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Abstract

The aim of this thesis is to develop a machine learning model capable of the spectral

reconstruction of Euclidean lattice correlators at finite temperature. The early part

of this thesis is dedicated to a review of the QCD phase diagram and correlation

functions to establish the relationship between the Euclidean correlator and spectral

function. An analysis of FASTSUM ensembles of Euclidean correlators is performed

to determine effective masses and thermal modification for bottomonium states. An

initial model using Kernel Ridge Regression is examined and implemented for the Υ

state. The latter part of this thesis focuses on improving the generation of training

data for the machine learning method and the machine learning method itself. This

work concludes with the implementation of the Kernel Ridge Regression for a variety

of bottomonium states.
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Acronyms

QCD - Quantum Chromodynamics

QGP - Quark-Gluon Plasma

NRQCD - Non-Relativistic Quantum Chromodynamics

QED - Quantum Electrodynamics

LLS - Linear-Least-Squares

KRR - Kernel Ridge Regression

MAE - Mean Absolute Error

MSE - Mean-Squared-Error

SVD - Singular-Value-Decomposition

Conventions

~ = c = 1.

log(x) refers to the natural logarithm. The base will shown explicitly if it differs.
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Introduction

The theory of Quantum Chromodynamics (QCD) focuses solely on the strongly

interacting matter that is quarks and gluons. Since its advent in the 1970s [1], there

have been numerous methods developed to investigate it. In particular the work of

Wilson helped with the development of Lattice QCD [2]. This is a non-perturbative

approach in which spacetime has been discretized into a lattice, so that the path

integral [3] of the theory can be evaluated by methods such as Monte Carlo. There

is an ongoing struggle to study QCD theoretically due to issues such as the ill-posed

problem of spectral reconstruction or the sign problem. The latter of these restricts

our ability to investigate the theory at finite baryon chemical potential. However

we are able to study the theory at non-zero temperature which can be compared to

experimental studies involving heavy-ion collisions. In this thesis we aim to develop

a machine learning model to reconstruct spectral functions at finite temperature for

further study. This thesis is organised as follows:

In Chapter 1 we will examine the phase diagram of QCD, focusing on the different

states of QCD for zero density. These can be explored experimentally using heavy-

ion collisions. In the latter half of this chapter we go into further detail of the two

states, those being hadrons and quark-gluon plasma (QGP). From this, we can begin

to focus on the bound states of cc̄ and bb̄ mesons, or charmonium and bottomonium

respectively. These are of particular interest as they can used as a thermometer

for the QGP. To conclude the chapter, the details of the ensembles generated by

the FASTSUM collaboration will be given. From previous work, we are able to

determine the transition temperature between hadrons and QGP.

In Chapter 2 we give an introduction to thermal field theory. By making use of

the thermal expectation value and time evolution, we demonstrate how a variety of

correlation functions can be developed. Whilst two-point correlations contain the

detailed information of a system, it is often difficult to access. The spectral function

is far more accessible. Hence we will make a point of showing how some of these

correlation functions are related to the spectral function. Finally we will discuss the

ill-posed problem of spectral reconstruction where the correlation function is in a

discrete form, as it is for Lattice QCD.
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CONTENTS

In Chapter 3 we return to bottomonium in the context of Non-Relativistic QCD

(NRQCD). We begin with an explanation of NRQCD as an effective field theory at

non-zero temperature. Initially this will be done in the continuum limit before mov-

ing to the lattice equivalent. Following this, we obtain our first results of this work.

Before any attempts of spectral reconstruction, we use the correlation functions to

determine effective masses. After comparisons to experimental values, we perform

multi-exponential fits. This is done using the CORFITTER package for the pur-

pose of estimating the masses of first excited states. The chapter then concludes

with an examination of the thermal dependence of S and P-waves states.

In Chapter 4 we develop an initial Kernel Ridge Regression (KRR) model that

will be used as the basis for later chapters. Starting from simple linear regression, we

build up our KRR model making use of analogies to the initial example. Using the

training data, a systematic investigation of the KRR is done to observe the effects

of altering the hyperparameters. We conclude this chapter with an initial attempt

at reconstructing the spectral function for the Υ at different temperatures.

In Chapter 5 we reconsider the generation of the training data. Making use of

the improved dispersion relation, we reduce the range of energy for the spectral

functions. Next, we alter the form of the training data and compare to the Gen 2L

ensembles to find similar correlation functions. Using these similar functions from

the mock data, a new dataset is generated using the corresponding mock spectral

functions as a foundation. Finally we use the ensembles to estimate noise so that

we may incorporate this into the KRR model.

In Chapter 6 we revisit the KRR model, armed with our new data, and propose

methods to further improve the model. This includes rescaling of both input and

target data, and the effect of varying training sample size. We also introduce cross-

validation for determining optimal hyperparameters. The thesis concludes with a

prediction of groundstate masses and widths, and spectral functions for various

bottomonium states.

The work presented in this thesis focuses developing a method for the spectral

reconstruction of FASTSUM Gen 2L bottomonium correlators. For those unfamiliar

with lattice field theory, see Appendix A for a brief introduction to the subject.
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Chapter 1

QCD at nonzero temperature

1.1 QCD phase diagram

Since the advent of Quantum Chromodynamics (QCD) in the 1970s [1], there have

been numerous methods developed to study it. This can be experimentally by using

heavy-ion collisions, or theoretically with perturbation theory or lattice gauge theory.

Each of these methods offers its own insight into this theory, and by combining these

we may develop the theory as a whole.

Despite these efforts, there is still much of the theory that is unknown or simply

conjecture. The current proposed phase diagram is shown in Figure 1.1. There is

no single theoretical method can be used to explore the phase diagram, and modern

colliders lack the capabilities to provide insight for all regions. The QCD phase

diagram shown in Figure 1.1 is a function of the temperature T and baryon chemical

potential µB. Although Figure 1.1 contains several interesting features, we will only

be investigating the vertical axis in this work. For vanishing µB quarks and gluons

can exist in two phases: hadrons, and quark-gluon plasma (QGP). The properties of

the QGP are the subject of ongoing investigations by heavy-ion collisions at RHIC

at Brookhaven National Laboratory and ALICE at the LHC. In particular the RHIC

has been used to search for the critical point shown in Figure 1.1 [4, 5].

It is difficult to study finite chemical potential using Lattice QCD due to the

sign problem. This problem arises when the action for QCD becomes complex as is

the case for non-zero µB. Although it is difficult to probe this region with lattice

QCD, various methods have been developed to do so. These include the imaginary

µB approach and complex Langevin [7, 8]. However it is due to studies of finite µB

that a first-order phase transition is thought to exist [9].

For physical quark mass (mq), lattice simulations have shown that this transition

is an analytical crossover [10–12]. Therefore we can say that the phases of Hadrons
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CHAPTER 1. QCD AT NONZERO TEMPERATURE

Figure 1.1: Sketch of the Phase diagram of QCD. [6]

and QGP are analytically connected, and hence there is no true order parameter.

Instead, we use observables such as the chiral condensate and Polyakov loop to

estimate a pseudocritical temperature, Tpc [13–15]. Due to this transition being an

analytical crossover, these observables vary continuously between the two phases. In

the case of a first-order phase transition there is a sudden change in the value of the

order parameter. This result leads to the expectation of the first-order transition

line that must end with a critical point before the temperature axis.

