vallance, 2008; Donoghue et al., 2007). Both volcanoes are within close proximity to Forlorn Camp Lake; however, no correlation could be made with the geochemistry available (Sisson and Vallance, 2008). The date associated with Layer FC3 B3 (5,665 to 5,452 yr BP) coincides with the Osceola collapse event (Vallance and Scott, 1997) whereby a great lahar which flowed northeast of the summit to cover an area around 212 square-miles across the Puget Trough. Forlorn Camp Lake sits to the southwest of Mt Rainier and despite the temporal correlation of these events, it is unlikely that they are related. It cannot

be discounted that tephra layers FC3 B2 and FC3 B3 may not derive from Mt St Helens, but instead from other volcanoes within the Cascade Volcanic Chain.

During analyses it became apparent that there is a distinct lack of reference material for North American tephras, which hindered the successful matching of tephra layers FC3 B2 and FC3 B3. Reference databases of tephra geochemistry are typically generated from deposits located at the source, whereas the taphonomic processes associated with the transport, deposition, and incorporation of tephra into sediment results in less clear signals i.e., mixing of closely erupted events or mineral contamination (Stevenson et al., 2013; Naeser et al., 1981). 'Tephra Base' (http://www.tephrabase.org/), is a European-collaborative database of names, ages, and geochemical signatures of tephra layers found in Iceland, northwest- and northern-Europe, Russia, and central Mexico (Newton et al., 2007), facilitating the speedy and efficient matching of sediment-derived tephra layers within a comprehensive database of reference material. Since a 'Tephra Base' style database does not yet exist for North American tephra and there are only several published collections of Mt St Helens geochemistry (Mullineaux et al., 1975, Mullineaux, 1986; Mullineaux, 1996).

While the tephra layers from Forlorn Camp Lake failed to provide distinct time periods within the original scope of the project, analyses have generated a set of radiocarbon dated geochemical signatures which could add to the reference database of tephra from Mount St Helens. It appears a high level of variation within the chemistry of ash recovered from both layers coupled with a lack of reference material were crucial limiting factors in the successful correlation with reference material. Therefore, it is hoped that the tephra geochemistry of the samples within the core obtained from Forlorn Camp Lake, Washington, along with any further layers identified in future analyses of other cores obtained during this thesis, will be used in the future to help calibrate a comprehensive database for North America, ensuring locally sourced reference material significantly matches with 'real world' samples which have been subjected to environmental processes and potential contamination.

2. DNA

The development of qPCR protocols for the direct detection of *D. ponderosae*, *D. pseudotsugae*, and *Choristoneura* spp. outlined in this thesis show promise for the potential role of DNA-based methodologies in palaeoenvironmental research. The sites chosen for this thesis have been inundated with outbreaks of a wide range of forest insects at least for the last 70 years, yet the number of positive amplifications of target species were much lower than expected. This section aims to discuss the results obtained through the novel use of qPCR to detect historic occurrence of these species, highlight the potential factors which may have contributed to the results observed, and summarise the lessons learnt from this thesis to outline areas within sedaDNA research which still require further development.

2.1. sedaDNA

While radiocarbon dating and age-depth models revealed that an insufficient number of samples covered the periods associated with the ADS data set to provide robust calibrations of individual outbreak extent and location with sedimentary evidence of pathogen presence, several samples near the surface of Pyramid Lake and Summit Lake do indeed correlate to the time periods associated with the ADS dataset (Table 4.2). The surface sample at Pyramid Lake dates to 1955 – 2004 AD which nearly spans the entire period associated with the ADS dataset. In addition, the 8mm sample dates to 1867 – 1918 AD suggesting that the 4mm and 6mm samples could derive from the 20th Century and potentially cover a short period of the ADS dataset. At Summit Lake, the uppermost sample failed to be dated due to a lab error in the preparation process. With the sample below the uppermost sample, at 4mm, dating to 1800 to 1957 AD, age depth models suggest there is also potential for parts of this sample and the uppermost sample covering periods of time associated with the ADS dataset. This highlights the great advantage of having robustly dated sediments which produce high-quality age depth models, particularly in time periods by which there is valuable proxy data, as these often provide useful additional information. The surface sample at Little Monon Lake pre-dates the ADS dataset and therefore there is no direct comparison of results at this site to any reference material. Analysis of ADS did, however, facilitate a direct comparison of known periods of outbreaks with potential DNA positives obtained from sedimentary records, which crucially, facilitated the interpretation of the results over this period.

Site	Depth	RC Age	Age error	Age BP	Cal. Age AD/BC
Summit Lake					
	4mm	-80	66	260—7	1800-1957 AD
	8mm	0	60	149-20	1804-1936 AD
Pyramid Lake					
	2mm	-500	31	-535	2004 AD
	8mm	40	31	256-33	1867-1918 AD
	16mm	90	32	266-22	1806-1930 AD

Table 4.2. Radiocarbon dates from	Summit I	Lake and	Pyramid	Lake	which	overlap	with	the	period
associated with the ADS survey data.			-			_			-

Site	Agent	Outbreak years	Corresponding sample
Pyramid Lake			
	D. ponderosae	2006, 2007, 2008	None
	D. pseudotsugae	1992	2mm, 4mm*, 6mm*
	C. occidentalis	1987, 1988, 1991	2mm, 4mm*, 6mm*
Summit Lake	D. ponderosae	1950, 1962, 1963, 1965,	2mm
	_	1968, 1975, 2007, 2008,	
		2009, 2010, 2011, 2012.	
	D. pseudotsugae	1954, 1995	2mm
	C. occidentalis	1986, 1987, 1988, 1992,	2mm
		1993	
	Adelgies picea	1970, 1973, 2003, 2011	2mm

Table 4.3 shows the outbreak occurrence at Pyramid Lake and Summit Lake alongside samples with corresponding ages. *Depths not confirmed by radiocarbon dating to coincide with ADS data, but indicated by age-depth models.

2.1.1.. Pyramid Lake

2.1.1.1946 – 2017 AD

The date of the surface sample, 0-2mm, at Pyramid Lake ranges from 1955 to 2004 AD, which means that Pyramid Lake is the only site at which sample ages can be confidently associated with the period of ADS survey data, and, therefore, the only site at which we can directly compare the results from DNA analyses with known outbreaks. During this period there were several outbreaks of *D. ponderosae* to the northwest of the site, several *Choristoneura occidentalis* outbreaks to the west, north, and east of the site, and a *D. pseudotsugae* outbreak to the southwest of the site (See Table 4.3 and Figure 4.1). Within this uppermost sample, the Dpseudo protocol (target: *D. pseudotsugae*) produced successful amplifications in two out of three replicates with an amplicon melting temperature corresponding to that of *D. pseudotsugae* tissue.

The topography of the Pyramid Lake catchment and the geographical location of the 1992 outbreak of *D. pseudotsugae* in relation to Pyramid Lake is critical in the recovery and

detection of *D. pseudotsugae* DNA. Within the sub catchment depicted in Figures 4.1 to 4.3., it is evident that Pyramid Lake sits on a small, plateau-like shelf, with the southern slope feeding into Pyramid Lake and the west and northern areas draining away from Pyramid Lake. The outbreak occurred to the south of Pyramid Lake (shown in red in Figure 4.1) and lies along the leeward side of a ridge, situated 165m above Pyramid Lake, with the natural run-off regime likely to wash material from this crest into Pyramid Lake. This is evidence by signs of erosion along the downward 'outbreak' slope which has been identified as a key indicator of potential sources of in-washed material, including DNA (Giguet-Covex et al., 2014). Alsos et al., 2018, found that the correlation between catchment relief and total DNA ($r^2 = 0.42$) were higher than the correlation between total DNA and local vegetation ($r^2 = 0.34$), suggesting that particularly in small catchments, such as Pyramid Lake, processes associated with slope, run off or snowmelt are critical in sediment delivery (Parducci et al., 2019). High levels of precipitation, in the forms of snow, snowmelt, and rain, are typical in this region of the Cascade Range, which increases the likelihood that taphonomic processes would result in material, including DNA, from the outbreak ending up incorporated into the sediment at this site. Outbreaks of species 'downward' of Pyramid Lake would therefore likely have to fly into the lake in order to become incorporated into the sediment.

Figure 4.1. The location of Pyramid Lake (starred) and known outbreaks of *D. ponderosae*, *D. pseudctsugae* and *Choristoneura occidentalis* obtained from ADS data. The outbreak of *D. pseudotsugae* of 1992 is shown in red while the *D. ponderosae* outbreaks of 2006, 2007, and 2008 are shown in blue. The outbreaks of *Choristoneura occidentalis* in 1987, 1988,1989, and 1992 are shown in yellow.

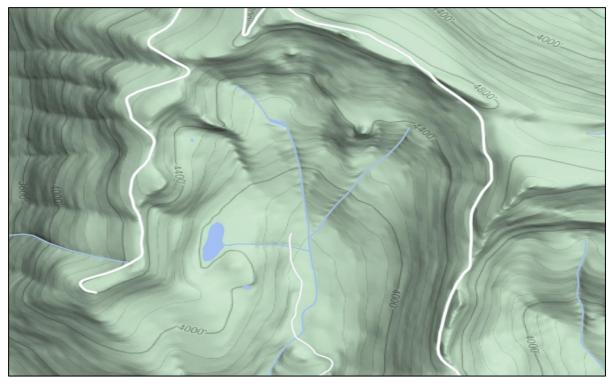


Figure 4.2. A topographic map of Pyramid Lake, showing how catchment dynamics may explain the results found during sedaDNA analysis.

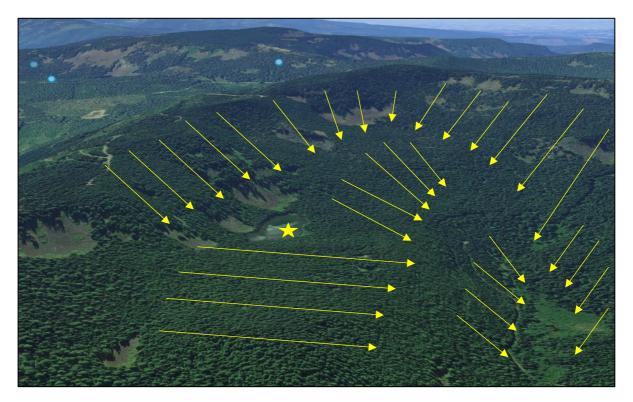


Figure 4.3. A schematic of the Pyramid Lake catchment, showing drainage patterns which have been shown to influence the source areas of material, including DNA.

A lack of Choristoneura species qPCR amplifications at Pyramid Lake, despite several outbreak occurrences of Choristoneura occidentalis during this time evidence the strong influence of taphonomic processes, outlined above, in delivering DNA to the site. The location of the outbreaks, between 900m and 1,200m to the north and at lower elevation than Pyramid Lake, suggests material from these outbreaks is likely to wash away from Pyramid Lake instead of becoming incorporated into the sediment. From an outbreak in this location, it seems the only mechanisms for remains of Choristoneura spp. to become incorporated into Pyramid Lake would have been for individuals to fly into the lake itself. Adult Choristoneura have shown to readily fly 20km, with a record dispersal distance documented at 450km (Sturtevant et al., 2013; Greenbank et al., 1980). Effective dispersal is a key component in the mass attack dynamics of budworm species linking spatially disjunct populations (Régnière, et al. 2019; Anderson et al., 2011). These flight behaviours show that the Choristoneura have the capacity to reach Pyramid Lake, however, no target DNA was recovered. One hypothesis is that the majority of the newly hatched populations moved further down into the watershed to find suitable hosts there, with only several individuals dispersing in the direction of Pyramid Lake. This highlights the importance of considering the outbreak scenario as a whole and understanding the various factors that may contribute to the recovery of target species DNA i.e. the number of individuals that are flying in the right direction to encounter a lake, how many are incorporated into the lake, how many avoid being eaten, and then how many become deposited into the lake sediment. When outlining all these factors, it is perhaps more understandable how only several positive amplifications were obtained in this study. In future studies, a comparison between several lakes within a watershed, each with differing topographic constraints could help to further develop the understanding of the variables outlined above.

The age range of the 0-2mm surface sample (1955 to 2004 AD) predates the known outbreaks of *D. ponderosae* in 2006, 2007, and 2008 (shown in Figure 4.1 and Table 4.3). This suggests the most recent sediment was missed during sediment collection, likely forming a part of the unconsolidated surface/sediment interface. A lack of positive amplification of *D. ponderosae* within the uppermost sample potentially addresses the concerns of leaching of DNA to lower depths within sedimentary archives (Haile et al., 2007; Sjögren et al., 2017). The results here highlight that a radiocarbon dated sample obtained 2-4 years prior to a series of highly severe outbreaks in the immediate vicinity shows no evidence of DNA moving downwards within the core and mixing with older sediments. These results concur with those found in Sjogren et al.,

(2017) whereby abrupt/diagnostic signals of events do no not appear in sediments prior to the event(s), although, it cannot be discounted that the small sample volume may have just failed to detect *D. ponderosae* at this depth.

2.1.1.2. Pre-1946 AD

In addition to the positive amplifications within the period covered by ADS data, there were two positive amplifications which pre-date the ADS survey. Firstly, there was a positive amplification (in one of three replicates) of *D. pseudotsugae* within the 22mm sample using the Dpseudo assay (target: D. pseudotsugae) with a Tm matching D. pseudotsugae tissue. Age depth models suggest this sample dates to between 543 and 473 yr BP. While this outbreak clearly occurred before the onset of ADS data, resulting in no information about the spatial occurrence of this outbreak, the catchment dynamics which likely led to the positive amplification in the uppermost sample suggests that this outbreak may have occurred across the same crest, to the south of Pyramid Lake, which would result in material washed into Pyramid Lake. This outbreak coincides with the end of a moderate-level fire period as shown by fossil charcoal data, suggesting this period may have been warmer and drier than surrounding periods leading to a suppression of tree defences, making them susceptible to disturbance by both insects and fire. Secondly, several successful amplifications using the Dpond protocol occurred in a period between 752 cal. yr. BP (sample depth 64mm) to 896 cal. yr. BP (sample depth 80mm) at Pyramid Lake. The melting temperature of the amplicons were \sim 1.6-2°C higher than that from *D. ponderosae* reference material suggestive of some level of DNA degradation (see 2.2.4. DNA degradation, for further discussion). NCBI-BLAST data suggests that the Dpond qPCR protocol only amplifies D. ponderosae and D. simplex, which suggests that the amplicon could potentially be associated with a unsequenced D. ponderosae population or an unspecified amplification of a non-target species. The period between 752 and 896 BP whereby positive amplifications using the Dpond qPCR protocol were identified coincides with an intense fire period, observed within the fossil charcoal record at Pyramid Lake. This period contains the highest CHAR values found throughout the 250-500 µm size class as well as appearing as a distinct peak in both the $125-250\mu$ m and $>500\mu$ m records. The correlation of timing of these events coincides with the end of the Medieval Climate Anomaly (MCA) (Walsh et al., 2008), which is characterised by a period of prolonged warm and dry conditions which could have led to heightened drought stress in host trees leading to a period of insect outbreaks with a subsequent period of heightened fire activity in the resulting stands of dead trees. Another scenario in this instance could be that fires disturbed surface sediments

and lead to a heightened period of erosion of all terrestrial matter, including charcoal (see Colombaroli and Gavin, 2010; Whitlock and Larsen, 2002)

2.1.2.. Summit Lake

Due to a lab error while dating, the age range of the uppermost sample (0-2mm) at Summit Lake is unknown. However, the date obtained from the 2-4mm sample ranges from 1810-1925 AD, meaning the surface sample may derive from the mid- to late-20th Century and, therefore, cross-over with the ADS dataset. During the period covered by the ADS dataset, there were frequent and widespread outbreaks of D. ponderosae, D. pseudotsugae, C. occidentalis, and Adelgies picea in the immediate vicinity of Summit Lake (See Table 4.3 for more info). A positive amplification using the Chorist (target: Choristoneura spp.) qPCR protocol was identified in the uppermost sample, in one of three replicates. The melting temperature of the amplicon was 1.6°C higher than positive control tissue from *C. occidentalis*. Conventional PCR produced four positive amplifications which matched the expected product length of Choristoneura spp. Sanger sequencing produced a mixture of DNAs which along with the varying Tm found in the D. ponderosae positives at Pyramid Lake, suggests some level of DNA degradation at these sites. ADS data shows an outbreak of C. occidentalis in 1993, along the southern shoreline of Summit Lake, which could account for the potential positive as the topography indicates that material from this outbreak may become incorporated into the sediment at Summit Lake. Several other Choristoneura species are known to inhabit the Summit Lake watershed, including the Oblique-banded leafroller (C. rosaceana) and the sugar pine tortrix (C. lambertiana), however, a lack of successful sequencing failed to facilitate the matching of sequences to reference material for these other potential species. As described in the Methods Chapter, the catchment for Summit Lake is the widest, and most open of the three final sites chosen, characterised by undulating plateaus typical of Ecoregion 4c (Thorsen et al., 2013). Unlike Pyramid Lake where the highly undulating landscape and distinct topographic features provides a better understanding of potential source areas for material, a wide, open catchment affords a much greater disparity in the potential sources of material. A lack of barriers, such as steep river cut valleys which may interrupt flight patterns, potentially increase the source area of insects able to fly into this area. Equally, a larger catchment increases the hydrological influence, providing much more opportunity for material to be in-washed into Summit Lake. Despite this, only one set of amplifications occurred at Summit Lake. Perhaps the openness of the catchment decreased the density of biomass of the target species, allowing

dispersal in any direction, in contrast to the dynamics of Pyramid Lake whereby topography essentially controls dispersal direction.

Fig. 4.4 The location of Summit Lake in relation to the extent of the known outbreak of *Choristoneura* occidentalis in 1993.

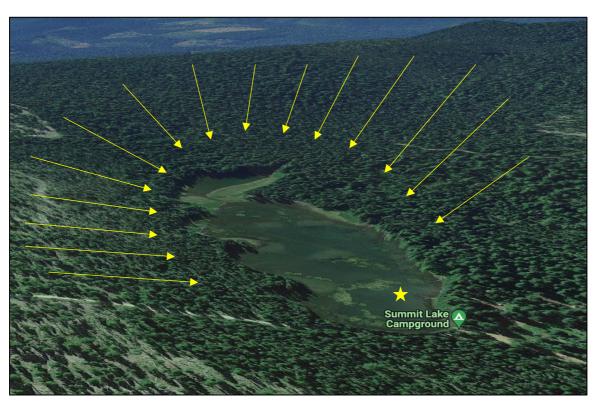


Fig. 4.5 A schematic of the Summit Lake drainage showing in-wash patterns which may explain the results from sedaDNA analyses.

2.1.3. Little Monon Lake

Current observations of Little Monon Lake show an area highly impacted by disturbance in the recent past. The devastating effects of the highly severe fire, which occurred in 2001, can be seen across much of the south of Little Monon Lake, with evidence of ongoing forest insect outbreaks across the slopes of Olallie Butte. The fossil charcoal record shows high fire activity at Little Monon Lake, suggesting fire has been a major disturbance agent in this catchment over recent centuries, further evidence by the fire record at Breitenbush Lake, in the adjacent catchment (Minckley and Long, 2016).

Despite such high insect activity observed at the site and within the ADS dataset, no positive amplifications occurred at any depth using the Dpond, Dpseudo, and Chorist qPCR assays. The age range of the surface sample at Little Monon Lake (1800 to 1898 AD) pre-dates the time period covered by the ADS survey dataset, therefore, there was no opportunity to compare expected forest insect outbreaks identified using the ADS dataset with any results from sedaDNA. The topography of the Olallie catchment (See Figure 4.7) suggests that had the most recent sediments been recovered, DNA from these outbreaks may likely have in-washed into Little Monon Lake from all directions. One hypothesis as to why no insect DNA was recovered could be linked to such high fire activity. The charcoal record for Little Monon Lake indicates high levels of fire between 2,500 yr BP and 600 yr BP, therefore, there is potential that frequent fires may have hindered the establishment of insect populations due a lack of suitable hosts. A deeper discussion on the interplay between fire and insects can be found in the Charcoal Discussion section below. The lack of results found at Little Monon Lake failed to extend our knowledge of past insect occurrence beyond the period associated with the ADS survey data.



Figure 4.6. The location of Little Monon Lake in relation to *D. ponderosae* outbreaks (shown in red) obtained from ADS data, and the effects of the most recent fire at within the Olallie catchment (shown in yellow).



Figure 4.7. A schematic of the Little Monon Lake catchment, identifying potential sources of in-washed material.

In addition to the ADS dataset which spans the period of 1946 to 2017 (the year of sampling), the General Introduction contained a discussion of the current methods of detecting historic insect outbreak occurrence based on tree ring data, palynology, and taxonomically identified remains on longer timescales, beyond that of the ADS dataset. In each study, the authors calibrated signals within their respective proxy to identify characteristic signatures during known periods of outbreak. These signatures were then used to identify any period within the record which contained the same behaviour that suggest periods of outbreak. This facilitated a discussion on any correlation between the two set of positive amplifications observed at Pyramid Lake, obtained between 543 and 473 yr BP and 752 and 896 yr BP, of which there is no ADS data with which to compare results. A meaningful calibration requires a sufficient number of samples to be robust and useable. It was thought that basing a calibration on only two periods of outbreak failed to produce adequate calibration.

The earliest evidence of insect outbreaks in western North America as inferred by dendroecological methods was a D. rufipennis (spruce beetle) outbreak in 1716-1750 AD across British Columbia and Alberta, Canada (Eisenhart and Veblen, 2000). Therefore, evidence obtained from tree ring data does not cover a long enough timeframe with which to compare the results observed at Pyramid Lake. The records utilising lake sediments to conduct palynological analyses extend the length of insect reconstructions to the time periods associated with my sites. Reconstructions based on pollen analysis only detected insect outbreaks within the 20th Century (Morris and Brunelle, 2012; Anderson et al., 2010; Morris et al., 2010) with no further outbreaks detected in older samples. Evidence of historic insect outbreaks as inferred by taxonomically identified remains (Brunelle et al., 2008) have provided the longest reconstructions of outbreak occurrence, which span the entire Holocene. Evidence of bark beetle remains, most likely attributed to D. ponderosae, were recovered from 8331, 8410, and 8529 cal yr BP, along with two further early Holocene examples recovered from Hoodoo Lake, Idaho, dating to 7954 and 8163 cal yr BP (Brunelle et al., 2008). Therefore, these provide no additional information on the historic outbreak patterns observed at Pyramid Lake. The sedaDNA results presented here are most analogous with those of Brunelle et al., (2008), whereby insect remains were identified only from the early Holocene and in the 20th Century, with no evidence recovered in between these time intervals. It seems highly unlikely, given the abundance of suitable hosts and periods of warmer and drier climate, such as the MCA, that bark beetles have only been impacting the forests of western North America in the early Holocene and in the most recent few hundred years. Therefore, one highly important aspect of forest pest dynamics, which requires further understanding, is the behaviour of these species in between periods of outbreaks i.e., are species continuously present at low levels or do they only survive in areas where environmental conditions are suitable for supporting such highlevel outbreaks? I believe the more likely scenario in this instance is that varying levels of outbreaks are almost continual and that current proxies are just not capable of detecting all levels of outbreak. As DNA-based methodologies are directly detecting the agent, not the effects of the agent, these are in theory the most sensitive method of identifying presence of beetles which could correspond to low-level populations as well as epidemics.

2.2. Factors affecting DNA recovery

Forest Service ADS data shows that Pyramid Lake, Monon Lake, and Summit Lake are situated in catchments which have been inundated with outbreaks of a wide range of forest pathogens at least for the last 75 years, yet an underwhelming recovery of target species DNA was observed at all sites. Palynological reconstructions from the region show consistent levels of suitable host species to support outbreaks large/severe enough to cause significant modification to the surrounding forest ecosystem, for at least 13,000 years (Minckley and Long, 2016). This section aims to address one of the fundamental questions within this thesis and within wider environmental DNA research: what are the controlling factors that ultimately affect the likelihood that DNA from target species is released into the environment, becomes incorporated into depositional environments, and is subsequently preserved, avoiding levels of degradation which prevent amplification and sequencing?

2.2.1. Species morphology

Most studies concerning the recovery of DNA from sediments have focussed on vertebrates and plants (Kisand et al., 2018; Kistler, 2012; Schlumbaum and Tensen, 2008; Willerslev and Cooper, 2005; Parducci and Petit, 2004; Willerslev et al. 2004; Pääbo, 1993), while the of recovery of DNA from insects has been disproportionately understudied, limited to museum specimens dating to only several hundred years old (Watts et al., 2006; Hartley et al., 2006; Harper et al., 2006; Goldstein and Desalle, 2003) or amber-encased specimens of millions of years old (Cano et al., 1992; Desalle et al. 1992). Therefore, the mechanisms of recovery of DNA from specimens between these two extremes, on the timescales concerned with most palaeoenvironmental reconstructions, requires further development (Thomsen et al., 2009).

Here, D. ponderosae, D. pseudotsugae, and C. occidentalis represented species with diverse morphological characteristics which posed different challenges for the preservation, and therefore, the potential for recovery of DNA. The two groups of insects targeted for DNA analyses within this thesis, bark beetles and budworms, have highly variable morphology and life history behaviours. Bark beetles have hard exoskeletons formed of chitin and spend the majority of their life history beneath the bark of host trees (Henriques et al., 2020), while Choristoneura are primarily formed of soft tissue with several chitinous components and spend the majority of their lives on the external tissue types of host trees (Volney and Fleming, 2007). As such, the characteristics of DNA released between these two groups are likely very different. The two primary sources of invertebrate DNA release into the environment are from moulting of exoskeletons at various life stages (Chequer et al., 2019; Deiner and Altermatt, 2014) or the post-mortem incorporation of individuals and/or their remains into depositional environments. The release of DNA into the environment, or shedding, is controlled by physical properties of the target species, such as body-type, and/or their behaviour, such as flying (Andruszkiewicz Allen et al., 2021). As most of the literature concerning mechanisms for DNA shedding to the environment has focussed on fish or amphibians (Brantschen et al., 2021; Kirtane et al., 2021; Ratcliffe et al., 2021; Trimbos et al., 2021; Jo et al., 2019; Hänfling et al., 2016) and there has been very little research into the shedding behaviour of insects (Trimbos et al., 2021), this work represents an important insight into the DNA shedding of insects into sediment.

In general, the fossil record is biased towards harder organisms, or harder parts of organisms, such as skeletal remains, as soft tissues typically decay before they are fossilised (Anderson et al., 2018). This likely has implications on the preservation of different tissue types within palaeoenvironmental samples. In the DNA extractions, whole specimens of *D. ponderosae, D. pseudotsugae*, and *C. occidentalis* consistently yielded higher levels of DNA than head and elytra and leg tissues. Within these extractions, those of whole *Choristoneura* spp. yielded levels of DNA double those obtained from both whole adult *Dendroctonus* species, which highlights how the soft body type of *Choristoneura* could result in greater shedding of DNA into the environment and, therefore, increase their potential for detection. The chitinous exoskeleton of bark beetles likely 'encases' the soft tissue more likely to leach DNA within this exoskeleton which reduces the amount of DNA leached into the environment. This highlights how, should insect remains become incorporated into sedimentary deposits, the morphology of the target organism likely plays a key role in the probability of detection via

DNA-based methodologies. This theory is further evidenced by leg tissues having the lowest yields in the body part extraction experiment i.e., small, chitinous structures with very little soft tissue within. Thomsen et al., 2009, highlighted that insect groups other than beetles may yield higher levels of DNA as their chitinous exoskeleton is less thick and resilient. Of the very few examples of bark beetle remains successfully recovered from palaeoenvironmental samples, the most commonly preserved body parts consist of head and elytra tissues (Brunelle et al., 2008). Here, despite their 'hard' chitinous nature, these tissue types yielded moderate levels of DNA (46.2 ng/µl *D. ponderosae* and 19.5 ng/µl in *D. pseudotsugae*) during the body part extraction experiment, suggesting that if they are deposited, then they should provide levels of DNA sufficient to be detected by DNA-methodologies.

2.2.2. Biomass

Environmental DNA or sedimentary DNA is typically comprised of a complex mixture of DNA from a wide range of organisms (Taberlet et al., 2018), therefore, we must also consider how the total biomass from multiple individuals or populations of the target organisms coupled with the abundance of signals from non-target species may impact on DNA methodologies. With the exception of two notable examples presented by Brunelle et al., 2008, the majority of beetle remains successfully recovered from palaeoenvironmental samples were from large-scale, widespread outbreaks of the 20th Century, whereby masses of beetles are known to have accumulated (Morris et al., 2015; Eisenhart and Veblen, 2000). This suggests high concentrations of beetles becoming incorporated into depositional environments is rare. Another component of DNA deposition concerns the differences in the life histories of target pests (Barnes and Turner, 2016). Bark beetles spend the majority of their life beneath the bark of host trees, only leaving for a brief flight to a new host. As such, the period of time by which beetles are freely in the environment and can become incorporated into lake sediments is disproportionately limited.

Bark beetles can only survive for several day to a few weeks outside a host tree due to energy depletion and/or predation (Buyers and Löfqvist, 1989; Pope et al., 1980). As such large masses of bark beetles outside of the safety of the host tree is likely a rare occurrence. This may explain why examples of intact adult bark beetle accumulations within lake sediments are rare (Sturtevent, et al 2013; Morris et al., 2015; Schmid and Frye, 1977). In comparison, budworms spend their life history feeding on external plant tissues (needles, cones, and seeds). As such,

they are more exposed to the environment and therefore the chance of them becoming incorporated into lake sediment is likely higher than bark beetles (Girona et al., 2018).

In addition to the biomass of the target species we must consider the biomass of the non-target species which are also contributing the DNA signatures. The forests of the Pacific Northwest are some of the most productive of any temperature ecosystem and palynological reconstructions from this region show constant and persistent dense coniferous forest ecosystems since the Last Glacial Maximum, with overmature, dense stands becoming common as a result of fire suppression throughout the 19th and 20th Centuries (Minckley and Long, 2016; Fettig et al., 2007). Therefore, we must consider the levels of terrestrial and lacustrine vegetation biomass contributing to lake sediment deposits, which ultimately determine the levels of total DNA (Barnes and Turner, 2016). The matK assay (Kim et al., 2018) demonstrated that vegetation DNA could be recovered from all sites. However, as levels of eDNA have been shown to correlate with biomass (Barnes and Turner, 2016; Bohmann et al., 2014) the low levels of target DNA detected here could be due to the dense vegetation found in the immediate vicinity of all sites overwhelming target species DNA. This has been shown to occur in other studies of plant-sourced DNA (Pedersen et al., 2013), whereby a high abundance of dominant taxa overwhelmed the presence of rarer taxa, despite their presence confirmed with macrofossil analysis.

2.2.3. Taphonomy and the DNA 'catchment'

Studies aiming to identify the DNA 'catchment' suggest the source area for DNA input is directly correlated with the hydrological catchment, and sites whereby processes such as overland flow, in wash, and run off occur, produce DNA records more closely affiliated with pollen/macrofossil data (Edwards, 2020; Alsos et al., 2018). Sites with minimal in/out wash of allochthonous material incorporated into the sediments via these taphonomic processes tend to overrepresent species from within lake sources (Parducci et al., 2019). The understanding of the taphonomic processes associated with pollen and macrofossil analyses have become increasingly sophisticated over the last 50 years as the mechanisms of production, dispersal, representation, and preservation have been increasingly considered (Wilmshurst and McGlone, 2005; Bennett and Willis, 2002; Campbell, 1999; Sugita, 1993; Pennington, 1979). Evaluations of how the size, geography, and catchment characteristic of a lake site affect DNA recovery has not been explored experimentally (Parducci et al., 2019). To attempt to quantify the DNA catchment area of plant material, Alsos et al., 2018, used metabarcoding of the upper 2cm of

lake sediments at 11 sites across Norway and compared the results to plant surveys conducted in the vicinity of the lake. Plants found less than 2m from the lake edge were detected 73% of time, which declined to just 12% of plants identified at 50m from the lake edge. While this study concerns plants and not more mobile species such as forest insects, it tends to suggest that DNA signals are more akin to macrofossil remains, producing more localised representations. This poor understanding of DNA taphonomy has attracted great criticism (Birks and Birks, 2016). It is expected that the development of sedaDNA methods will help this field undergo similar studies on the underlying principles of taphonomy, adding to the authenticity and validity of future results. The greater number of potential positive amplifications from Pyramid Lake than at Summit Lake further highlights the role that topographic features within the catchment may play in determining the source area for DNA.

2.2.4. False negatives

One drawback of sedaDNA-based methodologies is the occurrence of both true and false negatives (Burian et al., 2021). The results from the sedaDNA analysis highlight the potential for the occurrence of both of these types of results. A well-designed assay with high primer efficiency and low limits of detection, such as those generated within this thesis, imply that if no DNA from target species is detected, we can have a good degree of confidence that the target is not present, although (as for any sampling methods) the uncertainty of negative results in higher.

The date attributed to the 8mm sample at Pyramid Lake ranges from 1867-1918 AD, suggesting the 4mm and 6mm samples are more recent and could, therefore, coincide with ADS data. However, there were no positive qPCR amplifications for any target species within the 4mm and 6mm samples, despite a great number of *D. ponderosae* outbreaks documented within this time period. ADS data shows that Summit Lake has been completely decimated by *D. ponderosae* outbreaks for the entirety of the survey period. Outbreaks occur in nearly every decade of the record and in close proximity to the lake, however, no *D. ponderosae* was detected using the Dpond protocol. The surface sample at Little Monon Lake dates to 1800-1898 AD and, therefore, predates the beginning of the ADS dataset. In addition, no positives were identified at any depth using the Dpond, Dpsuedo, or Chorist qPCR protocols at Little Monon Lake. As such, our knowledge of historic pest outbreak occurrence beyond the timeframe of the ADS survey remains limited. Fossil pollen records from the nearby Breitenbush Lake (Minckley and Long, 2016) show this area has been continually forested by

suitable host species which could support beetle populations. Fossil charcoal records reveal Little Monon Lake has been subjected to near constant fire throughout its' history. However, as there is no ADS data for this time period, it is difficult to assess whether this negative is true or false.

To date, the greatest levels of DNA recovery has been from frozen or near frozen, anaerobic, pH neutral, and/or dry sediment (Edwards, 2020; Parducci et al., 2019). As a result of high elevation, there are great seasonal temperature fluctuations at the three sites examined in this study, ranging from below freezing during winter months to above 40°C during the summer months. While these conditions are not necessarily experienced on the lakebed, with most literature suggesting that the sediment surface is always exposed to the coldest waters (Parducci et al., 2019; Sobek et al., 2009), it can't be discounted that seasonal fluctuations in temperature of the surface sediments may have been detrimental to DNA preservation (Edwards, 2020). Therefore, our qPCR protocols were intentionally designed to amplify short fragments, of ~85 bp in length, which proved long enough to be species-specific but short enough to allow for DNA degradation with time or from poor preservation conditions (Saito, 2021; Wei et al., 2018).

One further potential reason for a lack of additional positive amplifications within my sites concerns the introduction of several potent PCR inhibitors commonly found within lake sediments (Schrader et al., 2012). Humic acids, salts, and proteins have all been shown to delay PCR and qPCR amplification resulting in erroneously low estimates of DNA abundance and/or false-negative results (Schrader et al., 2012; Lloyd et al., 2010; Yeates et al., 1997; Kreader, 1996). During as assessment of the potential introduction of PCR inhibitors at my sites, Summit Lake was the only site whereby samples containing no eDNA amplified in the same cycles as those containing eDNA. Samples containing eDNA at both Pyramid Lake and Little Monon Lake amplified later. This suggests a certain degree of inhibition at Pyramid Lake and Little Monon Lake, although likely not sufficient levels of inhibition to completely avoid amplification. In fact, while Pyramid Lake contained the 'highest' level of PCR inhibition according to the dilution test, however, two sets of positive amplifications were recovered from this site. No positive amplifications occurred at Little Monon Lake which had moderate levels of PCR inhibition. There was, therefore, no correlation between sites that had positive amplifications within sedaDNA and low levels of PCR inhibitors. A crucial step within designing PCR/qPCR assays from sedaDNA should check for potential PCR inhibition before

increasing the concentration of template eDNA within the PCR/qPCR reaction, as one would think they are increasing the abundance of target species, but they could also be increasing the abundance of PCR inhibitors. (Schrader et al., 2012)

2.2.5. DNA degradation

Perhaps the most important discussion that arises from the results observed in the DNA section of this thesis concerns the effects of cellular degradation on the recovery of DNA derived from environmental samples (including eDNA, sedaDNA, aDNA) as this is still a key component of this field that requires further understanding. Several potential positive amplifications of D. ponderosae were obtained from Pyramid Lake. These products incurred a consistent Tm but one that was ~1.6-2°C higher than reference tissue for *D. ponderosae*. In addition, Sanger sequencing failed to produce sequences of sufficient quality to confirm the identify of these positive amplifications. Initially, it was concluded that these positive amplifications must belong to an unsequenced, closely related species of *D. ponderosae*, however, I believe these results can be explained by exploring the characteristics of DNA degradation associated with historic samples. Upon death of an organism, the processes associated with cellular repair no longer occur. With regards to the retrieval of DNA from historic or ancient sample, this degradation manifests itself in three primary ways: sequence fragmentation or shortening, the occurrence of damaged regions which block polymerase replication, and/or nucleotide modifications which lead to the misreading of DNA by the polymerase (Dabney et al., 2013). The greater the period between death and retrieval of DNA or unfavourable depositional conditions both increase the likelihood of such degradation and drastically reduces the chances of recovering DNA of sufficient quality to analyse (Pääbo, 1989). Consequently, these factors become a particular concern within studies concerning historic samples. In the context of the results observed at Pyramid Lake, sequence modification could have led to nucleotide changes within the product, resulting in a slightly different melting temperature to that of modern reference material. In addition, deamination has been shown to produce high levels of baseline noise in various sequencing platforms (Chen et al., 2014; Hofreiter et al., 2001) explaining the inability to generate sufficient sequences to fully confirm that these positive amplifications are associated with the target organism.

These uncertainties highlight one of the major limitations associated with environmental DNA and further research needs to be done in order to fully understand the effects degradation has on the ability to recover and study DNA from historic samples. Despite this, I believe the results

outlined in this thesis demonstrate the rapid advancement of our understanding of such limitations and the final section of the discussion aims to present the potential role of DNA-based methodologies in addressing palaeoecological questions.

2.3. The potential role of DNA-based methodologies in palaeoecology

The earliest studies utilising sedaDNA are less than 25 years old (Coolen and Overmann, 1998), with most of the major developments concerning these methods occurring only in the last 10 years (Crump, 2021; Edwards, 2020; Pedersen et al., 2013). This study has presented just one method of addressing sedaDNA-based questions, a SYBR Green qPCR assay, which is highly suited to assessing the presence of single species or small groups of known targets such as the Dendroctonus spp. bark beetle presence across the Pacific Northwest. This technique has been shown to have higher sensitivity in detecting rare taxa than other DNAbased methodologies (Harper et al., 2018) and was chosen as the most appropriate method of addressing the research questions within this study. It must be highlighted that qPCR is just one option within the array of DNA-based methodologies and that other methods may be favoured, dependent on the objectives and targets of each individual research study. Methods involving high-throughput sequencing (HTS) such as DNA metabarcoding can be used in conjunction with sedaDNA to provide information on whole communities (Hatzenbuhler et al., 2020; Singer et al., 2020; Harper et al., 2018; Deiner et al., 2017). Future studies of identifying historic disturbance by biological agents maybe benefit from the use of these HTS techniques to provide further information on how populations of taxa change through time and how these changes coincide with changes inferred from other proxy datasets.

The final section aims to summarise the lessons learned from within this thesis and the wider literature to outline the key advantages of DNA-based methods, which further emphasise their applicability and potential role within palaeoenvironmental studies, with an emphasis on sedaDNA.

Direct detection of the agent(s)

This thesis has demonstrated that most existing methods of detecting historic insect pathogen outbreaks rely on the indirect detection of the agent, observing the effects they inflict on the environment, rather than the agent themselves. As such, these signals need to be of a great enough magnitude to significantly alter the forest communities and produce an 'outbreak' signature within the chosen proxy. This has led to an overall bias within the literature towards the detection of highly severe, large-scale outbreaks. The greatest advantage of DNA-methods is that they involve the direct detection of the agent or agents i.e., if DNA from the target species is recovered, we can confirm the presence of that species, in that location, at that point in time. As we are directly detecting the agent, it is possible that they can be detected at lower abundances than those observed indirectly, as we are not reliant on the production of outbreak signatures in other proxy datasets. Methods of direct detection have been developed for a wide range of species and sources (Le Blanc et al., 2020; Harper et al., 2018; Rees et al., 2014; Xavier et al., 2010; Ficetola et al., 2008; Whiteman et al., 2002;) and are becoming a readily used technique within palaeoenvironmental science. This thesis has generated several robust, highly specific qPCR protocols for the direct detection of *Dendroctonus ponderosae*, *Dendroctonus pseudotsugae*, and *Choristoneura* spp. within the Pacific Northwest region, with promising results, which we believe will serve as a highly valuable tool in assessing their current and historic abundance and deepening our understanding of forest pest dynamics.

Flexibility in assay design

Protocols can be designed to target single species (as per the Dpond and Dpseudo protocols), multiple species, genera (as per the Chorist protocol), or even families, with primer design being the controlling factor on the specificity of amplicons. Primers within multiplex assays are designed to amplify the same region in multiple species whereby there is variation in the amplicon (Wood et al., 2020). High-resolution melting (HRM) can be used, in conjunction with positive controls for target species, and sequencing, to confirm presence within the sample (Minett et al., 2021; Robinson et al., 2019; Robinson et al., 2018). Study sites whereby species presence and abundance are largely unknown, such as *Choristoneura* spp. across Oregon and Washington, may opt for a genus-specific primer assay which can detect all species within those genera.

High sensitivity

Limits of detection (LOD) refer to the lowest concentration of template that can be detected (Klymus et al., 2020) and are used as a measure of the sensitivity of assays. This is particularly useful when remains are too poorly preserved for taxonomic identification. As well as limits of detection, high sensitivity can also refer to the identification of samples to the lowest taxonomic group, which has proven particularly advantageous when reconstructing floras. Due to morphological limitations, pollen assemblages are often restricted to genus or family level

(Birks and Birks, 2016) with very few taxa routinely identified to species and sub-species level. Much work (Alsos et al., 2018a; Alsos et al., 2018b; Edwards et al., 2018; Willerslev et al., 2014; Bennett and Parducci, 2006 and) has been conducted on increasing the resolution of several key taxa (Poaceae, Cyperaceae, *Pinus, Alnus, Betula*) to provide more detailed palaeoenvironmental reconstructions through the identification of more taxa to species level, either via increased abundance of reference sequences or more thorough filtering processes. These advancements facilitate more comprehensive assessments as the different species within a genus may require varying conditions which help to build a picture of the environmental conditions.

DNA as an additional 'proxy'

The methods associated with DNA recovery (i.e., coring, subsampling, sampling strategies) are near identical to existing palaeoecological methods that analyse charcoal, pollen, macrofossils, tephra, etc. Samples obtained for DNA analysis are the same, for example, as bulk sediment samples taken for radiocarbon dating (Bennett and Parducci, 2006), the only difference is that sterile conditions when coring and subsampling must be maintained to limit contamination. The protocols outlined in this thesis obtained material for radiocarbon dating, charcoal, DNA, and tephra, utilising the same methods of coring and subsampling. Additional proxies such as pollen and macrofossils could also have been sampled to provide additional ecological information. When correct sedaDNA sampling methods are followed, samples intended for DNA-based methodologies are of no greater risk of contamination that any other type of analyses (Edwards, 2020). Studies which utilise molecular ecology and palaeoecology techniques have shown clear benefits in reconstructing environmental change (Parducci et al., 2019). DNA, therefore, can be considered as an additional proxy source of information within existing multiproxy approaches (Dzombier et al., 2021; Polling et al., 2021; Parducci et al., 2020; Parducci et al., 2015).

Detection in modern and palaeoenvironmental samples

This thesis was concerned with the reconstruction of historic insect outbreaks. However, the qPCR assays designed for *D. ponderosae*, *D. pseudotsugae*, and *Choristoneura* spp. could readily be used in a biomonitoring capacity in modern samples. For example, downstream sampling to detect outbreaks at higher elevations, which has successfully been achieved in riverine environments (Muha et al., 2019; Wacker et al., 2019; Pont et al., 2018; Deiner and

Altermatt, 2014) or the metabarcoding of surface samples across a wide spatial area. This drastically reduces the cost of traditional surveys and facilities the measurements of species abundances in areas too dangerous to sample by traditional means (Crookes et al., 2020). The designing of primer sets to amplify short fragments accommodates degradation in older samples, allowing the same protocols to be used in both modern and palaeoenvironmental samples (Opel et al., 2006). DNA-based protocols are readily use in modern samples, to provide low effort, non-destructive methods of assessing biodiversity, and in a reconstructive capacity, to assess late-Pleistocene and Holocene environmental change. However, to our knowledge, there are no current examples of a qPCR protocol specifically designed to assess the abundance of a species in both a modern and reconstructive capacity. Studies show that DNA-based methodologies can span the timeframes concerned with most palaeoenvironmental reconstruction, with DNA successfully retrieved from terrestrial sediments aged 400 ka BP (Willerslev et al., 2003; Lydolph et al., 2005) and from frozen environments aged 800 ka BP (Willerslev et al., 2007). These methodologies are seemingly limited by degradation of DNA which varies by source and environmental conditions post deposition.

The ability to detect all life stages of the target organism

Some species are typically only distinguishable as adults, and even then, species-specific distinction is not always possible as adults, even in modern specimens (Pochon et al., 2013). Therefore, methodologies which can detect and identify specimens at larval or instar stages provide results with higher resolution than those identified taxonomically (Andruszkiewicz Allan et al., 2021; Deiner et al., 2017; Parducci et al., 2017).

The ability to detect samples too poorly preserved for taxonomic ID

DNA-studies do not rely on levels of preservation required to taxonomically identify morphological characteristics. Instead, if DNA is present, it can, in theory, be detected (Deiner, 2017). Degradation can be attributed to a wide range of factors, including age, environmental conditions, or other biological processes. Morris et al., 2015, highlighted that one possible reason for the lack of Holocene bark beetle remains could be that carcasses are eaten by fish before they become incorporated into sedimentary archives. The use of DNA-based methodologies implies that even if a beetle has been eaten by fish, or a tree containing beetle remains falls into lake, its DNA could still become incorporated into lake sediment, and detected. Several reviews have also highlighted a measurable decline in taxonomic expertise and identification skills across many fields (Oliveira et al., 2011; Boonham et al., 2008; Hopkins and Freckleton, 2002). While this is a growing concern within paleoenvironmental science, and one that needs addressing, the advantages of DNA-based methodologies is that they do not require any prior knowledge of the target species (Deiner et al., 2017).

Standardisation of protocol

All aspects of DNA-based methodologies, including extraction protocols, primer sets, PCR conditions, number of replicates, could all in theory be standardised (Loeza-Quintana et al., 2020), whether through metabarcoding, single, or multiplex assays, the creation of named/standardised protocols for species or groups of species. This would also address a major disadvantage of palaeoecological science outlined in the General Introduction, that a lack of standardised protocols and thresholds for disturbance, fail to facilitate the fair comparison of results across studies and/or sites. While a drive for standardisation of DNA methodologies is currently ongoing (Loeza-Quintana et al., 2020; Harper et al., 2018), it seems that the abundance of variables associated with each research study (target species or group of species, sample type, budget) may limit the potential for standardisation. Other paleoenvironmental methods, such as pollen analysis, have become standardised in their preparation methods (see Moore, 1991) and it is hoped that as the field develops, we can work towards some level of standardisation as seen in other areas of the field.

2.4. DNA conclusion

DNA-based methodologies have revolutionised the field of Quaternary science through the retrieval of target species DNA from a wide range of depositional environments, overcoming the need for sufficient levels of preservation and taxonomic skills required for species identification from macrofossils. The protocols designed within this thesis have both high-specificity and low limits of detection, yet an underwhelming number of positive amplifications were obtained. Only two sets of potential positive amplifications occurred prior to the period covered by the ADS dataset whereby the Dpseudo protocol identified several positive of *D. pseudotsugae* at Pyramid Lake between 543 and 473 yr BP and the Dpond assay identified several positives of an unsequenced species at Pyramid Lake ranging in age between 752 and 896 cal yr BP. Despite an overwhelming consensus in the literature that current outbreaks of *Dendroctonus* bark beetles are unprecedented and that the habitable range suitable to supporting such large insect populations is increasing due to climate change (Morris et al., 2015), it seems highly unlikely, given the abundance of suitable host trees across all of the sites chosen within this thesis, that insect outbreaks have only been impacting these sites for

the last Century and for a brief period between 752 - 896 and 543 - 473 cal yr BP. It is therefore more likely that some aspect of the site selection, sampling methodology, or DNA protocols, led to a failure to detect insect outbreaks throughout the time periods associated with this study, emphases by the much more closed catchment of Pyramid Lake experiencing higher levels of DNA recovery.

It has been highlighted in the literature (Dickie et al., 2018; Klymus et al., 2020) that the fields of eDNA, aDNA, and sedaDNA research are still in their infancy, therefore, the reporting and discussion of negative results such as these are integral in bettering our understanding of the mechanisms and behaviour of sedaDNA signals. Despite an overall lack of positive amplifications, it must be highlighted that there have been several key lessons learned with regards to the catchment dynamics and source areas of DNA, notably the identification of key factors which influenced the detection of *D. pseudotsugae* within the surface sample at Pyramid Lake while a nearby outbreak of *C. occidentalis* was not detected. In addition, the newly designed qPCR assays for *D. ponderosae*, *D. pseudotsugae* and *C. occidentalis* all show great potential in the detection of their respective targets' DNA with a wide range of environmental samples.

As discussed in the beginning of this chapter, the original aim of this study was to produce a pollen-based calibration of known insect disturbance events obtained from ADS survey data. To limit the potential for human activity influencing the interpretation of this calibration, higher elevation sites were favoured, which seemingly led to much lower sedimentation rates expected and to those found at lower elevation sites. Building upon the deeper understanding of sedaDNA behaviour obtained within this thesis, future studies, at lower elevation sites, with higher sedimentation rates may provide better sampling resolutions and time intervals with which to further develop these methodologies.

3. Charcoal

3.1. BackgroundCHAR and peakCHAR

Minckley and Long et al., 2016 and Tweiten et al., 2009, have both highlighted that direct comparison of fire episodes between studies is problematic due to the differences in temporal resolution of each record type, namely, the annual resolution of tree-ring data versus sedimentary methods which analyse periods of time dictated by the subsampling strategy. One novel set of analyses performed on the raw charcoal data was a decomposition of the data into

a simulated annual resolution using age-depth models to ascribe CHAR values between known points of data. This facilitated the application of varying sizes of continuous running means to identify levels of *backgroundCHAR* and the calculation of mean fire return intervals comparable with those obtained from annual dendroecological methods. This resulted in a high-resolution analysis strategy which could be widely implemented using the data already typically used for fire reconstructions i.e., raw charcoal counts, CHAR, and age-depth models.

Methods used to calculate *background CHAR* typically implement running means with window sizes of between 500 to 1000 years based on sampling intervals of 1cm (Minckley and Long, 2016; Minckley et al., 2007; Millspaugh et al., 2000; Long et al., 1998; Cleveland, 1979). When windows are too small, *backgroundCHAR* tends to track *peakCHAR* too closely which can lead to a lack of distinct peaks and an erroneous estimate of the number of total fire events. This highlights a balance that must be considered between only detecting high severity events and producing records which class the entire series as a fire event due to the similarity in both *backgroundCHAR* (Long et al., 1998). The above parameters are based on a sampling resolution of 1cm, therefore, due to the high-resolution 2mm sampling methodology used throughout this thesis, a range of 200-yr, 150-yr, and 100-yr running means were tested to provide comparable versions of the parameters outlined above.

Fire events were identified whereby the ratio of *peakCHAR* to *backgroundCHAR* exceeded a certain value, deemed the 'fire event' threshold, which is a measure of when the peak component exceeds the background component within the dataset. There is no agreed upon threshold for the identification of fire events within the literature. Millspaugh and Whitlock (1995), developed a calibration of an event threshold based on the parameters that would identify periods of known fire obtained from dendroecological records, however, no tree ring data was not available for this study and could not be used to calibrate the event threshold in my samples. Instead, it was the analysis of Long et al. (1998) which aided the selection of the event threshold parameter for this study. An analysis of Little Lake, Coast Range, Oregon, (210m a.s.l. in the *Tsuga heterophylla* Zone), tested various events thresholds (1, 1.05, 1.12, and 1.2), with *backgroundCHAR* calculated using a 600-yr running window (Long et al., 1998). These various events thresholds were applied to a 9,000-year record of CHAR at Little Lake, and detected 18, 14, 8, and 5 peaks, respectively. Despite identifying the greatest number of events, both the 1 and 1.05 indices were dismissed, as they produced mean fire return intervals of 110 years, or less, which they deemed unlikely considering the typical large, infrequent

stand-replacing fire behaviour of the moist temperate *Tsuga heterophylla* forests of the Coast Range and several published fire reconstructions in a similar vegetation zone (Agee, 1993; Agee, 1990). In contrast, the threshold of 1.2 identified only 5 events which included a 1,700 'fire-free' period, which they also considered unlikely for this vegetation type. Consequently, a threshold of 1.12 was chosen as these parameters reflected the expected fire regimes based on current composition and behaviour of these temperate forest ecosystems. A criticism of this method could be how appropriate it is to base the parameters for reconstructions of this area (such as Long et al., 1998), show very little change in specues composition and abundance which justifies the choice of such parameters.

To assess how these varying event indices affected the number of events identified within my data, the same event thresholds of 1, 1.05, 1.12, and 1.2, used in Long et al., (1998), were applied to the CHAR records for Little Monon Lake, Pyramid Lake, and Summit Lake, using the 100-yr running mean as a source of backgroundCHAR. There was a great disparity in the results using the range of 1 to 1.2 as events thresholds. There was a 62% reduction in events identified at Little Monon Lake (65 events where index = 1 versus 25 events where index = 1.2), a 32% reduction in events identified at Pyramid Lake (79 events where index = 1 versus 54 events where index = 1.2), and a 55% reduction in events identified at Summit Lake (72) events where index = 1 versus 33 events where index = 1.2). While detecting the 'highest number' of events does not necessarily reflect the highest quality reconstruction, an event threshold of 1 was chosen for this study for several reasons. Firstly, the abundance of fire reconstructions from this region show that fire is a common disturbance process within the Cascade Range and fire intervals are common in this area (Walsh et al., 2010; Long et al., 2007; Briles et al., 2005; Weisberg et al., 2003; Long et al., 1998; Teensma, 1988). Second, the vegetation types of the sites chosen within this thesis, such as the nearly pure stand of P. contorta at Little Monon Lake, experience both episodic high severity stand replacement fires, as well as frequent, small-scale fires, and too high an event threshold would fail to detect the latter of these fire types, skewing our understanding of total fire events. Thirdly, the mean fire return intervals produced using a threshold of 1 were comparable to both published reconstructions at nearby sites and in reconstructions of similar vegetation types, which was a key component in the decision making of Long et al., 1998. For example, the mean fire return interval for Little Monon Lake, the site dominated by nearly pure P. contorta stands, were calculated as 36.6 years, which compares to a range of 22 to 67 years across similar sites in

Montana, USA, Wyoming, USA, and Alberta, Canada (See Table 4.4). And finally, it seemed counterintuitive to produce such a high sampling resolution and fine running mean and then choose a high event threshold which would only detect large events as this would contradict one of the key themes within this thesis, which is to readdress the imbalance within the published literature of a bias towards the detection of large-scale, high severity events. Instead, we chose a methodology that would result in the more accurate detection of fire events at all levels within the fossil charcoal assemblage, including small, less severe, or more localised events.

3.2. Fire return intervals

Accurate methods of identifying fire return intervals are integral to understanding fire regimes, stand composition, structure, and population demographics (Ford et al., 2010; Cwynar, 1987). Mixed-aged stands occur as a result of low to medium severity fires as only groups of trees within the stand burn, while single-aged stands occur from stand replacement fires, whereby the entire stand burns (Morrison and Swanson, 1990). As stands age they become more flammable, due to increased density, over maturation, or insect attacks that leave large areas of standing dead trees (Lotan et al., 1988), therefore, longer fire intervals fires tend to result in high severity fires when they do burn. The novel use of the simulated continuous record to produce return fire intervals resulted in fire return intervals comparable to those obtained using traditional dendroecological method with annual resolution (See Table 4.4). Pinus contorta (lodgepole pine) is relatively abundant across eastern regions of the Pacific Northwest (Lotan et al., 1985) with its' presence attributed to the repeated interruption of successional patterns by fire, leaving pure stands of fire-dependent Pinus contorta (Perry and Lotan, 1979; Brown, 1975). Fire dynamics within *Pinus contorta* forests are described as 'all or nothing', occurring as either smouldering, creeping burns across the forest floor, or rapidly moving, intense, stand replacement crown fires (Lotan et al., 1995). A rapidly growing, fire-tolerant species, P. contorta, usually capitalises on these intense fire events to become dominant species. Little Monon Lake, and the surrounding Olallie catchment, is an example of an area characterised by pure P. contorta stands. Published fire reconstructions from pure P. contorta stands in the Rocky Mountains (Tande, 1979; Arno, 1976; Gabriel, 1976; Loop and Gruell, 1973, Day, 1972) calculated mean fire return intervals from tree ring data which range between 22 and 67 years. The mean return interval for Little Monon Lake, as calculated by the simulated annual resolution method using a running mean of 100-yrs and an event threshold of 1.0, ranged from 22.8 years in the period 1,499 – 1,000 yr BP to 83.2 years in the most recent 500-year period,

with an average for the entire record of 36.6 years (See Table 3.6 in Results and Table 4.4 below), making these results comparable with published reconstructions. The mean fire return interval for Pyramid Lake and Summit Lake were less similar to published reconstructions of similar ecological zones (Minckley and Long, 2016; Long et al., 1998; Morrison and Swanson, 1990). The records for Pyramid Lake and Summit Lake suggest a mean fire return interval of 41.3 and 22.4 years, respectively, compared to a range of 95 to 280 years found in other mixed conifer sites in the Coastal Range and Cascade Range. Pyramid Lake, Summit Lake, Cook-Quentin Study Area, Deer Study Area (Morrison and Swanson, 1990), Breitenbush Lake (Minckley and Long, 2016), and Little Lake are all mixed conifer stands in the Cascade Range and Coastal Range of Oregon (Long et al., 1998). As these are mixed conifer stands, fire behaviour of each area will vary by the abundance of each conifer species and their respective fire tolerance and behaviour, leading to a greater variation in return intervals that in pure stands, whereby fire behaviour of single species can be more predictable. This suggests it may be less straightforward to determine measurements of mean fire return intervals in mixed conifer stands than in stands dominated by single species.

	FRI	Dominant vegetation	Reference
Little Monon Lake, OR	36.6 years	P. contorta	This study
Pyramid Lake, OR	41.3 years	Mixed conifer	This study
Summit Lake, OR	22.4 years	Mixed conifer	This study
Bitterroot Valley, MT	22 years	P. contorta	Arno, 1976
Jasper National Park, AB	27 years	P. contorta	Tande, 1979
Bob Marshall Wilderness, MT	40 years	P. contorta	Gabriel, 1976
Jackson Hole, WY	50 years	P. contorta	Loop and Gruell, 1973
Rocky Mountain Foothills, AB	67 years	P. contorta	Day, 1972
			Morrison and Swanson,
Cook-Quentin Study Area, OR	95 years	Mixed conifer	1990
Deer Study Area, OR	149 years	Mixed conifer	"
Breitenbush Lake, OR	280 years	Mixed conifer	Minckley and Long, 2016
Little Lake, OR	230	Mixed conifer	Long et al., 1998
South Santiam, OR	50	Mixed conifer	Stewart et al., 1984

Table 4.4 Comparative summary of return fire intervals across western North America, by vegetation type, against Little Monon Lake, Pyramid Lake, and Summit Lake.

3.3. Fire history across the Pacific Northwest

There is an overall lack of published fire regimes for the Cascade Range, making thorough discussion of the patterns of fire behaviour observed at Little Monon Lake, Pyramid Lake, and Summit Lake, in relation to other sites across this region difficult. However, within the fire reconstructions which are available, there are some strong correlations with the fire regimes of my sites.

The only existing published fire reconstruction in the central Cascade Range, Oregon, is derived from Breitenbush Lake and consists of a multiproxy reconstruction of vegetation and fire derived from pollen and charcoal data obtained from lake sediments (Minckley and Long, 2016). Breitenbush Lake sits 3.2 km southeast of Little Monon Lake, within the adjacent watershed and is located 1,678m a.s.l. within the Abies amabilis Zone, with major canopy species including Abies amabilis, Abies procera, Tsuga mertensiana, with smaller abundances of Picea engelmanii and Pinus contorta. This vegetation composition differs significantly from Little Monon Lake, which is dominated by nearly pure stands of *Pinus contorta*. The core obtained from Breitenbush Lake spans the last 13,400 years BP therefore we can compare the charcoal record over the last 2,500 years whereby it crosses over with the length of the Little Monon Lake record. During this period, CHAR indices from Breitenbush indicate a period of heightened fire activity around 2,000 yr BP, with CHAR values twice that of the average for the entire series (0.79 particles cm⁻¹ yr⁻¹ at 2,000 yr BP compared to an average of 0.39 particles cm⁻¹ yr⁻¹ for the entire series). This pattern is reflected in the Little Monon Lake record, with 5 events during this period and backgroundCHAR (Figure 3.24 in Results) values around 27 particles mm⁻¹ yr⁻¹, which is particularly high for Little Monon Lake. This compares to 2 events in the 2,000-2,100 yr BP period and 3 events in the 1,999-1,900 yr BP period observed at Little Monon Lake. Worona and Whitlock (1995), found at Little Lake, Oregon, an increase in Pseudotsuga menziesii and Abies spp. at 1,950 yr BP, which also suggest a drier period in the Coastal Range, which is atypical for this region and, therefore, suggests climate was a principal driver of a change in fire regime at this time as it seems to be simultaneous across much of Oregon.

There is an abrupt and dramatic decline in fire activity ~700 yr BP observable across all three CHAR records in this study (Little Monon Lake, Pyramid Lake, and Summit Lake), however, levels of CHAR remain high for Breitenbush between 2,000 yr BP and present. Pollen analysis of Breitenbush Lake indicated that the median canopy:understory pollen ratios remained fairly constant through this time, suggesting that fire episodes resulted in little to no change to forest

structure (Minckley and Long, 2016). Interestingly, the major shifts in pollen assemblages at Breitenbush Lake coincide with periods of very little to no fire activity. *Tsuga* spp., *Abies* spp., and *Picea* spp., which are all found at Breitenbush Lake, are thin barked species mortally susceptible to mid- to -high-severity fires (Agee, 1993). There are also quick to grow and recover from such events, with pollen production returning to full capacity in less than 20 years (Cruz and Alexander, 2010) therefore, pollen records do not always show the changes these types of fires inflict on forest community structure. It is therefore possible that the pollen records at Breitenbush Lake were either overwhelmed by more regional pollen signatures which effectively 'hid' the taxa lost to fire, or that the sampling resolution failed to identify declining abundances of burnt species, instead, capturing time periods whereby the pollen production of affected species had recovered.

The only other fire reconstruction within the Cascade Range was produced at Battle Ground Lake, southwestern Washington (Walsh et al., 2008). The site is situated further north within the Cascade Range and much lower elevation than the sites within this study. Although this site is further north than the sites studied within this thesis, the vegetation type is typical of the Tsuga heterophylla Zone, dominated by Pseudotsuga menziesii, Thuja-type, Tsuga heterophylla, Abies, and Alnus rubra. While, the vegetation types are not analogous to my sites, a reconstruction of Holocene fire, vegetation, and climate (Walsh et al., 2008) revealed a period of heightened fire activity between, 1,500 yr BP and 700 yr BP which was the highest observed within the last 4,000 years at Battle Ground Lake. This period of high fire activity between 1,500 and 700-yr BP is observable in both the Summit Lake and Little Monon Lake records. At Little Monon Lake, a large peak in CHAR around 1,450 – 1,500 yr BP is observed in all size classes. At this time, CHAR values in the >500 μ m and 250-500 μ m size classes are 2x the values found throughout the rest of the series, with values of 1 and 10 particles mm⁻¹ yr⁻¹, respectively, indicative if a highly severe localised fire at Little Monon Lake. There is also a high fire activity towards the end of this period at Pyramid Lake, however, overall fire activity is far less than that observed at Little Monon Lake and Summit Lake. This time-period of heightened fire activity coincides with the Medieval Climate Anomaly (MCA) whereby temperatures were comparable, or even higher than those observed in the 20th Century (Mann, 2002). Evidence derived from tree ring records (Cook et al. 2004; Graumlich, 1993) and lake sediments (Brunelle and Whitlock, 2003; Mohr et al., 2000) suggest the MCA in North America was characterised by increased aridity and warmer temperatures, which would

effectively extend the fire season and also increase the weather conditions suitable for fire (Walsh et al., 2008).

Following the period of heightened fire activity at Battle Ground Lake there was a rapid decline in fire activity, with only three major fire episodes occurring over the last 700 years, in 1350 AD, 1390 AD, and 1902 AD. This pattern is observable within the CHAR records for Little Monon Lake, Pyramid Lake, and Summit Lake, whereby all sites experience a rapid decline in CHAR values ~700 yr BP. During this period, fire return intervals at Little Monon Lake increase from 22.8 years to 83.2 years and at Pyramid Lake FRI increases from 37.0 to 91.8 years. Walsh et al., (2008) attributed the decline in fire activity at Battle Ground Lake to the effects of the Little Ice Age. The LIA would have had the opposite effect of the MCA, with cooler, wetter conditions leading to much shorter annual fire seasons and a suppression of conditions suitable for fire.

The reconstruction to Battle Ground Lake also consisted of a palynological reconstruction of vegetation. Interestingly, during the periods of both heightened fire activity between 1,500 and 700yr BP and drastically reduced fire activity in last 700 years to present, there was very little change in overall vegetation. Abundances of dominant species inferred through pollen analysis, show *Pseudotsuga, Thuja plicata*, and Poaceae, are found at the same levels throughout the MCA. This minimal change in vegetation was also observed during significant shifts in fire regime at Breitenbush Lake (Minckley and Long, 2016). Therefore, the short-term changes in climate must have been the predominant influence on fire regime, rather than longer term climate induced changes in vegetation, forest composition, or stand structure (Walsh et al., 2008).

In addition to reconstructions based on fossil charcoal remains, there are also several key fire reconstructions in the Cascade Range which utilise dendroecological methods. Morrison and Swanson, 1990, produced an 800-year (1150 to 1985 AD) reconstruction of fire history at two sites within the Willamette Valley using fire scars in tree ring records and clear-cut stumps as evidence of past fire events. The Cook-Quentin study and The Deer study area are both categorised as old-growth Douglas-fir stands, situated within the central western Cascade Range where the Cook Creek, Quentin Creek, and Blue River intersect, 6km northeast of the H J Andrews Experimental Forest. Reconstructed fire regimes between the two sites exhibit high variability, reflective of high topographic variation. The Cook-Quentin site is steeper and

more dissected, akin to the topography of Pyramid Lake, and experienced low to medium severity fires with an average return interval of 95 years. The Deer Study site, although within the adjacent watershed, has more gentle topography, akin to the topography of Little Monon Lake and Summit Lake, and receives more rainfall than Cook-Quentin and consequently has a slightly longer fire rotation period of 149 years, with the majority of these fires being stand replacement events. The advantage of dendroecological methods is that they provide annual resolution, allowing assessments of the duration of events. In addition, when multiple trees within a stand are analyses, it can provide information on spatial extent of the fire event. Interestingly, these sites both show a decline in fire activity $\sim 800 - 700$ yr BP. In the records for both the Cook-Quentin study area and Deer study area, Morrison and Swanson, (1990), identified a high-severity fire event $\sim 800 - 750$ yr BP, which lasted for 50 years. Following this period, there was a 250-year gap in fire activity, which is the longest fire free period found within the records at both sites. This distinct change in fire regime coincides with the beginning of the LIA which led to a dramatic change in fire behaviour across the Pacific Northwest, as inferred by the fossil charcoal records outlined above and then data obtained from my sites.

The comparison of fire regimes across the Cascade Range, Coastal Range, and Willamette Valley have revealed that despite high variability in both vegetation zones and catchment dynamics, they broadly show a similar fire behaviour i.e., higher levels of fire pre-700 yr BP, lower levels of fire between 700 yr BP and 200 yr BP, and then a steady increase in fire to the present. These results highlight that climate must be the primary driver of fire dynamics in this region, rather than vegetation.

3.4. Factors affecting charcoal production and deposition

The two principal factors which ultimately affect the amount of charcoal recovered from lake sediments, are firstly, how much charcoal is initially produced, and, secondly, the taphonomic processes that deliver charcoal to the lake and result in its' deposition (Higuera et al., 2010). An exploration of these factors highlights key results obtained from the fossil charcoal records at Little Monon Lake, Pyramid Lake, and Summit Lake.

The evidence obtained from Little Monon Lake Pyramid Lake, and Summit Lake, suggests the fire regimes of the central Cascades are highly variable. The number of fire events and mean return intervals identified from my data, vary considerably, as do the reconstructed fire regimes of this region discussed above. It seems on regional scales, climate has the greatest effect on

fire and vegetation, while topography and the spatial distribution of fuels and vegetation having the greatest impact on local scale (Merschel et al., 2018; Kellogg et al., 2008). For example, in the Cascade Range, characterised by high topographic variation and river-cut valleys, steep topographic features may either act as a barrier for the spread of fire or accelerants of fire spreading (Merschel et al., 2018; Taylor and Skinner, 2003). This means that widespread locations within more homogenous catchments, such as the Summit Lake catchment, may vary less than sites in proximity within highly variable catchments. For example, the fire return intervals of Deer Study Area and Cook-Quentin Study Area, vary by a factor of 2.4x, despite being 9km apart. An RFI of 96 years at Deer Study area versus 241 years at Cook-Quentin Study Area despite being of similar vegetation. This is likely attributed to the high variation in topography, elevation, climatic niches, and vegetation composition, found across the Cascade Range, which ultimately influence the abundance of fuel, 'fire weather', and how easily fires can spread (Rothermel, 1983).

Firstly, the amount of charcoal produced is directly correlated to the type of vegetation burned, the area burned, and the intensity of fire. The General Introduction contained a brief discussion regarding the fire behaviours of the major tree species associated with the forest communities within the Pacific Northwest (Tables 1.2 and 1.4). A coevolution of these species alongside fire has resulted in the development of fire behaviours and fire tolerances, the dynamics of which vary greatly. Species with very low fire tolerance, such as *Tsuga heterophylla* (western hemlock), have thin bark, shallow roots, and highly flammable foliage, therefore, when stands of *T. heterophylla* burn more individuals are likely to succumb to the fire event producing a greater abundance of charcoal. In contrast, highly fire tolerant species, such as *Larix occidentalis* (western larch) survive all but the most severe fires, due to their thick bark, open crown, and high canopy. The dominant vegetation at the sites chosen for this thesis consist of either fire-dependent species (such as near pure stands of *P. contorta* at Little Monon Lake) or species with low fire tolerance (such as *T. heterophylla* which form major components of the mixed conifer stands at Summit Lake and Pyramid Lake). Consequently, these species are both prone to burning, which explains the high levels of fossil charcoal recovered from all sites.

The controlling factor on the area burned, in addition to weather patterns, can be thought of as an extension of how the fire behaviour of individual species scales up to their relative abundance within a stand i.e., what proportion of a stand has high fire tolerance, versus low fire tolerance, are stands composed of single species of multiple species. Fire intensity is primarily a factor of climate, with cool wet conditions, such as those observed throughout the LIA result in an accumulation of fuels, resulting in high intensity fires when areas do eventually burn. The intensity of a fire greatly influences the dispersal of charcoal particles as this has been shown to directly correlated with the size of the plume and the abundance of material carried aloft (Whitlock and Larsen 2002). The Olallie catchment, within which Little Monon Lake sits, is characterised by densely-packed near pure stands of fire-dependent *P. contorta*, which at the time of sampling, the entire southern side of the catchment was burned, attributed to a high severity fire in 2001. This combination of a densely packed stand comprised of a single fire dependent species which has undergone several centuries of fire suppression illustrates the three controlling factors which result in large amounts of charcoal production outlined above. The distinctive peak in CHAR ~1,500 yr BP found within the Little Monon Lake fossil charcoal record could therefore be attributed to a similar scenario.

The second critical component to charcoal deposition concerns taphonomy. Taphonomy, or the processes involved between charcoal production and deposition, is not a concern within dendroecological-based reconstructions as the occurrence of fire is directly recorded by the fire scars within affected trees (Long et al., 1998; Morrison and Swanson, 1990), however, these considerations are integral to interpreting fossil charcoal records. There have been attempts to understand the dynamics associated with deposition of fossil charcoal by assessing the patterns of deposition from modern fires within lake sediments, in an effort to better understand how to interpret results from palaeoenvironmental reconstructions. In general, charcoal dispersal distance increases with wind speed and injection height and decreases with particle size and density suggesting that peaks in macroscopic charcoal occur when there is fire in the immediate watershed as larger, heavier particles travel shorter distances, and microscopic charcoal represent more regional signals (Gardner and Whitlock, 2001; Clark, 1988; Patterson et al., 1987). (Peters and Higuera, 2007). The catchment schematics which depict major topographic features (Figures 4.1 to 4.7) outlined in the DNA Discussion aimed to identify potential source areas for palaeoenvironmental material at Little Monon Lake, Pyramid Lake, and Summit Lake. These drainage characteristics which provided a strong correlation to the results observed within sedaDNA analyses, are also important factors in the mechanisms for charcoal transport. Little Monon Lake and Summit Lake have the most comparable fire histories of the sites chosen of this study. Firstly, the abundance of charcoal at these sites are considerably higher than the abundance of charcoal found at Pyramid Lake. The catchment dynamics of Little Monon Lake and Summit Lake highlight how the combination of a site dominated by species with low fire

tolerances and a large source areas resulted in the highest abundance of charcoal particles recovered from this site as well as the higher number of events identified, relative to length of the record. Pyramid Lake contained the highest number of positive sedaDNA amplifications yet had the lowest abundance of charcoal with less fluctuation in fire activity than the records for Little Monon Lake and Summit Lake. The variation in results for these differing proxies suggest that ideal site selection may vary by proxy, depending on the nature of the material required for analysis (Edwards, 2020).

