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Abstract— We discuss how flux pumping can be applied
to multiple inductively coupled superconducting circuits, and
describe its importance to the operation of a novel, planar
magnetic field source for quantum technology applications.
Specifically, we discuss how applying a transformer-rectifier
flux pumping technique to several double-loop superconducting
structures simultaneously allows for the effect of cross-talk —
the inevitable coupling between neighbouring superconducting
loops — to be accounted for. Using both a theoretical model
and an experimental verification, we introduce a method of
calibrating a flux-pumped magnetic field source such that any
desired magnetic field distribution within the critical current
limits of the used materials can be obtained.

Index terms— Flux Pumping, Ion Traps, Quantum Technol-
ogy, Superconducting Magnets.

I. INTRODUCTION

Over the past two decades, there has been a significant
shift towards the miniaturisation of quantum experiments
and technologies. Such miniaturisation has many advantages
and applications, including the improved scalability of ion-
trap quantum computers [1]–[3], the development of atom
chips for quantum sensing with condensates [4]–[6], and
(more recently) towards tests of quantum gravity using
Stern-Gerlach interferometry with chip-based traps [7]. The
primary motivation for the work discussed herein is towards
the miniaturisation of a planar magnetic field source for
trapped electrons in a Penning trap [8]–[11] — the so-called
Geonium Chip — which forms the functional hardware of
a reliable and tunable single microwave photon detector
[12], with potential applications in defense, microscopy,
and communications [13]–[14]. Conventional Penning trap
experiments use large, superconducting solenoids as their
magnetic field source [15]-[16], similar to those used in
Nuclear Magnetic Resonance (NMR) spectroscopy. To our
knowledge, while remote magnetisation schemes have been
successfully implemented in shim coils for NMR [17], flux
pumping as a method for magnetisation or field shimming
in an ion trap has never previously been employed. The
magnetisation technique discussed here could also be useful
for other scalable atomic experiments and quantum hardware,
particularly chip-based traps for cold atoms and condensates.
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In such experiments, high magnetic field stability and precise
control of the magnetic field distribution are essential to their
operation, yet the overall required magnetic field strengths
are considerably lower than those required for a Penning trap
(on the order of mT, rather than T [18]).

The Geonium Chip comprises a set of five DC electrodes
which, when held at carefully chosen voltages, provide a
trapping potential minimum at a height y0 above the chip
surface (see Figure 1a). Full confinement of an electron
is achieved by applying a strong (> 0.1 T), homogeneous
(∂yBz < 1mT mm−1) magnetic field parallel to the chip sur-
face, which is enclosed inside a cryogenic vacuum chamber
at ∼ 4 K. In its current formation (Figure 1b), this magnetic
field source is provided by a set of planar current-driven
loops of superconducting NbTi wire. The magnetic field
lines from each loop add to produce a strong trapping field
pointing parallel to the chip surface. This first-generation
planar magnetic field source has been demonstrated to
achieve a homogeneous trapping field of over 0.5 T [19].
A new magnetic field source is shown in Figure 1c. This
is fabricated with closed superconducting loops that carry
persistent currents, instead of driven currents as in [19]. This
allows for much higher magnetic field stability, due to the
elimination of both short-term fluctuations (less than one
second) and long-term drifts (more than one second) that
inevitably arise from current sources [20]. Furthermore, the
closed superconducting loops (see Figure 1c) are progres-
sively magnetised by the method of flux pumping [21]. This
will allow for strong fields (0.1–1 T) to be generated with
modest current sources (< 5 A), thus avoiding bulky high
current vacuum feedthroughs. The ability to generate strong
fields with such small flux pumping currents reduces the heat
load in the cryostat, simplifying its design and operation.

The confinement and detection of a single electron requires
extremely precise control of the magnetic field distribution
[9]. As mentioned above, the overall magnetic field distribu-
tion is the superposition of the fields arising from each closed
superconducting loop. If the currents are chosen carefully,
the magnetic contributions from each loop add to produce a
desired magnetic field distribution at one location, y0. For
the Geonium Chip, there may be more than one desired
magnetic field distribution. For example, while a precise
measurement of a trapped electron’s motional frequencies
relies on a highly homogeneous magnetic field (to first order,
∂Bz

∂y < 0.1 − 1.0 mT mm−1), single microwave photon
detection, on the other hand, requires an inhomogeneous
“magnetic bottle” field distribution: ~B = B0ẑ+(B2 6= 0)z2ẑ,
where ẑ is the axial direction of the Penning trap (see
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Fig. 1: 1a. Schematic depiction of the Geonium Chip Penning Trap. The electric field source (yellow) is placed on top of a
superconducting planar magnetic field source comprising several current-carrying closed loops of current. Electrons can be
trapped a distance y0 above the electric field source. 1b. First generation planar magnetic field source for the Geonium Chip
Penning Trap. This is made up of four pairs of NbTi coils carrying driven currents from high-precision power supplies. 1c.
Second generation superconducting planar magnetic field source for the Geonium Chip, comprising five pairs of double-
loop superconducting structures. This field source is magnetised by a process of magnetic flux pumping, described in [21].
The effect of cross-talk between adjacent and overlapping coils is discussed in this paper. 1d. A sketch of a double-loop
superconducting structure, showing the location of heat switches and the pumping solenoid. Several of these make up the
planar magnetic field source.

