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Abstract During a disaster, a large number of disaster-related social media posts are widely

disseminated. Only a small percentage of disaster-related information is posted by eye-

witnesses. The post of a disaster eyewitness offers an accurate depiction of the disaster.

Therefore, the information posted by the eyewitness is preferred over the other source of

information as it is more effective at helping organize rescue and relief operations and

potentially saving lives. In this work, we propose a multi-channel convolutional neural

network (MCNN) that uses three different word-embedding vectors together to classify

disaster-related tweets into eyewitness, non-eyewitness, and don’t know classes. We com-

pared the performance of the proposed multi-channel convolutional neural network with sev-
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eral attention-based deep-learning models and conventional machine learning-models such

as recurrent neural network, gated recurrent unit, Long-Short-Term-Memory, convolutional

neural network, logistic regression, support vector machine, and gradient boosting. The pro-

posed multi-channel convolutional neural network achieved an F1-score of 0.84, 0.88, 0.84,

and 0.86 with four disaster-related datasets of floods, earthquakes, hurricanes, and wildfires,

respectively. The experimental results show that the training MCNN model with different

word embedding together performs better than the conventional machine-learning models

and several other deep-learning models.

Keywords Disaster · Eyewitness tweets · Informative contents · Multi-channel convolu-

tional neural network · Recurrent neural network

1 Introduction

Social media has been found to play a vital role in disaster relief operations. It has shown

its usefulness by potentially saving lives in several instances (Imran et al., 2015; Kumar &

Singh, 2019; Mendon et al., 2021; Bandyopadhyay et al., 2018). For example, a woman was

rescued from a hurricane when she asked for help on Twitter because the 911 emergency

number was not reachable.1 She posted, “I have 2 children with me and tge [sic],water

is swallowing us up. Please send help. 11115 Sageview, Houston,Tx, 911 is not respond-

ing!!!!!!”. Due to its potential usages during a disaster, more and more people are post-

ing and forwarding disaster-related information on social media such as Twitter and Face-

book (Imran et al., 2015; Kumar et al., 2020; Palshikar et al., 2018; Beydoun et al., 2018;

Mirbabaie et al., 2021; Mendon et al., 2021). These disaster-related social media posts con-

tain information about affected individuals, injured and missing people, and damage related

to infrastructure (Kumar et al., 2019). It has been found that several disaster-related events

have first appeared on social media instead of traditional news channels (Zahra et al., 2020).

For example, the news of the Westgate Mall attack in Kenya in 2013 was first reported on

Twitter, before it was reported by any TV channels (Zahra et al., 2020). Similarly, an airplane

crash over the Hudson River was first reported on Twitter (Sakaki et al., 2012).

Although social media posts can be posted rapidly and contain useful information re-

lated to disasters, they are equally filled with redundant and false information which limits

their authenticity and usages (Kumar et al., 2020; Tanev et al., 2017; Doggett & Cantarero,

2016; Stefan et al., 2019; Fang et al., 2016; Morstatter et al., 2014). The posts of local citi-

zens and eyewitnesses of disasters convey more authentic information related to the disaster

(Zahra et al., 2020). Information provided by the eyewitness can give a better perspective on

the disaster (Zahra et al., 2020). Therefore, the content posted by the eyewitness is preferred

1 https://twitter.com/RitzWillis/status/901687498732175360

https://twitter.com/RitzWillis/status/901687498732175360
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over all the other sources of information (Zahra et al., 2020; Stefan et al., 2019). Hence, ex-

tracting the contents shared by the eyewitness of a disaster is very important, but it is equally

challenging due to its limited volume in the massive social media posts (Zahra et al., 2020;

Morstatter et al., 2014; Tanev et al., 2017). In an analysis of 26 different events, Olteanu

et al. (2015) found that only 9% of messages were posted by the eyewitness. One straight-

forward approach for finding posts of people from the disaster-hit area is through geotagged

tweets Kumar et al. (2017). But tweets with geotagged information are rare, as only 1-3% of

the total tweets are geo-tagged (Imran et al., 2020; Zahra et al., 2020; Zola et al., 2020). The

second option is to use the user’s home location to decide the people belonging from the

disaster-hit area, but this home location field on the Twitter user’s account is very noisy and

inaccurate (Kumar et al., 2017). As the geotagged tweets are limited in numbers and users’

home location information is noisy, the textual content of the tweet can be used to identify

eyewitness tweets using natural language processing techniques (Zahra et al., 2020; Tanev

et al., 2017).

Recently, researchers (Zahra et al., 2020; Stefan et al., 2019; Tanev et al., 2017; Fang

et al., 2016; Morstatter et al., 2014) have proposed Natural Language Processing (NLP)

based approaches using textual features of the messages to identify eyewitness messages

from social media. Zahra et al. (2020) applied the Random Forest classifier with uni-gram

and bi-gram TF-IDF (Term Frequency-Inverse Document Frequency) features along with

several domain-specific features to identify eyewitness tweets. Tanev et al. (2017) used

Naive Bayes, Support Vector Machine, and Random Forest classifiers on textual features

and meta-data information of tweets to find eyewitness tweets. Morstatter et al. (2014) ex-

tracted several features such as uni-gram, bi-gram, crisis-sensitive features, and preposition

phrases to train a Naive Bayes classifier. Fang et al. (2016) extracted linguistic features,

meta-data features, and word-embedding vectors to train decision tree, random forest, and

support vector machine (SVM) classifiers. Most of these works used handcrafted features

with conventional machine-learning-based classifiers to identify eyewitness messages, but

their models achieved very limited performance. Recently, Stefan et al. (2019) proposed

dense neural network and Long-Short-Term-Memory (LSTM) network-based models for

the identification of eyewitness messages using bag-of-words and pre-trained GloVe word-

embedding vectors. But they tested their models on a very limited number of data samples.

Most of the deep neural network-based models operate over word-embedding vectors.

Word-embedding represents each word as a real-valued vector that captures syntactic and

semantic information, and thus they are very useful in many natural language processing

(NLP) tasks (Kumar & Singh, 2019; Yu et al., 2019). Nowadays, many pre-trained word

embeddings are available over the web Qiu et al. (2020), but different word embeddings

may encode different aspects of the language (Levy & Goldberg, 2014; Qiu et al., 2020).