3.5. Human influence on fire

Human influence has always played a key role in fire dynamics (DeWilde and Chapin, 2006), with the effects ranging from fire promotion (e.g., clearing of land for grazing or the construction of settlements), to fire suppression (e.g., active controlling of burned areas) (Haugo et al., 2019; Pyne, 2017). Therefore, whenever charcoal records show abrupt shifts in fire behaviour, such as those observed at Little Monon Lake and Summit Lake ~600 - 700 yr BP, the effects of humans in promoting such changes must be assessed. Recent human influence has undoubtedly affected the role of fire within the Cascade Range, however, relatively little is known prior to European settlement in the 17th Century and the role indigenous populations had on fire activity (Haugo et al., 2019; Morrison and Swanson, 1990). Early human settlement sites are believed to have been concentrated at lowe elevation, along the Columbia River, allowing easy access to resources, including salmon, and to provide water for crops (Martindale, 2015; Hajda, 1994; Pettigrew, 1990; Boyd and Hajda, 1987). Indigenous populations are also known to have seasonally used middle to higher elevation sites across the Cascade Range (Teensma, 1987; Boyd, 1986; Minor and Pecor, 1977). There is also evidence of high elevation occupation as early as ~4,500 yr BP, although this is believed to be focussed in the Washington Cascade Range (Mierendorf, 1999). Some indigenous fire-related practises are well documented, including the annual burning of grassland within the Willamette Valley (Burke, 1979) or the use of fire to promote the growth of food within the Columbia River Basin (Boyd, 1990). However, the relatively low population sizes of these indigenous populations suggest that the scale and extent of these fires are likely considered too small to register within fossil charcoal records or to have significantly altered fire regimes (Walsh et al., 2008). The results observed in this thesis can be explained by shifts in climate, as fire behaviour closely reflecting either warm and dry or cool and wet conditions across sites of dissimilar vegetation, such as between Battle Ground Lake in Washington and Little Monon Lake and Summit Lake in Oregon, are concurrent. Full Holocene reconstructions of fire (Minckley and Long, 2016;

Walsh et al., 2008; Long et al., 2007; Long et al., 1998) show the greatest period of fire activity occurred during the early Holocene, at periods of least human influence. Therefore, while we cannot discount the effect indigenous populations had on fire regimes, it appears that they were not the primary driver of altered fire regimes reconstructed in this study.

3.6. Charcoal conclusion

The evidence discussed above suggests the fire regimes of the central Cascades are highly variable. The number of fire events and mean return intervals identified from my data, vary considerably, as do the reconstructed fire regimes of this region discussed above. It seems on regional scales, climate has the greatest effect on fire and vegetation, while topography and the spatial distribution of fuels and vegetation having the greatest impact on local scale (Merschel et al., 2018; Kellogg et al., 2008). For example, in the Cascade Range, characterised by high topographic variation and river-cut valleys, steep topographic features may either act as a barrier for the spread of fire or accelerants of fire spreading (Merschel et al., 2018; Taylor and Skinner, 2003). This means that widespread locations within more homogenous catchments, such as the Summit Lake catchment, may vary less than sites in proximity within highly variable catchments.

Much of the published reconstructions of historic fire occurrence in the Pacific Northwest are based in the Coastal Range and the Willamette Valley, Oregon. The majority of these reconstructions are obtained from only microscopic charcoal particles, which provide information of more regional fire signals, macroscopic charcoal particles sampled at wide time intervals, or tree ring data, which limits our understanding of historic fire occurrence beyond the lifespan of the host tree (Weinman and Mathewes, 1987, Cwynar, 1987, Dunwiddie, 1986; Tsukada et al., 1981). The fire reconstructions produced within this thesis are foccused within the understudied crest area of the Cascade Range, Oregon, and consist of continual sampling over three key size classes, $>500 \,\mu\text{m}$, 250 to 500 μm , and 125 – 250 μm , which, in combination with both traditional and novel methods of analyses have resulted in highly detailed robust records of historic fire occurrence over local and regional scales with sampling resolutions that detect a greater range of events magnitudes than previous reconstructions in this region. These reconstructions have address important data gaps within this region and will provide highly useful information for future studies of fire history in the Pacific Northwest.

Recent observations suggest fire activity has significantly increased since the 1930's, attributed to long period of fire suppression which allows fuel build up, increasingly warm and dry

conditions, and considerable human alteration of the ecosystem (Reilly et al., 2017; Hulse et al., 2016; Westerling and Bryant, 2006; Gedalof et al., 2005; Morris et al., 1934). The presentday fire regime of the Cascade Range is now categorised by medium to high severity fires (Agee, 1993).

4. Conclusion

Earlier literature (Rudinsky, 1979; Wickman et al., 1973; Childs and Shea, 1967) stated that although insect outbreaks are observed within the Cascade Range, they are more of a threat to individual trees than entire stands. These statements, made just fifty years ago, emphasise the rate at which insect outbreaks have superseded fire to become the most destructive disturbance agent in the Pacific Northwest.

The overwhelming evidence is that the frequency, severity, and scale of all types of forest disturbances are increasing (Kulakowski et al., 2016). Fire and insect outbreaks are both greatly influenced by climate and projected future warming of 1 to 3.5°C and a reduction in precipitation patterns by 2050 are likely to increase the occurrence and severity of extreme weather events, and therefore, create ideal conditions for more intense and widespread disturbance events (Fettig et al., 2013; Hicke et al., 2012; Bentz et al., 2010). Our understanding of how forest ecosystem processes will develop, either through changes in composition or a continued resilience, as climate and fire regimes continue to change is unclear (Minckley and Long, 2016; Thomsen and Willerslev, 2015; MacDonald et al., 2008). This thesis has highlighted that fire and insect outbreaks have been the two primary disturbance agents in the Pacific Northwest and both have shaped the forest landscapes across this region for thousands of years. How specific vegetation types behave during and recover from single agent events is relatively well understood, however, much less is known about the interactions between multiple disturbance agents (Turner et al., 2010). The dramatic increase in beetle-induced tree mortality over the past few decades has raised questions on how vast areas of standing dead trees and altered fuels loads will impact fire dynamics (Raffa et al., 2008; Meddens et al., 2012, Hicke et al., 2012; Harvey et al., 2014). It is thought that bark beetle outbreaks and fire severity may inextricably linked with fire severity greatly affected by pre-fire outbreaks (Harvey et al., 2014; Bond et al., 2009; Jenkins et al., 2008; Berg and Anderson, 2006). Mountain pine beetle outbreaks have been shown to affect the seed release of serotinous species such as lodgepole pine (Teste et at al., 2011). Gradual tree death associated with insect outbreak(s) fail to provide the high temperature 'fire' cues associated with serotinous cone opening and resulting seed

release (Hellum and Wang, 1985) which ultimately impacts post-disturbance regeneration patterns (Harvey et al., 2014).

Several review papers (Gugerli et al., 2005; Parducci, 2004) have described the retrieval of DNA from modern and palaeoenvironmental samples as 'no longer a dream'. As such, the methods associated with DNA-based analyses of such samples are likely to only become more developed, improved, and routinely used across much of Quaternary science. A new wave of research has looked at calibrating environmental changes i.e., contemporary vegetation or pollen assemblages, with DNA signals, however, the calibration of insect outbreaks with the within these records is still an important data gap. This thesis has produced a high-specificity qPCR protocol capable of the direct detection of several notable forest pathogens with high sensitivity, high primer efficiencies, and low limits of detection, which expands on the field of palaeoenvironmental science and will prove a key asset in the monitoring and reconstruction of outbreak occurrence for these key forest pests. The results outlined in this thesis have furthered the discussion of the dynamics associated with sedaDNA research, notable catchment dynamics and source areas for DNA.

The collaboration of molecular ecologists and palaeoecologists has demonstrated clear benefits when reconstructing past environments (Parducci et al., 2019). As highlighted in Edwards (2020), much of the recent literature concerning sedimentary DNA has suffered from a lack of communication between palaeoecologists and molecular biologists. This thesis demonstrates how inextricably linked these fields are and highlights how successful collaboration of these disciplines will drastically improve the potential for the successful integration of molecular biology into palaeoecological research in the future. I hope that accurate detection methods, including those utilising DNA-based methodologies, will play a key role with ecology and palaeoecology in the years to come.

SUPPLEMENTARY MATERIAL

Sample	Lab #	δ13C	Age	Age error
Summit Lake 4mm	1668	-25.6	-80	66
Summit Lake 8mm	1665	-25.5	0	60
Summit Lake 32mm	1669	-25.4	930	79
Summit Lake 40mm	1670	-25.5	230	34
Summit Lake 54mm	1666	-25.6	300	66
Summit Lake 60mm	1667	-25.8	300	60
Summit Middle	1603	-25.0	2110	36
Summit Basal	1602	-25.6	3290	49
Little Monon Lake 2mm	1641	-21.1	120	30
Little Monon Lake 8mm	1642	-21.1	70	30
Little Monon Lake 14mm	1640	-20.9	150	31
Little Monon Lake 20mm	1636	-21.4	360	40
Little Monon Lake 26mm	1638	-21.7	670	38
Little Monon Lake 32mm	1643	-22.0	900	45
Little Monon Lake 38mm	1647	-21.4	910	33
Little Monon Lake 44mm	1639	-21.2	1030	33
Little Monon Lake 50mm	1644	-21.6	1170	34
Little Monon Lake 58mm	1637	-22.1	1220	48
Little Monon Lake Middle	1633	-23.5	1610	46
Little Monon Lake Basal	1634	-21.7	2350	42
Pyramid Lake 2mm	1601	-23.9	-500	32
Pyramid Lake 8mm	1600	-24.5	40	32
Pyramid Lake 16mm	1599	-24.3	90	32
Pyramid Lake 24mm	1598	-24.7	460	34
Pyramid Lake 36mm	1606	-25.0	590	36
Pyramid Lake 40mm	1607	-24.7	590	42
Pyramid Lake Middle	1610	-25.3	2160	35
Pyramid Lake Basal	1593	-26.5	5330	55
Little Shadow Camp Lake Middle	1649	-26.4	3800	39
Little Shadow Camp Lake Basal	1632	-26.5	2990	34
Scorpion Lake Middle	1609	-27.0	8000	94
Scorpion Lake Middle	1660	-26.3	3980	67
Tephra Layers				
Above B1	1714	-26.3	1080	81

Below B1	1604	-24.9	660	39
Above B2	1631	-26.8	2510	53
Below B3	1663	-24.9	4830	61

Depth (mm)	>500µm	500-250µm	250-125µm	Total
2		·	•	
4	0	2	21	23
6	0	1	16	17
8	0	6	72	78
10	0	0	23	23
12	0	3	27	30
14	0	13	89	102
16	0	1	56	57
18	0	4	38	42
20	1	6	36	43
22	0	8	72	80
24	0	4	51	55
26	0	1	19	20
28	0	0	10	10
30	0	0	9	9
32	0	0	36	36
34				
36				
38				
40				
42				
44				
46				
48				
50	0	3	27	30
52	0	1	68	69
54	0	1	17	18
56	0	0	18	18
58	0	4	32	36
60	0	2	41	43
62	0	2	21	23
64	1	10	88	99
66	0	12	102	114
68				
70	0	17	72	89
72	0	0	19	19
74	0	5	52	57
76	0	4	35	39
78	0	9	42	51
80	0	6	46	52
82	0	3	25	28
84	0	4	42	46
86	0	2	42	44

88	0	1	19	20
90	0	0	32	32
92	0	3	54	57
94	0	3	74	77
96	0	1	55	56
98	1	2	40	43
100	0	6	51	57
102	0	4	49	53
104	0	3	28	31
106	0	7	63	70
108	0	2	23	25
110	0	0	17	17
112	0	5	52	57
114	0	3	39	42
116	1	2	34	37
118	0	3	46	49
120	0	2	35	37
120	0	0	21	21
124	0	0	25	25
126	0	1	34	35
128	0	0	29	29
130	0	11	89	100
132	1	6	34	41
134	0	0	21	21
136	0	3	56	59
138	0	5	54	59
140	0	2	32	34
142	0	6	39	45
144	0	3	57	60
146	0	5	36	41
148	0	3	47	50
150	1	6	75	82
152	0	3	32	35
154	0	9	97	106
156	0	2	12	14
158	0	0	14	14
160	0	5	32	37
162	0	4	43	47
164	0	2	12	14
166	0	7	77	84
168	0	2	16	18
170	0	13	133	146
172	0	9	114	123
174	1	10	102	113
176	0	2	45	47
178	0	1	18	19
180	0	5	55	60
182	0	2	34	36
184	0	3	44	47
186	0	1	17	18
188	0	2	35	37
190	0	3	87	90
192	1	7	90	98
194	0	8	95	103
		•		

196	0	2	28	30
198	0	3	44	47
200	0	1	19	20
202	0	7	90	97
204	0	2	36	38
206	0	12	102	114
208	0	8	111	119
210	1	6	75	82
212	0	8	76	84
214	0	4	55	59
216	0	3	20	23
218	0	2	28	30
220	0	7	64	71
222	0	2	13	15
224	0	5	27	32
226	0	8	58	66
228	0	4	34	38
230	0	2	32	34
232	0	5	35	40
234	1	2	16	19
236	2	8	25	35
238	1	11	87	99
240	1	11	107	119
242	0	7	45	52
244	0	2	23	25
246	0	1	16	17
248	0	7	87	94
250	0	2	32	34
252	0	4	31	35
254	0	9	92	101
256	0	4	29	33
258	0	1	22	23
260	0	0	18	18
262	0	2	30	32
264	0	4	32	36
266	0	2	35	37
268	0	1	12	13
270	0	3	56	59
272	0	5	76	81
274	0	8	68	76
276	0	3	56	59
278	0	1	38	39
280	0	3	34	37
282	0	2	23	25
284	0	10	74	84
286	0	9	87	96
288	0	1	19	20
290	0	1	22	23
292	0	7	48	55
294	1	2	43	46
296	0	2	50	52
298	0	6	51	57
300	0	4	65	69
302	0	0	13	13

304	0	7	55	62
306	0	0	21	21
308	0	3	45	48
310	0	4	42	46
312	2	1	12	15
314	1	2	34	37
316	1	4	55	60
318	0	8	76	84
320	0	2	54	56
322	0	2	18	20
324	0	1	19	20
326	0	4	29	33
328	0	7	59	66
330	0	8	61	69
332	0	5	62	67
334	0	2	23	25
336	0	1	19	20

Table S2. Raw charcoal counts for Pyramid Lake

Depth (mm)	>500µm	500-250µm	250-125µm	Total
2	0	4	52	56
4	0	1	5	6
6	0	0	12	12
8	0	5	22	27
10	0	0	5	5
12	1	9	39	49
14	0	0	6	6
16	0	0	18	18
18	0	0	10	10
20	0	0	16	16
22	2	8	41	51
24	0	6	37	43
26	0	1	21	22
28	0	2	6	8
30	0	2	13	15
32	0	4	42	46
34	0	4	63	67
36	0	16	82	98
38	0	8	91	99
40	1	7	108	116
42	0	13	92	105
44	0	6	65	71
46	0	4	54	58
48	0	8	84	92
50	1	13	76	90
52	0	5	46	51
54	0	11	74	85
56	1	17	92	110
58	0	6	77	83
60	0	2	97	99
62	0	10	108	118
64	0	12	96	108
66	0	8	68	76

68	0	8	113	121
70	0	7	56	63
72				0
74				0
76				0
78				0
80	0	10	63	73
82	0	5	45	50
84	1	11	89	101
86	2	4	82	88
88	0	7	78	85
90	0	2	42	44
92				0
94	0	5	84	89
96	0	4	59	63
98	0	13	68	81
100	-			0
102				0
104				0
106				0
108				0
110	1	35	117	153
112	0	33	101	134
114	5	26	181	212
116	0	14	79	93
118	1	8	72	81
120	0	10	55	65
122	0	12	68	80
124	0	6	55	61
126	0	5	35	40
128	0	12	58	70
130	0	14	70	84
132	1	4	45	50
134	0	9	94	103
136	1	3	56	60
138	1	13	74	88
140	0	14	78	92
142	0	14	158	172
144	0	17	126	143
146	0	11	165	176
148	0	15	105	120
150	0	9	123	132
152	0	6	98	104
154	1	6	64	71
156	0	14	89	103
158	0	22	149	171
160	0	8	63	71
162	0	3	65	68
164	0	4	58	62
166	0	5	65	70
168	0	3	69	72
170	0	12	45	57
172	0	10	87	97
174	0	20	112	132

176	0	14	113	127
178	0	17	104	121
180	1	14	90	105
182	0	8	101	109
184	0	13	104	117
186	0	12	69	81
188	0	5	113	118
190	0	6	73	79
192	0	8	84	92
194	1	9	97	107
196	2	7	92	101
198	1	12	122	135
200	0	8	89	97
202	1	10	152	163
204	1	14	121	136
206	1	15	109	125
208	0	12	81	93
210	1	5	57	63
212	0	7	98	105
214	0	11	86	97
216	1	14	82	97
218	0	2	43	45
220	0	6	57	63
222	0	22	91	113
224	1	3	106	110
226	0	9	70	79
228	1	12	115	128
230	1	11	118	130

Table S3. Raw charcoal counts for Little Monon Lake

Depth (mm)	>500µm	500-250μm	250-125μm	Total
2				0
4	0	2	18	20
6	0	4	14	18
8	0	3	25	28
10	1	2	12	15
12	0	4	24	28
14	0	4	32	36
16	0	1	26	27
18	0	1	16	17
20	0	3	24	27
22	0	4	15	19
24	0	8	18	26
26	0	6	22	28
28	0	3	35	38
30	0	2	25	27
32	0	5	24	29
34	0	3	22	25
36	0	5	26	31
38	0	2	24	26
40	0	3	38	41
42	0	3	29	32
44	2	4	25	31

46	0	5	26	31
48	0	4	32	36
50	0	4	29	33
52	1	8	39	48
54	0	5	36	41
56	0	0	18	18
58	0	3	29	32
60	1	1	38	40
62		_		0
64				0
66				0
68				0
70				0
72	0	0	21	21
74	0	4	17	21
76	0	3	18	21
78	0	2	13	15
80	0	9	21	30
82	-	-		0
84	0	5	104	109
86	0	6	92	98
88	0	3	97	100
90	0	2	65	67
92	0	7	73	80
94	0	8	96	104
96	1	4	104	109
98	0	6	112	118
100	1	6	99	106
102	0	2	83	85
104	0	7	118	125
106	0	11	114	125
108	0	6	76	82
110	0	7	83	90
112	0	9	96	105
114	0	4	67	71
116	0	2	98	100
118	0	13	156	169
120	0	3	94	97
122	0	13	169	182
124	0	8	88	96
126	0	6	84	90
128	0	5	91	96
130	0	7	134	141
132	0	7	55	62
134	0	5	119	124
136	0	6	107	113
138	0	4	104	108
140	1	12	92	105
142	0	8	94	102
144	1	2	98	101
146	0	6	142	148
148	0	17	165	182
150	1	12	182	195
152	0	11	109	120

156 0 11 128 139 158 0 14 165 179 160 0 9 116 125 162 0 7 89 96 164 0 3 84 87 166 0 3 81 84 166 0 3 81 84 166 0 3 81 84 166 0 13 111 119 170 0 8 131 139 174 0 11 101 112 176 0 10 129 139 178 0 5 156 161 180 0 15 138 153 182 0 11 126 137 194 0 11 126 137 194 0 12 149 161 <	154	0	20	167	187
158 0 14 165 179 160 0 9 116 125 162 0 7 89 96 164 0 3 84 87 166 0 3 84 87 166 0 3 84 87 166 0 3 84 87 166 0 3 11 119 170 0 13 117 130 174 0 111 101 112 176 0 15 138 153 180 0 5 156 161 180 0 11 95 100 184 0 8 92 100 186 0 12 102 105 192 0 11 126 137 194 0 11 126 137					
160 0 9 116 125 162 0 7 89 96 164 0 3 84 87 166 0 3 81 84 87 166 0 3 81 84 87 166 0 3 81 84 87 170 0 13 117 130 177 0 8 131 199 176 0 10 129 139 178 0 5 156 161 180 0 5 78 83 182 0 11 126 137 194 0 11 116 127 195 0 12 149 161 198 0 7 80 87 200 1 2 70 70 202 0 16					
162 0 7 89 96 164 0 3 84 87 166 0 3 81 84 87 166 0 3 81 84 87 168 0 8 111 119 170 0 8 131 139 174 0 11 101 112 176 0 10 129 139 178 0 5 156 161 180 0 15 138 153 182 0 11 95 106 184 0 8 92 100 186 0 2 191 93 189 0 11 126 137 194 0 11 116 127 195 0 12 144 172 196 0 12 142 <th></th> <th></th> <th></th> <th></th> <th></th>					
164 0 3 84 87 166 0 3 81 84 84 168 0 8 111 119 170 0 13 117 130 172 0 8 131 139 174 0 11 101 112 176 0 10 129 139 178 0 5 156 151 180 0 15 138 153 182 0 11 95 106 184 0 8 92 100 186 0 2 102 105 192 0 11 126 137 194 0 11 116 127 195 0 12 149 161 198 0 7 80 87 200 16 142 158					
166 0 3 81 84 168 0 8 111 119 170 0 13 117 130 172 0 8 131 139 174 0 11 101 112 176 0 10 129 139 178 0 5 156 161 180 0 15 138 153 182 0 11 95 106 184 0 8 92 100 186 0 2 91 93 188 0 5 78 83 190 11 126 137 194 0 111 116 127 196 0 7 80 87 200 16 142 158 204 2 22 148 172 206					
168 0 8 111 119 170 0 13 117 130 172 0 8 131 139 174 0 11 101 112 176 0 10 129 139 178 0 5 156 161 180 0 15 138 153 182 0 11 95 106 184 0 8 92 100 186 0 2 91 93 188 0 5 78 83 190 1 2 102 105 192 0 111 116 127 196 0 12 149 161 198 0 7 80 87 200 16 142 158 175 201 0 17 161 178					
170 0 13 117 130 172 0 8 131 139 174 0 11 101 112 176 0 10 129 139 178 0 5 156 161 180 0 15 138 153 182 0 11 95 106 184 0 8 92 100 186 0 2 91 93 188 0 5 78 83 190 1 2 102 105 192 0 11 116 127 196 0 12 149 161 198 0 7 80 87 200 16 142 158 204 2 22 148 172 206 0 9 118 177 2					
17208131139174011101112176010129139178051561611800151381531820119510618408921001860291931880578831901210210519201111612719401111612719507808720012677020201614215820422214817220501716117820609118127208119155175210017161178212171241322140211021142260310911321601210911322603109113236031091122380912813924617109117246013108101244166912560364					
174 0 11 101 112 176 0 10 129 139 178 0 5 156 161 180 0 15 138 153 182 0 11 95 106 184 0 8 92 100 186 0 2 91 93 188 0 5 78 83 190 1 2 102 105 192 0 11 126 137 194 0 11 116 127 196 0 12 149 161 198 0 7 80 87 200 16 142 158 204 2 22 148 172 206 0 9 118 127 206 0 17 161 178					
176 0 10 129 139 178 0 5 156 161 180 0 11 95 106 182 0 11 95 106 184 0 8 92 100 186 0 2 91 93 188 0 5 78 83 190 1 2 102 105 192 0 11 116 127 196 0 7 80 87 200 1 2 67 70 202 0 16 142 158 204 2 22 148 172 206 0 9 118 127 206 0 17 161 178 212 1 7 124 132 214 0 21 153 174 <tr< th=""><th></th><th></th><th></th><th></th><th></th></tr<>					
178 0 5 156 161 180 0 15 138 153 182 0 11 95 106 184 0 8 92 100 186 0 2 91 93 188 0 5 78 83 190 1 2 102 105 192 0 111 116 127 196 0 12 149 161 198 0 7 80 87 200 15 142 158 204 2 22 148 172 206 0 9 118 127 206 0 19 155 175 210 0 17 161 178 214 0 21 153 174 216 0 10 134 144 217					
180 0 15 138 153 182 0 11 95 106 184 0 8 92 100 186 0 2 91 93 188 0 5 78 83 190 1 2 102 105 192 0 111 116 127 196 0 12 149 161 198 0 7 80 87 200 1 2 67 70 202 0 16 142 158 204 2 22 17 155 175 206 0 9 118 127 208 1 19 155 175 210 0 17 161 178 214 0 21 102 114 216 0 10 134 14					
182 0 11 95 106 184 0 8 92 100 186 0 2 91 93 188 0 5 78 83 190 1 2 102 105 192 0 11 116 137 194 0 111 116 127 196 0 12 149 161 198 0 7 80 87 200 1 2 67 70 202 0 16 142 158 204 2 22 148 172 206 0 9 118 127 208 1 19 155 175 210 0 17 161 178 212 1 7 124 132 214 0 21 102 114					
184 0 8 92 100 186 0 2 91 93 188 0 5 78 83 190 1 2 102 105 192 0 11 126 137 194 0 11 116 127 196 0 12 149 161 198 0 7 80 87 200 1 2 67 70 202 0 118 127 206 0 9 118 127 206 0 9 118 127 206 0 9 118 127 206 0 19 155 175 210 0 117 161 178 212 1 7 124 132 214 0 21 153 174 216<					
186 0 2 91 93 188 0 5 78 83 190 1 2 102 105 192 0 11 126 137 194 0 11 116 127 196 0 12 149 161 198 0 7 80 87 200 1 2 67 70 202 0 16 142 158 204 2 22 148 172 206 0 9 118 127 206 0 17 161 178 210 0 17 161 178 214 0 21 132 174 216 0 10 134 144 218 0 12 102 142 220 0 7 98 105					
188 0 5 78 83 190 1 2 102 105 192 0 11 122 137 194 0 111 116 127 196 0 12 149 161 198 0 7 80 87 200 1 2 67 70 202 0 16 142 158 204 2 22 148 172 206 0 9 118 127 208 1 19 155 175 210 0 17 161 178 212 1 7 124 132 214 0 21 153 174 216 0 12 102 114 220 0 7 98 105 212 1 12 139 142					
190 1 2 102 105 192 0 11 126 137 194 0 11 116 127 196 0 12 149 161 198 0 7 80 87 200 1 2 67 70 202 0 166 142 158 204 2 22 148 172 206 0 9 118 127 208 1 19 155 175 210 0 17 161 178 212 1 7 124 132 214 0 21 102 114 220 0 7 98 105 212 1 12 129 142 226 0 21 158 179 226 0 21 158 139 <th></th> <th></th> <th></th> <th></th> <th></th>					
192 0 11 126 137 194 0 11 116 127 196 0 12 149 161 198 0 7 80 87 200 1 2 67 70 202 0 16 142 158 204 2 22 148 172 206 0 9 118 127 206 0 17 161 178 210 0 17 161 178 212 1 7 124 132 214 0 21 153 174 220 0 7 98 105 212 1 12 102 114 220 0 7 98 105 222 1 12 129 142 224 0 8 131 139					
194 0 11 116 127 196 0 12 149 161 198 0 7 80 87 200 1 2 67 70 202 0 16 142 158 204 2 22 148 172 206 0 9 118 127 208 1 19 155 175 210 0 17 161 178 212 1 7 124 132 214 0 21 153 174 216 0 10 134 144 218 0 12 1002 114 220 0 7 98 105 222 1 12 129 142 220 0 21 158 179 226 0 21 158 179 </th <th></th> <th></th> <th></th> <th></th> <th></th>					
196 0 12 149 161 198 0 7 80 87 200 1 2 67 70 202 0 16 142 158 204 2 22 148 172 206 0 9 118 127 206 0 9 118 127 206 0 17 161 178 210 0 17 124 132 212 1 7 124 132 214 0 21 153 174 218 0 12 102 114 220 0 7 98 105 222 1 12 129 142 224 0 8 131 139 226 0 21 158 179 230 0 4 109 113					
198 0 7 80 87 200 1 2 67 70 202 0 16 142 158 204 2 22 148 172 206 0 9 118 127 208 1 19 155 175 210 0 17 161 178 212 1 7 124 132 214 0 21 153 174 216 0 10 134 144 218 0 12 102 114 220 0 7 98 105 212 1 12 129 142 220 0 7 98 105 221 15 117 132 139 226 0 21 158 179 228 0 15 117 132 <th></th> <th></th> <th></th> <th></th> <th></th>					
200 1 2 67 70 202 0 16 142 158 204 2 22 148 172 206 0 9 118 127 208 1 19 155 175 210 0 17 161 178 212 1 7 124 132 214 0 21 153 174 216 0 10 134 144 218 0 12 102 114 220 0 7 98 105 222 1 12 129 142 224 0 8 131 139 226 0 21 158 179 230 0 4 109 113 232 1 8 101 110 234 0 4 135 139 <th></th> <th></th> <th></th> <th></th> <th></th>					
202 0 16 142 158 204 2 22 148 172 206 0 9 118 127 208 1 19 155 175 210 0 17 161 178 212 1 7 124 132 214 0 21 153 174 216 0 10 134 144 218 0 12 102 114 220 0 7 98 105 222 1 12 129 142 224 0 8 131 139 226 0 21 158 179 228 0 15 117 132 230 0 4 109 113 232 1 8 101 110 234 0 3 109 112 <					
204222148172206091181272081191551752100171611782121712413221402115317421601013414421801210011422007981052221121291422260211581792260211581792300410911323103101110232181011102340413513923603109112238091281372400894102244169198245011152163256011141152256058893256036467					
2060911812720811915517521001716117821217124132214021153174216010134144218012102114220079810522211212914222408131139226021158179230041091132310151171322360310911223809128137240089410224416919824617109117248011152163256058893256036467					
20811915517521001716117821217124132214021153174216010134144218012102114220079810522211212914222408131139226021158179228015117132230041091132321810111023403109112236031091122400894102244169198246171091172480141521632541128396256036467					
210 0 17 161 178 212 1 7 124 132 214 0 21 153 174 216 0 10 134 144 218 0 12 102 114 220 0 7 98 105 222 1 12 129 142 224 0 8 131 139 226 0 21 158 179 228 0 15 117 132 230 0 4 109 113 232 1 8 101 110 234 0 4 135 139 236 0 3 109 112 238 0 9 128 137 240 0 13 108 121 244 1 6 91 98					
2121712413221402115317421601013414421801210211422007981052211121291422240813113922602115817922801511713223004109113231031011102321810111023404135139236031091122400894102244169198246171091172480111521632500111521632520111283258036467					
214 0 21 153 174 216 0 10 134 144 218 0 12 102 114 220 0 7 98 105 222 1 12 129 142 224 0 8 131 139 226 0 21 158 179 228 0 15 117 132 230 0 4 109 113 231 8 101 110 232 1 8 101 110 234 0 4 109 113 236 0 3 101 110 234 0 4 135 139 236 0 3 109 112 238 0 9 128 137 240 0 13 108 121					
21601013414421801210211422007981052221121291422240813113922602115817922801511713223004109113232181011102340413513923603109112238091281372400894102244169198246171091172480141521632500111521632541128893256036467					
21801210211422007981052221121291422240813113922602115817922801511713223004109113232181011102340413513923603109112238091281372400894102244169198246171091172480141551292500111521632520111283256058893258036467					
22007981052221121291422240813113922602115817922801511713223004109113232181011102340413513923603109112238091281372400894102244169198246171091172480141521632500111411522541128396256036467	218	0			114
2240813113922602115817922801511713223004109113232181011102340413513923603109112238091281372400894102242013108121244169198246171091172480111521632500111521632541128396256036467	220	0	7	98	105
2240813113922602115817922801511713223004109113232181011102340413513923603109112238091281372400894102242013108121244169198246171091172480111521632500111521632541128396256036467	222	1	12		
22801511713223004109113232181011102340413513923603109112238091281372400894102242013108121244169198246171091172480141521632500111521632541128396256036467	224	0	8	131	139
2300410911323218101110234041351392360310911223809128137240089410224201310812124416919824617109117248014152163250011152163252011128396256058893258036467	226	0	21	158	179
2321810111023404135139236031091122380912813724008941022420131081212441691982461710911724801415216325001115216325201112983256058893258036467	228	0	15	117	132
234041351392360310911223809128137240089410224201310812124416919824617109117248014115129250011152163252011128396256058893258036467	230	0	4	109	113
23603109112238091281372400894102242013108121244169198246171091172480141151292500111521632520111283962541128393256036467	232	1	8	101	110
23809128137240089410224201310812124416919824617109117248014115129250011152163252011152962541128396256036467	234		4	135	139
240089410224201310812124416919824617109117248014115129250011152163252011152962541128396256036467	236			109	112
242013108121244169198246171091172480141151292500111521632520111411522541128396256036467					
244169198246171091172480141151292500111521632520111411522541128396256058893258036467			8	94	102
246171091172480141151292500111521632520111411522541128396256058893258036467	242	0		108	121
2480141151292500111521632520111411522541128396256058893258036467					
2500111521632520111411522541128396256058893258036467					
2520111411522541128396256058893258036467					
254 1 12 83 96 256 0 5 88 93 258 0 3 64 67					
256 0 5 88 93 258 0 3 64 67					
258 0 3 64 67				83	96
	256	0		88	93
260 1 10 74 85	258	0	3	64	67
	260	1	10	74	85

262	0	7	110	117
264	1	12	124	137
266	0	11	98	109
268	0	7	92	99
270	0	17	122	139
272	1	8	68	77
274	0	6	105	111
276	0	15	131	146
278	0	9	105	114
280	1	7	77	85
282	0	12	74	86
284	0	7	92	99
286	0	6	36	42
288	1	11	76	88
290	1	4	102	107
292	0	3	39	42
294	0	13	77	90
296	0	4	71	75
298	1	10	63	74
300	2	7	88	97

Table S4. Raw charcoal counts for Summit Lake

#Charcoal Acc. rates using the "pretreatment" function in "paleofire"

install.packages("paleofire")
library("paleofire")

#Little Monon Lake - all particle sizes charlmlall <- read.csv("charlmlall.csv") LCall_=charlmlall[,6] LPall_=charlmlall[,1:5] View(LCall_) View(LPall_) charlmlall=pretreatment(params=LPall_,serie=LCall_,Int=TRUE) View(charlmlall) plot(charlmlall, xlab = "Age (cal. yr. BP)", ylab = "CHAR (particles mm-1 yr-1)", ylim = c(0,75)) charlmlall[["acc"]] #125-250um ("small" particle range)

charlmlsmall <- read.csv("charlmlsmall.csv") LCsmall_=charlmlsmall[,6] LPsmall_=charlmlsmall[,1:5] View(LCsmall_) View(LPsmall_) charlmlsmall=pretreatment(params=LPsmall_,serie=LCsmall_,Int=TRUE) View(charlmlsmall) plot(charlmlsmall, main = "Little Monon Lake 125 - 250µm", xlab = "Age (cal. yr. BP)", ylab = "CHAR (particles mm-1 yr-1)", ylim = c(0,70)) charlmlsmall[["acc"]]

#The following uses 0.25cc as vol. for the top 30mm to reflect sampling #125-250um ("small" particle range) charlmlsmall05 <- read.csv("charlmlsmall05.csv") LCsmall05_=charlmlsmall05[,6] LPsmall05_=charlmlsmall05[,1:5] View(LCsmall05_) View(LPsmall05_) charlmlsmall05=pretreatment(params=LPsmall05_,serie=LCsmall05_,Int=TRUE) View(charlmlsmall05) plot(charlmlsmall05, xlab = "Age (cal. yr. BP)", ylab = "CHAR (particles mm-1 yr-1)",ylim = c(0,70)) charlmlsmall05[["acc"]]

#250um-500um ("medium" particle range) charlmlmed <- read.csv("charlmlmed.csv") LCmed_=charlmlmed[,6] LPmed_=charlmlmed[,1:5] View(LCmed_) View(LPmed_) charlmlmed=pretreatment(params=LPmed_,serie=LCmed_,Int=TRUE) View(charlmlmed) plot(charlmlmed, main = "Little Monon Lake 250 - 500 µm", xlab = "Age (cal. yr. BP)", ylim = c(0,10), ylab = "CHAR (particles mm-1 yr-1)") charlmlmed[["acc"]]

#>500um ("large" particle range)
charlmllarge <- read.csv("charlmllarge.csv")
LClarge_=charlmllarge[,6]
LPlarge_=charlmllarge[,1:5]
View(LClarge_)
View(LPlarge_)
charlmllarge=pretreatment(params=LPlarge_,serie=LClarge_,Int=TRUE)
View(charlmllarge)
plot(charlmllarge, main = "Little Monon Lake >500µm", xlab = "Age (cal. yr. BP)", ylim = c(0,1), ylab = "CHAR
(particles mm-1 yr-1)")
charlmllarge[["acc"]]

#Standardised values - samples 2-30mm use 0.25cm3 - values doubled

#125-250um ("small" particle range - "standardised" values for the top 30mm doubled - as 0.25cm3 was used instead of 0.5cm3) charlmlsmallstand <- read.csv("charlmlsmallstand.csv") Csmallstand_=charlmlsmallstand[,6] Psmallstand_=charlmlsmallstand[,1:5] View(Csmallstand_) View(Psmallstand_) charlmlsmallstand=pretreatment(params=Psmallstand_,serie=Csmallstand_,Int=TRUE) View(charlmlsmallstand) plot(charlmlsmallstand, xlab = "Age BP", ylab = "CHAR", main = "Little Monon Lake 125 - 250 µm Standardised") charlmlsmallstand[["acc"]]

#250 - 500um ("med" particle range - "standardised" values for the top 30mm doubled - as 0.25cm3 was used instead of 0.5cm3) charlmlmedstand <- read.csv("charlmlmedstand.csv") Cmedstand_=charlmlmedstand[,6] Pmedstand_=charlmlmedstand[,1:5] View(Cmedstand_) View(Pmedstand_) View(Pmedstand_) charlmlmedstand=pretreatment(params=Pmedstand_,serie=Cmedstand_,Int=TRUE) View(charlmlmedstand) plot(charlmlmedstand, xlab = "Age BP", ylab = "CHAR", main = "Little Monon Lake 250 to 500 µm Standardised") charlmlmedstand[["acc"]]

#>500um ("large" particle range - "standardised" values for the top 30mm doubled - as 0.25cm3 was used instead of 0.5cm3)

charlmllargestand <- read.csv("charlmllargestand.csv") Clargestand_=charlmllargestand[,6] Plargestand_=charlmllargestand[,1:5] View(Clargestand_) View(Plargestand) charlmllargestand=pretreatment(params=Plargestand_,serie=Clargestand_,Int=TRUE) View(charlmllargestand) plot(charlmllargestand, xlab = "Age BP", ylab = "CHAR", main = "Little Monon Lake >500 µm Standardised") charlmllargestand[["acc"]] #Pyramid Lake - all particle sizes charpyrall <- read.csv("charpyrall.csv") PCall =charpyrall[.6] PPall =charpyrall[,1:5] View(PCall) View(PPall) charpyrall=pretreatment(params=PPall_,serie=PCall_,Int=TRUE) View(charpyrall) plot(charpyrall, xlab = "Age (cal. yr. BP)", ylab = "CHAR (particles mm-1 yr-1)", ylim = c(0,75)) charpyrall[["acc"]] #125-250um ("small" particle range) charpyrsmall <- read.csv("charpyrsmall.csv") PCsmall_=charpyrsmall[,6] PPsmall_=charpyrsmall[,1:5] View(PCsmall_) View(PPsmall_) charpyrsmall=pretreatment(params=PPsmall,serie=PCsmall,Int=TRUE) View(charpyrsmall) plot(charpyrsmall, main = "Pyramid Lake 125 - 250µm", xlab = "Age (cal. yr. BP)", ylab = "CHAR (particles mm-1 yr-1)", ylim = c(0,70)) charpyrsmall[["acc"]] #250um-500um ("medium" particle range) charpyrmed <- read.csv("charpyrmed.csv") PCmed_=charpyrmed[,6] PPmed_=charpyrmed[,1:5] View(PCmed_) View(PPmed) charpyrmed=pretreatment(params=PPmed_,serie=PCmed_,Int=TRUE) View(charpyrmed) plot(charpyrmed, main = "Pyramid Lake 250 - 500µm", xlab = "Age (cal. yr. BP)", ylim = c(0,8), ylab = "CHAR (particles mm-1 yr-1)") charpyrmed[["acc"]] #>500um ("large" particle range) charpyrlarge <- read.csv("charpyrlarge.csv") PClarge =charpyrlarge[,6] PPlarge_=charpyrlarge[,1:5] View(PClarge) View(PPlarge) charpyrlarge=pretreatment(params=PPlarge_,serie=PClarge_,Int=TRUE) View(charpyrlarge) plot(charpyrlarge, main = "Pyramid Lake $>500\mu$ m", xlab = "Age (cal. yr. BP)", ylim = c(0,1), ylab = "CHAR (particles mm-1 yr-1)") charpyrlarge[["acc"]]

#Summit Lake - all particle sizes charsumall <- read.csv("charsumall.csv") SCall =charsumall[,6] SPall_=charsumall[,1:5] View(SCall) View(SPall_) charsumall=pretreatment(params=SPall_,serie=SCall_,Int=TRUE) View(charsumall) plot(charsumall, xlab = "Age (cal. yr. BP)", ylim = c(0,75), ylab = "CHAR (particles mm-1 yr-1)") charsumall[["acc"]] #125-250um ("small" particle range) charsumsmall <- read.csv("charsumsmall.csv") SCsmall =charsumsmall[.6] SPsmall =charsumsmall[,1:5] View(SCsmall) View(SPsmall) charsumsmall=pretreatment(params=SPsmall_,serie=SCsmall_,Int=TRUE) View(charsumsmall) plot(charsumsmall, main = "Summit Lake 125 - 250µm", xlab = "Age (cal. yr. BP)", ylim = c(0,70), ylab = "CHAR (particles mm-1 yr-1)") charsumsmall[["acc"]] #250um-500um ("medium" particle range) charsummed <- read.csv("charsummed.csv") SCmed_=charsummed[,6] SPmed_=charsummed[,1:5] View(SCmed_) View(SPmed) charsummed=pretreatment(params=SPmed_,serie=SCmed_,Int=TRUE) View(charsummed) plot(charsummed, main = "Summit Lake 250 - 500µm", xlab = "Age (cal. yr. BP)", ylab = "CHAR (particles mm-1 yr-1, ylim = c(0.8)charsummed[["acc"]] #>500um ("large" particle range) charsumlarge <- read.csv("charsumlarge.csv") SClarge_=charsumlarge[,6] SPlarge_=charsumlarge[,1:5] View(SClarge_) View(SPlarge) charsumlarge=pretreatment(params=SPlarge_,serie=SClarge_,Int=TRUE) View(charsumlarge) plot(charsumlarge, main = "Summit Lake $>500\mu$ m", xlab = "Age (cal. yr. BP)", ylim = c(0,1), ylab = "CHAR (particles mm-1 yr-1)") charsumlarge[["acc"]] #Exporting acc data as a csv. #Little Monon Lake charclmllargedf <- as.data.frame(charlmllarge\$acc) View(charclmllargedf) write.csv(charclmllargedf, "charlmllargeacc.csv") charlmlmedacc <- as.data.frame(charlmlmed\$acc) View(charlmlmedacc) write.csv(charlmlmedacc, "charlmlmedacc.csv") charlmlsmallacc <- as.data.frame(charlmlsmall\$acc)</pre>

View(charlmlsmallacc)

write.csv(charlmlsmallacc, "charlmlsmallacc.csv")

#Pyramid Lake
charpyrlargeacc <- as.data.frame(charpyrlarge\$acc)
View(charpyrlargeacc)
write.csv(charclmllargedf, "charpyrlargeacc.csv")</pre>

charpyrmedacc <- as.data.frame(charpyrmed\$acc)
View(charpyrmedacc)
write.csv(charpyrmedacc, "charpyrmedacc.csv")</pre>

charpyrsmallacc <- as.data.frame(charpyrsmall\$acc)
View(charpyrsmallacc)
write.csv(charpyrsmallacc, "charpyrsmallacc.csv")</pre>

#Summit Lake
charsumlargeacc <- as.data.frame(charsumlarge\$acc)
View(charsumlargeacc)
write.csv(charsumlargeacc, "charsumlargeacc.csv")</pre>

charpyrmedacc <- as.data.frame(charpyrmed\$acc)
View(charpyrmedacc)
write.csv(charpyrmedacc, "charpyrmedacc.csv")</pre>

charsumsmallacc <- as.data.frame(charsumsmall\$acc) View(charsumsmallacc) write.csv(charsumsmallacc, "charsumsmallacc.csv")

#Student's t-test t.test(charpyrsmallacc, charsumsmallacc) t.test(charpyrsmallacc, charlmlsmallacc) t.test(charsumsmallacc, charlmlsmallacc)

#Various plots of acc. data

boxplot(charlmlsmallacc, main = "Little Monon Lake CHAR")

#vioplot
install.packages("vioplot")
library(vioplot)

#Std y axis

#All particles - distribution par(mfrow=c(1,3)) vioplot(LCsmall_, main = "Little Monon Lake 125 - 250 μ m", col ="snow2", ylim = c(0,200)) vioplot(LCmed_, main = "Little Monon Lake 250 - 500 μ m", col ="snow3", ylim = c(0,40)) vioplot(LClarge_, main = "Little Monon Lake > 500 μ m", col ="snow4", ylim = c(0,5))

 $\begin{array}{l} par(mfrow=c(1,3)) \\ vioplot(PCsmall_, main = "Pyramid Lake 125 - 250 \ \mu m", col = "snow2", ylim = c(0,150)) \\ vioplot(PCmed_, main = "Pyramid Lake 250 - 500 \ \mu m", col = "snow3", ylim = c(0,20)) \\ vioplot(PClarge_, main = "Pyramid Lake > 500 \ \mu m", col = "snow4", ylim = c(0,3)) \end{array}$

 $\begin{array}{l} par(mfrow=c(1,3)) \\ vioplot(SCsmall_, main = "Summit Lake 125 - 250 \ \mu m", col = "snow2", ylim = c(0,200)) \\ vioplot(SCmed_, main = "Summit Lake 250 - 500 \ \mu m", col = "snow3", ylim = c(0,25)) \\ vioplot(SClarge_, main = "Summit Lake > 500 \ \mu m", col = "snow4", ylim = c(0,3)) \end{array}$

vioplot(LCall_, main = "Little Monon Lake", col ="snow2", ylim = c(0,220))

vioplot(PCall_, main = "Pyramid Lake", col = "snow3", ylim = c(0,220)) vioplot(SCall_, main = "Summit Lake", col = "snow4", ylim = c(0,220)) par(mfrow=c(1,3))vioplot(LCsmall_, main = "Little Monon Lake 125 - 250 µm", col ="snow2", ylim = c(0,200)) vioplot(PCsmall_, main = "Pyramid Lake 125 - 250 µm", col = "snow3", ylim = c(0,200)) vioplot(SCsmall_, main = "Summit Lake 125 - 250 µm", col ="snow4", ylim = c(0,200)) plot(LCsmall_, main = "Little Monon Lake 125 - 250 µm", col ="snow2", ylim = c(0,200)) plot(PCsmall_, main = "Pyramid Lake 125 - 250 μ m", col = "snow3", ylim = c(0,200)) plot(SCsmall, main = "Summit Lake 125 - 250 μ m", col = "snow4", ylim = c(0,200)) vioplot(LCmed, main = "Little Monon Lake 250 - 500 μ m", col = "snow2", vlim = c(0.40)) vioplot(PCmed, main = "Pyramid Lake 250 - 500 μ m", col = "snow3", ylim = c(0.40)) vioplot(SCmed_, main = "Summit Lake 250 - 500 μ m", col = "snow4", ylim = c(0,40)) vioplot(LClarge_, main = "Little Monon Lake >500 µm", col ="snow2", ylim = c(0,5)) vioplot(PClarge_, main = "Pyramid Lake >500 μ m", col ="snow3", ylim = c(0,5)) vioplot(SClarge_, main = "Summit Lake >500 µm", col ="snow4", ylim = c(0,5)) #CHAR - distribution par(mfrow=c(1,3))vioplot(charlmlallacc, main = "Little Monon Lake", col = "snow2", ylim = c(0,220)) vioplot(charpyrallacc, main = "Pyramid Lake", col ="snow3", ylim = c(0,220)) vioplot(charsumallacc, main = "Summit Lake", col = "snow4", ylim = c(0,220)) par(mfrow=c(1,3)) vioplot(LCsmall, main = "Little Monon Lake 125 - 250 μ m", col = "snow2", vlim = c(0,200)) vioplot(PCsmall_, main = "Pyramid Lake 125 - 250 μ m", col = "snow3", ylim = c(0,200)) vioplot(SCsmall_, main = "Summit Lake 125 - 250 μ m", col = "snow4", ylim = c(0,200)) vioplot(LCmed, main = "Little Monon Lake 250 - 500 μ m", col = "snow2", vlim = c(0.40)) vioplot(PCmed, main = "Pyramid Lake $250 - 500 \mu m$ ", col = "snow3", vlim = c(0.40)) vioplot(SCmed_, main = "Summit Lake 250 - 500 μ m", col = "snow4", ylim = c(0,40)) vioplot(LClarge_, main = "Little Monon Lake >500 µm", col ="snow2", ylim = c(0,5)) vioplot(PClarge_, main = "Pyramid Lake >500 µm", col ="snow3", ylim = c(0,5)) vioplot(SClarge_, main = "Summit Lake >500 μ m", col = "snow4", ylim = c(0,5)) #Scaled to 70 on y axis par(mfrow=c(1,3))vioplot(charlmlall, main = "Little Monon Lake All", col = "snow2", ylim = c(0,70)) vioplot(charpyrall, main = "Pyramid Lake All", col = "snow3", ylim = c(0,70)) vioplot(charsumall, main = "Summit Lake All", col = "snow4", ylim = c(0,70))

Figure S1. R Script for the package 'Paleofire' used to generate CHAR and corresponding figures

#Age depth models using rBacon

setwd("~/Desktop/agedepthmodels") install.packages('rbacon') #Do these separately as you need to type Yes after installation library(rbacon)

#Summit Lake, Oregon, USA
sum <- read.csv("Bacon_runs/sum/sum.csv")
View(sum)
Bacon("sum", thick = 1, postbomb = 2, prob = 0.95, d.min = 0, d.max = 600, acc.mean = 50)</pre>

#Post-run analyses
#Viewing individual dates for any given depth - e.g. 300mm (mid core)
Bacon.hist(300)

#Viewing all possible dates assigned to a particular depth - e.g. 300mm (mid core) ages.d300 = Bacon.Age.d(300) View(ages.d300)

#Pyramid Lake, Oregon, USA
pyr <- read.csv("Bacon_runs/pyr/pyr.csv")
View(pyr)
Bacon("pyr", thick = 5, postbomb = 2, prob = 0.95, d.min = 0, d.max = 670, acc.mean = 50)</pre>

#Little Monon Lake, Oregon, USA lml <- read.csv("Bacon_runs/lml/Bacon_runs/lml.csv") View(lml) Bacon("lml", thick = 1, postbomb = 2, prob = 0.95, d.min = 0, d.max = 230, acc.mean = 50)

Figure S2. R Script for the package 'rBacob' used to generate age depth models

Running av. 100yr

Ratio

121	9.5446	2.075519142
122	9.5446	2.075519142
123	9.5446	2.075519142
124	9.5446	2.075519142
125	9.5446	2.075519142
126	9.5446	2.075519142
127	9.5446	2.075519142
128	9.5446	2.075519142
129	9.5446	2.075519142
130	9.5446	2.075519142

131 9.5713 2.06972225 133 9.6247 2.058245971 134 9.6514 2.05251961 135 9.7714 2.0396606 136 9.7734 2.02090230 137 9.8344 2.01437765 138 9.8954 2.001940295 139 9.9564 1.989674933 140 10.0174 1.97755047 141 10.0784 1.965589776 142 10.3185 0.18135291 143 10.3795 0.133053134 144 10.4405 0.131983621 145 10.5015 0.130926534 146 10.5625 0.17881657 147 10.6235 0.17882703 150 10.8065 0.17827694 147 10.6235 0.17882018 151 10.8675 0.17843218 152 10.7494 0.176754051 153 10.331 0.1387775 154 10.216 0.189301478			
133 9.6247 2.058245971 134 9.6514 2.035251961 135 9.7724 2.0396664 136 9.7734 2.026930239 137 9.8344 2.014357765 138 9.8954 2.001402295 139 9.9564 1.989674933 140 10.0174 1.977559047 141 10.0784 1.965589776 142 10.3185 0.1843553134 144 10.4005 0.181983621 145 10.5015 0.180926534 146 10.5225 0.179881657 147 10.6235 0.17827694 149 10.7455 0.178220108 150 10.8065 0.17822018 151 10.8675 0.17433218 152 10.7494 0.176754051 153 10.312 0.180725184 155 10.216 0.20784525 166 1.93205 0.203851725 152 9.1414 0.207845625	131		2.069729295
134 9.6514 2.05251961 135 9.7124 2.0366064 136 9.7734 2.02630239 137 9.8344 2.014357765 138 9.8954 2.001940295 139 9.9564 1.989674983 140 10.0174 1.977559047 141 10.0784 1.965589776 142 10.3185 0.183053134 143 10.3795 0.183053134 144 10.4405 0.180926534 145 10.5015 0.180926534 146 10.5625 0.178848779 148 10.6345 0.177827694 149 10.7455 0.1782318 150 10.8675 0.174832318 152 10.7494 0.176734051 153 10.6313 0.1897272 154 10.5132 0.18924774 155 10.3951 0.18924774 156 10.216 0.1898272 157 10.0369 0.18930355 </td <td></td> <td></td> <td>2.063971661</td>			2.063971661
135 9.7124 2.03966064 136 9.7734 2.02630225 138 9.8954 2.001940295 139 9.9564 1.93967493 140 10.0174 1.977559047 141 10.0784 1.965589776 142 10.3185 0.184135291 143 10.3795 0.183053134 144 10.405 0.181983621 145 10.5015 0.180926534 146 10.5625 0.179881657 147 10.6235 0.17881879 148 10.6645 0.177827694 149 10.7455 0.1768103 151 10.8675 0.1782108 152 10.7944 0.176754018 153 10.6313 0.17871276 154 10.5132 0.180725184 155 10.3951 0.182787424 156 10.216 0.182982772 157 10.0369 0.19391478 158 9.8578 0.192740774			
136 9.7734 2.026930239 137 9.8344 2.01435776 139 9.9564 1.989574983 140 10.0174 1.977559476 141 10.0784 1.965589776 142 10.3185 0.184135291 143 10.3795 0.183053134 144 10.4405 0.18026534 146 10.5625 0.179881657 147 10.6235 0.178848779 148 10.6645 0.17782764 149 10.7455 0.176818203 150 10.8065 0.1782764 151 10.8675 0.17483274 153 10.6313 0.17782768 153 10.6313 0.18778424 155 10.3951 0.182778424 156 10.216 0.18990178 158 9.8578 0.19274074 159 9.6787 0.196307355 160 9.4996 0.20008421 161 9.3205 0.23851725 </td <td></td> <td>9.6514</td> <td>2.052551961</td>		9.6514	2.052551961
137 9.8344 2.014357765 138 9.8954 2.001940295 139 9.9564 1.989674985 140 10.0174 1.977559047 141 10.0784 1.96588776 142 10.3185 0.183053134 143 10.3795 0.183083621 145 10.5015 0.180926534 146 10.5625 0.17984657 147 10.6235 0.178848779 148 10.6645 0.177827694 149 10.7455 0.17681203 151 10.8675 0.174833218 152 10.7944 0.176754051 153 10.6313 0.17871256 154 10.5132 0.180725184 155 10.3951 0.182778424 156 10.216 0.18391725 157 10.0369 0.19301478 158 9.8578 0.192740774 159 9.6787 0.196307355 160 9.4996 0.20008421	135	9.7124	2.03966064
138 9.8954 2.001940295 139 9.9564 1.998674987 141 10.0774 1.977559047 141 10.0784 1.965589776 142 10.3185 0.18413521 143 10.3795 0.18305313 144 10.405 0.181938521 145 10.5015 0.18092653 146 10.5625 0.17884657 147 10.6335 0.17827694 149 10.7455 0.177827694 150 10.8065 0.175820108 151 10.8675 0.174833218 152 10.7494 0.176754051 153 10.6313 0.182778424 155 10.3951 0.18278842 156 10.216 0.189301478 158 9.8578 0.192740774 159 9.6787 0.16607355 160 9.4996 0.20008421 161 9.3205 0.232795486 165 8.5774 0.532795486	136	9.7734	2.026930239
139 9.9564 1.989674983 140 10.0174 1.97559047 141 10.0784 1.965589776 142 10.3185 0.184135291 143 10.3795 0.183053134 144 10.405 0.181983621 145 10.5015 0.180926534 146 10.5625 0.179848779 148 10.6845 0.177827694 149 10.7455 0.176818203 150 10.8065 0.178820108 151 10.8675 0.17483218 152 10.7494 0.176750611 153 10.6313 0.18774244 155 10.3951 0.18774244 156 10.216 0.185982772 157 10.0369 0.189301478 158 9.8578 0.19274744 159 9.6787 0.196307355 160 9.4996 0.200008421 161 9.3205 0.203851725 162 9.1414 0.207845625	137	9.8344	2.014357765
140 10.0174 1.977559047 141 10.0784 1.965589776 142 10.3185 0.184135291 143 10.3795 0.183053134 144 10.4405 0.189926534 145 10.5015 0.189926534 146 10.5625 0.179881657 147 10.6235 0.178827694 148 10.6845 0.177827694 149 10.7455 0.176818203 150 10.80675 0.17820108 151 10.8675 0.177827694 152 10.7494 0.17675061 153 10.6313 0.18277844 155 10.3951 0.18277844 156 10.216 0.18592172 157 10.0369 0.189301478 158 9.8578 0.192740774 159 9.6787 0.196307355 160 9.4996 0.20008421 161 9.3205 0.203851725 162 9.1414 0.207845625 <td>138</td> <td>9.8954</td> <td>2.001940295</td>	138	9.8954	2.001940295
141 10.0784 1.965589776 142 10.3185 0.184135291 143 10.3795 0.183053134 144 10.4405 0.181983621 145 10.5015 0.180926534 146 10.5625 0.179881657 147 10.6235 0.178848779 148 10.6845 0.177827694 149 10.7455 0.17832108 151 10.8675 0.174818203 152 10.7494 0.17757645 153 10.6313 0.17871756 154 10.512 0.18071756 155 10.3951 0.182778424 156 10.216 0.185982772 157 10.0369 0.18904788 158 9.8578 0.192740774 159 9.6787 0.196307355 160 9.4996 0.20008421 161 9.3205 0.203851725 162 9.1414 0.207845625 163 8.5774 0.532795486	139	9.9564	1.989674983
142 10.3185 0.184135291 143 10.3795 0.18303134 144 10.4405 0.181983621 145 10.5015 0.180926534 146 10.5625 0.179881657 147 10.6235 0.17881879 148 10.6845 0.177827694 149 10.7455 0.176818203 150 10.8065 0.175820108 151 10.8675 0.176743051 153 10.6313 0.177871756 154 10.5132 0.189725184 155 10.3951 0.182778424 156 1.0216 0.18992072 157 10.0369 0.189301478 158 9.8578 0.192740774 159 9.6787 0.196307355 160 9.4996 0.20008421 161 9.3205 0.203851725 162 9.1414 0.2078462625 163 8.9356 0.511437396 164 8.7565 0.521898019 <td>140</td> <td>10.0174</td> <td>1.977559047</td>	140	10.0174	1.977559047
143 10.3795 0.183053134 144 10.4405 0.183026534 145 10.5015 0.18926534 146 10.6235 0.178846779 147 10.6235 0.17884779 148 10.6455 0.17881203 150 10.8065 0.17883218 152 10.7494 0.176754051 153 10.6313 0.17871756 154 10.5132 0.180725184 155 10.3951 0.182778424 156 1.0216 0.183982772 157 10.0369 0.183901478 158 9.8578 0.19740774 159 9.6787 0.196307355 160 9.4996 0.20008421 161 9.3205 0.203851725 162 9.1414 0.207845625 163 8.9356 0.511437396 164 8.7565 0.52898019 165 8.774 0.532795486 166 8.3983 0.54415774 </td <td>141</td> <td>10.0784</td> <td>1.965589776</td>	141	10.0784	1.965589776
144 10.4405 0.181983621 145 10.5015 0.18992633 146 10.6225 0.179881657 147 10.6235 0.17827694 148 10.6845 0.177827694 149 10.7455 0.176818203 150 10.8065 0.178230108 151 10.8675 0.174833218 152 10.7494 0.17674051 153 10.6313 0.17877756 154 10.5132 0.180725184 155 10.3951 0.18292772 156 1.0216 0.183901478 159 9.6787 0.196307355 160 9.4996 0.20008421 161 9.3205 0.203851725 162 9.1414 0.207845625 163 8.5356 0.511437366 164 8.7565 0.521898019 165 8.5774 0.532795486 166 8.3983 0.544157746 167 8.2192 0.556015184	142	10.3185	0.184135291
145 10.5015 0.180926534 146 10.5625 0.178881657 147 10.6235 0.17884879 148 10.6845 0.177827694 149 10.7455 0.176818203 150 10.8065 0.17832018 151 10.8675 0.17483218 152 10.7494 0.176754051 153 10.6313 0.17871756 154 10.5132 0.180725184 155 10.3951 0.182778424 156 10.216 0.185982772 157 10.0369 0.183901478 158 9.8578 0.192740774 159 9.6787 0.196307355 160 9.4996 0.20008421 161 9.3205 0.203851725 162 9.1414 0.207845625 163 8.9356 0.511437396 164 8.7574 0.532795486 165 8.5774 0.532795486 166 8.3983 0.54415746		10.3795	0.183053134
146 10.5625 0.179881657 147 10.6235 0.178848779 148 10.6845 0.177827694 149 10.7455 0.17881203 150 10.8065 0.17883218 152 10.7494 0.176754051 153 10.6313 0.17871756 154 10.5132 0.180725184 155 10.3951 0.18292772 156 1.0.216 0.183901478 158 9.8578 0.192740774 159 9.6787 0.19607355 160 9.4996 0.20008421 161 9.3205 0.203851725 162 9.1414 0.07845625 163 8.9355 0.511437396 164 8.7565 0.521898019 165 8.5774 0.532795486 166 8.3983 0.544157746 167 8.2192 0.556015184 168 8.0401 0.568400891 169 7.861 0.531350973 </td <td>144</td> <td>10.4405</td> <td>0.181983621</td>	144	10.4405	0.181983621
147 10.6235 0.178848779 148 10.6845 0.177827694 149 10.7455 0.17681203 150 10.8065 0.175820108 151 10.8675 0.174833218 152 10.7494 0.176754051 153 10.6313 0.17877424 154 10.5132 0.180725184 155 10.3951 0.185982772 157 10.0369 0.188901478 158 9.8578 0.192740774 159 9.6787 0.196307355 160 9.4996 0.20008421 161 9.3205 0.20381725 162 9.1414 0.207845625 163 8.9356 0.511437396 164 8.7565 0.521898019 165 8.5774 0.532795486 166 8.3983 0.544157746 167 8.2192 0.566015184 168 8.0401 0.568400891 169 7.861 0.531350973	145	10.5015	0.180926534
148 10.6845 0.177827694 149 10.7455 0.176818203 150 10.8065 0.175820108 151 10.8675 0.174833218 152 10.7494 0.176754051 153 10.6313 0.17871756 154 10.5132 0.180725184 155 10.3951 0.182778424 156 10.216 0.185982772 157 10.0369 0.189301478 158 9.8578 0.192740774 159 9.6787 0.196307355 160 9.4996 0.20008421 161 9.3205 0.203851725 162 9.1414 0.207845625 163 8.9356 0.511437396 164 8.7565 0.52188019 165 8.5774 0.532795486 166 8.3983 0.544157746 167 8.2192 0.556015184 168 8.0401 0.568400891 169 7.861 0.539733 </td <td>146</td> <td>10.5625</td> <td>0.179881657</td>	146	10.5625	0.179881657
149 10.7455 0.176818203 150 10.8065 0.175820108 151 10.8675 0.17483218 152 10.7494 0.176754051 153 10.6313 0.17871756 154 10.5132 0.180725184 155 10.3951 0.182778424 156 10.216 0.1889301478 157 10.0369 0.189301478 158 9.8578 0.192740774 159 9.6787 0.196307355 160 9.4996 0.20008421 161 9.3205 0.203851725 162 9.1414 0.207845625 163 8.9356 0.511437366 164 8.7565 0.521898019 165 8.5774 0.532795486 166 8.3983 0.544157746 167 8.2192 0.556015184 168 8.0401 0.568400891 170 7.6819 0.594904906 171 7.5028 0.609105324	147	10.6235	0.178848779
150 10.8065 0.175820108 151 10.8675 0.174833218 152 10.7494 0.176754051 153 10.6133 0.17871756 154 10.5132 0.180725184 155 10.3951 0.182778424 156 10.216 0.185982772 157 10.0369 0.18982772 157 10.0369 0.18982772 157 10.0369 0.189301478 158 9.8578 0.192740774 159 9.6787 0.196307355 160 9.4996 0.20008421 161 9.3205 0.203851725 162 9.1414 0.207845625 163 8.9356 0.511437396 164 8.7565 0.521898019 165 8.5774 0.532795486 166 8.3983 0.544157746 167 8.2192 0.556015184 168 8.0401 0.568400891 169 7.861 0.53130973 <	148		0.177827694
151 10.8675 0.174833218 152 10.7494 0.176754051 153 10.6313 0.17871756 154 10.5132 0.180725184 155 10.3951 0.182778424 156 10.216 0.189301478 157 10.0369 0.189301478 158 9.8578 0.192740774 159 9.6787 0.196307355 160 9.4996 0.20008421 161 9.3205 0.203851725 162 9.1414 0.207845625 163 8.9356 0.511437396 164 8.7565 0.521898019 165 8.5774 0.532795486 166 8.3983 0.544157746 167 8.2192 0.556015184 168 8.0401 0.58400891 169 7.861 0.583403973 170 7.6819 0.594904906 171 7.3237 0.624001529 173 7.1446 0.639643927 </td <td>149</td> <td>10.7455</td> <td></td>	149	10.7455	
152 10.7494 0.176754051 153 10.6313 0.17871756 154 10.5132 0.180725184 155 10.3951 0.182778424 156 10.216 0.189301478 157 10.0369 0.189301478 158 9.8578 0.192740774 159 9.6787 0.196307355 160 9.4996 0.20008421 161 9.3205 0.203851725 162 9.1414 0.207845625 163 8.9356 0.521898019 164 8.7565 0.521898019 165 8.5774 0.532795486 166 8.3983 0.544157746 167 8.2192 0.556015184 168 8.0401 0.58440891 169 7.861 0.581350973 170 7.6819 0.690105934 172 7.3237 0.624001529 173 7.1446 0.639643927 174 6.9655 0.656090733 <td>150</td> <td>10.8065</td> <td>0.175820108</td>	150	10.8065	0.175820108
153 10.6313 0.17871756 154 10.5132 0.180725184 155 10.3951 0.182778424 156 10.216 0.185982772 157 10.0369 0.189301478 158 9.8578 0.192740774 159 9.6787 0.196307355 160 9.4996 0.20008421 161 9.3205 0.203851725 162 9.1414 0.207845625 163 8.9356 0.511437396 164 8.7565 0.521898019 165 8.5774 0.532795486 166 8.3983 0.544157746 167 8.2192 0.556015184 168 8.0401 0.588400891 169 7.861 0.831350973 170 7.6819 0.594904906 171 7.5028 0.609105934 172 7.3237 0.624001529 173 7.1446 0.639643927 174 6.9655 0.656090733 <td>151</td> <td>10.8675</td> <td>0.174833218</td>	151	10.8675	0.174833218
154 10.5132 0.180725184 155 10.3951 0.182778424 156 10.216 0.189301478 157 10.0369 0.189301478 158 9.8578 0.192740774 159 9.6787 0.196307355 160 9.4996 0.20008421 161 9.3205 0.203851725 162 9.1414 0.207845625 163 8.9356 0.511437396 164 8.7565 0.52188019 165 8.5774 0.532795486 166 8.3983 0.544157746 167 8.2192 0.556015184 168 8.0401 0.58400891 169 7.861 0.581350973 170 7.6819 0.699105934 171 7.5028 0.699105934 172 7.3237 0.62401529 173 7.1446 0.639643927 174 6.9655 0.656090733 175 6.7864 0.673405635	152	10.7494	0.176754051
15510.39510.18277842415610.2160.18598277215710.03690.1893014781589.85780.1927407741599.67870.1963073551609.49960.200084211619.32050.2038517251629.14140.2078456251638.93560.5114373961648.75650.5218980191658.57740.5327954861668.39830.5441577461678.21920.5560151841688.04010.5684008911697.8610.5813509731707.68190.5949049061717.50280.6091059341727.32370.624015291737.14460.6396439271746.96550.6560907331756.78640.6734056351766.60730.6916592251776.42820.710929651786.24910.7313053081796.070.7528830311805.89090.775778021815.71180.800980431825.53270.825981561835.35360.8536312011845.17450.8831771191854.96111.6125455051864.7821.672940192	153	10.6313	0.17871756
15610.2160.18598277215710.03690.1893014781589.85780.1927407741599.67870.1963073551609.49960.200084211619.32050.2038517251629.14140.2078456251638.93560.5114373961648.75650.5218980191658.57740.5327954861668.39830.5441577461678.21920.5560151841688.04010.5684008911697.8610.5813509731707.68190.5949049061717.50280.6091059341727.32370.6240015291737.14460.6396439271746.96550.6560907331756.78640.6734056351766.60730.6916592251776.42820.7109299651786.24910.7313053081796.070.752830311805.89090.775778021815.71180.800980431825.53270.8259981561835.35360.8536312011845.17450.853171191854.96111.6125456051864.7821.672940192	154	10.5132	0.180725184
15710.03690.1893014781589.85780.1927407741599.67870.1963073551609.49960.2000084211619.32050.2038517251629.14140.2078456251638.93560.5114373961648.75650.5218980191658.57740.5327954861668.39830.5441577461678.21920.5560151841688.04010.5684008911697.8610.5813509731707.68190.5949049061717.50280.601059341727.32370.6240015291737.14460.6396439271746.96550.6560907331756.78640.6734056351766.60730.6916592251776.42820.7109299651786.24910.7313053081796.070.752830311805.89090.775778021815.71180.800980431825.53270.8259981561835.35360.8536312011845.17450.8831771191854.96111.612545605	155	10.3951	0.182778424
1589.85780.1927407741599.67870.1963073551609.49960.200084211619.32050.2038517251629.14140.2078456251638.93560.5114373961648.75650.5218980191658.57740.5327954861668.39830.5441577461678.21920.5560151841688.04010.5684008911697.8610.5813509731707.68190.5949049061717.50280.6091059341727.32370.6240015291737.14460.6396439271746.96550.6560907331756.78640.6734056351766.60730.6916592251776.42820.710929651805.89090.775778021815.71180.800980431825.53270.8259981561835.35360.8536312011845.17450.883172111854.96111.612546051864.7821.672940192	156	10.216	0.185982772
1599.67870.1963073551609.49960.200084211619.32050.2038517251629.14140.2078456251638.93560.5114373961648.75650.5218980191658.57740.5327954861668.39830.5441577461678.21920.5560151841688.04010.5684008911697.8610.5813509731707.68190.5949049061717.50280.6091059341727.32370.6240015291737.14460.6396439271746.96550.6560907331756.78640.6734056351766.60730.6916592251776.42820.7109299651786.24910.7313053081796.070.7528830311805.89090.7757728021815.71180.883171191845.17450.8831721191854.96111.6125456051864.7821.672940192	157	10.0369	0.189301478
1609.49960.200084211619.32050.2038517251629.14140.2078456251638.93560.5114373961648.75650.5218980191658.57740.5327954861668.39830.5441577461678.21920.5560151841688.04010.5684008911697.8610.5813509731707.68190.5949049061717.50280.6091059341727.32370.624015291737.14460.6396439271746.96550.6560907331756.78640.6734056351766.60730.6916592251776.42820.7109299651786.24910.7313053081796.070.7528830311805.83090.7757728021815.71180.8800980431825.53270.825981561835.35360.8536312011845.17450.8831771191854.96111.6125456051864.7821.672940192	158	9.8578	0.192740774
1619.32050.2038517251629.14140.2078456251638.93560.5114373961648.75650.5218980191658.57740.5327954861668.39830.5441577461678.21920.5560151841688.04010.5684008911697.8610.5813509731707.68190.5949049061717.50280.6091059341727.32370.6240015291737.14460.6396439271746.96550.6560907331756.78640.6734056351766.60730.6916592251776.42820.7109299651786.24910.7313053081796.070.7528830311805.89090.7757728021815.71180.800980431825.53270.8259981561835.33360.8336312011845.17450.8831771191854.96111.6125456051864.7821.672940192	159	9.6787	0.196307355
1629.14140.2078456251638.93560.5114373961648.75650.5218980191658.57740.5327954861668.39830.5441577461678.21920.560151841688.04010.5684008911697.8610.5813509731707.68190.5949049061717.50280.6091059341727.32370.6240015291737.14460.6396439271746.96550.6560907331756.78640.6734056351766.60730.6916592251776.42820.7109299651786.24910.7313053081796.070.7528830311805.89090.7757728021815.71180.800980431825.53270.8259981561835.35360.8536312011845.17450.8831771191854.96111.6125456051864.7821.672940192	160	9.4996	0.200008421
1638.93560.5114373961648.75650.5218980191658.57740.5327954861668.39830.5441577461678.21920.5560151841688.04010.5684008911697.8610.5813509731707.68190.5949049061717.50280.6091059341727.32370.6240015291737.14460.6396439271746.96550.6560907331756.78640.6734056351766.60730.6916592251776.42820.7109299651786.24910.7313053081796.070.752830311805.89090.7757728021815.71180.800980431825.53270.825981561835.35360.8536312011845.17450.8831771191854.96111.6125456051864.7821.672940192	161	9.3205	0.203851725
1648.75650.5218980191658.57740.5327954861668.39830.5441577461678.21920.5560151841688.04010.5684008911697.8610.5813509731707.68190.5949049061717.50280.6091059341727.32370.6240015291737.14460.6396439271746.96550.6560907331756.78640.6734056351766.60730.6916592251776.42820.7109299651786.24910.7313053081796.070.752830311805.89090.7757728021815.71180.800980431825.53270.8259981561835.35360.8536312011845.17450.8831771191854.96111.6125456051864.7821.672940192	162	9.1414	0.207845625
1658.57740.5327954861668.39830.5441577461678.21920.5560151841688.04010.5684008911697.8610.5813509731707.68190.5949049061717.50280.6091059341727.32370.6240015291737.14460.6396439271746.96550.6560907331756.78640.6734056351766.60730.6916592251776.42820.7109299651786.24910.7313053081796.070.7528830311805.89090.7757728021815.71180.800980431825.53270.8259981561835.35360.8536312011845.17450.8831771191854.96111.6125456051864.7821.672940192	163	8.9356	0.511437396
1668.39830.5441577461678.21920.5560151841688.04010.5684008911697.8610.5813509731707.68190.5949049061717.50280.6091059341727.32370.6240015291737.14460.6396439271746.96550.6560907331756.78640.6734056351766.60730.6916592251776.42820.7109299651786.24910.7313053081796.070.7528830311805.89090.7757728021815.71180.800980431825.53270.8259981561835.35360.8536312011845.17450.8831771191854.96111.6125456051864.7821.672940192	164	8.7565	0.521898019
1678.21920.5560151841688.04010.5684008911697.8610.5813509731707.68190.5949049061717.50280.6091059341727.32370.6240015291737.14460.6396439271746.96550.6560907331756.78640.6734056351766.60730.6916592251776.42820.7109299651786.24910.7313053081796.070.7528830311805.89090.7757728021815.71180.800980431825.53270.825981561835.35360.8536312011845.17450.8831771191854.96111.6125456051864.7821.672940192	165	8.5774	0.532795486
1688.04010.5684008911697.8610.5813509731707.68190.5949049061717.50280.6091059341727.32370.6240015291737.14460.6396439271746.96550.6560907331756.78640.6734056351766.60730.6916592251776.42820.7109299651786.24910.7313053081796.070.7528830311805.89090.7757728021815.71180.8000980431825.53270.8259981561835.35360.8536312011845.17450.8831771191854.96111.6125456051864.7821.672940192	166	8.3983	0.544157746
1697.8610.5813509731707.68190.5949049061717.50280.6091059341727.32370.6240015291737.14460.6396439271746.96550.6560907331756.78640.6734056351766.60730.6916592251776.42820.7109299651786.24910.7313053081796.070.7528830311805.89090.7757728021815.71180.8000980431825.53270.8259981561835.35360.8536312011845.17450.8831771191854.96111.6125456051864.7821.672940192			
1707.68190.5949049061717.50280.6091059341727.32370.6240015291737.14460.6396439271746.96550.6560907331756.78640.6734056351766.60730.6916592251776.42820.7109299651786.24910.7313053081796.070.7528830311805.89090.7757728021815.71180.800980431825.53270.8259981561835.35360.8536312011845.17450.8831771191854.96111.6125456051864.7821.672940192			
1717.50280.6091059341727.32370.6240015291737.14460.6396439271746.96550.6560907331756.78640.6734056351766.60730.6916592251776.42820.7109299651786.24910.7313053081796.070.7528830311805.89090.7757728021815.71180.8000980431825.53270.8259981561835.35360.8536312011845.17450.8831771191854.96111.6125456051864.7821.672940192			0.581350973
1727.32370.6240015291737.14460.6396439271746.96550.6560907331756.78640.6734056351766.60730.6916592251776.42820.7109299651786.24910.7313053081796.070.7528830311805.89090.7757728021815.71180.8000980431825.53270.8259981561835.35360.8536312011845.17450.8831771191854.96111.6125456051864.7821.672940192			
1737.14460.6396439271746.96550.6560907331756.78640.6734056351766.60730.6916592251776.42820.7109299651786.24910.7313053081796.070.7528830311805.89090.7757728021815.71180.8000980431825.53270.8259981561835.35360.8536312011845.17450.8831771191854.96111.6125456051864.7821.672940192			
1746.96550.6560907331756.78640.6734056351766.60730.6916592251776.42820.7109299651786.24910.7313053081796.070.752830311805.89090.7757728021815.71180.8000980431825.53270.8259981561835.35360.8536312011845.17450.8831771191854.96111.6125456051864.7821.672940192			
1756.78640.6734056351766.60730.6916592251776.42820.7109299651786.24910.7313053081796.070.7528830311805.89090.7757728021815.71180.8000980431825.53270.8259981561835.35360.8536312011845.17450.8831771191854.96111.6125456051864.7821.672940192			
1766.60730.6916592251776.42820.7109299651786.24910.7313053081796.070.7528830311805.89090.7757728021815.71180.8000980431825.53270.8259981561835.35360.8536312011845.17450.8831771191854.96111.6125456051864.7821.672940192			
1776.42820.7109299651786.24910.7313053081796.070.7528830311805.89090.7757728021815.71180.8000980431825.53270.8259981561835.35360.8536312011845.17450.8831771191854.96111.6125456051864.7821.672940192			
1786.24910.7313053081796.070.7528830311805.89090.7757728021815.71180.8000980431825.53270.8259981561835.35360.8536312011845.17450.8831771191854.96111.6125456051864.7821.672940192			
1796.070.7528830311805.89090.7757728021815.71180.8000980431825.53270.8259981561835.35360.8536312011845.17450.8831771191854.96111.6125456051864.7821.672940192			
1805.89090.7757728021815.71180.8000980431825.53270.8259981561835.35360.8536312011845.17450.8831771191854.96111.6125456051864.7821.672940192			
1815.71180.8000980431825.53270.8259981561835.35360.8536312011845.17450.8831771191854.96111.6125456051864.7821.672940192			
1825.53270.8259981561835.35360.8536312011845.17450.8831771191854.96111.6125456051864.7821.672940192			
1835.35360.8536312011845.17450.8831771191854.96111.6125456051864.7821.672940192			
1845.17450.8831771191854.96111.6125456051864.7821.672940192			
185 4.9611 1.612545605 186 4.782 1.672940192			
186 4.782 1.672940192			
187 4.6029 1.738034717			
	187	4.6029	1.738034717