Figure 1a). This magnetic bottle allows for the detection of
individual microwave photons through the continuous Stern-
Gerlach effect [22]. Furthermore, in order for the Geonium
Chip to act as a tunable microwave photon detector, control
over the strength of the magnetic field (i.e., the B0 term)
is required. This is because the photon frequency detected
by the electron, fp, is directly proportional to the magnetic
field strength, B0, according to: fp ≈ eB0/2πme, where e
is the electron charge, and me is the electron mass. It is
therefore vital that the Geonium Chip can precisely change
the currents of the magnetic field source while the trap is
operating, such that it can quickly (i.e., in a few seconds)
go between different desired magnetic field distributions and
strengths when required.

In the Geonium Chip, changes to the persistent currents
of the magnetic field source need to be controlled with a
fractional uncertainty of at most 10−5. Precisely controlling
more than one of these persistent currents is a challenge
because of the well-known issue of flux conservation [23].
As is discussed extensively in the literature, when attempting
to magnetise a closed superconducting loop, any change in
applied magnetic flux through the closed superconducting
contour is counteracted by the sudden induction of persistent

current in that loop. This is often expressed algebraically as

φtot = φa + LI = constant, (1)

where φtot is the total flux through a closed superconducting
contour, and φa is the applied flux. LI represents the self-
flux of the closed superconducting contour, where L is the
self-inductance, and I is the current circulating in the loop.
In actuality, there is an additional term

∮
C
µ0λ

2J · dl that
describes the integral of the current density J along the
closed superconducting contour C, where λ is the London
penetration length. This term is negligible for the dimensions
described herein (see [26]).

The well-established method of magnetic flux pumping
allows for the magnetisation of a single closed supercon-
ducting loop by ‘smuggling’ small quantities of magnetic
flux into a closed contour such that current is gradually built
up over several cycles [24]. A recent summary of different
methods of flux pumping can be found in [25]. As discussed
in [21], the Geonium Chip makes use of a flux pumping
scheme that uses a double-loop superconducting structure
with two superconducting switches and a small pumping
solenoid to build up hundreds of amperes, (see Figure 1d).
However, in [21] the magnetic flux pumping of only one
single superconducting loop is discussed. The magnetic field
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Fig. 2: A sketch of how cross-talk arises. Left: Two ad-
jacently placed superconducting loops carrying no current.
The top image is a top view, while the lower image gives
a cross-sectional view. Right: The same loop configuration,
but with current flowing in the right-hand loop. The magnetic
field from the right-hand loop links into the left-hand loop.
To ensure flux conservation, an induced current, Iind flows
in the left-hand loop to oppose the flux from the current in
the right-hand loop.
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Fig. 3: A sketch showing the two different double-loop
arrangements: Left: overlapping target loops, and Right:
adjacent target loops. Locations of the heat switches are
depicted for clarity.

for the Geonium Chip requires flux pumping of several
superconducting loops (see Figure 1c). The difficulty here
is that any time flux is changed in one of these double-
loop superconducting structures, the resulting magnetic field
from this loop also changes and leaks into neighbouring
loops. The currents in these other loops (and their associated
magnetic fields) consequently change, and one loses track
and control of the overall magnetic field distribution. This
“cross-talk” between loops is illustrated with a sketch of two
superconducting loops in Figure 2. In order to overcome such
cross-talk, precise control of the currents in each and every
loop at any given time is needed.

This article discusses a scheme in which several of these
double-loop superconducting structures are magnetised via
flux pumping such that the currents in each loop can be
well-controlled in spite of the occurrence of cross-talk. The
crucial point is that the flux pumping steps described in
[21] for one superconducting circuit are applied to each and
every double-loop superconducting structure simultaneously.
We demonstrate that while cross-talk is not eliminated, it is

nevertheless accounted for in the sense that a linear map-
ping between the input fluxes, Φ, and the resulting overall
magnetic field distribution, B, exists. This is characterised
by a calibration matrix, Θ, which allows for any desired
magnetic field distribution at y0 to be achieved (so long as
the critical current of the material is not exceeded). In section
II, an analytical model is discussed which shows how this
linear relationship arises for both adjacent and overlapping
target loop arrangements. An experimental verification of the
adjacent case is presented in section III, and a summary of
the findings along with a discussion of future work is given
in section IV.