Zhang et al. (2016) and Pham & Le (2018) explored the idea of integrating different word-
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embedding vectors and proposed a convolutional neural network-based model that achieved

state-of-the-art performance for sentence classification tasks. Motivated by their works, in

this study, we are proposing a multi-channel convolutional neural network (MCNN) that

uses three different word embeddings’ vectors together for eyewitness tweet identification.

The proposed MCNN model uses GloVe2, Crisis3, and Word2vec embedding vectors to-

gether. GloVe and Crisis are the pre-trained models with GloVe being trained on the 27

billion tokens of tweets whereas Crisis is trained on the crisis-related corpus. For word2vec

embedding, we trained it on the disaster-specific dataset using Gensim4. Irrespective of this,

we are also exploring the suitability of deep neural network-based models such as Recur-

rent Neural Network with attention, Gated Recurrent Unit with attention, Long-short-Term-

Memory with attention, and Convolutional Neural Network (CNN) where we used GloVe-

embedding vector for the identification of disaster-related eyewitness tweets. The proposed

system is validated on four different disasters related to floods, earthquakes, hurricanes, and

wildfires. The overall contributions of the paper can be summarized below:

– Proposing a multi-channel convolutional neural network (MCNN) for the identification

of disaster-related eyewitness tweets. The proposed MCNN model performed better than

the existing methods by achieving an F1-score of 0.84, 0.88, 0.84, and 0.86 for flood,

earthquake, hurricane, and wildfire events respectively.

– The proposed MCNN uses three different word embeddings to capture the better con-

textual meaning of the tweets.

– The performance of the proposed MCNN model is compared with several popular machine-

learning and deep-learning models.

The rest of the sections are organized as follows: Section 2 discusses the related work,

Section 3 discusses the detailed methodology used to perform the experiments. Section 4

lists the experimental results, Section 5 discusses the findings of the proposed model with

some future directions and, finally, Section 6 concludes the paper.

2 Related works

Disaster-related social media content is effectively utilized by several researchers (Kumar

et al., 2020, 2019; Kumar & Singh, 2019; Stefan et al., 2019; Zahra et al., 2020; Nguyen

et al., 2017b; Liu & Xu, 2018) to propose different methods to provide better situational

awareness in citizens, to perform better rescue and relief operations, assess the damage au-

tomatically, and find the location information of events and posts. Identification of disaster-

2 http://nlp.stanford.edu/data/glove.twitter.27B.zip
3 https://crisisnlp.qcri.org/data/lrec2016/crisisNLP_word2vec_model_v1.2.zip
4 https://radimrehurek.com/gensim/

http://nlp.stanford.edu/data/glove.twitter.27B.zip
https://crisisnlp.qcri.org/data/lrec2016/crisisNLP_word2vec_model_v1.2.zip
https://radimrehurek.com/gensim/
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related informative content from social media has been a very active area of research around

the globe (Kumar et al., 2020, 2019; Singh et al., 2019; Nguyen et al., 2017a; Caragea et al.,

2016; Imran et al., 2014). This informative content contains posts of people from disaster-hit

areas as well as from outside the disaster regions. As the posts of local citizens and eyewit-

nesses of disaster convey more authentic information and can give a better perspective on the

disaster, several researchers (Stefan et al., 2019; Zahra et al., 2018, 2020; Tanev et al., 2017;

Morstatter et al., 2014) have shown a strong interest in finding eyewitnesses’ social media

content, i.e., content posted from the disaster-hit area. Therefore, for the better organiza-

tion of related literature, this section is divided into two subsections: (i) Informative disaster

content identification from social media, and (ii) Eyewitness disaster content identification

from social media.

2.1 Informative disaster content identification from social media

This section briefly discusses some of the potential works for the identification of infor-

mative disaster-related content from social media. The convolutional neural network-based

model was used by (Caragea et al., 2016; Nguyen et al., 2017a; Kersten et al., 2019; Madichetty

& Sridevi, 2019) to classify informative and non-informative disaster-related tweets. Yu

et al. (2019) used convolutional neural network-based model to do a fine grain classification

of informative disaster-related tweets in caution and advice, casualties and damage, and do-

nation and aid classes. Singh et al. (2019) extracted several features from the textual content

of tweets to experiment with support vector machine, random forest, and gradient-boosting

classifiers to classify high-priority and low-priority tweets. Nguyen et al. (b) implemented a

deep neural network to first classify disaster-related informative and non-informative tweets.

They further used informative tweets to identify tweets related to affected individuals, in-

frastructure and utility damage, and sympathy and support. Kumar et al. (2019) performed a

comparative analysis of different machine-learning and deep-learning techniques to classify

informative tweets into further classes such as affected individuals, infrastructure and utility

damage, injured or dead people, missing or found people, rescue volunteering or donation

effort, and vehicle damage. They found that deep-learning-based models perform better than

the several popular machine-learning classifiers. Roy et al. (2020) used SVM to classify cy-

clone fani tweets into informative and non-informative classes. They further summarized

informative tweets to get better information regarding the disaster. Kumar et al. (2020) built

a multi-modal system to classify informative and non-informative tweets of disaster using

LSTM and VGG-16 for tweet text and images respectively. Madichetty & Sridevi (2021)

proposed a model that uses low-level lexical, syntactic, and top-most frequency features to

find damage assessment tweets during a disaster. Mohanty et al. (2021) proposed four differ-
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ent models: a geospatial model, an image model, a user model, and a text model to provide

situational awareness from social media data during disaster events.

One group of researchers (Alam et al., 2017; Nguyen et al., a,a; Daly & Thom, 2016;

Lagerstrom et al., 2016) developed models to filter informative social media images related

to disaster to help humanitarian organizations. Alam et al. (2017) proposed a framework

to identify relevant images of Queensland Australian Cyclone, 2017, from social media.

Nguyen et al. (a) used transfer learning for irrelevant image filtering and the perceptual

hashing technique for redundant image filtering from disaster-related social media con-

tent. Chaudhuri & Bose (2019) used a convolutional neural network for the identification

of human body parts from the earthquake-related images whereas Daly & Thom (2016) and

Lagerstrom et al. (2016) developed models to identify fire-related disaster images.

2.2 Eyewitness disaster content identification from social media

Kumar et al. (2013) proposed a method to identify the subset of users from social media

who can provide quick and relevant information related to an event. They reported that

the selected users generate more quality information compared to other social media users.