1.2 Phase Transitions

Although there is no first or second-order transition for the physical mq at zero µB,

studies have shown that transitions could exist for alternative values of mq. In the

following, we will show how two symmetries are explicitly broken by physical quarks

and how a choice of non-physical quark masses can restore these.

1.2.1 Chiral symmetry

The first symmetry to be considered is chiral symmetry. In order to demonstrate

how chiral symmetry is broken by physical quarks, we introduce the continuum

Euclidean QCD action,

SQCD =

∫
d4xψ̄

(
/D +mq

)
ψ +

1

2g2
Tr [FµνF

µν ] , (1.2.1)

4



CHAPTER 1. QCD AT NONZERO TEMPERATURE

where ψ/ ψ̄ are the quark and antiquark fields respectively, /D is the covariant

derivative, g is the coupling strength, and Fµν is the field strength tensor. The

covariant derivative is given by,

/D = γµ (∂µ + iAµ) , (1.2.2)

where Aµ is the gluon field. The quark and gluon fields carry several indices although

only the Lorentz index µ has been shown here. Both quark and gluon field have a

space-time argument, typically denoted by x. The quark fields carry a single colour

index, whilst the gluon field carries two. The colour indices of the quark fields are

summed over with the corresponding indices of Aµ, thus coupling the quarks with

the gluon field. Note that the trace in the second term of Eq.(1.2.1) is over the colour

indices. The gluon field for a given x and µ, Aµ(x), is represented by a traceless,

hermitian, 3×3 matrix. The quark fields can also have a flavour index. Finally, the

quark fields and γµ have Dirac indices, with each of the quark fields having a single

Dirac index that corresponds to one of the two indices carried by γµ.

Although the work presented in this thesis uses lattice QCD, we used the contin-

uum Langrangian here for simplicity. Furthermore, we would expect lattice results

to agree with the continuum as the lattice spacing vanishes. We focus on the first

term of Eq. (1.2.1), as Fµν remain unchanged by a chiral rotation. Performing a

chiral rotation transforms the quark and antiquark fields, ψ and ψ̄ respectively, as

follows,

ψ → ψ′ = eiαγ5ψ

ψ̄ → ψ̄′ = ψ̄eiαγ5

(1.2.3)

where α is a constant, real parameter and γ5 is the chirality matrix acting in Dirac

space. In Euclidean space γ5 = γ1γ2γ3γ4, where γ1,2,3,4 are the Euclidean Dirac

matrices. The covariant derivative transforms as follows,

ψ̄ /Dψ → ψ̄′γµ (∂µ + iAµ)ψ′

= ψ̄eiαγ5γµ (∂µ + iAµ) eiαγ5ψ

= ψ̄eiαγ5e−iαγ5γµ (∂µ + iAµ)ψ

= ψ̄γµ (∂µ + iAµ)ψ,

(1.2.4)

5



CHAPTER 1. QCD AT NONZERO TEMPERATURE

where we have made use of the γµγ5 = −γ5γµ. Hence the covariant derivative

is invariant under chiral transformations. Now we consider the mass term which

transforms as follows,

mqψ̄ψ →mqψ̄
′ψ′

=mqψ̄
′ψ′

=mqψ̄e
i2αγ5ψ.

(1.2.5)

Clearly this is not invariant under chiral transformations. However if massless quarks

are used instead, mq = 0, then chiral symmetry is restored. The order parameter

for this symmetry is the chiral condensate which is given by,〈
ψ̄ψ
〉

=
T

V

∂lnZ

∂mq

(1.2.6)

where T is still temperature, V is the physical volume of the system, and Z is the

partition function. The corresponding susceptibility is given by,

χψ̄ψ =
T

V

∂2lnZ

∂m2
q

(1.2.7)

1.2.2 Center symmetry

The second symmetry we will consider is the center symmetry for SU(3). We

define the center group, Z(3), as a set of elements in SU(3) that commute with

all other elements of SU(3). The elements of Z(3) have the form ziI3, where

zi = {1, e2πi/3, e−2πi/3} such that z3
i = 1 and I3 is the 3× 3 identity matrix.

Unlike chiral symmetry, it is the coupling of the quarks to the gluon field that

breaks the Z(3) symmetry. To show this, we will introduce the naive lattice fermion

action as it is easiest to demonstrate center symmetry breaking on the lattice. For

details on the derivation of this action, see [16]. The naive lattice fermion action for

a single flavour is given by,

SF = a4
∑
n∈Λ

ψ̄(n)

(
4∑

µ=1

γµ
Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2a
+mψ(n)

)
, (1.2.8)

where a is the lattice spacing, n is the 4-coordinate that is related to the space-time

coordinate by x = an, Λ is the 4D lattice that is the set of all n, and Uµ(n) is the

link variable that connects the site n to n + µ̂. These link variables must elements

6
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of the gauge group SU(3). Note that the quark fields still carry the same indices as

before. The quantity µ̂ is a unit vector. The first term is analogous to the covariant

derivative Eq.(1.2.2).

Under a center transformation, the time-like link, U4(n), transforms as follows,

U4(n)→ zI3U4(n) (1.2.9)

where z is an element of zi discussed above. As it is only the time-like links that

are affected, we only consider µ = 4 terms of Eq.(1.2.8). Therefore the naive lattice

fermion action transforms accordingly,

SF → S ′F = a4
∑
n∈Λ

ψ̄(n)

(
γ4
zI3U4(n)ψ(n+ ê4)− z∗I3U−4(n)ψ(n− ê4)

2a
+mψ(n)

)
,

(1.2.10)

where ê4 is the time-like unit vector. The action is not invariant as there is now a

factor of z and its conjugate z∗ in the summation, and hence the center symmetry

is broken.

To restore this symmetry, we use quarks of infinite mass in our theoretical model

so that they decouple and we left with pure SU(3) gauge theory. In order to explicitly

show that this obeys center symmetry, we introduce the Wilson gauge action,

SG =
2

g2

∑
n∈Λ

∑
µ<ν

Re {Tr [I− Uµν(n)]} (1.2.11)

where Uµν(n) is a plaquette variable. This is a product of four link variables that

form a closed loop,

Uµν(n) = Uµ(n)Uν(n+ µ̂)U(n+ µ̂+ ν̂)U−ν(n+ ν̂)

= Uµ(n)Uν(n+ µ̂)U(n+ ν̂)†Uν(n)†.

(1.2.12)

All that remains to be checked is that the plaquette variable is invariant under

center transformation. Given that center transformation only affects time-like link

variables, any plaquette that does not include U4(n) is unaffected by the transfor-

mation. Otherwise a plaquette will transform according to,

Uµν(n)→ U ′µν(n) = Uµ(n)zI3U4(n+ µ̂)U(n+ ê4)†z∗I3U4(n)†

= zz∗I3Uµ(n)U4(n+ µ̂)U(n+ ê4)†U4(n)†

= Uµν(n).

(1.2.13)
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In the first step, we made use of fact that the elements of the center group commute

with all elements of the SU(3) group, and recall that the link variables must be

elements of SU(3). The second step is trivial as the identity matrix leaves Uµ(n)

unchanged and zz∗ = 1.