II. SIMULTANEOUS FLUX PUMPING OF
DOUBLE-LOOP SUPERCONDUCTING

STRUCTURES
The persistent current planar magnetic field source in

Figure 1c has been constructed by cutting a NbTi block
into five pairs of double-loop superconducting structures.
Each loop has a thickness of 1.0 mm, and their widths are
chosen such that they produce a homogeneous magnetic field
distribution (Bz = B0ẑ) at a height of 1.6 mm above the
magnetic field source when all loops have the same current
density, J , where B0 ∝ J . More detail on the design of this
magnetic field source can be found in [20]. Of relevance here
are how the different superconducting structures interact.
As can be seen, some of the double-loop superconducting
structures are arranged in “adjacent configuration” (i.e., the
target loops of the superconducting structures are laid side-
by-side), and some are placed in “overlapping configuration”
(i.e., with the target loops of the superconducting structures
coaxially arranged) — see Figure 3. In this section, the effect
of cross-talk in the two different configurations is discussed.

In order to have control over the final magnetic field
distribution, it is necessary to flux pump the planar magnetic
field source so that the final currents of each and every
double-loop superconducting structure are linearly related to
the set of input fluxes, which are controlled by the user. In
its general mathematical form, this is expressed as

Ij =
∑
k

KjkΦk, (2)

where Ij is the final current in the jth double-loop structure,
Φk is the input flux applied to the pumping loop of the kth
double-loop structure, and Kjk is the matrix element that
relates the two. For two non-interacting loops (1 and 2), each
magnetised by input fluxes (φ1 and φ2), the final currents are
given by (

I1
I2

)
=

(
K11 0

0 K22

)
·
(
φ1
φ2

)
. (3)

For inductively coupled loops, the off-diagonal elements of
Kjk (j 6= k) are non-zero, and describe the effect of cross-
talk between the jth and kth superconducting structures.

Equation (2) describes how the currents resulting from
flux pumping relate to the input fluxes. About y0, the
total magnetic field distribution arising from these currents,
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B = (Bz, ∂yBz, ∂
2
y2Bz, ...) is the sum of magnetic field

contributions from each current I = (I1, I2, I3, ...). This
relationship can be represented as a matrix,


Bz

∂yBz

...
∂nynBz

 =


Γ11 Γ12 . . . Γ1n

Γ21 Γ22 . . . Γ2n

...
...

. . .
...

Γn1 Γn2 . . . Γnn

 ·

I1
I2
...
In

 . (4)

or, in elemental form,

Bi =
∑
j

ΓijIj . (5)

The elements of Γ relate the currents in each loop to the
spatial properties of the magnetic field. Substituting (2) into
(5) gives us the desired linear relationship between the final
magnetic field distribution and the input fluxes applied to
each double-loop superconducting structure:

Bi =
∑
j

∑
k

ΓijKjkΦk =
∑
k

ΘikΦk. (6)

Practically speaking, the set of input fluxes Φ is pro-
vided by applying pumping currents, I(p), to small pumping
solenoids located in the pumping loops of the magnetic
field source (see section III). Mathematically, these pumping
currents, I(p), are related to the applied fluxes by Φ = L·I(p),
where L is a diagonal matrix of the pumping solenoid
inductances. Substituting into equation (6), this becomes

Bi =
∑
j

∑
k

ΘijLjkI
(p)
k =

∑
k

χikI
(p)
k . (7)

While equation (7) is more practically useful (and is used in
section III), the theoretical discussion presented here will be
discussed in terms of fluxes, Φ, instead of pumping currents,
I(p).

In this section, we will apply the principles of flux
conservation along with the linear flux approximation —
the condition that, for thin current-carrying loops, the self-
inductance of a loop is directly proportional to the loop’s
perimeter [21] — to demonstrate that the linear relationship
of equation (6) is maintained for both the adjacent and
overlapping cases, so long as all structures are flux pumped
simultaneously. It should be noted that in the flux pumping
schemes described below, the same assumptions as discussed
in [21] are used.

A. Overlapping loop arrangement

Figure 4 shows the flux pumping scheme applied to two
double-loop superconducting structures in the overlapping
loop arrangement. The target and pumping loops of both
superconducting structures are squares of length, l, and
are assumed to be of dimensions such that the linear flux
approximation [21] is valid. Under this approximation, the
self-flux of a loop carrying a current, I , is given by: LI =
k × “loop perimeter”× I . The proportionality constant, k,
will be used extensively throughout. The target loops of

the upper (S1) and lower (S2) double-loop superconducting
structures are assumed to carry initial currents of I1 and I2
respectively. Moreover, the fraction of flux from the target
loop of one superconducting structure that couples to the
other is given by m. Note that in Figure 4, the target loop
of S2 is placed on top of the target loop of S1 (see the side
view image in Figure 4). The simultaneous flux pumping
mechanism can be summarised with the following steps:
• Step 1: Turn ON the heating current to Heat Switch

1 of BOTH double-loop structures simultaneously to
locally break the superconductivity, so as to OPEN the
switches.
There are two relevant superconducting contours, cor-
responding to the two overlapping target loops. There
is no change in current in either loop.