Morstatter et al. (2014) analyzed the Boston Marathon bombing and Hurricane Sandy events

and found that several linguistic differences exist between the tweets posted from disaster-

affected areas and outside the affected areas. They used features such as uni-gram, bi-gram,

crisis-sensitive features, preposition phrases to train a Naive Bayes classifier. They found

the best F1-score of 0.83 and 0.88 for the Boston bombing and Hurricane Sandy event re-

spectively to classify tweets posted from the disaster-hit area or outside area. Truelove et al.

(2015) observed that the eyewitness accounts had fewer location name references but more

personal location information such as “my home” by analyzing bushfire events. Different

filtering rules for events such as shooting, protests and police activity were used by Doggett

& Cantarero (2016) to filter eyewitness tweets. The presence of first-person pronouns, im-

mediate temporal words like just and now, locative markers such as school, here, and excla-

mative or emotive punctuation were used while defining their filtering rules. Features such

as linguistic, crisis-sensitive, conversational, meta-data were utilized by Fang et al. (2016)

to classify eyewitness social media accounts. They used machine-learning classifiers such

as decision tree, random forest, and support vector machine (SVM). They found that SVM

performed best with an F1-score of 0.90 when it was trained on linguistic features, meta-data

features, and word-embedding vectors. Tanev et al. (2017) used uni-gram, bi-gram, semantic

features, and metadata information of the earthquake, wildfire, landslide, and flood tweets

to classify them into eyewitness and non-eyewitness classes. They used English and Italian

tweets with the Naive Bayes, Support Vector Machine, and Random Forest classifiers. The
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Table 1 Summary of some of the potential related works for the identification of eyewitness social media
content

Authors Dataset Features Model Performance

Morstatter et al. (2014) Boston Marathon bomb-
ing, Hurricane Sandy

Uni-gram, bi-gram, crisis-
sensitive features, preposi-
tion phrases

Naive Bayes F1-score = 0.83-0.88

Fang et al. (2016) Cyclone, Earthquake,
Shooting, Bombing, etc

Linguistic features, meta-
data features, word em-
bedding vectors, etc.

SVM F1-score = 0.90

Tanev et al. (2017) Earthquake, wildfire, land-
slide, and flood

Uni-gram, bi-gram, meta-
data, semantic features,
etc.

Random Forest, Naive
Bayes, SVM

F1-score = 0.69-0.79

Zahra et al. (2020) Flood, earthquake, hurri-
cane, and wildfire

Uni-gram and bi-gram TF-
IDF, + domain-specific
features

Random Forest F1-score = 0.40-0.92

Stefan et al. (2019) California wildfire, Iran-
Iraq earthquake, and Hur-
ricane Harvey

Word-embedding, pro-
nouns, Time-specific
words, Location-specific
words, feeling-related
words

Naive Bayes, Logis-
tic regression, LSTM,
etc.

Precision = 0.79-1.00

Pekar et al. (2020) Colorado wildfires, Philip-
pines floods, Australia
bushfire, etc.

Parts-of-speech Support vector ma-
chine, K-nearest
neighbor, Naive
Bayes, and ensembles
methods

F1-score < 0.5

Truelove et al. (2017) Australian Football
League

Bag-of-visual-words fea-
tures

Linear support vector
machine

Accuracy = 90.17%

best F1-score of 0.79 for English language tweets and 0.69 for Italian language tweets were

achieved with Random Forest and Naive Bayes classifiers respectively.

Zahra et al. (2018) analyzed the different disaster-related tweets and labeled them into

three different classes: (i) eyewitness, (ii) non-eyewitness, and (iii) don’t know. They further

labeled eyewitness tweets into three different classes: direct eyewitness, indirect eyewitness,

and vulnerable direct eyewitness. They observed that tweets expressing terms like feeling,

seeing, and hearing appeared often in direct eyewitness tweets, whereas prayers, emotions,

and thoughts appeared frequently in indirect eyewitness tweets. Zahra et al. (2020) classi-

fied flood, earthquake, hurricane, and wildfire tweets into eyewitness, non-eyewitness, and

don’t know classes. They used uni-gram, bi-gram TF-IDF, and several domain-specific fea-

tures. They reported that the Random Forest classifier outperformed the other machine-

learning classifiers in identifying eyewitness tweets by achieving an F1-score of 0.57, 0.92,

0.60, and 0.40 for flood, earthquake, hurricane, and wildfire events respectively. Stefan

et al. (2019) applied several classifiers such as Naive Bayes, logistic regression, and neural

network-based approach to classifying tweets into eyewitness and non-eyewitness classes.

They manually labeled datasets related to the California wildfire, Iran-Iraq earthquake, and

Hurricane Harvey. But, their data size was limited having only one thousand tweets. Their

best-performed models achieved an average precision of 0.79, 1.0, and 0.89 for the Cali-

fornia wildfire, Iran-Iraq earthquake, and Hurricane Harvey respectively. Pekar et al. (2020)
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applied several machine-learning classifiers such as SVM, K-nearest neighbor, Naive Bayes,

and ensembles methods on four different tasks: identification of eyewitness reports, detec-

tion of relevant messages, informative messages, and topical classification of messages.

They performed experiments in several different settings to combine the disaster-specific

dataset into one to test the performance of models in case of heterogeneous disaster events.

They stated that the identification of eyewitness tweets is very hard and found that none

of the models achieved F1-score of more than 50%. Truelove et al. (2017) extracted bag-

of-visual-words features from the images and applied several machine-learning classifiers

such as decision tree, Naive Bayes, random forest, linear support vector machine to clas-

sify images posted from a witness account or not. Their implemented linear support vector

machine classifiers performed best with an accuracy of 90.17%. The summary of some of

the potential works for the identification of eyewitness social media content can be seen in

Table 1.

Most of the earlier works used hand-crafted features and trained conventional machine-

learning classifiers to identify eyewitness messages. In this work, we are exploring different

recurrent neural network-based models with attention mechanism, convolutional neural net-

work, and multi-channel convolutional neural network with three different word-embedding

techniques such as GloVe, Crisis, and Word2vec to classify tweets into eyewitness, non-

eyewitness, and don’t know classes. The detailed description of the proposed models and

word-embedding techniques can be seen in section 3.