188	4.4238	1.808400018
189	4.2447	1.884703277
190	4.0656	1.96772924
191	3.8865	2.058407307
192	3.7074	2.157846469
193	3.7074	2.157846469
194	3.7074	2.157846469
195	3.7074	2.157846469
196	3.7664	2.12404418
197	3.8254	2.091284572
198	3.8844	2.059520132
199	3.9434	2.028706193
200	4.0024	1.99880072
201	4.0614	1.969764121
202	4.1204	1.941559072
203	4.1794	1.914150357
204	4.2384	1.887504719
205	4.2974	1.861590729
206	4.4174	0.430117264
200	4.4764	0.424448217
207	4.5354	0.418926666
208	4.5944	0.413546927
209	4.6534	0.408303606
210	4.0554	0.408305808
212	4.7714	0.398205977
213	4.8304	0.393342166
214	4.8627	0.39072943
215	4.895	0.388151175
216	4.9273	0.385606722
217	4.9596	0.383095411
218	4.9919	0.380616599
219	5.0242	0.378169659
220	5.0565	0.37575398
221	5.0888	0.373368967
222	5.1211	0.37101404
223	5.1534	0.368688633
224	5.1857	0.366392194
225	5.218	0.364124186
226	5.2503	0.361884083
227	5.2826	0.359671374
228	5.3149	0.357485559
229	5.3472	0.355326152
230	5.3795	0.353192676
231	5.4118	0.351084667
232	5.4441	0.349001672
233	5.4764	0.346943247
234	5.5087	0.344908962
235	5.541	0.342898394
236	5.473	0.347158779
237	5.405	0.351526364
238	5.337	0.356005246
239	5.269	0.360599734
240	5.203	0.365314363
240	5.133	0.370153906
241	5.065	0.375123396
242	4.997	0.380228137
243	4.929	0.385473727
244	4.525	0.303473727

245	4.861	0.390866077
246	4.734	1.64765526
247	4.666	1.671667381
248	4.598	1.696389735
249	4.53	1.721854305
250	4.462	1.748095025
251	4.394	1.775147929
252	4.326	1.803051318
253	4.258	1.831845937
254	4.19	1.861575179
255	4.122	1.892285298
256	4.054	1.924025654
257	4.047	1.927353595
258	4.04	1.930693069
259	4.033	1.934044136
260	4.026	1.937406855
261	4.019	1.940781289
262	4.012	1.944167498
263	4.005	1.947565543
264	3.998	1.950975488
265	3.991	1.954397394
266	3.984	1.957831325
267	3.977	1.961277345
268	3.97	1.964735516
269	3.963	1.968205905
270	3.956	1.971688574
271	3.949	1.975183591
272	3.942	1.97869102
273	3.935	1.982210928
274	3.928	1.985743381
275	3.921	1.989288447
276	3.914	1.992846193
277	3.907	1.996416688
278	3.9	2
279	3.893	2.003596198
280	3.886	2.007205353
281	3.879	2.010827533
282	3.872	2.01446281
283	3.865	2.018111255
284	3.858	2.021772939
285	3.851	2.025447936
286	3.91	0.306905371
287	3.903	0.307455803
288	3.9117	0.306771992
289	3.9204	0.306091215
290	3.9291	0.305413453
291	3.9378	0.304738687
292	3.9465	0.304066895
293	3.9552	0.303398058
294	3.9639	0.302732158
295	3.9726	0.302069174
296	3.9813	0.301409087
297	3.931	0.305265836
298	3.8807	0.309222563
299	3.8304	0.313283208
300	3.7801	0.317451919
301	3.7298	0.321733069

302	3.6795	0.326131268
303	3.6292	0.330651383
304	3.5789	0.335298555
305	3.5286	0.340078218
306	3.4783	0.344996119
307	3.428	0.350058343
308	3.3777	0.355271338
309	3.3274	0.360641943
310	3.2771	0.366177413
311	3.2268	0.371885459
312	3.1765	0.37777428
313	3.1262	0.383852601
313	3.0759	0.390129718
-		0.396615547
315	3.0256 2.9753	0.403320674
316		
317	2.925	0.41025641
318	2.8747	0.417434863
319	2.8244	0.424868999
320	2.7741	0.432572726
321	2.7238	0.440560981
322	2.6735	0.448849822
323	2.6232	0.457456542
324	2.5729	0.466399782
325	2.5226	0.475699675
326	2.4723	0.485377988
327	2.422	0.495458299
328	2.3717	0.505966185
329	2.3214	0.516929439
330	2.2711	0.528378319
331	2.2208	0.540345821
332	2.1705	0.552868003
333	2.1202	0.565984341
334	2.0699	0.579738152
335	2.0196	0.594177065
336	1.9693	0.609353577
337	1.985	0.604534005
338	1.985	1.395465995
339	2.0007	1.38451542
340	2.0164	1.37373537
341	2.0104	1.363121894
341	2.0478	1.352671159
343	2.0478	1.342379452
343	2.0033	1.33224317
		1.322258819
345	2.0949	
346	2.1106	1.312423008
347	2.1263	1.302732446
348	2.142	1.29318394
349	2.1577	1.283774389
350	2.1734	1.274500782
351	2.1734	1.274500782
352	2.1734	1.274500782
353	2.1734	1.274500782
354	2.1734	1.274500782
355	2.1734	1.274500782
356	2.1734	1.274500782
357	2.1734	1.274500782
358	2.1734	1.274500782

359	2.1734	1.274500782
360	2.1734	1.274500782
361	2.1734	1.274500782
362	2.1734	1.274500782
363	2.1734	1.274500782
364	2.1734	1.274500782
365	2.1734	1.274500782
366	2.1734	1.274500782
367	2.1734	1.274500782
368	2.1734	1.274500782
369	2.1734	1.274500782
309	-	1.274500782
370	2.1734 2.1734	1.274500782
-	-	
372	2.1734	1.274500782
373	2.1734	1.274500782
374	2.1734	1.274500782
375	2.1734	1.274500782
376	2.1734	1.274500782
377	2.1734	1.274500782
378	2.1734	1.274500782
379	2.1734	1.274500782
380	2.1734	1.274500782
381	2.1734	1.274500782
382	2.1734	1.274500782
383	2.1734	1.274500782
384	2.1734	1.274500782
385	2.1734	1.274500782
386	2.1734	1.274500782
387	2.1734	1.274500782
388	2.1734	1.274500782
389	2.1577	1.283774389
390	2.142	1.29318394
391	2.1263	1.302732446
392	2.1106	1.312423008
393	2.0949	1.322258819
394	2.0792	1.33224317
395	2.0635	1.342379452
396	2.0478	1.352671159
397	2.0321	1.363121894
398	2.0164	1.37373537
399	2.0007	1.38451542
400	1.985	1.395465995
400	1.985	0.604534005
401	1.9693	0.609353577
402	1.9536	0.614250614
		0.619226998
404	1.9379	
405	1.9222	0.624284674
406	1.9065	0.629425649
407	1.8908	0.634651999
408	1.8751	0.639965868
409	1.8594	0.645369474
410	1.8437	0.650865108
411	1.828	0.656455142
412	1.8123	0.662142029
413	1.7966	0.667928309
414	1.7809	0.67381661
415	1.7732	0.676742612

416	1.7655	0.679694138
417	1.7578	0.682671521
418	1.7501	0.685675104
419	1.7424	0.688705234
420	1.7347	0.691762264
421	1.727	0.694846555
422	1.7193	0.697958471
423	1.7116	0.701098387
424	1.7039	0.704266682
425	1.6962	0.707463742
426	1.6885	0.710689962
427	1.6808	0.71394574
428	1.6731	0.717231486
429	1.6654	0.720547616
430	1.6577	0.723894553
431	1.65	0.727272727
432	1.6423	0.730682579
433	1.6346	0.734124556
434	1.6269	0.737599115
435	1.6192	0.741106719
436	1.6115	0.744647844
437	1.6038	0.74822297
438	1.5961	0.751832592
439	1.5884	0.75547721
440	1.5807	0.759157335
441	1.573	0.76287349
442	1.5653	0.766626206
443	1.5576	0.770416025
444	1.5499	0.7742435
445	1.5422	0.778109195
446	1.5345	0.782013685
447	1.5268	0.785957558
448	1.5191	0.789941413
449	1.5114	0.793965859
450	1.5037	0.798031522
451	1.496	0.802139037
452	1.504	0.79787234
453	1.512	0.793650794
454	1.52	0.789473684
455	1.528	0.785340314
456	1.536	0.78125
457	1.544	0.777202073
458	1.552	0.773195876
459	1.56	0.769230769
460	1.568	0.765306122
461	1.576	0.76142132
462	1.584	0.757575758
463	1.592	0.753768844
464	1.6	0.75
465	1.6	1.25
466	1.608	1.243781095
467	1.616	1.237623762
468	1.624	1.231527094
469	1.632	1.225490196
470	1.64	1.219512195
471	1.648	1.213592233
472	1.656	1.207729469

473	1.664	1.201923077
474	1.672	1.196172249
475	1.68	1.19047619
476	1.688	1.184834123
477	1.696	1.179245283
478	1.704	1.17370892
479	1.712	1.168224299
480	1.72	1.162790698
481	1.728	1.157407407
482	1.736	1.152073733
483	1.744	1.146788991
484	1.752	1.141552511
485	1.76	1.136363636
486	1.768	1.131221719
487	1.8016	1.110124334
488	1.8352	1.089799477
489	1.8688	1.070205479
490	1.9024	1.051303616
491	1.936	1.033057851
492	1.9696	1.015434606
493	2.0032	0.998402556
494	2.0368	0.981932443
495	2.0704	0.965996909
496	2.104	0.950570342
490	2.104	0.935628743
498	2.1712	0.935028745
498 499	2.1712	0.921149595
499 500	2.2048	0.893495354
500	2.2384	0.895495554
501	2.3056	0.867453158
503	2.3392	0.85499316
504	2.3728	0.842886042
505	2.4064	0.831117021
506	2.44	0.819672131
507	2.4736	0.808538163
508	2.5072	0.797702616
509	2.5408	0.787153652
510	2.5744	0.77688005
511	2.608	0.766871166
512	2.6416	0.757116899
513	2.6752	0.747607656
514	2.7088	0.738334318
515	2.7424	0.729288215
516	2.768	0.722543353
517	2.7936	0.715922108
518	2.8192	0.709421112
519	2.8448	0.70303712
520	2.8704	0.696767001
521	2.896	0.690607735
522	2.9216	0.684556407
523	2.9472	0.678610206
524	2.9728	0.672766416
525	2.9984	0.667022412
526	3.024	0.661375661
527	3.0496	0.655823715
528	3.0752	0.650364204
529	3.1008	0.64499484

530	3.1264	0.639713408
531	3.152	0.634517766
532	3.1776	0.629405841
533	3.2032	0.624375624
534	3.2288	0.619425173
535	3.2544	0.614552606
536	3.28	0.609756098
537	3.28	1.390243902
538	3.3056	1.379477251
539	3.3312	1.368876081
540	3.3568	1.358436606
541	3.3824	1.348155156
541	3.408	1.348135150
543	3.4336	1.32805219
545	3.4592	1.318223867
544 545		1.308539945
	3.4848	
546	3.5104	1.298997265
547	3.536	1.28959276
548	3.5616	1.28032345
549	3.5872	1.271186441
550	3.6128	1.262178919
551	3.6384	1.253298153
552	3.664	1.244541485
553	3.6896	1.235906331
554	3.7152	1.227390181
555	3.7408	1.21899059
556	3.7664	1.210705183
557	3.792	1.202531646
558	3.8176	1.194467728
559	3.8387	1.187902154
560	3.8598	1.181408363
561	3.8809	1.174985184
562	3.902	1.168631471
563	3.9231	1.162346104
564	3.9442	1.156127985
565	3.9653	1.149976042
566	3.9864	1.143889223
567	4.0075	1.1378665
568	4.0286	1.131906866
569	4.0497	1.126009334
570	4.0708	1.120172939
571	4.0919	1.114396735
572	4.113	1.108679796
573	4.1341	1.103021214
574	4.1552	1.0974201
575	4.1763	1.091875584
576	4.1974	1.086386811
577	4.2185	1.080952945
578	4.2396	1.075573167
579	4.2607	1.070246673
580	4.2818	1.064972675
581	4.3029	1.059750401
582	4.324	1.054579093
583	4.3451	1.04945801
584	4.3662	1.044386423
585	4.3873	1.039363618
586	4.4084	1.034388894

587	4.4295	1.029461565
588	4.425	1.030508475
589	4.4205	1.031557516
590	4.416	1.032608696
591	4.4115	1.03366202
592	4.407	1.034717495
593	4.4025	1.035775128
594	4.398	1.036834925
595	4.3935	1.037896893
596	4.389	1.038961039
597	4.3845	1.040027369
598	4.38	1.04109589
599	4.3755	1.04216661
600	4.373	1.043239533
600 601		1.043239555
	4.3665	
602	4.362	1.045392022
603	4.3575	1.046471601
604	4.353	1.047553411
605	4.3485	1.048637461
606	4.344	1.049723757
607	4.3395	1.050812306
608	4.335	1.051903114
609	4.335	0.948096886
610	4.3305	0.949082092
611	4.326	0.950069348
612	4.3215	0.95105866
613	4.317	0.952050035
614	4.3125	0.953043478
615	4.308	0.954038997
616	4.3035	0.955036598
617	4.299	0.956036288
618	4.2945	0.957038072
619	4.2769	0.960976408
620	4.2593	0.964947292
621	4.2417	0.968951128
622	4.2241	0.972988329
623	4.2065	0.977059313
624	4.1889	0.981164506
625	4.1713	0.985304342
626	4.1537	0.989479259
627	4.1361	0.993689708
628	4.1185	0.997936142
629	4.1009	1.002219025
630	4.0833	1.006538829
631	4.0657	1.010896033
632	4.0481	1.015291124
633	4.0305	1.0197246
634	4.0129	1.024196965
635	3.9953	1.028708733
636	3.9777	1.028708755
637	3.9601	1.037852579
638	3.9601	1.042485732
639	3.9425	1.042485732
	3.9249	1.047160437
640 641	3.8897	1.051877255
641 642	3.8897 3.8721	1.05636759
642 643	3.8721 3.8545	1.061439529
045	5.0545	1.000200159

644	3.8369	1.071177252
645	3.8193	1.076113424
646	3.8017	1.081095299
647	3.7841	1.086123517
648	3.7665	1.091198726
649	3.7489	1.096321588
650	3.7313	1.101492777
651	3.7137	1.106712982
652	3.6961	1.111982901
653	3.6785	1.117303249
654	3.6609	1.122674752
655	3.6433	1.128098153
656	3.6257	1.133574206
657	3.6081	1.139103683
658	3.5905	1.144687369
659	3.5729	1.150326066
660	3.5729	1.154559245
	3.5467	1.154559245
661		
662	3.5336	1.163119765
663	3.5205	1.167447806
664	3.5074	1.171808177
665	3.4943	1.176201242
666	3.4812	1.18062737
667	3.4681	1.185086935
668	3.4368	1.195879888
669	3.4186	0.819048733
670	3.3873	0.82661707
671	3.356	0.834326579
672	3.3247	0.842181249
673	3.2934	0.850185219
674	3.2621	0.858342785
675	3.2308	0.866658413
676	3.1995	0.87513674
677	3.1682	0.883782589
678	3.1369	0.892600975
679	3.1056	0.901597115
680	3.0743	0.910776437
681	3.043	0.920144594
682	3.0117	0.929707474
683	2.9804	0.939471212
684		0.939471212
	2.9491	
685	2.9178	0.959627116
686	2.8865	0.970032912
687	2.8552	0.980666853
688	2.8239	0.991536527
689	2.7926	1.00264986
690	2.7613	1.014015138
691	2.73	1.025641026
692	2.6987	1.037536592
693	2.6674	1.049711329
694	2.6361	1.062175183
695	2.6048	1.074938575
696	2.5735	1.088012434
697	2.5422	1.101408229
698	2.5109	1.115137998
699	2.4796	1.129214389
700	2.4483	1.143650696
	2.1.05	

701	2.417	1.158460902
702	2.3857	1.173659723
703	2.3544	1.189262657
704	2.3231	1.20528604
705	2.2918	1.221747098
706	2.2605	1.238664012
707	2.2292	1.256055984
708	2.1979	1.27394331
709	2.1666	1.292347457
710	2.1353	1.311291153
711	2.104	1.330798479
712	2.0727	1.350894968
713	2.0414	1.37160772
714	2.0101	1.392965524
715	1.9788	1.414998989
716	1.95936	1.429038053
717	1.93992	1.443358489
718	1.93868	0.505498587
719	1.91924	0.510618787
720	1.9129	0.512311151
721	1.90656	0.51401477
722	1.90022	0.515729758
723	1.89388	0.517456227
724	1.88754	0.519194295
725	1.8812	0.520944078
726	1.87486	0.522705695
727	1.86852	0.524479267
728	1.86218	0.526264915
729	1.85584	0.528062764
730	1.8495	0.529872939
731	1.84316	0.531695566
732	1.83682	0.533530776
733	1.83048	0.535378698
734	1.82414	0.537239466
735	1.8178	0.539113214
736	1.81146	0.541000077
737	1.80512	0.542900195
738	1.79878	0.544813707
739	1.79244	0.546740756
733	1.7861	0.548681485
740	1.77976	0.550636041
741	1.77342	0.552604572
742	1.76708	0.554587229
743	1.79908	0.544722858
745	1.83108	0.535203268
745	1.86308	0.526010692
740	1.89508	0.517128564
747	1.89508	0.50854142
748 749	1.92708	0.500234804
749	1.95908	0.492195191
750	2.02308	0.492195191
751	2.02308	0.48440991
753	2.08708	0.469555551
754	2.11908	0.462464843
755	2.15108	0.455585101
756	2.18308	0.448907049
757	2.21508	0.442421944

758	2.24708	0.436121544
759	2.27908	0.429998069
760	2.31108	0.42404417
761	2.34308	0.418252898
762	2.37508	0.41261768
763	2.40708	0.407132293
764	2.43908	0.401790839
765	2.47108	0.396587727
766	2.49122	0.869453521
767	2.52322	0.858426931
768	2.55522	0.847676521
769	2.60542	0.831343891
770	2.65562	0.815628742
771	2.70582	0.800496707
772	2.75602	0.785915922
773	2.83312	0.764528153
774	2.91022	0.744273629
775	2.98732	0.725064606
776	3.06442	0.706822172
777	3.14152	0.689475159
778	3.21862	0.672959219
779	3.29572	0.657216026
780	3.37282	0.642192587
781	3.44992	0.627840646
782	3.52702	0.614116166
783	3.60412	0.60097888
784	3.68122	0.588391892
785	3.75832	0.576321335
786	3.83542	0.564736065
787	3.91252	0.553607394
788	3.98962	0.542908848
789	4.06672	0.532615966
790	4.14382	0.522706102
791	4.22092	0.513158269
792	4.29802	0.503952983
793	4.37512	0.495072135
794	4.41388	1.359348238
795	4.49098	1.336011294
796	4.56808	1.313462111
797	4.64518	1.291661464
798	4.72228	1.270572689
799	4.79938	1.250161479
800	4.87648	1.230395695
801	4.98378	1.203905469
802	5.09108	1.178531864
803	5.19838	1.154205733
804	5.30568	1.130863527
805	5.41298	1.108446734
806	5.52028	1.086901389
807	5.62758	1.066177647
808	5.73488	1.046229389
809	5.84218	1.027013889
810	5.94948	1.008491498
811	6.05678	0.990625382
812	6.16408	0.973381267
813	6.27138	0.956727228
814	6.37868	0.940633485

815	6.48598	0.925072233
816	6.59328	0.910017472
817	6.68872	0.897032616
818	6.78416	0.884413103
819	6.8796	0.872143729
820	6.97504	0.860210121
821	7.07048	0.848598681
822	7.16592	0.837296537
823	7.23446	1.20119539
824	7.3299	1.185555055
825	7.42534	1.17031678
826	7.52078	1.155465258
827	7.61622	1.140985948
828	7.71166	1.126865033
829	7.82	1.111253197
830	7.92834	1.096068029
831	8.03668	1.081292275
832	8.14502	1.066909596
833	8.25336	1.052904514
834	8.3617	1.039262351
835	8.47004	1.025969181
836	8.57838	1.013011781
837	8.68672	1.000377588
838	8.79506	0.988054658
839	8.9034	0.976031628
840	9.01174	0.964297683
841	9.12008	0.952842519
842	9.22842	0.941656318
843	9.33676	0.930729718
844	9.4451	0.920053785
845	9.5151	0.913285199
846	9.5851	0.906615476
847	9.6551	0.900042465
848	9.7251	0.893564076
849	9.7951	0.887178283
850	9.8651	0.880883113
851	9.9049	1.182243132
852	9.9749	1.173946606
853	10.0449	1.165765712
854	10.1149	1.157698049
855	10.1849	1.149741284
856	10.2549	1.141893144
857	10.3249	1.13415142
858	10.4139	1.124458656
859	10.5029	1.114930162
860	10.5919	1.105561797
861	10.6809	1.096349559
862	10.7699	1.087289576
863	10.8589	1.078378105
864	10.9479	1.069611524
865	11.0369	1.060986328
866	11.1259	1.052499124
867	11.2149	1.044146626
868	11.3039	1.035925654
869	11.3929	1.027833124
870	11.4819	1.01986605
871	11.5709	1.012021537

872	11.6599 1.00429	96778
873	11.7489 0.99668	89052
874	11.811 0.9914	44865
875	11.8731 0.98620	53065
876	11.9352 0.98113	31443
877	11.9973 0.9760	52945
878	12.0594 0.97102	26751
879	12.1086 1.0736	17099
880	12.1707 1.0681	39055
881	12.2328 1.0627	16631
882	12.2949 1.05734	48982
883	12.357 1.0520	35284
884	12.4191 1.0467	
885	12.4812 1.0415	
886	12.5433 1.0364	
887	12.5833 1.033	
888	12.6233 1.02984	
889	12.6633 1.0265	
890	12.7033 1.0233	
891	12.7433 1.02014	
891	12.7433 1.0201	
893	12.7833 1.0103	
893	12.8633 1.0106	
895	12.8033 1.0100	
896	12.9055 1.0074	
890		
898	12.9833 1.00123 13.0233 0.9982	
899	13.0633 0.9951	
900	13.1033 0.992	
901	13.1433 0.98909	
902	13.1531 0.98830	
903	13.1629 0.98762	
904	13.1727 0.98688	
905	13.1825 0.9861	
906	13.1923 0.98542	
907	13.2021 0.98469	
908	13.1929 1.1293	
909	13.2027 1.1285	
910	13.2125 1.1277	
911	13.2223 1.1268	
912	13.2321 1.12604	
913	13.2419 1.1252	21617
914	13.2517 1.12438	
915	13.2275 <u>1.1264</u> 4	41126
916	13.2033 <u>1.1285</u> 0	05752
917	13.1791 1.1305	77961
918	13.1549 1.1326	57793
919	13.1307 <u>1.13474</u>	45292
920	13.1065 1.1368 4	40499
921	13.0823 1.1389 4	43458
922	13.0581 1.1410	54212
923	13.0339 1.1431	72803
924	13.0097 1.1452	99277
925	12.9855 1.1474	33676
926	12.9613 1.1495	76046
927	12.9371 1.151	
928	12.9129 1.1538	

929	12.8887	1.156051425
930	12.8516	1.159388714
931	12.8145	1.162745328
932	12.7774	1.166121433
933	12.7403	1.169517201
934	12.7032	1.172932804
935	12.6661	1.176368416
936	12.629	1.179824214
937	12.614	1.006025052
938	12.5769	1.008992677
939	12.5398	1.011977862
940	12.5027	1.014980764
941	12.4558	1.018802486
942	12.4089	1.022653096
943	12.362	1.026532923
944	12.3151	1.030442303
945	12.2682	1.034381572
946	12.2213	1.038351076
947	12.1744	1.042351163
948	12.1275	1.046382189
949	12.0806	1.050444514
950	12.0337	1.054538504
951	11.9868	1.058664531
952	11.9399	1.062822972
953	11.893	1.06701421
954	11.8461	1.071238636
955	11.7992	1.075496644
956	11.7523	1.079788637
957	11.7054	1.084115024
958	11.6585	1.088476219
959	11.5926	1.094663837
960	11.5267	1.100922207
961	11.4608	1.107252548
962	11.3949	1.113656109
963	11.3986	1.113294615
964	11.4023	1.112933356
965	11.44	0.812062937
966	11.4437	0.811800379
967	11.4474	0.811537991
968	11.4511	0.811275773
969	11.4548	0.811013724
970	11.4585	0.810751844
971	11.4622	0.810490133
972	11.4659	0.810228591
973	11.4696	0.809967218
974	11.4733	0.809706013
975	11.477	0.809444977
976	11.4807	0.809184109
977	11.4844	0.808923409
978	11.4881	0.808662877
979	11.4918	0.808402513
980	11.4955	0.808402313
981	11.4992	0.807882287
982	11.5029	0.807622426
983	11.5066	0.807362731
984	11.5103	0.807302731
985	11.4995	0.807861211
202	11.4555	0.807801211

986	11.4887	0.808620645
987	11.4779	0.809381507
988	11.4892	0.808585454
989	11.5005	0.807790966
990	11.5118	0.806998037
991	11.5329	0.720547304
992	11.5442	0.719841999
993	11.5555	0.719138073
994	11.5668	0.718435522
995	11.5781	0.717734343
996	11.5894	0.717034532
997	11.6007	0.716336083
998	11.612	0.715638994
999	11.6233	0.714943261
1000	11.6346	0.714248878
1001	11.6459	0.713555844
1002	11.6572	0.712864153
1003	11.6685	0.712173801
1004	11.6384	0.714015672
1005	11.6083	0.715867095
1006	11.5782	0.717728144
1007	11.5481	0.719598895
1008	11.518	0.721479424
1009	11.4879	0.723369806
1010	11.4578	0.725270122
1011	11.4277	0.727180448
1012	11.3976	0.729100863
1013	11.2979	1.351578612
1014	11.2678	1.355189123
1015	11.2377	1.358818975
1016	11.2416	1.358347566
1017	11.2455	1.357876484
1018	11.2494	1.357405728
1019	11.2533	1.356935299
1020	11.2572	1.356465196
1021	11.2611	1.355995418
1022	11.3326	1.347440128
1023	11.4041	1.338992117
1024	11.4756	1.330649378
1025	11.5471	1.322409956
1025	11.6186	1.314271943
1020	11.6901	1.30623348
1027	11.7616	1.298292749
1029	11.8331	1.290447981
1030	11.9046	1.282697445
1031	11.9761	1.275039454
1032	12.0476	1.26747236
1032	12.0470	1.259994554
1033	12.1906	1.252604466
1034	12.1300	1.125718847
1035	12.3481	1.119200525
1030	12.4196	1.112757255
1037	12.4911	1.106387748
1038	12.4911	1.095547258
1039	12.7383	1.095547258
1040	12.7585	1.074491327
1041	12.8019	1.063461405
1042	12.5555	1.005401405

1043	13.1287	1.052655632
1044	13.2621	1.042067244
1045	13.3955	1.031689747
1046	13.5289	1.021516901
1047	13.6623	1.011542712
1048	13.7957	1.001761418
1049	13.9291	0.992167477
1050	14.0625	0.982755556
1051	14.1959	0.973520524
1052	14.3293	0.96445744
1053	14.4627	0.955561548
1054	14.6263	0.661821513
1055	14.7485	0.656337933
1056	14.8707	0.650944475
1057	14.9929	0.645638936
1058	15.1151	0.640419183
1059	15.2373	0.635283154
1060	15.3595	0.630228849
1061	15.4817	0.625254333
1062	15.6039	0.620357731
1063	15.7261	0.615537228
1064	15.7787	0.613485268
1065	15.8313	0.611446944
1066	15.8839	0.609422119
1067	15.9365	0.607410661
1068	15.9891	0.605412437
1069	16.0417	0.603427318
1070	16.1315	0.60006819
1071	16.2213	0.596746253
1072	16.2435	1.012097147
1073	16.3333	1.006532666
1074	16.4231	1.001029038
1075	16.5129	0.99558527
1076	16.6027	0.990200389
1077	16.6925	0.984873446
1078	16.7823	0.979603511
1079	16.8721	0.974389673
1080	16.9619	0.969231041
1081	17.0517	0.964126744
1082	17.1415	0.959075927
1082	17.2313	0.954077754
1084	17.3211	0.949131406
1085	17.4564	0.941774936
1086	17.6062	0.93376197
1087	17.756	0.925884208
1088	17.9058	0.918138257
1089	18.0035	1.20254395
1089	18.1533	1.192620625
1090	18.3031	1.182859734
1092	18.4529	1.17325732
1092	18.6027	1.163809555
1093	18.7525	1.154512732
1094	18.9023	1.145363263
1095	19.0521	1.136357672
1090	19.0321	1.130337072
1097	19.2019	1.127492392
1098	19.5015	1.110171012
1099	19.5015	1.1101/1012

1100	19.6193	1.103505222
1101	19.7371	1.096919
1102	19.8549	1.090410931
1103	19.9727	1.083979632
1104	20.1017	1.021306656
1105	20.2609	1.01328174
1106	20.4201	1.005381952
1107	20.5793	0.997604389
1108	20.7385	0.989946235
1109	20.8977	0.982404762
1110	21.0569	0.974977323
1111	21.2161	0.967661352
1112	21.3753	0.960454356
1113	21.5345	0.95335392
1114	21.632	0.949056953
1115	21.7295	0.944798546
1116	21.827	0.940578183
1117	21.9245	0.936395357
1118	22.022	0.932249569
1119	22.1195	0.928140329
1120	22.1798	1.093337181
1121	22.2773	1.088552024
1122	22.3748	1.08380857
1123	22.4047	1.082362183
1124	22.4346	1.080919651
1125	22.4645	1.079480959
1126	22.4944	1.078046091
1127	22.5243	1.076615034
1128	22.5542	1.07518777
1129	22.6911	1.068700944
1130	22.828	1.062291922
1131	22.9649	1.055959312
1132	23.1018	1.049701755
1133	23.2387	1.043517925
1134	23.3756	1.037406526
1135	23.467	1.227255295
1136	23.6039	1.22013735
1137	23.7408	1.213101496
1138	23.8777	1.206146321
1139	24.0146	1.199270444
1140	24.0994	1.195050499
1141	24.1842	1.190860148
1142	24.269	1.186699081
1143	24.3538	1.182566992
1144	24.29285556	1.185533744
1145	24.23191112	1.188515419
1146	24.17096668	1.19151213
1147	24.11002224	1.194523991
1148	24.0490778	1.197551118
1149	23.98813336	1.200593626
1150	23.95918892	1.068483582
1151	23.89824448	1.07120839
1152	23.83730004	1.073947131
1153	23.7763556	1.076699913
1154	23.71541116	1.079466842
1155	23.66566672	1.081735846
1156	23.61592228	1.084014408

1157	23.56617784	1.086302589
1158	23.5213222	1.08837419
1159	23.47646655	1.090453708
1160	23.43161091	1.092541187
1161	23.38675526	1.094636674
1162	23.34189962	1.096740215
1163	23.29704398	1.098851855
1164	23.31388833	0.833408813
1165	23.26903269	0.835015373
1166	23.22417704	0.836628138
1167	23.1793214	0.838247146
1168	23.13446576	0.839872431
1169	23.08961011	0.841504032
1170	23.04475447	0.843141984
1171	22.96269882	0.846154894
1172	22.88553198	0.849008012
1173	22.80836514	0.851880434
1174	22.73119829	0.85477236
1175	22.65403145	0.857683986
1176	22.5768646	0.860615517
1177	22.49969776	0.863567156
1178	22.42253092	0.866539111
1179	22.23836407	1.354865848
1180	22.16119723	1.359583586
1181	22.08403038	1.364334294
1182	22.00686354	1.369118318
1183	21.9296967	1.373936011
1184	21.85252985	1.378787729
1185	21.77536301	1.383673833
1186	21.65758496	1.391198513
1187	21.53980692	1.398805482
1188	21.42202888	1.406496097
1189	21.30425083	1.414271745
1190	21.18647279	1.422133845
1191	21.06869474	1.430083846
1192	20.9509167	1.43812323
1193	20.83313866	1.446253515
1194	20.86110505	0.745672675
1195	20.74332701	0.749906512
1196	20.62554896	0.754188702
1190	20.50777092	0.758520078
1197	20.38999288	0.762901493
1199	20.27221483	0.767333818
1200	20.15443679	0.771817946
1200	20.07354754	0.774928097
1202	19.9926583	0.778063415
1202	19.91176906	0.781224207
1203	19.83087981	0.784410785
1204	19.74999057	0.787623465
1205	19.66910132	0.790862569
1200	19.58821208	0.794128425
1207	19.50243404	0.822688879
1208	19.4215448	0.822088879
1209	19.34065555	0.820113313
1210	19.34065555	0.829570412
1211	19.25976631	0.833054532
1212	19.17887706	
1213	19.09/98/82	0.840111312

1214	19.01709858	0.843684726
1215	19.00279858	0.844319616
1216	18.98849858	0.844955463
1217	18.97419858	0.845592268
1218	18.95989858	0.846230033
1219	18.94559858	0.846868761
1220	18.93129858	0.847508455
1221	18.91699858	0.848149115
1222	18.89780978	0.874879989
1223	18.88350978	0.875542513
1224	18.86920978	0.876206041
1225	18.85490978	0.876870576
1226	18.84060978	0.87753612
1227	18.82630978	0.878202675
1228	18.81200978	0.878870243
1229	18.74630978	0.88195041
1230	18.57360978	0.890150908
1231	18.40090978	0.898505335
1232	18.22820978	0.907018067
1233	18.05550978	0.915693647
1234	17.88280978	0.924536793
1235	17.71010978	0.933552406
1236	17.53252098	0.970892641
1237	17.35982098	0.980551333
1238	17.18712098	0.99040413
1239	17.01442098	1.000456943
1240	16.84172098	1.010715925
1241	16.66902098	1.021187485
1242	16.49632098	1.031878297
1243	16.32362098	1.042795322
1244	16.25962098	1.046899902
1245	16.34136542	1.041662992
1246	16.42310986	1.036478216
1247	16.5048543	1.031344797
1248	16.58659874	1.026261976
1249	16.66834318	1.02122901
1250	16.75008762	1.016245168
1251	16.82694326	1.040656959
1252	16.9086877	1.035625941
1253	16.99043214	1.030643333
1254	17.07217658	1.02570844
1255	17.15392102	1.02082058
1256	17.23566546	1.015979084
1257	17.3174099	1.011183295
1258	17.39615434	1.00660613
1259	17.47000998	1.002350635
1260	17.54386562	0.998130969
1261	17.61772127	0.993946682
1262	17.69157691	0.989797331
1263	17.76543256	0.985682479
1264	17.8392882	0.981601699
1265	17.9082546	1.005123079
1266	17.98211024	1.000994864
1267	18.05596589	0.996900421
1268	18.12982153	0.992839338
1269	18.20367718	0.988811207
1270	18.27753282	0.98481563

1271	18.35138846	0.980852214
1272	18.42524411	0.976920571
1273	18.46791095	0.974663569
1274	18.5105778	0.972416971
1275	18.55324464	0.970180707
1276	18.59591148	0.967954704
1277	18.63857833	0.965738893
1278	18.68124517	0.963533203
1279	18.77531202	0.684942013
1280	18.81797886	0.683389013
1281	18.8606457	0.68184304
1282	18.90331255	0.680304046
1283	18.94597939	0.678771983
1284	18.98864624	0.677246805
1285	19.03131308	0.675728466
1286	19.07397992	0.67421692
1287	19.02375797	0.675996826
1288	18.97353601	0.677786154
1289	18.92331406	0.67958498
1290	18.8730921	0.681393379
1291	18.82287014	0.683211429
1292	18.77264819	0.685039206
1293	18.72242623	0.686876788
1294	18.56350428	1.278314678
1295	18.51328232	1.28178243
1296	18.46306036	1.285269047
1297	18.41283841	1.288774684
1298	18.36261645	1.292299497
1299	18.3123945	1.295843643
1300	18.26217254 18.21195058	1.299407283 1.302990577
1301	18.26083983	1.299502116
1302 1303	18.20083983	1.299502116
1303	18.35861832	1.290032283
1304	18.40750756	1.289147915
1305	18.4563968	1.285733085
1300	18.50528605	1.282336298
1308	18.55717529	1.262584398
1309	18.60606454	1.259266835
1310	18.65495378	1.25596666
1311	18.70384302	1.252683738
1312	18.75273227	1.249417934
1313	18.80162151	1.246169113
1314	18.85051076	1.242937144
1315	18.8994	1.239721896
1316	18.888	1.24047014
1317	18.8766	1.241219287
1318	18.8652	1.24196934
1319	18.8538	1.2427203
1320	18.8424	1.243472169
1321	18.831	1.244224948
1322	18.8196	1.244978639
1323	18.8345	1.104356367
1324	18.8231	1.105025208
1325	18.8117	1.10569486
1326	18.8003	1.106365324
1327	18.7889	1.107036601

1328	18.7775	1.107708694
1329	18.7661	1.108381603
1330	18.8061	1.106024109
1331	18.865	1.102570898
1332	18.9239	1.099139184
1333	18.9828	1.095728765
1334	19.0417	1.092339444
1335	19.1006	1.088971027
1336	19.1595	1.08562332
1337	19.3064	0.621555546
1338	19.3653	0.619665071
1339	19.4242	0.617786061
1340	19.4831	0.615918411
1340	19.542	0.61406202
1341	19.542	0.612216786
-		0.610382608
1343	19.6598	0.608559388
1344	19.7187	
1345	19.69334992	0.60934275
1346	19.66799984	0.610128132
1347	19.64264975	0.610915541
1348	19.61729967	0.611704985
1349	19.59194959	0.612496472
1350	19.56659951	0.61329001
1351	19.54124942	0.614085606
1352	19.41189934	1.15393139
1353	19.38654926	1.155440285
1354	19.36119918	1.156953131
1355	19.3358491	1.158469943
1356	19.31049901	1.159990738
1357	19.28514893	1.161515531
1358	19.25979885	1.163044338
1359	19.26189869	1.162917549
1360	19.26399852	1.162790787
1361	19.26609836	1.162664053
1362	19.26819819	1.162537347
1363	19.27029803	1.162410668
1364	19.27239786	1.162284017
1365	19.2744977	1.162157393
1366	19.33199754	0.872129224
1367	19.33409737	0.872034503
1368	19.33619721	0.871939804
1369	19.33829704	0.871845125
1370	19.34039688	0.871750466
1371	19.34249671	0.871655829
1372	19.34459655	0.871561211
1373	19.34669638	0.871466614
1374	19.39954614	0.869092497
1375	19.45239589	0.866731281
1376	19.50524565	0.864382859
1377	19.5580954	0.86204713
1378	19.61094515	0.859723989
1379	19.66379491	0.857413337
1375	19.71664466	0.855115071
1380	19.75059441	0.949338517
1381	19.80344417	0.946805002
1382	19.80344417	0.946805002
1383	19.83029392	0.944284973
1304	19.90914307	0.941770320

1385	19.96199343	0.93928495
1386	20.01484318	0.936804742
1387	20.06769293	0.934337597
1388	20.23299261	0.926704238
1389	20.39829228	0.919194595
1390	20.56359195	0.911805683
1391	20.72889162	0.904534615
1392	20.89419129	0.897378594
1393	21.05949096	0.89033491
1394	21.22479063	0.88340094
1395	21.36564039	0.992012942
1396	21.53094006	0.984396953
1397	21.69623973	0.976897013
1398	21.8615394	0.96951049
1399	22.02683907	0.962234832
1400	22.19213874	0.955067559
1401	22.35743841	0.948006269
1402	22.52273809	0.941048628
1403	22.60848768	0.937479414
1404	22.69423726	0.933937173
1405	22.77998685	0.930421599
1405	22.86573644	0.926932392
1400	22.95148603	0.923469258
1407	23.03723562	0.920031905
1408	23.09853529	1.023440806
1403	23.18428488	1.019655499
1410	23.18428488	1.01589809
1412	23.35578406	1.012168271
1412	23.44153365	1.00846574
1413	23.52728324	1.004790197
1414	23.61303283	1.00114135
1415	23.69878242	0.997518908
1410	23.86448242	0.990592763
1417	24.03018242	0.983762135
1418	24.03018242	0.977025064
1419	24.19588242	0.97025084
1420	24.50158242	0.963824005
1421	24.52728242	0.957356352
1422	24.09298242	0.950974922
1423		1.043401831
1424	24.9999325 25.1656325	1.043401831
1425	25.1050325	1.036531681
		1.023059266
1427	25.4970325 25.6627325	
1428	25.8284325	1.016453542
1429		1.009932575
1430	25.9941325	1.003494744
1431	26.1141325	0.998883472
1432	26.2152325	0.995031242
1433	26.3163325	0.99120861
1434	26.4174325	0.987415236
1435	26.5185325	0.983650787
1436	26.6196325	0.979914931
1437	26.7207325	0.976207346
1438	26.79738258	1.064654992
1439	26.89848258	1.060653405
1440	26.99958258	1.056681786
1441	27.10068258	1.052739799

1442	27.20178258	1.048827114
1443	27.30288258	1.044943407
1444	27.40398258	1.041088355
1445	27.50508258	1.037261642
1446	27.58173266	1.034379076
1447	27.82228275	1.025435885
1448	28.06283283	1.016646014
1449	28.30338291	1.008005553
1450	28.54393299	0.999510724
1451	28.78448307	0.991157877
1452	29.02503316	0.982943481
1453	29.24113332	1.059294063
1453	29.4816834	1.050650958
1455	29.72223348	1.042147756
1455	29.96278357	1.033781085
1450	30.20333365	1.025547685
1457	30.44388373	1.025547685
1459	30.68443381	1.009468159
1460	30.90053398	1.002408532
1461	31.11663414	0.995446962
1462	31.09093431	0.9962698
1463	31.06523447	0.997094001
1464	31.03953463	0.997919566
1465	31.0138348	0.998746499
1466	30.98813496	0.999574803
1467	30.93788472	1.08055222
1468	30.91218488	1.081450571
1469	30.88648505	1.082350418
1470	30.86078521	1.083251763
1471	30.83508537	1.084154611
1472	30.80938554	1.085058965
1473	30.7836857	1.08596483
1474	30.75798587	1.086872208
1475	30.70783611	1.088647206
1476	30.65768636	1.090428012
1477	30.60753661	1.092214654
1478	30.52668685	1.095107378
1479	30.4458371	1.098015466
1480	30.36498735	1.100939039
1481	30.32983759	0.951538231
1482	30.24898784	0.95408151
1483	30.16813809	0.956638422
1484	30.08728833	0.959209075
1485	30.00643858	0.961793581
1486	29.92558883	0.964392052
1487	29.84473907	0.967004601
1488	29.76388932	0.969631344
1489	29.65858965	0.973073917
1490	29.55328998	0.976541022
1491	29.4479903	0.980032923
1492	29.34269063	0.983549885
1493	29.23739096	0.987092181
1494	29.13209129	0.990660084
1495	28.97619162	0.9959901
1496	28.82029195	1.001377781
1497	28.50049228	1.587691874
1498	28.34459261	1.596424427

1499	28.18869293	1.605253571
1500	28.03279326	1.614180919
1501	27.87689359	1.623208119
1502	27.72099392	1.632336854
1503	27.56509425	1.641568848
1504	27.38474466	1.65237984
1505	27.20439507	1.663334174
1506	27.02404548	1.674434719
1507	26.84369589	1.685684422
1508	26.6633463	1.69708631
1509	26.48299671	1.708643493
1510	26.30264712	1.720359163
1511	26.12229754	1.732236605
1512	26.21434795	0.80375831
1513	26.06459836	0.808376163
1514	25.91484877	0.813047384
1515	25.76509918	0.817772905
1516	25.61534959	0.822553677
1517	25.4656	0.827390676
1518	25.2913	0.833092803
1519	25.117	0.838874069
1520	24.9427	0.844736135
1521	24.7684	0.850680706
1522	24.5941	0.856709536
1523	24.4198	0.862824429
1524	24.2455	0.869027242
1525	24.0712	0.875319884
1526	23.8969	0.881704321
1527	23.7226	0.888182577
1528	23.579	0.763391153
1529	23.3741	0.770083126
1530	23.1692	0.776893462
1531	22.9643	0.783825329
1532	22.8051	0.789297131
1533	22.6459	0.794845866
1534	22.4867	0.800473169
1535	22.3275	0.806180719
1536	22.1683	0.811970246
1537	22.0091	0.817843528
1538	21.8499	0.823802397
1539	21.6907	0.829848737
1540	21.5315	0.835984488
1541	21.3723	0.842211648
1542	21.2131	0.848532275
1543	21.0539	0.854948489
1544	20.8947	0.861462476
1545	20.7861	0.622531403
1546	20.5799	0.628768847
1547	20.3737	0.635132548
1548	20.0036	0.646883561
1549	19.6335	0.659077597
1550	19.2634	0.671740191
1551	18.8933	0.684898879
1552	18.5232	0.698583398
1553	18.1531	0.712825909
1554	17.783	0.72766125
1555	17.4129	0.743127222

1556	17.0428	0.75926491
1557	16.6727	0.776119045
1558	16.3026	0.793738422
1559	15.9325	0.812176369
1560	15.5624	0.831491287
1561	15.1923	0.851747267
1562	14.7916	1.081695016
1563	14.7174	1.087148545
1564	14.6432	1.092657343
1565	14.569	1.098222253
1566	14.4948	1.103844137
1567	14.4206	1.109523876
1568	14.3464	1.115262365
1569	14.2722	1.121060523
1570	14.198	1.126919284
1571	14.1238	1.132839604
1572	14.0496	1.138822458
1573	13.9754	1.144868841
1574	13.9012	1.150979772
1575	13.827	1.157156288
1576	13.7528	1.163399453
1577	13.6786	1.16971035
1578	13.6044	1.176090089
1579	13.5915	0.952065629
1580	13.5762	0.953138581
1581	13.5609	0.954213953
1582	13.5456	0.955291755
1583	13.5303	0.956371995
1584	13.515	0.95745468
1585	13.4997	0.958539819
1586	13.4844	0.959627421 0.960717494
1587 1588	13.4691 13.4538	0.961810046
1589	13.4385	0.962905086
1589	13.4232	0.964002622
1590	13.4079	0.965102663
1591	13.3926	0.966205218
1592	13.3773	0.967310294
1595	13.362	0.968417902
1595	13.3467	0.969528048
1595	13.429	0.613597438
1597	13.4055	0.614673082
1598	13.382	0.615752503
1599	13.3585	0.616835723
1600	13.335	0.61792276
1601	13.3115	0.619013635
1602	13.288	0.620108368
1603	13.2645	0.621206981
1604	13.241	0.622309493
1605	13.2175	0.623415926
1606	13.194	0.6245263
1607	13.1705	0.625640636
1608	13.147	0.626758956
1609	13.1235	0.627881282
1610	13.1	0.629007634
1611	13.0765	0.630138034
1612	13.053	0.631272504

1613	12.9448	1.054477474
1614	13.006	1.049515608
1615	13.0672	1.04460022
1616	13.1284	1.03973066
1617	13.1896	1.03490629
1618	13.2508	1.030126483
1619	13.312	1.025390625
1620	13.3732	1.020698113
1621	13.4344	1.016048353
1622	13.4956	1.011440766
1622	13.5568	1.006874779
1623	13.618	1.002349831
1624	13.6792	0.997865372
	13.7404	0.997865572
1626		
1627	13.8016	0.989015766
1628	13.8628	0.984649566
1629	13.924	0.980321747
1630	13.9876	1.177471475
1631	13.99	1.177269478
1632	13.9924	1.177067551
1633	13.9948	1.176865693
1634	13.9972	1.176663904
1635	13.9996	1.176462185
1636	14.002	1.176260534
1637	14.0044	1.176058953
1638	14.0068	1.175857441
1639	14.0092	1.175655997
1640	14.0116	1.175454623
1641	14.014	1.175253318
1642	14.0164	1.175052082
1643	14.0188	1.174850914
1644	14.0212	1.174649816
1645	14.0236	1.174448786
1646	14.026	1.174247825
1647	14.1342	0.749246508
1648	14.2259	0.744416873
1649	14.3176	0.739649103
1650	14.4093	0.734942017
1651	14.501	0.730294462
1652	14.5927	0.725705318
1653	14.6844	0.72117349
1654	14.7761	0.716697911
1655	14.8678	0.712277539
1655	14.9595	0.707911361
1657	15.0512	0.703598384
1658	15.1429	0.699337643
1659	15.2346	0.695128195
1659	15.3263	0.690969118
1661		0.686859515
1662	15.418	
	15.5097	0.682798507
1663	15.6014	0.678785237
1664	15.5237	1.424918029
1665	15.5707	1.420616928
1666	15.6177	1.416341715
1667	15.6647	1.412092156
1668	15.7117	1.407868022
1669	15.7587	1.403669084

1670	15.8057	1.399495119
1671	15.8527	1.395345903
1672	15.8997	1.391221218
1673	15.9467	1.387120846
1674	15.9937	1.383044574
1675	16.0407	1.378992189
1676	16.0877	1.374963481
1677	16.1347	1.370958245
1678	16.1817	1.366976276
1679	16.2287	1.36301737
1680	16.2757	1.35908133
1681	16.3839	0.804448269
1682	16.591	0.794406606
1683	16.7981	0.784612545
1684	17.0052	0.775057041
1685	17.2123	0.765731483
1686	17.4194	0.756627668
1687	17.6265	0.747737781
1688	17.8336	0.739054369
1689	18.0407	0.730570322
1690	18.2478	0.72227885
1690	18.2478	0.714173472
1692	18.662	0.706247991
1692	18.8691	0.698496484
	18.8691	0.690913285
1694		
1695	19.2833 19.4904	0.683492971 0.676230349
1696		
1697	19.6975	0.669120447
1698	19.9211	0.873947724
1699	20.1117	0.86566526
1700	20.3023	0.857538308
1701	20.4929	0.849562531
1702	20.6835	0.841733749
1703	20.8741	0.834047935
1704	21.0647	0.826501208
1705	21.2553	0.819089827
1706	21.4459	0.811810183
1707	21.6365	0.804658794
1708	21.8271	0.797632301
1709	22.0177	0.79072746
1710	22.2083	0.783941139
1711	22.3989	0.777270312
1712	22.5895	0.770712056
1713	22.7801	0.764263546
1714	22.9707	0.757922049
1715	23.0366	0.79655852
1716	23.2036	0.790825562
1717	23.3706	0.785174536
1718	23.5376	0.779603698
1719	23.7046	0.774111354
1720	23.8716	0.768695856
1721	24.0386	0.763355603
1722	24.2056	0.758089037
1723	24.3726	0.752894644
1724	24.5396	0.74777095
1725	24.7066	0.742716521
1726	24.8736	0.737729963

1727	25.0406	0.732809917
1728	25.2076	0.727955061
1729	25.3746	0.723164109
1730	25.5416	0.718435807
1731	25.7086	0.713768933
1732	25.7767	1.442387893
1733	25.892	1.435964777
1734	26.0073	1.429598613
1735	26.1226	1.423288647
1736	26.2379	1.417034138
1737	26.3532	1.410834358
1738	26.4685	1.404688592
1739	26.5838	1.398596137
1740	26.6991	1.392556303
1741	26.8144	1.386568411
1742	26.9297	1.380631793
1743	27.045	1.374745794
1744	27.1603	1.368909769
1745	27.2756	1.363123084
1746	27.3909	1.357385117
1747	27.5062	1.351695254
1748	27.6215	1.346052894
1749	27.7698	1.067706645
1750	27.8851	1.063291866
1751	28.0004	1.058913444
1752	28.1157	1.054570934
1753	28.231	1.050263894
1754	28.3463	1.045991893
1755	28.4616	1.041754504
1756	28.5769	1.037551309
1757	28.6922	1.033381895
1758	28.8075	1.029245856
1759	28.9228	1.025142794
1760	29.0381	1.021072315
1761	29.1534	1.017034034
1762	29.2687	1.013027569
1763	29.384	1.009052546
1764	29.4993	1.005108596
1765	29.6146	1.001195356
1766	29.6288	1.310211686
1767	29.6759	1.308132188
1768	29.723	1.306059281
1769	29.7701	1.303992933
1770	29.8172	1.301933112
1771	29.8643	1.29987979
1772	29.9114	1.297832933
1773	29.9585	1.295792513
1774	30.0056	1.293758498
1775	30.0527	1.291730859
1776	30.0998	1.289709566
1777	30.1469	1.287694589
1778	30.194	1.285685898
1779	30.2411	1.283683464
1780	30.2882	1.281687258
1781	30.3353	1.27969725
1782	30.3824	1.277713413
1783	30.3823	0.813302482

1784	30.1611	0.819267202
1785	29.9399	0.825320058
1786	29.7187	0.831463018
1787	29.4975	0.83769811
1788	29.2763	0.844027421
1789	29.0551	0.850453105
1790	28.8339	0.856977377
1791	28.6127	0.863602526
1792	28.3915	0.870330909
1793	28.1703	0.877164957
1794	27.9491	0.884107181
1795	27.7279	0.891160167
1796	27.5067	0.89832659
1797	27.2855	0.905609206
1798	27.0643	0.913010867
1799	26.8431	0.920534514
1800	26.6549	1.085729078
1801	26.509	1.091704704
1802	26.4103	1.095784599
1803	26.3116	1.099895103
1804	26.2129	1.104036562
1805	26.1142	1.108209327
1806	26.0155	1.112413753
1807	25.9168	1.116650204
1808	25.8181	1.120919045
1809	25.7194	1.125220651
1810	25.6207	1.129555399
1811	25.522	1.133923674
1812	25.4233	1.138325866
1813	25.3246	1.142762373
1814	25.2259	1.147233597
1815	25.1272	1.151739947
1816	25.0285	1.156281839
1817	24.8969	0.92621973
1818	24.7065	0.933357618
1819	24.6689	0.934780229
1820	24.6313	0.936207184
1821	24.5937	0.937638501
1822	24.5561	0.939074202
1823	24.5185	0.940514306
1824	24.4809	0.941958833
1825	24.4433	0.943407805
1826	24.4057	0.944861241
1820	24.3681	0.946319163
1828	24.3305	0.947781591
1829	24.2929	0.949248546
1820	24.2553	0.950720049
1830	24.2353	0.952196121
1832	24.1801	0.953676784
1833	24.1425	0.955162059
1834	24.326	0.619090685
1835	24.4295	0.616467795
1835	24.3306	0.618973638
1830	24.2317	0.621499936
1837	24.1328	0.62404694
1838	24.0339	0.626614906
1839	23.935	0.629204094
1040	23.333	0.029204094

1841	23.8361	0.631814768
1842	23.7372	0.634447197
1843	23.6383	0.637101653
1844	23.5394	0.639778414
1845	23.4405	0.642477763
1846	23.3416	0.645199986
1847	23.2427	0.647945376
1848	23.1438	0.65071423
1849	23.0449	0.65350685
1850	22.946	0.656323542
1851	22.8048	0.660387287
1852	22.6164	0.874586583
1853	22.4799	0.879897153
1854	22.3434	0.885272608
1855	22.2069	0.890714147
1856	22.0704	0.896222996
1857	21.9339	0.901800409
1858	21.7974	0.907447677
1859	21.6609	0.91316612
1855	21.5244	0.918957091
1800	21.3244 21.3879	0.924821979
1862	21.3879	0.930762209
1863	21.2314 21.1149	0.936779241
1864	20.9784	0.942874576
1865	20.8419	0.949049751
1866	20.7054	0.955306345
1867	20.5689	0.96164598
1868	20.4912	0.965292418
1869	20.2528	1.73111866
1870	20.1672	1.738466421
1871	20.0816	1.745876823
1872	19.996	1.75335067
1873	19.9104	1.760888782
1874	19.8248	1.76849199
1875	19.7392	1.776161141
1876	19.6536	1.783897098
1877	19.568	1.791700736
1878	19.4824	1.799572948
1879	19.3968	1.807514642
1880	19.3112	1.815526741
1881	19.2256	1.823610186
1882	19.14	1.831765935
1883	19.0544	1.839994962
1884	18.9688	1.848298258
1885	18.9632	1.848844077
1886	19.1679	0.77316764
1887	19.1702	0.773074877
1888	19.1725	0.772982136
1889	19.1748	0.772889417
1890	19.1771	0.772796721
1891	19.1794	0.772704047
1892	19.1817	0.772611395
1893	19.184	0.772518766
1895	19.1863	0.772426158
1894	19.1886	0.772333573
1895	19.1880	0.77224101
1896	19.1909	0.772148469
1897	19.1932	0.772148469

1898	19.1955	0.772055951
1899	19.1978	0.771963454
1900	19.2001	0.77187098
1901	19.2024	0.771778528
1902	19.2047	0.771686098
1903	19.1646	0.797825157
1904	19.1292	0.799301591
1905	19.0938	0.8007835
1906	19.0584	0.802270915
1907	19.023	0.803763865
1908	18.9876	0.805262382
1909	18.9522	0.806766497
1910	18.9168	0.808276241
1911	18.8814	0.809791647
1912	18.846	0.811312745
1913	18.8106	0.812839569
1913	18.7752	0.81437215
1915	18.7398	0.815910522
1915	18.7044	0.815910522
1910	18.669	0.817434717
1917	18.6336	0.819004707
1918	18.6061	0.779314311
	18.3614	
1920		0.789700132
1921	18.1167	0.800366513
1922	17.872	0.811324978
1923	17.6273	0.822587691
1924	17.3826	0.834167501
1925	17.1379	0.846077991
1926	16.8932	0.858333531
1927	16.6485	0.870949335
1928	16.4038	0.883941526
1929	16.1591	0.897327203
1930	15.9144	0.911124516
1931	15.6697	0.925352751
1932	15.425	0.940032415
1933	15.1803	0.955185339
1934	14.9356	0.970834784
1935	14.6909	0.987005561
1936	14.4383	1.058988939
1937	14.4948	1.054861054
1938	14.5513	1.050765224
1939	14.6078	1.046701078
1940	14.6643	1.042668249
1941	14.7208	1.038666377
1942	14.7773	1.034695107
1943	14.8338	1.030754089
1944	14.8903	1.026842978
1945	14.9468	1.022961437
1946	15.0033	1.019109129
1947	15.0598	1.015285728
1948	15.1163	1.011490907
1949	15.1728	1.007724349
1950	15.2293	1.003985738
1951	15.2858	1.000274765
1952	15.3423	0.996591124
1952	15.3893	1.055278668
1953	15.4999	1.047748695
1954	10.4999	1.047740033

1955	15.6105	1.040325422
1956	15.7211	1.033006596
1957	15.8317	1.025790029
1958	15.9423	1.018673592
1959	16.0529	1.011655215
1960	16.1635	1.004732886
1961	16.2741	0.997904646
1962	16.3847	0.99116859
1963	16.4953	0.984522864
1964	16.6059	0.977965663
1965	16.7165	0.971495229
1966	16.8271	0.965109853
1967	16.9377	0.958807866
1968	17.0483	0.952587648
1969	17.1589	0.946447616
1970	17.3339	0.610941565
1971	17.4548	0.606709902
1972	17.5757	0.602536457
1973	17.6966	0.598420035
1974	17.8175	0.594359478
1975	17.9384	0.590353655
1976	18.0593	0.586401466
1977	18.1802	0.582501843
1978	18.3011	0.578653742
1979	18.422	0.57485615
1980	18.5429	0.571108079
1981	18.6638	0.567408566
1982	18.7847	0.563756674
1983	18.9056	0.56015149
1984	19.0265	0.556592122
1985	19.1474	0.553077702
1986	19.2683	0.549607386
1987	19.2825	1.061584338
1988	19.3743	1.056554301
1989	19.4661	1.051571707
1990	19.5579	1.046635886
1991	19.6497	1.041746184
1992	19.7415	1.036901958
1993	19.8333	1.032102575
1994	19.9251	1.027347416
1995	20.0169	1.022635873
1996 1997	20.1087	1.017967347
	20.2005	1.013341254 1.008757016
1998 1999	20.2923	1.008757016
2000	20.3841 20.4759	0.999711856
2000	20.4739	0.999711836
2001	20.6595	0.990827464
2002	20.0595	0.990827484
2003	20.7748	1.268363594
2004	20.7748	1.265354732
2005	20.8242	1.26236011
2007	20.923	1.25937963
2007	20.9724	1.256413191
2009	20.5724	1.253460693
2005	21.0218	1.25052204
2010	21.1206	1.247597133
2011	21.1200	-1.247337133

2012	21.17	1.244685876
2013	21.2194	1.241788175
2014	21.2688	1.238903934
2015	21.3182	1.236033061
2016	21.3676	1.233175462
2017	21.417	1.230331045
2018	21.4664	1.22749972
2019	21.5158	1.224681397
2020	21.5652	1.221875985
2021	21.6687	1.227115609
2022	21.7746	1.221147576
2023	21.8931	1.214537914
2024	22.0116	1.207999418
2025	22.1301	1.201530947
2026	22.2486	1.195131379
2027	22.3671	1.188799621
2028	22.4856	1.1825346
2029	22.6041	1.176335267
2030	22.7226	1.170200593
2030	22.8411	1.164129573
2031	22.9596	1.158121222
2032	23.0781	1.158121222
2033	23.1966	1.14628868
2034	23.3150	1.14028808
2035	23.4336	1.13469548
2030	23.4350	1.128986375
2037	23.5921	1.037172043
	23.6127	1.036306733
2039		
2040 2041	23.6527 23.6927	1.034554195 1.032807574
2042 2043	23.7327 23.7727	1.03106684
2043	23.7727 23.8127	1.029331965
		1.027602918 1.02587967
2045	23.8527	
2046 2047	23.8927	1.024162192
-	23.9327	1.022450455
2048 2049	23.9727	1.02074443
	24.0127	1.019044089
2050	24.0527	1.017349404
2051	24.0927	1.015660345
2052	24.1327	1.013976886
2053	24.1727	1.012298998
2054	24.2127	1.010626655
2055	24.2268	0.874238447
2056	24.208	0.874917383
2057	24.1892	0.875597374
2058	24.079	0.879604635
2059	23.9688	0.883648743
2060	23.8586	0.88773021
2061	23.7484	0.891849556
2062	23.6382	0.89600731
2063	23.528	0.900204012
2064	23.4178	0.904440212
2065	23.3076	0.90871647
2066	23.1974	0.913033357
2067	23.0872	0.917391455
2068	22.977	0.921791357

2069	22.8668	0.926233666
2070	22.7566	0.930719
2071	22.6464	0.935247986
2072	22.5338	0.939921363
2073	22.4086	1.001401248
2074	22.296	1.006458558
2075	22.296	1.006458558
2076	22.296	1.006458558
2077	22.296	1.006458558
2078	22.296	1.006458558
2079	22.296	1.006458558
2080	22.296	1.006458558
2081	22.296	1.006458558
2082	22.296	1.006458558
2083	22.296	1.006458558
2084	22.296	1.006458558
2085	22.296	1.006458558
2086	22.296	1.006458558
2087	22.296	1.006458558
2088	22.296	1.006458558
2089	22.3172	1.005502482
2090	22.3181	1.096419498
2091	22.3393	1.095378996
2092	22.2664	1.098965257
2093	22.1935	1.102575078
2094	22.1206	1.106208692
2095	22.0477	1.109866335
2096	21.9748	1.113548246
2097	21.9019	1.117254667
2098	21.829	1.120985845
2099	21.7561	1.124742026
2100	21.6832	1.128523465
2101	21.6103	1.132330417
2102	21.5374	1.136163139
2103	21.4645	1.140021897
2104	21.3916	1.143906954
2105	21.3187	1.147818582
2106	21.2787	1.149976267
2107	21.2387	1.15214208
2108	21.2901	0.720052982
2109	21.2759	0.720533561
2110	21.2617	0.721014782
2111	21.2475	0.721496647
2112	21.2333	0.721979155
2113	21.2191	0.72246231
2114	21.2049	0.722946112
2115	21.1907	0.723430562
2116	21.1765	0.723915661
2117	21.1623	0.724401412
2118	21.1481	0.724887815
2119	21.1339	0.725374872
2120	21.1197	0.725862583
2121	21.1055	0.726350951
2122	21.0913	0.726839977
2123	21.0771	0.727329661
2124	21.0503	0.728255654
2125	20.9109	1.271585632

2126	20.9147	1.271354597
2127	20.9185	1.271123647
2128	20.9223	1.270892779
2129	20.9261	1.270661996
2130	20.9299	1.270431297
2131	20.9337	1.270200681
2132	20.9375	1.269970149
2133	20.9413	1.269739701
2134	20.9451	1.269509336
2135	20.9489	1.269279055
2136	20.9527	1.269048858
2137	20.9565	1.268818744
2138	20.9603	1.268588713
2139	20.9641	1.268358766
2140	20.9679	1.268128902
2141	20.9514	1.2691276
2142	21.029	0.816967046
2143	21.0008	0.818064074
2144	20.9726	0.819164052
2145	20.9444	0.820266993
2146	20.9162	0.821372907
2147	20.888	0.822481808
2148	20.8598	0.823593707
2149	20.8316	0.824708616
2150	20.8034	0.825826548
2151	20.7752	0.826947514
2152	20.747	0.828071528
2153	20.7188	0.829198602
2154	20.6906	0.830328748
2155	20.6624	0.831461979
2156	20.6342	0.832598308
2157	20.606	0.833737746
2158	20.5778	0.834880308
2159	20.6152	0.958516046
2160	20.749	0.952335052
2161	20.8828	0.946233264
2162	21.0166	0.940209168
2163	21.1504	0.934261291
2164	21.2842	0.928388194
2165	21.418	0.922588477
2166	21.5518	0.916860773
2167	21.6856	0.911203748
2168	21.8194	0.905616103
2169	21.9532	0.900096569
2170	22.087	0.894643908
2171	22.2208	0.889256912
2172	22.3546	0.883934403
2173	22.4884	0.878675228
2174	22.6222	0.873478265
2175	22.756	0.868342415
2176	22.7466	1.003226856
2177	22.7678	1.002292712
2178	22.6997	1.00529963
2179	22.6316	1.008324643
2180	22.5635	1.011367917
2181	22.4954	1.014429617
2182	22.4273	1.01750991

2183	22.3592	1.020608966
2184	22.2911	1.023726958
2185	22.223	1.02686406
2186	22.1549	1.030020447
2187	22.0868	1.033196298
2188	22.0187	1.036391794
2189	21.9506	1.039607118
2190	21.8825	1.042842454
2191	21.8144	1.04609799
2192	21.7463	1.049373916
2193	21.784	0.993848696
2194	21.81	0.992663916
2195	21.9958	0.984278817
2196	22.1816	0.976034191
2197	22.3674	0.967926536
2198	22.5532	0.959952468
2199	22.739	0.952108712
2200	22.9248	0.944392099
2201	23.1106	0.936799564
2202	23.2964	0.929328137
2203	23.4822	0.921974943
2204	23.668	0.914737198
2205	23.8538	0.907612204
2206	24.0396	0.900597348
2207	24.2254	0.893690094
2208	24.4112	0.886887986
2209	24.597	0.880188641
2210	24.6864	1.162988528
2211	24.7913	1.158067548
2212	24.8962	1.153188037
2213	25.0011	1.148349473
2214	25.106	1.143551342
2215	25.2109	1.138793141
2216	25.3158	1.134074373
2217	25.4207	1.129394549
2218	25.5256	1.124753189
2219	25.6305	1.120149822
2220	25.7354	1.115583982
2221	25.8403	1.111055212
2222	25.9452	1.106563064
2223	26.0501	1.102107094
2224	26.155	1.097686867
2225	26.2599	1.093301955
2226	26.3648	1.088951936
2227	26.4391	1.085891729
2228	26.5567	0.744821457
2229	26.585	0.744028588
2230	26.6133	0.743237404
2231	26.6416	0.742447901
2232	26.6699	0.741660074
2233	26.6982	0.740873917
2234	26.7265	0.740089424
2235	26.7548	0.739306592
2236	26.7831	0.738525413
2237	26.8114	0.737745884
2238	26.8397	0.736967999
2239	26.868	0.736191752