• Step 2: Turn ON the input currents to the pumping
solenoids of S1 and S2 to provide input fluxes of φ1
and φ2 respectively.
Assuming no stray flux lines from the solenoids link
into any of the target loops, there is no change in current
in either superconducting structure.

• Step 3: Turn OFF the heating current to Heat Switch
1 of both superconducting structures to restore the
superconductivity.
Here, there is no change in current in either supercon-
ducting structure.

• Step 4: Turn ON the heating current to Heat Switch 2
of both superconducting structures so as to OPEN the
two switches simultaneously.
The currents are now redistributed to the outer loops of
each respective superconducting structure, and their val-
ues are transformed according to {I1, I2} → {I ′1, I ′2}.
A detailed depiction of this step is given in Figure 5,
where the overlapping target loops are shown separated
for the sake of clarity. Consider the total flux through
the contour defining the perimeter of S1, represented
by the dashed blue line. Before step 4 is implemented,
the total flux through this contour is the sum of the
applied flux, φ1, the self-flux, 3klI1 (note, there is no
net flux contribution from the current along the bridge
joining the pumping and target loops), and the cross-
talk from S2, 3klI2m. After the step, the total flux in
S2 is now given by the sum of the applied flux, φ1, the
self-flux, 6klI ′1, and the cross-talk from S2, 2klI ′2m.
Similar expressions can be written down for S2. Due
to flux conservation, the following equations must be
satisfied:

Upper double–loop structure (S1)

3klI1 + 3klI2m+ φ1 = 6klI ′1 + 2klI ′2m+ φ1, (8)

Lower double–loop structure (S2)

3klI1m+ 3klI2 + φ2 = 6klI ′2 + 2klI ′1m+ φ2, (9)

where the left-hand side of each equation describes the
flux before step 4, and the right-hand side describes the
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Fig. 4: Flux pumping scheme of two double-loop superconducting structures with overlapping target loops. The target loop
of S2 is placed on top of the target loop of S1. Current in S1 is represented by a blue arrow. Current in S2 is depicted by
a red arrow. Applied flux is represented by

⊗
, which indicates that the magnetic field lines are pointing into the page.
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Fig. 6: Graph showing the flux pump efficiency for the over-
lapping loop arrangement as a function of overlap parameter,
m. The curve shows the efficiency when the input fluxes have
the same polarity and magnitude (Φ = (φ, φ)).

flux after the step. Representing equations (8) and (9)
in vector-matrix form, gives

(
I ′1
I ′2

)
=

1

36− 4m2

(
18− 6m2 12m

12m 18− 6m2

)
·
(
I1
I2

)
.

(10)
• Step 5: Turn OFF the input currents to the solenoids

so as to remove the applied fluxes, φ1 and φ2.
Removing φ1 and φ2 results in a jump in current in
both superconducting structures such that {I ′1, I ′2} →
{I ′′1 , I ′′2 }. Following the same reasoning for step 4 gives:

Upper double–loop structure (S1)

6klI ′1 + 2klI ′2m+ φ1 = 6klI ′′1 + 2klI ′′2m. (11)

Lower double–loop structure (S2)

6klI ′2 + 2klI ′1m+ φ2 = 6klI ′′2 + 2klI ′′1m. (12)

In vector-matrix form, these are represented as

kl

(
6 2m

2m 6

)
·
(
I ′1
I ′2

)
+

(
φ1
φ2

)
= kl

(
6 2m

2m 6

)
·
(
I ′′1
I ′′2

)
.

(13)
Solving for I ′′ = (I ′′1 , I

′′
2 ), we get

(
I ′′1
I ′′2

)
=

1

36− 4m2

(
18− 6m2 12m

12m 18− 6m2

)
·
(
I1
I2

)
+

1

kl (36− 4m2)

(
6 −2m
−2m 6

)
·
(
φ1
φ2

)
.

(14)

• Step 6: Turn OFF the heating currents to Heat Switch
2 of each double-loop structure so as to CLOSE the
switches.
There are no current changes in this step.