3 Methodology

The extensive experiments were performed with seven conventional machine-learning mod-

els and five deep-learning models. The conventional machine-learning classifiers are: (i)

Support Vector Machine (SVM), (ii) Naive Bayes (NB), (iii) K-Nearest Neighbors (KNN),

(iv) Logistic Regression (LR), (v) Decision Tree (DT), (vi) Random Forest (FT), and (vii)

Gradient Boosting (GB). The deep-learning models are (i) Recurrent Neural Network with

Attention (RNN-A), (ii) Gated Recurrent Unit with Attention (GRU-A), (iii) Long-Short-

Term-Memory with Attention (LSTM-A), (iv) Convolutional Neural Network (CNN), and

(v) Multichannel Convolutional Neural Network (MCNN).

3.1 Data description

The proposed work uses the dataset5 published by (Zahra et al., 2020). The dataset includes

tweets related to four different disasters, such as earthquakes, floods, fires, and hurricanes.

5 https://crisisnlp.qcri.org/data/eyewitness_tweets_annotations_14k_public.zip

https://crisisnlp.qcri.org/data/eyewitness_tweets_annotations_14k_public.zip
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Table 2 The statistics of the datasets used in this study

Earthquake Flood Hurricane Wildfire

Eyewitness 1,967 775 763 189
Non-eyewitness 521 664 1,299 1,379
Don’t know 1,512 2,561 1,938 432
Total 4,000 4,000 4,000 2,000

Three different levels were assigned to tweets, such as eyewitness, non-eyewitness, and don’t

know. Two sets of datasets were provided. In set-1, the datasets were labeled by authors

and their groups. In set 2, the labeling was done using crowdsourcing. Out of a total of

four different disaster-related events such as flood, earthquake, hurricane, and wildfire, the

wildfire event dataset was labeled by crowdsourcing only, whereas for other events both

crowdsourcing and authors manual labeling was done. We merged the event-specific dataset

of manual analysis and crowdsourcing into one for earthquake, flood, and hurricane. The

overall statistic of the dataset used in this study can be seen in Table 2. To perform the pre-

processing of tweets, special characters such as “!, #, %, &, ?, @” and extra space, as well as

tab between the words, were removed. Finally, tweets were transformed to lowercase, which

is then employed by several conventional machine-learning and deep-learning models.

3.2 Representation of tweets

In the case of conventional machine-learning models, tweets are represented using TF-IDF

vectors. For the calculation of TF-IDF vectors, uni-gram, bi-gram, and tri-gram words of

the tweets are used. In the case of deep-learning models, tweets are represented using the

word-embedding technique. The word-embedding technique represents each word of the

tweet corpus in a real-value fixed-dimensional vector. The word-embedding generates a

similar word vector for words having a similar meaning. This work uses three different

word-embedding vectors: (i) GloVe6, (ii) Crisis7, and (iii) Word2vec. GloVe and Crisis are

the pre-trained models with GloVe being trained on the 27 billion tokens of tweets whereas

Crisis is trained on the crisis-related corpus. For Word2vec embedding, we trained it on the

disaster-specific dataset using Gensim CBOW strategy8. We have used 100-dimensional,

300-dimensional, and 100-dimensional word vectors for GloVe, Crisis, and Word2vec em-

bedding respectively. The complete tweet matrix after embedding each word of the tweet

into a pre-defined fixed dimension of the real-valued vector can be represented by Ti.

6 http://nlp.stanford.edu/data/glove.twitter.27B.zip
7 https://crisisnlp.qcri.org/data/lrec2016/crisisNLP_word2vec_model_v1.2.zip
8 https://radimrehurek.com/gensim_3.8.3/models/word2vec.html

http://nlp.stanford.edu/data/glove.twitter.27B.zip
https://crisisnlp.qcri.org/data/lrec2016/crisisNLP_word2vec_model_v1.2.zip
https://radimrehurek.com/gensim_3.8.3/models/word2vec.html
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Ti =



W1 W2 W3 ... Wm

r11 r21 r31 . . . rm1

r12 r22 r32 . . . rm2

r13 r23 r33 . . . rm3
...

...
...

...
...

r1k r2k r3k . . . rmk


where Ti represents the embedding matrix of the tweets having m words. The tweets

that have fewer than m words are padded to make it of the dimension of m and the tweets

with greater than m words are curtailed to make it of the dimension of m. For word, Wm,

embedding is represented by the vector [rm1 rm2 ..... rmk], where k represents the embedding

dimension of the word. The length of the tweet (m) is fixed at 30 for the experiments because

most of the tweets in the dataset had at most 30 words.

3.3 Convolutional Neural Network

The convolutional neural network uses different n-gram filters to extract features from the

tweet matrix followed by the pooling operation. The overall architecture of the convolutional

neural network can be seen in Figure 1. The convolution process applies a filter with the

dimension of (w× k), where w is the length of the words and k is the embedding dimension

of the word. The filter applied on the tweet matrix first performs element-wise multiplication

with the first w words of the tweets and then the summation of all the multiplied values is

passed through an activation function to produce a feature. This filter is again applied to

the w words of the tweets by moving one step down, which means the filter is applied on

the w words of the tweet matrix by leaving the first column of the tweet matrix. A simple

convolution operation on the tweet matrix with the filter size of (w = 3) can be represented

as:

Ti =



W1 W2 W3 ... Wm

r11 r21 r31 . . . rm1

r12 r22 r32 . . . rm2

r13 r23 r33 . . . rm3
...

...
...

...
...

r1k r2k r3k . . . rmk


•



a11 a21 a31

a12 a22 a32

a13 a23 a33
...

...
...

a1k a2k a3k
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c f1

c f2

c f3
...

c f(m−w+1)


=



F{r11a11 + r21a21 + r31a31 + r12a12 + r22a22 + r32a32 + · · ·+
r1ka1k + r2ka2k + r3ka3k}

F{r21a11 + r31a21 + r41a31 + r22a12 + r32a22 + r42a32 + · · ·+
r2ka1k + r3ka2k + r4ka3k}

F{r31a11 + r41a21 + r51a31 + r32a12 + r42a22 + r52a32 + · · ·+
r3ka1k + r4ka2k + r5ka3k}

...