2240	26.8963	0.735417139
2241	26.9246	0.734644154
2242	26.9529	0.733872793
2243	26.9812	0.73310305
2244	27.0212	0.732017823
2245	26.8355	1.332563209
2246	26.8096	1.333850561
2247	26.7837	1.335140403
2248	26.7578	1.336432741
2249	26.7319	1.337727584
2250	26.706	1.339024938
2251	26.6801	1.340324811
2252	26.6542	1.341627211
2253	26.6283	1.342932144
2254	26.6024	1.344239617
2255	26.5765	1.34554964
2256	26.5506	1.346862218
2257	26.5247	1.348177359
2258	26.4988	1.349495071
2259	26.4729	1.350815362
2260	26.447	1.352138239
2261	26.3575	1.147680926
2262	26.2129	1.154011956
2263	26.0683	1.160413222
2264	25.9237	1.1668859
2265	25.7791	1.17343119
2266	25.6345	1.180050323
2267	25.4899	1.186744554
2268	25.3453	1.193515168
2269	25.2007	1.200363482
2270	25.0561	1.207290839
2271	24.9115	1.214298617
2272	24.7669	1.221388224
2273	24.6223	1.228561101
2274	24.4777	1.235818725
2275	24.3331	1.243162606
2276	24.1885	1.250594291
2277	24.0439	1.258115364
2278	24.0088	1.068358269
2279	24.017	1.067993505
2280	24.0252	1.06762899
2281	24.0334	1.067264723
2282	24.0416	1.066900705
2283	24.0498	1.066536936
2284	24.058	1.066173414
2285	24.0662	1.06581014
2286	24.0744	1.065447114
2287	24.0826	1.065084335
2288	24.0908	1.064721803
2289	24.099	1.064359517
2290	24.1072	1.063997478
2291	24.1154	1.063635685
2292	24.1236	1.063274138
2293	24.1318	1.062912837
2294	24.14	1.062551781
2295	24.2105	0.787261725
2296	24.0553	0.792340981

2297	23.9001	0.797486203
2298	23.7449	0.802698685
2299	23.5897	0.807979754
2300	23.4345	0.813330773
2301	23.2793	0.818753141
2302	23.1241	0.824248295
2303	22.9689	0.82981771
2304	22.8137	0.835462902
2305	22.6585	0.841185427
2306	22.5033	0.846986886
2307	22.3481	0.852868924
2308	22.1929	0.85883323
2309	22.0377	0.864881544
2310	21.8825	0.871015652
2311	21.7754	0.654408185
2312	21.6658	0.657718616
2313	21.5562	0.66106271
2314	21.4466	0.664440984
2315	21.337	0.667853963
2316	21.2274	0.671302185
2317	21.1178	0.674786199
2318	21.0082	0.678306566
2319	20.8986	0.681863857
2320	20.789	0.685458656
2321	20.6794	0.68909156
2322	20.5698	0.692763177
2323	20.4602	0.69647413
2324	20.3506	0.700225055
2325	20.241	0.7040166
2326	20.1314	0.707849429
2327	20.0218	0.711724221
2328	19.8487	1.037851345
2329	19.6934	1.046035728
2330	19.5381	1.054350218
2331	19.3828	1.062797945
2332	19.2275	1.071382135
2333	19.0722	1.080106123
2334	18.9169	1.088973352
2335	18.7616	1.097987378
2336	18.6063	1.107151879
2337	18.451	1.116470652
2338	18.2957	1.125947627
2339	18.1404	1.135586867
2340	17.9851	1.145392575
2341	17.8298	1.155369101
2342	17.6745	1.165520948
2343	17.5192	1.175852779
2344	17.3639	1.186369422
2345	17.2122	1.17591011
2346	17.1557	1.179782813
2347	17.0992	1.183681108
2348	17.0427	1.18760525
2349	16.9862	1.191555498
2350	16.9297	1.195532112
2351	16.8732	1.199535358
2352	16.8167	1.203565503
2353	16.7602	1.207622821

2354	16.7037	1.211707586
2355	16.6472	1.215820078
2356	16.5907	1.21996058
2357	16.5342	1.22412938
2358	16.4777	1.228326769
2359	16.4212	1.232553041
2360	16.3647	1.236808496
2361	16.3082	1.241093438
2362	16.3093	1.182760756
2363	16.3809	1.177590975
2364	16.4525	1.172466191
2365	16.5241	1.167385818
2366	16.5957	1.162349283
2367	16.6673	1.15735602
2368	16.7389	1.152405475
2369	16.8105	1.1474971
2370	16.8821	1.14263036
2371	16.9537	1.137804727
2372	17.0253	1.133019682
2373	17.0969	1.128274716
2374	17.1685	1.123569328
2375	17.2401	1.118903023
2376	17.3117	1.114275317
2377	17.3833	1.109685733
2378	17.4549	1.105133802
2379	17.5547	0.576483791
2380	17.5628	0.576217915
2381	17.5924	0.575248403
2382	17.622	0.574282147
2383	17.6516	0.573319133
2384	17.6812	0.572359342
2385	17.7108	0.57140276
2386	17.7404	0.57044937
2387	17.77	0.569499156
2388	17.7996	0.568552102
2389	17.8292	0.567608193
2390	17.8588	0.566667413
2391	17.8884	0.565729747
2392	17.918	0.564795178
2393	17.9476	0.563863692
2394	17.9772	0.562935274
2395	18.0068	0.562009907
2396	18.0071	0.744706255
2397	18.0403	0.743335754
2398	18.0026	0.744892404
2399	17.9649	0.746455588
2400	17.9272	0.748025347
2401	17.8895	0.749601722
2402	17.8518	0.751184754
2403	17.8141	0.752774488
2404	17.7764	0.754370964
2405	17.7387	0.755974226
2406	17.701	0.757584317
2400	17.6633	0.759201282
2407	17.6256	0.760825163
2400	17.5879	0.762456007
2410	17.5502	0.764093856
2.120	27.0002	

2411	17.5125	0.765738758
2412	17.4748	0.767390757
2413	17.3666	1.23282623
2414	17.3384	1.234831357
2415	17.3102	1.236843017
2416	17.3729	1.232379165
2417	17.4356	1.227947418
2418	17.4983	1.22354743
2419	17.561	1.219178862
2420	17.6237	1.214841378
2421	17.6864	1.210534648
2422	17.7491	1.206258345
2423	17.8118	1.202012149
2424	17.8745	1.197795743
2425	17.9372	1.193608813
2426	17.9999	1.189451053
2427	18.0626	1.185322157
2428	18.1253	1.181221828
2429	18.188	1.177149769
2420	18.3424	1.167240928
2430	18.3424	1.275216099
2431	18.6297	1.26464731
2432	18.0237	1.254252267
2433	18.6829	1.261046197
2434	18.8373	1.250710027
2435	18.8373	1.240541921
2430	18.5917	1.230537812
2437	19.1401	1.220693764
2438	19.3003	1.220095764
2439		
2440	19.6093 19.7637	1.201470731 1.192084478
2441 2442	19.7637	1.192084478
		1.182843745
2443	20.0725	
2444	20.2269	1.164785508
2445	20.3813	1.155961592
2446	20.5357	1.147270363
2447	20.6572	1.140522433
2448	20.8496	0.789943212
2449	20.9711	0.785366528
2450	21.0926	0.78084257
2451	21.2141	0.776370433
2452	21.3356	0.77194923
2453	21.3662	0.770843669
2454	21.3968	0.76974127
2455	21.4274	0.768642019
2456	21.458	0.767545904
2457	21.4886	0.76645291
2458	21.5192	0.765363025
2459	21.5498	0.764276235
2460	21.5804	0.763192527
2461	21.611	0.762111887
2462	21.6416	0.761034304
2463	21.6722	0.759959764
2464	21.6228	0.761695988
2465	21.5734	0.763440162
2466	21.4331	1.192547975
2467	21.3837	1.195302964

1.198070712	21.3343	2468
1.200851308	21.2849	2469
1.20364484	21.2355	2470
1.202427436	21.257	2471
1.201212491	21.2785	2472
1.2	21.3	2473
1.198789954	21.3215	2474
1.197582345	21.343	2475
1.196377168	21.3645	2476
1.195174413	21.386	2477
1.193974075	21.4075	2478
1.192776144	21.429	2479
1.191580616	21.4505	2480
1.190387481	21.472	2481
1.190387481	21.472	2482
1.190387481	21.472	2483
0	21.7276	2484

Table S.5. Calculation of event indices from CHAR data at Little Monon Lake using the 100-yr running mean

5	2.36	1.110255803
6	2.36	1.110255803
7	2.36	1.110255803
8	2.36	1.110255803
9	2.36	1.110255803
10	2.36	1.110255803
11	2.36	1.110255803
12	2.36	1.110255803
13	2.36	1.110255803
14	2.36	1.110255803
15	2.36	1.110255803
16	2.36	1.110255803
17	2.36	1.110255803
18	2.36	1.110255803
19	2.36	1.110255803
20	2.43	1.080411421
21	2.49	1.05212951
22	2.56	1.025290499
23	2.63	0.999786712
24	2.69	0.975520928
25	2.75	0.954781546
26	2.81	0.934905637
27	2.87	0.915840375
28	2.92	0.897537158
29	2.98	0.879951192
30	3.04	0.863041127
31	3.10	0.846768731
32	3.16	0.831098602
33	3.22	0.815997911
34	3.28	0.801436174

25	2 22	0 707205042
35 36	3.33 3.39	0.787385042 0.773818122
37	3.46	0.560796858
37	3.52	0.551474248
		0.542456525
39	3.57	
40	3.63	0.533728974
41	3.69	0.525277809
42	3.75	0.517090108
43	3.81	0.509153739
44	3.87	0.501457304
45	3.93	0.493990085
46	3.98	0.486741992
47	4.04	0.479703519
48	4.10	0.472865703
49	4.16	0.466220083
50	4.22	0.459758668
51	4.28	0.453473905
52	4.33	0.447358646
53	4.39	0.441406126
54	4.39	0.441402106
55	4.39	0.441398087
56	4.39	0.441394068
57	4.39	0.441390049
58	4.39	0.44138603
59	4.39	0.441382011
60	4.39	0.441377992
61	4.39	0.441373973
62	4.39	0.441369954
63	4.39	0.441365935
64	4.39	0.441361917
65	4.39	0.441357898
66	4.39	0.44135388
67	4.39	0.441349861
68	4.39	0.441345843
69	4.39	0.441341825
70	4.33	1.956956205
71	4.33	1.95693812
72	4.33	1.956920034
73	4.33	1.956901949
74	4.33	1.956883865
75	4.33	1.95686578
76	4.33	1.956847696
77	4.33	1.956829613
78	4.33	1.956811529
79	4.33	1.956793446
80	4.33	1.956775364
81	4.33	1.956757281
82	4.33	1.956739199
83	4.33	1.956721118
84	4.33	1.956703036
85	4.33	1.956684955
86	4.33	1.956666875
87	4.33	1.956648794
88	4.34	1.95353493
89	4.35	1.948766088
90	4.36	1.944020473
91	4.37	1.939297915

92	4.38	1.934598245
93	4.39	1.929921299
94	4.40	1.925266912
95	4.41	1.920634921
96	4.42	1.916025164
97	4.43	1.911437482
98	4.44	1.906871717
99	4.45	1.902327712
100	4.46	1.897805313
100	4.40	1.893304364
101	4.48	1.888824714
-	-	
103	4.49	1.884366212
104	4.56	0.57604242
105	4.57	0.574706362
106	4.59	0.573376487
107	4.60	0.572052753
108	4.61	0.570735117
109	4.62	0.569423537
110	4.63	0.568117971
111	4.64	0.566818379
112	4.65	0.565524718
113	4.66	0.564236949
114	4.67	0.562955032
115	4.68	0.561678926
116	4.69	0.560408593
117	4.70	0.559143993
118	4.71	0.557885087
119	4.72	0.556631837
120	4.73	0.555384206
121	4.68	0.561876998
122	4.62	0.568523396
123	4.57	0.575328916
124	4.51	0.58229934
125	4.53	0.580476216
126	4.54	0.578664471
127	4.56	0.576864001
128	4.57	0.575074701
129	4.59	0.573296466
130	4.60	0.571529194
131	4.61	0.569772784
132	4.63	0.568027137
133	4.64	0.566292154
134	4.66	0.564567737
135	4.67	0.562853791
135	4.69	0.561150219
137	4.70	0.559456929
138	4.71	0.557773827
139	4.72	0.635075203
140	4.72	0.633174547
140	4.74	0.631285234
141	4.75	0.629407161
142	4.77	0.627540231
145	4.78	0.625684342
144	4.79	0.623839399
-		
146	4.82	0.622005304
147	4.84	0.620181961
148	4.85	0.618369278

149	4.87	0.61656716
150	4.88	0.614775515
151	4.89	0.612994252
152	4.91	0.611223282
152	4.92	0.609462515
154	-	
-	4.94	0.607711864
155	5.01	0.598905201
156	5.08	0.590350137
157	5.15	0.58203604
158	5.23	0.573952871
159	5.30	0.566091141
160	5.37	0.558441873
161	5.42	0.553934783
162	5.46	0.549499864
163	5.50	0.545135393
164	5.55	0.540839708
165	5.59	0.536611193
166	5.63	0.532448286
167	5.68	0.528349471
168	5.72	0.524313281
169	5.77	0.520338289
170	5.81	0.516423116
	5.85	0.51256642
171		
172	5.90	0.508766902
173	5.94	0.505023298
174	5.98	0.501334385
175	5.96	1.6593778
176	6.00	1.647294409
177	6.05	1.635385725
178	6.09	1.623647986
179	6.13	1.612077539
180	6.18	1.600670831
181	6.22	1.589424412
182	6.26	1.578334927
183	6.31	1.567399113
184	6.35	1.556613798
185	6.40	1.545975897
186	6.44	1.535482408
187	6.48	1.52513041
188	6.53	1.514917061
189	6.57	1.504839593
190	6.61	1.495734253
190	6.65	1.486738437
191	6.69	1.477850182
192	6.71	1.473300891
194	6.73	1.468779523
195	6.75	1.46428582
196	6.77	1.45981953
197	6.79	1.455380404
198	6.81	1.450968193
199	6.84	1.446582653
200	6.86	1.442223545
201	6.88	1.437890628
202	6.90	1.433583669
203	6.92	1.429302434
204	6.94	1.425046694
205	6.96	1.420816222

206	6.98	1.416610793
207	7.00	1.412430186
208	7.02	1.408274181
209	7.04	1.404142561
210	7.06	1.400035114
211	7.11	0.984221523
212	7.13	0.981370779
212	7.15	0.978536501
213	7.17	0.975718547
214 215	7.19	0.972916777
216	7.22	0.970131051
217	7.24	0.967361232
218	7.26	0.964607184
219	7.28	0.961868774
220	7.30	0.959145867
221	7.32	0.956438333
222	7.34	0.953746042
223	7.36	0.951412712
224	7.38	0.949090771
225	7.39	0.946780136
226	7.34	0.953340778
227	7.29	0.959992978
228	7.24	0.966738666
229	7.19	0.973579825
230	7.14	0.980518498
231	7.09	0.987556785
232	7.04	0.994696845
233	6.99	1.001940903
233	6.94	1.009291247
234	6.88	1.016750234
236	6.83	1.02432029
237	6.78	1.032003916
238	6.73	1.039803685
239	6.68	1.047722252
240	6.63	1.055762351
241	6.58	1.063926802
242	6.53	1.072218512
243	6.50	0.779746898
244	6.45	0.785901553
245	6.40	0.79215414
246	6.34	0.798507016
247	6.29	0.804962612
248	6.24	0.811523441
249	6.19	0.818192096
250	6.14	0.824971258
251	6.09	0.831863697
252	6.04	0.838872275
252	6.04	0.838812549
	6.04	
254		0.838752831
255	6.04	0.838693122
256	6.04	0.838633422
257	6.04	0.838573729
258	6.04	0.838514046
259	6.04	0.838454371
260	6.04	0.838394704
261	6.04	0.838335046
262	6.07	0.8342885

263	6.10	0.83028083
264	6.13	0.82631148
265	6.16	0.822379902
266	6.19	0.818485559
267	6.22	0.814627926
268	6.25	0.810806485
269	6.28	0.80702073
270	6.31	0.803270163
271	6.34	0.799554295
272	6.37	0.795872648
273	6.40	0.750315367
274	6.43	0.74689339
275	6.46	0.743502485
276	6.49	0.740142231
277	6.51	0.736812213
278	6.54	0.733512025
279	6.57	0.730241269
280	6.60	0.726999552
281	6.63	0.723786489
282	6.63	0.724004833
282	6.63	0.724223308
284	6.63	0.724441916
285	6.62	0.724660655
286	6.62	0.724879527
287	6.62	0.72509853
288	6.62	0.725317666
289	6.62	0.725536935
290	6.61	0.725756336
291	6.61	0.72597587
292	6.61	0.726195537
293	6.61	0.726415337
294	6.63	0.724514085
295	6.64	0.722622759
296	6.66	0.720741282
297	6.68	0.718869578
298	6.69	
		0.717007569
299	6.71	0.715155181
300	6.73	0.71331234
301	6.75	0.711478972
302	6.76	0.709655004
303	6.73	1.475657813
304	6.75	1.47186545
305	6.76	1.468092529
306	6.78	1.464338902
307	6.80	1.46060442
308	6.82	1.456888938
309	6.83	1.453192311
310	6.85	1.449514396
311	6.87	1.445855051
312	6.85	1.450823073
313	6.82	1.455825354
314	6.80	1.460862249
315	6.77	1.465934118
316	6.75	1.471041327
317	6.73	1.476184247
318	6.70	1.481363254
319	6.68	1.486578728

320	6.66	1.491831057
321	6.63	1.497120632
322	6.61	1.502447851
323	6.59	1.507813117
324	6.57	1.512603762
325	6.54	1.517424946
326	6.52	1.522276962
327	6.50	1.527160107
328	6.48	1.53207468
329	6.46	1.537020987
	6.44	1.541999335
330	-	
331	6.42	1.547010038
332	6.43	1.057554281
333	6.41	1.060996369
334	6.39	1.064460937
335	6.37	1.067948205
336	6.35	1.071458397
337	6.33	1.07499174
338	6.30	1.078548464
339	6.28	1.082128802
340	6.25	1.088052227
341	6.22	1.094040856
342	6.18	1.100095773
343	6.15	1.106218084
344	6.11	1.112408922
345	6.08	1.118669441
346	6.04	1.125000827
347	6.01	1.131404289
348	5.98	1.137881065
		1.14443242
349	5.94	
350	5.91	1.151059652
351	5.87	1.157764085
352	5.84	1.164547077
353	5.80	1.171410016
354	5.72	1.188925509
355	5.63	1.206972753
356	5.55	1.225576336
357	5.46	1.244762388
358	5.38	1.264558697
359	5.29	1.284994851
360	5.21	1.306102379
361	5.12	1.32791492
362	5.08	0.534657171
363	4.99	0.543819117
364	4.91	0.553300538
365	4.82	0.56311844
366	4.73	0.573291058
367	4.65	0.583837971
368	4.56	0.594780223
369	4.48	0.606327341
370	4.39	0.618331689
370	4.39	0.630820974
371	4.30	0.643825185
373	4.22	0.657376839
374	4.04	0.671511247
375	3.95	0.686266825
376	3.87	0.701685441

377	3.78	0.717812813
378	3.69	0.73469896
379	3.61	0.752398721
380	3.52	0.770972351
381	3.43	0.790486204
382	3.35	0.811013528
383	3.29	0.824713447
384	3.24	0.838884167
385	3.18	0.85355038
386	3.12	0.868738537
387	3.07	0.884477005
388	3.01	0.900796245
389	2.96	0.91772901
390	2.92	0.473060589
391	2.86	0.482257202
392	2.80	0.49181848
393	2.75	0.501766553
394	2.69	0.512125376
395	2.64	0.522920925
396	2.58	0.534181413
397	2.58	0.545937536
398	2.53	0.545419308
399	2.53	0.544902064
400	2.53	0.544385799
400	2.55	0.543870512
401	2.54	0.5433562
402	2.54	0.542842859
403	2.54	0.542842859
404 405	2.54	0.542330487
406	2.55	0.54130864
407	2.55	0.540799159
408	2.55	0.540290636
409	2.55	0.539783069
410	2.56	0.539276454
411	2.56	0.53877079
412	2.56	0.538266073
413	2.61	0.529327995
414	2.65	0.520681908
415	2.69	0.512313734
416	2.73	0.504210284
417	2.78	0.496359193
418	2.82	0.488748853
419	2.87	0.432988036
420	2.91	0.426549895
421	2.95	0.420300408
422	3.00	0.414231402
423	3.04	0.40833517
424	3.08	0.402604439
425	3.13	0.397032335
426	3.17	0.391612364
427	3.21	0.386373417
428	3.25	0.381272792
429	3.30	0.376305081
430	3.34	0.371465157
431	3.38	0.366748152
432	3.43	0.362149441
433	3.47	0.357664629

	434	3.51	0.353289538
	435	3.56	0.349020189
	436	3.60	0.344852794
	437	3.64	0.340783744
	437	3.68	0.336809599
	438		
		3.73	0.332927077
	440	3.77	0.329133045
	441	3.83	0.32428926
	442	3.88	0.319585978
	443	3.94	0.315017172
	444	4.00	0.310577156
	445	4.05	0.30626056
	446	4.11	0.302062309
_	447	4.16	0.297977602
	448	4.16	1.691059214
	449	4.22	1.668487646
	450	4.28	1.646510694
	451	4.33	1.625105166
	452	4.39	1.604249063
	453	4.44	1.583921498
	454	4.50	1.564102631
	455	4.56	1.544773604
	456	4.61	1.526024336
	457	4.67	1.507724738
	458	4.73	1.489858825
	459	4.78	1.472411361
	460	4.84	1.455367816
	461	4.89	1.438714322
	462	4.95	1.422437642
	463	5.01	1.406525129
	464	5.06	1.390964698
	465	5.12	1.37574479
	466	5.17	1.36085435
	467	5.23	1.346282792
	468	5.29	1.332019983
	469	5.34	1.318056213
	470	5.40	1.304048744
	470	5.46	1.290335869
	472	5.51	1.276908391
	472	5.57	1.263757493
	474	5.63	1.250874716
	475	5.69	1.238251944
	475	5.74	1.225881383
	470	5.80	1.208740424
	477	5.86	1.196967813
	478	5.91	1.18542231
	480	5.97	1.174097407
	480	6.03	1.16298684
	482	6.09	1.152084582
	483	6.14	
	483 484	6.20	1.141384829 1.130881991
	484 485		
		6.26	1.120570682
	486	6.31	1.110445709
	487	6.37	1.100502067
	488	6.43	1.090734928
	489	6.48	1.081139634
	490	6.54	1.071711689

491	6.60	1.062446753
492	6.66	1.053340634
493	6.71	1.044389285
494	6.77	1.035588791
495	6.83	1.026935372
496	6.88	1.018473615
497	6.94	1.010150164
498	7.00	1.001961658
499	7.00	1.002143487
500	6.99	1.002325383
500	6.99	1.002507345
501	6.99	1.002689372
502	6.99	1.002871466
503	6.99	1.003053626
505	6.99	1.003235852
506	6.99	0.998704478
507	6.99	0.998885971
		0.999067531
508	6.98	
509	6.98	0.999249156
510	6.98	0.999430848
511	6.98	0.999612606
512	6.98	0.999794429
513	6.98	0.999976319
514	6.98	1.000205021
515	6.98	1.000433828
516	6.97	1.00066274
517	6.97	1.000891756
518	6.97	1.001120877
519	6.97	1.001350103
520	6.97	1.001579434
521	6.97	1.00180887
522	6.96	1.002038411
523	6.96	1.002268057
524	6.96	1.002497809
525	6.96	1.002727666
 526	6.96	1.002957629
527	6.96	0.998453102
528	6.96	0.99864035
529	6.95	0.998827668
530	6.95	0.999015056
531	6.95	0.999249391
532	6.95	0.999483835
533	6.95	0.999718389
534	6.95	0.999953054
535	6.94	1.000187829
536	6.94	1.000422713
537	6.94	1.000657709
538	6.94	1.000892814
539	6.94	1.001128031
540	6.94	1.001363357
541	6.93	1.001598795
542	6.93	1.001834343
543	6.93	1.002070002
544	6.93	1.002305772
545	6.93	1.002541653
546	6.93	0.998022787
547	6.93	0.998257759

548	6.92	0.998539872
549	6.92	0.998822145
550	6.92	0.999104577
551	6.92	0.999387169
552	6.92	0.999669921
553	6.92	0.999069921
554	6.91	1.000235904
555	6.91	1.000519137
556	6.91	1.00080253
557	6.91	1.001038813
558	6.90	1.001275208
559	6.90	1.001511714
560	6.90	1.001748333
561	6.90	1.001985063
562	6.90	1.002221905
563	6.90	1.002458859
564	6.89	0.997919033
565	6.89	0.998202291
566	6.89	0.99848571
567	6.89	0.99876929
568	6.89	0.999053031
569	6.88	0.999336933
570	6.88	0.999620997
571	6.88	0.999905222
572	6.88	1.000189609
573	6.88	1.000474158
574	6.88	1.000758869
575	6.87	1.001043741
576	6.87	1.001328776
577	6.87	1.001613974
578	6.87	1.001851762
579	6.87	1.002089664
580	6.86	1.002327678
581	6.86	0.997766905
582	6.86	0.998051425
583	6.86	0.998336108
584	6.86	0.998620953
585	6.86	0.998905961
586	6.85	0.999191132
587	6.85	0.999476465
588	6.85	0.999761962
589	6.85	1.000047621
590	6.85	1.000333444
591	6.84	1.000619431
592	6.84	1.00090558
593	6.84	1.001191894
594	6.84	1.001478372
595	6.84	1.001765013
596	6.83	1.002051819
597	6.83	1.002290949
598	6.91	0.985644305
599	7.00	0.974095221
600	7.08	0.96281365
601	7.16	0.951790405
602	7.24	0.941016713
603	7.32	0.930484194
604	7.41	0.92018484

605	7.49	0.910110993
606	7.57	0.900255327
607	7.65	0.89061083
608	7.73	0.881170787
609	7.82	0.871928765
610	7.90	0.862878598
611	7.98	0.854014373
612	8.06	0.845330417
613	8.14	0.836821288
614	8.23	0.828481758
-		0.816317818
615	8.31	
616	8.28	0.818910363
617	8.26	0.821519429
618	8.23	0.824145172
619	8.20	0.826787754
620	8.18	0.829447338
621	8.15	0.832124087
622	8.12	0.834818169
	-	
623	8.10	0.837529752
624	8.07	0.840259007
625	8.05	0.843006108
626	8.02	0.845771231
627	7.99	0.848554553
628	7.97	0.851356254
629	7.94	0.854176518
630	7.94	0.857015529
	-	
631	7.89	0.859873475
632	7.86	0.858548961
633	7.84	0.861412804
634	7.81	0.864295818
635	7.78	0.867198194
636	7.76	0.870120128
637	7.73	0.87306182
638	7.71	0.876023469
639	7.68	0.87900528
640	7.65	0.882007459
641	7.63	0.885030217
642	7.60	0.888073764
643	7.57	0.891138316
644	7.55	0.894224092
645	7.52	0.897331313
646	7.50	0.900460202
647	7.47	0.903610989
648	7.36	2.053046778
648 649	7.36	2.053046778 2.052222065
649	7.36	2.052222065
649 650 651	7.36 7.37 7.37	2.052222065 2.051398015
649 650 651 652	7.36 7.37 7.37 7.37	2.052222065 2.051398015 2.050574626 2.049751897
649 650 651 652 653	7.36 7.37 7.37 7.37 7.38	2.052222065 2.051398015 2.050574626 2.049751897 2.048929829
649 650 651 652 653 654	7.36 7.37 7.37 7.37 7.38 7.38 7.38	2.052222065 2.051398015 2.050574626 2.049751897 2.048929829 2.04810842
649 650 651 652 653 654 655	7.36 7.37 7.37 7.37 7.38 7.38 7.38 7.38	2.052222065 2.051398015 2.050574626 2.049751897 2.048929829 2.04810842 2.047287669
649 650 651 652 653 654 655 656	7.36 7.37 7.37 7.37 7.38 7.38 7.38 7.38 7.38	2.052222065 2.051398015 2.050574626 2.049751897 2.048929829 2.04810842 2.047287669 2.046467576
649 650 651 652 653 654 655	7.36 7.37 7.37 7.37 7.38 7.38 7.38 7.38	2.052222065 2.051398015 2.050574626 2.049751897 2.048929829 2.04810842 2.047287669 2.046467576 2.045648139
649 650 651 652 653 654 655 656	7.36 7.37 7.37 7.37 7.38 7.38 7.38 7.38 7.38	2.052222065 2.051398015 2.050574626 2.049751897 2.048929829 2.04810842 2.047287669 2.046467576
649 650 651 652 653 654 655 656 656 657	7.36 7.37 7.37 7.37 7.38 7.38 7.38 7.38 7.38	2.052222065 2.051398015 2.050574626 2.049751897 2.048929829 2.04810842 2.047287669 2.046467576 2.045648139
649 650 651 652 653 654 655 656 657 658 659	7.36 7.37 7.37 7.38 7.38 7.38 7.38 7.38 7.38	2.052222065 2.051398015 2.050574626 2.049751897 2.048929829 2.04810842 2.047287669 2.046467576 2.045648139 2.044829359 2.044011233
649 650 651 652 653 654 655 656 657 658	7.36 7.37 7.37 7.38 7.38 7.38 7.38 7.38 7.38	2.052222065 2.051398015 2.050574626 2.049751897 2.048929829 2.04810842 2.047287669 2.046467576 2.045648139 2.044829359

662	7.40	2.041560781
663	7.40	2.040745268
664	7.41	2.039930407
665	7.41	2.039116196
666	7.52	0.564974952
667	7.55	0.562831808
668	7.58	0.560704863
669	7.61	0.558593932
670	7.64	0.556498836
671	7.67	0.554419398
672	7.69	0.552355442
673	7.72	0.550306796
674	7.75	0.54827329
675	7.78	0.546254757
676	7.81	0.544251033
677	7.81	0.542261955
678	7.87	0.540287363
	-	
679	7.89	0.5383271
680	7.92	0.536381009
681	7.95	0.534448938
682	7.98	0.530515279
683	8.01	0.528596523
684	7.99	0.529975404
685	7.97	0.531361498
686	7.95	0.532754861
687	7.93	0.534155551
688	7.91	0.535563626
689	7.88	0.536979144
690	7.86	0.538402164
691	7.84	0.539832746
692	7.82	0.541270951
693	7.80	0.54271684
694	7.78	0.544170474
695	7.76	0.545631916
696	7.74	0.547101229
697	7.72	0.548578477
698	7.70	0.550063724
699	7.56	0.940102352
700	7.46	0.953265716
701	7.36	0.966802943
702	7.40	0.960996593
703	7.44	0.95525957
704	7.49	0.949590638
705	7.53	0.943988594
706	7.58	0.93845226
707	7.62	0.932980486
708	7.67	0.927572151
709	7.71	0.922226156
710	7.76	0.916941431
710	7.80	0.911716928
711	7.84	0.906551623
712	7.89	0.901444517
713	7.93	0.89639463
715	7.98	0.891401008
716	8.02	0.886462713
717	8.15	1.183759415
718	8.30	1.161937775

719	8.46	1.140906102
720	8.64	1.116587112
721	8.82	1.093283227
722	9.01	1.070932189
723	9.19	1.04947673
724	9.38	1.028864079
724	9.56	1.009045533
-		
726	9.74	0.989976069
727	9.93	0.971614005
728	10.11	0.953920696
729	10.30	0.93686026
730	10.48	0.920399339
731	10.67	0.904506876
732	10.85	0.889153926
733	11.03	0.874300795
734	11.27	0.414089699
735	11.45	0.407425162
736	11.64	0.400971751
737	11.82	0.394719589
738	11.97	0.389741322
739	12.12	0.384887065
739 740	12.12	0.38015224
-		0.375532494
741	12.43	
742	12.58	0.371023681
743	12.73	0.366621854
744	12.88	0.362323248
745	13.03	0.358124276
746	13.18	0.354021513
747	13.33	0.350011689
748	13.48	0.346091683
749	13.63	0.34225851
750	13.76	0.339217333
751	13.88	0.336229725
752	13.85	1.411836902
753	13.97	1.399487389
754	14.10	1.387352048
755	14.22	1.375425356
756	14.22	1.366879367
757	14.40	1.358438921
758	14.48	1.350102075
759	14.57	1.341866932
760	14.66	1.333731643
761	14.75	1.325694402
762	14.84	1.317753448
763	14.93	1.309907061
764	15.02	1.302153562
765	15.11	1.29449131
766	15.20	1.286918704
767	15.28	1.279434181
768	15.35	1.274138089
769	15.41	1.268885662
770	15.44	1.467664878
771	15.51	1.461652104
772	15.51	1.455688395
773	15.63	1.449773154
774	15.58	1.454821331
775	15.53	1.459904787

776	15.47	1.465023893
777	15.42	1.470179025
778	15.36	1.475370565
779	15.31	1.4805989
780	15.25	1.485864422
781	15.20	1.49116753
782	15.15	1.496508628
783	15.09	1.501888125
784	15.04	1.507306437
785	15.03	1.50775162
786	15.03	1.508197067
787	15.02	1.508642778
788	15.02	1.284351996
789	15.05	1.284730937
790	15.04	1.285110103
791	15.04	1.285489492
792	15.11	1.279628087
793	15.18	1.273819891
794	15.25	1.268064184
795	15.32	1.262360257
796	15.38	1.256707413
797	15.45	1.251104971
798	15.52	1.245552259
799	15.59	1.240048618
800	15.66	1.2345934
801	15.73	1.229185969
802	15.80	1.2238257
803	15.72	1.230054829
804	15.64	1.236347692
805	15.56	1.242705275
806	15.51	1.031539978
807	15.43	1.036887934
808	15.35	1.042291632
809	15.27	1.047751948
810	15.15	1.055895823
811	15.04	1.06416729
812	14.92	1.072569371
813	14.80	1.081105185
814	14.68	1.089777949
815	14.56	1.098590986
815	14.45	1.107547728
817	14.33	1.116651717
818	14.33	1.125906616
819	14.09	1.135316208
820	13.98	1.144884404
821	13.83	1.157213197
822	13.68	1.169810408
823	13.53	1.182684899
824	13.50	0.312800288
825	13.35	0.316289271
826	13.20	0.319856965
827	13.05	0.323506063
828	12.92	0.3268452
829	12.78	0.330253987
830	12.65	0.333734626
831	12.52	0.337289413
832	12.38	0.340920744

833	12.25	0.344631117
834	12.12	0.348423141
835	11.98	0.352299542
836	11.85	0.356263168
837	11.72	0.360316996
838	11.58	0.364464141
839	11.48	0.367637881
840	11.38	0.37086738
841	11.28	0.37415412
842	11.11	1.039980365
843	11.01	1.049425788
844	10.91	1.059044356
845	10.81	1.068840874
846	10.73	1.07732164
847	10.64	1.085938064
848	10.56	1.094693428
849	10.47	1.103591119
850	10.39	1.112634637
851	10.30	1.121827596
852	10.22	1.131173731
853	10.13	1.140676903
854	10.04	1.150341103
855	9.96	1.160170459
856	9.87	1.170169242
857	9.82	1.176336447
858	9.77	1.182569005
859	9.72	1.188867957
860	9.71	0.801311443
861	9.65	0.805608702
862	9.60	0.809952301
863	9.50	0.818859998
864	9.39	0.827965804
865	9.29	0.837276402
866	9.18	0.84679878
867	9.08	0.856540247
868	8.98	0.866508451
869	8.87	0.876711402
870	8.77	0.887157491
871	8.66	0.897855514
872	8.56	0.908814696
873	8.45	0.920044719
874	8.35	0.931555747
875	8.36	0.930070691
876	8.38	0.928590362
877	8.39	0.927114738
878	8.39	1.112905072
879	8.40	1.111138891
880	8.41	1.109378306
880	8.46	1.103319297
882	8.51	1.097326113
883	8.55	1.091397686
884	8.60	1.085532973
885	8.64	1.079730952
886	8.69	1.073990624
887	8.74	1.068311009
888	8.78	1.062691149
889	8.83	1.057130106

890	8.87	1.051626963
891	8.92	1.046180818
892	8.97	1.040790791
893	8.94	1.043949222
894	8.91	1.04712688
895	8.89	1.050323943
896	8.84	1.223795201
897	8.82	1.227560973
898	8.79	1.231349991
899	8.76	1.235162472
900	8.75	1.23752527
901	8.73	1.239897124
902	8.71	1.242278088
903	8.70	1.244668213
904	8.68	1.247067553
905	8.66	1.249476162
906	8.65	1.251894093
907	8.63	1.2543214
908	8.61	1.256758138
909	8.60	1.259204362
910	8.58	1.261660127
911	8.60	1.258571789
912	8.62	1.255498534
913	8.69	0.638930967
914	8.72	0.637387754
915	8.74	0.635851979
916	8.76	0.634323586
917	8.72	0.636909082
918	8.69	0.639515741
919	8.65	0.642143824
920	8.62	0.644793596
921	8.58	0.647465328
921		
-	8.54	0.650159292
923	8.51	0.652875768
924	8.47	0.655615039
925	8.44	0.658377393
926	8.40	0.661163123
927	8.37	0.663972528
928	8.33	0.66680591
929	8.28	0.67092208
930	8.23	0.675089384
931	8.14	1.085632619
932	8.09	1.09248837
933	8.04	1.09943126
934	7.99	1.10646296
935	7.97	1.109548112
		1.112650517
936	7.95	
937	7.92	1.115770319
938	7.90	1.118907667
939	7.88	1.122062707
940	7.86	1.125235591
941	7.84	1.128426469
942	7.81	1.131635496
943	7.79	1.134862827
944	7.77	1.138108618
945	7.75	1.14137303
946	7.72	1.144656221
5.0	,., <u> </u>	

947	7.69	1.15018335
948	7.65	1.155764115
949	7.61	1.161399301
950	7.57	1.306156329
951	7.53	1.312596383
952	7.49	1.319100257
953	7.50	1.317031043
954	7.52	1.31496831
955	7.53	1.312912029
956	7.54	1.310862168
957	7.55	1.308818699
958	7.56	1.306781591
959	7.57	1.304750814
960	7.59	1.302726339
961	7.60	1.300708137
962	7.61	1.298696178
963	7.62	1.296690435
964	7.69	1.285816335
965	7.75	1.275123099
966	7.81	1.264606253
967	7.94	0.532050297
968	8.00	0.527763854
969	8.06	0.523545926
970	8.13	0.519394884
971	8.24	0.512528916
972	8.35	0.505842105
973	8.46	0.499327528
974	8.56	0.492978616
975	8.67	0.486789129
976	8.78	0.480753136
977	8.89	0.474864998
978		
	9.00	0.469119347
979	9.11	0.463511073
980	9.22	0.458035308
981	9.33	0.452687411
982	9.40	0.449027221
983	9.48	0.445425746
984	9.55	0.441881582
985	9.60	0.740595705
986	9.68	0.734777925
987	9.75	0.729050835
988	9.83	0.723412333
989	9.86	0.720933387
990	9.90	0.718471373
991	9.93	0.716026116
992	9.97	0.713597448
993	10.00	0.7111852
994	10.03	0.708789205
995	10.07	0.706409301
996	10.10	0.704045325
997	10.13	0.701697118
998	10.17	0.699364523
999	10.20	0.697047385
1000	10.24	0.694745551
1000	10.24	0.693160858
1001	10.28	0.691583379
1003	10.26	1.16996558

1004	10.28	1.167302457
1005	10.30	1.164651431
1006	10.33	1.16201242
1007	10.32	1.163131973
1008	10.31	1.164253686
1009	10.30	1.165377565
1010	10.29	1.166503615
1010	10.28	1.167631844
1011	10.27	1.168762257
1012	10.26	1.169894862
1014	10.25	1.171029663
1015	10.24	1.172166668
1016	10.23	1.173305883
1017	10.22	1.174447315
1017	10.26	1.169108415
1019	10.31	1.163817835
1010	10.36	1.158574922
1021	10.36	1.587332844
1021	10.50	1.580215613
1023	10.45	1.573161921
1023	10.40	1.566170921
1025	10.57	1.555635314
1025	10.64	1.545240504
1020	10.71	1.53498369
1027	10.71	1.524862141
1028	10.78	1.514873198
1029	10.80	1.505014274
1030	11.00	1.495282845
1031	11.00	1.495282845
1032	11.07	1.476192708
1033	11.14 11.21	1.466829271
	11.21	1.45758387
1035 1036	11.28	1.45758387
	11.32	1.446755604
1037	-	
1038	11.41 11.49	1.441401579 1.063424177
1039		
1040	11.54 11.58	1.059531965 1.05566814
1041		
1042	11.62	1.051832393
1043	11.66	1.048424481
1044	11.70	1.045038581
1045	11.73	1.041674479
1046	11.77	1.038331968
1047	11.81	1.035010838
1048	11.85	1.031710886
1049	11.88	1.02843191
1050	11.92	1.02517371
1051	11.96	1.02193609
1052	12.00	1.018718855
1053	12.04	1.015521813
1054	12.02	1.016460979
1055	12.01	1.017401884
1056	12.00	1.018344533
1057	12.02	0.739185093
1058	12.01	0.739869334
1059	12.00	0.740554843
1060	11.99	0.741241623

1061	11.94	0.744602387
1062	11.88	0.747993764
1063	11.83	0.751416176
1064	11.77	0.75487005
1065	11.72	0.758355822
1066	11.67	0.761873936
1067	11.61	0.765424844
1068	11.56	0.769009006
1069	11.50	0.772626893
1009	11.30	0.776278983
1070	11.45	
-		0.779965762
1072	11.30	0.786770918
1073	11.20	0.793695869
1074	11.10	0.800743805
1075	10.98	1.032462863
1076	10.88	1.041817773
1077	10.78	1.051343759
1078	10.76	1.053733236
1079	10.73	1.056133599
1080	10.71	1.058544922
1081	10.68	1.060967282
1082	10.66	1.063400754
1083	10.63	1.065845415
1084	10.61	1.068301341
1085	10.58	1.070768612
1086	10.56	1.073247306
1080	10.50	1.075737501
1087	10.54	1.07823928
		1.07825928
1089	10.49	
1090	10.50	1.078923342
1091	10.52	1.077100146
1092	10.54	1.0752831
1093	10.56	1.030886839
1094	10.58	1.029154332
1095	10.60	1.027427638
1096	10.53	1.03436843
1097	10.46	1.041403638
1098	10.38	1.0485352
1099	10.31	1.05576511
1100	10.24	1.063095416
1101	10.17	1.070528224
1102	10.10	1.0780657
1103	10.03	1.085710069
1104	9.96	1.093463622
1105	9.89	1.101328715
1106	9.82	1.109307773
1107	9.74	1.117403289
1108	9.71	1.121751449
1109	9.67	1.12613358
1109	9.63	1.130550084
1110	9.64	0.683690434
1112	9.60	0.686380841
1113	9.56	0.689092507
1114	9.51	0.692796202
1115	9.46	0.696539926
1116	9.41	0.700324331
1117	9.36	0.704150082

1118	9.30	0.708017862
1119	9.25	0.711928366
1120	9.20	0.715882308
1120	9.15	0.719880413
1122	9.10	0.723923428
1123	9.05	0.728012111
1124	9.00	0.732147243
1125	8.95	0.736329618
1126	8.87	0.742601042
1127	8.80	0.748980214
1128	8.65	1.619193457
1129	8.57	1.633468367
1130	8.50	1.647997213
1130	8.42	1.662786831
-	8.42	
1132	-	1.662348518
1133	8.42	1.661910437
1134	8.43	1.661472587
1135	8.43	1.661034967
1136	8.43	1.660597578
1137	8.43	1.660160419
1138	8.44	1.65972349
1139	8.44	1.659286791
1140	8.44	1.658850322
1141	8.44	1.658414082
1141	8.44	1.657978072
	-	
1143	8.45	1.657542291
1144	8.45	1.656234362
1145	8.46	1.654928495
1146	8.56	0.597418628
1147	8.56	0.596953214
1148	8.57	0.596488525
1149	8.58	0.596024559
1150	8.55	0.597572995
1151	8.53	0.599129498
1152	8.51	0.60069413
1153	8.49	0.602266956
1154	8.46	0.60384804
	8.44	0.605437447
1155		
1156	8.42	0.607035243
1157	8.40	0.608641495
1158	8.38	0.610256269
1159	8.35	0.611879635
1160	8.33	0.613511661
1161	8.31	0.615152416
1162	8.33	0.613617727
1163	8.35	0.612090677
1164	8.38	0.450490745
1165	8.40	0.449376976
1166	8.43	0.4482687
1167	8.45	0.447165878
1168	8.46	0.446654526
44.00		0 4 4 6 4 4 9 4 9
1169	8.47	0.446144342
1170	8.47 8.48	0.445635322
	8.47	
1170	8.47 8.48	0.445635322
1170 1171	8.47 8.48 8.49	0.445635322 0.445127463
1170 1171 1172	8.47 8.48 8.49 8.49	0.445635322 0.445127463 0.44462076

1175 8.52 0.443107548 1176 8.53 0.442605431 1177 8.54 0.44210445 1178 8.55 0.441604602 1179 8.49 0.44495756 1180 8.42 0.44351823 1181 8.36 0.451818579 1182 8.22 1.406176223 1183 8.15 1.417292315 1184 8.09 1.42858558 1185 8.02 1.44006022 1186 7.99 1.44877664 1187 7.95 1.453749869 1188 7.91 1.460692764 1189 7.87 1.467702293 1190 7.84 1.474779421 1191 7.80 1.48192513 1192 7.76 1.489140423 1193 7.72 1.49642619 1194 7.68 1.50378361 1195 7.65 1.511214111 1196 7.61 1.518152 1197 7.66 1.508584111 1198 7.71 1.4984261			
1176 8.53 0.442605431 1177 8.54 0.44210445 1178 8.55 0.444606402 1179 8.49 0.44495756 1180 8.42 0.44495756 1181 8.36 0.451818579 1182 8.22 1.406176223 1183 8.15 1.1417292315 1184 8.09 1.42858558 1185 8.02 1.44006022 1186 7.99 1.446872664 1187 7.95 1.453749869 1188 7.91 1.460702293 1190 7.84 1.474779421 1191 7.80 1.48912513 1192 7.76 1.489140423 1193 7.72 1.496426319 1194 7.68 1.503783861 1195 7.65 1.511214111 1196 7.61 1.518718152 1197 7.66 1.508584111 1198 7.71 1.496584418 1199	1175	8.52	0.443107548
1177 8.54 0.44210445 1178 8.55 0.441604602 1179 8.49 0.44495756 1180 8.42 0.44361823 1181 8.36 0.451818579 1182 8.22 1.406176233 1183 8.15 1.417292315 1184 8.09 1.42858558 1185 8.02 1.44060022 1186 7.99 1.4467702233 1187 7.95 1.453749869 1188 7.91 1.460692764 1189 7.87 1.467702233 1190 7.84 1.474779421 1191 7.80 1.48192513 1192 7.76 1.489140423 1193 7.72 1.49646319 1194 7.68 1.503783861 1195 7.65 1.51121411 1196 7.61 1.518741549 1200 7.84 1.00514694 1201 7.89 1.097958527 1202 <td></td> <td></td> <td></td>			
1178 8.55 0.441604602 1179 8.49 0.44495756 1180 8.42 0.44361823 1181 8.36 0.451818579 1182 8.22 1.406176223 1183 8.15 1.417292315 1184 8.09 1.428585558 1185 8.02 1.4406022 1186 7.99 1.44687264 1187 7.95 1.435749869 1188 7.91 1.460692764 1189 7.87 1.467702293 1190 7.84 1.474779421 1191 7.80 1.48192513 1192 7.76 1.489140423 1193 7.72 1.496426319 1194 7.68 1.503783861 1195 7.65 1.51124111 1196 7.61 1.518718152 1197 7.66 1.508584111 1198 7.71 1.49858448 1199 7.76 1.488716419 1200 <td>-</td> <td></td> <td></td>	-		
1179 8.49 0.44495756 1180 8.42 0.44351823 1181 8.36 0.451818579 1182 8.22 1.406176223 1183 8.15 1.417292315 1184 8.09 1.42858558 1185 8.02 1.44006022 1186 7.99 1.446872664 1187 7.95 1.453749869 1188 7.91 1.460692764 1189 7.87 1.467702293 1190 7.84 1.44179421 1191 7.80 1.48192513 1192 7.76 1.483140423 1193 7.72 1.496426319 1194 7.68 1.503783861 1195 7.65 1.511214111 1196 7.61 1.518718152 1197 7.66 1.508584113 1198 7.71 1.498584418 1199 7.76 1.488716419 1200 7.84 1.00514694 1201 </td <td></td> <td></td> <td></td>			
1180 8.42 0.448361823 1181 8.36 0.451818579 1182 8.22 1.406176223 1183 8.15 1.417292315 1184 8.09 1.42858558 1185 8.02 1.4400022 1186 7.99 1.446872664 1187 7.95 1.453749869 1188 7.91 1.460692764 1189 7.87 1.467702293 1190 7.84 1.4474779421 1191 7.80 1.48192513 1192 7.76 1.489140423 1193 7.72 1.496426319 1194 7.68 1.503783861 1195 7.65 1.511214111 1196 7.61 1.518718152 1197 7.66 1.508584111 1198 7.71 1.498584418 1199 7.76 1.488716419 1200 7.84 1.105114694 1201 7.89 1.097958527 12	-		
1181 8.36 0.451818579 1182 8.22 1.406176223 1183 8.15 1.417292315 1184 8.09 1.428585558 1185 8.02 1.44067022 1186 7.99 1.446372664 1187 7.95 1.453749869 1188 7.91 1.460692764 1189 7.87 1.44777421 1190 7.84 1.474779421 1191 7.80 1.48192513 1192 7.76 1.489140423 1193 7.72 1.49646319 1194 7.68 1.50378361 1195 7.65 1.511214111 1196 7.61 1.518718152 1197 7.66 1.50858411 1198 7.71 1.498584418 1199 7.76 1.488716419 1200 7.84 1.005136826 1202 7.94 1.09089443 1203 8.00 1.083920676 1204 </td <td>-</td> <td></td> <td></td>	-		
1182 8.22 1.406176223 1183 8.15 1.41722315 1184 8.09 1.42858558 1185 8.02 1.44006022 1186 7.99 1.446872664 1187 7.95 1.453749869 1188 7.91 1.460692764 1189 7.87 1.4467702293 1190 7.84 1.474779421 1191 7.80 1.48192513 1192 7.76 1.489140423 1193 7.72 1.496426319 1194 7.68 1.503783861 1195 7.65 1.511214111 1196 7.61 1.518718152 1197 7.66 1.488716419 1200 7.84 1.105114694 1201 7.89 1.097958527 1202 7.94 1.0083920676 1204 8.02 1.083920676 1205 8.05 1.073184867 1206 8.08 1.073184867 1		-	
1183 8.15 1.417292315 1184 8.09 1.428585558 1185 8.02 1.44006022 1186 7.99 1.4468725644 1187 7.955 1.453749869 1188 7.91 1.466702293 1190 7.84 1.474779421 1191 7.80 1.48192513 1192 7.76 1.489140423 1193 7.72 1.496426319 1194 7.68 1.503783861 1195 7.65 1.511214111 1196 7.61 1.518718152 1197 7.66 1.508584111 1198 7.71 1.498584418 1199 7.76 1.488716419 1200 7.84 1.005114694 1201 7.89 1.097958527 1202 7.94 1.090894443 1203 8.00 1.083920676 1204 8.02 1.08318286 1205 8.05 1.076739762 1206 8.08 1.073184867 1207 8.10 1.066145036 1208 8.13 1.066145036 1209 8.16 1.062659641 1210 8.18 1.059196961 1211 8.26 1.04943008 1214 8.29 1.040547242 1215 8.33 1.040547242 1216 8.37 1.035573491 1217 8.46 0.893087233 1218 8.66 0.873485131 1225 8.63 0.877025982 1226 8.64 <	_		
1184 8.09 1.42858558 1185 8.02 1.44006022 1186 7.99 1.446872664 1187 7.95 1.433749869 1188 7.91 1.460692764 1189 7.87 1.467702293 1190 7.84 1.474779421 1191 7.80 1.48192513 1192 7.76 1.489140423 1193 7.72 1.496426319 1194 7.68 1.503783861 1195 7.65 1.511214111 1196 7.61 1.518718152 1197 7.66 1.508584111 1198 7.71 1.498584418 1199 7.76 1.488716419 1200 7.84 1.005114694 1201 7.89 1.097958527 1202 7.94 1.090894443 1203 8.00 1.083920676 1204 8.02 1.080318286 1205 8.05 1.07633762 120	-		1.406176223
1185 8.02 1.44006022 1186 7.99 1.445872664 1187 7.95 1.453749869 1188 7.91 1.46002764 1189 7.87 1.46702293 1190 7.84 1.474779421 1191 7.80 1.48140423 1192 7.76 1.489140423 1193 7.72 1.496426319 1194 7.68 1.503783861 1195 7.65 1.511214111 1196 7.61 1.518718152 1197 7.66 1.508584111 1198 7.71 1.498584418 1199 7.76 1.483716419 1200 7.84 1.05114694 1201 7.89 1.097958527 1202 7.94 1.090894443 1203 8.00 1.08318286 1204 8.02 1.080318286 1205 8.05 1.076739762 1206 8.08 1.073184867 1207<	1183	8.15	1.417292315
1186 7.99 1.446872664 1187 7.95 1.453749869 1188 7.91 1.460692764 1189 7.87 1.467072933 1190 7.84 1.474779421 1191 7.80 1.48192513 1192 7.76 1.489140423 1193 7.72 1.496426319 1194 7.68 1.503783861 1195 7.65 1.511214111 1196 7.61 1.518718152 1197 7.66 1.89884418 1199 7.76 1.488716419 1200 7.84 1.105114694 1201 7.89 1.09795827 1202 7.94 1.090894443 1203 8.00 1.083320676 1204 8.02 1.08318286 1205 8.05 1.076739762 1206 8.08 1.073184867 1209 8.16 1.066553691 1211 8.21 1.055756774 121	1184	8.09	1.428585558
1187 7.95 1.453749869 1188 7.91 1.460692764 1189 7.87 1.467702293 1190 7.84 1.474779421 1191 7.80 1.48192513 1192 7.76 1.489140423 1193 7.72 1.496426319 1194 7.68 1.503783861 1195 7.65 1.511214111 1196 7.61 1.518718152 1197 7.66 1.508584111 1198 7.71 1.498584418 1199 7.76 1.488716419 1200 7.84 1.105114694 1201 7.89 1.097958527 1202 7.94 1.09894443 1203 8.00 1.083320676 1204 8.02 1.080318286 1205 8.05 1.076739762 1206 8.08 1.073184867 1207 8.10 1.0669653369 1208 8.13 1.066145036	1185	8.02	1.44006022
1188 7.91 1.460692764 1189 7.87 1.467702293 1190 7.84 1.474779421 1191 7.80 1.48192513 1192 7.76 1.48194423 1193 7.72 1.496426319 1194 7.68 1.503783861 1195 7.66 1.511214111 1196 7.61 1.518718152 1197 7.66 1.508584111 1198 7.71 1.498584418 1199 7.76 1.488716449 1200 7.84 1.05114694 1201 7.89 1.07958527 1202 7.94 1.090894443 1203 8.00 1.0831286 1204 8.02 1.080318286 1205 8.05 1.076739762 1206 8.813 1.066145036 1209 8.16 1.062659641 1210 8.18 1.051956774 1211 8.21 1.055756774 1212	1186	7.99	1.446872664
1189 7.87 1.467702293 1190 7.84 1.474779421 1191 7.80 1.48192513 1192 7.76 1.489140423 1193 7.72 1.496426319 1194 7.68 1.503783861 1195 7.65 1.511214111 1196 7.61 1.518718152 1197 7.66 1.50854111 1198 7.71 1.498584418 1199 7.76 1.488716419 1200 7.84 1.00513669 1201 7.89 1.097958527 1202 7.94 1.000894443 1203 8.00 1.083920676 1204 8.02 1.080318286 1205 8.05 1.076739762 1206 8.08 1.03114867 1207 8.10 1.066145036 1209 8.16 1.05259641 1210 8.18 1.055756774 1211 8.21 1.052338861 1213 8.26 1.048943008 1214 8.29 1.	1187	7.95	1.453749869
1190 7.84 1.474779421 1191 7.80 1.48192513 1192 7.76 1.489140423 1193 7.72 1.496426319 1194 7.68 1.50378861 1195 7.65 1.511214111 1196 7.61 1.518718152 1197 7.66 1.508584111 1198 7.71 1.498584418 1199 7.76 1.488716419 1200 7.84 1.05114694 1201 7.89 1.097958527 1202 7.94 1.008394043 1203 8.00 1.083920676 1204 8.02 1.08318286 1205 8.05 1.076739762 1206 8.08 1.073184867 1207 8.10 1.066145036 1208 8.13 1.066145036 1210 8.18 1.059196961 1211 8.26 1.048943008 1212 8.23 1.035573491 121	1188	7.91	1.460692764
1191 7.80 1.48192513 1192 7.76 1.489140423 1193 7.72 1.496426319 1194 7.68 1.503783861 1195 7.65 1.511214111 1196 7.61 1.518718152 1197 7.66 1.508584111 1198 7.71 1.498584418 1199 7.76 1.488716419 1200 7.84 1.105114694 1201 7.89 1.097958527 1202 7.94 1.0083920676 1204 8.00 1.083920676 1205 8.05 1.076739762 1206 8.08 1.073184867 1207 8.10 1.069653369 1208 8.13 1.066145036 1209 8.16 1.062658641 1210 8.18 1.055756774 1211 8.26 1.0485459 1212 8.23 1.0453569 1213 8.26 1.048943008 121	1189	7.87	1.467702293
1191 7.80 1.48192513 1192 7.76 1.489140423 1193 7.72 1.496426319 1194 7.68 1.503783861 1195 7.65 1.511214111 1196 7.61 1.518718152 1197 7.66 1.508584111 1198 7.71 1.498584418 1199 7.76 1.488716419 1200 7.84 1.105114694 1201 7.89 1.097958527 1202 7.94 1.0083920676 1204 8.00 1.083920676 1205 8.05 1.076739762 1206 8.08 1.073184867 1207 8.10 1.069653369 1208 8.13 1.066145036 1209 8.16 1.062658641 1210 8.18 1.055756774 1211 8.26 1.0485459 1212 8.23 1.0453569 1213 8.26 1.048943008 121	1190	7.84	1,474779421
11927.761.48914042311937.721.49642631911947.681.50378386111957.651.51121411111967.611.51871815211977.661.50858411111987.711.49858441811997.761.48871641912007.841.09795852712027.941.09089444312038.001.08392067612048.021.08031828612058.051.07673976212068.081.07318486712078.101.06965336912088.131.06614503612098.161.06265964112108.181.05919696112118.211.05273886112138.261.04894300812148.291.04556912158.331.04054724212168.371.03557349112178.411.03064706212188.460.89308723312208.540.88472050812218.580.8805956812228.590.87940254212238.600.87821265412248.610.87702598212258.630.872451312268.640.8746223312278.650.87348513112288.660.87231119212298.670.8711404412308.680.869972755		-	
11937.721.49642631911947.681.50378386111957.651.51121411111967.611.51871815211977.661.50858411111987.711.49858441811997.761.48871641912007.841.00511469412017.891.09795852712027.941.09089443312038.001.08392067612048.021.083921826612058.051.07673976212068.081.07318486712078.101.06965336912088.131.06614503612098.161.06265964112108.181.05919696112118.211.05575677412128.231.0523386112138.261.04894300812148.291.04556912158.331.04054724212168.371.0357349112178.411.03064706212188.460.89308723312208.540.88895956812218.580.8805956812228.590.87348513112268.640.8746223312278.650.87348513112288.660.87231119212298.670.8711400412308.680.869972755	-		
11947.681.50378386111957.651.51121411111967.611.51871815211977.661.50858411311987.711.49858441811997.761.48871641912007.841.0511469412017.891.09795852712027.941.09089444312038.001.08392067612048.021.08031828612058.051.07673976212068.081.07318486712078.101.06965336912088.131.06614503612098.161.06265964112108.181.05575677412118.211.05573697412128.231.04557912148.291.04556912158.331.04054724212168.371.03557349112178.411.03064706212188.460.89308723312208.540.8805956812218.580.8805956812228.590.8734851312238.600.8781265412248.610.87702598212258.630.8734851312268.640.8746223312298.670.871400412308.680.869972755	-		
11957.651.51121411111967.611.51871815211977.661.50858411111987.711.49858441811997.761.48871641912007.841.10511469412017.891.09795852712027.941.09089444312038.001.08392067612048.021.08031828612058.051.07673976212068.081.07318486712078.101.06965336912088.131.06614503612098.161.06265964112108.181.05919696112118.231.0523886112138.261.04894300812148.291.04556912158.331.04054724212168.371.03557349112178.411.03064706212188.460.88059565812228.590.8784225312238.600.87821265412248.610.87702598212258.630.87348513112268.640.8746223312278.650.87348513112288.660.8723119212298.670.87114040412308.680.869972755			
11967.611.51871815211977.661.50858411111987.711.49858441811997.761.48871641912007.841.0511469412017.891.09795852712027.941.09089444312038.001.08392067612048.021.08031828612058.051.07673976212068.081.07313466712078.101.06965336912088.131.06614503612098.161.06265964112108.181.05919696112118.211.05575677412128.231.04556912148.291.04556912158.331.04054724212168.371.03557349112178.411.03064706212188.460.89308723312208.540.88472050812218.580.88059565812228.590.87940254212238.600.87281265412248.610.87702598212258.630.87348513112268.640.874623312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755	-		
11977.661.50858411111987.711.49858441811997.761.48871641912007.841.0511469412017.891.09795852712027.941.0908944312038.001.08392067612048.021.08031828612058.051.07673976212068.081.07318486712078.101.06965336912088.131.06614503612098.161.06265964112108.181.05519661412118.211.05575677412128.231.0523386112138.261.04894300812148.291.04556912158.331.04054724212168.371.03557349112178.411.0306706212188.460.89308723312208.540.8888418312208.540.8872050812218.580.88059565812228.590.87940254212238.600.87821265412248.610.87702598212258.630.87548513112268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755			
1198 7.71 1.498584418 1199 7.76 1.488716419 1200 7.84 1.05114694 1201 7.89 1.097958527 1202 7.94 1.090894443 1203 8.00 1.083920676 1204 8.02 1.080318286 1205 8.05 1.076739762 1206 8.08 1.073184867 1207 8.10 1.069653369 1208 8.13 1.066145036 1209 8.16 1.062659641 1210 8.18 1.055756774 1212 8.23 1.05233861 1211 8.21 1.05575674 1212 8.33 1.040547242 1213 8.26 1.04393008 1214 8.29 1.045569 1215 8.33 1.040547242 1216 8.37 1.035573491 1217 8.41 1.030647062 1218 8.46 0.88702058 1221 <td></td> <td>-</td> <td></td>		-	
11997.761.48871641912007.841.10511469412017.891.09795852712027.941.09089444312038.001.08392067612048.021.08031828612058.051.07673976212068.081.07318486712078.101.06965336912088.131.06614503612098.161.06265964112108.181.05919696112118.211.05575677412128.231.05233886112138.261.04894300812148.291.04556912158.331.04054724212168.371.03557349112178.411.03064706212188.460.88308723312208.540.88472050812218.580.88059565812228.590.87940254212238.600.87821265412248.610.8776298212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755	-		
12007.841.10511469412017.891.09795852712027.941.09089444312038.001.08392067612048.021.08031828612058.051.07673976212068.081.07318486712078.101.06965336912088.131.06615964112108.181.05919696112118.211.05575677412128.231.05233886112138.261.04894300812148.291.04556912158.331.04054724212168.371.03557349112178.411.03064706212188.460.88908723312208.540.88472050812218.580.869565812228.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755			
12017.891.09795852712027.941.09089444312038.001.08392067612048.021.08031828612058.051.07673976212068.081.07318486712078.101.06965336912088.131.06614503612098.161.06265964112108.181.05575677412128.231.05575677412138.261.04894300812148.291.04556912158.331.04054724212168.371.03557349112178.411.03064706212188.460.89308723312208.540.88859565812228.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755		7.76	1.488716419
12027.941.09089444312038.001.08392067612048.021.08031828612058.051.07673976212068.081.07318486712078.101.06965336912088.131.06614503612098.161.06265964112108.181.05919696112118.211.05575677412128.231.05233886112138.261.04894300812148.291.04556912158.331.04054724212168.371.03557349112178.411.03064706212188.460.89308723312208.540.8888418312208.540.8872050812218.580.88059565812228.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755	1200	7.84	1.105114694
12038.001.08392067612048.021.08031828612058.051.07673976212068.081.07318486712078.101.06965336912088.131.06614503612098.161.06265964112108.181.05919696112118.211.05575677412128.231.05233886112138.261.04894300812148.291.04556912158.331.04054724212168.371.03557349112178.411.03064706212188.460.89308723312208.540.888418312208.540.8872050812218.580.88059565812228.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755	1201	7.89	1.097958527
12048.021.08031828612058.051.07673976212068.081.07318486712078.101.06965336912088.131.06614503612098.161.06265964112108.181.05919696112118.211.05575677412128.231.05233886112138.261.04894300812148.291.04556912158.331.04054724212168.371.03557349112178.411.03064706212188.460.89308723312208.540.88472050812218.580.88059565812228.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755	1202	7.94	1.090894443
12058.051.07673976212068.081.07318486712078.101.06965336912088.131.06614503612098.161.06265964112108.181.05919696112118.211.05575677412128.231.05233886112138.261.04894300812148.291.04556912158.331.04054724212168.371.03557349112178.411.03064706212188.460.89308723312208.540.88472050812218.580.88059565812228.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755	1203	8.00	1.083920676
12068.081.07318486712078.101.06965336912088.131.06614503612098.161.06265964112108.181.05919696112118.211.05575677412128.231.05233886112138.261.04894300812148.291.04556912158.331.04054724212168.371.03557349112178.411.03064706212188.460.89308723312208.540.8888418312208.540.88059565812218.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755	1204	8.02	1.080318286
12068.081.07318486712078.101.06965336912088.131.06614503612098.161.06265964112108.181.05919696112118.211.05575677412128.231.05233886112138.261.04894300812148.291.04556912158.331.04054724212168.371.03557349112178.411.03064706212188.460.89308723312208.540.8888418312208.540.88059565812218.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755	1205	8.05	1.076739762
12078.101.06965336912088.131.06614503612098.161.06265964112108.181.05919696112118.211.05575677412128.231.05233886112138.261.04894300812148.291.04556912158.331.04054724212168.371.03557349112178.411.03064706212188.460.89308723312208.540.8888418312208.540.88059565812218.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755	1206	8.08	1.073184867
12088.131.06614503612098.161.06265964112108.181.05919696112118.211.05575677412128.231.05233886112138.261.04894300812148.291.04556912158.331.04054724212168.371.03557349112178.411.03064706212188.460.89308723312208.540.8848418312208.540.88459565812218.580.88059565812228.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755			
12098.161.06265964112108.181.05919696112118.211.05575677412128.231.05233886112138.261.04894300812148.291.04556912158.331.04054724212168.371.03557349112178.411.03064706212188.460.89308723312198.500.88888418312208.540.88059565812218.580.88059565812228.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755			
12108.181.05919696112118.211.05575677412128.231.05233886112138.261.04894300812148.291.04556912158.331.04054724212168.371.03557349112178.411.03064706212188.460.89308723312198.500.88888418312208.540.88059565812218.580.88059565812228.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755			
12118.211.05575677412128.231.05233886112138.261.04894300812148.291.04556912158.331.04054724212168.371.03557349112178.411.03064706212188.460.89308723312198.500.88888418312208.540.88059565812218.580.88059565812228.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755			
12128.231.05233886112138.261.04894300812148.291.04556912158.331.04054724212168.371.03557349112178.411.03064706212188.460.89308723312198.500.88888418312208.540.88472050812218.580.88059565812228.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755	-		
12138.261.04894300812148.291.04556912158.331.04054724212168.371.03557349112178.411.03064706212188.460.89308723312198.500.8888418312208.540.88472050812218.580.88059565812228.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755			
12148.291.04556912158.331.04054724212168.371.03557349112178.411.03064706212188.460.89308723312198.500.88888418312208.540.88472050812218.580.88059565812228.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755			
12158.331.04054724212168.371.03557349112178.411.03064706212188.460.89308723312198.500.88888418312208.540.88472050812218.580.88059565812228.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755			
12168.371.03557349112178.411.03064706212188.460.89308723312198.500.88888418312208.540.88472050812218.580.88059565812228.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755			
12178.411.03064706212188.460.89308723312198.500.88888418312208.540.88472050812218.580.88059565812228.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755			
12188.460.89308723312198.500.88888418312208.540.88472050812218.580.88059565812228.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755			
12198.500.88888418312208.540.88472050812218.580.88059565812228.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755			1.030647062
12208.540.88472050812218.580.88059565812228.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755	1218	8.46	0.893087233
12218.580.88059565812228.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755	1219	8.50	0.888884183
12228.590.87940254212238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755	1220	8.54	0.884720508
12238.600.87821265412248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755	1221	8.58	0.880595658
12248.610.87702598212258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755	1222	8.59	0.879402542
12258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755	1223	8.60	0.878212654
12258.630.87584251312268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755	1224	8.61	0.877025982
12268.640.87466223312278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755	1225		0.875842513
12278.650.87348513112288.660.87231119212298.670.87114040412308.680.869972755			
12288.660.87231119212298.670.87114040412308.680.869972755			
12298.670.87114040412308.680.869972755			
1230 8.68 0.869972755			
1251 8.70 0.808808232			
	1231	8.70	0.808808232

1232	8.71	0.867646822
1233	8.64	0.874287725
1234	8.58	0.881031069
1235	8.51	0.887879244
1236	8.42	1.214558062
1237	8.35	1.224178422
1238	8.28	1.233952402
1239	8.22	1.242955028
1235	8.16	1.252089981
1240	8.10	1.261360201
1241	8.04	1.270768714
1242	7.98	1.280318639
1245	7.98	
	-	1.290013188
1245	7.86	1.29985567
1246	7.80	1.309849499
1247	7.74	1.319998192
1248	7.68	1.330305377
1249	7.62	1.340774795
1250	7.56	1.351410308
1251	7.53	1.35699152
1252	7.50	1.362619023
1253	7.47	1.368293395
1254	7.46	1.041940203
1255	7.43	1.046301217
1256	7.40	1.05069889
1257	7.39	1.052278358
1258	7.38	1.053862582
1259	7.37	1.055451583
1260	7.36	1.057045383
1261	7.35	1.058644005
1262	7.34	1.060247468
1263	7.32	1.061855797
1264	7.31	1.063469012
1265	7.30	1.065087137
1266	7.29	1.066710193
1267	7.28	1.068338203
1268	7.28	1.06997119
1269	7.27	1.06997119
1209	7.27	1.06997119
1270		1.06997119
1271	7.27 7.30	0.677148002
1273	7.30	0.677148002
1274	7.30	0.677148002
1275	7.29	0.678180593
1276	7.27	0.679216337
1277	7.26	0.680255251
1278	7.25	0.681297347
1279	7.24	0.682342641
1280	7.23	0.683391147
1281	7.22	0.684442881
1282	7.21	0.685497857
1283	7.20	0.68655609
1284	7.19	0.687617595
1285	7.17	0.688682388
1286	7.16	0.689750484
1287	7.13	0.693407506
1288	7.09	0.697103514

1289	7.04	0.788616663
1290	7.01	0.792869173
1291	6.97	0.797167794
1292	6.93	0.80151328
1293	7.03	0.790613405
1294	7.12	0.78000601
1295	7.22	0.769679478
1296	7.31	0.7596228
1297	7.41	0.749825536
1298	7.50	0.740277774
1299	7.60	0.730970105
1300	7.70	0.721893583
1301	7.79	0.713039706
1302	7.89	0.704400378
1303	7.98	0.695967897
1304	8.08	0.687734919
1305	8.20	0.677667117
1306	8.32	0.667889829
1307	8.42	0.897562621
1308	8.54	0.884946423
1309	8.66	0.872679977
1310	8.78	0.860748937
1311	8.78	0.860966699
1312	8.77	0.86118457
1313	8.77	0.861402553
1314	8.77	0.861620645
1315	8.77	0.861838848
1316	8.76	0.862057162
1317	8.76	0.862275586
1318	8.76	0.862494121
1319	8.76	0.862712766
1320	8.76	0.862931523
1321	8.75	0.86315039
1322	8.75	0.863369369
1323	8.78	0.860797973
1324	8.80	0.858241848
1325	8.84	0.728948556
1326	8.87	0.726799432
1327	8.89	0.724662943
1328	8.92	0.722538978
1329	8.92	0.722538978
1330	8.92	0.722538978
1331	8.92	0.722538978
1332	8.92	0.722538978
1333	8.92	0.722538978
1334	8.92	0.722538978
1335	8.92	0.722538978
1336	8.92	0.722538978
1337	8.92	0.722538978
1338	8.92	0.722538978
1339	8.92	0.722538978
1340	8.91	0.723036754
1341	8.91	0.723535217
1342	8.90	0.724034368
1343	8.76	2.257478318
1344	8.75	2.259061605
1345	8.75	2.260647114
1375	0.75	2.2000-711-