• Step 7: Turn ON the heating currents to Heat Switch
1 of each superconducting structure so as to OPEN the
switches.
Here, the current is redirected to the target loop of each
superconducting structure. The currents are transformed
according to {I ′′1 , I ′′2 } → {I ′′′1 , I ′′′2 }. Applying flux
conservation, the currents become

Upper double–loop structure (S1)

3klI ′′1 + 3klI ′′2m = 4klI ′′′1 + 4klI ′′′2 m. (15)

Lower double–loop structure (S2)

3klI ′′1m+ 3klI ′′2 = 4klI ′′1m+ 4klI ′′′2 . (16)

The equations above, represented in vector-matrix form,
are given as follows:(

I ′′′1
I ′′′2

)
=

(12− 12m)

(16− 16m2) (36− 4m2)
×[((

18− 6m2
)

12m
12m

(
18− 6m2

)) · (I1
I2

)
+

1

kl

(
6 −2m
−2m 6

)
·
(
φ1
φ2

)]
.

(17)

• Step 8: Turn OFF the heating currents to Heat Switch
1 of each superconducting structure so as to CLOSE
the switches. There are no current changes in this step.

The current vector, I ′′′ = (I ′′′1 , I
′′′
2 ), describes the final

current after one flux pumping cycle in terms of the initial
current, I = (I1, I2), and the input fluxes, Φ = (φ1, φ2).
This equation can be written, without loss of generality, as
the current vector, In = (I

(1)
n , I

(2)
n ) after n cycles, in terms

of the current after n− 1 cycles, In−1 = (I
(1)
n−1, I

(2)
n−1):
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(
I
(1)
n

I
(2)
n

)
=

(12− 12m)

(16− 16m2) (36− 4m2)
×[((

18− 6m2
)

12m
12m

(
18− 6m2

)) ·(I(1)n−1
I
(2)
n−1

)
+

1

kl

(
6 −2m
−2m 6

)
·
(
φ1
φ2

)]
,

(18)

In general form, this is rendered as:

In = U · In−1 + V · Φ. (19)

If n = N , the vector describing the current in each loop
becomes

IN = (1− U)−1 · (1− UN ) · V · Φ. (20)

Despite the apparent complexity of equation (20), it has
the important feature that the magnetic field distribution is
linearly related to the input fluxes, as desired. Note that for
a large number of flux pumping cycles (i.e., N → ∞), the
final current configuration becomes

lim
N→∞

IN =
(
1− U

)−1 · V · Φ, (21)

where it is noted that detU < 1. Relating the currents to
the overall magnetic field distribution (equation (5)), we see
that

B = Γ ·
(
1− U

)−1 · V · Φ ≡ Θ · Φ. (22)

The presence of cross-talk therefore does not change the
linear relationship between the input fluxes, Φ, and the
overall magnetic field distribution, B. Thus, so long as each
loop is flux pumped simultaneously, any arbitrary current
configuration (and, consequently, magnetic field distribution)
can be achieved if the correct input fluxes are applied to each
structure.

Before flux pumping of the adjacent loop arrangement
is discussed, it is worth exploring how the final obtainable
currents are affected by the degree of coupling (or “overlap
parameter”), m, of the two target loops, which can take
any value in the range 0 ≤ m ≤ 1. The extreme case
of m = 0 refers to the loops being completely separate,
such that there is no cross-talk between them. Assuming
input fluxes φ1 = φ2 = φ, the final currents are the same
as when calculated individually (i.e., each loop carrying
I(m = 0) = φ/5kl of current). The other extreme, when
m = 1, refers to the case when the target loops of both
superconducting structures perfectly overlap. Once again, if
we assume φ1 = φ2 = φ, then the final current in each
loop becomes I(m = 1) = 3φ/46kl. Thus, the presence of
cross-talk between perfectly overlapping target loops reduces
the efficiency to 3/46 ÷ 1/5 ≈ 32.6% compared with the
case where there is no cross-talk. The relationship between
final obtainable currents and m is shown in Figure 6. It is

important to point out that, while there is a significant re-
duction in efficiency, simultaneous flux pumping still allows
for current build up in both loops even in the case of perfect
target loop overlap (m = 1). This means that even the inner
overlapping loops of the magnetic field source in Figure 1c
will be magnetised despite their target loops being located
entirely within the target loops of the outer superconducting
structures.

B. Adjacent loop arrangement

Now consider the two double-loop structures placed in
an adjacent arrangement, as shown in Figure 7. Here the
target loop of the left-hand structure carries a clockwise
circulating initial current, I1, and the target loop of the right-
hand structure carries a clockwise initial current of I2. The
flux pumping scheme here has exactly the same steps as for
the case with overlapping target loops, and so will not be
repeated in unnecessary detail. Here, m describes the fraction
of flux that couples from the left-hand target loop into the
right-hand target loop (and vice versa) from the current in
the edges of the target loops that are touching. As can be
seen in Figure 7, current changes only occur in steps 4, 5,
and 7. Using the same reasoning as before, the currents,
I ′ = (I ′1, I

′
2), after step 4 satisfy the following equations:

Left–hand double loop

3klI1 + φ1 − klI2m = 6klI ′1 + φ1 − klI ′2m, (23)

Right–hand double loop

3klI2 + φ2 − klI1m = 6klI ′2 + φ2 − klI ′1m. (24)

Solving for I ′, we obtain:

(
I ′1
I ′2

)
=

1

36−m2

(
18−m2 −3m
−3m 18−m2

)
·
(
I1
I2

)
.