As the quarks are infinitely heavy, they are only able to move along the temporal

axis of the lattice, which corresponds to the Polyakov loop [17]. The key results of

such simulations is the discovery of a first-order phase transition [18,19]. Below the

corresponding Tc, 〈P 〉 = 0, and the phase is confined, whilst above Tc, 〈P 〉 6= 0, and

the phase is deconfined.

The results of lattice simulations for both mq = 0 and mq →∞ are summarized

in the Columbia plot shown in Figure 1.2. The Columbia plot is schematic of the

possible thermal phase transitions in Nf = 2 + 1 QCD at vanishing baryon chemical

potential, where Nf is the number of flavours. Note that mu = md. In full QCD

phys.
point

0
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N  = 1

f
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m s
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 d 
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∞

∞
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Figure 1.2: Columbia plot: schematic of thermal phase transition behaviour of Nf = 2 + 1 QCD

at µB = 0 for a range of u, d, and s quark masses (mu = md) [20].

though neither of these cases are true but despite this it is possible to use
〈
ψ̄ψ
〉
, χψ̄ψ,

and 〈P 〉 to estimate a pseudocritical transition temperature, Tpc. For this reason

they are referred to as remnant order parameters. However it is more common to

use chiral susceptibility, as the physical quarks are closer to mq = 0 than mq =∞.

This is reflected in Figure 1.2, although this is only a schematic.
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1.3 Probing the Quark-Gluon Plasma

We focus now on the deconfined region of the QCD phase diagram. As has been

stated before, for µB = 0 the thermal phase transition is an analytical crossover.

Whilst the chiral susceptibility can be used to estimate the temperature required

for the formation of the QGP, it tells us little about the phase itself. Instead we

consider now an alternative signal for QGP formation: the sequential suppression of

quarkonia. Quarkonium is a heavy quark-antiquark state that can be used to probe

the QGP.

First we consider J/ψ suppression which was proposed as a signal for the for-

mation of QGP. To understand this we need to clarify what deconfinement refers

to. The confinement of quarks in hadrons is ultimately determined by the Debye

screening of the quark colour charge. This screening radius rD is dependent on

the temperature via the string tension. Therefore at sufficiently high temperatures,

rD < rB, where rB is the binding radius of J/ψ. At this point the confining force

cannot hold the quarks together anymore and the J/ψ melts, or dissociates. These

terms are used interchangeably. It was determined that the minimum screening

radius that allowed a “Coulombic” bound state is given by,

rmin
D = (0.84mαeff(T ))−1 (1.3.1)

where m is the quark rest mass and αeff(T ) is the“Coulombic” interaction coupling.

Note that we use the term “Coulombic” because it is analogous to a true Coulombic

interaction which involves electric charge, only in this case it involves the colour

charge. Thus it was shown that for SU(3) with dynamical quarks J/ψ is completely

suppressed for temperatures only just above Tpc [21]. Instead any c quarks produced

will bind with light quarks. Hence we can indeed use this dissociation as a signal

for the formation of QGP. As such, charmonium has been studied extensively over

the years [22–24]. However now that b quarks are produced abundantly at the LHC,

the focus of both experimental and theoretical studies has shifted to bottomonium.

This has been motivated in part by phenomenological studies that propose that

bottomonium is affected by statistical recombination to a lesser extent [25]. Statisti-

cal recombination refers to the case in which a quark and antiquark from dissociated

mesons in the QGP come into contact and form a meson again. To understand why

9
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statistical recombination affects bottomonium to a lesser extent, first note that there

is a lower density of bottom quarks compared to charm quarks in the QGP. This is

partly due to Mb � T where T is the temperature reached in the heavy-ion collision

experiments, meaning that new pairs of bb̄ pairs cannot be produced in the QGP

but new pairs of cc̄ can. In the case of charmonium, statistical recombination is

suppressed due to charm quarks binding with light (u, d) quarks. However in the

case of the bottomonium quark, the density of bottom quarks in the QGP is much

smaller than of charm quarks, the probability of bottom quarks and anti-bottom

quarks to recombine is much smaller.

With the inclusion of bottomonium studies it is now possible to discuss sequential

suppression. This refers to the different temperatures at which various quarkonium

states are completely suppressed. The inverse proportionality of rmin
D to the quark

mass in Eq.(1.3.1) means that bottomonium survives longer before dissociating due

to colour screening. Within bottomonium itself there is a hierarchy of suppression

temperatures as excited states of the Υ have larger binding radii as does the χb

(1P). This hierarchy can be used as a thermometer for the QGP [26]. Sequential

suppression of the Υ system has been observed experimentally by CMS [27], which

has led to phenomenological work in order to explain it [28,29].

1.4 FASTSUM Gen2L ensembles

In this section we discuss the details of the ensembles generated by the FASTSUM

collaboration [30], specifically the Gen2L ensembles [31]. For these ensembles, an

anisotropic lattice was used, by which we mean that the spacing of lattice sites

along the temporal axis varies from that of the spatial lattice sites. We define

the spatial lattice spacing as as and the temporal spacing as aτ . For the Gen2L

ensembles, this anisotropy was determined to be ξ = as/aτ = 3.453(6). The lattice

spacing were as follows as = 0.1136(6)fm and aτ = 0.0330(2)fm which equates

to a−1
τ = 5.997(34)GeV. The number of dynamical quarks flavours Nf = 2 +

1, meaning only light quarks and the strange quarks were considered. Only the

strange quark mass ms was set to its physical value. The light quarks (the up and

down quarks) were heavier than physical, which is represented by π0 mass used.

10



CHAPTER 1. QCD AT NONZERO TEMPERATURE

Nτ 128 64 56 48 40 36 32 28 24 20

T [MeV] 47 94 107 125 150 167 187 214 250 300

Ncfg 1024 1041 1042 1123 1102 1119 1090 1031 1016 1030

Table 1.1: The temporal extent, corresponding temperatures in MeV, and number of configura-

tions for the Generation 2L ensembles of the FASTSUM collaboration

Observable
〈
ψ̄ψ
〉
R

χψ̄ψ

Tpc [MeV] 164(2) 165(2)(2)

Table 1.2: The estimated pseudocrtical temperatures from the renormalised chiral condensate and

chiral susceptibility. The second error for the chiral susceptibility is an estimate of the systematic

uncertainty.

For the Gen2L ensembles mπ0 = 236(2)MeV, which is heavier than the physical

value. Table 1.1 displays the value of Nτ used for the ensembles along with the

corresponding temperature and number of configurations, Ncfg. Nτ in the total

number of temporal lattice sites, and the the temperature is given by T = 1/(aτNτ ).

For all configurations the number of spatial lattice sites was N3
s = 323.