1346	8.82	2.242984507
1347	8.89	2.225595758
1348	8.96	2.208474548
1349	9.02	2.191614749
1350	9.09	2.17501042
1350	9.16	2.158655798
1352	9.23	2.142545292
1353	9.30	2.126673477
1354	9.37	2.111035087
1355	9.44	2.095625011
1356	9.51	2.080438284
1357	9.58	2.065470086
1358	9.62	2.054977426
1359	9.67	2.044590834
1360	9.72	2.034308708
	9.89	
1361		0.763683634
1362	9.94	0.759928101
1363	9.99	0.756209324
1364	10.04	0.752859721
1365	10.08	0.749539661
1366	10.12	0.746248754
1367	10.17	0.742986619
1368	10.21	0.73975288
1369	10.26	0.736547168
1370	10.30	0.73336912
1371	10.35	0.730218379
1372	10.39	0.727094595
1372	10.35	0.723997424
1374	10.48	0.720926527
1375	10.52	0.71788157
1376	10.58	0.714111524
1377	10.64	0.710380869
1378	10.69	0.706688991
1379	10.77	0.458672162
1380	10.83	0.456318642
1381	10.88	0.453989151
1382	10.89	0.453711092
1383	10.90	0.453433374
1384	10.90	0.453155996
1384	10.90	0.452878957
1385	10.91	0.452602257
1387		0.452325894
	10.93	0.452049869
1388		0.451774181
1389	10.94	
1389 1390	10.94	0.451498828
1389	10.94	
1389 1390	10.94 10.95	0.451498828
1389 1390 1391	10.94 10.95	0.451498828 0.451223811
1389 1390 1391 1392 1393	10.94 10.95 10.96 10.96	0.451498828 0.451223811 0.450949129
1389 1390 1391 1392 1393 1394	10.94 10.95 10.96 10.96 10.84	0.451498828 0.451223811 0.450949129 0.450674781 0.455942197
1389 1390 1391 1392 1393 1394 1395	10.94 10.95 10.96 10.96 10.84 10.71	0.451498828 0.451223811 0.450949129 0.450674781 0.455942197 0.4613342
1389 1390 1391 1392 1393 1394 1395 1396	10.94 10.95 10.96 10.96 10.84 10.71 10.51	0.451498828 0.451223811 0.450949129 0.450674781 0.455942197 0.4613342 1.184178597
1389 1390 1391 1392 1393 1394 1395 1396 1397	10.94 10.95 10.96 10.96 10.84 10.71 10.51 10.38	0.451498828 0.451223811 0.450949129 0.450674781 0.455942197 0.4613342 1.184178597 1.198625684
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398	10.94 10.95 10.96 10.96 10.84 10.71 10.51 10.38 10.26	0.451498828 0.451223811 0.450949129 0.450674781 0.455942197 0.4613342 1.184178597 1.198625684 1.213429635
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399	10.94 10.95 10.96 10.96 10.84 10.71 10.51 10.38 10.26 10.13	0.451498828 0.451223811 0.450949129 0.450674781 0.455942197 0.4613342 1.184178597 1.198625684 1.213429635 1.22860384
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400	10.94 10.95 10.96 10.96 10.84 10.71 10.51 10.38 10.26 10.13 10.02	0.451498828 0.451223811 0.450949129 0.450674781 0.455942197 0.4613342 1.184178597 1.198625684 1.213429635 1.22860384 1.242231065
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401	10.94 10.95 10.96 10.96 10.84 10.71 10.51 10.38 10.26 10.13 10.02 9.91	0.451498828 0.451223811 0.450949129 0.450674781 0.455942197 0.4613342 1.184178597 1.198625684 1.213429635 1.22860384 1.242231065 1.256163976
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400	10.94 10.95 10.96 10.96 10.84 10.71 10.51 10.38 10.26 10.13 10.02	0.451498828 0.451223811 0.450949129 0.450674781 0.455942197 0.4613342 1.184178597 1.198625684 1.213429635 1.22860384 1.242231065

1403	9.68	1.284988946
1404	9.57	1.29990327
1405	9.46	1.315167868
1406	9.35	1.330795226
1407	9.24	1.346798432
1408	9.13	1.363191208
1409	9.02	1.379987957
1400	8.91	1.397203796
1410	8.80	1.414854609
1411	8.80	1.413069645
1412	8.82	
-		1.411289179
1414	8.83	1.358538756
1415	8.84	1.356832159
1416	8.86	1.355129844
1417	8.87	1.353431795
1418	8.92	1.344551374
1419	8.98	1.335786728
1420	9.04	1.32713561
1421	9.10	1.318595827
1422	9.16	1.310165245
1423	9.22	1.301841781
1424	9.28	1.293623407
1425	9.33	1.285508145
1426	9.39	1.277494068
1427	9.45	1.269579293
1428	9.51	1.261761988
1429	9.57	1.254040361
1430	9.65	1.243037694
1431	9.74	1.232226417
1432	9.87	0.720315719
1433	9.96	0.71418815
1434	10.04	0.708163952
1435	10.07	0.706013175
1436	10.10	0.703875423
1437	10.13	0.701750577
1438	10.16	0.699638522
1439	10.19	0.697539142
1435	10.13	0.695452323
1440	10.25	0.693377953
1441		
	10.29	0.691315921
1443	10.32	0.689266117
1444	10.35	0.687228433
1445	10.38	0.685202762
1446	10.41	0.683188997
1447	10.36	0.686118428
1448	10.32	0.68907309
1449	10.28	0.692053309
1450	10.22	0.848341153
1451	10.17	0.852047874
1452	10.13	0.85578713
1453	10.11	0.857480693
1454	10.09	0.859180972
1455	10.07	0.860888008
1456	10.05	0.86260184
1457	10.03	0.86432251
1458	10.01	0.866050058
1459	9.99	0.867784526

1460	9.97	0.869525955
1461	9.95	0.871274387
1462	9.93	0.873029865
1463	9.91	0.874792431
1464	9.89	0.876562129
1465	9.87	0.877943913
1466	9.86	0.879330061
1467	9.84	0.880720593
1468	9.78	1.37173636
1469	9.76	1.373923021
1470	9.75	1.376116665
1471	9.79	1.369559445
1472	9.84	1.36306442
1473	9.89	1.356630708
1474	9.93	1.350257446
1475	9.98	1.343943785
1476	10.03	1.337688893
1477	10.07	1.331491954
1478	10.12	1.325352166
1479	10.12	1.319268741
1479	10.17	1.313240907
1480	-	1.307267907
-	10.26	
1482	10.31	1.301348994
1483	10.40	1.289394011
1484	10.50	1.27765668
1485	10.65	0.751440417
1486	10.74	0.744756218
1487	10.84	0.738189885
1488	10.93	0.731738327
1489	10.93	0.731738327
1490	10.93	0.731738327
1491	10.93	0.731738327
1492	10.93	0.731738327
1493	10.93	0.731738327
1494	10.93	0.731738327
1495	10.93	0.731738327
1495		0.731738327
	10.93	
1497	10.93	0.731738327
1498	10.93	0.731738327
1499	10.93	0.731738327
1500	10.93	0.731738327
1501	10.92	0.732780573
1502	10.90	0.733825792
1503	10.86	0.961536691
1504	10.85	0.962915225
1505	10.83	0.964297717
1506	10.82	0.965684185
1507	10.94	0.954311122
1508	11.07	0.943202826
1509	11.20	0.932350158
1510	11.33	0.921744395
1510	11.46	0.911377206
1512	11.40	0.90124063
1513	11.72	0.891327057
1514	11.85	0.881629208
1515	11.98	0.872140117
1516	12.10	0.862853116

1517	12.23	0.853761816
1518	12.36	0.844860097
1519	12.44	0.839330561
1520	12.52	0.833872934
1521	12.54	1.328612849
1522	12.63	1.320042613
1523	12.71	1.311582233
1524	12.79	1.30322961
1525	12.68	1.314272466
1526	12.57	1.325504063
1527	12.47	1.336929282
1528	12.36	1.348553174
1529	12.25	1.360380965
1530	12.14	1.37241807
1531	12.04	1.384670092
1532	11.93	1.39714284
1533	11.82	1.409842334
1534	11.71	1.422774812
1535	11.61	1.435946746
1536	11.55	1.442576522
1537	11.50	1.449267801
1538	11.45	1.456021443
1539	11.49	0.618968409
1540	11.44	0.621855633
1541	11.38	0.624769918
1542	11.33	0.627711646
1543	11.28	0.630432393
1544	11.23	0.633176827
1545	11.18	0.635945261
1546	11.13	0.63873801
1547	11.08	0.641555395
1548	11.04	0.644397745
1549	10.99	0.647265392
1550	10.94	0.650158677
1551	10.89	0.653077943
1552	10.84	0.656023543
1553	10.79	0.658995835
1554	10.72	0.66350481
1555	10.64	0.668075911
1556	10.57	0.672710434
1557	10.35	2.082025326
1558	10.28	2.096877593
1559	10.21	2.111943282
1560	10.13	2.127227026
1561	10.10	2.134247167
1562	10.07	2.141313796
1563	10.03	2.148427377
1564	10.00	2.155588379
1565	9.97	2.162797278
1566	9.93	2.170054556
1567	9.90	2.177360701
1568	9.87	2.18471621
1569	9.83	2.192121583
1570	9.80	2.19957733
1571	9.77	2.207083966
1572	9.67	2.228890684
1573	9.58	2.251132616

1574	9.48	2.273822923
1575	9.57	0.278492464
1576	9.48	0.281300185
1577	9.38	0.284165097
1578	9.29	0.287088965
1579	9.22	0.289304313
1580	9.14	0.291554117
1580		0.293839186
	9.07	
1582	9.00	0.296160358
1583	8.93	0.298518493
1584	8.86	0.300914482
1585	8.79	0.303349244
1586	8.72	0.305823728
1587	8.65	0.308338914
1588	8.58	0.310895814
1589	8.50	0.313495475
1590	8.53	0.3125971
1591	8.55	0.31170386
1592	8.58	0.310815711
1593	8.60	0.361852742
1594	8.62	0.360827014
1595	8.65	0.359807085
1596	8.67	0.358792906
1590	8.63	0.360641713
1598	8.58	0.362509672
1599	8.54	0.364397082
1600	8.49	0.366304248
1601	8.45	0.368231483
1602	8.40	0.370179104
1603	8.36	0.372147438
1604	8.32	0.374136815
1605	8.27	0.376147577
1606	8.23	0.378180068
1607	8.18	0.380234643
1608	7.99	0.389220433
1609	7.80	0.398641211
1610	7.62	0.408529347
1611	7.39	0.962737418
1612	7.20	0.988003901
1613	7.01	1.014632337
1614	6.82	1.042735895
1615	6.78	1.049575506
1616	6.73	1.056505435
1617	6.69	1.063527483
1618	6.64	1.0706435
1010	6.60	1.077855385
1619	0.00	
1619	6.55	1.085165087
1620	6.55	1.085165087
1620 1621	6.55 6.51	1.085165087 1.09257461
1620 1621 1622 1623	6.55 6.51 6.46 6.42	1.085165087 1.09257461 1.100086014
1620 1621 1622 1623 1624	6.55 6.51 6.46 6.42 6.38	1.085165087 1.09257461 1.100086014 1.107701414
1620 1621 1622 1623 1624 1625	6.55 6.51 6.46 6.42 6.38 6.33	1.085165087 1.09257461 1.100086014 1.107701414 1.115422985 1.123252963
1620 1621 1622 1623 1624 1625 1626	6.55 6.51 6.46 6.42 6.38 6.33 6.48	1.085165087 1.09257461 1.100086014 1.107701414 1.115422985 1.123252963 1.098195105
1620 1621 1622 1623 1624 1625 1626 1627	6.55 6.51 6.46 6.42 6.38 6.33 6.48 6.62	1.085165087 1.09257461 1.100086014 1.107701414 1.115422985 1.123252963 1.098195105 1.074230847
1620 1621 1622 1623 1624 1625 1626 1627 1628	6.55 6.51 6.46 6.42 6.38 6.33 6.48 6.62 6.76	1.085165087 1.09257461 1.100086014 1.107701414 1.115422985 1.123252963 1.098195105 1.074230847 1.051290126
1620 1621 1622 1623 1624 1625 1626 1627	6.55 6.51 6.46 6.42 6.38 6.33 6.48 6.62	1.085165087 1.09257461 1.100086014 1.107701414 1.115422985 1.123252963 1.098195105 1.074230847

1631	7.17	1.332082342
1632	7.32	1.305786321
1633	7.33	1.304201837
1634	7.34	1.302621193
1635	7.34	1.301044376
1636	7.35	1.299471372
1637	7.36	1.297902166
1638	7.30	1.296336746
1639	7.38	1.296536746
1639		
	7.39	1.293217208
1641	7.40	1.291663062
1642	7.41	1.290112647
1643	7.42	1.288565949
1644	7.42	1.287794859
1645	7.42	1.28702469
1646	7.43	1.286255442
1647	7.50	0.355378059
1648	7.51	0.355167852
1649	7.51	0.354957894
1650	7.52	0.354748183
1651	7.78	0.342689819
1652	8.04	0.331424267
1653	8.31	0.320875825
1654	8.57	0.310978135
1655	8.84	0.301672779
1656	9.10	0.292908129
1657	9.37	0.284638389
1658	9.63	0.276822789
1659	9.03	0.26942492
1660	10.16	0.262412164
1661	10.42	0.255755212
1662	10.65	0.250364606
1663	10.87	0.245196548
1664	11.10	0.240237534
1665	11.18	1.530865125
1666	11.40	1.500730588
1667	11.63	1.471759523
1668	11.85	1.443885826
1669	12.07	1.41790785
1670	12.28	1.392848131
1671	12.50	1.368658825
1672	12.72	1.345295358
1673	12.94	1.322716148
1674	13.15	1.300882359
1675	13.37	1.279757675
1676	13.59	1.259308105
1677	13.80	1.239501794
1678	14.02	1.220308861
1679	14.24	1.201701245
1680	14.24	1.18565709
1681	14.43	1.170035708
1682	14.82	1.154820605
1683	15.15	0.234726905
1684	15.34	0.231778192
1685	15.53	0.228902645
1686	15.66	0.226986418
1687	15.79	0.225102008

1688	15.92	0.223248629
1689	16.06	0.221425519
1690	16.19	0.219631945
1691	16.32	0.217867194
1692	16.45	0.216130576
1693	16.58	0.214421424
1694	16.71	0.212739092
1695	16.84	0.211082954
1696	16.97	0.209452401
1697	17.10	0.207846847
1698	17.30	0.20544454
1699	17.50	0.203097131
1700	17.70	0.200802759
1701	17.64	1.675079376
1702	17.84	1.656304605
1702	18.04	1.637946036
1703	18.12	1.631315518
1704	18.12	1.624738464
1706	18.26	1.618214232
1707	18.34	1.611742187
1708	18.41	1.605321705
1709	18.48	1.598952174
1710	18.56	1.592632988
1711	18.63	1.586363553
1712	18.70	1.580143285
1713	18.78	1.573971606
1714	18.85	1.56784795
1715	18.92	1.561771759
1716	18.85	1.567662499
1717	18.78	1.573597845
1718	18.71	1.579578305
1719	18.65	1.545726099
1719	18.58	1.551643295
1720	18.50	1.557605968
1722	18.37	1.568720722
1723	18.24	1.579995242
1724	18.11	1.591432996
1725	17.98	1.603037557
1726	17.85	1.614812599
1727	17.72	1.626761907
1728	17.59	1.638889379
1729	17.46	1.651199028
1730	17.32	1.663694993
1731	17.19	1.676381533
1732	17.06	1.689263043
1733	16.93	1.702344053
1734	16.94	1.70189675
1735	16.94	1.701449683
1736	17.01	1.332801765
1737	17.01	1.332453105
1737	17.01	1.332104627
1739	17.02	1.331756331
1740	17.11	1.325025956
1741	17.19	1.318363266
1742	17.28	1.311767246
1743	17.37	1.305236899
1744	17.45	1.29877125

1745	17.54	1.292369342
1746	17.62	1.286030237
1747	17.71	1.279753015
1748	17.80	1.273536776
1749	17.88	1.267380633
1749	17.88	
		1.26128372
1751	18.06	1.255245187
1752	17.88	1.267426698
1753	17.71	1.279846956
1754	17.66	0.566153958
1755	17.49	0.571771961
1756	17.32	0.577502579
1757	17.14	0.58334923
1758	16.92	0.590933077
1759	16.70	0.598716711
1760	16.48	0.606708129
1761	16.26	0.614915766
1762	16.04	0.623348516
1763	15.82	0.63201577
1764	15.60	0.640927448
1765	15.38	0.650094036
1766	15.16	0.659526631
1767	14.94	0.669236983
1768	14.72	0.679237542
1769	14.50	0.689541517
1770	14.29	0.699804265
1771	14.08	0.710377118
1772	13.92	0.287266551
1773	13.71	0.291722307
1774	13.50	0.296318465
1775	13.29	0.30106177
1776	13.10	0.305440273
1777	12.91	0.309948014
1778	12.71	0.3145908
-		
1779	12.52	0.319374792
1780	12.33	0.324306531
1781	12.14	0.32939297
1782	11.95	0.334641503
1783	11.76	0.340060004
1784	11.57	0.345656865
1785	11.38	0.35144104
1786	11.19	0.357422093
1787	11.06	0.361586497
1788	10.93	0.365849085
1789	10.80	0.370213372
1790	10.59	1.151628941
1791	10.46	1.165813011
1791	10.46	1.180350835
1793	10.21	1.195255814
1794	10.02	1.217792143
1795	9.83	1.24119464
1796	9.64	1.265514219
1797	9.45	1.290805865
1798	9.26	1.317129047
1799	9.07	1.344548188
1800	8.88	1.373133186
1801	8.70	1.402960016

1802	8.51	1.434111398
1803	8.32	1.466677567
1804	8.13	1.500757144
1805	8.07	1.512334201
1806	8.00	1.524091261
1807	7.94	1.536032554
1808	7.93	0.953100636
1809	7.86	0.960642276
1810	7.80	0.968304218
1811	7.74	0.976089364
1812	7.72	0.978900832
1813	7.70	0.981728544
	-	
1814	7.67	0.984572639
1815	7.65	0.987433262
1816	7.63	0.990310555
1817	7.61	0.993204666
1818	7.58	0.996115742
1819	7.56	0.999043933
1820	7.54	1.00198939
1821	7.52	1.004952266
1822	7.50	1.007932717
1823	7.53	1.002879212
1823	7.57	0.997876129
-		
1825	7.61	0.992922715
1826	7.62	1.282330413
1827	7.66	1.276009277
1828	7.70	1.269750154
1829	7.74	1.263552136
1830	7.90	1.237217507
1831	8.07	1.211958186
1832	8.23	1.187709629
1833	8.40	1.164412357
1834	8.56	1.142011468
1835	8.73	1.120456205
1835	8.89	1.099699571
1837	9.06	1.079697989
1838	9.22	1.060410997
1839	9.38	1.041800972
1840	9.55	1.023832886
1841	9.63	1.015042395
1842	9.71	1.006401566
1843	9.80	0.997906611
1844	9.94	0.379971852
1845	10.02	0.376836667
1846	10.11	0.373752797
1847	10.11	0.370890087
1848	10.18	0.368070897
1849	10.34	0.365294242
1850	10.42	0.362559167
1851	10.50	0.359864743
1852	10.57	0.357210073
1853	10.65	0.354594282
1854	10.73	0.352016523
1855	10.81	0.349475971
1856	10.89	0.346971828
1857	10.96	0.344503316
1858	11.04	0.34206968
1030	11.04	0.34200300

1859	11.17	0.338257183
1860	11.29	0.334528733
1861	11.41	0.33088158
1862	11.50	0.676295566
1863	11.62	0.669054858
1864	11.75	0.661967551
1865	11.88	0.654416449
1866	12.02	0.647035675
1867	12.15	0.639819531
1868	12.29	0.63276257
1869	12.43	0.625859581
1870	12.56	0.619105581
1871	12.70	0.612495796
1872	12.83	0.606025658
1873	12.97	0.599690786
1874	13.10	0.593486982
1875	13.24	0.587410221
1876	13.38	0.58145664
1877	13.49	0.576570779
1878	13.60	0.571766344
1879	13.72	0.567041316
1880	13.70	1.494001369
1881	13.81	1.481744216
1882	13.93	1.469686548
1883	13.89	1.473447356
1884	13.86	1.47722746
1885	13.82	1.481027009
1885	13.79	1.484846155
1887	13.75	1.488685048
1888	13.71	1.492543843
1889	13.68	1.496422694
1890	13.64	1.500321759
1891	13.61	1.504241196
1892	13.57	1.508181164
1893	13.54	1.512141827
1894	13.50	1.516123346
1895	13.53	1.513382754
1896	13.55	1.510652053
1897	13.58	1.472798516
1898	13.60	1.470151514
1899	13.63	1.467514009
1900	13.65	1.464885951
1901	13.71	1.458476446
1902	13.77	1.452122786
1903	13.83	1.445824243
1904	13.89	1.439580103
1905	13.95	1.433389666
1905	14.01	1.42725224
1907	14.07	1.421167148
1908	14.13	1.415133723
1909	14.19	1.40915131
1910	14.25	1.403219266
1911	14.31	1.397336955
1912	14.37	1.391503756
1913	14.39	1.389570164
1914	14.41	1.387641938
1915	14.42	1.463822552

1916	14.44	1.461795354
1917	14.46	1.459773763
1918	14.48	1.457757756
1919	14.45	1.461345066
1920	14.41	1.464950075
1921	14.38	1.468572915
1922	14.34	1.472213718
1923	14.30	1.475872618
1924	14.27	1.47954975
1925	14.23	1.483245252
1926	14.20	1.48695926
1927	14.16	1.490691914
1928	14.13	1.494443355
1929	14.09	1.498213726
1930	14.06	1.502003169
1931	13.89	1.51956956
1932	13.73	1.537551701
1933	13.72	0.453608308
1934	13.55	0.459045905
1935	13.39	0.464615449
1935	13.23	0.470321802
1930	13.23	0.470070941
1937	13.24	0.469820348
	-	
1939	13.25	0.469570021
1940	13.26	0.469319961
1941	13.26	0.469070168
1942	13.27	0.46882064
1943	13.28	0.468571377
1944	13.29	0.468322379
1945	13.29	0.468073646
1946	13.30	0.467825177
1947	13.31	0.467576971
1948	13.32	0.467164114
1949	13.33	0.466751985
1950	13.34	0.466340583
1951	13.32	0.73409774
1952	13.33	0.733450111
1953	13.34	0.732803624
1954	13.22	0.739454436
1955	13.10	0.746227077
1956	12.98	0.753124925
1957	12.86	0.760151486
1958	12.74	0.767310395
1959	12.62	0.774605428
1960	12.50	0.782040504
1961	12.38	0.789619695
1962	12.26	0.797347232
1963	12.14	0.805227514
1964	12.02	0.813265113
1965	11.90	0.82146479
1966	11.77	0.830614742
1960	11.64	0.839970824
1968	11.51	0.849540082
1969	11.43	0.369281257
1909	11.45	0.373565176
1970	11.30	0.373949654
1971	11.17	0.377424272
1372	11.19	0.377424272

1973	11.20	0.376900347
1974	11.22	0.376377876
1975	11.23	0.37585685
1976	11.25	0.375337266
1977	11.26	0.374819116
1978	11.28	0.374302394
1979	11.30	0.373787095
1980	11.31	0.373273214
1980	11.33	0.372760743
1981	11.34	0.372249677
1983	11.34	0.371740011
1984	11.50	0.366434528
1985	11.52	
		0.361278354
1986	11.85	0.356265273
1987	11.85	1.787664977
1988	12.01	1.763188527
1989	12.17	1.73937328
1990	12.36	1.713415552
1991	12.54	1.688221197
1992	12.73	1.66375703
1993	12.91	1.63999176
1994	13.10	1.616895859
1995	13.28	1.594441441
1996	13.47	1.572602146
1997	13.65	1.551353038
1998	13.83	1.530670514
1999	14.02	1.51053221
2000	14.20	1.490916925
2001	14.39	1.471804545
2002	14.54	1.456729774
2003	14.69	1.441960674
2004	14.97	0.534537468
2005	15.12	0.529272052
2006	15.26	0.524109358
2007	15.41	0.519046408
2008	15.48	0.516736781
2009	15.55	0.514447618
2010	15.62	0.512178648
2011	15.69	0.509929604
2012	15.76	0.507700226
2013	15.83	0.505490256
2014	15.90	0.503299442
2015	15.96	0.501127537
2016	16.03	0.498974296
2017	16.10	0.49683948
2018	16.17	0.494722853
2019	16.24	0.492624184
2020	16.36	0.488878025
2021	16.49	0.485188411
2022	16.47	1.376515071
2022	16.59	1.366190375
2023	16.72	1.356019408
2025	16.84	1.345998762
2025	16.97	1.335950301
2028	17.09	1.32605076
2027	17.09	1.316296854
2028	17.35	1.306685391
2023	11.33	1.200002231

2030	17.47	1.297213275
2031	17.60	1.287877497
2032	17.73	1.278675133
2033	17.85	1.269603346
2034	17.98	1.260659374
2035	18.11	1.251840536
2036	18.23	1.243144224
2037	18.36	1.234567901
2038	18.32	1.237458084
2039	18.27	1.240361831
2040	18.21	1.354469486
2041	18.17	1.357666307
2042	18.13	1.360878254
2043	18.08	1.364105434
2044	17.99	1.370893877
2045	17.90	1.377750222
2046	17.81	1.384675494
2047	17.72	1.391670738
2048	17.63	1.39873702
2049	17.54	1.405875426
2050	17.46	1.413087068
2051	17.37	1.420373077
2052	17.28	1.42773461
2053	17.19	1.435172848
2054	17.10	1.442688995
2055	17.14	1.439135189
2056	17.18	1.435598847
2057	17.22	1.432079843
	17.22	
2058	17.35	0.960791232
2058 2059	17.35 17.39	0.960791232
2059	17.39	0.958458369
2059 2060	17.39 17.43	0.958458369 0.956136808
2059 2060 2061	17.39 17.43 17.47	0.958458369 0.956136808 0.953826466
2059 2060 2061 2062	17.39 17.43 17.47 17.44	0.958458369 0.956136808 0.953826466 0.95577162
2059 2060 2061 2062 2063	17.39 17.43 17.47 17.44 17.40	0.958458369 0.956136808 0.953826466 0.95577162 0.957724723
2059 2060 2061 2062 2063 2064	17.39 17.43 17.47 17.44 17.40 17.37	0.958458369 0.956136808 0.953826466 0.95577162 0.957724723 0.959685825
2059 2060 2061 2062 2063 2064 2065	17.39 17.43 17.47 17.44 17.40 17.37 17.33	0.958458369 0.956136808 0.953826466 0.95577162 0.957724723 0.959685825 0.961654974
2059 2060 2061 2062 2063 2064 2065 2066	17.39 17.43 17.47 17.44 17.40 17.37 17.33 17.29	0.958458369 0.956136808 0.953826466 0.95577162 0.957724723 0.959685825 0.961654974 0.963632222
2059 2060 2061 2062 2063 2064 2065 2066 2066 2067	17.39 17.43 17.47 17.44 17.40 17.37 17.33 17.29 17.26	0.958458369 0.956136808 0.953826466 0.95577162 0.957724723 0.959685825 0.961654974 0.963632222 0.965617616
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068	17.39 17.43 17.47 17.44 17.40 17.37 17.33 17.29 17.26 17.22	0.958458369 0.956136808 0.953826466 0.95577162 0.957724723 0.959685825 0.961654974 0.963632222 0.965617616 0.967611209
2059 2060 2061 2062 2063 2064 2065 2066 2066 2067 2068 2069	17.39 17.43 17.47 17.44 17.40 17.37 17.33 17.29 17.26 17.22 17.19	0.958458369 0.956136808 0.953826466 0.95577162 0.957724723 0.959685825 0.961654974 0.963632222 0.965617616 0.967611209 0.969613051
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070	17.39 17.43 17.47 17.44 17.40 17.37 17.33 17.29 17.26 17.22 17.19 17.15	0.958458369 0.956136808 0.953826466 0.95577162 0.957724723 0.959685825 0.961654974 0.963632222 0.965617616 0.967611209 0.969613051 0.971623193
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071	17.39 17.43 17.47 17.44 17.40 17.37 17.33 17.29 17.26 17.22 17.19 17.15 17.12	0.958458369 0.956136808 0.953826466 0.95577162 0.957724723 0.959685825 0.961654974 0.963632222 0.965617616 0.967611209 0.969613051 0.971623193 0.973641686
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2071	17.39 17.43 17.47 17.44 17.40 17.37 17.33 17.29 17.26 17.22 17.19 17.15 17.12 17.08	0.958458369 0.956136808 0.953826466 0.95577162 0.957724723 0.959685825 0.961654974 0.963632222 0.965617616 0.967611209 0.969613051 0.971623193 0.973641686 0.975668584
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2071 2072 2073	17.39 17.43 17.47 17.44 17.40 17.37 17.33 17.29 17.26 17.22 17.19 17.15 17.12 17.08 16.90	0.958458369 0.956136808 0.953826466 0.95577162 0.957724723 0.959685825 0.961654974 0.963632222 0.965617616 0.967611209 0.969613051 0.971623193 0.973641686 0.975668584 0.986188859
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2073 2074	17.39 17.43 17.47 17.44 17.40 17.37 17.33 17.29 17.26 17.22 17.19 17.15 17.12 17.08 16.90 16.72	0.958458369 0.956136808 0.953826466 0.95577162 0.957724723 0.959685825 0.961654974 0.963632222 0.965617616 0.967611209 0.969613051 0.971623193 0.973641686 0.975668584 0.986188859 0.996938479
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2071 2072 2073 2074 2075	17.39 17.43 17.47 17.44 17.40 17.37 17.33 17.29 17.26 17.22 17.19 17.15 17.12 17.08 16.90 16.72 16.53	0.958458369 0.956136808 0.953826466 0.95577162 0.957724723 0.959685825 0.961654974 0.963632222 0.965617616 0.967611209 0.969613051 0.971623193 0.973641686 0.975668584 0.986188859 0.996938479 1.007925027
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2071 2072 2073 2074 2075 2076	17.39 17.43 17.47 17.44 17.40 17.37 17.33 17.29 17.26 17.22 17.19 17.15 17.12 17.08 16.90 16.72 16.53 16.35	0.958458369 0.956136808 0.953826466 0.95577162 0.957724723 0.959685825 0.961654974 0.963632222 0.965617616 0.967611209 0.969613051 0.971623193 0.973641686 0.975668584 0.986188859 0.996938479 1.007925027 1.032872349
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2076	17.39 17.43 17.47 17.44 17.40 17.37 17.33 17.29 17.26 17.22 17.19 17.15 17.12 17.15 17.12 17.08 16.90 16.72 16.53 16.35 16.17	0.958458369 0.956136808 0.953826466 0.95577162 0.957724723 0.959685825 0.961654974 0.963632222 0.965617616 0.967611209 0.969613051 0.971623193 0.973641686 0.975668584 0.986188859 0.996938479 1.007925027 1.032872349 1.044513029
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2071 2072 2073 2074 2075 2076 2076 2077 2078	$\begin{array}{c} 17.39\\ 17.43\\ 17.47\\ 17.44\\ 17.40\\ 17.37\\ 17.33\\ 17.29\\ 17.26\\ 17.22\\ 17.19\\ 17.15\\ 17.12\\ 17.18\\ 16.90\\ 16.72\\ 16.53\\ 16.35\\ 16.17\\ 15.99\end{array}$	0.958458369 0.956136808 0.953826466 0.95577162 0.957724723 0.959685825 0.961654974 0.963632222 0.965617616 0.967611209 0.969613051 0.971623193 0.973641686 0.975668584 0.986188859 0.996938479 1.007925027 1.032872349 1.044513029 1.056419085
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079	$\begin{array}{c} 17.39\\ 17.43\\ 17.47\\ 17.44\\ 17.40\\ 17.37\\ 17.33\\ 17.29\\ 17.26\\ 17.22\\ 17.19\\ 17.15\\ 17.12\\ 17.15\\ 17.12\\ 17.08\\ 16.90\\ 16.72\\ 16.53\\ 16.35\\ 16.17\\ 15.99\\ 15.80\\ \end{array}$	0.958458369 0.956136808 0.953826466 0.95577162 0.957724723 0.959685825 0.961654974 0.963632222 0.965617616 0.967611209 0.969613051 0.971623193 0.973641686 0.975668584 0.986188859 0.996938479 1.007925027 1.032872349 1.044513029 1.056419085 1.068599697
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2076 2077 2078 2079 2080	$\begin{array}{c} 17.39\\ 17.43\\ 17.47\\ 17.44\\ 17.40\\ 17.37\\ 17.33\\ 17.29\\ 17.26\\ 17.22\\ 17.26\\ 17.22\\ 17.19\\ 17.15\\ 17.12\\ 17.08\\ 16.90\\ 16.72\\ 16.53\\ 16.35\\ 16.17\\ 15.99\\ 15.80\\ 15.64\end{array}$	0.958458369 0.956136808 0.953826466 0.95577162 0.957724723 0.959685825 0.961654974 0.963632222 0.965617616 0.967611209 0.969613051 0.971623193 0.973641686 0.975668584 0.986188859 0.996938479 1.007925027 1.032872349 1.044513029 1.056419085 1.068599697 1.079835441
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2074 2075 2076 2077 2078 2079 2080 2081	$\begin{array}{c} 17.39\\ 17.43\\ 17.47\\ 17.44\\ 17.40\\ 17.37\\ 17.33\\ 17.29\\ 17.26\\ 17.22\\ 17.26\\ 17.22\\ 17.19\\ 17.15\\ 17.12\\ 17.08\\ 16.90\\ 16.72\\ 16.53\\ 16.35\\ 16.35\\ 16.17\\ 15.99\\ 15.80\\ 15.64\\ 15.47\\ \end{array}$	0.958458369 0.956136808 0.953826466 0.95577162 0.957724723 0.959685825 0.961654974 0.963632222 0.965617616 0.967611209 0.969613051 0.971623193 0.973641686 0.975668584 0.986188859 0.996938479 1.007925027 1.032872349 1.044513029 1.056419085 1.068599697 1.079835441 1.091309973
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2076 2077 2078 2079 2080 2081 2082	17.39 17.43 17.47 17.44 17.40 17.37 17.33 17.29 17.26 17.22 17.19 17.15 17.12 17.15 17.12 17.08 16.90 16.72 16.53 16.35 16.17 15.99 15.80 15.64 15.47 15.31	0.958458369 0.956136808 0.953826466 0.95577162 0.957724723 0.959685825 0.961654974 0.963632222 0.965617616 0.967611209 0.969613051 0.971623193 0.973641686 0.975668584 0.986188859 0.996938479 1.007925027 1.032872349 1.044513029 1.056419085 1.068599697 1.079835441 1.091309973 1.103030984
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2076 2077 2078 2079 2080 2081 2082 2083	$\begin{array}{c} 17.39\\ 17.43\\ 17.47\\ 17.44\\ 17.40\\ 17.37\\ 17.33\\ 17.29\\ 17.26\\ 17.22\\ 17.19\\ 17.26\\ 17.22\\ 17.19\\ 17.15\\ 17.12\\ 17.08\\ 16.90\\ 16.72\\ 16.53\\ 16.35\\ 16.35\\ 16.17\\ 15.99\\ 15.80\\ 15.64\\ 15.47\\ 15.31\\ 15.15\\ \end{array}$	0.958458369 0.956136808 0.953826466 0.95577162 0.957724723 0.959685825 0.961654974 0.963632222 0.965617616 0.967611209 0.969613051 0.971623193 0.973641686 0.975668584 0.986188859 0.996938479 1.007925027 1.032872349 1.044513029 1.056419085 1.068599697 1.079835441 1.091309973 1.103030984 1.115006503
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2074 2075 2076 2077 2078 2077 2078 2079 2080 2081 2082 2083 2084	$\begin{array}{c} 17.39\\ 17.43\\ 17.47\\ 17.44\\ 17.40\\ 17.37\\ 17.33\\ 17.33\\ 17.29\\ 17.26\\ 17.22\\ 17.19\\ 17.15\\ 17.12\\ 17.08\\ 16.90\\ 16.72\\ 16.53\\ 16.35\\ 16.7\\ 15.31\\ 15.80\\ 15.64\\ 15.47\\ 15.31\\ 15.15\\ 14.98\\ \end{array}$	0.958458369 0.956136808 0.953826466 0.95577162 0.957724723 0.959685825 0.961654974 0.963632222 0.965617616 0.967611209 0.969613051 0.971623193 0.973641686 0.975668584 0.986188859 0.996938479 1.007925027 1.032872349 1.044513029 1.056419085 1.068599697 1.079835441 1.091309973 1.103030984 1.115006503 1.127244911
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2076 2077 2078 2079 2080 2081 2082 2083	$\begin{array}{c} 17.39\\ 17.43\\ 17.47\\ 17.44\\ 17.40\\ 17.37\\ 17.33\\ 17.29\\ 17.26\\ 17.22\\ 17.19\\ 17.26\\ 17.22\\ 17.19\\ 17.15\\ 17.12\\ 17.08\\ 16.90\\ 16.72\\ 16.53\\ 16.35\\ 16.35\\ 16.17\\ 15.99\\ 15.80\\ 15.64\\ 15.47\\ 15.31\\ 15.15\\ \end{array}$	0.958458369 0.956136808 0.953826466 0.95577162 0.957724723 0.959685825 0.961654974 0.963632222 0.965617616 0.967611209 0.969613051 0.971623193 0.973641686 0.975668584 0.986188859 0.996938479 1.007925027 1.032872349 1.044513029 1.056419085 1.068599697 1.079835441 1.091309973 1.103030984 1.115006503

2087	14.49	1.16562698
2088	14.32	1.17900851
2089	14.16	1.192700852
2090	14.00	1.20671496
2091	13.81	1.222830612
2092	13.63	1.23938254
2093	13.44	1.256388701
2094	13.30	0.918676601
2095	13.12	0.931591801
2096	12.94	0.944875315
2097	12.75	0.958543127
2098	12.65	0.965820908
2099	12.56	0.973210048
2100	12.46	0.980713123
2101	12.37	0.988332789
2102	12.27	0.996071784
2103	12.17	1.003932933
2104	12.08	1.011919152
2105	11.98	1.02003345
2106	11.89	1.028278933
2107	11.79	1.036658807
2108	11.69	1.045176385
2109	11.68	1.046615583
2110	11.66	1.04805875
2111	11.65	1.049505903
2112	11.71	0.379596111
2113	11.69	0.38011821
2114	11.68	0.380641746
2115	11.54	0.385187445
2116	11.40	0.389843028
2117	11.26	0.394612527
2118	11.12	0.399500175
2119	10.99	0.404510419
2120	10.85	0.409647928
2121	10.71	0.414917614
2122	10.57	0.420324645
2123	10.44	0.425874461
2124	10.30	0.431572793
2125	10.16	0.437425685
2126	10.02	0.44343951
2127	9.88	0.44972201
2128	9.74	0.456185085
2129	9.60	0.462836634
2130	9.44	0.658839375
2131	9.30	0.668753251
2132	9.16	0.678970043
2133	9.06	0.68713418
2134	8.95	0.695497042
2135	8.84	0.704065975
2136	8.73	0.712848691
2137	8.62	0.72185329
2138	8.51	0.73108829
2139	8.40	0.740562647
2140	8.29	0.750285789
2140	8.18	0.760267645
2142	8.08	0.770518682
2142	7.97	0.781049936
		0.701040000

2144	7.86	0.791873056
2145	7.80	0.798193737
2146	7.73	0.804616133
-		
2147	7.67	0.811142718
2148	7.52	2.002372315
2149	7.46	2.019077859
2150	7.40	2.036064492
2151	7.40	2.034232603
2152	7.41	2.032404008
2153	7.42	2.030578697
2154	7.42	2.028756662
2155	7.43	2.026937894
2156	7.44	2.025122384
2150	7.44	2.023310124
2158	7.45	2.021501104
2159	7.46	2.019695315
2160	7.46	2.017892751
2161	7.47	2.016093401
2162	7.48	2.014297257
2163	7.56	1.991798942
2164	7.64	1.969797657
2165	7.85	0.367870909
2166	7.94	0.363956235
2160	8.02	0.360123998
-		
2168	8.10	0.356371624
2169	8.14	0.355008783
2170	8.17	0.353656326
2171	8.20	0.352314135
2172	8.23	0.350982094
2173	8.26	0.349660086
2174	8.29	0.348348001
2175	8.32	0.347045725
2176	8.35	0.34575315
2177	8.38	0.344470168
2178	8.42	0.343196673
2178	8.45	0.341932558
-		
2180	8.48	0.340677722
2181	8.49	0.340142865
2182	8.50	0.339609684
2183	8.49	0.707039402
2184	8.50	0.705930522
2185	8.51	0.704825115
2186	8.53	0.703723165
2187	8.53	0.702990169
2188	8.54	0.702258698
2189	8.55	0.701528748
2190	8.56	0.700800314
2191	8.57	0.700073391
2192	8.58	0.699347975
2193	8.59	0.69862406
2194	8.60	0.697901642
2195	8.61	0.697180717
2196	8.61	0.69646128
2197	8.62	0.695743326
2198	8.63	0.695026851
2199	8.55	0.701484458
2200	8.55	0.708063188
2200	0.47	0.700003100

2201	8.33	1.548020712
2202	8.25	1.562939607
2203	8.17	1.578148859
2204	8.09	1.593657027
2205	8.01	1.608135509
2206	7.94	1.622879478
2200	7.87	1.637896305
2207	7.80	1.653193635
	7.80	1.668779401
2209		
2210	7.65	1.684661839
2211	7.58	1.700849501
2212	7.50	1.717351271
2213	7.43	1.734176381
2214	7.36	1.751334428
2215	7.29	1.768835393
2216	7.34	1.757045633
2217	7.38	1.745411996
2218	7.43	1.733931402
2219	7.54	1.002648957
2220	7.58	0.996185355
2221	7.63	0.989804555
2222	7.68	0.983504975
2223	7.69	0.982651742
2224	7.70	0.981799988
2225	7.70	0.98094971
2226	7.71	0.980100903
2227	7.72	0.979253564
2228	7.72	0.978407688
2229	7.72	0.977563273
2230	7.74	0.976720314
2230	7.74	0.975878808
2231	7.74	0.97503875
2232	7.76	0.974200137
2234	7.73	0.977281282
2235	7.71	0.980381979
2236	7.68	0.983502414
2237	7.66	0.928120579
2238	7.64	0.931091869
2239	7.61	0.934082245
2240	7.59	0.937091892
2241	7.58	0.937641747
2242	7.58	0.938192248
2243	7.58	0.938743396
2244	7.57	0.939295192
2245	7.57	0.939847637
2246	7.56	0.940400732
2247	7.56	0.940954478
2248	7.55	0.941508877
2249	7.55	0.942063929
2250	7.54	0.942619637
2251	7.54	0.943176
2252	7.47	0.95243963
2253	7.39	0.961887035
2254	7.32	0.971523739
2255	7.24	1.074254362
2255	7.17	1.085247087
2257	7.09	1.096467112
	7.05	1.030407112

2258	7.02	1.107921561
2259	7.08	1.097841584
2260	7.15	1.087943372
2261	7.21	1.07822205
2262	7.28	1.068672919
2263	7.34	1.059291445
2264	7.41	1.05007325
2265	7.47	1.041014109
2266	7.54	1.03210994
2267	7.60	1.0233568
2268	7.66	1.014750879
2269	7.73	1.006288494
2270	7.85	0.991182971
2271	7.96	0.976524242
2272	8.08	0.962292774
2273	8.24	0.431340955
2274	8.36	0.425263652
2275	8.48	0.419355219
2275	8.60	0.413608716
2277	8.77	0.405299563
2278	8.95	0.397317687
2279	9.12	0.389644125
2280	9.30	0.382261353
2281	9.48	0.375153148
2282	9.65	0.368304473
2283	9.83	0.36170137
2284	10.00	0.355330863
2285	10.00	0.349180874
2286	10.36	0.343240148
2287	10.53	0.337498184
2288	10.71	0.331807609
2289	10.89	0.326305751
2290	11.08	0.320983374
2291	11.24	0.494393462
2292	11.42	0.48657048
2293	11.60	0.478991213
2293	11.63	0.477800963
2295	11.66	0.476616614
2296	11.68	0.475438122
2297	11.71	0.474265444
2298	11.74	0.473098536
2299	11.77	0.471937356
2300	11.80	0.470781862
2301	11.83	0.469632013
2302	11.86	0.468487767
2302	11.80	0.467349083
2304	11.92	0.466215921
2305	11.94	0.465088241
2306	11.97	0.464224232
2307	11.99	0.463363426
2308	12.01	0.462505807
2309	11.90	1.62528972
2310	11.92	1.622257987
2310	11.94	1.619237544
2312	11.91	1.622861249
2313	11.89	1.626501209
2314	11.86	1.630157535

2315	11.83	1.633830336
2316	11.81	1.637519725
2317	11.78	1.641225813
2318	11.75	1.644948715
2319	11.73	1.648688545
2320	11.70	1.652445419
2320	11.67	1.656219454
-	11.65	1.660010767
2322		
2323	11.62	1.663819478
2324	11.64	1.661594419
2325	11.65	1.659375303
2326	11.67	1.657162107
2327	11.62	2.165964351
2328	11.64	2.163068712
2329	11.65	2.160180804
2330	11.65	2.160180804
2331	11.65	2.160180804
2332	11.65	2.160180804
2333	11.65	2.160180804
2334	11.65	2.160180804
2335	11.65	2.160180804
2336	11.65	2.160180804
2337	11.65	2.160180804
2338	11.65	2.160180804
2339	11.65	2.160180804
2340	11.65	2.160180804
2341	11.65	2.160180804
2342	11.63	2.163894184
2343	11.61	2.167620353
2344	11.75	0.85132901
2345	11.73	0.852781004
2346	11.71	0.85423796
2346 2347	-	0.85423796 0.855699903
	11.71	
2347	11.71 11.69	0.855699903
2347 2348	11.71 11.69 11.82	0.855699903 0.8457289
2347 2348 2349 2350	11.71 11.69 11.82 11.96 12.10	0.855699903 0.8457289 0.835987594 0.826468138
2347 2348 2349 2350 2351	11.71 11.69 11.82 11.96 12.10 12.24	0.855699903 0.8457289 0.835987594
2347 2348 2349 2350 2351 2352	11.71 11.69 11.82 11.96 12.10 12.24 12.38	0.855699903 0.8457289 0.835987594 0.826468138 0.817163039 0.808065137
2347 2348 2349 2350 2351 2352 2353	11.71 11.69 11.82 11.96 12.10 12.24 12.38 12.51	0.855699903 0.8457289 0.835987594 0.826468138 0.817163039 0.808065137 0.799167587
2347 2348 2349 2350 2351 2352 2353 2354	11.71 11.69 11.82 11.96 12.10 12.24 12.38 12.51 12.65	0.855699903 0.8457289 0.835987594 0.826468138 0.817163039 0.808065137 0.799167587 0.790463844
2347 2348 2349 2350 2351 2352 2353 2354 2355	11.71 11.69 11.82 11.96 12.10 12.24 12.38 12.51 12.65 12.79	0.855699903 0.8457289 0.835987594 0.826468138 0.817163039 0.808065137 0.799167587 0.790463844 0.781947644
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356	11.71 11.69 11.82 11.96 12.10 12.24 12.38 12.51 12.65 12.79 12.93	0.855699903 0.8457289 0.835987594 0.826468138 0.817163039 0.808065137 0.799167587 0.790463844 0.781947644 0.773612989
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357	11.71 11.69 11.82 11.96 12.10 12.24 12.38 12.51 12.65 12.79 12.93 13.06	0.855699903 0.8457289 0.835987594 0.826468138 0.817163039 0.808065137 0.799167587 0.790463844 0.781947644 0.773612989 0.765454136
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358	11.71 11.69 11.82 11.96 12.10 12.24 12.38 12.51 12.65 12.79 12.93 13.06 13.20	0.855699903 0.8457289 0.835987594 0.826468138 0.817163039 0.808065137 0.799167587 0.790463844 0.781947644 0.773612989 0.765454136 0.757465581
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359	11.71 11.69 11.82 11.96 12.10 12.24 12.38 12.51 12.65 12.79 12.93 13.06 13.20 13.34	0.855699903 0.8457289 0.835987594 0.826468138 0.817163039 0.808065137 0.799167587 0.790463844 0.781947644 0.773612989 0.765454136 0.757465581 0.749642046
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360	11.71 11.69 11.82 11.96 12.10 12.24 12.38 12.51 12.65 12.79 12.93 13.06 13.20 13.34 13.34	0.855699903 0.8457289 0.835987594 0.826468138 0.817163039 0.808065137 0.799167587 0.790463844 0.781947644 0.773612989 0.765454136 0.757465581 0.749642046 0.749642046
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361	11.71 11.69 11.82 11.96 12.10 12.24 12.38 12.51 12.65 12.79 12.93 13.06 13.20 13.34 13.34 13.34	0.855699903 0.8457289 0.835987594 0.826468138 0.817163039 0.808065137 0.799167587 0.799463844 0.781947644 0.773612989 0.765454136 0.757465581 0.749642046 0.749642046
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2361	11.71 11.69 11.82 11.96 12.10 12.24 12.38 12.51 12.65 12.79 12.93 13.06 13.20 13.34 13.34 13.34 13.34 13.34	0.855699903 0.8457289 0.835987594 0.826468138 0.817163039 0.808065137 0.799167587 0.790463844 0.781947644 0.773612989 0.765454136 0.757465581 0.749642046 0.749642046 0.749642046 0.749642046
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363	11.71 11.69 11.82 11.96 12.10 12.24 12.38 12.51 12.65 12.79 12.93 13.06 13.20 13.34 13.34 13.34 13.39 13.39	0.855699903 0.8457289 0.835987594 0.826468138 0.817163039 0.808065137 0.799167587 0.790463844 0.781947644 0.773612989 0.765454136 0.757465581 0.749642046 0.749642046 0.749642046 0.749642046 0.749642046 0.381742962
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364	11.71 11.69 11.82 11.96 12.10 12.24 12.38 12.51 12.65 12.79 12.93 13.06 13.20 13.34 13.34 13.34 13.34 13.39 13.39 13.39	0.855699903 0.8457289 0.835987594 0.826468138 0.817163039 0.808065137 0.799167587 0.790463844 0.781947644 0.773612989 0.765454136 0.757465581 0.749642046 0.749642046 0.749642046 0.749642046 0.749642046 0.749642046 0.381742962 0.381742962
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2361 2362 2363 2364 2365	11.71 11.69 11.82 11.96 12.10 12.24 12.38 12.51 12.65 12.79 12.93 13.06 13.20 13.34 13.34 13.34 13.39 13.39 13.39 13.39 13.39	0.855699903 0.8457289 0.835987594 0.826468138 0.817163039 0.808065137 0.799167587 0.790463844 0.781947644 0.773612989 0.765454136 0.765454136 0.757465581 0.749642046 0.749642046 0.749642046 0.749642046 0.749642046 0.381742962 0.381742962 0.381742962
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2361 2362 2363 2364 2365 2366	11.71 11.69 11.82 11.96 12.10 12.24 12.38 12.51 12.65 12.79 12.93 13.06 13.20 13.34 13.34 13.34 13.34 13.39 13.39 13.39 13.39 13.39 13.39 13.39 13.27	0.855699903 0.8457289 0.835987594 0.826468138 0.817163039 0.808065137 0.799167587 0.799167587 0.790463844 0.781947644 0.773612989 0.765454136 0.757465581 0.749642046 0.749642046 0.749642046 0.749642046 0.749642046 0.381742962 0.381742962 0.381742962 0.381742962 0.381742962
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2365 2366 2367	11.71 11.69 11.82 11.96 12.10 12.24 12.38 12.51 12.65 12.79 12.93 13.06 13.20 13.34 13.34 13.34 13.34 13.34 13.39 13.39 13.39 13.39 13.39 13.27 13.14	0.855699903 0.8457289 0.835987594 0.826468138 0.817163039 0.808065137 0.799167587 0.799167587 0.790463844 0.781947644 0.773612989 0.765454136 0.757465581 0.749642046 0.749642046 0.749642046 0.749642046 0.749642046 0.381742962 0.381742962 0.381742962 0.381742962 0.385259871 0.388842185
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2364 2365 2366 2367 2368	11.71 11.69 11.82 11.96 12.10 12.24 12.38 12.51 12.65 12.79 12.93 13.06 13.20 13.34 13.34 13.34 13.34 13.39 13.39 13.39 13.39 13.39 13.27 13.14 13.02	0.855699903 0.8457289 0.835987594 0.826468138 0.817163039 0.808065137 0.799167587 0.790463844 0.781947644 0.773612989 0.765454136 0.757465581 0.749642046 0.749642046 0.749642046 0.749642046 0.749642046 0.749642046 0.381742962 0.381742962 0.381742962 0.381742962 0.381742962 0.385259871 0.388842185 0.392491743
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2364 2365 2366 2367 2368 2369	11.71 11.69 11.82 11.96 12.10 12.24 12.38 12.51 12.65 12.79 12.93 13.06 13.20 13.34 13.34 13.34 13.34 13.39 13.39 13.39 13.39 13.39 13.39 13.39 13.39 13.27 13.14 13.02 12.90	0.855699903 0.8457289 0.835987594 0.826468138 0.817163039 0.808065137 0.799167587 0.790463844 0.781947644 0.773612989 0.765454136 0.757465581 0.749642046 0.749642046 0.749642046 0.749642046 0.749642046 0.381742962 0.381742962 0.381742962 0.381742962 0.381742962 0.381742962 0.381742962 0.381742962 0.381742962 0.381742962 0.381742962 0.382559871 0.388842185 0.392491743 0.396210457
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2364 2365 2366 2367 2368	11.71 11.69 11.82 11.96 12.10 12.24 12.38 12.51 12.65 12.79 12.93 13.06 13.20 13.34 13.34 13.34 13.34 13.39 13.39 13.39 13.39 13.39 13.27 13.14 13.02	0.855699903 0.8457289 0.835987594 0.826468138 0.817163039 0.808065137 0.799167587 0.790463844 0.781947644 0.773612989 0.765454136 0.757465581 0.749642046 0.749642046 0.749642046 0.749642046 0.749642046 0.749642046 0.381742962 0.381742962 0.381742962 0.381742962 0.381742962 0.385259871 0.388842185 0.392491743

2372	12.53	0.407801772
2373	12.41	0.411817743
2374	12.29	0.415913598
2375	12.17	0.420091745
2376	12.04	0.424354688
2370	11.92	0.428705036
2378	11.74	0.435301031
2379	11.56	0.442103169
2380	11.40	0.311963607
2381	11.21	0.316988723
2382	11.03	0.322178379
2383	10.85	0.327540791
2384	10.67	0.333154339
2385	10.49	0.338963658
2386	10.30	0.34497917
2387	10.12	0.351212052
2388	9.94	0.357674302
2389	9.76	0.364378819
2390	9.57	0.371339486
2391	9.39	0.378571269
2392	9.21	0.386090322
2393	9.02	0.39391411
2394	8.84	0.402061541
2394		0.402001341
	8.81	
2396	8.78	0.404911791
2397	8.75	0.406352124
2398	8.56	2.25861511
2399	8.53	2.266856617
2400	8.50	2.275158489
2401	8.47	2.283521392
2402	8.57	2.255695243
2403	8.68	2.228539087
2404	8.78	2.202029015
2405	8.88	2.176142241
2406	8.99	2.150857039
2407	9.09	2.126152679
2408	9.20	2.102009374
2409	9.30	2.078408227
2410	9.41	2.055331178
2411	9.51	2.032760961
2412	9.62	2.010681061
2412	9.77	1.9791206
		1.9485356
2414	9.92	
2415	10.08	1.918881524
2416	10.35	0.68700734
2417	10.50	0.676978909
2418	10.66	0.667239042
2419	10.81	0.657775459
2420	10.83	0.65673544
2421	10.84	0.655698705
2422	10.86	0.654665238
2423	10.88	0.653635023
2424	10.90	0.652608046
2425	10.91	0.651584291
2426	10.93	0.650563743
2427	10.95	0.649546386
2428	10.96	0.648532207
	_0.00	

	2429	10.98	0.647521189
	2430	11.00	0.646513319
	2431	11.03	0.644598103
	2432	11.06	0.6426942
	2432	11.10	0.640801511
			0.618759517
	2434	11.13	
	2435	11.16	0.616948345
	2436	11.20	0.615147745
	2437	11.21	0.614416305
	2438	11.22	0.613686601
	2439	11.24	0.612958629
	2440	11.25	0.612232382
	2441	11.26	0.611507853
	2442	11.28	0.610785038
	2443	11.29	0.610063929
	2444	11.30	0.609344521
	2445	11.32	0.608626808
	2446	11.33	0.607910783
	2447	11.34	0.607196441
	2448	11.36	0.606483776
	2449	11.21	0.614296849
	2450	11.07	0.622313855
	2450	10.92	0.630542882
	2452	10.64	1.920722742
	2452	10.50	1.920722742
	2454	10.36	1.97431002
	2455	10.20	2.003983658
	2456	10.05	2.034562888
	2457	9.90	2.066089811
	2458	9.74	2.098609174
	2459	9.59	2.132168588
	2460	9.44	2.166818759
	2461	9.28	2.202613745
	2462	9.13	2.239611234
	2463	8.98	2.277872856
	2464	8.82	2.317464528
	2465	8.67	2.358456828
	2466	8.52	2.40092542
	2467	8.48	2.409729442
	2468	8.45	2.418598268
	2469	8.42	2.427532618
	2470	8.53	0.800181076
1	2471	8.50	0.803111217
	2472	8.46	0.806062897
	2473	8.46	0.806486883
	2474	8.46	0.806911314
	2475	8.45	0.807336193
	2475	8.45	0.807761519
	2477	8.44	0.808187294
	2478	8.44	0.808613518
	2479	8.43	0.809040191
	2480	8.43	0.809467315
	2481	8.42	0.809894891
	2482	8.42	0.810322918
	2483	8.42	0.810751398
	2484	8.41	0.811180331
	2485	8.41	0.811394485

2487 8.42 0.580254491 2488 8.42 0.58054481 2489 8.42 0.580560488 2490 8.42 0.58057978 2491 8.42 0.58059798 2492 8.42 0.580559798 2493 8.42 0.58059798 2494 8.43 0.58098859 2495 8.43 0.579945375 2496 8.43 0.579945375 2497 8.43 0.579791972 2497 8.43 0.5797932251 2500 8.44 0.579332251 2501 8.44 0.579332251 2502 8.44 0.579179172 2501 8.44 0.57932251 2502 8.44 0.57916175 2502 8.44 0.5791721 2505 8.05 0.496716703 2506 7.92 0.505079203 2507 7.79 0.51372809 2510 7.40 0.540573413 2512 <th>2486</th> <th>8.41</th> <th>0.811608753</th>	2486	8.41	0.811608753
2488 8.42 0.580407449 2489 8.42 0.580560488 2490 8.42 0.580559798 2491 8.42 0.58046071 2493 8.42 0.58046071 2493 8.42 0.58046071 2493 8.42 0.58005859 2495 8.43 0.579943575 2496 8.43 0.579638651 2498 8.44 0.579638551 2499 8.44 0.579638551 2499 8.44 0.579026175 2500 8.44 0.57903251 2500 8.44 0.57903258 2503 8.31 0.588160266 2504 8.18 0.597750121 2505 8.05 0.496716703 2506 7.92 0.50579203 2507 7.79 0.513728099 2508 7.65 0.522678311 2510 7.40 0.540573413 2511 7.27 0.54998845 2512 <td></td> <td></td> <td></td>			
2489 8.42 0.580560488 2490 8.42 0.580713608 2491 8.42 0.58059798 2492 8.42 0.580252444 2493 8.42 0.580259798 2494 8.43 0.579945375 2496 8.43 0.579945375 2496 8.43 0.579938251 2497 8.43 0.579938251 2498 8.44 0.579332251 2500 8.44 0.57937258 2501 8.44 0.57873258 2502 8.44 0.578750121 2504 8.18 0.597750121 2505 8.05 0.496716703 2506 7.92 0.505079203 2507 7.79 0.513728099 2508 7.65 0.522678361 2509 7.53 0.531475266 2510 7.40 0.540597313 2511 7.27 0.5409845 2512 7.15 0.559737259 2513 6.77 0.59117376 2514 6.64 0.6	-		
2490 8.42 0.580713608 2491 8.42 0.580559788 2492 8.42 0.58005859 2493 8.42 0.58005859 2495 8.43 0.579945375 2496 8.43 0.579638651 2497 8.43 0.579332251 2498 8.44 0.579332251 2500 8.44 0.579332251 2501 8.44 0.57932251 2502 8.44 0.57932251 2503 8.31 0.58873258 2503 8.31 0.58873258 2504 8.18 0.597750121 2505 8.05 0.496716703 2506 7.92 0.505079203 2507 7.79 0.513728099 2508 7.65 0.522673811 2509 7.53 0.544753413 2510 7.40 0.540573413 2511 7.27 0.54983791 2513 7.02 0.56683791 2514 <td></td> <td></td> <td></td>			
2491 8.42 0.580559798 2492 8.42 0.58046071 2493 8.42 0.58025424 2494 8.43 0.58098859 2495 8.43 0.579945375 2496 8.43 0.57993172 2497 8.43 0.579638651 2498 8.44 0.57932251 2500 8.44 0.579026175 2501 8.44 0.579026175 2502 8.44 0.5790217 2503 8.31 0.5887328 2503 8.31 0.5887328 2505 8.05 0.496716703 2506 7.92 0.505079203 2507 7.79 0.513728099 2508 7.65 0.522678361 2509 7.53 0.51475296 2510 7.40 0.540673413 2511 7.27 0.5499845 2512 7.15 0.580309798 2513 7.02 0.5693791 2514 6.64 0.60245282 2515 6.77 0.591173776 <td></td> <td></td> <td></td>			
2492 8.42 0.5804252424 2493 8.43 0.580252424 2494 8.43 0.579945375 2496 8.43 0.579945375 2496 8.43 0.579935251 2497 8.43 0.579332251 2498 8.44 0.579332251 2500 8.44 0.579179172 2501 8.44 0.579179172 2502 8.44 0.579873258 2503 8.31 0.588160266 2504 8.18 0.57750121 2505 8.05 0.496716703 2506 7.92 0.505079203 2507 7.79 0.513728099 2508 7.65 0.522678361 2509 7.53 0.51475296 2510 7.40 0.540573413 2511 7.27 0.5983791 2512 7.15 0.559737259 2513 7.02 0.56983791 2514 6.64 0.602452282 2517 6.51 0.614169505 2518 6.77 0		-	
2493 8.42 0.580252424 2494 8.43 0.579945375 2495 8.43 0.57991972 2496 8.43 0.57991972 2497 8.43 0.57948541 2498 8.44 0.579332251 2500 8.44 0.579332251 2501 8.44 0.57937258 2502 8.44 0.57873258 2503 8.31 0.588160266 2504 8.18 0.597750121 2505 8.05 0.496716703 2506 7.92 0.50507203 2507 7.79 0.513728099 2508 7.65 0.522678361 2509 7.53 0.51475296 2510 7.40 0.540573413 2511 7.15 0.559737259 2513 7.02 0.56983791 2514 6.89 0.580309798 2515 6.77 0.59173776 2516 6.64 0.602452282 2517 6.51 0.639026635 2528 6.13 0.6522			
2494 8.43 0.580098859 2495 8.43 0.579791972 2496 8.43 0.579791972 2497 8.43 0.57943851 2498 8.44 0.579332251 2500 8.44 0.579179172 2501 8.44 0.57932251 2502 8.44 0.57932258 2503 8.31 0.58873258 2504 8.18 0.597750121 2505 8.05 0.496716703 2506 7.92 0.50507203 2507 7.79 0.513728099 2508 7.65 0.522678361 2509 7.53 0.531475296 2510 7.40 0.54098845 2511 7.27 0.54998845 2512 7.15 0.559737259 2513 7.02 0.56030798 2514 6.89 0.58030798 2515 6.77 0.591173776 2516 6.64 0.602452282 2517 6.51 0.64305659 2518 6.39 0.62635		-	
2495 8.43 0.579945375 2496 8.43 0.57991972 2497 8.43 0.579638651 2498 8.44 0.579332251 2500 8.44 0.57903521 2501 8.44 0.579026175 2502 8.44 0.57873258 2503 8.31 0.588160266 2504 8.18 0.597750121 2505 8.05 0.496716703 2506 7.92 0.505079203 2507 7.79 0.513728099 2508 7.65 0.522678361 2509 7.53 0.531475296 2510 7.40 0.540573413 2511 7.27 0.54998845 2512 7.15 0.559737259 2513 7.02 0.56983791 2514 6.89 0.580309798 2515 6.77 0.591173776 2516 6.64 0.60245282 2517 6.51 0.644169505 2518 6.39 0.626351549 2529 6.14 1.0		-	
2496 8.43 0.579791972 2497 8.43 0.579638651 2498 8.44 0.579438541 2499 8.44 0.57932251 2500 8.44 0.579179172 2501 8.44 0.57873258 2502 8.44 0.57873258 2503 8.31 0.588160266 2504 8.18 0.597750121 2505 8.05 0.496716703 2506 7.92 0.505079203 2507 7.79 0.513728099 2508 7.65 0.522678361 2509 7.53 0.51475296 2510 7.40 0.540573413 2511 7.27 0.5498845 2512 7.15 0.559737259 2513 7.02 0.56983791 2514 6.89 0.58030798 2515 6.77 0.591173776 2516 6.64 0.602452282 2517 6.51 0.61405905 2518 6.39 0.62635149 2519 6.26 0.63902			
2497 8.43 0.579638651 2498 8.44 0.57948541 2499 8.44 0.57932251 2500 8.44 0.579026175 2501 8.44 0.579026175 2502 8.44 0.578873258 2503 8.31 0.588160266 2504 8.18 0.597750121 2505 8.05 0.496716703 2506 7.92 0.50507203 2507 7.79 0.513728099 2508 7.65 0.522678361 2509 7.53 0.531475296 2510 7.40 0.540573413 2511 7.27 0.5498845 2512 7.15 0.559737259 2513 7.02 0.56983791 2514 6.89 0.580309798 2515 6.77 0.591173776 2516 6.64 0.60245282 2517 6.51 0.614169505 2518 6.39 0.626351549 2520 </td <td></td> <td></td> <td></td>			
2498 8.44 0.57948541 2499 8.44 0.579332251 2500 8.44 0.579179172 2501 8.44 0.578873258 2502 8.44 0.578873258 2503 8.31 0.588160266 2504 8.18 0.597750121 2505 8.05 0.496716703 2506 7.92 0.50579203 2507 7.79 0.513728099 2508 7.65 0.522678361 2509 7.53 0.531475296 2510 7.40 0.5490573413 2511 7.27 0.5499845 2512 7.15 0.559737259 2513 7.02 0.56983791 2514 6.89 0.50309798 2515 6.77 0.591173776 2516 6.64 0.602452282 2517 6.51 0.614169505 2518 6.39 0.626351549 2520 6.13 0.65225311 2521 6.14 1.0875634 2522 6.15 1.085			
24998.440.57933225125008.440.57917917225018.440.57902617525028.440.57887325825038.310.58816026625048.180.59775012125058.050.49671670325067.920.50507920325077.790.51372809925087.650.52267836125097.530.53147529625107.400.54057341325117.270.5698379125137.020.5698379125146.890.58030979825156.770.59117377625166.640.60245228225176.510.61416950525186.390.62635154925206.130.6522531125216.150.65020245725236.151.08321728225246.141.08489913525256.151.08321728225266.161.08154063625276.121.08860556925286.081.0957634125296.041.10301600325305.801.11281307125325.821.11281307125335.881.13301254525345.841.1407683525355.801.14863106825365.761.1560292625375.721.16468621125385.701.16890358725395.681.1774130637			
2500 8.44 0.579179172 2501 8.44 0.579026175 2502 8.44 0.578873258 2503 8.31 0.588160266 2504 8.18 0.597750121 2505 8.05 0.496716703 2506 7.92 0.505079203 2507 7.79 0.513728099 2508 7.65 0.522678361 2509 7.53 0.531475296 2510 7.40 0.540573413 2511 7.27 0.54998845 2512 7.15 0.559737259 2513 7.02 0.5683791 2514 6.89 0.580309798 2515 6.77 0.591173776 2516 6.64 0.602452282 2517 6.51 0.614169505 2518 6.39 0.626351549 2519 6.26 0.639026635 2520 6.13 0.652225311 2521 6.15 1.08217282 252			
2501 8.44 0.579026175 2502 8.44 0.578873258 2503 8.31 0.588160266 2504 8.18 0.597750121 2505 8.05 0.496716703 2506 7.92 0.505079203 2507 7.79 0.513728099 2508 7.65 0.522678361 2509 7.53 0.531475296 2510 7.40 0.549573413 2511 7.27 0.54998845 2512 7.15 0.559737259 2513 7.02 0.56983791 2514 6.89 0.580309798 2515 6.77 0.591173776 2516 6.64 0.602452282 2517 6.51 0.614169505 2518 6.39 0.626351549 2519 6.26 0.639026635 2520 6.13 0.65222311 2521 6.14 1.088656219 2522 6.15 1.08217282 2523 6.13 1.086586219 2524 6.16 1			
2502 8.44 0.578873258 2503 8.31 0.588160266 2504 8.18 0.597750121 2505 8.05 0.496716703 2506 7.92 0.505079203 2507 7.79 0.513728099 2508 7.65 0.522678361 2509 7.53 0.51475296 2510 7.40 0.540573413 2511 7.27 0.54998845 2512 7.15 0.559737259 2513 7.02 0.56983791 2514 6.89 0.580309798 2515 6.77 0.591173776 2516 6.64 0.602452282 2517 6.51 0.614169505 2518 6.39 0.626351549 2519 6.26 0.639026635 2520 6.13 0.652225311 2521 6.14 0.82217282 2523 6.15 1.083217282 2524 6.14 1.084899135 2525 6.15 1.08217282 2526 6.16 1.			
2503 8.31 0.588160266 2504 8.18 0.597750121 2505 8.05 0.496716703 2506 7.92 0.505079203 2507 7.79 0.513728099 2508 7.65 0.522678361 2509 7.53 0.531475296 2510 7.40 0.540573413 2511 7.27 0.54998845 2512 7.15 0.559737259 2513 7.02 0.56983791 2514 6.89 0.580309798 2515 6.77 0.591173776 2516 6.64 0.60245282 2517 6.51 0.614169505 2518 6.39 0.62631549 2519 6.26 0.639026635 2520 6.13 0.65225311 2521 6.14 1.084899135 2522 6.15 1.083217282 2523 6.13 1.086656219 2524 6.14 1.088605569 2525			
25048.180.59775012125058.050.49671670325067.920.50507920325077.790.51372809925087.650.52267836125097.530.53147529625107.400.54057341325117.270.5499884525127.150.55973725925137.020.5698379125146.890.58030979825156.770.59117377625166.640.60245228225176.510.61416950525186.390.62635154925206.130.6522531125216.140.65121231325226.151.08321728225236.151.08321728225246.141.08489913525256.151.08321728225266.161.013154063625276.121.08860556925286.081.0957634125306.001.1136524125315.961.11781307125325.921.12536148825335.881.13001260325345.841.1407683525355.801.14863106825365.761.15600292625375.721.16468621125385.701.16890358725395.661.17743063725415.641.261625369			
25058.050.49671670325067.920.50507920325077.790.51372809925087.650.52267836125097.530.53147529625107.400.54057341325117.270.5499884525127.150.55973725925137.020.5698379125146.890.58030979825156.770.59117377625166.640.60245228225176.510.61416950525186.390.62635154925196.260.63902663525206.130.6522253125216.141.08489913525226.150.65020245725236.131.08658621925246.141.08489913525256.151.08321728225266.161.08154063625276.121.08860556925286.081.0957634125296.041.10301600325306.001.1136524125315.961.11781307125325.921.12536148825335.881.13301254525345.841.1407683525355.801.14863106825365.761.1560292625375.721.16468621125385.701.16890358725395.681.1743063725415.641.261625369			
25067.920.50507920325077.790.51372809925087.650.52267836125097.530.53147529625107.400.54057341325117.270.5499884525127.150.55973725925137.020.5698379125146.890.58030979825156.770.59117377625166.640.60245228225176.510.61416950525186.390.62635154925196.260.63902663525206.130.6522251125216.140.65121231325226.150.65020245725236.131.08658621925246.141.08154063625276.121.08860556925286.081.0957634125296.041.10301600325306.001.11036524125315.961.11781307125325.921.12536148825335.881.13301254525345.841.1407683525355.801.14863106825365.761.15660292625375.721.16468621125385.701.16890358725395.681.17315161725405.661.1743063725415.641.261625369			
25077.790.51372809925087.650.52267836125097.530.53147529625107.400.54057341325117.270.5499884525127.150.55973725925137.020.5698379125146.890.58030979825156.770.59117377625166.640.60245228225176.510.61416950525186.390.62635154925196.260.63902663525206.130.6522251125216.140.65121231325226.151.0885861925236.131.0865861925246.141.08489913525256.151.08321728225266.161.08154063625276.121.08860556925286.081.0957634125296.041.10301600325306.001.11781307125325.921.12536148825335.881.13301254525345.841.1407683525355.801.14863106825365.761.15660292625375.721.16489358725385.701.16890358725395.681.17315161725405.661.17743063725415.641.261625369			
25087.650.52267836125097.530.53147529625107.400.54057341325117.270.5499884525127.150.55973725925137.020.5698379125146.890.58030979825156.770.59117377625166.640.60245228225176.510.61416950525186.390.62635154925196.260.63902663525206.130.6522251125216.140.65121231325226.150.6502045725236.131.08658621925246.141.08489913525256.151.08321728225266.161.08154063625276.121.08860556925286.081.0957634125296.041.10301600325306.001.11036524125315.961.11781307125325.921.12536148825335.881.13301254525345.841.1407683525355.801.14863106825365.761.16689038725395.681.17315161725405.661.17743063725415.641.261625369			
25097.530.53147529625107.400.54057341325117.270.5499884525127.150.55973725925137.020.569397125146.890.58030979825156.770.59117377625166.640.60245228225176.510.61416950525186.390.62635154925196.260.63902663525206.130.65222531125216.141.0858621925226.151.08528621925236.131.08558621925246.141.08489913525256.151.0831708225266.161.08154063625276.121.08860556925286.081.0957634125296.041.10301600325306.001.11036524125315.961.11781307125325.921.12536148825335.881.13301254525345.841.1407683525355.801.14863106825365.761.1560292625375.721.16468621125385.701.16890387725395.661.17743063725415.641.261625369			
25107.400.54057341325117.270.5499884525127.150.55973725925137.020.5698379125146.890.58030979825156.770.59117377625166.640.60245228225176.510.61416950525186.390.62635154925196.260.63902663525206.130.65222531125216.140.65121231325226.150.65020245725236.131.08658621925246.141.08489913525256.151.08317728225266.161.08154063625276.121.08860556925286.081.0957634125296.041.10301600325306.001.11036524125315.961.11781307125325.921.12536148825335.801.14863106825345.841.14063525355.801.14863106825365.761.1560292625375.721.1648621125385.701.16890358725395.681.17743063725415.641.261625369			
25117.270.5499884525127.150.55973725925137.020.5698379125146.890.58030979825156.770.59117377625166.640.60245228225176.510.61416950525186.390.62635154925196.260.63902663525206.130.65222531125216.140.65121231325226.150.65020245725236.131.08658621925246.141.08489913525256.151.08321728225266.161.0814063625276.121.0886056925286.081.0957634125296.041.10301600325306.001.11036524125315.961.11781307125325.921.12536148825335.801.14863106825345.841.1407683525355.801.1466321125375.721.16468621125385.701.16890387725395.681.17743063725415.641.261625369			
25127.150.55973725925137.020.5698379125146.890.58030979825156.770.59117377625166.640.60245228225176.510.61416950525186.390.62635154925196.260.63902663525206.130.65222531125216.140.65121231325226.150.65020245725236.131.08658621925246.141.08489913525256.151.08321728225266.161.08154063625276.121.08860556925286.081.0957634125296.041.10301600325306.001.1136524125315.961.11781307125325.921.1256148825335.801.14863106825365.761.15660292625375.721.16468621125385.701.6890358725395.681.1743063725415.641.261625369			
25137.020.5698379125146.890.58030979825156.770.59117377625166.640.60245228225176.510.61416950525186.390.62635154925196.260.63902663525206.130.65222531125216.140.65121231325226.150.65020245725236.131.08658621925246.141.08489913525256.151.08321728225266.161.08154063625276.121.08860556925286.081.0957634125296.041.10301600325306.001.11036524125315.961.11781307125325.921.1256148825335.881.13001254525345.801.146630625355.801.14663106825365.761.15660292625375.721.6468621125385.701.6890358725395.661.17743063725415.641.261625369	-		
25146.890.58030979825156.770.59117377625166.640.60245228225176.510.61416950525186.390.62635154925196.260.63902663525206.130.65222531125216.140.65121231325226.150.65020245725236.131.08658621925246.141.08489913525256.151.08321728225266.161.08154063625276.121.08860556925286.081.0957634125296.041.10301600325306.001.11036524125315.961.11781307125325.921.12536148825335.881.13301254525345.841.1407683525355.801.14863106825365.761.1560292625375.721.16468621125385.701.16890358725395.661.17743063725415.641.261625369	-	-	
25156.770.59117377625166.640.60245228225176.510.61416950525186.390.62635154925196.260.63902663525206.130.65222531125216.140.65121231325226.150.65020245725236.131.08658621925246.141.08489913525256.151.08321728225266.161.08154063625276.121.08860556925286.081.0957634125296.041.10301600325306.001.11036524125315.961.11781307125325.921.12536148825335.881.13301254525345.841.1407683525355.801.14863106825365.761.15660292625375.721.1648621125385.701.16890358725395.661.17743063725415.641.261625369			
25166.640.60245228225176.510.61416950525186.390.62635154925196.260.63902663525206.130.65222531125216.140.65121231325226.150.65020245725236.131.08658621925246.141.08489913525256.151.08321728225266.161.08154063625276.121.08860556925286.081.0957634125296.041.10301600325306.001.11036524125315.961.11781307125325.921.12536148825335.881.1301254525345.841.1407683525355.801.14863106825365.761.15660292625375.721.1648621125385.701.16890358725395.661.17743063725415.641.261625369			
25176.510.61416950525186.390.62635154925196.260.63902663525206.130.65222531125216.140.65121231325226.150.65020245725236.131.08658621925246.141.08489913525256.151.08321728225266.161.08154063625276.121.08860556925286.081.0957634125296.041.10301600325306.001.11036524125315.961.11781307125325.921.12536148825335.881.13301254525345.841.1407683525355.801.14863106825365.761.15660292625375.721.1648821125385.701.1689038725395.681.17315161725405.661.17743063725415.641.261625369		-	
25186.390.62635154925196.260.63902663525206.130.65222531125216.140.65121231325226.150.65020245725236.131.08658621925246.141.08489913525256.151.08321728225266.161.08154063625276.121.08860556925286.081.0957634125296.041.10301600325306.001.11781307125325.921.12536148825335.881.13301254525345.841.1407683525355.801.14863106825365.761.15660292625375.721.16468621125385.701.16890358725395.661.17743063725415.641.261625369			
25206.130.65222531125216.140.65121231325226.150.65020245725236.131.08658621925246.141.08489913525256.151.08321728225266.161.08154063625276.121.08860556925286.081.0957634125296.041.10301600325306.001.11036524125315.961.11781307125325.921.12536148825335.881.13301254525345.841.1407683525355.801.14863106825365.761.15660292625375.721.16468621125385.701.16890358725395.681.17315161725405.661.17743063725415.641.261625369	2518		0.626351549
25206.130.65222531125216.140.65121231325226.150.65020245725236.131.08658621925246.141.08489913525256.151.08321728225266.161.08154063625276.121.08860556925286.081.0957634125296.041.10301600325306.001.11036524125315.961.11781307125325.921.12536148825335.881.13301254525345.841.1407683525355.801.14863106825365.761.15660292625375.721.16468621125385.701.16890358725395.681.17315161725405.661.17743063725415.641.261625369	2519	6.26	0.639026635
25216.140.65121231325226.150.65020245725236.131.08658621925246.141.08489913525256.151.08321728225266.161.08154063625276.121.08860556925286.081.0957634125296.041.10301600325306.001.11036524125315.961.11781307125325.921.12536148825335.881.13301254525345.841.1407683525355.801.14863106825365.761.15660292625375.721.16468621125385.701.16890358725395.681.17315161725405.641.261625369	2520		0.652225311
25236.131.08658621925246.141.08489913525256.151.08321728225266.161.08154063625276.121.08860556925286.081.0957634125296.041.10301600325306.001.11036524125315.961.11781307125325.921.12536148825335.881.1301254525345.841.1407683525355.801.14863106825365.761.15660292625375.721.1649835725395.681.17315161725405.661.17743063725415.641.261625369			0.651212313
25236.131.08658621925246.141.08489913525256.151.08321728225266.161.08154063625276.121.08860556925286.081.0957634125296.041.10301600325306.001.11036524125315.961.11781307125325.921.12536148825335.881.1301254525345.841.1407683525355.801.14863106825365.761.15660292625375.721.16490358725395.681.17315161725405.641.261625369	2522	6.15	0.650202457
25256.151.08321728225266.161.08154063625276.121.08860556925286.081.0957634125296.041.10301600325306.001.11036524125315.961.11781307125325.921.12536148825335.881.13301254525345.841.1407683525355.801.14863106825365.761.15660292625375.721.16468621125385.701.16890358725395.681.17713161725405.661.17743063725415.641.261625369	2523		
25266.161.08154063625276.121.08860556925286.081.0957634125296.041.10301600325306.001.11036524125315.961.11781307125325.921.12536148825335.881.13301254525345.841.1407683525355.801.14863106825365.761.15660292625375.721.16468621125385.701.16890358725395.681.17315161725405.661.17743063725415.641.261625369	2524	6.14	1.084899135
25276.121.08860556925286.081.0957634125296.041.10301600325306.001.11036524125315.961.11781307125325.921.12536148825335.881.13301254525345.841.1407683525355.801.14863106825365.761.15660292625375.721.16468621125385.701.16890358725395.681.17315161725405.661.17743063725415.641.261625369	2525	6.15	1.083217282
25286.081.0957634125296.041.10301600325306.001.11036524125315.961.11781307125325.921.12536148825335.881.13301254525345.841.1407683525355.801.14863106825365.761.15660292625375.721.16468621125385.701.16890358725395.681.17315161725405.661.17743063725415.641.261625369	2526	6.16	1.081540636
25296.041.10301600325306.001.11036524125315.961.11781307125325.921.12536148825335.881.13301254525345.841.1407683525355.801.14863106825365.761.15660292625375.721.16468621125385.701.16890358725395.681.17315161725405.661.17743063725415.641.261625369	2527	6.12	1.088605569
25306.001.11036524125315.961.11781307125325.921.12536148825335.881.13301254525345.841.1407683525355.801.14863106825365.761.15660292625375.721.16468621125385.701.16890358725395.681.17315161725405.661.17743063725415.641.261625369	2528	6.08	1.09576341
25315.961.11781307125325.921.12536148825335.881.13301254525345.841.1407683525355.801.14863106825365.761.15660292625375.721.16468621125385.701.16890358725395.681.17315161725405.661.17743063725415.641.261625369	2529	6.04	1.103016003
25325.921.12536148825335.881.13301254525345.841.1407683525355.801.14863106825365.761.15660292625375.721.16468621125385.701.16890358725395.681.17315161725405.661.17743063725415.641.261625369	2530	6.00	1.110365241
25335.881.13301254525345.841.1407683525355.801.14863106825365.761.15660292625375.721.16468621125385.701.16890358725395.681.17315161725405.661.17743063725415.641.261625369	2531	5.96	1.117813071
25345.841.1407683525355.801.14863106825365.761.15660292625375.721.16468621125385.701.16890358725395.681.17315161725405.661.17743063725415.641.261625369	2532	5.92	1.125361488
25355.801.14863106825365.761.15660292625375.721.16468621125385.701.16890358725395.681.17315161725405.661.17743063725415.641.261625369	2533	5.88	1.133012545
25365.761.15660292625375.721.16468621125385.701.16890358725395.681.17315161725405.661.17743063725415.641.261625369	2534	5.84	1.14076835
25375.721.16468621125385.701.16890358725395.681.17315161725405.661.17743063725415.641.261625369	2535	5.80	1.148631068
25385.701.16890358725395.681.17315161725405.661.17743063725415.641.261625369	2536	5.76	1.156602926
25395.681.17315161725405.661.17743063725415.641.261625369	2537	5.72	1.164686211
2540 5.66 1.177430637 2541 5.64 1.261625369	2538	5.70	1.168903587
2541 5.64 1.261625369	2539	5.68	1.173151617
	2540	5.66	1.177430637
2542 5.62 1.266264582	2541	5.64	1.261625369
	2542	5.62	1.266264582