F{r(m−2)1a11 + r(m−1)1a21 + r(m)1a31 + r(m−2)2a12 + r(m−1)2a22+

r(m)2a32 + · · ·+ r(m−2)ka1k + r(m−1)ka2k + r(m)ka3k}


where, F(x) = max(0,x) represents the ReLu activation function. The ReLu activation

function converts negative values to zero and for the positive value it returns x itself. The

feature map after the convolution operation is represented by [c f1,c f2,c f3, .....,c f(m−w+1)].

After getting a feature map from the convolution process, max-pooling operation is per-

formed, which pools the maximum value from a window size of p, as given in equation

1.

ĉ f 1 = max(c fi,c fi+1,c fi+2, ......,c fp), i≥ 1 (1)

In this work, two different convolutional neural network-based models were imple-

mented. In the case of a single-channel convolutional neural network (CNN), only GloVe

embedding was used whereas in the case of the multi-channel convolutional neural network

(MCNN), three different channels were used with three different word-embedding vectors.

The overall architecture of the multi-channel CNN can be seen from Figure 1. Three dif-

ferent word-embedding vectors GloVe, Crisis, and Word2vec are used at the three-channel

of multi-channel CNN, as shown in Figure 1. Three different tweet matrixes were obtained

with the size of (30× 100), (30× 100), and (30× 300) for GloVe, Word2vec, and Cri-

sis embedding respectively. We applied 128 filters of 2-gram, 3-gram, and 4-gram on the

tweet matrix to extract relevant features from them. After the convolution operation, a max-

pooling operation was performed with a window size of 5. The vector after the max-pooling

from separate channels is then concatenated with each other as shown in Figure 1. The

second convolution operation is then applied to the concatenated feature maps with 128 fil-

ters of 1-gram followed by max-pooling operation with the windows size of 5. The feature

maps obtained from the second convolutional operation are flattened and passed through a

dense layer having 128 neurons. Finally, the dense layers having 128 neurons were passed

through a softmax layer to calculate the probability of the tweets belonging to eyewitness,
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Fig. 1 Proposed diagram of convolutional neural network for eyewitness classification

non-eyewitness, and don’t know classes. We used categorical cross-entropy as a loss func-

tion to calculate loss between true and predicted values and Adam (Kingma & Ba, 2014)

as the optimizer to back-propagate the loss in the network. The categorical cross-entropy is

defined by equation 2.

Categorical cross-entropy =−
N

∑
i=1

Vc× log(ŷi) (2)

Where, Vc represents the classes into the one-hot vector form, and ŷi is the predicted

class probability of the model for the ith training sample.
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Table 3 Description of the hyper-parameters used in the case of deep-learning models

Hyper-parameters MCNN CNN RNN-A GRU-A LSTM-A

Number of CNN layers 2 2 - - -
Number of dense layers 2 2 1 1 1
Filter size (2, 3, 4), 1 (2, 3, 4), 1 - - -
Number of filters 128 128 - - -
Max-pooling window 5 5 - - -
Number of RNN layers/units - - 2, (256 & 128) - -
Number of GRU layers/units - - - 2, (256 & 128) -
Number of LSTM layers/units - - - - 2, (256 & 128)
Number of neurons at dense layer 128, 3 128, 3 3 3 3
Activation functions ReLu, Softmax ReLu, Softmax Softmax Softmax Softmax
Learning rate 0.001 0.001 0.001 0.001 0.001
Batch size 100 100 100 100 100
Epochs 100 100 100 100 100

3.4 Attention-based recurrent neural network models

The attention-based techniques performed well in several natural language-processing tasks

(Yang et al., 2016; Wang et al., 2016) that motivated us to use this technique with RNN,

GRU, and LSTM networks. Attention-based techniques can identify eyewitness tweets ef-

ficiently as it is sensitive to distinctive textual features. The attention layer averages the

weights of the input sequence and propagates these weights through the softmax layers to

obtain the importance of the words. A detailed explanation of the attention-based mech-

anism can be seen in (Vaswani et al., 2017). The detailed explanation of the working of

RNN, GRU, and LSTM models can be seen in (Hochreiter & Schmidhuber, 1997; Chung

et al., 2014; Mikolov et al., 2010).

During experiments with conventional machine-learning classifiers, the default param-

eters provided in the Sklearn9 library are utilized, whereas deep-learning models require a

comprehensive sensitivity analysis since they are extremely sensitive to the chosen hyper-

parameters. Therefore, extensive testing was conducted to find the proper hyper-parameters

for deep-learning models. Table 3 lists the best-suited hyper-parameters for deep-learning

models. Section 3.5 provides a complete description of selecting the best-suited hyper-

parameters.

3.5 Hyper-parameter selection for deep neural network models

The proposed multi-channel CNN model consists of many hyper-parameters such as the

number of filters, filter size, max-pooling window size, learning rate, batch size, activation

functions, number of epochs, number of CNN layers, number of dense layers, number of

9 https://scikit-learn.org/stable/
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neurons in dense layer and others. As the performance of the deep-learning models is very

sensitive to the selected parameters, therefore the right choice of hyper-parameter selection

is very important. To get the best set of hyper-parameters, first, we fixed the batch size of

80, max-pooling size of 5, and the learning rate to its default value i.e., 0.001, then started

experiments with 2 layers of CNN and 2 layers of dense (128 and 3 neurons respectively at

dense layers) where different combinations of 1-gram, 2-gram, 3-gram, and 4-gram filters

were applied on each of the CNN layers by varying the number of filters. The extensive

experiments were performed for 100 epochs, we found 128 filters of 2-gram, 3-gram, and

4-gram filters at the first CNN layer, and 128 filters of 1-gram at the second CNN layer

performed best in the case of the multi-channel CNN model. Next, experiments were per-

formed with different combinations of batch size and learning rate where the batch sizes of

80, 100, and 120 and learning rates of 0.01, 0.001, and 0.0001 were used. The multi-channel

CNN performed best with a batch size of 100 and a learning rate of 0.001. Next, with the

best-obtained batch size, learning rate, number of filters, and filter size, we experimented

with one layer of multi-channel CNN, two layers of multi-channel CNN, and three layers of

multi-channel CNN. The best performance was achieved in the case of two layers of multi-

channel CNN. The detailed hyper-parameters for the multi-channel CNN model can be seen

in Table 3.