Using these ensembles it has been possible to estimate a pseudocritical tempera-

ture, Tpc. Table 1.2 displayed the results produced by the FASTSUM collaboration

to estimate this pseudocritical temperature [14]. Note that the differing values of

Tpc is only an indication of the crossover region. If there was a first-order phase

transition, the critical temperatures identified by each order parameter would need

to match. However as the transition is an analytical crossover, the differing values

of Tpc are acceptable. Further work was done to estimate a Tpc for physical light

quark mass using the chiral condensate. This yielded Tpc = 159(6)MeV which is

consistent with [13].
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Chapter 2

Spectral Reconstruction: An Ill-posed

Problem

As we have already mentioned, the main purpose of this work has been to develop

a method to extract the spectral function from a Euclidean correlator. The focus

of this chapter is deriving the relationship between these two quantities in order to

demonstrate what is meant when referring to spectral reconstruction as an ill-posed

problem.

2.1 Motivation

Before this though, we need to consider what Euclidean correlator and spectral

function represent, and why spectral reconstruction is even necessary. For context

we need to present the system that is being modelled in the lattice simulations for the

FASTSUM Gen2L ensembles. These correlators represent one of five bottomonium

states propagating through a medium of at non-zero temperature. The bottomonium

states are not in thermal equilibrium with the medium, and hence are used as a

probe. This medium consists of dynamical light and strange quarks. With this in

mind, we can discuss Euclidean correlator and spectral function.

We begin with the Euclidean correlator which is a two point function involving

the quark and antiquark fields. For this example, we will use the meson interpolator,

OM(x), given by,

OM(τ) = ψ̄(x)Γψ(x), (2.1.1)

where Γ = {γ4, γ4γ5, γ4γi, γiγ5, γiγj} with i, j = 1, 2, 3, and x is the space-time

coordinate. For this work we will only be considering bottomonium particles with

zero momentum. Given this, ψ/ψ̄ can be replaced for b/b̄ respectively. Depending

on our choice of Γ, the interpolator represents a different bottomonium state, which

12
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is shown in Table 2.1. With this, we can write the Euclidean correlator as,

〈OM(τ)OM(0)〉 = 〈b̄(τ)Γb(τ)b̄(0)Γb(0)〉, (2.1.2)

where τ is Euclidean time. In this way, all the quantum numbers are encoded in the

Euclidean correlator.

State Name Γ J (PC) n(2S+1)LJ

Scalar ηb γ4 0−+ 11S0

Pseudoscalar Υ γ4γ5 1−− 13S1

Vector χb0 γ4γi 0++ 13P0

Axial vector χb1 γiγ5 1++ 13P1

Tensor hb γiγj 1+− 11P1

Table 2.1: Bottomonium interpolators with associated quantum numbers and relevant gamma

matrices.

The spectral function represents the allowed spectrum of states for the system,

in this case bottomonium in the medium, as a function of the energy of the system,

ω. As we have set ~ = 1, ω can also represent frequency. In Fig. 2.1 we have

attempted to display the effects of temperature on the appearance of the spectral

function. These sketches are conjecture to a degree; as we have already mentioned,

there is difficulty in obtaining spectral functions from lattice data. However, the

main point of Fig. 2.1 is that with just the visual representation of the spectral

functions, we are able to make qualitative observations on the thermal dependence

of the system.

An example spectral function of the system at zero temperature is shown in Fig.

2.1a. We reiterate that this is only a sketch for the purpose of providing some insight.

The spectral function for the system at zero temperature appears as a series of delta

functions with a continuum. The differences in energy between states decreases with

higher order excited states, until ultimately it appears that they overlap. In reality

there would be more than the five states shown in Fig. 2.1a before this happened,

but we have not included more for the sake of clarity. The continuum we see in Fig.

2.1a occurs when there is sufficient energy to produce multi-particle states. Multi-

particle states refers to the case in which the system has enough energy to produce

13
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(a) Zero Temperature

(b) Low Temperature

(c) High Temperature

Figure 2.1: Sketch of example spectral functions for increasing temperature: (a) Zero tem-

perature, (b) Low temperature which produces the first signs of thermal broadening, (c) High

temperature that results in dissociation of particle leading to overlap of different energy states and

the continuum.
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a quark and anti-quark pair such a u and ū. The b and b̄ quarks of the bottomonium

state may then bind with these new quarks to produce ub̄ and bū states.

Fig. 2.1b represent the system at low temperatures in which some effects of the

thermal medium are visible via thermal broadening. This is seen by the change

from delta functions to Gaussians function as the widths of the resonances increase.

The fourth and fifth resonances were removed for clarity. As the model used for

FASTSUM Gen2L ensembles does not include Quantum Electrodynamics (QED)

or the weak force, the widths of resonances are not related to the decays via either

of these. Instead it relates to the motion on the bottomonium within the thermal

medium. Although we treat the bottomonium has having zero momentum upon

creation, interactions with the thermal medium lead to the bottomonium state un-

dergoing Brownian motion. The continuum in this sketch represents the same as

before.

The final sketch in 2.1c represents the system at high temperatures. In this case

the thermal broadening has led to excited states overlapping. This is a graphical

representation of dissociation referred to in Sec. 1.3. Note that the higher order

excited states also overlap with the continuum.

From these sketches, we hope to show that the spectral function would be useful

for spectroscopy, as the energies of the ground and excited states are immediately

obvious. However, the spectral function can be of further use. Although it is not

possible in this work as we have not included QED in our model, other studies have

studies have looked at the differential thermal cross section for the production of

dilepton pairs which is dependent on the spectral function [32–34]. It is also possible

to determine transport coefficients. For example, the electrical conductivity σ which

can be obtained from the Kubo relation

σ

T
=

1

6T
lim
w→∞

ρem(ω)

ω
, (2.1.3)

where ρem(ω) is the spectral functions for the electromagnetic current [35, 36]. For

work regarding determining the diffusion coefficient, see [34, 37, 38]. There has also

been work to determine thermodynamic quantities such as the pressure and energy

density for a system using the spectral function [39]. Although normally such quan-

tities can be determined from the partition function [40,41], an alternative method

would provide a check for the reliability of the reconstructed spectral functions.
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2.2 Derivation of Green’s functions

The following has been provided to demonstrate why spectral reconstruction is an

ill-posed problem. For supporting material see [42, 43]. We begin with the simple

case of a single mode of a free scalar bosonic field. The field operator is given by,

φk(t) =
1√
2ωk

(
ake−iωkt + a†keiωkt

)
, (2.2.1)

where ak, a†k are the bosonic annihilation and creation operators, t is Minkowski time

or real time, and ωk, which is given by
√

k2 +m2, is the energy of the mode (k and

m are the corresponding 3-momentum and mass). The creation and annihilation

operators obey the following,[
ak, a

†
k′

]
= δkk′ and

〈
a†kak′

〉
= nB(ωk)δkk′ , (2.2.2)

where nB(ωk) is the Bose distribution. Hence all expectations values are propor-

tional to δkk′ but we are considering one mode at this stage.

With the field operator defined, we begin our discussion of the various correlation

functions. The first of these are the Wightman functions that are not time ordered,

G>
k (t− t′) = 〈φk(t)φk(t′)〉 and G<

k (t− t′) = 〈φk(t′)φk(t)〉 . (2.2.3)

By substituting in the field operator given in Eq. (2.2.1) we find the following

relation,

G>
k (t− t′) =

1

2ωk

〈(
ake−iωkt + a†keiωkt

)(
ake−iωkt

′
+ a†keiωkt

′
)〉

=
1

2ωk

(〈
aka

†
k

〉
e−iωk(t−t′) +

〈
a†kak

〉
eiωk(t−t′)

)
=

1

2ωk

(
e−iωk(t−t′) +

〈
a†kak

〉 [
e−iωk(t−t′) + e−iωk(t−t′)

])
=

1

2ωk

(
e−iωk(t−t′) + 2nB(ωk)cos [ωk(t− t′)]

)
= G<

k (t′ − t).