2543	5.60	1.270938038
2544	5.67	1.254003075
2545	5.75	1.237513487
2546	5.82	1.221451932
2540	5.90	1.205801957
2548	5.97	1.190547943
2549	6.05	1.17567505
2550	6.12	1.16116917
2551	6.20	1.147016885
2552	6.28	1.133205421
2553	6.35	1.119722612
2554	6.43	1.106556867
2555	6.50	1.09369713
2556	6.59	1.079675202
2557	6.67	1.066008263
2558	6.76	1.052683002
2559	6.83	1.138169738
2560	6.92	1.124276095
2561	7.00	1.11071756
2562	7.13	1.090642381
2563	7.15	1.071279998
2563	7.39	1.052593112
2565	7.52	1.034546978
2566	7.65	1.017109197
2567	7.78	1.000249516
2568	7.90	0.983939655
2569	8.03	0.968153152
2570	8.16	0.952865212
2571	8.29	0.938052585
2572	8.42	0.923693444
2573	8.55	0.909767276
2574	8.65	0.899016942
2575	8.75	0.888517705
2576	8.86	0.87826087
2577	9.01	0.313431245
2578	9.11	0.309913953
2579	9.21	0.306474726
2580	9.30	0.303690436
2581	9.38	0.30095628
2582	9.46	0.298270916
2583	9.55	0.295633051
2584	9.63	0.293041434
2585	9.72	0.29049486
2586	9.80	0.287992165
2587	9.89	0.285532225
2588	9.97	0.283113953
2589	10.06	0.280736299
2590	10.14	0.278398249
2591	10.22	0.27609882
2592	10.30	0.273955321
2593	10.38	0.271844847
2594	10.37	1.200186336
2595	10.45	1.19099689
2596	10.43	1.181947097
2597	10.61	1.173033797
2598	10.67	1.166365484
2599	10.73	1.159772556

2600	10.79	1.153253744
2601	10.85	1.146807803
2602	10.91	1.140433519
2603	10.97	1.134129703
2604	11.03	1.127895194
2605	11.09	1.121728854
2606	11.15	1.115629572
2607	11.21	1.10959626
2608	11.28	1.103627853
2609	11.34	1.097723309
2610	11.39	1.092520048
2611	11.44	1.087365881
2612	11.45	1.474455461
2612	11.51	1.467537851
2613	11.51	1.460684847
2615	11.50	1.459842657
2616	11.57	1.459001438
2617	11.58	1.458161187
-		
2618	11.59	1.457321903
2619	11.60	1.456483586
2620	11.60	1.455646232
2621	11.61	1.45480984
2622	11.62	1.453974409
2623	11.62	1.453139937
2624	11.63	1.452306422
2625	11.64	1.451473863
2626	11.64	1.450642258
2627	11.65	1.449811605
2628	11.70	1.442849063
2629	11.76	1.435953075
2630	11.83	1.276826582
2631	11.89	1.270790899
2632	11.95	1.264812011
2633	11.99	1.259822169
2634	12.04	1.254871544
2635	12.09	1.249959675
2636	12.14	1.245086108
2637	12.18	1.240250397
2638	12.23	1.235452104
2639	12.28	1.230690795
2640	12.33	1.225966044
2641	12.37	1.221277431
2642	12.42	1.216624545
2643	12.47	1.212006978
2644	12.52	1.207424329
2645	12.47	1.212159619
2646	12.42	1.216932197
2647	12.37	1.221742505
2648	12.34	1.067845814
2649	12.29	1.072093748
2650	12.24	1.076375614
2651	12.17	1.082862485
2652	12.09	1.089428017
2653	12.02	1.096073651
2654	11.95	1.10280086
2655	11.87	1.109611156
2656	11.80	1.116506088

2657	11.73	1.123487244
2658	11.65	1.130556252
2659	11.58	1.137714779
2660	11.51	1.144964537
2661	11.43	1.152307282
2662	11.36	1.159744814
2663	11.30	1.171892719
2664	11.13	1.184297807
2665	11.06	0.763808295
2666	10.94	0.772032739
2667	10.82	0.780436227
2668	10.70	0.789024671
2669	10.70	0.789355111
2670	10.69	0.789685828
2671	10.69	0.790016822
2672	10.68	0.790348094
2673	10.68	0.790679644
2674	10.67	0.791011472
2675	10.67	0.791343578
2676	10.67	0.791675964
2677	10.66	0.792008629
2678	10.66	0.792341574
2679	10.65	0.792674799
2680	10.65	0.793008304
2681	10.66	0.792019772
2682	10.67	0.791033702
2683	10.70	0.706284672
2684	10.71	0.705408254
2685	10.72	0.70453401
2686	10.74	0.703661929
2687	10.78	0.700905555
2688	10.82	0.698170691
2689	10.86	0.695457087
2690	10.91	0.692764494
2691	10.95	0.690092672
2692	10.99	0.687441379
2693	11.03	0.68481038
2694	11.07	0.682199444
2695	11.12	0.67960834
2696	11.16	0.677036846
2697	11.20	0.674484738
2698	11.20	0.671951798
2699	11.30	0.668291974
2700	11.37	0.664671801
2701	11.45	0.446277131
2702	11.51	0.443890611
2703	11.58	0.44152948
2704	11.64	0.439193335
2705	11.55	0.442598729
2706	11.46	0.446057345
2707	11.37	0.449570441
2708	11.28	0.453139313
2709	11.19	0.456765301
2710	11.10	0.460449787
2711	11.01	0.464194198
2712	10.92	0.468000007
2713	10.83	0.471868739
2713	10.00	0.171000700

2714	10.74	0.475801965
2715	10.65	0.479801313
2716	10.61	0.481710459
2717	10.57	0.48363486
2718	10.53	0.485574698
2719	10.37	1.585317262
2720	10.33	1.591797633
2721	10.29	1.598331202
2722	10.24	1.604918627
2723	10.21	1.610509456
2724	10.17	1.616139373
2725	10.14	1.62180879
2726	10.10	1.627518124
2727	10.07	1.633267797
2728	10.03	1.639058239
2729	9.99	1.644889885
2730	9.96	1.650763177
2730	9.92	1.656678561
2731	9.89	1.662636492
2732	9.85	1.668637432
2733	9.83	1.673166641
2734		
2735	9.80 9.77	1.677720504 1.682299224
2737	9.72	1.989690572
2738	9.69	1.995166803
2739	9.66	2.000673262
2740	9.64	2.0062102
2741	9.67	1.999754444
2742	9.70	1.993340102
2743	9.73	1.986966777
2744	9.76	1.980634078
2745	9.79	1.974341616
2746	9.82	1.96808901
2747	9.85	1.961875883
2748	9.89	1.95570186
2749	9.92	1.949566575
2750	9.95	1.943469664
2751	9.98	1.937410768
2752	10.03	1.92668544
2753	10.09	1.916078207
2754	10.15	1.905587129
2755	10.35	0.407853444
2756	10.41	0.40567659
2757	10.46	0.403522849
2758	10.52	0.401391857
2759	10.56	0.3997032
2760	10.61	0.398028692
2761	10.65	0.396368155
2762	10.70	0.394721417
2763	10.74	0.393088304
2764	10.79	0.39146865
2765	10.83	0.389862288
2766	10.87	0.388269055
2767	10.92	0.386688791
2768	10.96	0.385121338
2769	11.01	0.383566542
2770	10.94	0.385980732

2771	10.87	0.388425505
2772	10.80	0.390901445
2773	10.73	0.455728681
2774	10.66	0.458672982
2775	10.59	0.461655575
2776	10.52	0.464677212
2770	10.52	0.466752034
2778	10.47	0.468845468
-	10.43	0.470957765
2779		
2780	10.33	0.473089181
2781	10.29	0.475239978
2782	10.24	0.47741042
2783	10.19	0.479600777
2784	10.15	0.481811327
2785	10.10	0.484042348
2786	10.05	0.486294126
2787	10.00	0.488566954
2788	9.93	0.492291479
2789	9.85	0.496073227
2790	9.78	0.499913528
2791	9.64	1.105947626
2792	9.57	1.114696361
2793	9.49	1.123584616
2794	9.41	1.133134364
2795	9.33	1.142847836
2796	9.25	1.152729281
2797	9.17	1.162783092
2798	9.09	1.17301382
2799	9.01	1.183426175
2800	8.93	1.194025039
2801	8.85	1.204815466
2802	8.77	1.215802699
2803	8.69	1.226992171
2804	8.61	1.238389518
2805	8.53	1.250000586
2806	8.60	1.239669806
2807	8.68	1.229508386
2808	8.75	1.219512195
2809	8.83	1.08231017
2810	8.90	1.073662338
2810	8.97	1.065151606
2812	9.07	1.053151121
2812	9.17	1.041418029
2813	9.28	1.029943492
2814	9.38	1.018719056
2815	9.48	1.007736633
	9.58	
2817		0.996988479
2818	9.69	0.986467178
2819	9.79	0.976165621
2820	9.89	0.966076997
2821	9.99	0.956194771
2822	10.09	0.946512673
2823	10.20	0.937024684
2824	10.29	0.928325138
2825	10.39	0.919785643
2826	10.48	0.911401823
2827	10.56	1.114297947

2828 10.65 1.04302311 2829 10.75 1.09484409 2830 10.73 1.096524751 2831 10.71 1.098572715 2832 10.69 1.1002691678 2833 10.67 1.102691678 2834 10.65 1.104762763 2835 10.63 1.106841644 2836 10.61 1.108928363 2837 10.59 1.11125494 2839 10.55 1.113253997 2840 10.53 1.117354518 2841 10.51 1.119481103 2842 10.43 1.12782892 2843 10.20 1.110900905 2844 10.28 1.10245582 2845 10.20 1.1180283 2846 10.12 1.119435788 2847 10.05 1.12810283 2848 10.06 1.12635254 2851 10.11 1.12156751 2852 10.12 1.11943576			
2830 10.73 1.096524751 2831 10.71 1.098572715 2832 10.69 1.100628342 2833 10.67 1.102691678 2834 10.65 1.104762763 2835 10.63 1.106841644 2836 10.61 1.108928363 2837 10.59 1.1113125494 2839 10.55 1.115235997 2840 10.53 1.117354518 2841 10.51 1.119481103 2842 10.43 1.12782892 2843 10.35 1.136302169 2844 10.20 1.10909095 2845 10.20 1.10909095 2846 10.12 1.119435788 2847 10.05 1.12810283 2848 10.06 1.126358254 2849 10.08 1.124619065 2850 10.09 1.12285239 2851 10.11 1.12156751 2852 10.12 1.14943576	2828	10.65	1.104302311
2831 10.71 1.098572715 2832 10.69 1.100623342 2833 10.67 1.102691678 2835 10.63 1.104762763 2836 10.61 1.10892863 2837 10.59 1.111022965 2838 10.57 1.13125494 2839 10.55 1.115235997 2840 10.53 1.117354518 2841 10.51 1.119481103 2842 10.43 1.12782892 2843 10.35 1.136302169 2844 10.28 1.102495182 2845 10.20 1.1194035788 2846 10.12 1.119435788 2847 10.05 1.12810283 2848 10.06 1.12858254 2850 10.12 1.11943576 2851 10.11 1.12785252 2853 10.12 1.116003068 2855 10.17 1.14256871 2856 10.18 1.116003068 <	2829	10.75	1.094484409
2832 10.69 1.100628342 2833 10.67 1.102691678 2834 10.65 1.104762763 2835 10.63 1.106841644 2836 10.61 1.108928363 2837 10.59 1.111022965 2838 10.57 1.113125494 2839 10.55 1.117354518 2840 10.53 1.117454518 2841 10.63 1.12802892 2843 10.35 1.136302169 2844 10.20 1.110900905 2845 10.20 1.110900905 2846 10.12 1.119435788 2847 10.05 1.12610283 2848 10.06 1.126358254 2849 10.08 1.124619065 2850 10.09 1.12285239 2851 10.11 1.119433576 2853 10.12 1.119433576 2854 10.15 1.16003068 2855 10.17 1.112456571	2830	10.73	1.096524751
2833 10.67 1.102691678 2834 10.65 1.104762763 2835 10.63 1.106841644 2836 10.51 1.1029265 2837 10.59 1.111022965 2838 10.57 1.113125494 2839 10.55 1.11523597 2840 10.53 1.117354518 2841 10.51 1.119438788 2842 10.43 1.12782892 2843 10.35 1.136302169 2844 10.28 1.102495182 2845 10.20 1.11090905 2846 10.12 1.119435788 2847 10.05 1.12810283 2848 10.06 1.126358254 2850 10.09 1.12285239 2851 10.11 1.1214619065 2852 10.12 1.11943576 2853 10.14 1.11771569 2854 10.15 1.116003068 2855 10.17 1.114295687 2858 10.22 1.109204745 2859 10	2831	10.71	1.098572715
2834 10.65 1.104762763 2835 10.63 1.1068928363 2836 10.61 1.108928363 2837 10.59 1.1102265 2838 10.57 1.113125494 2839 10.55 1.115235997 2840 10.53 1.117354518 2841 10.51 1.119481103 2842 10.43 1.12782892 2843 10.35 1.136302169 2844 10.28 1.102495182 2845 10.20 1.119009005 2846 10.12 1.119435788 2847 10.05 1.12810283 2848 10.06 1.128358254 2849 10.08 1.124619065 2850 10.09 1.1280285239 2851 10.11 1.121156751 2852 10.12 1.119433576 2853 10.14 1.11771569 2854 10.17 1.11295687 2855 10.17 1.114295687 2858 10.22 1.009204745 2859 <t< td=""><td>2832</td><td>10.69</td><td>1.100628342</td></t<>	2832	10.69	1.100628342
2834 10.65 1.104762763 2835 10.63 1.1068928363 2836 10.61 1.108928363 2837 10.59 1.1102265 2838 10.57 1.113125494 2839 10.55 1.115235997 2840 10.53 1.117354518 2841 10.51 1.119481103 2842 10.43 1.12782892 2843 10.35 1.136302169 2844 10.28 1.102495182 2845 10.20 1.119009005 2846 10.12 1.119435788 2847 10.05 1.12810283 2848 10.06 1.128358254 2849 10.08 1.124619065 2850 10.09 1.1280285239 2851 10.11 1.121156751 2852 10.12 1.119433576 2853 10.14 1.11771569 2854 10.17 1.11295687 2855 10.17 1.114295687 2858 10.22 1.009204745 2859 <t< td=""><td>2833</td><td>10.67</td><td>1.102691678</td></t<>	2833	10.67	1.102691678
2835 10.63 1.106841644 2836 10.61 1.108928363 2837 10.59 1.111022965 2838 10.57 1.113125494 2839 10.55 1.115235997 2840 10.53 1.117354518 2841 10.51 1.119481103 2842 10.43 1.12782892 2843 10.35 1.136302169 2844 10.20 1.110900905 2845 10.20 1.110900905 2846 10.12 1.119435788 2847 10.05 1.126358254 2848 10.06 1.126358254 2849 10.08 1.124619065 2850 10.09 1.12285239 2851 10.11 1.11771569 2852 10.12 1.119433576 2853 10.17 1.14295687 2854 10.15 1.116003068 2855 10.17 1.11425687 2856 10.12 1.110896549 2858 10.22 1.004639036 2861 <td< td=""><td></td><td></td><td></td></td<>			
2836 10.61 1.108928363 2837 10.59 1.111022965 2838 10.57 1.113125494 2839 10.55 1.11523597 2840 10.53 1.117354518 2841 10.51 1.119481103 2842 10.43 1.12782892 2843 10.35 1.136302169 2844 10.28 1.102495182 2845 10.20 1.110900905 2846 10.12 1.119435788 2847 10.05 1.12810283 2848 10.06 1.12810283 2847 10.08 1.124109065 2850 10.09 1.12810283 2851 10.11 1.121156751 2852 10.12 1.119433576 2853 10.14 1.11771569 2854 10.15 1.11603068 2855 10.17 1.114295687 2856 10.19 1.11259352 2857 10.20 1.10639036 <tr< td=""><td></td><td></td><td></td></tr<>			
2837 10.59 1.111022965 2838 10.57 1.113235997 2840 10.53 1.117534518 2841 10.51 1.11782892 2843 10.35 1.12782892 2844 10.28 1.102495182 2845 10.20 1.11900905 2846 10.12 1.119335788 2847 10.05 1.12810283 2848 10.06 1.126358254 2849 10.08 1.124619065 2850 10.09 1.22885239 2851 10.11 1.121156751 2852 10.12 1.119433576 2853 10.14 1.11771569 2854 10.15 1.116003068 2855 10.17 1.114295687 2856 10.19 1.112593522 2857 10.20 1.10896549 2858 10.22 1.009204745 2863 10.31 1.404139288 2864 10.34 1.3935776978			
2838 10.57 1.113125494 2839 10.55 1.115235997 2840 10.53 1.117354518 2841 10.51 1.119481103 2842 10.43 1.12782892 2843 10.35 1.36302169 2844 10.28 1.102495182 2845 10.20 1.119035788 2846 10.12 1.119435788 2847 10.05 1.126358254 2848 10.06 1.126358254 2849 10.08 1.124619065 2850 10.09 1.12285239 2851 10.11 1.121156751 2852 10.12 1.119433576 2853 10.14 1.11771569 2854 10.15 1.116003068 2855 10.17 1.14295687 2856 10.19 1.112593522 2857 10.20 1.10086549 2858 10.22 1.010439036 2860 10.26 1.040439036			
2839 10.55 1.115235997 2840 10.53 1.117354518 2841 10.51 1.119481103 2842 10.43 1.1282892 2843 10.35 1.136302169 2844 10.28 1.102495182 2845 10.20 1.119900905 2846 10.12 1.119435788 2847 10.05 1.122832 2848 10.06 1.126358254 2849 10.08 1.124619065 2850 10.09 1.122885239 2851 10.11 1.12156751 2852 10.12 1.119433576 2853 10.17 1.11493576 2855 10.17 1.11293522 2856 10.19 1.112993522 2857 10.20 1.10896549 2858 10.22 1.009204745 2859 10.23 1.007518086 2860 10.26 1.04639036 2861 10.22 1.43994868			
2840 10.53 1.117354518 2841 10.51 1.119481103 2842 10.43 1.12782892 2843 10.35 1.136302169 2844 10.28 1.102495182 2845 10.20 1.110900905 2846 10.12 1.119435788 2847 10.05 1.12810283 2848 10.06 1.126358254 2849 10.08 1.124619065 2850 10.09 1.122885239 2851 10.11 1.1117354571 2852 10.12 1.119433576 2853 10.14 1.11771569 2854 10.15 1.116003068 2855 10.17 1.114295687 2856 10.17 1.112933522 2857 10.20 1.10896549 2858 10.22 1.007518086 2860 10.26 1.004539366 2861 10.23 1.00771494 2862 10.26 1.404827417			
2841 10.51 1.119481103 2842 10.43 1.12782892 2843 10.35 1.136302169 2844 10.28 1.102495182 2845 10.20 1.10900905 2846 10.12 1.119435788 2847 10.05 1.12810283 2848 10.06 1.126358254 2849 10.08 1.124619065 2850 10.09 1.12885239 2851 10.11 1.121156751 2852 10.12 1.119433576 2853 10.14 1.11771569 2854 10.15 1.10803068 2855 10.17 1.114295687 2856 10.19 1.112593522 2857 10.20 1.10896549 2858 10.22 1.109204745 2859 10.23 1.07518086 2860 10.26 1.04639036 2861 10.22 1.0424827417 2862 10.28 1.0404827417 <			
2842 10.43 1.12782892 2843 10.35 1.136302169 2844 10.28 1.102495182 2845 10.20 1.11090905 2846 10.12 1.119435788 2847 10.05 1.126358254 2849 10.08 1.126358254 2850 10.09 1.22885239 2851 10.11 1.121156751 2852 10.12 1.119433576 2853 10.14 1.11771569 2854 10.15 1.110896549 2855 10.17 1.114295687 2856 10.19 1.112593522 2857 10.20 1.10896549 2858 10.22 1.109204745 2859 10.23 1.007518086 2860 10.26 1.104639036 2861 10.22 1.04639036 2865 10.31 1.404827417 2866 10.31 1.404827417 2865 10.36 1.393979752 2866 10.31 1.404827417 2865			
2843 10.35 1.136302169 2844 10.28 1.102495182 2845 10.20 1.110900905 2846 10.12 1.118435788 2847 10.05 1.12810283 2848 10.06 1.126358254 2849 10.08 1.124619065 2850 10.09 1.12885239 2851 10.11 1.121156751 2852 10.12 1.11943576 2853 10.14 1.11771569 2854 10.15 1.116003068 2855 10.17 1.114295687 2856 10.19 1.112593522 2857 10.20 1.10896549 2858 10.22 1.109204745 2859 10.23 1.107518086 2860 10.26 1.104639036 2861 10.29 1.104639036 2865 10.36 1.39397752 2866 10.31 1.400588201 2867 10.26 1.407259605	-		
2844 10.28 1.102495182 2845 10.20 1.110900905 2846 10.12 1.119435788 2847 10.05 1.126358254 2848 10.06 1.126358254 2849 10.08 1.124619065 2850 10.09 1.12285239 2851 10.11 1.121156751 2852 10.12 1.119433576 2853 10.14 1.11771569 2854 10.15 1.11603068 2855 10.17 1.114295687 2856 10.19 1.112593522 2857 10.20 1.10896549 2858 10.22 1.109204745 2859 10.23 1.107518086 2860 10.26 1.044327417 2862 10.28 1.404827417 2865 10.36 1.339379752 2866 10.31 1.400588201 2867 10.26 1.407259605 2868 10.22 1.413994868	-		
2845 10.20 1.110900905 2846 10.12 1.119435788 2847 10.05 1.12810283 2848 10.06 1.126358254 2849 10.08 1.12410263 2850 10.09 1.12885239 2851 10.11 1.121156751 2852 10.12 1.119433576 2853 10.14 1.11771569 2854 10.15 1.116003068 2855 10.17 1.114295687 2856 10.19 1.112593522 2857 10.20 1.110896549 2858 10.22 1.109204745 2859 10.23 1.107518086 2860 10.26 1.04639036 2861 10.28 1.404827417 2863 10.31 1.401192818 2864 10.34 1.397576978 2865 10.36 1.393979752 2868 10.22 1.41394868 2869 10.17 1.420794913			
2846 10.12 1.119435788 2847 10.05 1.12810283 2848 10.06 1.126358254 2849 10.08 1.124619065 2850 10.09 1.122885239 2851 10.11 1.12156751 2852 10.12 1.119433576 2853 10.14 1.11771569 2854 10.15 1.116003068 2855 10.17 1.114295677 2856 10.19 1.112593522 2857 10.20 1.110896549 2858 10.22 1.109204745 2859 10.23 1.107518086 2860 10.26 1.104639036 2861 10.29 1.101774914 2862 10.28 1.404827417 2863 10.31 1.401192818 2864 10.34 1.397576978 2865 10.36 1.393979752 2866 10.31 1.400588201 2867 10.26 1.407259605			
284710.051.12810283284810.061.126358254284910.081.124619065285010.091.122885239285110.111.121156751285210.121.119433576285310.141.11771569285410.151.116003068285510.171.114295687285610.191.112593522285710.201.110896549285810.221.109204745285910.231.107518086286010.261.104639036286110.291.101774914286210.281.404827417286310.311.401192818286410.341.397576978286510.361.393979752286610.311.400588201286710.261.407259605286810.221.41394863286910.171.420764051287010.121.427660679287110.071.434593121287210.021.44159321828739.971.44860196328749.921.45580037328759.871.46300948128769.821.47029034328779.781.47764403628789.701.48845223228799.631.49941970728809.680.29841986328819.610.300286251228839.460.305133813			
2848 10.06 1.126358254 2849 10.08 1.124619065 2850 10.09 1.12285239 2851 10.11 1.121156751 2852 10.12 1.119433576 2853 10.14 1.11771569 2854 10.15 1.116003068 2855 10.17 1.114295687 2856 10.19 1.112593522 2857 10.20 1.110896549 2858 10.22 1.109204745 2859 10.23 1.107518086 2860 10.26 1.104639036 2861 10.29 1.101774914 2862 10.28 1.404827417 2863 10.31 1.401192818 2864 10.34 1.397576978 2865 10.36 1.393979752 2866 10.31 1.400588201 2867 10.26 1.407259605 2868 10.22 1.413944868 2869 10.17 1.420794913		-	
284910.081.124619065285010.091.122885239285110.111.121156751285210.121.119433576285310.141.11771569285410.151.116003068285510.171.114295687285610.191.112593522285710.201.110896549285810.221.109204745285910.231.107518086286010.261.04639036286110.291.101774914286210.281.404827417286310.311.401192818286410.341.397576978286510.361.393979752286610.311.400588201286710.261.407259605286810.221.41394868286910.171.420794913287010.121.42766079287110.071.43459312128739.971.44866196328749.921.45580037328759.871.46300948128769.821.47029034328779.781.47764403628789.701.4886123228809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813	2847	10.05	1.12810283
2850 10.09 1.122885239 2851 10.11 1.121156751 2852 10.12 1.119433576 2853 10.14 1.11771569 2854 10.15 1.11603068 2855 10.17 1.11429367 2856 10.19 1.112593522 2857 10.20 1.10896549 2858 10.22 1.09204745 2859 10.23 1.107518086 2860 10.26 1.104639036 2861 10.29 1.101774914 2862 10.28 1.404827417 2863 10.31 1.401192818 2864 10.34 1.39757678 2865 10.36 1.393979752 2866 10.31 1.400588201 2867 10.26 1.407259605 2868 10.22 1.41394868 2869 10.17 1.420794913 2870 10.12 1.42766079 2871 10.07 1.434593121 <t< td=""><td>2848</td><td>10.06</td><td>1.126358254</td></t<>	2848	10.06	1.126358254
285110.111.121156751285210.121.119433576285310.141.11771569285410.151.116003068285510.171.114295687285610.191.112593522285710.201.10986549285810.221.109204745285910.231.107518086286010.261.104639036286110.291.101774914286210.281.404827417286310.311.401192818286410.341.397576978286510.361.393979752286610.311.400588201286710.261.407259605286810.221.413994868286910.171.420794913287010.121.427660679287110.071.434593121287210.021.44159321828739.971.44866196328749.921.45580037328759.871.6300948128769.821.47029034328779.781.4776403628789.701.48845223228799.631.49941907028809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813	2849	10.08	1.124619065
285210.121.119433576285310.141.11771569285410.151.116003068285510.171.114295687285610.191.112593522285710.201.110896549285810.221.109204745285910.231.107518086286010.261.104639036286110.291.101774914286210.281.404827417286310.311.401192818286410.341.397576978286510.361.393979752286610.311.40058201286710.261.40729605286810.221.41394868286910.171.420794913287010.121.427660679287110.071.434593121287210.021.44159321828739.971.44866196328749.921.45580037328759.871.4630948128769.821.4702934328779.781.4702934328769.821.4702934328779.781.4702934328789.701.4884523228809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813	2850	10.09	1.122885239
285310.141.11771569285410.151.116003068285510.171.114295687285610.191.112593522285710.201.110896549285810.221.109204745285910.231.107518086286010.261.104639036286110.291.101774914286210.281.404827417286310.311.401192818286410.341.397576978286510.361.393979752286610.311.400588201286710.261.407259605286810.221.41394868286910.171.420794913287010.121.427660679287110.071.43459312128739.971.44866196328749.921.45580037328759.871.4630048128769.821.4776403628789.701.4884523228799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813	2851	10.11	1.121156751
285410.151.116003068285510.171.114295687285610.191.112593522285710.201.110896549285810.221.109204745285910.231.107518086286010.261.104639036286110.291.101774914286210.281.404192818286310.311.401192818286410.341.397576978286510.361.393979752286610.311.400588201286710.261.407259605286810.221.41394868286910.171.420794913287010.121.427660679287110.071.43459312128759.871.4630948128769.821.4776403628789.701.4884523228799.631.49941970728809.680.29841986328819.610.30062477528829.540.305133813	2852	10.12	1.119433576
285510.171.114295687285610.191.112593522285710.201.110896549285810.221.109204745285910.231.107518086286010.261.104639036286110.291.101774914286210.281.404827417286310.311.401192818286410.341.397576978286510.361.393979752286610.311.400588201286710.261.407259605286810.221.413994868286910.171.420794913287010.121.427660679287110.021.441593121287210.021.44459312128739.971.44866196328749.921.4558037328759.871.46300948128769.821.47029034328779.781.47764403628789.701.48845223228799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813	2853	10.14	1.11771569
285610.191.112593522285710.201.110896549285810.221.109204745285910.231.107518086286010.261.104639036286110.291.101774914286210.281.404827417286310.311.401192818286410.341.397576978286510.361.393979752286610.311.400588201286710.261.407259605286810.221.413994868286910.171.420794913287010.121.427660679287110.071.434593121287210.021.44159321828739.971.44866196328749.921.4580037328759.871.46300948128769.821.47029034328779.781.47764403628789.701.48845223228809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813	2854	10.15	1.116003068
285710.201.110896549285810.221.109204745285910.231.107518086286010.261.104639036286110.291.101774914286210.281.404827417286310.311.401192818286410.341.397576978286510.361.393979752286610.311.400588201286710.261.407259605286810.221.413994868286910.171.420794913287010.121.427660679287110.071.434593121287210.021.44159321828739.971.44866196328749.921.45580037328759.871.46300948128769.821.47029034328779.781.47764403628789.701.48845223228799.631.49941970728809.680.29841986328819.610.300286251228839.460.305133813	2855	10.17	1.114295687
285810.221.109204745285910.231.107518086286010.261.104639036286110.291.101774914286210.281.404827417286310.311.401192818286410.341.397576978286510.361.393979752286610.311.400588201286710.261.407259605286810.221.413994868286910.171.420794913287010.121.427660679287110.071.434593121287210.021.44159321828739.971.44866196328749.921.45580037328759.871.46300948128769.821.47029034328779.781.47764403628789.701.48845223228799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813	2856	10.19	1.112593522
285910.231.107518086286010.261.104639036286110.291.101774914286210.281.404827417286310.311.401192818286410.341.397576978286510.361.39397952286610.311.400588201286710.261.407259605286810.221.413994868286910.171.420794913287010.121.427660679287110.071.434593121287210.021.44159321828739.971.44866196328749.921.45580037328759.871.46300948128769.821.47764403628789.701.48845223228799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813	2857	10.20	1.110896549
286010.261.104639036286110.291.101774914286210.281.404827417286310.311.401192818286410.341.397576978286510.361.39397952286610.311.400588201286710.261.407259605286810.221.413994868286910.171.420794913287010.121.427660679287110.071.434593121287210.021.44159321828739.971.44866196328749.921.45580037328759.871.46300948128769.821.47764403628779.781.47764403628789.701.48845223228799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813	2858	10.22	1.109204745
286010.261.104639036286110.291.101774914286210.281.404827417286310.311.401192818286410.341.397576978286510.361.39397952286610.311.400588201286710.261.407259605286810.221.413994868286910.171.420794913287010.121.427660679287110.071.434593121287210.021.44159321828739.971.44866196328749.921.45580037328759.871.46300948128769.821.477029034328779.781.47764403628789.701.48845223228799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813	2859	10.23	1.107518086
286210.281.404827417286310.311.401192818286410.341.397576978286510.361.393979752286610.311.400588201286710.261.407259605286810.221.413994868286910.171.420794913287010.121.427660679287110.071.434593121287210.021.44159321828739.971.44866196328749.921.45580037328759.871.46300948128769.821.47029034328779.781.47764403628789.701.48845223228809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813	2860	10.26	1.104639036
286310.311.401192818286410.341.397576978286510.361.393979752286610.311.400588201286710.261.407259605286810.221.413994868286910.171.420794913287010.121.427660679287110.071.434593121287210.021.44159321828739.971.44866196328749.921.45580037328759.871.46300948128769.821.47029034328779.781.47764403628789.701.48845223228799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813	2861	10.29	1.101774914
286410.341.397576978286510.361.393979752286610.311.400588201286710.261.407259605286810.221.413994868286910.171.420794913287010.121.427660679287110.071.434593121287210.021.44159321828739.971.44866196328749.921.45580037328759.871.46300948128769.821.47764403628779.781.47764403628789.701.48845223228799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813	2862	10.28	1.404827417
286510.361.393979752286610.311.400588201286710.261.407259605286810.221.413994868286910.171.420794913287010.121.427660679287110.071.434593121287210.021.44159321828739.971.44866196328749.921.45580037328759.871.46300948128769.821.47029034328779.781.47764403628789.701.48845223228799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813	2863	10.31	1.401192818
286510.361.393979752286610.311.400588201286710.261.407259605286810.221.413994868286910.171.420794913287010.121.427660679287110.071.434593121287210.021.44159321828739.971.44866196328749.921.45580037328759.871.46300948128769.821.47029034328779.781.47764403628789.701.48845223228799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813	2864	10.34	1.397576978
286710.261.407259605286810.221.413994868286910.171.420794913287010.121.427660679287110.071.434593121287210.021.44159321828739.971.44866196328749.921.45580037328759.871.46300948128769.821.47029034328779.781.47764403628789.701.48845223228799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813			1.393979752
286710.261.407259605286810.221.413994868286910.171.420794913287010.121.427660679287110.071.434593121287210.021.44159321828739.971.44866196328749.921.45580037328759.871.46300948128769.821.47029034328779.781.47764403628789.701.48845223228799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813	2866	10.31	1.400588201
286810.221.413994868286910.171.420794913287010.121.427660679287110.071.434593121287210.021.44159321828739.971.44866196328749.921.45580037328759.871.46300948128769.821.47029034328779.781.47764403628789.701.48845223228799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813			
286910.171.420794913287010.121.427660679287110.071.434593121287210.021.44159321828739.971.44866196328749.921.45580037328759.871.46300948128769.821.47029034328779.781.47764403628789.701.48845223228799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813			
287010.121.427660679287110.071.434593121287210.021.44159321828739.971.44866196328749.921.45580037328759.871.46300948128769.821.47029034328779.781.47764403628789.701.48845223228799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813			
287110.071.434593121287210.021.44159321828739.971.44866196328739.921.45580037328759.871.46300948128769.821.47029034328779.781.47764403628789.701.48845223228799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813			
287210.021.44159321828739.971.44866196328749.921.45580037328759.871.46300948128769.821.47029034328779.781.47764403628789.701.48845223228799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813			
28739.971.44866196328749.921.45580037328759.871.46300948128769.821.47029034328779.781.47764403628789.701.48845223228799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813			
28749.921.45580037328759.871.46300948128769.821.47029034328779.781.47764403628789.701.48845223228799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813			
28759.871.46300948128769.821.47029034328779.781.47764403628789.701.48845223228799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813			
28769.821.47029034328779.781.47764403628789.701.48845223228799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813			
28779.781.47764403628789.701.48845223228799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813			
28789.701.48845223228799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813			
28799.631.49941970728809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813			
28809.680.29841986328819.610.30062477528829.540.30286251228839.460.305133813			
28819.610.30062477528829.540.30286251228839.460.305133813			
28829.540.30286251228839.460.305133813			
28839.460.305133813			
2884 9.45 0.305703573			
	2884	9.45	0.305703573

2885	9.43	0.306275466
2886	9.41	0.306849501
2887	9.39	0.307425693
2888	9.38	0.308004053
2889	9.36	0.308584593
2890	9.34	0.309167325
2891	9.32	0.309752263
2892	9.31	0.310339418
2893	9.29	0.310928803
2894	9.27	0.311520431
2895	9.26	0.311969002
2896	9.24	0.312418866
2897	9.23	0.31287003
2898	9.12	1.33954406
2899	9.11	1.341503973
2900	9.10	1.34346963
2901	9.08	1.345441055
2902	9.06	1.34840981
2902	9.04	1.351391695
2904	9.02	1.354386797
2905	9.00	1.357395205
2906	8.98	1.360417008
2907	8.96	1.363452294
2908	8.94	1.366501156
2909	8.92	1.369563683
2910	8.90	1.372639968
2911	8.88	1.375730104
2912	8.86	1.378834185
2913	8.81	1.386830669
2914	8.76	1.394920444
2915	8.71	1.403105154
2916	8.74	0.534164918
2917	8.68	0.537308758
2918	8.63	0.540489823
2919	8.58	0.543708779
2919	8.38 8.47	0.551172452
	-	
2921	8.35	0.55884389
2922	8.23	0.566731891
2923	8.12	0.574845755
2924	8.00	0.583195325
2925	7.88	0.591791024
2926	7.77	0.600643896
2927	7.65	0.60976566
2928	7.54	0.619168753
2929	7.42	0.628866396
2930	7.30	0.638872649
2931	7.30	0.638929512
2932	7.30	0.638986386
2933	7.30	0.63904327
2934	7.25	1.379776614
2935	7.25	1.379900371
2936	7.25	1.38002415
2937	7.29	1.371191943
2938	7.34	1.362472069
2939	7.39	1.3538624
2940	7.43	1.345360859
2941	7.48	1.336965423

2942	7.53	1.328674116
2943	7.57	1.320485014
2944	7.62	1.312396239
2945	7.67	1.304405957
2946	7.71	1.296512382
2947	7.76	1.288713767
2948	7.81	1.28100841
2949	7.76	1.288712106
2949	7.71	1.29650902
2951	7.67	1.304400853
2952	7.63	1.223781725
2952	7.58	
		1.231316036
2954	7.53	1.238943692
2955	7.53	1.238943692
2956	7.53	1.238943692
2957	7.53	1.238943692
2958	7.53	1.238943692
2959	7.53	1.238943692
2960	7.53	1.238943692
2961	7.53	1.238943692
2962	7.53	1.238943692
2963	7.53	1.238943692
2964	7.53	1.238943692
2965	7.53	1.238943692
2966	7.53	1.238943692
2967	7.61	1.22663989
2968	7.68	1.21457806
2969	7.76	1.202751134
2970	7.90	0.357325037
2971	7.98	0.353939917
2972	8.05	0.350618333
2973	8.17	0.345375601
2974	8.30	0.340287346
2975	8.42	0.33534684
2976	8.54	0.33054774
2970	8.66	0.32588406
		0.321350149
2978	8.78	0.316940664
2979	8.91	
2980	9.03	0.312650552
2981	9.15	0.308475032
2982	9.27	0.304409572
2983	9.40	0.300449877
2984	9.52	0.296591873
2985	9.59	0.294460942
2986	9.66	0.292360414
2987	9.68	0.780732931
2988	9.75	0.775215273
2989	9.82	0.769775058
2990	9.88	0.764410666
2991	9.91	0.762324396
2992	9.94	0.760249482
2993	9.97	0.758185833
2994	9.99	0.756133357
2995	10.02	0.754091963
		0.752061562
2996	10.05	0.752001502
2996 2997	10.05	0.750042066

2999	10.13	0.746035437
3000	10.15	0.744048132
3001	10.18	0.742071386
3002	10.21	0.740105116
3003	10.24	0.737668546
3004	10.24	0.735247966
3005	10.28	1.190858974
3006	10.30	1.186959182
3007	10.33	1.183084849
3008	10.28	1.189224007
3009	10.22	1.195427212
3010	10.17	1.20169547
3011	10.12	1.20802981
3012	10.06	1.214431283
3013	10.01	1.220900961
3014	9.96	1.227439941
3015	9.90	1.234049342
3016	9.85	1.240730307
3017	9.80	1.247484006
3018	9.74	1.254311632
3019	9.69	1.261214406
3020	9.64	1.268193576
3021	9.65	1.26664663
3022	9.66	1.265103453
3023	9.63	1.754418771
3024	9.64	1.752276206
3025	9.65	1.750138867
3026	9.66	
		1.747605166
3027	9.68	1.745078791
3028	9.69	1.74255971
3029	9.71	1.74004789
3030	9.72	1.737543302
3031	9.73	1.735045914
3032	9.75	1.732555694
3033	9.76	1.730072612
3034	9.78	1.727596638
3035	9.79	1.72512774
3036	9.80	1.722665889
3037	9.82	1.720211054
3038	9.78	1.726071934
3039	9.75	1.731972888
3040	9.72	1.737914328
3041	9.73	1.306307186
3042	9.69	1.310799887
3043	9.66	1.315323598
3044	9.65	1.316838903
3045	9.64	1.318357703
3046	9.63	1.319880011
3047	9.61	1.321405839
3048	9.60	1.322935198
3049	9.59	1.324468102
3050	9.58	1.326004562
3051	9.57	1.327544591
		1.329088202
3052	9.56	
3053	9.55	1.330635406
3054	9.54	1.332186217
3055	9.53	1.333740646

3056	9.47	1.341879963
3057	9.41	1.350119231
3058	9.44	0.423749013
3059	9.38	0.426358779
3060	9.32	0.429000889
3061	9.27	0.431675949
3062	9.28	0.431262197
3063	9.28	0.430849236
3064	9.29	0.430437066
3065	9.30	0.430025683
3066	9.30	0.429615086
		0.429015086
3067	9.32	
3068	9.33	0.42879624
3069	9.34	0.428387987
3070	9.35	0.42798051
3071	9.36	0.427573807
3072	9.36	0.427167877
3073	9.37	0.426762717
3074	9.34	0.428489403
3075	9.30	0.430230119
3076	9.26	0.456069549
3077	9.22	0.457937934
3078	9.18	0.459821691
3079	9.14	0.46172101
3080	9.12	0.463005103
3081	9.09	0.464296358
3082	9.07	0.465594835
3083	9.04	0.466900596
3084	9.02	0.468213702
3085	8.99	0.469534214
3086	8.97	0.470862195
3087	8.94	0.47219771
3088	8.92	0.473540822
3089	8.89	0.474891597
3090	8.87	0.4762501
3091	8.84	0.477616398
3092	8.86	0.476728168
3093	8.87	0.475843235
3094	8.87	0.726746153
3095	8.88	0.72539875
3096	8.90	0.724056333
3097	8.90	0.723774138
3098	8.91	0.723492163
3099	8.91	0.723210408
3100	8.91	0.722928872
3101	8.92	0.722647555
3102	8.92	0.722366456
3102	8.92	0.722085577
3104	8.93	0.721804916
3104	8.93	0.721524472
3106	8.93	0.721324472
3106 3107	8.93 8.94	0.721244247
3108	8.94	0.720684449
3109	9.03	0.713461662
3110	9.12	0.706382214
3111	9.21	0.699441879
3112	9.24	1.419414068

3113	9.33	1.405639067
3114	9.42	1.39212886
3115	9.51	1.378875886
3116	9.52	1.377266644
3117	9.61	1.364293816
3118	9.70	1.351563096
3119	9.79	1.339067769
3120	9.88	1.326801367
3121	9.97	1.314757656
3122	10.06	1.302930625
3123	10.15	1.29131448
3124	10.24	1.279903629
3125	10.33	1.268692679
3126	10.42	1.257676421
3127	10.51	1.24711312
3128	10.60	1.236725785
3129	10.69	1.226510055
3130	10.77	1.333138886
3131	10.85	1.322293339
3132	10.94	1.311622832
3133	11.03	1.301123162
3134	11.12	1.290790258
3135	11.21	1.28062018
3136	11.31	1.269148427
3137	11.41	1.257880377
3138	11.51	1.246810651
3139	11.61	1.235934059
3140	11.71	1.225245591
3141	11.81	1.214740408
3142	11.92	1.204413834
3143	12.02	1.194261355
3144	12.12	1.184278603
3145	12.20	1.176600794
3146	12.28	1.169021897
3147	12.37	1.055217839
3148	12.45	1.04851427
3149	12.53	1.041895336
3150	12.61	1.035359445
3151	12.69	1.028905042
3152	12.76	1.022530614
3153	12.83	1.017217569
3154	12.90	1.01195945
3155	12.96	1.006755412
3156	13.03	1.001604624
3157	13.10	0.996506273
3158	13.16	0.991459562
3159	13.23	0.986463711
3160	13.30	0.981517954
3161	13.36	0.976621542
3162	13.43	0.97177374
3163	13.43	0.97177374
3164	13.43	0.97177374
3165	13.43	0.97177374
3166	13.51	0.378297801

Table S.6. Calculation of event indices from CHAR data at Pyramid Lake using the 100-yr running mean

166	7.75	1.032702246
167	7.75	1.032702246
168	7.78	1.0284539
169	7.81	1.024240364
170	7.84	1.020061212
171	7.87	1.015916026
172	7.91	1.011804393
173	7.94	1.007725907
174	7.97	1.003680169
175	8.00	0.999666786
176	8.06	0.694904043
177	8.13	0.688524596
178	8.21	0.682261214
179	8.26	0.678075562
180	8.31	0.673940954
181	8.36	0.669856463
182	8.41	0.665821183
183	8.46	0.66183423
184	8.51	0.65789474
185	8.56	0.654001871
186	8.57	1.166951926
187	8.57	1.16640747
188	8.58	1.165863521
189	8.58	1.165320079
190	8.55	1.17022937
191	8.51	1.175180199
192	8.47	1.180173097
193	8.44	1.185208601
194	8.40	1.190287261
195	8.37	1.195409632
196	8.33	1.200576281
197	8.34	0.639488372
198	8.35	0.638875541
199	8.36	0.638263885
200	8.40	0.635223085
201	8.44	0.632211121
202	8.48	0.629227586
203	8.52	0.626272078
204	8.56	0.623344205
205	8.60	0.620443581
206	8.64	0.617569826
207	8.63	1.111969116
208	8.65	1.109912136

209	8.67	1.107862752
210	8.65	1.110425667
211	8.63	1.113000468
212	8.61	1.115587237
213	8.59	1.118186058
214	8.57	1.120797016
215	8.55	1.123420195
216	8.53	1.126055682
210	8.51	1.128703563
217	8.45	1.51419559
219	8.43	1.517786567
220	8.43	1.519227732
221	8.42	1.520671636
222	8.41	1.522118287
223	8.40	1.523567694
224	8.39	1.525019863
225	8.39	1.526474803
226	8.38	1.527932522
227	8.39	1.525019863
228	8.41	1.522118287
229	8.45	1.230866345
230	8.47	1.228539932
231	8.50	1.223913389
232	8.53	1.219321562
232	8.56	1.213521502
233	8.59	1.210240501
235	8.63	1.205750507
236	8.66	1.201293706
237	8.65	1.20296114
238	8.63	1.204633209
239	8.62	1.206309934
240	8.65	0.739941424
241	8.64	0.740969438
242	8.69	0.736233961
243	8.75	0.731558628
244	8.80	0.726942301
245	8.86	0.722383868
246	8.92	0.717882248
247	8.97	0.713436386
248	9.07	0.705398256
249	9.18	0.697539236
250	9.25	1.038361694
250	9.35	1.027006464
251	9.39	1.021904714
252	9.44	1.021904714
253		1.0108534
	9.49	
255	9.53	1.00689912
256	9.58	1.001994707
257	9.63	0.99713784
258	9.63	0.996723728
259	9.64	0.996309959
260	9.68	0.620119428
261	9.68	0.619863168
262	9.68	0.619863168
263	9.68	0.619863168
264	9.68	0.619863168
265	9.68	0.619863168

266	9.68	0.619863168
267	9.68	0.619863168
268	9.68	0.619863168
269	9.65	0.621919194
270	9.60	0.749722322
271	9.57	0.752228823
272	9.54	0.75475214
273	9.50	0.757930192
274	9.46	0.761135121
275	9.42	0.76436727
276	9.38	0.767626987
277	9.34	0.770914625
278	9.30	0.774230545
279	9.26	0.777575114
280	9.24	0.778921046
280	9.21	0.955321813
281	9.20	0.956984046
282	9.18	0.958652072
284	9.16	0.960325924
285	9.15	0.962005631
286	9.15	0.962005631
287	9.15	0.962005631
288	9.15	0.962005631
289	9.15	0.962005631
290	9.15	0.962005631
291	9.19	0.957817333
292	9.16	1.698204796
293	9.19	1.692292856
294	9.22	1.686421935
295	9.26	1.680591609
296	9.29	1.674801457
297	9.32	1.669051066
298	9.35	1.663340027
299	9.38	1.657667938
300	9.42	1.652034402
301	9.42	1.652034402
302	9.47	1.055792778
303	9.53	1.049587157
304	9.58	1.04345406
305	9.64	1.037392222
306	9.70	1.031400408
307	9.75	1.025477412
308	9.81	1.019622055
309	9.86	1.013833186
310	9.92	1.008109678
311	10.01	0.998845774
312	10.11	0.949784535
313	10.20	0.941217478
314	10.26	0.936078002
315	10.31	0.93099435
316	10.37	0.925965615
317	10.42	0.920990914
318	10.48	0.91606938
319	10.54	0.911200165
320	10.59	0.906382439
321	10.64	0.902632675
322	10.68	0.898913809

	323	10.73	0.820011593
÷	324	10.78	0.816663226
÷	325	10.80	0.814546648
÷	326	10.83	0.812441013
3	327	10.86	0.810346236
3	328	10.89	0.808262233
	329	10.92	0.806188922
3	330	10.94	0.80412622
	331	10.97	0.802074047
	332	10.98	0.801197747
	333	11.00	0.80032336
	334	11.01	0.799450879
	335	11.02	0.798290526
	333	11.02	0.943434258
	337	11.02	0.942066907
	338	11.04	0.940703514
	339	11.00	0.939344061
		11.07	0.937988532
	340		
	341	11.10	0.936636909
	342	11.12	0.935289176
	343	11.08	0.866738892
	344	11.02	0.870792176
	345	10.97	0.874883549
	346	10.96	0.875947928
	347	10.95	0.8770149
	348	10.93	0.878084474
	349	10.92	0.87915666
÷	350	10.91	0.880231468
:	351	10.89	0.881308908
3	352	10.88	0.882388988
3	353	10.87	1.398887437
÷	354	10.91	1.393472683
÷	355	10.95	1.388099686
3	356	10.97	1.386074413
3	357	10.98	1.384055041
3	358	11.00	1.382041545
	359	11.01	1.380033898
	360	11.03	1.378032076
	361	11.05	1.376036053
	362	11.06	1.374045804
	363	11.08	1.371566075
	364	11.14	1.041458843
	365	11.14	1.039592131
	366	11.22	1.034031934
	367	11.22	1.028530897
	368	11.34	1.023088082
	369	11.40	1.017702568
	370	11.40	1.017702568
	370 371	11.40	1.012373455
	372	11.58	1.001880928
	373	11.64	0.996715804
	374	11.71	0.990926005
	375	11.79	0.848160436
	376	11.85	0.844150973
	377	11.90	0.84017924
	378	11.96	0.836244705
3	379	12.01	0.83234685

380	12.07	0.828485162
381	12.13	0.824659142
382	12.18	0.820868298
383	12.24	0.817112146
384	12.29	0.813390212
385	12.35	0.842362938
386	12.33	0.838559399
387	12.40	0.835863549
	12.44	0.838018839
388		
389	12.38	0.840185273
390	12.35	0.842362938
391	12.31	0.84455192
392	12.28	0.846752308
393	12.25	0.848964193
394	12.23	0.850630704
395	12.20	0.852303771
396	12.14	1.171517465
397	12.12	1.173838067
398	12.14	1.171903595
399	12.16	1.169975487
400	12.18	1.168053714
401	12.20	1.166138244
402	12.22	1.164229046
403	12.24	1.162326089
404	12.24	1.165755904
404	12.20	1.16920602
	12.15	
406	-	0.95440085
407	12.12	0.95723612
408	12.08	0.960088286
409	12.07	0.961187575
410	12.05	0.962289385
411	12.04	0.963393724
412	12.03	0.964500601
413	12.01	0.965610024
414	12.00	0.966722002
415	12.02	0.964938226
416	12.00	1.299601806
417	12.03	1.297204677
418	12.05	1.294816375
419	12.07	1.292436851
420	12.09	1.290066057
421	12.10	1.289273735
422	12.11	1.288482386
423	12.11	1.287692007
424	12.12	1.286902598
425	12.12	1.286114156
426	12.16	1.183724548
420	12.10	1.181448922
427 428	12.19	1.179182029
428 429	12.21	1.176923818
430	12.26	1.17467424
431	12.28	1.172433245
432	12.29	1.17121788
433	12.31	1.170005033
434	12.32	1.168794695
435	12.33	1.167586858
436	12.34	1.166759539

437	12.35	1.165933392
438	12.43	0.579180169
439	12.44	0.578773019
440	12.45	0.578366441
441	12.46	0.577960434
442	12.47	0.577554997
443	12.48	0.577150128
444	12.48	0.576745826
445	12.48	0.576835521
446	12.48	0.576925244
447	12.44	0.578787919
448	12.36	0.938843543
449	12.32	0.941905316
450	12.28	0.944987124
451	12.24	0.948089164
452	12.19	0.951211638
453	12.15	0.954354747
454	12.11	0.957518696
455	12.07	0.960703694
456	12.03	0.963909951
457	12.01	0.965886575
458	11.99	0.967871322
459	11.94	1.157470837
460	11.91	1.159863522
461	11.89	1.162266119
462	11.86	1.164678691
463	11.84	1.167101299
464	11.82	1.169534007
465	11.79	1.171976877
466	11.77	1.174429974
467	11.70	1.180916504
468	11.63	1.188566584
469	11.55	1.196316425
470	11.48	1.204167992
471	11.41	1.081334073
472	11.34	1.088516038
473	11.26	1.095794043
474	11.19	1.103170026
475	11.11	1.110645981
476	11.04	1.118223953
477	10.97	1.124674969
478	10.91	1.131200849
479	10.85	1.137802902
480	10.77	1.145617613
481	10.70	1.153540412
482	10.64	1.059942478
483	10.56	1.06736806
484	10.49	1.074898419
485	10.49	1.082535787
485	10.41	1.090282462
480	10.34	1.098140808
487	10.19	1.106113255
400	10.19	1.106330334
489	10.19	1.106330334
		1.106547497
491	10.18	1.107654381
492	10.17	
493	10.16	1.109874806

494	10.15	1.110988359
495	10.15	1.005635992
496	10.14	1.006645925
497	10.13	1.007657888
498	10.12	1.008671888
499	10.06	1.014102324
500	10.01	1.019591549
501	9.96	1.025140523
502	9.90	1.030750226
503	9.85	1.036039074
504	9.80	1.041382476
505	9.75	1.046781282
506	9.70	1.052236358
507	9.66	0.945947217
508	9.61	0.950923198
509	9.56	0.955951806
510	9.49	0.963281243
511	9.41	0.970723941
512	9.34	0.978282545
513	9.27	0.985959783
514	9.19	0.993758472
515	9.10	1.004116561
516	9.00	1.014692853
517	8.91	1.025494315
517	8.83	0.914195113
		0.924126295
519	8.73	
520	8.64	0.934275619
521	8.54	0.94465035
522	8.46	0.953592796
523	8.38	0.962706165
524	8.30	0.971995406
525	8.22	0.981465658
526	8.17	0.987117207
527	8.13	0.992834219
528	8.08	0.998617838
529	8.03	1.004469235
530	8.00	0.875399851
531	7.95	0.8805831
532	7.90	0.885828095
533	7.87	0.889925275
534	7.83	0.894060532
535	7.79	0.8982344
536	7.76	0.902447422
537	7.72	0.90670015
538	7.83	0.893635578
539	7.95	0.880942151
540	8.06	0.868604275
541	8.18	0.755727616
542	8.29	0.74544196
543	8.41	0.735432525
544	8.52	0.725688333
545	8.63	0.716198977
546	8.75	0.706091686
547	8.88	0.696265701
548	9.00	0.68670944
549	9.28	0.666272711
550	9.55	0.647017236
550	5.55	0.04/01/230

551	9.83	0.628843476
552	10.11	0.611662772
553	10.38	0.630640114
554	10.66	0.614297443
555	10.93	0.598780398
556	11.21	0.584027955
557	11.48	0.56998496
558	11.77	0.5560961
559	12.06	0.542868001
560	12.34	0.530254605
561	12.63	0.518214037
562	12.85	0.509529025
563	13.06	0.501130327
564	13.28	0.493004016
565	13.51	0.320652911
566	13.73	0.315624669
567	13.94	0.310751689
568	14.16	0.306026892
569	14.39	0.301219698
570	14.61	0.296561195
570	14.84	0.292044589
572	15.06	0.287663495
573	15.29	0.283411903
	15.56	0.278457523
574	15.83	0.278457523
575		
576	16.07	0.475105994
577	16.35	0.467198485
578	16.62	0.459549887
579	16.89	0.452147689
580	17.16	0.444980173
581	17.44	0.437768006
582	17.73	0.430785898
583	18.01	0.424023013
584	18.29	0.417469187
585	18.46	0.413706581
586	18.62	0.410011194
587	18.79	0.40638124
588	18.81	1.199541033
589	18.97	1.189023821
590	19.14	1.17868943
591	19.31	1.168533133
592	19.48	1.158063809
593	19.66	1.147780417
594	19.83	1.137678046
595	20.01	1.127751959
596	20.18	1.117997581
597	20.36	1.108031091
598	20.54	1.098240725
599	20.57	1.838329002
600	20.75	1.822250575
601	20.94	1.80645096
602	21.12	1.790922968
603	21.30	1.775659653
604	21.48	1.760952424
605	21.65	1.746486825
606	21.83	1.732256949
607	22.01	1.71825708
007	22.01	1.71023700

608	22.29	1.696395751
609	22.58	1.675083714
610	22.86	1.654300526
611	23.14	1.634026741
612	23.50	1.305002594
613	23.78	1.289439085
614	24.07	1.274242423
615	24.35	1.259399788
616	24.55	1.243782035
617	24.96	1.228546887
-		
618	25.27	1.213680455
619	25.57	1.199169513
620	25.88	1.185001462
621	26.18	1.171272728
622	26.49	1.157858457
 623	26.79	1.144747967
624	27.05	1.304161639
625	27.35	1.289697243
626	27.65	1.275550176
627	27.92	1.263202579
628	28.19	1.251091745
629	28.46	1.239210929
630	28.73	1.22755364
631	29.00	1.216113627
632	29.34	1.202395614
633	29.67	1.188983634
634	30.00	1.175867557
635	30.44	0.776376356
636	30.78	0.768028449
637	31.11	0.759858152
638	31.44	0.751859856
639	31.62	0.747540189
640	31.80	0.743269874
641	31.98	0.73904807
642	32.16	0.734873955
643	32.30	0.731816271
644	32.43	0.728783926
645	32.57	0.725776608
646	32.70	0.722794006
647	32.83	0.741219055
648	32.96	0.738197186
649	33.10	0.735199855
650	33.08	0.735603952
651	33.06	0.736008493
652	33.04	0.736413479
653	33.02	0.736818912
654	33.01	0.73722479
655	32.91	0.739499191
656	32.80	0.741787668
657	32.70	0.744090353
658	32.49	1.074296158
659	32.39	1.077662818
660	32.29	1.081050645
661	32.19	1.08445984
662	32.09	1.087890605
663	32.06	1.088908632
664	32.03	1.089928567

665	32.00	1.090950413
666	31.97	1.091974178
667	32.09	1.087808424
668	32.21	1.083674332
669	32.34	1.079571544
670	32.46	1.075499705
671	32.58	1.063938626
672	32.71	1.059956089
673	32.83	1.056003256
674	32.95	1.052079796
675	33.03	1.049647219
676	33.10	1.047225865
677	33.18	1.044815657
678	33.21	1.043957555
679	33.23	1.043100861
680	33.26	1.042245572
681	33.29	1.041391684
682	33.26	1.224679482
683	33.28	1.223675948
684	33.31	1.222674057
685	33.34	1.221673806
686	33.48	1.216432706
687	33.62	1.211236384
688	33.77	1.206084268
689	33.91	1.200975797
690	33.95	1.199560879
691	33.99	1.198149291
692	34.03	1.196741022
693	34.12	1.055127757
694	34.16	1.053892212
695	34.20	1.052659557
696	34.24	1.051429781
697	34.28	1.050202876
698	34.31	1.049191906
699	34.35	1.048182881
700	34.38	1.047175794
701	34.41	1.046170641
702	34.44	1.045158221
703	34.48	1.044147758
704	34.51	1.043139247
705	34.63	0.798970882
706	34.66	0.79820252
707	34.69	0.797435634
708	34.73	0.79667022
709	34.66	0.798335131
710	34.58	0.800007015
711	34.51	0.801685916
712	34.44	0.803371879
713	34.37	0.805064948
714	34.37	0.805064948
715	34.37	0.805064948
716	34.37	0.805064948
717	34.21	1.254162824
717	34.21	1.254162824
719	34.21	1.254162824
715	34.21	1.254162824
720	34.21	1.254162824
/ 21	54.21	1.204102024

722	34.22	1.254073964
723	34.22	1.253985117
724	34.22	1.253896283
725	34.22	1.253807462
	•	
726	34.10	1.25834229
727	33.98	1.26291004
728	33.90	1.120873811
729	33.78	1.124966353
730	33.66	1.12908889
731	33.53	1.133241753
732	33.41	1.137425278
733	33.22	1.143722291
734		
	33.04	1.150089416
735	32.86	1.156527829
736	32.67	1.163038736
737	32.62	1.164853738
738	32.57	1.166674415
739	32.52	1.168500792
740	32.57	0.848443133
741	32.52	0.849771259
742	32.47	0.851103549
742	32.47	0.851105549
744	32.42	0.852535647
745	32.41	0.852631291
746	32.41	0.852726957
747	32.41	0.852822645
748	32.40	0.852918353
749	32.56	0.848727382
750	32.72	0.844577394
751	32.88	0.840467794
752	33.04	0.837322775
753	33.20	0.833287705
754	33.36	0.829291339
755	33.52	0.825333123
756	33.77	0.819385243
757	34.01	0.813522479
758	34.25	0.807743015
759	34.50	0.80204509
760	34.53	0.80119346
761	34.57	0.800343637
762	34.61	0.799495615
762	34.64	0.798649389
764	34.61	1.008756567
765	34.64	1.007688876
766	34.68	1.006623442
767	34.72	1.00556026
768	34.60	1.008924427
769	34.48	1.012311181
770	34.37	1.015720748
771	34.25	1.01915336
772	34.44	1.013665122
772	34.62	1.008235676
774	34.81	1.002864083
775	34.99	0.997549424
776	35.31	0.632563718
777	35.49	0.62925837
778	35.68	0.625987385