As the best result was found with the multi-channel CNN with the batch size of 100,

the learning rate of 0.001, we fixed this value for other experiments. In the case of single-

channel CNN (CNN), the same set of experiments were performed with the number of filters

and filter size. The best-performed hyper-parameters can be seen in Table 3. In the case of

RNN with attention (RNN-A), GRU with attention (GRU-A), and LSTM with attention

(LSTM-A) experiments were performed by varying the number of layers and number of

hidden output units. The best performance was achieved with 2 layers having 256 and 128

hidden outputs units for each of the models. The detailed hyper-parameters for the RNN-A,

GRU-A, and LSTM-A models can be seen in Table 3.

4 Results

All of the experiments were carried out on the Google Collaboratory10 platform, which in-

cludes an Nvidia K80/T4 GPU and 16 GB of RAM. Keras11 Python deep-learning library

with Tensorflow12 as a backend is used to create deep-learning models, whereas Sklearn13

Python library is used to implement conventional machine-learning classifiers. The exten-

10 https://colab.research.google.com/
11 https://keras.io/
12 https://www.tensorflow.org/
13 https://scikit-learn.org/stable/
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Table 4 The weighted average of the precision (P), recall (R), and F1-score (F1) for the conventional machine-
learning classifiers (10-fold)

Classifier Flood Earthquake Hurricane Wildfire

P R F1 P R F1 P R F1 P R F1

SVM 0.41 0.64 0.50 0.24 0.49 0.33 0.24 0.48 0.32 0.48 0.69 0.56
RF 0.76 0.76 0.72 0.83 0.82 0.81 0.77 0.78 0.76 0.81 0.82 0.79
LR 0.78 0.78 0.75 0.87 0.87 0.86 0.79 0.79 0.77 0.76 0.73 0.65
KNN 0.75 0.76 0.75 0.80 0.77 0.76 0.77 0.77 0.76 0.75 0.76 0.73
NB 0.73 0.75 0.73 0.81 0.81 0.81 0.73 0.73 0.73 0.74 0.76 0.74
GB 0.72 0.74 0.73 0.78 0.77 0.76 0.76 0.77 0.76 0.81 0.81 0.80
DT 0.68 0.67 0.67 0.75 0.73 0.72 0.71 0.72 0.71 0.78 0.79 0.78

sive experiments were performed with 10-fold cross-validation (Kohavi et al., 1995) for

both conventional machine-learning and deep-learning models. In 10-fold cross-validation,

the entire data sample is randomly divided into 10 subsamples, in which one subsample is

used to validate the system while the system is trained with nine subsamples. This process

is repeated 10 times, with each of the ten subsamples being used only once as the valida-

tion data. The results from each of the folds are averaged to estimate the overall system

performance. The performance of the models is evaluated using precision, recall, F1-score,

accuracy, and Area Under Curve (AUC). The detailed description of each of the evaluation

metrics can be seen in (Powers, 2011).

First, the experimentation was performed with seven different conventional machine-

learning classifiers. The uni-gram, bi-gram, and tri-gram TF-IDF features of the tweets were

used to classify tweets. The weighted averages of the precision, recall, and F1-score for each

of the classifiers are listed in Table 4. In the case of flood, earthquake, and hurricane, the

logistic regression (LR) classifier performed best with the weighted F1-score of 0.75, 0.86,

0.77, respectively. In the case of wildfire, the gradient boosting (GB) classifier performed

better with a weighted F1-score of 0.80.

Next, the experimentation was performed with different deep neural network models.

The range of the weighted average of F1-score for 10-fold cross-validation for different

events is plotted using the box-whisker plot. The box-whisker plot of the RNN-A, GRU-A,

LSTM-A, CNN, and MCNN models for flood, earthquake, hurricane, and wildfire events

can be seen from Figure 2, Figure 3, Figure 4, and Figure 5 respectively.

For the flood event, the results of the different deep-learning models are listed in Ta-

ble 5. The multi-channel CNN (MCNN) and signal channel CNN (CNN) both achieved a

weighted F1-score of 0.84 and AUC of 0.93, which is better than other deep-learning mod-

els and conventional machine-learning models. Among all the implemented deep-learning
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Table 5 Results of the different deep-learning models for the flood event

Class Precision Recall F1-score Accuracy AUC

RNN-A

Eyewitness 0.74 0.61 0.66

0.83 0.91
Non-eyewitness 0.74 0.72 0.72
Don’t know 0.88 0.93 0.90
Weighted avg. 0.83 0.83 0.83

GRU-A

Eyewitness 0.75 0.65 0.69

0.84 0.92
Non-eyewitness 0.75 0.72 0.73
Don’t know 0.89 0.93 0.91
Weighted avg. 0.84 0.84 0.84

LSTM-A

Eyewitness 0.75 0.62 0.68

0.84 0.92
Non-eyewitness 0.75 0.73 0.74
Don’t know 0.88 0.93 0.91
Weighted avg. 0.84 0.84 0.83

CNN

Eyewitness 0.76 0.64 0.69

0.84 0.93
Non-eyewitness 0.75 0.72 0.73
Don’t know 0.88 0.93 0.91
Weighted avg. 0.84 0.84 0.84

Multi-channel CNN

Eyewitness 0.76 0.65 0.70

0.84 0.93
Non-eyewitness 0.74 0.74 0.74
Don’t know 0.90 0.93 0.91
Weighted avg. 0.84 0.84 0.84

models, the multi-channel CNN (MCNN) performed best for the eyewitness class with an

F1-score of 0.70. For the earthquake event, the results of the different deep-learning models

are listed in Table 6. Among all the implemented deep-learning models, GRU-A, LSTM-A,

and MCNN performed equally well and achieved a weighted F1-score of 0.88 and AUC of

0.95. The CNN model performed comparatively well with a weighted F1-score of 0.88 and

AUC of 0.96. For the eyewitness class, all models GRU-A, LSTM-A, CNN, and MCNN

achieved an F1-score of 0.90. For hurricane event, the results of the different deep-learning

models are listed in Table 7. The multi-channel CNN outperformed all the deep-learning

and conventional machine-learning classifiers with the weighted F1-score of 0.84 and AUC

of 0.94.