(2.2.4)

In the first step we have expanded the brackets, making use of 〈a2
k〉 = 〈a†2k 〉 = 0

to eliminate the remaining terms. In the following step, we used the commutation

relation in Eq. (2.2.2), aka
†
k′ = δkk′ + a†k′ak. Finally we collect the terms in the
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square brackets and use the expectation value from Eq. (2.2.2). If we repeat this

for G<
k (t − t′), we find the final result of Eq. (2.2.4) holds. We can now use the

Wightman functions to define more correlators.

The first of these is the is the Feynman propagator, which introduces time or-

dering by using the Heaviside step function, θ(t),

GF
k (t− t′) = θ(t− t′)G>

k (t− t′) + θ(t′ − t)G<
k (t− t′). (2.2.5)

Next is the spectral function ρ̃(t − t′), which in real-space, can be defined as the

expectation value of the commutator

ρ̃(t− t′) = 〈[φk(t), φk(t′)]〉 = G>
k (t− t′)−G<

k (t− t′)

=
1

iωk

sin (ωk(t− t′)) .
(2.2.6)

For completeness, we also consider anticommutator which gives the statistical two-

point function,

F (t− t′) =
1

2
〈{φk(t), φk(t′)}〉 =

1

2
(G>

k (t− t′) +G<(t′ − t′))

=
1

2ωk

(1 + 2nB(ωk))cos (ωk(t− t′)) .
(2.2.7)

The final two correlators are the retarded and advanced Green’s functions, which

can be defined in terms of the spectral function,

GR
k (t− t′) = −iθ(t− t′) 〈[φk(t), φk(t′)]〉 = −iθ(t− t′)ρ̃(t− t′) (2.2.8)

GA
k (t− t′) = +iθ(t′ − t) 〈[φk(t), φk(t′)]〉 = +iθ(t′ − t)ρ̃(t− t′). (2.2.9)

Using the standard Fourier transform we can define the spectral function in

frequency space as1

ρ(ω) = − i

ωk

∫ ∞
−∞

dt e−iωt sin (ωkt)

=
2π

2ωk

[δ(ω − ωk)− δ(ω + ωk)]

(2.2.10)

for t′ = 0. Hence we expect two resonances; one at ω = ωk and the other at ω = −ωk.

Recall that we are considering a single mode for the free scalar field. Repeating this

1Note we use ρ(ω) and ρ̃(t) for the spectral function. For all other Green’s functions we will

use G(t) and G̃(ω). This is because we will focus on ρ as a function frequency/energy, ω, and the

Euclidean correlator as a function of Euclidean time, τ .
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for the Wightman functions and the statistical two-point function, it follows they are

all proportional to ρ(ω) = G̃>(ω) − G̃<(ω). As for the retarded/advanced Green’s

functions we need to take θ(t) into account. Using the identity

θ(t) = i

∫ ∞
−∞

dω

2π

e−iωt

ω + iε
, (2.2.11)

and the inverse Fourier transform for the spectral function we define the retarded

Green’s function in frequency space as,

G̃R
k (ω) = −i

∫ ∞
−∞

dt θ(t)ρ̃k(t)

=

∫ ∞
−∞

dt eiωt
∫ ∞
−∞

dω′

2π

e−iω
′t

ω′ + iε
ρ̃k(t)

=

∫ ∞
−∞

dt

∫ ∞
−∞

dω′

2π

ρ̃k(t)

ω′ + iε
ei(ω−ω

′)t

=

∫ ∞
−∞

dω′

2π

ρk(ω′)

ω′ − (ω + iε)

=
1

2ωk

[
1

ωk − (ω + iε)
+

1

ωk + (ω + iε)

]
=

1

ω2
k − (ω + iε)2

.

(2.2.12)

To go from the third to the fourth line, we used the following transformation ω′ →

ω − ω′. As a consequence of this dω′ → −dω′. For completeness,

G̃A(ω) =
1

ω2
k − (ω − iε)2

. (2.2.13)

so that G̃R
k (ω) = G̃A∗

k (ω) = G̃A
k (−ω). Using the Sokhotski–Plemelj theorem,

1

x+ iε
= P 1

x
− iπδ(x), (2.2.14)

where P is the Cauchy principal value, it follows directly that G̃R
k (ω) − G̃A

k (ω) =

iρk(ω), so we can define the spectral function as

ρ(ω) = −i
[
G̃R

k (ω)− G̃A
k (ω)

]
= 2ImG̃R

k (ω). (2.2.15)

2.2.1 Kubo-Martin-Schwinger condition

Thus far we have only been considering free scalar fields. As we introduce interac-

tions, we need to consider whether these relations still hold non-perturbatively. For-

tunately we can make use of the Kubo-Martin-Schwinger (KMS) condition [44,45].
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The only requirement for this condition is that the system is in thermal equilibrium.

To begin, we replace the free scalar bosonic fields that have been used until this

point with a pair of operators A(t) and B(t) that evolve according to,

A(t) = eiHtA(0)e−iHt, (2.2.16)

such that the Wightman functions are now written as G>
k (t− t′) = 〈A(t)B(t′)〉 and

G>
k (t−t′) = 〈B(t′)A(t)〉. The thermal expectation value of an operator O is given by

〈O〉 = Z−1Tr
[
e−βHO

]
, where Z is the partition function, given by Z = Tr

[
e−βH

]
.

The Hamiltonian in the time evolution and in the thermal expectation value, are

identical which signifies that the system is in thermal equilibrium. Now by making

use of the cyclicity of trace, it follows in the bosonic case,

G>(t1 − t2) = G<(t1 − t2 + iβ). (2.2.17)

This is the KMS condition and any state that satisfies it is referred to as a KMS

state. As the Hamiltonian may contain interactions, this holds non-perturbatively

as desired. By performing a Fourier transform, it follows that ρ(ω) = G̃>(ω)−G̃<(ω)

still holds.

2.2.2 Euclidean Correlator

In order to obtain the Euclidean correlator, we perform a Wick rotation t→ τ = it,

where τ is Euclidean time. In this case we can treat e−βH as the evolution operator.