779	35.91	0.621898934
780	36.15	0.617863541
781	36.38	0.61388018
782	36.62	0.609947851
783	36.85	0.606065581
784	36.76	0.607494344
785	36.68	0.608929861
785	36.59	0.610372177
	36.37	
787		0.97982854
788	36.28	0.982168967
789	36.20	0.984520601
790	36.11	0.986883523
791	36.13	0.986419961
792	36.14	0.985956833
793	36.16	0.985494141
794	36.18	0.985031882
795	36.19	0.984570058
796	36.22	0.983779364
797	36.25	0.982989939
798	36.28	0.98220178
799	36.15	1.438547371
800	36.18	1.437390585
801	36.21	1.436235658
802	36.23	1.435082586
803	36.26	1.433943346
804	36.29	1.432805913
805	36.32	1.431670284
806	36.35	1.430536453
807	36.38	1.429404416
808	36.41	1.428357391
809	36.43	1.427311898
810	36.67	0.854573697
811	36.69	0.85395262
812	36.72	0.853332446
813	36.75	0.852713171
814	36.77	0.852094795
815	36.73	0.853156424
816	36.68	0.854220703
817	36.63	0.855287639
818	36.59	0.856357245
819	36.73	0.853135307
820	36.87	0.849937522
821	37.00	0.84676362
822	36.84	1.66811982
823	36.98	1.661886413
824	37.12	1.655699419
825	37.26	1.64955832
826	37.39	1.643462608
827	37.66	1.631943597
828	37.92	1.620584936
829	38.19	1.609383299
830	38.45	1.598335452
831	38.41	1.5999999991
832	38.37	1.601668
832	38.37	1.603339491
833	38.53	0.759728123
835	38.57	0.760516012

836	38.53	0.761305537
837	38.49	0.762096703
838	38.32	0.765538123
839	38.14	0.769010765
840	37.97	0.772515056
841	37.80	0.77605143
841		
-	37.63	0.779620331
843	37.70	0.778041226
844	37.78	0.776468506
 845	37.85	0.77490213
846	37.92	0.805555792
847	37.99	0.803936753
848	38.07	0.802324208
849	38.15	0.800718119
850	38.06	0.802554176
851	37.97	0.804398671
852	37.89	0.806251665
853	37.72	0.809742633
854	37.56	0.813263963
855	37.40	0.816816053
856	37.23	0.820399309
857	37.07	0.824014141
858	36.91	0.821866065
859	36.74	0.825519345
860	36.58	0.829205249
861	36.62	0.828224152
862	36.67	0.827245374
863	36.71	0.826268906
864	36.75	0.825294741
865	36.82	0.823841183
866	36.88	0.822392737
867	36.95	0.820949374
868	37.01	0.81951107
869	36.89	1.320706687
870	36.96	1.31838941
871	37.02	1.316080251
872	37.09	1.313779167
873	36.85	1.322205329
874	36.62	1.330740275
875	36.38	1.339386124
876	36.07	1.350817808
870	35.76	1.362446311
878	35.46	1.374276761
879	35.15	1.386314464
880	34.84	1.398564913
881	34.84	0.526260842
882	34.53	0.530953249
883	34.22	0.535730088
883	33.91	0.54059366
885	33.93	0.54039300
886	33.94	0.540381204
887	33.94	0.53939836
888	34.04	0.53863
889	34.09	0.537863825
890 801	34.13	0.537099828
891	34.18	0.536337998
892	34.23	0.535578325

893	34.03	1.271605258
894	34.08	1.269796093
895	34.13	1.267992069
896	34.18	1.266193164
897	34.21	1.264847331
898	34.25	1.263504357
899	34.27	1.262722271
900	34.29	1.261941153
901	34.31	1.261161
902	34.33	1.260381812
903	34.43	1.035909179
904	34.45	1.03527136
905	34.47	1.034634326
906	34.49	1.033998076
907	34.52	1.033362607
908	34.54	1.032727919
909	34.56	1.032030662
910	34.58	1.031334346
910	34.61	1.030638969
911 912	34.81	1.024333364
		1.018104448
913 914	35.03 35.25	1.018104448
-		1.067195706
915	35.44	
916	35.65	1.060818567
917	35.86	1.054517189
918	36.08	1.048290231
919	36.29	1.042136381
920	36.32	1.041301629
921	36.35	1.040468212
922	36.41	1.03867569
923	36.47	1.036889334
924	36.54	1.035109111
925	36.60	1.033334991
926	36.73	0.834866403
927	36.80	0.833443148
928	36.86	0.832024738
929	36.92	0.830611146
930	36.98	0.82920235
931	37.05	0.827798325
932	37.41	0.819685416
933	37.78	0.811729986
934	38.26	0.801577816
935	38.74	0.791676452
936	39.21	0.782016713
937	39.66	0.861910868
938	40.14	0.851635693
939	40.62	0.84160262
940	41.09	0.831803192
941	41.57	0.822229343
942	42.05	0.812873371
943	42.53	0.803727923
944	42.76	0.799421689
945	42.72	0.800102134
946	42.69	0.800783739
947	42.65	0.801466506
948	42.61	0.802150439
949	42.59	0.766975929

950	42.56	0.767631314
951	42.52	0.768287821
952	42.48	0.768945451
953	42.45	0.769604208
	-	
954	42.49	0.768885121
955	42.53	0.768167377
956	42.57	0.767450971
957	42.60	0.766735901
958	42.80	0.763153428
959	43.00	0.759604278
960	43.20	0.756087986
961	43.40	0.752604099
962	43.42	1.189362746
963	43.62	1.183908848
964	43.82	1.178504741
965	44.02	1.173149746
966	44.19	1.168411746
967	44.37	1.163711862
968	44.55	1.159049637
969	44.60	1.157789604
970	44.65	1.156532307
971	44.70	1.155277738
972	44.71	1.230124837
973	44.76	1.228792326
974	44.81	1.227462698
975	44.86	1.226135944
976	44.90	1.224812055
977	45.02	1.221547693
978	45.14	1.218300684
979	45.26	1.215070891
980	45.38	1.211858178
981	45.50	1.208662409
982	45.80	1.200921032
983	46.09	1.19327819
984	46.27	1.430246027
985	46.57	1.421236545
986	46.86	1.412339858
987	47.15	1.403553862
988	47.41	1.395910689
989	47.67	1.388350308
990	47.87	1.380871382
991	48.19	1.3734726
992	48.44	1.366152683
993	48.49	1.364889094
994	48.53	1.36362784
995	48.84	0.811489907
996	48.89	0.810745481
997	48.93	0.810002419
998	48.98	0.809260718
999	49.02	0.808520375
1000	49.08	0.807532031
1001	49.14	0.8065461
1002	49.20	0.805562574
1003	49.26	0.804581443
1004	49.32	0.8036027
1005	49.32	0.803652074
1006	49.32	0.803701455

1007	49.31	0.803750842
1008	49.15	1.132566372
1009	49.15	1.132636203
1010	49.14	1.132706042
1010	49.14	1.13277589
1011	49.14	1.132845746
1012	49.14	1.137306377
1013		
1014 1015	48.75	1.141802274 1.146333857
	48.56	
1016 1017	48.32	1.151940808
	48.09	1.157602878
1018	47.85	1.163320883
1019	47.75	0.893633501
1020	47.51	0.898079467
1021	47.27	0.902569893
1022	47.04	0.90710545
1023	46.77	0.912342548
1024	46.50	0.91764047
1025	46.23	0.92300028
1026	45.96	0.928423071
1027	45.69	0.933909957
1028	45.43	0.939161297
1029	45.18	0.944472027
1030	44.92	0.94984316
1031	44.66	0.955275733
1032	44.24	1.356378057
1033	43.98	1.364256478
1034	43.72	1.372226956
1035	43.36	1.383850877
1036	42.99	1.39567341
1037	42.62	1.407699689
1038	42.26	1.419935025
1039	41.96	1.429809356
1040	41.67	1.439821983
1041	41.38	1.449975831
1042	41.09	1.460273909
1043	41.01	0.942866439
1044	40.72	0.949623804
1045	40.43	0.956478726
1046	40.40	0.957102895
1047	40.37	0.95772788
1048	40.35	0.958353681
1049	40.32	0.958980301
1050	40.29	0.959607741
1051	40.27	0.960236002
1052	40.30	0.959542795
1053	40.33	0.958850589
1054	40.36	0.95815938
1055	40.45	0.800143836
1056	40.48	0.799568762
1057	40.51	0.798994513
1058	40.53	0.79842109
1059	40.40	0.801014007
1060	40.27	0.803623821
1000	40.14	0.806250697
1001	40.01	0.808894803
1062	39.93	0.810521592
1005	55.55	0.010321332

1064	39.85	0.812154938
1065	39.77	0.81379488
1066	39.73	0.704719484
1067	39.65	0.706146685
1068	39.57	0.707579678
1069	39.49	0.709018499
1070	39.54	0.70812737
1071	39.59	0.707238477
1072	39.64	0.706351814
1073	39.69	0.705467371
1074	39.60	0.707070706
1075	39.51	0.708681345
1076	39.42	0.710299339
1077	39.33	0.711924738
1078	39.23	0.750903853
1079	39.14	0.75263071
1080	39.05	0.754365528
1081	38.96	0.756108362
1082	38.87	0.757859268
1083	38.60	0.763029181
1084	38.34	0.768270114
1085	38.08	0.773583541
1086	37.94	0.776252412
1087	37.81	0.778939763
1088	37.68	0.781645785
1089	37.48	0.987288956
1090	37.35	0.990749754
1091	37.21	0.994234901
1092	37.08	0.997744653
1093	36.95	1.001279273
1094	37.04	0.999050858
1095	37.12	0.996832341
1095	37.20	0.994623654
1090	37.28	0.992424733
1098	37.42	0.988888167 0.985376717
1099	37.55	
1100	37.68	0.981890117
1101	37.82	0.978428103
1102	37.89	1.122759888
1103	38.03	1.118823174
1104	38.16	1.11491397
1105	38.29	1.111031988
1106	38.49	1.105363859
1107	38.69	1.099753271
1108	38.88	1.094199351
1109	39.06	1.089208007
1110	39.24	1.084261994
1111	39.42	1.079360696
1112	39.60	1.074503511
1113	39.72	1.199221886
1114	39.90	1.193866631
1115	40.08	1.188558993
1116	40.26	1.183298338
1117	40.48	1.176814075
1118	40.70	1.170400489
1119	40.92	1.164056433
1120	40.96	1.163014374

1121	41.00	1.16197418
1122	41.03	1.160935845
1123	41.07	1.159899364
1124	41.25	0.816245571
1125	41.28	0.815520589
1126	41.32	0.814796894
1127	41.36	0.814074482
1128	41.39	0.81335335
1129	41.41	0.812918904
1130	41.44	0.812484923
1131	41.48	0.811701364
1132	41.52	0.810919315
1132	41.56	0.810138772
1134	41.60	0.80935973
1134	41.64	0.808582185
1136	41.54	1.129135787
1130	41.58	1.128049668
1137	41.62	1.126965637
	-	
1139	41.66	1.125883687
1140	41.63	1.126842583
1141	41.59	1.127803115
1142	41.56	1.128765285
1143	41.49	1.130578946
1144	41.42	1.132398446
1145	41.36	1.134223811
1146	41.29	1.136055071
1147	41.22	1.137892253
1148	41.11	1.264992294
1149	41.04	1.267047172
1150	40.97	1.269108737
1151	40.91	1.271177022
1152	40.84	1.273252059
1153	40.72	1.277070773
1154	40.58	1.281534255
1155	40.43	1.286029047
1156	40.29	1.290555479
1157	40.15	1.295113888
 1158	40.01	1.299704612
1159	39.89	1.258148329
1160	39.74	1.26263781
1161	39.60	1.267159446
1162	39.46	1.271713584
1163	39.32	1.276300574
1164	39.13	1.282587477
1165	38.93	1.288936624
1166	38.80	1.293467051
1167	38.66	1.298029437
1168	38.52	1.302624124
 1169	38.39	1.307251453
1170	38.44	0.823879101
1171	38.30	0.82681247
1172	38.16	0.829766802
1173	38.03	0.832742322
1174	37.89	0.83573926
1175	37.89	0.835665744
1176	37.90	0.835592241
1177	37.90	0.835518752

1178	38.02	0.832848512
1179	38.14	0.830195285
1180	38.27	0.82755891
1181	38.37	0.871920822
1182	38.49	0.869168139
1183	38.61	0.866432783
1184	38.73	0.863714589
1185	38.85	0.861013397
1186	38.98	0.858329047
1187	38.97	0.858569352
1187	38.95	0.858809792
1188		0.860630808
	38.87	
1190	38.79	0.862459562
1191	38.71	0.864296105
1192	38.62	0.866140487
1193	38.57	0.786374735
1194	38.49	0.78805866
1195	38.41	0.789749813
1196	38.33	0.79144824
1197	38.24	0.793153988
1198	38.16	0.794867104
1199	38.03	0.797654045
1200	38.05	0.797196664
1201	38.07	0.796739806
1202	38.09	0.796283473
1203	38.12	0.795827661
1204	38.16	0.743340896
1204	38.18	0.742916096
1205	38.20	0.742491782
1200	38.22	0.742067951
1207	38.22	0.741644605
1208	38.24	0.741044003
		0.740447741
1210	38.31	
1211	38.35	0.739675357
1212	38.11	0.744239293
1213	37.88	0.7488599
1214	37.64	0.75353824
1215	37.41	0.758275401
1216	37.11	0.916097849
1217	36.88	0.921939196
1218	36.64	0.927855514
1219	36.41	0.933848255
1220	36.17	0.93991891
1221	36.12	0.941219896
1222	36.07	0.942524488
1223	36.00	0.944436496
1224	35.93	0.946356277
1225	35.85	0.948283878
1226	35.78	0.950219348
1227	35.71	0.952162735
1228	35.52	1.290036354
1229	35.44	1.292694404
1225	35.37	1.29536343
1230	35.30	1.29530545
		1.301395221
1232	35.21	
1233	35.12	1.304764297
1234	35.03	1.308150861

1235	35.21	1.301395221
1236	35.39	1.294708998
1237	35.57	1.288091128
1238	35.75	1.281540568
1239	36.01	1.073902333
1240	36.19	1.068506697
1241	36.37	1.063165009
1242	36.55	1.057876464
1243	36.73	1.052640272
1244	36.95	1.046570768
1245	37.16	1.040570855
1246	37.37	1.034639345
1247	37.59	1.028775073
1248	37.78	1.02360058
1249	37.97	1.018477879
1250	38.00	1.425837315
1251	38.19	1.418743597
1252	38.38	1.411720114
1253	38.57	1.404765828
1254	38.76	1.397879721
1255	38.97	1.390357693
1256	39.18	1.382916185
1257	39.39	1.375553909
1258	39.53	1.370493004
1259	39.68	1.365469203
1260	39.83	1.360482098
1261	39.97	1.35553129
1262	40.39	0.660204671
1263	40.54	0.657835728
1264	40.68	0.655483725
1265	40.83	0.65314848
1266	40.97	0.650829815
1267	41.06	0.649417745
1268	41.15	0.648011789
1269	41.24	0.646611908
1270	41.42	0.643853765
1271	41.59	0.641119051
1272	41.77	0.638407471
1273	41.97	0.580497023
1274	42.15	0.578063764
1275	42.32	0.575650819
1276	42.50	0.573257935
1277	42.68	0.570884862
1278	42.85	0.568531355
1279	42.91	0.567756505
1280	42.97	0.566983764
1281	43.10	0.565309399
1282	43.23	0.563644894
1283	43.35	0.561990163
1284	43.48	0.560345118
1285	43.33	1.191583399
1286	43.46	1.188093965
1287	43.59	1.184624909
1287	43.72	1.181176052
1288	43.72	1.177747218
1289	43.84 44.04	1.177431356
1290	44.04	1.172451556
1291	44.24	1.10/105204

1292	44.44	1.161942304
1293	44.47	1.161245482
1294	44.49	1.160549496
1295	44.52	1.159854343
1296	44.55	1.159160023
1297	44.57	1.158466534
1298	44.62	1.105565167
1298	44.65	1.104904873
1300	44.68	1.104904873
1300	44.55	1.107430249
1302	44.42	1.110633557
1303	44.29	1.11385545
1304	44.31	1.113489769
1305	44.32	1.113124328
1306	44.33	1.112759127
1307	44.35	1.112394166
1308	44.43	0.965821119
1309	44.44	0.965505015
1310	44.46	0.965189118
1311	44.47	0.964873428
1312	44.49	0.964557945
1313	44.78	0.95831726
1314	45.07	0.95215681
1315	45.25	0.948368819
1316	45.43	0.944610848
1317	45.61	0.940882542
1318	45.79	0.937183551
1319	45.97	0.933513531
1320	46.06	1.121784333
1321	46.24	1.117417296
1322	46.42	1.113084129
1323	46.60	1.108784439
1324	46.80	1.103974312
1325	47.00	1.09920574
1326	47.21	1.094478185
1320	47.33	1.091535324
1327	47.46	1.088608246
1328	47.59	1.085696824
1329	47.72	1.082800934
		1.225460664
1331	47.77	
1332	47.90	1.222204656
1333	48.03	1.218965904
1334	48.16	1.215744272
1335	48.28	1.212539624
1336	48.14	1.216203462
1337	47.99	1.219889509
1338	47.85	1.223597967
1339	47.66	1.228468426
1340	47.47	1.233377814
1341	47.28	1.238326599
1342	47.09	1.243315256
1343	47.07	0.878113463
1344	46.88	0.881666625
1345	46.69	0.885248658
1346	46.50	0.888859917
1347	46.31	0.892500759
1348	46.12	0.89617155

1349	45.96	0.899421696
1350	45.79	0.902695502
1351	45.76	0.903173678
1352	45.74	0.903652362
1353	45.72	0.904131553
1354	45.55	1.221467494
1355	45.52	1.222117942
1356	45.50	1.222769083
1357	45.48	1.223420917
1358	45.45	1.224073448
1350	45.49	1.222997146
1359		1.221922735
1360	45.53	
	45.57	1.22085021
1362	45.61	1.219779566
1363	45.62	1.219577004
1364	45.63	1.219374509
1365	45.74	0.97644347
1366	45.75	0.976281787
1367	45.76	0.976120157
1368	45.77	0.975958581
1369	45.77	0.975797059
1370	45.78	0.975635589
1371	45.70	0.977343406
1372	45.62	0.979057212
1373	45.54	0.980777039
1374	45.60	0.979532167
1375	45.66	0.978290451
1376	45.72	0.977051879
1377	45.85	0.808972719
1378	45.91	0.807952785
1379	45.97	0.806935421
1380	46.02	0.805920615
1381	46.08	0.804908358
1382	46.07	0.805098956
1383	46.06	0.805289644
1384	46.05	0.805480422
1385	46.04	0.80567129
1386	45.84	0.80910641
1387	45.65	0.812570947
1388	45.45	0.816065282
1389	45.30	0.721123299
1390	45.10	0.724248212
1391	44.91	0.727400326
1392	44.71	0.730579997
1393	44.52	0.733787589
1394	44.49	0.734172394
1395	44.47	0.734557602
1396	44.45	0.734943215
1397	44.42	0.735329233
1398	44.41	0.735610228
1399	44.39	0.735891438
1400	44.37	0.736172863
1400	44.21	1.060949783
1401	44.20	1.061357138
1402	44.18	1.061764806
1403	44.18	1.062172787
1404	44.00	1.066034941
1403	44.00	1.000034541

1406	43.84	1.069925284
1407	43.68	1.073844125
1408	43.52	1.077791779
1409	43.30	1.083259855
1410	43.08	1.088783698
1411	42.86	1.094364165
1412	42.64	1.100002131
1413	42.46	1.02848497
1413	42.24	1.033834591
1415	42.02	1.039240155
1415	41.91	1.041967958
1410	41.91	
		1.044710118
1418	41.69	1.047466749
1419	41.58	1.050237967
1420	41.62	1.049121611
1421	41.67	1.048007627
1422	41.71	1.046896006
1423	41.75	1.04578674
1424	41.66	1.379089612
1425	41.71	1.377626631
1426	41.75	1.376166752
1427	41.79	1.374709963
1428	41.91	1.370774155
1429	42.03	1.36686082
1430	42.15	1.362969765
1431	42.27	1.3591008
1432	42.27	1.359344404
1433	42.26	1.359588094
1434	42.25	1.359831872
1435	42.24	1.360075738
1436	42.42	0.919364515
1437	42.41	0.919528731
1438	42.41	0.919693005
1439	42.40	0.919857338
1440	42.43	0.919062512
1441	42.47	0.918269058
1442	42.51	0.917476973
1443	42.65	0.914491167
1444	42.79	0.911524731
1445	42.92	0.908577479
1446	43.06	0.905649223
1447	43.20	0.902739782
1448	43.33	0.914666133
1449	43.47	0.911746057
1450	43.61	0.908844566
1451	43.75	0.905961483
1452	43.75	0.906036789
1453	43.74	0.906112107
1454	43.74	0.906187438
1455	43.74	0.906262781
1456	43.58	0.909501797
1457	43.42	0.912764049
1458	43.27	0.916049788
1459	43.17	0.779813301
1460	43.02	0.78263688
1461	42.86	0.785480981
1462	42.71	0.788345829

1463	42.55	0.791231651
1464	42.43	0.793531759
1465	42.30	0.79584528
1466	42.18	0.798172329
	-	
1467	42.14	0.799004668
1468	42.09	0.799838744
1469	42.05	0.800674564
1470	41.85	1.173029019
1471	41.81	1.174261916
1472	41.76	1.175497408
1473	41.72	1.176735502
1474	41.67	1.177976206
1475	41.49	1.18313809
	-	
1476	41.31	1.188345411
1477	41.13	1.193598772
1478	40.86	1.201521926
1479	40.59	1.209550971
1480	40.31	1.217688045
1481	40.04	1.225935341
1482	39.90	0.91060985
1483	39.63	0.916841896
1484	39.36	0.923159832
1485	39.09	0.929565445
1486	38.82	0.936060574
1487	38.73	0.938155292
1488	38.64	0.940259406
1489	38.56	0.94237298
1490	38.56	0.942217464
1491	38.57	0.942062
1491 1492	38.57 38.57	0.942062 0.941906586
1492	38.57	0.941906586
1492 1493 1494	38.57 38.48 38.48	0.941906586 1.209648852 1.209448831
1492 1493 1494 1495	38.57 38.48 38.48 38.49	0.941906586 1.209648852 1.209448831 1.209248876
1492 1493 1494 1495 1496	38.57 38.48 38.48 38.49 38.50	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988
1492 1493 1494 1495 1496 1497	38.57 38.48 38.48 38.49 38.50 38.50	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165
1492 1493 1494 1495 1496 1497 1498	38.57 38.48 38.48 38.49 38.50 38.50 38.50 38.51	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165 1.208649409
1492 1493 1494 1495 1496 1497 1498 1499	38.57 38.48 38.49 38.50 38.50 38.51 38.51	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165 1.208649409 1.208649409
1492 1493 1494 1495 1496 1497 1498 1499 1500	38.57 38.48 38.49 38.50 38.50 38.51 38.51 38.51	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165 1.208649409 1.208649409 1.208649409
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501	38.57 38.48 38.49 38.50 38.50 38.51 38.51 38.51 38.51 38.51	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165 1.208649409 1.208649409 1.208649409 1.208649409
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1501 1502	38.57 38.48 38.49 38.50 38.50 38.51 38.51 38.51	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165 1.208649409 1.208649409 1.208649409
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501	38.57 38.48 38.49 38.50 38.50 38.51 38.51 38.51 38.51 38.51	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165 1.208649409 1.208649409 1.208649409 1.208649409
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1501 1502	38.57 38.48 38.49 38.50 38.50 38.51 38.51 38.51 38.51 38.51 38.51	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165 1.208649409 1.208649409 1.208649409 1.208649409 1.208649409
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1501 1502 1503	38.57 38.48 38.49 38.50 38.50 38.51 38.51 38.51 38.51 38.51 38.50 38.48	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165 1.208649409 1.208649409 1.208649409 1.208649409 1.209058505 1.209467878
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1501 1502 1503 1504	38.57 38.48 38.49 38.50 38.50 38.51 38.51 38.51 38.51 38.51 38.50 38.48 38.48	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165 1.208649409 1.208649409 1.208649409 1.209058505 1.209467878 1.209877528
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1501 1502 1503 1504 1505	38.57 38.48 38.49 38.50 38.50 38.51 38.51 38.51 38.51 38.51 38.51 38.47 38.46 38.60	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165 1.208649409 1.208649409 1.208649409 1.208649409 1.209058505 1.209467878 1.209877528 1.210287456
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1501 1502 1503 1503 1504 1505 1506 1506	38.57 38.48 38.49 38.50 38.50 38.51 38.51 38.51 38.51 38.51 38.51 38.48 38.47 38.46 38.60 38.58	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165 1.208649409 1.208649409 1.208649409 1.208649409 1.209058505 1.209467878 1.209877528 1.210287456 0.811801736
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1501 1502 1503 1503 1504 1505 1506 1507 1508	38.57 38.48 38.49 38.50 38.50 38.51 38.51 38.51 38.51 38.51 38.50 38.48 38.47 38.46 38.46 38.60	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165 1.208649409 1.208649409 1.208649409 1.209058505 1.209467878 1.209877528 1.210287456 0.811801736 0.81207589 0.81235023
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1501 1502 1503 1503 1504 1505 1505 1506 1507 1508 1509	38.57 38.48 38.49 38.50 38.50 38.51 38.51 38.51 38.51 38.51 38.48 38.48 38.47 38.46 38.46 38.46 38.58 38.57 38.56	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165 1.208649409 1.208649409 1.208649409 1.209058505 1.209467878 1.209877528 1.210287456 0.811801736 0.81207589 0.81235023 0.812624754
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1503 1504 1505 1506 1506 1507 1508 1509 1510	38.57 38.48 38.49 38.50 38.50 38.51 38.51 38.51 38.51 38.51 38.50 38.48 38.48 38.47 38.46 38.46 38.60 38.58 38.57 38.56 38.60	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165 1.208649409 1.208649409 1.208649409 1.209058505 1.209467878 1.209877528 1.210287456 0.811801736 0.81207589 0.81235023 0.812624754 0.81164243
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1504 1505 1506 1507 1508 1509 1510 1511	38.57 38.48 38.49 38.50 38.50 38.51 38.51 38.51 38.51 38.51 38.48 38.47 38.46 38.46 38.46 38.60 38.58 38.57 38.56 38.60 38.60	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165 1.208649409 1.208649409 1.208649409 1.209058505 1.209467878 1.209877528 1.210287456 0.811801736 0.81207589 0.812624754 0.81164243 0.810662478
1492 1493 1494 1495 1496 1497 1497 1498 1499 1500 1501 1501 1502 1503 1504 1505 1506 1506 1507 1508 1509 1510 1511 1512	38.57 38.48 38.49 38.50 38.50 38.51 38.51 38.51 38.51 38.51 38.51 38.47 38.46 38.47 38.46 38.47 38.46 38.57 38.56 38.57 38.56 38.50 38.56 38.60	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165 1.208649409 1.208649409 1.208649409 1.208649409 1.209058505 1.209467878 1.209877528 1.210287456 0.811801736 0.81207589 0.812624754 0.812624754 0.810662478 0.809684889
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1506 1507 1508 1508 1509 1510 1511 1512 1513	38.57 38.48 38.49 38.50 38.50 38.51 38.51 38.51 38.51 38.51 38.50 38.48 38.47 38.46 38.46 38.60 38.58 38.57 38.56 38.56 38.60 38.65 38.70 38.70	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165 1.208649409 1.208649409 1.208649409 1.209058505 1.209467878 1.209877528 1.210287456 0.811801736 0.81207589 0.81235023 0.812624754 0.81164243 0.810662478 0.809684889 0.808709655
1492 1493 1494 1495 1496 1497 1497 1498 1499 1500 1501 1501 1502 1503 1504 1505 1506 1506 1507 1508 1509 1510 1511 1512	38.57 38.48 38.49 38.50 38.50 38.51 38.51 38.51 38.51 38.51 38.51 38.47 38.46 38.47 38.46 38.47 38.46 38.57 38.56 38.57 38.56 38.50 38.56 38.60	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165 1.208649409 1.208649409 1.208649409 1.208649409 1.209058505 1.209467878 1.209877528 1.210287456 0.811801736 0.81207589 0.812624754 0.812624754 0.810662478 0.809684889
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1506 1507 1508 1508 1509 1510 1511 1512 1513	38.57 38.48 38.49 38.50 38.50 38.51 38.51 38.51 38.51 38.51 38.50 38.48 38.47 38.46 38.46 38.60 38.58 38.57 38.56 38.56 38.60 38.65 38.70 38.70	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165 1.208649409 1.208649409 1.208649409 1.209058505 1.209467878 1.209877528 1.210287456 0.811801736 0.81207589 0.81235023 0.812624754 0.81164243 0.810662478 0.809684889 0.808709655
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1501 1502 1503 1504 1505 1504 1505 1506 1507 1508 1507 1508 1509 1510 1511 1512 1513 1513	38.57 38.48 38.49 38.50 38.50 38.51 38.51 38.51 38.51 38.51 38.48 38.47 38.46 38.48 38.47 38.46 38.58 38.57 38.56 38.56 38.56 38.60 38.58 38.57	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165 1.208649409 1.208649409 1.208649409 1.209058505 1.209467878 1.209877528 1.210287456 0.811801736 0.81207589 0.812624754 0.812624754 0.810662478 0.809684889 0.808709655 0.804224896
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1503 1504 1505 1506 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515	38.57 38.48 38.49 38.50 38.50 38.51 38.51 38.51 38.51 38.51 38.50 38.48 38.48 38.47 38.46 38.46 38.60 38.58 38.57 38.56 38.56 38.60 38.65 38.74 38.74 38.96 39.18	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165 1.208649409 1.208649409 1.208649409 1.209058505 1.209467878 1.209877528 1.210287456 0.811801736 0.81207589 0.81235023 0.812624754 0.81164243 0.810662478 0.809684889 0.808709655 0.804224896 0.799789604
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1504 1505 1506 1506 1507 1508 1509 1510 1510 1511 1512 1513 1514 1515 1516	38.57 38.48 38.49 38.50 38.50 38.51 38.51 38.51 38.51 38.51 38.48 38.47 38.46 38.47 38.46 38.60 38.58 38.57 38.56 38.50 38.56 38.60 38.57 38.56 38.60 38.57 38.56 38.70 38.74 38.74 38.74 38.96 39.18 39.39	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165 1.208649409 1.208649409 1.208649409 1.209058505 1.209467878 1.209877528 1.210287456 0.811801736 0.81207589 0.81235023 0.812624754 0.81164243 0.810662478 0.809684889 0.808709655 0.804224896 0.799789604 0.795402964
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1504 1505 1506 1507 1508 1509 1510 1510 1511 1512 1513 1514 1515 1516	38.57 38.48 38.49 38.50 38.50 38.51 38.51 38.51 38.51 38.51 38.47 38.46 38.47 38.46 38.60 38.58 38.57 38.56 38.60 38.56 38.60 38.65 38.70 38.74 38.74 38.74 38.96 39.18 39.39	0.941906586 1.209648852 1.209448831 1.209248876 1.209048988 1.208849165 1.208649409 1.208649409 1.208649409 1.209058505 1.209467878 1.209877528 1.210287456 0.811801736 0.81207589 0.812624754 0.812624754 0.81164243 0.810662478 0.809684889 0.808709655 0.804224896 0.799789604 0.795402964 0.993499321

1520	40.18	0.977471392
1521	40.24	0.975969753
1522	40.30	0.97447272
1523	40.36	0.972980274
1524	40.43	0.971492391
1525	40.49	0.970009052
1526	40.47	0.970510263
1527	40.45	0.971011991
1528	40.51	0.748719093
1529	40.49	0.749105707
1530	40.47	0.74949272
	-	
1531	40.45	0.749880133
1532	40.43	0.750267947
1533	40.54	0.74829372
1534	40.64	0.746329855
1535	40.75	0.744376272
1536	40.86	0.742432889
1537	40.96	0.740499627
1538	40.90	0.741613317
1539	40.84	0.742730362
1540	40.69	0.974207351
1541	40.62	0.975682541
1542	40.56	0.977162207
1543	40.50	0.978646367
1544	40.34	0.982616415
1545	40.17	0.986618806
1546	40.01	0.990653934
1547	39.85	0.994722205
1548	39.68	0.998824027
1549	39.54	1.002498595
1550	39.39	1.006200299
1551	39.25	1.009929441
1552	39.11	0.980035168
1553	38.97	0.983693238
1554	38.82	0.987378719
1555	38.68	0.99109192
1556	38.53	0.994833154
1557	38.54	0.994661063
1558	38.55	0.994489032
1559	38.55	0.99431706
1560	38.56	0.994145148
1561	38.46	0.99673009
1562	38.36	0.999328509
1563	38.26	1.001940512
1564	37.99	1.454939934
1565	37.89	1.45877987
1566	37.79	1.462640128
1567	37.69	1.46652087
1568	37.51	1.473534542
1569	37.33	1.480615623
1570	37.15	1.487765088
1571	36.97	1.494983934
1572	36.79	1.502273175
1573	36.65	1.508260702
1574	36.50	1.514296149
1575	36.35	1.520380093
1576	36.29	1.295079371
1370	50.25	1.233073371

1577	36.15	1.300312716
1578	36.00	1.305588529
1579	35.94	1.307646914
1580	35.89	1.309711799
1581	35.83	1.311783216
1582	35.77	1.313861196
1583	35.72	1.31594577
1584	35.66	1.318036969
1585	35.76	1.31447362
1586	35.85	1.310929486
1587	35.95	1.307404412
1588	36.21	0.833430954
1589	36.31	0.831212181
1590	36.41	0.82900519
1591	36.41	0.828922397
1592	36.41	0.828839621
1593	36.42	0.828756861
1594	36.42	0.828674118
1595	36.43	0.828591391
1596	36.44	0.828205551
1597	36.46	0.827820071
1598	36.48	0.827434949
1599	36.48	0.877309586
1600	36.49	0.876901617
1601	36.51	0.876494027
1602	36.53	0.876086815
1603	36.56	0.875367848
1604	36.59	0.87465006
1605	36.62	0.873933448
1606	36.65	0.87321801
1607	36.68	0.872503741
1608	36.65	0.873145808
1609	36.62	0.87378882
1610	36.60	0.87443278
1611	36.67	0.581688376
1612	36.65	0.582116449
1613	36.62	0.582545152
1614	36.59	0.582974487
1615	36.40	0.586119613
1616	36.20	0.58929886
1617	36.00	0.592512784
1618	35.81	0.595761957
1619	35.61	0.599046962
1620	35.37	0.603214852
1621	35.12	0.607441145
1622	34.87	0.611727077
1623	34.59	0.713021856
1624	34.35	0.718129697
1625	34.10	0.723311247
1626	33.86	0.728568114
1627	33.69	0.732099985
1628	33.53	0.735666267
1629	33.37	0.739267463
1630	33.20	0.742904089
1631	33.18	0.743494434
1632	33.15	0.744085717
1633	33.12	0.744677941

1634	33.10	0.745271109
1635	32.92	1.215145127
1636	32.89	1.216119106
1637	32.87	1.217094648
1638	32.84	1.218071756
1639	32.98	1.212833989
1640	33.12	1.207641075
1641	33.26	1.202492439
1642	33.19	1.205215296
1643	33.11	1.207950511
1644	33.04	1.210698169
1645	32.96	1.213458356
1646	32.88	1.257281901
1647	32.80	1.260162591
1648	32.72	1.263056512
1649	32.65	1.265963755
1650	32.56	1.269593049
1651	32.46	1.273243211
1652	32.37	1.276914424
1653	32.28	1.280606868
1654	32.34	1.27815884
1655	32.40	1.275720153
1656	32.40	1.273290754
1657	32.52	1.270870591
1658	32.64	1.091719282
1659	32.04	1.089655694
1660	32.70	1.089655694
1661	32.83	1.085551833
1662	33.00	1.080008827
1663	33.16	1.07452214
1664	33.33	1.069090919
1665	33.50	1.063714327
1666	33.76	1.055427925
1667	34.03	1.047269628
1668	34.29	1.039236488
1669	34.55	1.031325648
1670	34.87	0.879541117
1670	35.13	0.872955635
1672	35.39	0.866468037
1673	35.66	0.860076156
1674	35.89	0.854570948
1675	36.12	0.849135768
1676	36.34	0.843769288
1677	36.45	0.841377139
1678	36.55	0.838998515
1679	36.65	0.836633302
1680	36.76	0.834281388
1681	36.72	1.208010483
1682	36.83	1.204620993
1683	36.93	1.20125047
1684	37.03	1.197898756
1685	37.14	1.194565693
1686	37.09	1.196176146
1687	37.04	1.197790947
1688	36.99	1.199410114
1689	36.87	1.203314033
1690	36.75	1.207243449

1691	36.63	1.211198611
1692	36.72	0.617202464
1693	36.60	0.61922581
1694	36.48	0.621262467
1695	36.36	0.623312564
1696	36.24	0.625376237
1697	36.11	0.627685293
1698	35.98	0.630011463
1699	35.84	0.632354938
1700	35.71	0.634715913
1701	35.54	0.63769204
1702	35.38	0.640696208
1703	35.21	0.643728816
1704	34.89	1.094357968
1705	34.72	1.099610764
1706	34.56	1.104914229
1707	34.39	1.110269099
1708	34.22	1.115676126
1709	34.11	1.119263764
1710	34.00	1.122874549
1711	33.89	1.126508707
1712	33.87	1.12723433
1713	33.85	1.127960888
1714	33.83	1.128688384
1715	33.81	1.129416818
1716	33.69	1.41394881
1717	33.67	1.414865092
1718	33.65	1.415782561
1719	33.62	1.416701222
1720	33.60	1.417621075
1721	33.63	1.416445919
1722	33.66	1.415272711
1723	33.69	1.414101444
1724	33.50	1.421981014
1725	33.31	1.429948889
1726	33.13	1.43800656
1727	33.07	1.058477442
1728	32.88	1.064486696
1729	32.69	1.070564572
1730	32.51	1.076712252
1731	32.32	1.082930946
1732	32.00	1.093884664
1733	31.67	1.105062237
1734 1735	31.35 31.03	1.116470599 1.128116972
1736	30.86	1.134232207
		1.134232207
1737 1738	30.69 30.52	1.140414103
1738	30.52	0.920263728
1739	30.43	0.920203728
1740	30.09	0.925551011
1741	29.92	0.9356962
1742	29.92	0.934144811
1745	30.02	0.932598557
1744	30.02	0.932398537
1745	30.12	0.929521355
1746	30.12	0.929521555
1/4/	50.17	0.327330330

1748	30.29	0.924517728
1749	30.40	0.921070992
1750	30.51	0.917649861
1751	30.66	0.804538635
1752	30.77	0.801575588
1753	30.89	0.798634286
1754	31.00	0.795714491
1755	30.96	0.79678936
1756	30.92	0.797867136
1757	30.87	0.798947833
1758	30.83	0.80003146
1759	30.59	0.806307833
1760	30.35	0.812683463
1761	30.11	0.819160722
1762	29.78	1.123229675
1763	29.54	1.13235413
1764	29.30	1.141628043
1765	29.06	1.151055116
1766	28.82	1.160639175
1767	28.49	1.174268192
1768	28.16	1.188221094
1769	27.82	1.202509567
1770	27.49	1.217145863
1771	27.15	1.232142839
1772	26.82	1.247513994
1773	26.60	1.257818624
1774	26.59	0.451261481
1774	26.37	0.45502074
1776	26.15	0.458843159
1777	25.93	0.462730342
1778	25.84	0.464401731
1779	25.75	0.466085237
1780	25.65	0.467780993
1781	25.56	0.469489134
1782	25.47	0.471209795
1783	25.37	0.472943115
1784	25.28	0.474689234
1785	25.19	0.476419633
1786	24.94	1.108194822
1787	24.84	1.112357919
1788	24.75	1.116552412
1789	24.66	1.120778659
1790	24.63	1.121840224
1791	24.61	1.122903802
1792	24.59	1.123969399
1793	24.56	1.12503702
1794	24.54	1.126106671
1795	24.52	1.127178358
1795	24.32	1.128252087
1796	24.49	1.129327863
1798	24.27	1.400923956
1799	24.13	1.408945923
1800	23.99	1.41706029
1801	23.86	1.425268662
1802	23.75	1.431560678
1803	23.65	1.437908493
1804	23.54	1.444312854

1805	23.44	1.450774519
1806	23.33	1.457294261
1807	23.23	1.463872867
1808	23.12	1.470511138
1809	23.21	0.610902247
1810	23.11	0.613673905
1811	23.00	0.616470828
1812	23.10	0.61397984
1813	23.10	0.613834886
1814	23.11	0.613689999
1815	23.11	0.613545181
1816	23.12	0.613400431
1817	23.13	0.61325575
1818	23.13	0.613111137
1819	23.14	0.612966592
1820	23.14	0.612822115
1821	23.15	0.612677706
1822	23.15	0.612533366
1823	22.98	1.116927998
1824	22.92	1.119763102
1825	23.08	1.112176173
1826	23.23	1.104691362
1827	23.39	1.097306621
1828	23.55	1.090019957
1829	23.70	1.082829429
1830	23.86	1.075733146
1831	24.02	1.068729269
1832	24.17	1.061816003
1833	24.33	1.054991601
1834	24.49	1.048254362
1835	24.48	1.054507651

Table S.7. Calculation of event indices from CHAR data at Summit Lake using the 100-yr running mean

Events per 100-yr period

200-yr window

-	Little Monon Lake	Pyramid Lake	Summit Lake
0-99	0	1	0
100-199	2	1	1
200-299	1	1	5
300-399	0	2	3
400-499	0	1	5
500-599	1	0	1
600-699	1	2	6
700-799	1	3	4
800-899	3	4	3
900-999	2	1	3
1000-1999	2	5	3
1100-1199	6	2	5
1200-1299	2	2	4
1300-1399	5	2	5
1400-1499	3	2	4
1500-1599	2	3	4
1600-1699	2	1	4
1700-1799	3	3	5
1800-1899	2	2	2
1900-1999	1	2	
2000-2099	6	4	
2100-2199	1	1	
2200-2299	4	1	
2300-2399	0	3	
2400-2499	3	1	
2500-2599		1	
2600-2699		3	
2700-2799		2	
2800-2899		4	
2900-2999		1	
3000-3999		3	
3100-3199		3	
	53	67	67

 Table S.8. Events per 100-yr period BP based on the 200-yr running mean

Events per 100-yr period

150-yr window

	Little Monon Lake	Pvramid Lake	Summit Lake
0-99	0	1	0
100-199	2	1	1
200-299	1	1	5
300-399	0	2	3
400-499	1	1	5
500-599	1	0	2
600-699	0	2	6
700-799	1	2	4
800-899	3	4	3
900-999	2	2	3
1000-1999	3	5	2
1100-1199	7	2	5
1200-1299	3	3	5
1300-1399	5	2	3
1400-1499	3	2	5
1500-1599	1	2	4
1600-1699	2	2	4
1700-1799	3	3	6
1800-1899	2	2	2
1900-1999	1	2	
2000-2099	4	4	
2100-2199	2	1	
2200-2299	4	1	
2300-2399	3	3	
2400-2499	3	1	
2500-2599		1	
2600-2699		3	
2700-2799		2	
2800-2899		4	
2900-2999		2	
3000-3999		3	
3100-3199		3	
	57	69	68

 Table S.9. Events per 100-yr period BP based on the 200-yr running mean

BIBLIOGRAPHY

AGEE, J. K. 1991. Fire history along an elevational gradient in the Siskiyou Mountains, Oregon.

AGEE, J. K. 1993. Fire ecology of Pacific Northwest forests, Island press.

ALEXANDER, R. R., SHEARER, R. C. & SHEPPERD, W. D. 1990. Abies lasiocarpa (Hook.) Nutt. subalpine fir. *Silvics of North America*, 1, 60-70.

ALEXANDER, R. R. & SHEPPERD, W. D. 1990. Picea engelmannii Parry ex Engelm. Engelmann spruce. *Silvics of North America*, 1, 187-203.

ALFARO, R. I., CAMPBELL, E. & HAWKES, B. C. 2010. *Historical frequency, intensity and extent of mountain pine beetle disturbance in British Columbia*, Pacific Forestry Centre.

ALFARO, R. I., CAMPBELL, R., VERA, P., HAWKES, B. & SHORE, T. Dendroecological reconstruction of mountain pine beetle outbreaks in the Chilcotin Plateau of British Columbia. Mountain Pine Beetle Symposium: Challenges and Solutions, 2004. Natural Resources Canada, Canadian Forest Service, Pac. For. Centre Victoria ..., 245-256.

ALLISON, T. D., MOELLER, R. E. & DAVIS, M. B. 1986. Pollen in laminated sediments provides evidence for a mid-Holocene forest pathogen outbreak. *Ecology*, 67, 1101-1105.

ALSOS, I. G., LAMMERS, Y., YOCCOZ, N. G., JØRGENSEN, T., SJÖGREN, P., GIELLY, L. & EDWARDS, M. E. 2018. Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation. *PloS one*, 13, e0195403.

ALSOS, I. G., LAMMERS, Y., YOCCOZ, N. G., JØRGENSEN, T., SJÖGREN, P., GIELLY, L. & EDWARDS, M. E. 2018. Metabarcoding lake sediments: taphonomy and representation of contemporary vegetation in environmental DNA (eDNA) records. *bioRxiv*, 264903.

ALSOS, I. G., SJÖGREN, P., EDWARDS, M. E., LANDVIK, J. Y., GIELLY, L., FORWICK, M., COISSAC, E., BROWN, A. G., JAKOBSEN, L. V. & FØREID, M. K. 2016. Sedimentary

ancient DNA from Lake Skartjørna, Svalbard: Assessing the resilience of arctic flora to Holocene climate change. *The Holocene*, 26, 627-642.

AMIRO, B. D., BARR, A. G., BARR, J., BLACK, T. A., BRACHO, R., BROWN, M., CHEN, J., CLARK, K., DAVIS, K. & DESAI, A. 2010. Ecosystem carbon dioxide fluxes after disturbance in forests of North America. *Journal of Geophysical Research: Biogeosciences*, 115.

ANDERSON, D. P. & STURTEVANT, B. R. 2011. Pattern analysis of eastern spruce budworm Choristoneura fumiferana dispersal. *Ecography*, 34, 488-497.

ANDERSON, R. P., TOSCA, N. J., GAINES, R. R., MONGIARDINO KOCH, N. & BRIGGS, D. E. G. 2018. A mineralogical signature for Burgess Shale–type fossilization. *Geology*, 46, 347-350.

ANDERSON, R. S., SMITH, S. J., LYNCH, A. M. & GEILS, B. W. 2010. The pollen record of a 20th century spruce beetle (Dendroctonus rufipennis) outbreak in a Colorado subalpine forest, USA. *Forest Ecology and Management*, 260, 448-455.

ANDRUSZKIEWICZ ALLAN, E., ZHANG, W. G., C LAVERY, A. & F GOVINDARAJAN, A. 2021. Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes. *Environmental DNA*, 3, 492-514.

ARNAUD, F., POULENARD, J., GIGUET-COVEX, C., WILHELM, B., RÉVILLON, S., JENNY, J.-P., REVEL, M., ENTERS, D., BAJARD, M. & FOUINAT, L. 2016. Erosion under climate and human pressures: An alpine lake sediment perspective. *Quaternary Science Reviews*, 152, 1-18.

ARNO, S. F. 1980. Forest fire history in the northern Rockies. *Journal of Forestry*, 78, 460-465.

ARNO, S. F. & DAVIS, D. H. Fire history of western redcedar/hemlock forests in northern Idaho. Proceedings of the Fire History Workshop. Gen. Tech. Rep. RM-81. USDA For. Serv., Rocky Mountain Forest and Range Exp. Sta., Fort Collins, CO, 1980. 21-26.

AUKEMA, B. H., CARROLL, A. L., ZHENG, Y., ZHU, J., RAFFA, K. F., DAN MOORE, R., STAHL, K. & TAYLOR, S. W. 2008. Movement of outbreak populations of mountain pine beetle: influences of spatiotemporal patterns and climate. *Ecography*, 31, 348-358.

BARNES, M. A. & TURNER, C. R. 2016. The ecology of environmental DNA and implications for conservation genetics. *Conservation genetics*, 17, 1-17.

BARNOSKY, C. W. 1985. Late Quaternary vegetation near Battle Ground Lake, southern Puget Trough, Washington. *Geological Society of America Bulletin*, 96, 263-271.

BELL, K. L., BURGESS, K. S., BOTSCH, J. C., DOBBS, E. K., READ, T. D. & BROSI, B.J. 2019. Quantitative and qualitative assessment of pollen DNA metabarcoding using constructed species mixtures. *Molecular Ecology*, 28, 431-455.

BELLEMAIN, E., DAVEY, M. L., KAUSERUD, H., EPP, L. S., BOESSENKOOL, S., COISSAC, E., GEML, J., EDWARDS, M., WILLERSLEV, E. & GUSSAROVA, G. 2013. Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost. *Environmental microbiology*, 15, 1176-1189.

BENNETT, K. & FULLER, J. 2002. Determining the age of the mid-Holocene Tsuga cana densis (hemlock) decline, eastern North America. *The Holocene*, 12, 421-429.

BENNETT, K., TZEDAKIS, P. & WILLIS, K. 1991. Quaternary refugia of north European trees. *Journal of biogeography*, 103-115.

BENNETT, K. D. & PARDUCCI, L. 2006. DNA from pollen: principles and potential. *The Holocene*, 16, 1031-1034.

BENNETT, K. D. & WILLIS, K. J. 2002. Pollen. *Tracking environmental change using lake sediments*. Springer.

BENTZ, B. J., LOGAN, J. A. & AMMAN, G. D. 1991. Temperature-dependent development of the mountain pine beetle (Coleoptera: Scolytidae) and simulation of its phenology. *The Canadian Entomologist*, 123, 1083-1094.

BENTZ, B. J., RÉGNIÈRE, J., FETTIG, C. J., HANSEN, E. M., HAYES, J. L., HICKE, J. A., KELSEY, R. G., NEGRÓN, J. F. & SEYBOLD, S. J. 2010. Climate change and bark beetles of the western United States and Canada: direct and indirect effects. *BioScience*, 60, 602-613.

BERG, E. E. & ANDERSON, R. S. 2006. Fire history of white and Lutz spruce forests on the Kenai Peninsula, Alaska, over the last two millennia as determined from soil charcoal. *Forest ecology and management*, 227, 275-283.

BERGERON, Y., CYR, D., GIRARDIN, M. P. & CARCAILLET, C. 2010. Will climate change drive 21st century burn rates in Canadian boreal forest outside of its natural variability: collating global climate model experiments with sedimentary charcoal data. *International Journal of Wildland Fire*, 19, 1127-1139.

BESCHTA, R. L. 1978. Long-term patterns of sediment production following road construction and logging in the Oregon Coast Range. *Water Resources Research*, 14, 1011-1016.

BIRKS, H. 1981. The use of pollen analysis in the reconstruction of past climates: a review. *Climate and history: studies in past climates and their impact on man*, 111-138.

BIRKS, H. & BIRKS, H. H. 2008. Biological responses to rapid climate change at the Younger Dryas—Holocene transition at Kråkenes, western Norway. *The Holocene*, 18, 19-30.

BIRKS, H. H. & BIRKS, H. 2000. Future uses of pollen analysis must include plant macrofossils. *Journal of biogeography*, 31-35.

BIRKS, H. H., BIRKS, H., KALAND, P. E. & MOE, D. 1988. *The cultural landscape: past, present and future*, Cambridge University Press.

BIRKS, H. J. B. 1996. Contributions of Quaternary palaeoecology to nature conservation. *Journal of Vegetation Science*, *7*, 89-98.

BIRKS, H. J. B. & BERGLUND, B. E. 2018. One hundred years of Quaternary pollen analysis 1916–2016. *Vegetation History and Archaeobotany*, 27, 271-309.

BIRKS, H. J. B. & BIRKS, H. H. 2016. How have studies of ancient DNA from sediments contributed to the reconstruction of Quaternary floras? *New Phytologist*, 209, 499-506.

BLAAUW, M. & BLAAUW, M. M. 2021. Package 'IntCal'.

BLARQUEZ, O., VANNIÈRE, B., MARLON, J. R., DANIAU, A.-L., POWER, M. J., BREWER, S. & BARTLEIN, P. J. 2014. paleofire: an R package to analyse sedimentary charcoal records from the Global Charcoal Database to reconstruct past biomass burning. *Computers & Geosciences*, 72, 255-261.

BLOCKLEY, S., PYNE-O'DONNELL, S., LOWE, J., MATTHEWS, I., STONE, A., POLLARD, A., TURNEY, C. & MOLYNEUX, E. 2005. A new and less destructive laboratory procedure for the physical separation of distal glass tephra shards from sediments. *Quaternary Science Reviews*, 24, 1952-1960.

BOESSENKOOL, S., MCGLYNN, G., EPP, L. S., TAYLOR, D., PIMENTEL, M., GIZAW, A., NEMOMISSA, S., BROCHMANN, C. & POPP, M. 2014. Use of ancient sedimentary DNA as a novel conservation tool for high-altitude tropical biodiversity. *Conservation biology*, 28, 446-455.

BOHMANN, K., EVANS, A., GILBERT, M. T. P., CARVALHO, G. R., CREER, S., KNAPP, M., DOUGLAS, W. Y. & DE BRUYN, M. 2014. Environmental DNA for wildlife biology and biodiversity monitoring. *Trends in ecology & evolution*, 29, 358-367.

BOONHAM, N., GLOVER, R., TOMLINSON, J. & MUMFORD, R. 2008. Exploiting generic platform technologies for the detection and identification of plant pathogens. *Sustainable disease management in a European context*, 355-363.

BOYD, R. 1999. Indians, fire and the land. Corvallis: Oregon State University Press, 52, 54.

BOYD, R. T. 1986. Strategies of Indian burning in the Willamette Valley. *Canadian Journal* of Anthropology, 5, 65.

BOYD, R. T. & HAJDA, Y. P. 1987. Seasonal population movement along the lower Columbia River: the social and ecological context. *American Ethnologist*, 14, 309-326.

BRANTSCHEN, J., BLACKMAN, R. C., WALSER, J.-C. & ALTERMATT, F. 2021. Environmental DNA gives comparable results to morphology-based indices of macroinvertebrates in a large-scale ecological assessment. *PloS one*, 16, e0257510.

BRENCHLEY, P. J., BRENCHLEY, P. & HARPER, D. 1998. *Palaeoecology: Ecosystems, environments and evolution*, CRC Press.

BRILES, C. E., WHITLOCK, C. & BARTLEIN, P. J. 2005. Postglacial vegetation, fire, and climate history of the Siskiyou Mountains, Oregon, USA. *Quaternary Research*, 64, 44-56. BROCK, F., HIGHAM, T., DITCHFIELD, P. & RAMSEY, C. B. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). *Radiocarbon*, 52, 103-112.

BROOKES, M., CAMPBELL, S. & LIEGEL, L. 1996. Disturbance and forest health in Oregon and Washington. Forest Service general technical report. Forest Service, Portland, OR (United States). Pacific Northwest Research Station.

BROOKES, W. 2019. *Historical and contemporary disturbance regimes in central interior dry forests of British Columbia.* University of British Columbia.

BROWN, J. K. 1975. Fire cycles and community dynamics in lodgepole pine forests. *The Bark Beetles, Fuels, and Fire Bibliography*, 2.

BRUNELLE, A., REHFELDT, G. E., BENTZ, B. & MUNSON, A. S. 2008. Holocene records of Dendroctonus bark beetles in high elevation pine forests of Idaho and Montana, USA. *Forest Ecology and Management*, 255, 836-846.

BRUNELLE, A. & WHITLOCK, C. 2003. Postglacial fire, vegetation, and climate history in the Clearwater Range, Northern Idaho, USA. *Quaternary Research*, 60, 307-318.

BRUNELLE, A., WHITLOCK, C., BARTLEIN, P. & KIPFMUELLER, K. 2005. Holocene fire and vegetation along environmental gradients in the Northern Rocky Mountains. *Quaternary Science Reviews*, 24, 2281-2300.

BURIAN, A., MAUVISSEAU, Q., BULLING, M., DOMISCH, S., QIAN, S. & SWEET, M. 2021. Improving the reliability of eDNA data interpretation. *Molecular Ecology Resources*, 21, 1422-1433.

BURKE, C. 1979. *Historic Fires in the Central Western Cascades, Oregon*. Master of Science, Oregon State University.

BURTON, P. J. 2008. The mountain pine beetle as an agent of forest disturbance. *BC Journal* of *Ecosystems and Management*, 9, 9-13.

BYERS, J. A. & LÖFQVIST, J. 1989. Flight initiation and survival in the bark beetle Ips typographus (Coleoptera: Scolytidae) during the spring dispersal. *Ecography*, 12, 432-440.

CALCOTE, R. 2003. Mid-Holocene climate and the hemlock decline: the range limit of Tsuga canadensis in the western Great Lakes region, USA. *The Holocene*, 13, 215-224.

CAMPBELL, E. M., ALFARO, R. I. & HAWKES, B. 2007. Spatial distribution of mountain pine beetle outbreaks in relation to climate and stand characteristics: a dendroecological analysis. *Journal of Integrative Plant Biology*, 49, 168-178.

CAMPBELL, I. D. 1999. Quaternary pollen taphonomy: examples of differential redeposition and differential preservation. *Palaeogeography, Palaeoclimatology, Palaeoecology,* 149, 245-256.

CAMPOS, P. F. & GILBERT, T. M. P. 2012. DNA Extraction from Keratin and Chitin. *In:* SHAPIRO, B. & HOFREITER, M. (eds.) *Ancient DNA: Methods and Protocols*. Totowa, NJ: Humana Press.

CANO, R., POINAR, H., ROUBIK, D. & POINAR, G. 1992. Enzymatic amplification and nucleotide sequencing of portions of the 18s rNA gene of the bee Proplebeia dominicana (Apidae: Hymenoptera) isolated from 25-40 million year old Dominican amber. *Medical science research*, 20, 619-622.

CANO, R., POINAR, H., ROUBIK, D. & POINAR, G. 1992. Enzymatic amplification and nucleotide sequencing of portions of the 18s rNA gene of the bee Proplebeia dominicana (Apidae: Hymenoptera) isolated from 25-40 million year old Dominican amber. *Medical science research*, 20, 619-622.

CAROLIN, V. & COULTER, W. 1959. The occurrence of insect parasites of Choristoneura fumiferana (Clem.), in Oregon. *Journal of Economic Entomology*, 52, 550-555.

CHEQUER, F. M. D., GISELE AUGUSTO RODRIGUES DE OLIVEIRA, E. R. A., CARDOSO, J. C., ZANONI, N. V. B. & DE OLIVEIRA, D. P. 2019. Larval development and moulting. *Intech*.

CHEN, G., MOSIER, S., GOCKE, C. D., LIN, M.-T. & ESHLEMAN, J. R. 2014. Cytosine deamination is a major cause of baseline noise in next-generation sequencing. Molecular diagnosis & therapy, 18, 587-593.

CHILDS, T. W. & SHEA, K. R. 1967. Annual losses from disease in Pacific Northwest forests. *Res. Bull. PNW-RB-020. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station. 19 p, 20.*

CLARK, J. S. 1988. Particle motion and the theory of charcoal analysis: source area, transport, deposition, and sampling. *Quaternary research*, 30, 67-80.

CLEVELAND, W. S. 1979. Robust locally weighted regression and smoothing scatterplots. *Journal of the American statistical association*, 74, 829-836.

COFER, W., KOUTZENOGII, K., KOKORIN, A. & EZCURRA, A. 1997. Biomass burning emissions and the atmosphere. *Sediment records of biomass burning and global change*. Springer.

COLEMAN, T. W., GRAVES, A. D., HEATH, Z., FLOWERS, R. W., HANAVAN, R. P., CLUCK, D. R. & RYERSON, D. 2018. Accuracy of aerial detection surveys for mapping insect and disease disturbances in the United States. *Forest ecology and management*, 430, 321-336.

COLOMBAROLI, D. & GAVIN, D. G. 2010. Highly episodic fire and erosion regime over the past 2,000 y in the Siskiyou Mountains, Oregon. *Proceedings of the National Academy of Sciences*, 107, 18909-18914.

COLPRON-TREMBLAY, J. & LAVOIE, M. 2010. Long-term stand-scale dynamics of a boreal mixed forest in Québec, Canada. *Review of Palaeobotany and Palynology*, 161, 43-58.

COOK, E. R., ESPER, J. & D'ARRIGO, R. D. 2004. Extra-tropical Northern Hemisphere land temperature variability over the past 1000 years. *Quaternary Science Reviews*, 23, 2063-2074.

COOLEN, M. J. & OVERMANN, J. R. 1998. Analysis of subfossil molecular remains of purple sulfur bacteria in a lake sediment. *Applied and Environmental Microbiology*, 64, 4513-4521.

COOPE, G. R. 1977. Fossil coleopteran assemblages as sensitive indicators of climatic changes during the Devensian (Last) cold stage. *Philosophical Transactions of the Royal Society of London. B, Biological Sciences*, 280, 313-340.

COPE, M. & CHALONER, W. 1980. Fossil charcoal as evidence of past atmospheric composition. *Nature*, 283, 647-649.

CROOKES, S., HEER, T., CASTAÑEDA, R. A., MANDRAK, N. E., HEATH, D. D., WEYL, O. L., MACISAAC, H. J. & FOXCROFT, L. C. 2020. Monitoring the silver carp invasion in

Africa: a case study using environmental DNA (eDNA) in dangerous watersheds. *NeoBiota*, 56, 31.

CRUMP, S. E. 2021. Sedimentary ancient DNA as a tool in paleoecology. *Nature Reviews Earth & Environment*, 2, 229-229.

CRUZ, M. G. & ALEXANDER, M. E. 2010. Assessing crown fire potential in coniferous forests of western North America: a critique of current approaches and recent simulation studies. *International Journal of Wildland Fire*, 19, 377-398.

CWYNAR, L. C. 1987. Fire and the forest history of the North Cascade Range. *Ecology*, 68, 791-802.

DANKS, H. 1992. Arctic insects as indicators of environmental change. Arctic, 159-166.

DAVIES, D. & LOADER, N. J. 2020. An evaluation of english oak earlywood vessel area as a climate proxy in the UK. *Dendrochronologia*, 64, 125777.

DAVIES, S. M., HOEK, W. Z., BOHNCKE, S. J., LOWE, J. J., O'DONNELL, S. P. & TURNEY, C. S. 2005. Detection of Lateglacial distal tephra layers in the Netherlands. *Boreas*, 34, 123-135.

DAY, R. J. 1972. Stand structure, succession, and use of southern Alberta's Rocky Mountain forest. *Ecology*, 53, 472-478.

DE VRIES, H. & BARENDSEN, G. 1952. A new technique for the measurement of age by radiocarbon. *Physica*, 18, 652-652.

DEINER, K., BIK, H. M., MÄCHLER, E., SEYMOUR, M., LACOURSIÈRE-ROUSSEL, A., ALTERMATT, F., CREER, S., BISTA, I., LODGE, D. M. & DE VERE, N. 2017. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. *Molecular ecology*, 26, 5872-5895.

DENNISON, P. E., BREWER, S. C., ARNOLD, J. D. & MORITZ, M. A. 2014. Large wildfire trends in the western United States, 1984–2011. *Geophysical Research Letters*, 41, 2928-2933.

DESALLE, R., GATESY, J., WHEELER, W. & GRIMALDI, D. 1992. DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. *Science*, 257, 1933-1936.

DEWILDE, L. O. & CHAPIN, F. S. 2006. Human impacts on the fire regime of interior Alaska: Interactions among fuels, ignition sources, and fire suppression. *Ecosystems*, 9, 1342-1353.

DICKIE, I. A., BOYER, S., BUCKLEY, H. L., DUNCAN, R. P., GARDNER, P. P., HOGG, I. D., HOLDAWAY, R. J., LEAR, G., MAKIOLA, A. & MORALES, S. E. 2018. Towards robust and repeatable sampling methods in eDNA-based studies. *Molecular Ecology Resources*, 18, 940-952.

DODD, J. & STANTON, R. 1990. Paleoecology. *Concepts and Applications: John Wiley & Sons, New York*, 502.

DONOGHUE, S. L., VALLANCE, J., SMITH, I. E. & STEWART, R. B. 2007. Using geochemistry as a tool for correlating proximal andesitic tephra: case studies from Mt Rainier (USA) and Mt Ruapehu (New Zealand). *Journal of Quaternary Science: Published for the Quaternary Research Association*, 22, 395-410.

DUNWIDDIE, P. W. 1986. A 6000-year record of forest history on Mount Rainier, Washington. *Ecology*, 67, 58-68.

DURAND, A.-A., BERGERON, A., CONSTANT, P., BUFFET, J.-P., DÉZIEL, E. & GUERTIN, C. 2015. Surveying the endomicrobiome and ectomicrobiome of bark beetles: The case of Dendroctonus simplex. *Scientific reports*, *5*, 1-11.

DZIOMBER, L., GURTNER, L., LEUNDA, M. & SCHWÖRER, C. A multiproxy reconstruction of vegetation dynamics in the Eastern Alps (Switzerland): combining paleoecological and paleogenetic approaches. EGU General Assembly Conference Abstracts, 2021. EGU21-14457.

EASTWOOD, W., PEARCE, N., WESTGATE, J., PERKINS, W., LAMB, H. & ROBERTS, N. 1999. Geochemistry of Santorini tephra in lake sediments from Southwest Turkey. *Global and Planetary Change*, 21, 17-29.

EDWARDS, M., KRAWCHUK, M. A. & BURTON, P. J. 2015. Short-interval disturbance in lodgepole pine forests, British Columbia, Canada: Understory and overstory response to mountain pine beetle and fire. *Forest Ecology and Management*, 338, 163-175.

EDWARDS, M. E. 2020. The maturing relationship between quaternary paleoecology and ancient sedimentary DNA. *Quaternary Research*, 96, 39-47.

EDWARDS, M. E., ALSOS, I. G., YOCCOZ, N., COISSAC, E., GOSLAR, T., GIELLY, L., HAILE, J., LANGDON, C. T., TRIBSCH, A. & BINNEY, H. A. 2018. Metabarcoding of modern soil DNA gives a highly local vegetation signal in Svalbard tundra. *The Holocene*, 28, 2006-2016.

EISENHART, K. S. & VEBLEN, T. T. 2000. Dendroecological detection of spruce bark beetle outbreaks in northwestern Colorado. *Canadian Journal of Forest Research*, 30, 1788-1798.

ELIAS, S. 2010. 4 The Value of Insects in Paleoecology. *Developments in Quaternary Sciences*, 12, 39-51.

EPP, L. S., BOESSENKOOL, S., BELLEMAIN, E. P., HAILE, J., ESPOSITO, A., RIAZ, T., ERSEUS, C., GUSAROV, V. I., EDWARDS, M. E. & JOHNSEN, A. 2012. New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. *Molecular ecology*, 21, 1821-1833.

ERICHSON, W. 1836. Systematische auseinandersetzung der familie der borkenkäfer (Bostrichidae). *Archiv für Naturgeschichte*, 2, 45-65.

FEIBEL, C. S. 1999. Tephrostratigraphy and geological context in paleoanthropology. *Evolutionary Anthropology: Issues, News, and Reviews: Issues, News, and Reviews,* 8, 87-100.

FELLIN, D. G. 1982. Western spruce budworm, US Department of Agriculture, Forest Service.

FERRENBERG, S., KANE, J. M. & MITTON, J. B. 2014. Resin duct characteristics associated with tree resistance to bark beetles across lodgepole and limber pines. *Oecologia*, 174, 1283-1292

FETTIG, C. J., KLEPZIG, K. D., BILLINGS, R. F., MUNSON, A. S., NEBEKER, T. E., NEGRÓN, J. F. & NOWAK, J. T. 2007. The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United States. *Forest ecology and management*, 238, 24-53.

FETTIG, C. J., REID, M. L., BENTZ, B. J., SEVANTO, S., SPITTLEHOUSE, D. L. & WANG, T. 2013. Changing climates, changing forests: a western North American perspective. *Journal of Forestry*, 111, 214-228.

FICETOLA, G. F., MIAUD, C., POMPANON, F. & TABERLET, P. 2008. Species detection using environmental DNA from water samples. *Biology letters*, 4, 423-425.

FINSINGER, W., KELLY, R., FEVRE, J. & MAGYARI, E. K. 2014. A guide to screening charcoal peaks in macrocharcoal-area records for fire-episode reconstructions. *The Holocene*, 24, 1002-1008.

FLANNIGAN, M., CAMPBELL, I., WOTTON, M., CARCAILLET, C., RICHARD, P. & BERGERON, Y. 2001. Future fire in Canada's boreal forest: paleoecology results and general circulation model-regional climate model simulations. *Canadian journal of forest research*, 31, 854-864.

FORD, C. R., MINOR, E. S. & FOX, G. A. 2010. Long-term effects of fire and fire-return interval on population structure and growth of longleaf pine (Pinus palustris). *Canadian journal of forest research*, 40, 1410-1420.

FOROOTAN, A., SJÖBACK, R., BJÖRKMAN, J., SJÖGREEN, B., LINZ, L. & KUBISTA, M. 2017. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). *Biomolecular detection and quantification*, 12, 1-6.

FRANCESCHI, V. R., KROKENE, P., CHRISTIANSEN, E. & KREKLING, T. 2005. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. *New phytologist*, 167, 353-376.

FRANKLIN, J. F. 1988. Pacific Northwest Forests. *In:* BARBOUR, M. G. & BILLINGS, W.D. (eds.) *North American Terrestrial Vegetation*. Cambridge: Cambridge University Press.

FRANKLIN, J. F. & DYRNESS, C. T. 1973. *Natural vegetation of Oregon and Washington*, US Government Printing Office.

FRANKLIN, S., WARING, R., MCCREIGHT, R., COHEN, W. & FIORELLA, M. 1995. Aerial and satellite sensor detection and classification of western spruce budworm defoliation in a subalpine forest. *Canadian Journal of Remote Sensing*, 21, 299-308.

FRITTS, H. C. 1976. Tree Rings and Climate, Academic Press.

FROYD, C. 2006. Holocene fire in the Scottish Highlands: evidence from macroscopic charcoal records. *The Holocene*, 16, 235-249.

FROYD, C. & WILLIS, K. 2008. Emerging issues in biodiversity & conservation management: the need for a palaeoecological perspective. *Quaternary Science Reviews*, 27, 1723-1732.

FRYE, R., SCHMID, J., LISTER, C. & BUFFAM, P. 1977. Post-attack injection of Silvisar 510 (cacodylic acid) in spruce beetle (Coleoptera: Scolytidae) infested trees. *The Canadian Entomologist*, 109, 1221-1225.

FULLER, J. L. 1998. Ecological impact of the mid-Holocene hemlock decline in southern Ontario, Canada. *Ecology*, 79, 2337-2351.

GABRIEL, H. W. 1976. *Wilderness Ecology: The Danaher Creek Drainage, Bob Marshall Wilderness, Montana.* Doctor of Philiosophy, The University of Montana.

GARDNER, J. J. & WHITLOCK, C. 2001. Charcoal accumulation following a recent fire in the Cascade Range, northwestern USA, and its relevance for fire-history studies. *The Holocene*, 11, 541-549.

GAVIN, D.G., HU, F.S., LERTZMAN, K. AND CORBETT, P., 2006. Weak climatic control of stand-scale fire history during the late Holocene. Ecology, 87(7), pp.1722-1732.

GAVIN, D. G., BRUBAKER, L. B. & LERTZMAN, K. P. 2003. Holocene fire history of a coastal temperate rain forest based on soil charcoal radiocarbon dates. *Ecology*, 84, 186-201.

GAYLORD, M. L., KOLB, T. E., POCKMAN, W. T., PLAUT, J. A., YEPEZ, E. A., MACALADY, A. K., PANGLE, R. E. & MCDOWELL, N. G. 2013. Drought predisposes piñon–juniper woodlands to insect attacks and mortality. *New Phytologist*, 198, 567-578.

GEDALOF, Z. E., PETERSON, D. L. & MANTUA, N. J. 2005. Atmospheric, climatic, and ecological controls on extreme wildfire years in the northwestern United States. *Ecological Applications*, 15, 154-174.

GIBSON, K. & NEGRÓN, J. F. Fire and bark beetle interactions. In: Hayes, JL; Lundquist, JE, comps. The Western Bark Beetle Research Group: A unique collaboration with Forest Health Protection: Proceedings of a symposium at the 2007 Society of American Foresters conference. Gen. Tech. Rep. PNW-GTR-784. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station: 51-70, 2009. 51-70.

GIGUET-COVEX, C., FICETOLA, G. F., WALSH, K., POULENARD, J., BAJARD, M., FOUINAT, L., SABATIER, P., GIELLY, L., MESSAGER, E. & DEVELLE, A. L. 2019. New insights on lake sediment DNA from the catchment: importance of taphonomic and analytical issues on the record quality. *Scientific reports*, 9, 1-21.

GIGUET-COVEX, C., PANSU, J., ARNAUD, F., REY, P.-J., GRIGGO, C., GIELLY, L., DOMAIZON, I., COISSAC, E., DAVID, F., CHOLER, P., POULENARD, J. & TABERLET, 316 P. 2014. Long livestock farming history and human landscape shaping revealed by lake sediment DNA. *Nature Communications*, 5.

GODEFROID, M., MESEGUER, A. S., SAUNE, L., GENSON, G., STREITO, J.-C., ROSSI, J.-P., RIVERON, A. Z., MAYER, F., CRUAUD, A. & RASPLUS, J.-Y. 2019. Restriction-site associated DNA markers provide new insights into the evolutionary history of the bark beetle genus Dendroctonus. *Molecular phylogenetics and evolution*, 139, 106528.

GOLDSTEIN, P. Z. & DESALLE, R. 2003. Calibrating phylogenetic species formation in a threatened insect using DNA from historical specimens. *Molecular Ecology*, 12, 1993-1998.

GRANT, G. & WOLFF, A. 1991. Long-term patterns of sediment transport after timber harvest, western Cascade Mountains, Oregon, USA. *Sediment and stream water quality in a changing environment: Trends and explanation*, 203, 31-40.

GRAUMLICH, L. J. 1987. Precipitation variation in the Pacific Northwest (1675–1975) as reconstructed from tree rings. *Annals of the Association of American Geographers*, 77, 19-29.

GRAUMLICH, L. J. 1993. A 1000-year record of temperature and precipitation in the Sierra Nevada. *Quaternary Research*, 39, 249-255.