For the wildfire event, the results of the different deep-learning models are listed in Table

8. Among all the implemented deep-learning models, GRU-A, LSTM-A performed well

with a weighted F1-score of 0.87 and AUC of 0.92, whereas the single-channel CNN and

multi-channel CNN achieved an F1-score of 0.86 and AUC of 0.93. For the eyewitness class,

LSTM-A performed best with an F1-score of 0.67 whereas multi-channel CNN achieved an

F1-score of 0.60. The performance of the models for the eyewitness class is comparatively
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Table 6 Results of the different deep-learning models for the earthquake event

Class Precision Recall F1-score Accuracy AUC

RNN-A

Eyewitness 0.89 0.90 0.89

0.87 0.94
Non-eyewitness 0.94 0.83 0.88
Don’t know 0.84 0.86 0.85
Weighted avg. 0.88 0.87 0.87

GRU-A

Eyewitness 0.90 0.91 0.90

0.88 0.95
Non-eyewitness 0.92 0.84 0.88
Don’t know 0.85 0.87 0.86
Weighted avg. 0.88 0.88 0.88

LSTM-A

Eyewitness 0.90 0.90 0.90

0.88 0.95
Non-eyewitness 0.91 0.84 0.87
Don’t know 0.85 0.86 0.86
Weighted avg. 0.88 0.88 0.88

CNN

Eyewitness 0.89 0.91 0.90

0.88 0.96
Non-eyewitness 0.94 0.82 0.88
Don’t know 0.85 0.86 0.86
Weighted avg. 0.88 0.88 0.88

Multi-channel CNN

Eyewitness 0.89 0.91 0.90

0.88 0.95
Non-eyewitness 0.95 0.85 0.89
Don’t know 0.86 0.86 0.86
Weighted avg. 0.89 0.89 0.88

low. The possible reason for this can be a lower number of eyewitness samples (189 samples)

were available (as can be seen from Table 2) for the wildfire event.

5 Discussion

The major finding of this research is that the multi-channel convolutional neural network

(MCNN) is a better model to segregate eyewitness and non-eyewitness posts from Twitter

compared to conventional machine-learning models and several other deep-learning mod-

els. The use of three different word-embedding vectors, GloVe, Crisis, and Word2vec in

the multi-channel CNN, performed well as the features extracted from three different chan-

nels of CNN using 2-gram, 3-gram, and 4-gram filters provide robust features for the iden-

tification of eyewitness tweets. As the proposed system automatically identifies the most

suitable features in their hidden layers for the identification of eyewitnesses, it does not

need any feature engineering. In the case of the flood event, the F1-score of multi-channel

CNN was improved by 9% in comparison to the logistic regression model of conventional

machine-learning models whereas it performed comparatively well in the comparison of

other deep-learning models. In the case of the earthquake event, the F1-score of multi-
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Table 7 Results of the different deep-learning models for the hurricane event

Class Precision Recall F1-score Accuracy AUC

RNN-A

Eyewitness 0.69 0.61 0.64

0.82 0.91
Non-eyewitness 0.84 0.83 0.83
Don’t know 0.85 0.89 0.87
Weighted avg. 0.81 0.82 0.81

GRU-A

Eyewitness 0.70 0.68 0.68

0.83 0.93
Non-eyewitness 0.85 0.83 0.84
Don’t know 0.87 0.89 0.88
Weighted avg. 0.83 0.83 0.83

LSTM-A

Eyewitness 0.70 0.70 0.70

0.83 0.93
Non-eyewitness 0.84 0.83 0.83
Don’t know 0.88 0.89 0.88
Weighted avg. 0.83 0.83 0.83

CNN

Eyewitness 0.70 0.67 0.69

0.83 0.93
Non-eyewitness 0.84 0.85 0.84
Don’t know 0.88 0.88 0.88
Weighted avg. 0.83 0.83 0.83

Multi-channel CNN

Eyewitness 0.74 0.68 0.70

0.84 0.94
Non-eyewitness 0.85 0.85 0.85
Don’t know 0.88 0.90 0.89
Weighted avg. 0.84 0.84 0.84

channel CNN was improved by 2% in comparison to the best-performed logistic regres-

sion model of conventional machine-learning models. In the case of hurricane event, the

F1-score of multi-channel CNN improved by 7% in comparison to the best-performed logis-

tic regression model of conventional machine-learning models. In the case of wildfire event,

the F1-score of multi-channel CNN improved by 6% in comparison to the best-performed

gradient-boosting model of conventional machine-learning models.

Our proposed multi-channel CNN outperformed the earlier work by (Zahra et al., 2020)

by a significant margin. For a fair comparison, we implemented our proposed MCNN model

with the same set of datasets (without oversampling) used by (Zahra et al., 2020). A compar-

ative F1-scores for the classes eyewitness, non-eyewitness, and don’t know of the proposed

MCNN models with (Zahra et al., 2020) is listed in Table 9. In the case of the flood event, the

proposed MCNN model achieved an F1-score of 0.72, 0.77, and 0.84 for the eyewitness, non-

eyewitness, and don’t know classes, which is better than the earlier reported result by (Zahra

et al., 2020) on the same dataset. Similarly, for the earthquake event, MCNN achieved an

F1-score of 0.94, 0.79, 0.39 for eyewitness, non-eyewitness, and don’t know classes, respec-

tively. In the case of the hurricane, MCNN achieved an F1-score of 0.67, 0.87, and 0.66 for

eyewitness, non-eyewitness, and don’t know classes, respectively. In the case of a wildfire
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Table 8 Results of the different deep-learning models for the wildfire event

Class Precision Recall F1-score Accuracy AUC

RNN-A

Eyewitness 0.74 0.54 0.61

0.86 0.92
Non-eyewitness 0.89 0.95 0.92
Don’t know 0.81 0.73 0.77
Weighted avg. 0.86 0.86 0.86

GRU-A

Eyewitness 0.76 0.60 0.66

0.87 0.92
Non-eyewitness 0.90 0.95 0.92
Don’t know 0.82 0.74 0.78
Weighted avg. 0.87 0.87 0.87

LSTM-A

Eyewitness 0.73 0.63 0.67

0.87 0.92
Non-eyewitness 0.90 0.95 0.92
Don’t know 0.82 0.73 0.78
Weighted avg. 0.87 0.87 0.87