The Euclidean correlator is thus defined as

GE(τ) = 〈O(τ)O(0)〉. (2.2.18)

In this case τ runs from 0 to 1/T = β where T and β are temperature and inverse

temperature respectively. This provides insight into how the Euclidean correlator

can be used to studied a system at finite temperature. Given that the Euclidean

correlator is defined for imaginary time it can be written as

GE(τ) = T
∑
n

e−iωnτ G̃E(ωn), (2.2.19)

where ωn is the Matsubara frequency. For bosons, ωn = 2nπT in order to satisfy

the periodic boundary condition GE(τ) = GE(τ + β). With this definition of the
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Euclidean correlator we now need to relate it to ρ(ω). The first step towards this is

to perform a Fourier transform to determine the correlator in frequency space

G̃E(ωn) =

∫ β

0

dτeiωnτGE(τ). (2.2.20)

For simplicity we revert back to considering a free scalar field. It should be clear

that by setting O(τ) = φk(τ) that Eq. (2.2.18) is equivalent to Eq. (2.2.4), with

t→ τ = it and t′ = 0. Making use of the penultimate line of Eq. (2.2.4) and these

substitutions for t and t′, the Euclidean correlator can be defined as

GE
k (τ) =

cosh (ωk [τ − 1/2T ])

2ωksinh(ωk/2T )
. (2.2.21)

In frequency space, this becomes

G̃E
k (ωn) =

1

ω2
n + ω2

k

. (2.2.22)

In this form we can relate it to another of the previous Green’s functions by coordi-

nate transformation. Setting ωn → iω − ε we find G̃E
k (ωn → iω − ε) = G̃R

k (ω), and

conversely G̃R
k (ω + iε) = G̃E

k (iωn). With this we can relate the Euclidean correlator

to the spectral function in frequency space using the fourth line of Eq. (2.2.12) and

performing the coordinate transformation, ω + iε→ iωn,

G̃E
k (ωn) =

∫ ∞
−∞

dω

2π

ρk(ω)

ω − iωn
. (2.2.23)

Although we have produced a relation between the Euclidean correlator and the

spectral function there is still one more step. Lattice simulations are done in position

space, not frequency. This is easily resolved by using Eq. (2.2.19),

GE
k (τ) = T

∑
n

e−iωnτ
∫ ∞
−∞

dω

2π

ρk(ω)

ω − iωn

=

∫ ∞
−∞

dω

2π
K(τ, ω)ρk(ω)

(2.2.24)

where K(τ, ω) is the kernel function, or thermal kernel to avoid later confusion. With

this we have direct relation between the Euclidean correlator in Euclidean time to

the spectral function. In this form it may seem that it is trivial to obtain the spectral

function. Unfortunately that is not the case, as the correlator obtained by our lattice

simulations is discrete and thus GE
k (τ) is only known numerically at Nτ points.

In Table 1.1 we see at most Nτ = 128. Furthermore these correlators will have
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associated errors. The spectral function on the other hand can take various forms

as we have attempted to show in Fig. 2.1. At zero temperature we expect a series

of delta functions, whereas at very high temperatures we expect be a continuous

function. Note that in both cases, we expect there to be a continuum.

As there is no direct inversion, we refer to this as an ill-posed problem. Numerous

techniques have been developed to tackle this problem; more recently these have

included machine learning methods. One such method will be the focus of later

work.
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NRQCD

Before we delve into spectral reconstruction we will examine the Euclidean correla-

tors themselves. By using the correlators themselves it is possible to estimate the

mass of the ground and first few excited states of the bottomonium states. We will

also used the correlator to determine the thermal dependence of the bottomonium

particles.

3.1 Lattice NRQCD

We begin by discussing how the FASTSUM Gen2L ensembles were generated using

Lattice Non-relativistic QCD (NRQCD). This is one of many effective field theories

(EFTs) developed for the purpose of investigating quarkonia. These EFTs differ

depending on the hierarchy of the scales. The scales of interest are the heavy quark

mass M , the QGP temperature T , and the strong coupling αs which is used to

determine the inverse system size Mαs, the binding energy Mα2
s, and inverse Debye

screening length
√
αsT ∼ mD. It is the ordering of these that has led to the for-

mulation of various EFTs [46–50]. For example, the inverse Debye screening length

and system size relate to the Debye radius and binding radius discussed in Sec. 1.3.

Therefore the ordering of these two in an EFT determines whether the quarkonium

has dissociated or not. Another example would be whether we want to consider a

theory at high temperature, in which case

M � T > Mαs > mD �Mα2
s,

whilst at low temperatures

M �Mαs � T �Mα2
s � mD.

Even for the EFTs dedicated to high temperatures [48], M � T holds for bottomo-

nium which should be clear from Table 1.1. In this work the highest temperature
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considered is 300 MeV whilst Mb ∼ 5 GeV. NRQCD refers to the EFTs where the

bottom quark mass has been integrated out [51, 52]. A thorough derivation and

explanation of NRQCD can be found in [53], but here we will give a brief overview.

Firstly, we need to introduce two more energy scales: the heavy quark 3-momentum

Mbv in the bottomonium rest frame, and the kinetic energy Mbv
2. The heavy quark

velocity is then clearly v = |p|/Mb, in the bottomonium rest frame. It turns out that

Mbv
2 ∼ ΛQCD where ΛQCD is the scale of nonperturbative effects of light quarks

and gluons.

To acquire NRQCD, we start with full QCD and introduce an ultraviolet cutoff

Λ, that explicitly removes relativistic heavy quarks, gluons, and light quarks with

momenta of order Mb. Next a Foldy-Wouthuysen-Tani [54] transformation is im-

plemented so that quark and antiquark degrees of freedom are decoupled from the

theory. Finally we expand the Lagrangian to O(v4). Although this expansion would

need infinite terms to exactly reproduce QCD, only a small number of terms are

necessary for sufficient accuracy as v2 ∼ 0.1c2 for the bottom quark [55].

L = L0 + δL. (3.1.1)

The first term, L0 is the leading term of the expansion which describes the heavy

quarks and antiquarks,

L0 = ψ†
(
Dτ −

D2

2M

)
ψ + φ†

(
Dτ +

D2

2M

)
φ, (3.1.2)

where Dτ and D are the gauge covariant temporal and spatial derivatives respec-

tively, and ψ/φ are the quark/antiquark fields. Note that the covariant temporal

derivative is in Euclidean time. The correction term δL is introduced to restore

relativistic effects, in order to reduce the systematic error of the leading order,

δL =− c1

8M3
b

[
ψ†(D2)2ψ − φ†(D2)2φ

]
+ c2

ig

8M2
b

[
ψ†(D · E− E ·D)ψ + φ†(D · E− E ·D)φ

]
− c3

ig

8M2
b

[
ψ†σ · (D× E− E×D)ψ + φ†σ · (D× E− E×D)φ

]
− c4

2Mb

[
ψ†σ ·Bψ − φ†σ ·Bφ

]
,

(3.1.3)

where E and B are the chromoelectric and chromomagnetic fields, and σ are the

Pauli spin matrices. Although there are several corrections that could be included,
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this is sufficient for significantly reducing the systematic errors for O(v4) expansion.

Further expansion of the Lagrangian would require tuning more coefficients.

Thus far we have focused on continuum NRQCD. In order to reformulate this

on a space-time lattice we introduce the forward, backward and centered lattice

covariant derivatives,

a∆(+)
µ ψ(x) = Ux,µψ(x+ aµ̂)− ψ(x)

a∆(−)
µ ψ(x) = ψ(x)− U †x−aµ̂,µψ(x− aµ̂)

∆(±)
µ =

1

2

(
∆(+)
µ + ∆(−)

µ

)
.