(25)
The next step where there is a change in current is step

5, where the current transformation {I ′1, I ′2} → {I ′′1 , I ′′2 }
occurs. Applying flux conservation to the outer loop of each
superconducting structure gives

Left–hand double loop

6klI ′′1 + φ1 − klI ′2m = 6klI ′′1 − klI ′′2m, (26)

Right–hand double loop

6klI ′2 + φ2 − klI ′1m = 6klI ′′2 − klI ′′1m, (27)

which can be reformed as

(
I ′′1
I ′′2

)
=

(
I ′1
I ′2

)
+

1

(36−m2) kl

(
6 m
m 6

)
·
(
φ1
φ2

)
,

⇒
(
I ′′1
I ′′2

)
=

1

36−m2

[(
18−m2 −3m
−3m 18−m2

)
·(

I1
I2

)
+

1

kl

(
6 m
m 6

)
·
(
φ1
φ2

)]
.

(28)

This article has been accepted for publication in IEEE Transactions on Applied Superconductivity. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TASC.2022.3178359

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



The final current change comes in step 7. Applying
flux conservation in the target loops of each double-loop
structure, the final current after one flux pumping cycle is
given by

(
I ′′′1
I ′′′2

)
=

1

(16−m2) (36−m2)

(
12−m2 −m
−m 12−m2

)
·[(

18−m2 −3m
−3m 18−m2

)(
I1
I2

)
+

1

kl

(
6 m
m 6

)(
φ1
φ2

)]
.

(29)

Once again, we argue that, without loss of generality,
equation (29) can be rewritten as

In = U ′.In−1 + V ′.Φ, (30)

thereby demonstrating the linearity of the flux pumping
scheme. Using a similar expression to equation (21), the final
currents after a large number of cycles can be calculated.
In the limiting case of no coupling between adjacent loops
(i.e., m = 0), the final currents, as expected, are the same
as when calculated individually (i.e., I = φ/5kl). In the
extreme case of maximum coupling, (i.e., m = 1), the final
current is I(m = 1)/I(m = 0) = 2/11 ÷ 1/5 ≈ 90.9%.
Interestingly, with an applied flux of Φ = (φ,−φ), the
final current for m = 1 exceeds the case for m = 0:
I(m = 1)/I(m = 0) = 4/19 × 5 ≈ 105.3%. The extra
degree of efficiency comes from the fact that with opposite
input fluxes, the currents on the touching edges of the target
loops are now pointing in the same direction. The efficiency
as a function of overlap parameter, m, is shown in Figure 8
for both cases.

III. EXPERIMENTAL VERIFICATION

Section II showed that, despite the presence of cross-talk,
simultaneous flux pumping of multiple double-loop super-
conducting structures results in a linear relationship between
the input fluxes and the final magnetic field distribution.
In this section, an experimental verification of this linear
relationship in the case of adjacently placed target loops is
presented. While not experimentally investigated here, we
argue that this linear relationship will also apply to the
case of overlapping target loops, since such a difference
will manifest only in different values of the matrix elements
of Θ (or χ), and not in the overall mathematical form
of the relationship. Furthermore, this should also extend
to any arbitrary number of double-loop superconducting
structures. For n independent double-loop superconducting
structures, the resulting calibration matrix, Θ (or χ), will
have dimension n× n.

A. Experimental setup

An illustration of the experimental setup is given in
Figure 9. Two double-loop superconducting structures were

𝑙

𝑙

𝑙 𝑙𝑙

𝐼1 𝐼2

𝑙

𝑙

𝑙 𝑙𝑙

𝐼1 𝐼2

𝑙

𝑙

𝑙 𝑙𝑙

𝐼1 𝐼2𝜙1 𝜙2

𝑙

𝑙

𝑙 𝑙𝑙

𝐼1
′ 𝐼2

′𝜙1 𝜙2

𝑙

𝑙

𝑙 𝑙𝑙

𝐼1
′′ 𝐼2

′′

𝑙

𝑙

𝑙 𝑙𝑙

𝐼1
′′

𝐼2
′′

𝑙

𝑙

𝑙 𝑙𝑙

𝐼1 𝐼2𝜙1 𝜙2

𝑙

𝑙

𝑙 𝑙𝑙

𝐼1
′′′ 𝐼2

′′′

𝑙

𝑙

𝑙 𝑙𝑙

𝐼1
′′′ 𝐼2

′′′

Step 1

Step 3

Step 2

Step 4

Step 5

Step 6

Step 7

Step 8

Fig. 7: Flux pumping scheme of two double-loop supercon-
ducting structures with adjacently placed target loops. Cur-
rent in the left-hand double-loop structure is represented by
blue arrows, while current in the right-hand superconducting
double-loop structure is depicted by red arrows. Applied flux
is represented by