GREENBANK, D., SCHAEFER, G. W. & RAINEY, R. C. 1980. Spruce budworm (Lepidoptera: Tortricidae) moth flight and dispersal: new understanding from canopy observations, radar, and aircraft. *The Memoirs of the Entomological Society of Canada*, 112, 1-49.

GUGERLI, F., PARDUCCI, L. & PETIT, R. J. 2005. Ancient plant DNA: review and prospects. *New Phytologist*, 166, 409-418.

MORRISON, H. P. & SWANSON, F. J. 1990. Fire history and pattern in a Cascade Range landscape. *Gen. Tech. Rep. PNW-GTR-254. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.*

HAILE, J., FROESE, D. G., MACPHEE, R. D., ROBERTS, R. G., ARNOLD, L. J., REYES, A. V., RASMUSSEN, M., NIELSEN, R., BROOK, B. W. & ROBINSON, S. 2009. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. *Proceedings of the National Academy of Sciences*, 106, 22352-22357.

HAILE, J., HOLDAWAY, R., OLIVER, K., BUNCE, M., GILBERT, M. T. P., NIELSEN, R., MUNCH, K., HO, S. Y., SHAPIRO, B. & WILLERSLEV, E. 2007. Ancient DNA chronology within sediment deposits: Are paleobiological reconstructions possible and is DNA leaching a factor? *Molecular biology and evolution*, 24, 982-989.

HAJDA, Y. 1994. Notes on Indian houses of the Wappato Valley. *Northwest Anthropological Research Notes*, 28, 177-88.

HALLETT, D. J., MATHEWES, R. W. & WALKER, R. C. 2003. A 1000-year record of forest fire, drought and lake-level change in southeastern British Columbia, Canada. *The Holocene*, 13, 751-761.

HAMMOND, P. 1992. Species Inventory. *In:* GROOMBRIDGE, B. (ed.) *Global Biodiversity: Status of the Earth's Living Resources*. London: Chapman and Hall.

HÄNFLING, B., LAWSON HANDLEY, L., READ, D. S., HAHN, C., LI, J., NICHOLS, P., BLACKMAN, R. C., OLIVER, A. & WINFIELD, I. J. 2016. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. *Molecular ecology*, 25, 3101-3119.

HARPER, G. L., MACLEAN, N. & GOULSON, D. 2006. Analysis of museum specimens suggests extreme genetic drift in the adonis blue butterfly (Polyommatus bellargus). *Biological Journal of the Linnean Society*, 88, 447-452.

HARPER, L. R., LAWSON HANDLEY, L., HAHN, C., BOONHAM, N., REES, H. C., GOUGH, K. C., LEWIS, E., ADAMS, I. P., BROTHERTON, P. & PHILLIPS, S. 2018. Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of the great crested newt (Triturus cristatus). *Ecology and evolution*, *8*, 6330-6341.

HARTLEY, C., NEWCOMB, R., RUSSELL, R., YONG, C., STEVENS, J., YEATES, D., LA SALLE, J. & OAKESHOTT, J. 2006. Amplification of DNA from preserved specimens shows blowflies were preadapted for the rapid evolution of insecticide resistance. *Proceedings of the National Academy of Sciences*, 103, 8757-8762.

HARVEY, B. J., DONATO, D. C., ROMME, W. H. & TURNER, M. G. 2013. Influence of recent bark beetle outbreak on fire severity and postfire tree regeneration in montane Douglasfir forests. *Ecology*, 94, 2475-2486.

HARVEY, B. J., DONATO, D. C. & TURNER, M. G. 2014. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies. *Proceedings of the National Academy of Sciences*, 111, 15120-15125.

HATZENBUHLER, C., KELLY, J. R., MARTINSON, J., OKUM, S. & PILGRIM, E. 2017. Sensitivity and accuracy of high-throughput metabarcoding methods for early detection of invasive fish species. Scientific Reports, 7, 46393.

HAUGO, R. D., KELLOGG, B. S., CANSLER, C. A., KOLDEN, C. A., KEMP, K. B., ROBERTSON, J. C., METLEN, K. L., VAILLANT, N. M. & RESTAINO, C. M. 2019. The missing fire: quantifying human exclusion of wildfire in Pacific Northwest forests, USA. *Ecosphere*, 10, e02702.

HAWTHORNE, D. & MITCHELL, F. J. 2016. Identifying past fire regimes throughout the Holocene in Ireland using new and established methods of charcoal analysis. *Quaternary Science Reviews*, 137, 45-53.

HAYWARD, C. 2012. High spatial resolution electron probe microanalysis of tephras and melt inclusions without beam-induced chemical modification. *The Holocene*, 22, 119-125.

HEBDA, R. J. & WHITLOCK, C. 1997. Environmental history. *The rain forests of home. Edited by PK Schoonmaker, B. von Hagen, and EC Wolf. Island Press, Washington, DC*, 227-254. HEBERTSON, E. G. & JENKINS, M. J. 2008. Climate factors associated with historic spruce beetle (Coleoptera: Curculionidae) outbreaks in Utah and Colorado. *Environmental Entomology*, 37, 281-292.

HEIL, M. & BALDWIN, I. T. 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. *Trends in plant science*, 7, 61-67.

HEINSELMAN, M. L. 1981. Fire and Succession in the Conifer Forests of Northern North America. In: WEST, D. C., SHUGART, H. H. & BOTKIN, D. B. (eds.) Forest Succession: Concepts and Application. New Yo1k, NY: Springer New York.

HELLUM, A. K. & WANG, B. S. P. Lodgepole pine seed: seed characteristics, handling and use. *In:* BAUMGARTNER, D. M., KREBILL, R. G., ARNOTT, J. T. & WEETMAN, G. F., eds. Lodgepole pine the species and it's management: symposium proceedings, 1985 Washington State University. Pullman.

HEMSTROM, M. A. & FRANKLIN, J. F. 1982. Fire and other disturbances of the forests in Mount Rainier National Park. *Quaternary research*, 18, 32-51.

HENRIQUES, B. S., GARCIA, E. S., AZAMBUJA, P. & GENTA, F. A. 2020. Determination of chitin content in insects: an alternate method based on calcofluor staining. *Frontiers in physiology*, 11, 117.

HESSBURG, P. F., MILLER, C. L., PARKS, S. A., POVAK, N. A., TAYLOR, A. H., HIGUERA, P. E., PRICHARD, S. J., NORTH, M. P., COLLINS, B. M. & HURTEAU, M. D. 2019. Climate, environment, and disturbance history govern resilience of western North American forests. *Frontiers in Ecology and Evolution*, *7*, 239.

HEWLETT, J. D. & HIBBERT, A. R. 1967. Factors affecting the response of small watersheds to precipitation in humid areas. *In:* SOPPER, W. E. & LULL, H. W. (eds.) *Forest Hydrology*. New York: Pergamon Press.

HICKE, J. A., JOHNSON, M. C., HAYES, J. L. & PREISLER, H., K 2012. Effects of beetlecaused tree mortality on wildfire. *Forest Ecology and Management*, 271, 81-90. HIGUERA, P. E., GAVIN, D. G., BARTLEIN, P. J. & HALLETT, D. J. 2010. Peak detection in sediment–charcoal records: impacts of alternative data analysis methods on fire-history interpretations. *International Journal of Wildland Fire*, 19, 996-1014.

HIGUERA, P. E., SPRUGEL, D. G. & BRUBAKER, L. B. 2005. Reconstructing fire regimes with charcoal from small-hollow sediments: a calibration with tree-ring records of fire. *The Holocene*, 15, 238-251.

HIMEJIMA, M., HOBSON, K. R., OTSUKA, T., WOOD, D. L. & KUBO, I. 1992. Antimicrobial terpenes from oleoresin of ponderosa pine tree Pinus ponderosa: a defense mechanism against microbial invasion. *Journal of Chemical Ecology*, 18, 1809-1818.

HOFFMAN, K. M., GAVIN, D., LERTZMAN, K., SMITH, D. & STARZOMSKI, B. 2016. 13,000 years of fire history derived from soil charcoal in a British Columbia coastal temperate rain forest. *Ecosphere*, 7, e01415.

HOFREITER, M., JAENICKE, V., SERRE, D., HAESELER, A. V. & PÄÄBO, S. 2001. DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic acids research, 29, 4793-4799.

HOOD, S. M., VARNER, J. M., VAN MANTGEM, P. & CANSLER, C. A. 2018. Fire and tree death: understanding and improving modeling of fire-induced tree mortality. *Environmental Research Letters*, 13, 113004.

HOPKINS, G. & FRECKLETON, R. Declines in the numbers of amateur and professional taxonomists: implications for conservation. Animal conservation forum, 2002. Cambridge University Press, 245-249.

HØYE, T. T. 2020. Arthropods and climate change–arctic challenges and opportunities. *Current Opinion in Insect Science*, 41, 40-45.

HØYE, T. T. & CULLER, L. E. 2018. Tundra arthropods provide key insights into ecological responses to environmental change. Springer.

HUA, Q., BARBETTI, M. & RAKOWSKI, A. Z. 2013. Atmospheric radiocarbon for the period 1950–2010. *Radiocarbon*, 55, 2059-2072.

HUANG, J., KAUTZ, M., TROWBRIDGE, A. M., HAMMERBACHER, A., RAFFA, K. F., ADAMS, H. D., GOODSMAN, D. W., XU, C., MEDDENS, A. J. & KANDASAMY, D. 2020. Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling. New Phytologist, 225, 26-36.

HULCR, J., ATKINSON, T. H., COGNATO, A. I., JORDAL, B. H. & MCKENNA, D. D. 2015. Morphology, taxonomy, and phylogenetics of bark beetles. *Bark Beetles*. Elsevier.

HULSE, D., BRANSCOMB, A., ENRIGHT, C., JOHNSON, B., EVERS, C., BOLTE, J. & AGER, A. 2016. Anticipating surprise: Using agent-based alternative futures simulation modeling to identify and map surprising fires in the Willamette Valley, Oregon USA. *Landscape and Urban Planning*, 156, 26-43.

HUNTER, M. E., DORAZIO, R. M., BUTTERFIELD, J. S., MEIGS-FRIEND, G., NICO, L. G. & FERRANTE, J. A. 2017. Detection limits of quantitative and digital PCR assays and their influence in presence–absence surveys of environmental DNA. *Molecular ecology resources*, 17, 221-229.

HUNTLEY, B. 1996. Quaternary palaeoecology and ecology. *Quaternary Science Reviews*, 15, 591-606.

JENKINS, M. J., HEBERTSON, E., PAGE, W. & JORGENSEN, C. A. 2008. Bark beetles, fuels, fires and implications for forest management in the Intermountain West. *Forest Ecology and Management*, 254, 16-34.

JIN, Y., RANDERSON, J. T., GOETZ, S. J., BECK, P. S., LORANTY, M. M. & GOULDEN,M. L. 2012. The influence of burn severity on postfire vegetation recovery and albedo change during early succession in North American boreal forests. *Journal of Geophysical Research: Biogeosciences*, 117.

JO, T., MURAKAMI, H., YAMAMOTO, S., MASUDA, R. & MINAMOTO, T. 2019. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution. *Ecology and Evolution*, 9, 1135-1146.

JONES, G., LANE, C. S., BRAUER, A., DAVIES, S. M., DE BRUIJN, R., ENGELS, S., HALIUC, A., HOEK, W. Z., MERKT, J. & SACHSE, D. 2018. The Lateglacial to early Holocene tephrochronological record from Lake Hämelsee, Germany: a key site within the European tephra framework. *Boreas*, 47, 28-40.

JØRGENSEN, T., HAILE, J., MÖLLER, P., ANDREEV, A., BOESSENKOOL, S., RASMUSSEN, M., KIENAST, F., COISSAC, E., TABERLET, P. & BROCHMANN, C. 2012. A comparative study of ancient sedimentary DNA, pollen and macrofossils from permafrost sediments of northern Siberia reveals long-term vegetational stability. *Molecular Ecology*, 21, 1989-2003.

KANT, M., JONCKHEERE, W., KNEGT, B., LEMOS, F., LIU, J., SCHIMMEL, B., VILLARROEL, C., ATAIDE, L., DERMAUW, W. & GLAS, J. 2015. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. *Annals of botany*, 115, 1015-1051.

KEELING, C. I., HENDERSON, H., LI, M., YUEN, M., CLARK, E. L., FRASER, J. D., HUBER, D. P., LIAO, N. Y., DOCKING, T. R. & BIROL, I. 2012. Transcriptome and fulllength cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests. *Insect biochemistry and molecular biology*, 42, 525-536.

KEELING, C. I., YUEN, M. M., LIAO, N. Y., DOCKING, T. R., CHAN, S. K., TAYLOR, G. A., PALMQUIST, D. L., JACKMAN, S. D., NGUYEN, A. & LI, M. 2013. Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest. *Genome biology*, 14, 1-20.

KELLOGG, L.-K. B., MCKENZIE, D., PETERSON, D. L. & HESSL, A. E. 2008. Spatial models for inferring topographic controls on historical low-severity fire in the eastern Cascade Range of Washington, USA. *Landscape Ecology*, 23, 227-240.

KELLY, R. P., SHELTON, A. O. & GALLEGO, R. 2019. Understanding PCR Processes to Draw Meaningful Conclusions from Environmental DNA Studies. Scientific Reports, 9, 12133.

KIM, J. H., HONG, J. Y., MOON, J.-C., KWON, K. & JANG, C. S. 2018. Development of molecular markers for detecting almond, peanut, pine nut, and walnut in commercial food using quantitative real-time PCR. *Applied Biological Chemistry*, 61, 345-354.

KIRTANE, A., WIECZOREK, D., NOJI, T., BASKIN, L., OBER, C., PLOSICA, R., CHENOWETH, A., LYNCH, K. & SASSOUBRE, L. 2021. Quantification of Environmental DNA (eDNA) shedding and decay rates for three commercially harvested fish species and comparison between eDNA detection and trawl catches. *Environmental DNA*, 3, 1142-1155.

KISAND, V., TALAS, L., KISAND, A., STIVRINS, N., REITALU, T., ALLIKSAAR, T., VASSILJEV, J., LIIV, M., HEINSALU, A. & SEPPÄ, H. 2018. From microbial eukaryotes to metazoan vertebrates: Wide spectrum paleo-diversity in sedimentary ancient DNA over the last~ 14,500 years. *Geobiology*, 16, 628-639.

KISTLER, L. 2012. Ancient DNA extraction from plants. Ancient DNA. Springer.

KLEPZIG, K. D. & SIX, D. 2004. Bark beetle-fungal symbiosis: context dependency in complex associations. *Symbiosis*.

KLYMUS, K. E., MERKES, C. M., ALLISON, M. J., GOLDBERG, C. S., HELBING, C. C., HUNTER, M. E., JACKSON, C. A., LANCE, R. F., MANGAN, A. M., MONROE, E. M., PIAGGIO, A. J., STOKDYK, J. P., WILSON, C. C. & RICHTER, C. A. 2020. Reporting the limits of detection and quantification for environmental DNA assays. *Environmental DNA*, 2, 271-282.

KOHNLE, U., HEIN, S., SORENSEN, F. C. & WEISKITTEL, A. R. 2012. Effects of seed source origin on bark thickness of Douglas-fir (Pseudotsuga menziesii) growing in southwestern Germany. *Canadian Journal of Forest Research*, 42, 382-399.

KREADER, C. A. 1996. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. *Applied and environmental microbiology*, 62, 1102-1106.

L BOND, M., E LEE, D., M BRADLEY, C. & T HANSON, C. 2009. Influence of pre-fire tree mortality on fire severity in conifer forests of the San Bernardino Mountains, California. *The Open Forest Science Journal*, 2.

LAKEMAN, T. R., CLAGUE, J. J., MENOUNOS, B., OSBORN, G. D., JENSEN, B. J. & FROESE, D. G. 2008. Holocene tephras in lake cores from northern British Columbia, Canada. *Canadian Journal of Earth Sciences*, 45, 935-947.

LANGOR, D. W. & SPENCE, J. R. 2006. Arthropods as ecological indicators of sustainability in Canadian forests. *The Forestry Chronicle*, 82, 344-350.

LARSEN, C. P. & MACDONALD, G. M. 1993. Lake morphometry, sediment mixing and the selection of sites for fine resolution palaeoecological studies. *Quaternary Science Reviews*, 12, 781-792.

LAUVAUX, C. A., SKINNER, C. N. & TAYLOR, A. H. 2016. High severity fire and mixed conifer forest-chaparral dynamics in the southern Cascade Range, USA. *Forest Ecology and Management*, 363, 74-85.

LEBLANC, F., BELLIVEAU, V., WATSON, E., COOMBER, C., SIMARD, N., DIBACCO, C., BERNIER, R. & GAGNÉ, N. 2020. Environmental DNA (eDNA) detection of marine aquatic invasive species (AIS) in Eastern Canada using a targeted species-specific qPCR approach. *Management of Biological Invasions*, 11, 201.

LESTER, J. D. & IRWIN, J. T. 2012. Metabolism and cold tolerance of overwintering adult mountain pine beetles (Dendroctonus ponderosae): evidence of facultative diapause? *Journal of insect physiology*, 58, 808-815.

LICHTI-FEDEROVICH, S. 1970. The pollen stratigraphy of a dated section of Late Pleistocene lake sediment from central Alberta. *Canadian Journal of Earth Sciences*, 7, 938-945.

LINDGREN, B. & RAFFA, K. 2013. Evolution of tree killing in bark beetles (Coleoptera: Curculionidae): trade-offs between the maddening crowds and a sticky situation. *The Canadian Entomologist*, 145, 471-495.

LITTELL, J., ELSNER, M. M., WHITELY BINDER, L. & SNOVER, A. 2009. The Washington Climate Change Impacts Assessment: Evaluating Washington's Future in a Changing Climate-Executive Summary.

LIVINGSTONE, D. 1955. A lightweight piston sampler for lake deposits. *Ecology*, 36, 137-139.

LLOYD, K. G., MACGREGOR, B. J. & TESKE, A. 2010. Quantitative PCR methods for RNA and DNA in marine sediments: maximizing yield while overcoming inhibition. *FEMS Microbiology Ecology*, 72, 143-151.

LOEZA-QUINTANA, T., ABBOTT, C. L., HEATH, D. D., BERNATCHEZ, L. & HANNER, R. H. 2020. Pathway to Increase Standards and Competency of eDNA Surveys (PISCeS)—Advancing collaboration and standardization efforts in the field of eDNA. Environmental DNA, 2, 255-260.

LOGAN, J. A. & BENTZ, B. J. 1999. Model analysis of mountain pine beetle (Coleoptera: Scolytidae) seasonality. *Environmental Entomology*, 28, 924-934.

LOGAN, J. A. & POWELL, J. A. 2001. Ghost forests, global warming, and the mountain pine beetle (Coleoptera: Scolytidae). *American Entomologist*, 47, 160-173.

LOGAN, J. A., RÉGNIÈRE, J. & POWELL, J. A. 2003. Assessing the impacts of global warming on forest pest dynamics. *Frontiers in Ecology and the Environment*, 1, 130-137.

LONG, C. J., POWER, M. J., MINCKLEY, T. A. & HASS, A. L. 2014. The impact of Mt Mazama tephra deposition on forest vegetation in the Central Cascades, Oregon, USA. *The Holocene*, 24, 503-511.

LONG, C. J. & WHITLOCK, C. 2002. Fire and vegetation history from the coastal rain forest of the western Oregon Coast Range. *Quaternary Research*, 58, 215-225.

LONG, C. J., WHITLOCK, C. & BARTLEIN, P. J. 2007. Holocene vegetation and fire history of the Coast Range, western Oregon, USA. *The Holocene*, 17, 917-926.

LONG, C. J., WHITLOCK, C., BARTLEIN, P. J. & MILLSPAUGH, S. H. 1998. A 9000-year fire history from the Oregon Coast Range, based on a high-resolution charcoal study. *Canadian Journal of Forest Research*, 28, 774-787.

LOOPE, L. L. & GRUELL, G. E. 1973. The ecological role of fire in the Jackson Hole area, northwestern Wyoming. *Quaternary research*, *3*, 425-443.

LOTAN, J. E., BROWN, J. K. & NEUENSCHWANDER, L. F. 1985. Role of fire in lodgepole pine forests. *Lodgepole pine: the species and its management. Cooperative Extension Service, Washington State University, Pullman*, 133-152.

LOWE, D. J. 2011. Tephrochronology and its application: a review. *Quaternary Geochronology*, 6, 107-153.

LOWE, D. J., PEARCE, N. J., JORGENSEN, M. A., KUEHN, S. C., TRYON, C. A. & HAYWARD, C. L. 2017. Correlating tephras and cryptotephras using glass compositional analyses and numerical and statistical methods: Review and evaluation. *Quaternary Science Reviews*, 175, 1-44.

LOWE, J. J. 2001. Abrupt climatic changes in Europe during the last glacial-interglacial transition: the potential for testing hypotheses on the synchroneity of climatic events using tephrochronology. *Global and Planetary Change*, 30, 73-84.

LYDOLPH, M. C., JACOBSEN, J., ARCTANDER, P., GILBERT, M. T. P., GILICHINSKY, D. A., HANSEN, A. J., WILLERSLEV, E. & LANGE, L. 2005. Beringian paleoecology inferred from permafrost-preserved fungal DNA. *Applied and environmental microbiology*, 71, 1012-1017.

MACDONALD, G., BENNETT, K., JACKSON, S., PARDUCCI, L., SMITH, F., SMOL, J. & WILLIS, K. 2008. Impacts of climate change on species, populations and communities: palaeobiogeographical insights and frontiers. *Progress in Physical Geography*, 32, 139-172.

MANN, M. E. 2002. Little ice age. Encyclopedia of global environmental change, 1, 504-509.

MANN, M. E. 2002. Medieval climatic optimum. *Encyclopedia of global environmental change*, 1, 514-516.

MARLON, J. R., BARTLEIN, P. J., WALSH, M. K., HARRISON, S. P., BROWN, K. J., EDWARDS, M. E., HIGUERA, P. E., POWER, M., ANDERSON, R. & BRILES, C. 2009. Wildfire responses to abrupt climate change in North America. *Proceedings of the National Academy of Sciences*, 106, 2519-2524.

MAROJA, L. S., BOGDANOWICZ, S. M., WALLIN, K. F., RAFFA, K. F. & HARRISON, R. G. 2007. Phylogeography of spruce beetles (Dendroctonus rufipennis kirby)(Curculionidae: Scolytinae) in North America. *Molecular Ecology*, 16, 2560-2573.

MARTINDALE, A. 2015. Chinookan Peoples of the Lower Columbia. *BC Studies*, 144-144. MASEK, J. G., HUANG, C., WOLFE, R., COHEN, W., HALL, F., KUTLER, J. & NELSON, P. 2008. North American forest disturbance mapped from a decadal Landsat record. *Remote Sensing of Environment*, 112, 2914-2926.

MATTHEWS JR, J. V. & OVENDEN, L. E. 1990. Late Tertiary plant macrofossils from localities in Arctic/Subarctic North America: a review of the data. *Arctic*, 364-392.

MBELE, V. L., MULLINS, S. M., WINKLER, S. R. & WOODBORNE, S. 2017. Acceptance tests for AMS radiocarbon measurements at iThemba LABS, Gauteng, South Africa. *Physics Procedia*, 90, 10-16.

MCCARROLL, D. & LOADER, N. J. 2004. Stable isotopes in tree rings. *Quaternary Science Reviews*, 23, 771-801.

MCKEE, A. M., SPEAR, S. F. & PIERSON, T. W. 2015. The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples. *Biological Conservation*, 183, 70-76.

MEANS, J. Forest Succession and Stand Development Research in the Northwest. *In:* MEANS, J., ed. Northwest Scientific Association Annual Metings, 1981 Oregon State University, Corvallis.

MEANS, J. E. 1990. Tsuga mertensiana (Bong.) Carr. mountain hemlock. *Silvics of North America*, 1, 623-631.

MEDDENS, A. J. & HICKE, J. A. 2014. Spatial and temporal patterns of Landsat-based detection of tree mortality caused by a mountain pine beetle outbreak in Colorado, USA. *Forest Ecology and Management*, 322, 78-88.

MEDDENS, A. J., HICKE, J. A. & FERGUSON, C. A. 2012. Spatiotemporal patterns of observed bark beetle-caused tree mortality in British Columbia and the western United States. *Ecological Applications*, 22, 1876-1891.

MEN, A. E., WILSON, P., SIEMERING, K. & FORREST, S. 2008. Sanger DNA sequencing. *Next Generation Genome Sequencing: Towards Personalized Medicine*, 1-11.

MERSCHEL, A. G., HEYERDAHL, E. K., SPIES, T. A. & LOEHMAN, R. A. 2018. Influence of landscape structure, topography, and forest type on spatial variation in historical fire regimes, Central Oregon, USA. *Landscape Ecology*, 33, 1195-1209.

MERSCHEL, A. G., HEYERDAHL, E. K., SPIES, T. A. & LOEHMAN, R. A. 2018. Influence of landscape structure, topography, and forest type on spatial variation in historical fire regimes, Central Oregon, USA. *Landscape Ecology*, 33, 1195-1209.

MEYERS, P. A. & TERANES, J. L. 2002. Sediment organic matter. *Tracking environmental change using lake sediments*. Springer.

MIERENDORF, R. R. 1999. Precontact use of tundra zones of the northern Cascades Range of Washington and British Columbia. *Archaeol. Washington*, 7, 3-23.

MILLER, N. & LEHANE, M. 1993. Peritrophic membranes, cell surface molecules and parasite tropisms within arthropod vectors. *Parasitology today*, 9, 45-50.

MILLER, R., VOSS-FOUCART, M.-F., TOUSSAINT, C. & JEUNIAUX, C. 1993. Chitin preservation in Quaternary Coleoptera: preliminary results. *Palaeogeography, Palaeoclimatology, Palaeoecology,* 103, 133-140.

MILLSPAUGH, S. H. & WHITLOCK, C. 1995. A 750-year fire history based on lake sediment records in central Yellowstone National Park, USA. *The Holocene*, *5*, 283-292.

MILLSPAUGH, S. H., WHITLOCK, C. & BARTLEIN, P. J. 2000. Variations in fire frequency and climate over the past 17 000 yr in central Yellowstone National Park. *Geology*, 28, 211-214.

MINCKLEY, T. A. & LONG, C. J. 2016. Paleofire severity and vegetation change in the Cascade Range, Oregon, USA. *Quaternary Research*, 85, 211-217.

MINCKLEY, T. A., WHITLOCK, C. & BARTLEIN, P. J. 2007. Vegetation, fire, and climate history of the northwestern Great Basin during the last 14,000 years. *Quaternary Science Reviews*, 26, 2167-2184.

MINETT, J. F., GARCIA DE LEANIZ, C., BRICKLE, P. & CONSUEGRA, S. 2021. A new high-resolution melt curve eDNA assay to monitor the simultaneous presence of invasive brown trout (Salmo trutta) and endangered galaxiids. *Environmental DNA*, 3, 561-572.

MINOR, R. & PECOR, A. F. 1977. Cultural resource overview of the Willamette National Forest, western Oregon.

MITCHELL, R. G. & BUFFAM, P. E. 2001. Patterns of long-term balsam woolly adelgid infestations and effects in Oregon and Washington. *Western Journal of Applied Forestry*, 16, 121-126.

MITTON, J. B. & FERRENBERG, S. M. 2012. Mountain pine beetle develops an unprecedented summer generation in response to climate warming. *The American Naturalist*, 179, E163-E171.

MOHR, J. A., WHITLOCK, C. & SKINNER, C. N. 2000. Postglacial vegetation and fire history, eastern Klamath Mountains, California, USA. *The Holocene*, 10, 587-601.

MONTORO GIRONA, M., NAVARRO, L. & MORIN, H. 2018. A Secret Hidden in the Sediments: Lepidoptera Scales. *Frontiers in Ecology and Evolution*, 6.

MOORE, P. D., WEBB, J. A. & COLLISON, M. E. 1991. *Pollen analysis*, Blackwell scientific publications.

MOREIRA, X., ZAS, R. & SAMPEDRO, L. 2012. Differential allocation of constitutive and induced chemical defenses in pine tree juveniles: a test of the optimal defense theory. *Plos One*, 7, e34006.

MORRIS, J. L. 2013. Using lake sediment records to reconstruct bark beetle disturbances in western North America. *Frontiers of Biogeography*, 5.

MORRIS, J. L. & BRUNELLE, A. 2012. Pollen accumulation in lake sediments during historic spruce beetle disturbances in subalpine forests of southern Utah, USA. *The Holocene*, 22, 961-974.

MORRIS, J. L., BRUNELLE, A., MUNSON, A. S., SPENCER, J. & POWER, M. J. 2013. Holocene vegetation and fire reconstructions from the Aquarius Plateau, Utah, USA. *Quaternary International*, 310, 111-123. MORRIS, J. L., BRUNELLE, A. R. & MUNSON, A. S. 2010. Pollen evidence of historical forest disturbance on the Wasatch Plateau, Utah. *Western North American Naturalist*, 70, 175-188.

MORRIS, J. L., COTTRELL, S., FETTIG, C. J., DEROSE, R. J., MATTOR, K. M., CARTER, V. A., CLEAR, J., CLEMENT, J., HANSEN, W. D. & HICKE, J. A. 2018. Bark beetles as agents of change in social–ecological systems. *Frontiers in Ecology and the Environment*, 16, S34-S43.

MORRIS, J. L., COTTRELL, S., FETTIG, C. J., HANSEN, W. D., SHERRIFF, R. L., CARTER, V. A., CLEAR, J. L., CLEMENT, J., DEROSE, R. J. & HICKE, J. A. 2017. Managing bark beetle impacts on ecosystems and society: priority questions to motivate future research. *Journal of Applied Ecology*, 54, 750-760.

MORRIS, J. L., LE ROUX, P. C., MACHARIA, A. N., BRUNELLE, A., HEBERTSON, E. G. & LUNDEEN, Z. J. 2013. Organic, elemental, and geochemical contributions to lake sediment deposits during severe spruce beetle (Dendroctonus rufipennis) disturbances. *Forest Ecology and Management*, 289, 78-89.

MORRIS, J. L., MUELLER, J. R., NURSE, A., LONG, C. J. & MCLAUCHLAN, K. K. 2014. Holocene fire regimes, vegetation and biogeochemistry of an ecotone site in the G reat L akes R egion of N orth A merica. *Journal of Vegetation Science*, 25, 1450-1464.

MORRIS, J. L., MUSTAPHI, C. J. C., CARTER, V. A., WATT, J., DERR, K., PISARIC, M. F., ANDERSON, R. S. & BRUNELLE, A. R. 2015. Do bark beetle remains in lake sediments correspond to severe outbreaks? A review of published and ongoing research. *Quaternary International*, 387, 72-86.

MORRIS, W. G. 1934. Forest fires in western Oregon and western Washington. *Oregon Historical Quarterly*, 35, 313-339.

MOTE, P. W. 2006. Climate-driven variability and trends in mountain snowpack in western North America. *Journal of Climate*, 19, 6209-6220.

MUHA, T. P., ROBINSON, C. V., GARCIA DE LEANIZ, C. & CONSUEGRA, S. 2019. An optimised eDNA protocol for detecting fish in lentic and lotic freshwaters using a small water volume. *PloS one*, 14, e0219218.

MÜLLER, J., BUSSLE, H., GOSSNE, M., RETTELBACH, T. & DUELLI, P. 2008. The European spruce bark beetle Ips typographus in a national park: from pest to keystone species. *Biodiversity and Conservation*, 17, 2979-3001.

MULLINEAUX, D. R. 1986. Summary of pre-1980 tephra-fall deposits erupted from Mount St. Helens, Washington State, USA. *Bulletin of Volcanology*, 48, 17-26.

MULLINEAUX, D. R. 1996. Pre-1980 tephra-fall deposits erupted from Mount St. Helens, Washington. US Geological Survey.

MULLINEAUX, D. R., HYDE, J. H. & RUBIN, M. 1975. Widespread late glacial and postglacial tephra deposits from Mount St. Helens volcano, Washington. *Journal of Research of the US Geological Survey*, 3, 329-335.

MULLIS, K. B. & FALOONA, F. A. 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol, 155, 335-50.

MYRBO, A. & WRIGHT, H. E. 2008. An introduction to Livingstone and Bolivia coring equipment. *Limnol. Res. Cent. Core Facil. SOP Ser.*, 3.1.

NAESER, C., BRIGGS, N., OBRADOVICH, J. & IZETT, G. 1981. Geochronology of Quaternary tephra deposits. *Tephra studies*. Springer.

NAESER, C. W., BRIGGS, N. D., OBRADOVICH, J. D. & IZETT, G. A. 1981. Geochronology of Quaternary Tephra Deposits. Springer Netherlands.

NEGRON, J.F., MCMILLIN, J.D., ANHOLD, J.A. AND COULSON, D., 2009. Bark beetlecaused mortality in a drought-affected ponderosa pine landscape in Arizona, USA. Forest Ecology and Management, 257(4), pp.1353-1362. NEWTON, A. J., DUGMORE, A. J. & GITTINGS, B. M. 2007. Tephrabase: tephrochronology and the development of a centralised European database. *Journal of Quaternary Science*, 22, 737-743.

NICHOLS, R. V., CURD, E., HEINTZMAN, P. D. & SHAPIRO, B. 2019. Targeted amplification and sequencing of ancient environmental and sedimentary DNA. Ancient DNA. Springer.

NOGUÉ, S., DE NASCIMENTO, L., FROYD, C. A., WILMSHURST, J. M., DE BOER, E. J., COFFEY, E. E., WHITTAKER, R. J., FERNÁNDEZ-PALACIOS, J. M. & WILLIS, K. J. 2017. Island biodiversity conservation needs palaeoecology. *Nature ecology & evolution*, 1, 1-9.

OLIVEIRA, C. M. G. D., MONTEIRO, A. R. & BLOK, V. C. 2011. Morphological and molecular diagnostics for plant-parasitic nematodes: working together to get the identification done. *Tropical Plant Pathology*, 36, 65-73.

OPEL, K. L., CHUNG, D. T., DRÁBEK, J., TATAREK, N. E., JANTZ, L. M. & MCCORD, B. R. 2006. The application of miniplex primer sets in the analysis of degraded DNA from human skeletal remains. *Journal of forensic sciences*, 51, 351-356.

OŽANA, S., PYSZKO, P. & DOLNÝ, A. 2020. Determination of suitable insect part for nonlethal DNA sampling: case study of DNA quality and regeneration capability of dragonflies. *Insect Conservation and Diversity*, 13, 319-327.

PÄÄBO, S. 1985. Preservation of DNA in ancient Egyptian mummies. *Journal of Archaeological Science*, 12, 411-417.

PÄÄBO, S. 1989. Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. *Proceedings of the National Academy of Sciences*, 86, 1939-1943. PÄÄBO, S. 1993. Ancient DNA. *Scientific American*, 269, 86-92.

PAINE, T., RAFFA, K. & HARRINGTON, T. 1997. Interactions among scolytid bark beetles, their associated fungi, and live host conifers. *Annual review of entomology*, 42, 179-206.

PANSU, J., GIGUET-COVEX, C., FICETOLA, G. F., GIELLY, L., BOYER, F., ZINGER, L., ARNAUD, F., POULENARD, J., TABERLET, P. & CHOLER, P. 2015. Reconstructing long-term human impacts on plant communities: An ecological approach based on lake sediment DNA. *Molecular ecology*, 24, 1485-1498.

PARDUCCI, L. 2019. Quaternary DNA: A multidisciplinary research field. Quaternary, 2, 37.

PARDUCCI, L., ALSOS, I. G., UNNEBERG, P., PEDERSEN, M. W., HAN, L., LAMMERS, Y., SALONEN, J. S., VÄLIRANTA, M. M., SLOTTE, T. & WOHLFARTH, B. 2019. Shotgun environmental DNA, pollen, and macrofossil analysis of lateglacial lake sediments from southern Sweden. *Frontiers in Ecology and Evolution*, *7*, 189.

PARDUCCI, L., BENNETT, K. D., FICETOLA, G. F., ALSOS, I. G., SUYAMA, Y., WOOD, J. R. & PEDERSEN, M. W. 2017. Ancient plant DNA in lake sediments. *New Phytologist*, 214, 924-942.

PARDUCCI, L., JØRGENSEN, T., TOLLEFSRUD, M. M., ELVERLAND, E., ALM, T., FONTANA, S. L., BENNETT, K. D., HAILE, J., MATETOVICI, I. & SUYAMA, Y. 2012. Glacial survival of boreal trees in northern Scandinavia. *science*, 335, 1083-1086.

PARDUCCI, L., NOTA, K., TINNER, W., VAN LEEUWEN, J., VAN DER KNAAP, P., SACHSE, D., LIANG, Z., BRAUER, A., SCHWAB, M. J. & ZHAO, X. 2020. Shotgun DNA, pollen and biological multi-proxy analysis of Lateglacial lake sediments from Monticchio, Italy. Copernicus Meetings.

PARDUCCI, L., NOTA, K. & WOOD, J. 2019. Reconstructing Past Vegetation Communities Using Ancient DNA from Lake Sediments. *In:* LINDQVIST, C. & RAJORA, O. P. (eds.) *Paleogenomics: Genome-Scale Analysis of Ancient DNA*. Cham: Springer International Publishing.

PARDUCCI, L. & PETIT, R. J. 2004. Ancient DNA–unlocking plants' fossil secrets. Wiley Online Library.

PARDUCCI, L., VÄLIRANTA, M., SALONEN, J. S., RONKAINEN, T., MATETOVICI, I., FONTANA, S. L., ESKOLA, T., SARALA, P. & SUYAMA, Y. 2015. Proxy comparison in ancient peat sediments: pollen, macrofossil and plant DNA. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 370, 20130382.

PARKER, A. G., GOUDIE, A. S., ANDERSON, D. E., ROBINSON, M. A. & BONSALL, C. 2002. A review of the mid-Holocene elm decline in the British Isles. *Progress in Physical Geography*, 26, 1-45.

PARMINTER, J. 1983. Cutting Up the North: The History of the Forest Industry in the Northern Interior. By Ken Bernsohn.(North Vancouver, British Columbia, and Blaine, Washington: Hancock House, 1981. 192 pp. Illustrations, charts, bibliography, index. \$19.95). Duke University.

PARMINTER, J. 1998. Natural disturbance ecology. *Conservation biology principles for forested landscapes*, 3-41.

PATTERSON III, W. A., EDWARDS, K. J. & MAGUIRE, D. J. 1987. Microscopic charcoal as a fossil indicator of fire. *Quaternary Science Reviews*, 6, 3-23.

PECK, D. L., GRIGGS, A. B., SCHLICKER, H. G., WELLS, F. G. & DOLE, H. M. 1964. Geology of the central and northern parts of the western Cascade Range in Oregon. US Government Printing Office.

PEDERSEN, M. W., OVERBALLE-PETERSEN, S., ERMINI, L., SARKISSIAN, C. D., HAILE, J., HELLSTROM, M., SPENS, J., THOMSEN, P. F., BOHMANN, K. & CAPPELLINI, E. 2015. Ancient and modern environmental DNA. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 370, 20130383.

PEDERSEN, M. W., OVERBALLE-PETERSEN, S., ERMINI, L., SARKISSIAN, C. D., HAILE, J., HELLSTROM, M., SPENS, J., THOMSEN, P. F., BOHMANN, K., CAPPELLINI, E., SCHNELL, I. B., WALES, N. A., CARØE, C., CAMPOS, P. F., SCHMIDT, A. M. Z., GILBERT, M. T. P., HANSEN, A. J., ORLANDO, L. & WILLERSLEV, E. 2015. Ancient and modern environmental DNA. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 370, 20130383.

PEGLAR, S. M. 1992. *The development of the cultural landscape of East Anglia, UK*. Bot. Institute.

PENNINGTON, W. 1979. The origin of pollen in lake sediments: an enclosed lake compared with one receiving inflow streams. *New Phytologist*, 83, 189-213.

PERKINS, D. L. & SWETNAM, T. W. 1996. A dendroecological assessment of whitebark pine in the Sawtooth - Salmon River region, Idaho. *Canadian Journal of Forest Research*.

PERRY, D. A. & LOTAN, J. E. 1979. A model of fire selection for serotiny in lodgepole pine. *Evolution*, 958-968.

PETERS, M. E. & HIGUERA, P. E. 2007. Quantifying the source area of macroscopic charcoal with a particle dispersal model. *Quaternary Research*, 67, 304-310.

PETERS, R. S., MEUSEMANN, K., PETERSEN, M., MAYER, C., WILBRANDT, J., ZIESMANN, T., DONATH, A., KJER, K. M., ASPÖCK, U. & ASPÖCK, H. 2014. The evolutionary history of holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data. *BMC evolutionary biology*, 14, 1-16.

PETTIGREW, R. M. 1990. Prehistory of the lower Columbia and Willamette Valley. *Handbook of North American Indians*, 7, 518-529.

PICKETT, W. A. 1985. Chapter 1 - Natural Disturbance and Patch Dynamics: An Introduction. *In:* S.T.A, P. & P.S, W. (eds.) *The Ecology of Natural Disturbance and Patch Dynamics*. San Diego: Academic Press.

POCHON, X., BOTT, N. J., SMITH, K. F. & WOOD, S. A. 2013. Evaluating detection limits of next-generation sequencing for the surveillance and monitoring of international marine pests. *PloS one*, 8, e73935.

POHL, G. R., LANGOR, D. W. & SPENCE, J. R. 2007. Rove beetles and ground beetles (Coleoptera: Staphylinidae, Carabidae) as indicators of harvest and regeneration practices in western Canadian foothills forests. *Biological Conservation*, 137, 294-307.

POLLING, M., TER SCHURE, A. T., VAN GEEL, B., VAN BOKHOVEN, T., BOESSENKOOL, S., MACKAY, G., LANGEVELD, B. W., ARIZA, M., VAN DER PLICHT, H. & PROTOPOPOV, A. V. 2021. Multiproxy analysis of permafrost preserved faeces provides an unprecedented insight into the diets and habitats of extinct and extant megafauna. *Quaternary Science Reviews*, 267, 107084.

PONT, D., ROCLE, M., VALENTINI, A., CIVADE, R., JEAN, P., MAIRE, A., ROSET, N., SCHABUSS, M., ZORNIG, H. & DEJEAN, T. 2018. Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. *Scientific reports*, *8*, 1-13.

POPE, D., COULSON, R., FARGO, W., GAGNE, J. & KELLY, C. 1980. The allocation process and between-tree survival probabilities in Dendroctonus frontalis infestations. *Researches on population Ecology*, 22, 197-210.

POWELL, D. C. 1994. *Effects of the 1980s western spruce budworm outbreak on the Malheur National Forest in northeastern Oregon*, USDA Forest Service, Pacific Northwest Region, Forest Insects and Diseases Group.

POWER, M. J., WHITLOCK, C., BARTLEIN, P. & STEVENS, L. R. 2006. Fire and vegetation history during the last 3800 years in northwestern Montana. *Geomorphology*, 75, 420-436.

PYNE, S. J. 2017. *Fire in America: a cultural history of wildland and rural fire*, University of Washington Press.

RAFFA, K., ANDERSSON, M. N. & SCHLYTER, F. 2016. Host selection by bark beetles: playing the odds in a high-stakes game. *Advances in insect physiology*, 50, 1-74.

RAFFA, K. F., AUKEMA, B. H., BENTZ, B. J., CARROLL, A. L., HICKE, J. A., TURNER, M. G. & ROMME, W. H. 2008. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. *Bioscience*, 58, 501-517.

RAFFA, K. F., GREGOIRE, J.-C. & LINDGREN, B. S. 2015. Natural history and ecology of bark beetles. *Bark beetles*. Elsevier.

RAINIO, J. 2009. Carabid beetles (Coleoptera, Carabidae) as indicators of environmental change in Ranomafana National Park, Madagascar.

RAMSEY, C. B. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon, 51, 337-360.

RATCLIFFE, F. C., UREN WEBSTER, T. M., GARCIA DE LEANIZ, C. & CONSUEGRA, S. 2021. A drop in the ocean: Monitoring fish communities in spawning areas using environmental DNA. *Environmental DNA*, 3, 43-54.

REES, H. C., BISHOP, K., MIDDLEDITCH, D. J., PATMORE, J. R., MADDISON, B. C. & GOUGH, K. C. 2014. The application of eDNA for monitoring of the Great Crested Newt in the UK. *Ecology and Evolution*, 4, 4023-4032.

REES, H. C., BISHOP, K., MIDDLEDITCH, D. J., PATMORE, J. R., MADDISON, B. C. & GOUGH, K. C. 2014. The application of eDNA for monitoring of the Great Crested Newt in the UK. *Ecology and Evolution*, 4, 4023-4032.

REES, H. C., MADDISON, B. C., MIDDLEDITCH, D. J., PATMORE, J. R. & GOUGH, K. C. 2014. The detection of aquatic animal species using environmental DNA–a review of eDNA as a survey tool in ecology. *Journal of applied ecology*, 51, 1450-1459.

REEVE, J. D. 1997. Predation and bark beetle dynamics. Oecologia, 112, 48-54.

REEVE, J. D., ANDERSON, F. E. & KELLEY, S. T. 2012. Ancestral state reconstruction for Dendroctonus bark beetles: evolution of a tree killer. *Environmental entomology*, 41, 723-730.

RÉGNIÈRE, J. & BENTZ, B. 2007. Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae. *Journal of insect physiology*, 53, 559-572.

RÉGNIÈRE, J., DELISLE, J., STURTEVANT, B. R., GARCIA, M. & SAINT-AMANT, R. 2019. Modeling migratory flight in the spruce budworm: Temperature constraints. *Forests*, 10, 802.

REID, M. & ROBB, T. 1999. Death of vigorous trees benefits bark beetles. *Oecologia*, 120, 555-562.

REILLY, M. J., DUNN, C. J., MEIGS, G. W., SPIES, T. A., KENNEDY, R. E., BAILEY, J. D. & BRIGGS, K. 2017. Contemporary patterns of fire extent and severity in forests of the Pacific Northwest, USA (1985–2010). *Ecosphere*, 8, e01695.

REIMER, P. J., AUSTIN, W. E., BARD, E., BAYLISS, A., BLACKWELL, P. G., RAMSEY, C. B., BUTZIN, M., CHENG, H., EDWARDS, R. L. & FRIEDRICH, M. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). *Radiocarbon*, 62, 725-757.

RESH, V. H., BROWN, A. V., COVICH, A. P., GURTZ, M. E., LI, H. W., MINSHALL, G. W., REICE, S. R., SHELDON, A. L., WALLACE, J. B. & WISSMAR, R. C. 1988. The role of disturbance in stream ecology. *Journal of the North American benthological society*, *7*, 433-455.

RIRIE, K.M., RASMUSSEN, R.P. AND WITTWER, C.T., 1997. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Analytical biochemistry, 245(2), pp.154-160.

ROBINSON, C. V., GARCIA DE LEANIZ, C., ROLLA, M. & CONSUEGRA, S. 2019. Monitoring the eradication of the highly invasive topmouth gudgeon (Pseudorasbora parva) using a novel eDNA assay. *Environmental DNA*, 1, 74-85. ROBINSON, C. V., WEBSTER, T. M. U., CABLE, J., JAMES, J. & CONSUEGRA, S. 2018. Simultaneous detection of invasive signal crayfish, endangered white-clawed crayfish and the crayfish plague pathogen using environmental DNA. *Biological Conservation*, 222, 241-252.

ROTHERMEL, R. C. 1983. *How to predict the spread and intensity of forest and range fires*, US Department of Agriculture, Forest Service, Intermountain Forest and Range

ROYAMA, T.-O. 1984. Population dynamics of the spruce budworm Choristoneura fumiferana. *Ecological Monographs*, 54, 429-462.

RUDINSKY, J. 1979. Chemoacoustically induced behavior of Ips typographies (Col.: Scolytidae). *Zeitschrift für angewandte Entomologie*, 88, 537-541.

SAITO, T. 2021. A Model and Simulation of the Influence of Temperature and Amplicon Length on Environmental DNA Degradation Rates: A Meta-Analysis Approach. *Frontiers in Ecology and Evolution*, 9, 139.

SALOM, S. & MCLEAN, J. 1989. Influence of wind on the spring flight of Trypodendron lineatum (Olivier)(Coleoptera: Scolytidae) in a second-growth coniferous forest. *The Canadian Entomologist*, 121, 109-119.

SANTINI, A. & FACCOLI, M. 2015. Dutch elm disease and elm bark beetles: a century of association. *iForest-Biogeosciences and Forestry*, 8, 126.

SCHEBECK, M., HANSEN, E. M., SCHOPF, A., RAGLAND, G. J., STAUFFER, C. & BENTZ, B. J. 2017. Diapause and overwintering of two spruce bark beetle species. *Physiological entomology*, 42, 200-210.

SCHLACHTER, K. J. & HORN, S. P. 2010. Sample preparation methods and replicability in macroscopic charcoal analysis. *Journal of Paleolimnology*, 44, 701-708.

SCHLUMBAUM, A., TENSEN, M. & JAENICKE-DESPRÉS, V. 2008. Ancient plant DNA in archaeobotany. *Vegetation History and Archaeobotany*, 17, 233-244.

SCHRADER, C., SCHIELKE, A., ELLERBROEK, L. & JOHNE, R. 2012. PCR inhibitors– occurrence, properties and removal. *Journal of applied microbiology*, 113, 1014-1026.

SCHREY, N. M., REEVE, J. D. & ANDERSON, F. E. 2005. Mitochondrial DNA analysis of the bark beetle predator Thanasimus dubius F.(Coleoptera: Cleridae) reveals regional genetic differentiation. *Molecular ecology*, 14, 3317-3324.

SCOTT, A.C. AND DAMBLON, F., 2010. Charcoal: Taphonomy and significance in geology, botany and archaeology. Palaeogeography, Palaeoclimatology, Palaeoecology, 291(1-2), pp.1-10.

SEDDON, A. W., MACKAY, A. W., BAKER, A. G., BIRKS, H. J. B., BREMAN, E., BUCK, C. E., ELLIS, E. C., FROYD, C. A., GILL, J. L. & GILLSON, L. 2014. Looking forward through the past: identification of 50 priority research questions in palaeoecology. *Journal of Ecology*, 102, 256-267.

SEIDL, R. & RAMMER, W. 2017. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. *Landscape Ecology*, 32, 1485-1498.

SERREZE, M. C., CLARK, M. P., ARMSTRONG, R. L., MCGINNIS, D. A. & PULWARTY, R. S. 1999. Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) data. *Water Resources Research*, 35, 2145-2160.

SHEEHAN, T., BACHELET, D. & FERSCHWEILER, K. 2015. Projected major fire and vegetation changes in the Pacific Northwest of the conterminous United States under selected CMIP5 climate futures. *Ecological Modelling*, 317, 16-29.

SIDSTEDT, M., JANSSON, L., NILSSON, E., NOPPA, L., FORSMAN, M., RÅDSTRÖM, P. & HEDMAN, J. 2015. Humic substances cause fluorescence inhibition in real-time polymerase chain reaction. *Analytical biochemistry*, 487, 30-37.

SIMON, C., FRATI, F., BECKENBACH, A., CRESPI, B., LIU, H. & FLOOK, P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a

compilation of conserved polymerase chain reaction primers. *Annals of the entomological Society of America*, 87, 651-701.

SINGER, D., DUCKERT, C., HEDĚNEC, P., LARA, E., HILTBRUNNER, E. & MITCHELL, E. A. 2020. High-throughput sequencing of litter and moss eDNA reveals a positive correlation between the diversity of Apicomplexa and their invertebrate hosts across alpine habitats. Soil Biology and Biochemistry, 147, 107837.

SISSON, T. & VALLANCE, J. 2009. Frequent eruptions of Mount Rainier over the last~ 2,600 years. *Bulletin of Volcanology*, 71, 595-618.

SIX, D. L. & BENTZ, B. 2007. Temperature determines symbiont abundance in a multipartite bark beetle-fungus ectosymbiosis. *Microbial Ecology*, 54, 112-118.

SIX, D. L. & BRACEWELL, R. 2015. Dendroctonus. Bark Beetles. Elsevier.

SIX, D. L. & KLEPZIG, K. D. 2004. Dendroctonus bark beetles as model systems for studies on symbiosis. *Symbiosis*.

SJÖGREN, K.-G., PRICE, T. D. & KRISTIANSEN, K. 2016. Diet and mobility in the Corded Ware of Central Europe. *PloS one*, 11, e0155083.

SJÖGREN, P., EDWARDS, M. E., GIELLY, L., LANGDON, C. T., CROUDACE, I. W., MERKEL, M. K. F., FONVILLE, T. & ALSOS, I. G. 2017. Lake sedimentary DNA accurately records 20th Century introductions of exotic conifers in Scotland. *New Phytologist*, 213, 929-941.

SKINNER, C. N. 2002. Influence of fire on the dynamics of dead woody material in forests of California and southwestern Oregon. *Laudenslayer Jr.*, *WF; Shea, PJ; Valentine, BE; Weatherspoon, CP*, 445-454.

SMITH, D. & WESTGATE, J. 1968. Electron probe technique for characterising pyroclastic deposits. *Earth and Planetary Science Letters*, 5, 313-319.

SMITH, F. H. 1967. Effects of balsam woolly aphid (Adelges piceae) infestation on cambial activity in Abies grandis. *American Journal of Botany*, 54, 1215-1223.

SMITH, R. H. 1963. Toxicity of pine resin vapors to three species of Dendroctonus bark beetles. *Journal of Economic Entomology*, 56, 827-831.

SMOL, J. P., BIRKS, H. & LAST, W. M. 2002. *Tracking environmental change using lake sediments: Volume 3: Terrestrial, algal, and siliceous indicators*, Springer Science & Business Media.

SOBEK, S., DURISCH-KAISER, E., ZURBRÜGG, R., WONGFUN, N., WESSELS, M., PASCHE, N. & WEHRLI, B. 2009. Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. *Limnology and Oceanography*, 54, 2243-2254.

SPERLING, F. A., ANDERSON, G. S. & HICKEY, D. 1994. A DNA-based approach to the identification of insect species used for postmorten interval estimation. *Journal of Forensic Science*, 39, 418-427.

SPROLES, E., NOLIN, A., RITTGER, K. & PAINTER, T. 2013. Climate change impacts on maritime mountain snowpack in the Oregon Cascades. *Hydrology and Earth System Sciences*, 17, 2581-2597.

SRINIVASAN, M., SEDMAK, D. & JEWELL, S. 2002. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. *The American journal of pathology*, 161, 1961-1971.

STANKIEWICZ, B. A., BRIGGS, D. E., EVERSHED, R. P., FLANNERY, M. B. & WUTTKE, M. 1997. Preservation of chitin in 25-million-year-old fossils. *Science*, 276, 1541-1543.

STAUFFER, C., KIRISITS, T., NUSSBAUMER, C., PAVLIN, R. & WINGFIELD, M. J. 2001. Phylogenetic relationships between the European and Asian eight spined larch bark

beetle populations (Coleoptera: Scolytidae) inferred from DNA sequences and fungal associates. *European Journal of Entomology*, 98, 99-106.

STEHR, G. 1967. On coniferophagous species of Choristoneura (Lepidoptera: Tortricidae) in North America: II. Geographic distribution in accordance with forest regions. *The Canadian Entomologist*, 99, 456-463.

STEPHENS, S. L., MARTIN, R. E. & CLINTON, N. E. 2007. Prehistoric fire area and emissions from California's forests, woodlands, shrublands, and grasslands. *Forest Ecology and Management*, 251, 205-216.

STEVENSON, J., LOUGHLIN, S., RAE, C., THORDARSON, T., MILODOWSKI, A., GILBERT, J., HARANGI, S., LUKÁCS, R., HØJGAARD, B. & ÁRTING, U. 2012. Distal deposition of tephra from the Eyjafjallajökull 2010 summit eruption. *Journal of Geophysical Research: Solid Earth*, 117.

STEVENSON, J. A., LOUGHLIN, S. C., FONT, A., FULLER, G. W., MACLEOD, A., OLIVER, I. W., JACKSON, B., HORWELL, C. J., THORDARSON, T. & DAWSON, I. 2013. UK monitoring and deposition of tephra from the May 2011 eruption of Grímsvötn, Iceland. *Journal of Applied Volcanology*, *2*, 1-17.

STEWART, G. 1984. Forest Structure and Regeneration in the Tsuga heterophylla - Abies amabilis transition zone, central Western Cascades, Oregon. Doctor of Philosophy, Oregon State University.

STEWART, G. H. 1984. Forest structure and regeneration in the Tsuga heterophylla-Abies amabilis transition zone, central western Cascades, Oregon.

STROM, B., GOYER, R., INGRAM JR, L., BOYD, G. & LOTT, L. 2002. Oleoresin characteristics of progeny of loblolly pines that escaped attack by the southern pine beetle. *Forest Ecology and Management*, 158, 169-178.

STURTEVANT, B. R., ACHTEMEIER, G. L., CHARNEY, J. J., ANDERSON, D. P., COOKE, B. J. & TOWNSEND, P. A. 2013. Long-distance dispersal of spruce budworm

(Choristoneura fumiferana Clemens) in Minnesota (USA) and Ontario (Canada) via the atmospheric pathway. *Agricultural and Forest Meteorology*, 168, 186-200.

SUFFLING, R. & PERERA, A. H. 2008. Characterizing natural forest disturbance regimes. *Emulating natural forest landscape disturbances*. Columbia University Press.

SUGITA, S. 1993. A model of pollen source area for an entire lake surface. *Quaternary research*, 39, 239-244.

SUTLOVIĆ, D., GOJANOVIĆ, D., ANĐELINOVIĆ, Š., GUGIĆ, D. & PRIMORAC, D. 2005. Taq polymerase reverses inhibition of quantitative real time polymerase chain reaction by humic acid. *Croatian medical journal*, 46.

SWETNAM, T. W. 1995. *Historical patterns of western spruce budworm and Douglas-fir tussock moth outbreaks in the northern Blue Mountains, Oregon, since AD 1700*, US Department of Agriculture, Forest Service, Pacific Northwest Research Station.

TABERLET, P., BONIN, A., ZINGER, L. & COISSAC, E. 2018. *Environmental DNA: For biodiversity research and monitoring*, Oxford University Press.

TABERLET, P., COISSAC, E., POMPANON, F., BROCHMANN, C. & WILLERSLEV, E. 2012. Towards next-generation biodiversity assessment using DNA metabarcoding. *Molecular ecology*, 21, 2045-2050.

TANDE, G. F. 1979. Fire history and vegetation pattern of coniferous forests in Jasper National Park, Albert. *Canadian Journal of Botany*, 57, 1912-1931.

TAYLOR, A. H. & SKINNER, C. N. 1998. Fire history and landscape dynamics in a latesuccessional reserve, Klamath Mountains, California, USA. *Forest Ecology and Management*, 111, 285-301.

TAYLOR, A. H. & SKINNER, C. N. 2003. Spatial patterns and controls on historical fire regimes and forest structure in the Klamath Mountains. *Ecological Applications*, 13, 704-719.

TEENSMA, P. D. A. 1988. Fire history and fire regimes of the central western Cascades of Oregon.

TESTE, F. P., LIEFFERS, V. L. & LANDHÄUSSER, S. M. 2011. Seed release in serotinour lodgepole pine forests after mountain pine beetle outbreak. *Ecological Applications*, 21, 150-162.

THOMSEN, P. F., ELIAS, S., GILBERT, M. T. P., HAILE, J., MUNCH, K., KUZMINA, S., FROESE, D. G., SHER, A., HOLDAWAY, R. N. & WILLERSLEV, E. 2009. Non-destructive sampling of ancient insect DNA. *PloS one*, 4, e5048.

THOMSEN, P. F. & WILLERSLEV, E. 2015. Environmental DNA–An emerging tool in conservation for monitoring past and present biodiversity. *Biological conservation*, 183, 4-18.

TITTIGER, C. & BLOMQUIST, G. 2016. Pheromone production in pine bark beetles. *Advances in Insect Physiology*, 50, 235-263.

TRIMBOS, K. B., CIERAAD, E., SCHRAMA, M., SAARLOOS, A. I., MUSTERS, K. J., BERTOLA, L. D. & VAN BODEGOM, P. M. 2021. Stirring up the relationship between quantified environmental DNA concentrations and exoskeleton-shedding invertebrate densities. *Environmental DNA*, 3, 605-618.

TSUJI, S., TAKAHARA, T., DOI, H., SHIBATA, N. AND YAMANAKA, H., 2019. The detection of aquatic macroorganisms using environmental DNA analysis—A review of methods for collection, extraction, and detection. Environmental DNA, 1(2), pp.99-108.

TSUKADA, M., SUGITA, S. & HIBBERT, D. M. 1981. Paleoecology in the Pacific Northwest I. Late Quaternary vegetation and climate: With 2 figures in the text. *Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen*, 21, 730-737.

TUNNOCK, A. & RUDINSKY, J. 1959. Observations on the Life-Cycle of the Balsam Woolly Aphid, Adelges piceae (Ratz.), in the Willamette Valley of Oregon1. *The Canadian Entomologist*, 91, 208-212.

TURNER, C. R., UY, K. L. & EVERHART, R. C. 2015. Fish environmental DNA is more concentrated in aquatic sediments than surface water. *Biological Conservation*, 183, 93-102.

TURNER, M. G. 2010. Disturbance and landscape dynamics in a changing world. *Ecology*, 91, 2833-2849.

TURNER, R., ROBERTS, N., EASTWOOD, W. J., JENKINS, E. & ROSEN, A. 2010. Fire, climate and the origins of agriculture: micro-charcoal records of biomass burning during the last glacial–interglacial transition in Southwest Asia. *Journal of Quaternary Science: Published for the Quaternary Research Association*, 25, 371-386.

TURNEY, C. S. 1998. Extraction of rhyolitic component of Vedde microtephra from minerogenic lake sediments. *Journal of Paleolimnology*, 19, 199-206.

TWEITEN, M. A., HOTCHKISS, S. C., BOOTH, R. K., CALCOTE, R. R. & LYNCH, E. A. 2009. The response of a jack pine forest to late-Holocene climate variability in northwestern Wisconsin. *The Holocene*, 19, 1049-1061.

VALENTINI, A., TABERLET, P., MIAUD, C., CIVADE, R., HERDER, J., THOMSEN, P. F., BELLEMAIN, E., BESNARD, A., COISSAC, E. & BOYER, F. 2016. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. *Molecular ecology*, 25, 929-942.

VALLANCE, J. W. & SCOTT, K. M. 1997. The Osceola Mudflow from Mount Rainier: Sedimentology and hazard implications of a huge clay-rich debris flow. *Geological Society of America Bulletin*, 109, 143-163.

VAN DER VALK, T., PEČNEROVÁ, P., DÍEZ-DEL-MOLINO, D., BERGSTRÖM, A., OPPENHEIMER, J., HARTMANN, S., XENIKOUDAKIS, G., THOMAS, J. A., DEHASQUE, M. & SAĞLICAN, E. 2021. Million-year-old DNA sheds light on the genomic history of mammoths. *Nature*, 591, 265-269.

VEBLEN, T. T., HADLEY, K. S., NEL, E. M., KITZBERGER, T., REID, M. & VILLALBA, R. 1994. Disturbance regime and disturbance interactions in a Rocky Mountain subalpine forest. *Journal of Ecology*, 125-135.

VOELKER, S. L., MERSCHEL, A. G., MEINZER, F. C., ULRICH, D. E., SPIES, T. A. & STILL, C. J. 2019. Fire deficits have increased drought sensitivity in dry conifer forests: Fire frequency and tree-ring carbon isotope evidence from Central Oregon. *Global Change Biology*, 25, 1247-1262.

VOLNEY, W. J. A. & FLEMING, R. A. 2007. Spruce budworm (Choristoneura spp.) biotype reactions to forest and climate characteristics. *Global Change Biology*, 13, 1630-1643.

VON WACHENFELDT, E. & TRANVIK, L. J. 2008. Sedimentation in boreal lakes—the role of flocculation of allochthonous dissolved organic matter in the water column. *Ecosystems*, 11, 803-814.

WACKER, S., FOSSØY, F., LARSEN, B. M., BRANDSEGG, H., SIVERTSGÅRD, R. & KARLSSON, S. 2019. Downstream transport and seasonal variation in freshwater pearl mussel (Margaritifera margaritifera) eDNA concentration. *Environmental DNA*, 1, 64-73.

WAINMAN, N. & MATHEWES, R. W. 1987. Forest history of the last 12 000 years based on plant macrofossil analysis of sediment from Marion Lake, southwestern British Columbia. *Canadian Journal of Botany*, 65, 2179-2187.

WALSH, M. K., WHITLOCK, C. & BARTLEIN, P. J. 2008. A 14,300-year-long record of fire–vegetation–climate linkages at Battle Ground Lake, southwestern Washington. *Quaternary Research*, 70, 251-264.

WALSH, M. K., WHITLOCK, C. & BARTLEIN, P. J. 2010. 1200 years of fire and vegetation history in the Willamette Valley, Oregon and Washington, reconstructed using high-resolution macroscopic charcoal and pollen analysis. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 297, 273-289.

WARING, R. H. & FRANKLIN, J. F. 1979. Evergreen coniferous forests of the Pacific Northwest. *Science*, 204, 1380-1386.

WATTS, P. C., THOMPSON, D. J., ALLEN, K. A. & KEMP, S. J. 2007. How useful is DNA extracted from the legs of archived insects for microsatellite-based population genetic analyses? *Journal of Insect Conservation*, 11, 195-198.

WEI, N., NAKAJIMA, F. & TOBINO, T. 2018. Effects of treated sample weight and DNA marker length on sediment eDNA based detection of a benthic invertebrate. *Ecological Indicators*, 93, 267-273.

WEISBERG, P. J. & SWANSON, F. J. 2003. Regional synchroneity in fire regimes of western Oregon and Washington, USA. *Forest Ecology and Management*, 172, 17-28.

WEISBERG, P. J. & SWANSON, F. J. 2003. Regional synchroneity in fire regimes of western Oregon and Washington, USA. *Forest Ecology and Management*, 172, 17-28.

WESTERLING, A. & BRYANT, B. 2006. Climate change and wildfire in and around California: Fire modeling and loss modeling. Citeseer.

WETZEL, S. A. & FONDA, R. 2000. Fire history of Douglas-fir forests in the Morse Creek drainage of Olympic National Park, Washington. *Northwest Science*, 74, 263-279.

WHITEMAN, S., JASPERS, M., STEWART, A. & RIDGWAY, H. 2002. Detection of Phaeomoniella chlamydospora in soil using speciesspecific PCR. *New Zealand Plant Protection*, 55, 139-145.

WHITLOCK, C. 1992. Vegetational and climatic history of the Pacific Northwest during the last 20,000 years: implications for understanding present-day biodiversity. *Northwest Environmental Journal*, 8, 5-5.

WHITLOCK, C., HIGUERA, P. E., MCWETHY, D. B. & BRILES, C. E. 2010. Paleoecological perspectives on fire ecology: revisiting the fire-regime concept. *The Open Ecology Journal*, 3. WHITLOCK, C. & LARSEN, C. 2002. Charcoal as a fire proxy. *Tracking environmental change using lake sediments*. Springer.

WHITLOCK, C., MARLON, J., BRILES, C., BRUNELLE, A., LONG, C. & BARTLEIN, P. 2008. Long-term relations among fire, fuel, and climate in the north-western US based on lake-sediment studies. *International Journal of Wildland Fire*, 17, 72-83.

WHITLOCK, C. & MILLSPAUGH, S. H. 1996. Testing the assumptions of fire-history studies: an examination of modern charcoal accumulation in Yellowstone National Park, USA. *The Holocene*, 6, 7-15.

WICKMAN, B. E. 1973. *Major outbreaks of the Douglas-fir tussock moth in Oregon and California*, Pacific Northwest Forest and Range Experiment Station, Forest Service, US

WILF, P. & LABANDEIRA, C. C. 1999. Response of plant-insect associations to Paleocene-Eocene warming. *Science*, 284, 2153-2156.

WILLERSLEV, E., CAPPELLINI, E., BOOMSMA, W., NIELSEN, R., HEBSGAARD, M.
B., BRAND, T. B., HOFREITER, M., BUNCE, M., POINAR, H. N. & DAHL-JENSEN, D.
2007. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. *Science*, 317, 111-114.

WILLERSLEV, E. & COOPER, A. 2005. Ancient dna. *Proceedings of the Royal Society B: Biological Sciences*, 272, 3-16.

WILLERSLEV, E., DAVISON, J., MOORA, M., ZOBEL, M., COISSAC, E., EDWARDS, M. E., LORENZEN, E. D., VESTERGÅRD, M., GUSSAROVA, G., HAILE, J., CRAINE, J., GIELLY, L., BOESSENKOOL, S., EPP, L. S., PEARMAN, P. B., CHEDDADI, R., MURRAY, D., BRÅTHEN, K. A., YOCCOZ, N., BINNEY, H., CRUAUD, C., WINCKER, P., GOSLAR, T., ALSOS, I. G., BELLEMAIN, E., BRYSTING, A. K., ELVEN, R., SØNSTEBØ, J. H., MURTON, J., SHER, A., RASMUSSEN, M., RØNN, R., MOURIER, T., COOPER, A., AUSTIN, J., MÖLLER, P., FROESE, D., ZAZULA, G., POMPANON, F., RIOUX, D., NIDERKORN, V., TIKHONOV, A., SAVVINOV, G., ROBERTS, R. G.,

MACPHEE, R. D. E., GILBERT, M. T. P., KJÆR, K. H., ORLANDO, L., BROCHMANN, C. & TABERLET, P. 2014. Fifty thousand years of Arctic vegetation and megafaunal diet. *Nature*, 506, 47-51.

WILLERSLEV, E., HANSEN, A. J., BINLADEN, J., BRAND, T. B., GILBERT, M. T., SHAPIRO, B., BUNCE, M., WIUF, C., GILICHINSKY, D. A. & COOPER, A. 2003. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. *Science*, 300, 791-5.

WILLERSLEV, E., HANSEN, A. J. & POINAR, H. N. 2004. Isolation of nucleic acids and cultures from fossil ice and permafrost. *Trends in Ecology & Evolution*, 19, 141-147.

WILMSHURST, J. M. & MCGLONE, M. S. 2005. Origin of pollen and spores in surface lake sediments: Comparison of modern palynomorph assemblages in moss cushions, surface soils and surface lake sediments. *Review of Palaeobotany and Palynology*, 136, 1-15.

WOOD, D. L. 1982. The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles. *Annual review of entomology*, 27, 411-446.

WOOD, S. L. 1963. A revision of the bark beetle genus Dendroctonus Erichson (Coleoptera: Scolytidae). *The Great Basin Naturalist*, 23, 1-117.

WOOD, S. A., POCHON, X., LAROCHE, O., VON AMMON, U., ADAMSON, J. & ZAIKO, A. 2019. A comparison of droplet digital polymerase chain reaction (PCR), quantitative PCR and metabarcoding for species-specific detection in environmental DNA. Molecular Ecology Resources, 19, 1407-1419.

WOOD, Z. T., ERDMAN, B. F., YORK, G., TRIAL, J. G. & KINNISON, M. T. 2020. Experimental assessment of optimal lotic eDNA sampling and assay multiplexing for a critically endangered fish. *Environmental DNA*, 2, 407-417.

WORONA, M. A. & WHITLOCK, C. 1995. Late quaternary vegetation and climate history near Little Lake, central Coast Range, Oregon. *Geological Society of America Bulletin*, 107, 867-876.

WRIGHT, H. 1967. A square-rod piston sampler for lake sediments. *Journal of Sedimentary Research*, 37, 975-976.

XAVIER, M. N., SILVA, T. M., COSTA, E. A., PAIXAO, T. A., MOUSTACAS, V. S., JÚNIOR, C. A. C., SANT'ANNA, F. M., ROBLES, C. A., GOUVEIA, A. M. & LAGE, A. P. 2010. Development and evaluation of a species-specific PCR assay for the detection of Brucella ovis infection in rams. *Veterinary Microbiology*, 145, 158-164.

YE, J., COULOURIS, G., ZARETSKAYA, I., CUTCUTACHE, I., ROZEN, S. & MADDEN, T. L. 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. *BMC bioinformatics*, 13, 1-11.

YEATES, C., GILLINGS, M., DAVISON, A., ALTAVILLA, N. & VEAL, D. 1997. PCR amplification of crude microbial DNA extracted from soil. *Letters in Applied Microbiology*, 25, 303-307.

YOCCOZ, N. G., BRÅTHEN, K. A., GIELLY, L., HAILE, J., EDWARDS, M. E., GOSLAR, T., VON STEDINGK, H., BRYSTING, A., COISSAC, E. & POMPANON, F. 2012. DNA from soil mirrors plant taxonomic and growth form diversity. *Molecular ecology*, 21, 3647-3655.

YOUNG, G. H., MCCARROLL, D., LOADER, N. J. & KIRCHHEFER, A. J. 2010. A 500year record of summer near-ground solar radiation from tree-ring stable carbon isotopes. *The Holocene*, 20, 315-324.

YOUNG, G. H., MCCARROLL, D., LOADER, N. J. & KIRCHHEFER, A. J. 2010. A 500year record of summer near-ground solar radiation from tree-ring stable carbon isotopes. *The Holocene*, 20, 315-324.

YU, J., XUE, J. H. & ZHOU, S. L. 2011. New universal matK primers for DNA barcoding angiosperms. *Journal of Systematics and Evolution*, 49, 176-181.

ZDANOWICZ, C. M., ZIELINSKI, G. A. & GERMANI, M. S. 1999. Mount Mazama eruption: Calendrical age verified and atmospheric impact assessed. *Geology*, 27, 621-624.

ZHANG, Q.-B. & ALFARO, R. I. 2002. Periodicity of two-year cycle spruce budworm outbreaks in central British Columbia: a dendro-ecological analysis. *Forest Science*, 48, 722-731.

ZOBEL, D. B. & ANTOS, J. A. 1991. 1980 tephra from Mount St. Helens: spatial and temporal variation beneath forest canopies. *Biology and Fertility of Soils*, 12, 60-66.