(3.1.4)

The quark fields are defined on the node xµ of the lattice (for antiquark fields, replace

ψ(x) with φ(x)). The unitary matrices Ux,µ are elements of SU(3) and are defined

on the links joining nodes. Lastly a could either be as or aτ . With these, we can

determine a lattice NRQCD Lagrangian and action. For the leading order term of

the continuum lagrangian, L0, the quark propagators satisfy the evolution equation,

G(x, τ + aτ ) =

(
1− aτH0|τ+aτ

2k

)k
U †4(x, τ)

(
1− aτH0|τ

2k

)k
G(x, τ), (3.1.5)

where the so-called Lepage’s parameter k is included to counter instabilites at large

momenta. However for the b quark k = 1 is sufficient [56]. U †4(x, τ) is the temporal

gauge link at node x and H0 is the leading kinetic energy operator,

H0 = −∆(2)

2Mb

. (3.1.6)

where ∆(2n) =
3∑
i=1

(∇+
i ∇−i )n, the lattice Laplace operator. After defining the rela-

tivistic corrections in terms of lattice variables the evolution equation becomes,

G(x, τ + aτ ) =

(
1− aτH0|τ+aτ

2k

)k
U †4(x, τ)

(
1− aτH0|τ

2k

)k
(1− aτδ H)G(x, τ),

(3.1.7)

where δH is the corrections. Explicitly these corrections are given by

δ H =− (∆(2))2

8M3
b

+
ig0

8M2
b

(∇± · E− E ·∇±)

− g0

8M2
b

σ · (∇± × E− E×∇±)− g0

2Mb

σ ·B

+
a2
s∆

(4)

24Mb

− aτ (∆
(2))2

16M2
b

.

(3.1.8)
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The evolution equation has the condition that G(x, τ) = 0 for τ < 0. For τ = 0,

G(x, 0) = S(x), where S(x) is the source. For the work presented in this thesis point

sources were used. Note the similarities to L, however in this case E and B are the

lattice definitions of the chromoelectric and chromomagnetic fields [57, 58]. The

coefficients in Eq. (3.1.3), ci where i= 1, 2, 3, 4, are all set to one. We implement

tadpole improvement [59],

Ui(x)→ Ui(x)

us
, U4(x)→ U4(x)

uτ
, (3.1.9)

where us,τ are the mean space (s) and time-like (τ) links. The mean space-like link,

us is determined as the fourth root of the plaquette expectation value, whilst uτ is

usually set equal to 1 [60]. The final two terms of Eq. (3.1.8) are corrections to the

kinetic energy in order to remove the O(a2
s) errors in H0 and O(aτ ) errors in the

evolution equation due to finite lattice spacing.

3.2 Properties of the system from Correlators

The evolution equation, Eq. (3.1.7), has been used to generate the correlators given

in Table 1.1 with the lattice setup described in Sec. 1.4. Recall that the correlation

functions contain information about the system, albeit in a format that makes it

difficult to extract said information. That is not to say however that the correlations

cannot be used to determine some properties of the system. In the following we will

focus on the thermal modifications of the NRQCD correlators and effective masses.

However before we can do this, it is necessary to tune the bare heavy quark

mass Mb for a full investigation of bottomonium spectroscopy. This was done by

fitting the non-relativistic hadronic dispersion relation for the Υ channel at zero

temperature,

aτE(P̂ 2) = aτE(0) +
P̂ 2

2ξasM2

P̂ 2 = 4
3∑
i=1

sin2

(
πni
Ns

) (3.2.1)

where a2
sP̂

2 is the lattice momenta and ni = −Ns/2+1, ..., Ns/2, and Ns = 32. Using

this method, the bare lattice bottom quark mass was determined to be asMb = 2.06.
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This corresponds to Mb = 3.578 GeV, smaller than the approximate physical value

of ∼ 4.5 GeV. Now we can begin analysis of the NRQCD ensembles, starting with

the effective masses meff of the bottomonium states.

3.2.1 Effective mass

Previously we have stated that the bottomonium is not in thermal equilibrium with

the medium of dynamic quarks. Instead the thermal effects enter the theory by the

in-medium effects such as interactions between the bottomonium and light quarks.

However, thus far we have not shown this explicitly. To do this, we need to show

that the kernel, K(τ, ω) is independent of temperature, T , and that any thermal

modification to the correlators is due to changes in the associated ρ(ω) induced via

the interactions with the medium of light quarks and gluons. For clarity, ω is energy

and τ is Euclidean time,

To do this, first note that as bottomonia are boson states, only the odd terms of

Eq. (2.2.21) are included in K(τ, ω) to give

K(τ, ω) =
cosh (ω [τ − 1/2T ])

sinh(ω/2T )
, (3.2.2)

if periodic temporal boundary conditions were obeyed. If periodic temporal bound-

ary conditions are not obeyed, then the b quarks are no longer in thermal equilibrium.

The next step to remove T dependence from Eq. (3.2.2) is to set ω = ω′ + 2M .

Finally recall that for NRQCD M � T , and so we take Mb/T →∞. This leads to

K(τ, ω) =
cosh (ω [τ − 1/2T ])

sinh(ω/2T )
→ e−ωτ . (3.2.3)

Hence we have removed the temperature dependence from K(τ, ω). Given that this

does not obey periodic temporal boundary conditions, our bottomonium cannot be

in thermal equilibrium. For continuum NRQCD we can rewrite Eq. (2.2.21) as,

G(τ) =

∫ ∞
0

dω

2π
e−ωτρ(ω) =

∫ ∞
−2Mb

dω′

2π
e−ω

′τρ(ω′). (3.2.4)

For lattice NRQCD, the expression is the same with the exception of the limits used.

At zero temperature it is assumed that the spectral function of any of the bottomo-

nium states can be expressed as a series of delta functions as there is no thermal

broadening. For now we will only be considering a single term that corresponds to
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meff . Explicitly, we define the ρ(ω) in this case as,

ρ(ω) = 2πZδ(ω −meff), (3.2.5)

where Z relates to the amplitude of the state. Hence write Eq. (3.2.4) as,

G(τ) = Z

∫
dω e−ωτδ(ω −meff) = Ze−τmeff . (3.2.6)

For the anisotropic lattice τ = aτnτ , where nτ = 0, 1, ..., Nτ − 1. We can then define

the effective mass as follows,

meff = −a−1
τ ln

(
G(τ + aτ )

G(τ)

)
. (3.2.7)

We do not have zero temperature data and so instead we have had to use Nτ = 128.

Rather than using the central value and variance for these configurations, plots and

errors were generated using bootstrap analysis (see Appendix B).

Although Fig. 3.1 clearly shows that the assumption ρ(ω) = δ(ω − meff) does

not hold, there in an evident constant behaviour at later nτ for all channels, though

we note the P-waves states become noisy after nτ ≈ 100. A single value for the

effective mass of each channel was determined using the mean of the final 60 points,

which can be seen in Table 3.1. The Υ is of particular interest, as we will now use

it to define a necessary energy shift E0. Given that aτmeff = 0.33273(1), meff =

0.33273× 5.997 = 1.9954(6) GeV, significantly lower than the experimental value of

9.460 Gev. This is because only energy differences are relevant in NRQCD rather

than the rest-mass of the states directly, as this energy can be removed from the

heavy quark dispersion relation by performing a field transformation. Hence our

need for E0, which was found to be

E0 = Mexpt −meff = 9.460− 1.9954 = 7.46461(4) GeV.