CNN

Eyewitness 0.76 0.49 0.59

0.87 0.93
Non-eyewitness 0.89 0.96 0.92
Don’t know 0.83 0.76 0.80
Weighted avg. 0.87 0.87 0.86

Multi-channel CNN

Eyewitness 0.70 0.55 0.60

0.87 0.93
Non-eyewitness 0.89 0.95 0.92
Don’t know 0.85 0.74 0.79
Weighted avg. 0.87 0.87 0.86

Table 9 The comparison of the F1-scores of the proposed model with the existing model

Events Class Zahra et al. (2020) Proposed MCNN model
(Domain-expert + text features) (GloVe, Crisis, & Word2vec embedding)

Flood Eyewitness 0.57 0.72
Non-eyewitness 0.70 0.77
Don’t know 0.75 0.81

Earthquake Eyewitness 0.92 0.94
Non-eyewitness 0.74 0.79
Don’t know 0.21 0.39

Hurricane Eyewitness 0.60 0.67
Non-eyewitness 0.84 0.87
Don’t know 0.64 0.66

Wildfire Eyewitness 0.40 0.60
Non-eyewitness 0.91 0.92
Don’t know 0.73 0.79

event, MCNN achieved an F1-score of 0.60, 0.92, 0.79 for eyewitness, non-eyewitness, and

don’t know classes, respectively. In all the events, the proposed MCNN model outperformed

the earlier results reported by (Zahra et al., 2020) by a significant margin.
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5.1 Theoretical Contributions

During a disaster, a lot of irrelevant and redundant information is posted by people that is

not useful for humanitarian aid (Kumar et al., 2020; Nguyen et al., 2017a). Therefore, the

proposed system requires a filtering system (Kumar et al., 2020; Singh et al., 2019; Nguyen

et al., 2017a; Caragea et al., 2016) at the top of it to first filter informative disaster-related

tweets. Informative disaster-related tweets are those which are useful for humanitarian aid

(Kumar et al., 2020). Then the proposed system can be used to classify these informative

tweets into eyewitness, non-eyewitness, and don’t know classes to get a better perspective of

the disaster. The development of a multi-channel convolutional neural network that employs

three different word-embedding vectors to identify disaster-related eyewitness tweets is one

of the proposed system’s significant theoretical contributions. The usage of three separate

word-embedding vectors performs exceptionally well in terms of extracting robust features.

Another theoretical contribution is that the suggested multi-channel convolutional neural

network extract features automatically in their hidden layers, the proposed system does not

require any human effort to extract significant features.

5.2 Implications for Practice

The suggested approach identifies eyewitness tweets only based on their textual content,

making it simple to incorporate with any social media site. An android application based on

the proposed MCNN might be developed to recognise eyewitness disaster tweets from live

Twitter streams, allowing individuals to become more situationally aware during a crisis.

The proposed system can be easily used by humanitarian organisations to locate disaster

eyewitness information for better decision-making and to provide immediate assistance to

victims because the posts of local citizens and disaster eyewitnesses convey more authentic

information and provide a better perspective on the disaster. The predicted eyewitness social

media posts can also be used by the location reference extractor model (Kumar & Singh,

2019; Dutt et al., 2018) to extract the location references mentioned in the social media

posts, which can help to locate the victims.

Our proposed multi-channel convolutional neural network identified “Earthquake in

Shinjuku, could feel the entire hotel moving. #earthquake #earthquakeintokyo #massiveearthqauke

#japan” and “So a small earthquake woke me up.... I’m fine btw! A couple things fell in the

streets. Never experienced one before so it was something” as the eyewitness tweet of earth-

quake event whereas “Hosman Church needs your help! our ceiling collapsed due to a water

flood in the apartment upstairs. Thank you! https://t.co/wbAYbsn5rb” and “Our friends at

Mechanic suffered some horrible flood damage last night. They are great guys. Consider

helping them https://t.co/GLOhCNY4IY” as the eyewitness tweets of flood event. The first
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eyewitness tweet of the earthquake incident includes a crucial situational awareness state-

ment as well as event location references such as Shinjuku and Japan. Similarly, the third

eyewitness tweet about the flood event has details about individuals pleading for aid by giv-

ing their location. A similar scenario can be observed in the fourth eyewitness tweet, in

which a person requests assistance for a friend during a flood disaster by mentioning their

location details. In the case of the second earthquake eyewitness tweet, it can be observed

that the eyewitness of the earthquake was simply reporting a minor earthquake by noting his

own status, implying that the devastation caused by the earthquake will be low at that lo-

cation. Therefore, humanitarian and government organisations may use the outcomes of the

current work to make better decisions during disasters. The suggested approach may also be

used efficiently in a variety of applications such as better event detection, finding credible

information, and obtaining useful first-hand information in journalism.

5.3 Limitations and Future Directions

The limitation of this work is that the proposed system is trained with English language

tweets only, but during the disaster, people also post a considerable amount of tweets in

their regional languages. Therefore, the proposed system may not perform equally in those

cases. In the proposed work, we did not check the authenticity of the posted tweets which is

another limitation of the proposed work. Therefore, in the future, a system can be made to

check the authenticity of the posted tweets and a multilingual system can be made to solve

the issue of multilinguality. In this work, we have only used textual content of the tweets by

discarding images that can contain important visual clues in identifying eyewitness posts.

Therefore, a multi-modal system can also be made in the future to get more insight into

identifying eyewitness tweets.

6 Conclusion

The identification of eyewitness tweets during the disaster provides the reality on the ground.

But the identification of eyewitness tweets is very challenging, as a very small fraction of

geotagged tweets is available. Identifying eyewitness tweets from their textual content is

difficult as tweets are of short length and do not provide enough context about the event. In

this work, we have proposed a multi-channel convolutional neural network (MCNN) model

to classify tweets into eyewitness, non-eyewitness, and don’t know classes. The proposed

model overcomes the need for handcrafted features. The proposed MCNN model performs

better than the conventional machine-learning models and several other deep-learning mod-

els by achieving an F1-score of 0.84, 0.88, 0.84, and 0.86 for flood, earthquake, hurricane,
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and wildfire respectively. The proposed system can be integrated with any social media

platform as it uses only textual information for training the model. As the availability of

eyewitness messages is limited, a generative adversarial neural network-based model can be

made to deal with the situation of the data imbalance problem.
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