⊗
.
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Adjacent Loop Arrangement

Fig. 8: Graph showing the flux pump efficiency for the
adjacent loop arrangement as a function of overlap parameter,
m. The solid curve shows the efficiency when the input
fluxes have the same polarity. The dashed curve shows the
efficiency with input fluxes with opposite polarity.
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Hall probe scanning
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𝑧
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a. b.
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𝑥

𝑦
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c.

Side view

Fig. 9: Schematic of the experimental setup to measure the cross-talk between two adjacently separated double-loop
superconducting structures. a. Top view showing the dimensions of the two double-loop superconducting structures made
from SuperPower HTS tape. b. Top view of the experimental setup, showing the locations of the heat switches, the pumping
solenoids, and the position of the Hall Probe. c. Side view of the experimental setup, showing the direction over which the
Hall probe was scanned.

cut from a strip of 12 mm unstabilised high temperature
superconductor (HTS) tape from SuperPower Inc. using a
Hei-Z CNC milling machine. Both adjacent superconducting
structures were cut to the same dimensions, with the pumping
and target loops equal in size. Superconducting switches
were placed on the central bridge and outer edge of each su-
perconducting structure, and were made by wrapping several
turns of nickel chromium wire (of resistance per unit length
ρ = 66 Ω m−1) around the tape and coating with varnish to
prevent heat loss via convection in the liquid nitrogen bath.
To operate these heat switches, 1 A of current was supplied
from a four-channel HMP4040 Rohde & Schwarz power
supply. To ensure simultaneity of heat switch operation, both
edge switches were connected in series to channel 1 of the
power supply, and both bridge switches were connected in
series to channel 2. In each pumping loop, small pumping
solenoids were placed comprising many turns (∼1000 turns
for the left hand solenoid, ∼100 turns for the right hand
solenoid) of 0.056 mm enamelled copper wire wrapped
around a 3 mm screw. The cores of the left and right hand
solenoids were made from brass and steel respectively. The
inductances were Lleft ≈ 0.1 mH and Lright ≈ 1.0 mH.
The screw heads were placed face down in the respective
pumping coils and were connected to channels 3 an 4 of the
high precision HMP4040 Rohde & Schwarz power supply.
The electrical setup was placed inside a polystyrene container
holding 10 litres of liquid nitrogen located on the bed the

Hei-Z CNC machine. An Arepoc cryogenic Hall probe was
attached to the moving head of the CNC machine, so that the
Hall probe position could be computer controlled with step
resolution of 0.003 mm. The Hall probe was placed such that
the active area was positioned to be at r0 = (x0, y0, z0) =
(0.00, 1.00, 0.00) mm in the coordinate system shown in
Figure 9a.

B. Results and discussion

The first step was to calibrate the system by measuring the
magnetic field distribution from the current configurations:
I = (IL, IR) = (0.10, 0.00) A and I = (IL, IR) =
(0.00, 0.10) A. IL and IR refer to the input currents to the
solenoids of the left- and right-hand double-loop supercon-
ducting structures respectively. For each set of input currents,
the system was flux pumped to saturation (see Figure 10),
after which the Hall Probe was scanned a distance of ±0.25
mm about r0 in the y direction. Additionally, scans of the
background magnetic field distribution were performed and
subtracted from the flux pumped magnetic field distribution,
to eliminate any effects due to stray fields (such as the Earth’s
magnetic field). After background subtraction, the resulting
magnetic field distributions were then fit to a fourth order
polynomial in (y − y0):

Bz(y) = Bz0 +Bz1(y − y0) + · · ·+Bz4(y − y0)4, (31)
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Fig. 10: Flux pumping calibration graphs showing Bz(r0) as
a function of cycle number. Saturation is effectively reached
after 5 flux pumping cycles. Due to the difference in solenoid
inductances, the final magnetic field of the I = (0.00, 0.10)
A case is a factor of 7.6 times larger than the final magnetic
field achieved with a set of input currents given by I =
(0.10, 0.00) A.
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Fig. 11: Measured magnetic field distributions for the two
calibration cases showing the zeroth and first order fit pa-
rameters.

where Bzi = ∂iBz

∂yi y0 . Results of two of these fits are given
in Figure 10, where the zeroth and first order terms are
displayed. These coefficients define the calibration of the
setup, and can be summarised (per 1 A of input current)
in matrix form as follows:

χ =

(
b
(L)
z0 b

(R)
z0

b
(L)
z1 b

(R)
z1

)
, (32)

where b
(L)
zi = B

(L)
zi /1A for the left-hand loop (L), with

similar expressions for the right-hand loop (R). The results
from the calibration measurement are summarised as

χ =

(
0.43(1) 3.494(6)
−0.12(6) −1.13(6)

)
mT A−1

mT mm−1
(33)

where the units for each row are displayed on the right.
Using the matrix elements given in (33), one can calculate

the expected values of the magnetic field coefficients Bexp
z0

Ia = (Ileft, Iright)(A) Bexp
z0 (mT) Bmeas

z0 (mT)
(0.31, 0.31) 1.22(1) 1.21(1)
(0.31,−0.31) −0.95(1) −0.94(1)

Ia = (Ileft, Iright)(A) Bexp
z1 (mTmm−1) Bmeas

z1 (mTmm−1)
(0.31, 0.31) −0.39(4) −0.40(1)
(0.31,−0.31) 0.31(4) 0.29(2)

TABLE I: Table comparing the expected and measured
magnetic field distributions. The expected magnetic field
distributions are calculated based on the magnetic field distri-
butions from the calibration input currents of I = (0.1, 0.0)
A and I = (0.0, 0.1) A.
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Fig. 12: A graph showing the magnetic field distributions
for the two cases, with input fluxes (IL, IR) = (0.31, 0.31)
A and (IL, IR) = (0.31,−0.31) A. The measured magnetic
field distributions are in excellent agreement with the pre-
dicted values.

and Bexp
z1 for any arbitrary pair of applied currents. Two

explicit cases are presented here, one with an even set of
input currents (Ileft, Iright) = (0.31, 0.31) A and one with
an odd set of currents (Ileft, Iright) = (0.31,−0.31) A. Using
the same steps as described above, the two double-loop
superconducting structures were flux pumped to saturation
and the magnetic field distribution was measured by scanning
the Hall probe about r0. A comparison between the predicted
coefficient values (using χ in equation (33)) and measured
magnetic field distribution values is given in Table I. It shows
that the measured and predicted magnetic field distributions
agree within the quoted error bars, clearly demonstrating the
validity and linearity of our calibration method.

IV. CONCLUSIONS

In this article, we investigated how simultaneously flux
pumping two inductively coupled double-loop superconduct-
ing structures affects the overall magnetic field distribu-
tion that is achieved. Using small superconducting circuits
made from HTS tape, we fluxed pumped and measured
the resulting magnetic field distribution from an adjacent
arrangement of superconducting structures. In this simple
system, we found that the overall magnetic field distribution
and pumping currents (which are proportional to the input
fluxes, Φ), are linearly related by a calibration matrix, χ.
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This means that, once χ is known, any desired magnetic
field distribution, Bdes, can be achieved by simply choosing
the appropriate pumping currents, I(p)req. These are obtained
from the following transformation:

I(p)req = χ−1 ·Bdes. (34)

While only the case of adjacently arranged superconduct-
ing structures was experimentally investigated, our theoret-
ical model suggests that a similar relationship should also
be obtained in the overlapping arrangement. This will be
investigated experimentally in future work.

Another obvious extension to the work discussed here
is to investigate the simultaneous flux pumping of several
(> 2) superconducting structures. While our model suggests
that the same principles discussed above should also apply
to any number of interacting double-loop superconducting
structures, the added complexity of having many interacting
loops presents several practical challenges. An important
example is how with the overlap parameter, m, (which
implicitly affects the matrix elements of Θ and χ) will vary in
complex, multi-loop systems. As shown in Figures 6 and 8,
the final obtainable currents (and hence magnetic fields) from
this flux pumping scheme is highly sensitive to this overlap
parameter. For the new magnetic field source of the Geonium
Chip shown in Figure 1c, which has five pairs of double-loop
superconducting structures, how this will affect the maxi-
mum achievable field strength will have to be investigated
empirically. A systematic characterisation of how m varies
for different arrangements of double-loop superconducting
structures, including different sized loops, varying degrees
of target-loop overlap, and even the interesting prospect of
flux pumping stacks of superconducting structures (similar
to [27]), would be an important and useful extension to the
worked discussed in this article.

The ability to account for cross-talk between neighbouring
superconducting loops is a significant advancement towards
the realisation of a planar, persistent-current magnetic field
source for the Geonium Chip Penning trap. It means that the
flux pumping scheme outlined in [21] can be applied to more
than one structure while still allowing for complete control
of the magnetic field distribution. Flux pumping therefore
remains a promising method of operating the new magnetic
field source of the Geonium Chip. While the motivation for
this work has been for an ion trap experiment, we believe the
techniques outlined here could be useful for other quantum
systems relying on precise control of stable magnetic field
distributions, particularly in applications where portability
and scalability are important.
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