Table 3.1 displays the effective masses for the four states, in both lattice units and

GeV, along with the experimental values [61].

3.2.2 Higher order masses

Fig. 3.1 demonstrates the need for an alternative spectral function, whether that be

higher order terms or a different function altogether. For now we will continue with
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(a) η (b) Υ

(c) χb0 (d) χb1

Figure 3.1: Effective mass according to Eq. (3.2.7) for following bottomonium states: scalar ηb

(a), pseudoscalar Υ (b), vector χb0 (c), and axial vector χb1 (d) channels for Nτ = 128. The orange

line represents the mean effective mass of the last 60 points.

Name J (PC) n(2S+1)LJ aτmeff E0 +meff Mexp [GeV]

ηb 0−+ 11S0 0.32774(1) 9.43045(6) 9.399

Υ 1−− 13S1 0.33273(1) 9.46039(4) 9.4603

hb 1+− 11P1 0.415(17) 9.95(10) 9.8993

χb0 0++ 13P0 0.403(14) 9.884(83) 9.8594

χb1 1++ 13P1 0.412(16) 9.939(94) 9.8928

Table 3.1: Bottomonium spectrum with effective masses in lattice units and MeV. Experimental

values were taken from the Particle Data Group [61]

the delta functions but include higher order terms, such that the correlators can be
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defined as,

G(τ) =

Np∑
j

Zj

∫
dω e−ωτδ(ω −mj) =

Np∑
j

Zje
−τmj (3.2.8)

where Zj is the amplitude associated with each term and Np is the number of terms

used which would correspond to the number of resonances or peaks in the spectral

function. For convenience, Zj and mj were determined using the CORFITTER

package [62]. For further details of this fitting procedure, see [63–65].

As with the effective mass, only Nτ = 128 was used. However, unlike the effective

mass which used only the last 60 timeslices to determine a value, we have used all but

the first 4 timeslices. The decision to ignore the timeslices is that they are heavily

affected by lattice artifacts. The reason for only ignoring 4 timeslices is that we need

to choose the equivalent of at least 1 spatial lattice spacing. Recall that ξ = 3.45,

so that as = 3.45aτ , and since we need to neglect at least 1 spatial lattice spacing,

we round up to 4. The results of this fitting procedure for 1-5 terms is displayed in

Table 3.2, after being converted to GeV as the output initially corresponds to aτmj.

In Figure 3.2 we have plotted the groundstate masses alongside the experimental

values and the effective masses of Table 3.1.

We see that it takes 4 terms for the groundstate mass to lie within the uncertainty

of the effective mass. Only in the case of the Υ do all results agree which is to be

expected since this state was used for tuning. Looking at Table 3.2, we see that

increasing the number of terms to 5 leads to significant uncertainty on the masses for

the highest excited state. This is due to the increased difficulty in fitting parameters

as the number of terms increase. It is more pronounced for P-waves than S-waves

due to the variance of these configurations, which can clearly be seen in Fig. 3.1c

and Fig. 3.1d.

The results of the fitting procedure have been used to reconstruct the correla-

tors using Eq.(3.2.8). The percentage error for each state and number of terms is

displayed in Table 3.3, and the reconstructed correlators Grecon for Υ and χb1 states

for 1-4 terms are plotted in Fig. 3.3 and 3.4 respectively.

Given all the result so far, we decided that for both states, Np = 4 is the

most appropriate number of terms. For the S-waves this is because there is little
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n = 1

j ηb Υ hb χb0 χb1

1 10.906(50) 10.979(31) 11.370(13) 11.226(18) 11.508(27)

n = 2

j ηb Υ hb χb0 χb1

1 9.5304(55) 9.5838(46) 10.2372(40) 10.1781(46) 10.2412(33)

2 11.424(15) 11.4973(89) 12.2135(80) 12.104(13) 12.2155(68)

n = 3

j ηb Υ hb χb0 χb1

1 9.4401(14) 9.47163(78) 10.01473(93) 9.9782(13) 10.01165(93)

2 10.4267(88) 10.4563(45) 11.0472(51) 10.9550(61) 11.0398(42)

3 12.284(17) 12.3054(96) 13.0200(63) 12.9501(86) 13.0187(64)

n = 4

j ηb Υ hb χb0 χb1

1 9.43086(12) 9.460860(75) 9.9619(17) 9.9373(15) 9.96018(99)

2 10.1444(31) 10.1620(16) 10.624(16) 10.575(11) 10.6261(74)

3 11.2477(91) 11.2669(46) 11.886(36) 11.797(27) 11.891(18)

4 13.265(16) 13.2185(75) 13.862(53) 13.789(36) 13.872(26)

n = 5

j ηb Υ hb χb0 χb1

1 9.430416(71) 9.460341(48) 9.9501(62) 9.923(19) 9.9486(47)

2 10.0549(65) 10.0698(36) 10.485(93) 10.34(21) 10.476(69)

3 10.759(31) 10.771(19) 11.42(26) 11.03(25) 11.38(20)

4 11.995(55) 11.981(33) 12.95(41) 12.36(26) 12.89(32)

5 14.28(10) 14.110(58) 15.9(1.6) 14.39(41) 15.5(1.2)

Table 3.2: Masses in GeV for each bottomonium state using 1, 2, 3, 4, and 5 terms. The

index j refers the term in the summation in Eq. (3.2.8). All values were determined using the

CORFITTER package.

improvement of the error for Np = 4 and Np = 5 and there is little change between

Fig. 3.3c and Fig. 3.3d. For the P-waves states there was another reason to select
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(a) ηb (b) Υ

(c) χb0 (d) χb1

Figure 3.2: Groundstate masses for the bottomonium states using a multi-exponential fit with

1-5 terms. Experimental masses are represented by blue lines. Effective masses are represented by

black solid lines and the uncertainty on these values by black dashed lines.

Np = 4 as the most appropraite number of peaks.. Although the error continues to

reduce by notable amount, we noticed from Table 3.2 that uncertainty on m5 for hb

and χb1 was significant.

In summary, the CORFITTER fitting procedure has done an excellent job at

determining groundstate masses of the bottomonium states if sufficient terms are

used. However its estimate of higher order states begins to deteriorate if the number

of terms is increased too far. The χb0 and χb1 still have percentage errors of 15.3%

and 13.5% respectively. This is expected to some extent though, as although we have

treated these configurations as zero temperature, that is not strictly true. Recall

that for Nτ = 128, T = 47 MeV and so there may be some thermal effects. Recall

from Fig. 2.1b that at low temperatures we do not expect the spectral function for

bottomonium at finite temperature to just be a set of delta functions. Instead we

would expect resonances to begin broadening due to thermal effects. Furthermore,
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Np ηb Υ hb χb0 χb1

1 32.1% 30.6% 36.9% 79.3% 69.7%

2 16.0% 15.0% 22.3% 49.2% 44.8%

3 14.1% 12.9% 20.1% 42.5% 40.3%

4 5.5% 5.0% 8.2% 16.8% 16.4%

5 4.8% 4.4% 6.2% 15.3% 13.5%

Table 3.3: Percentage error between reconstructed correlators and FASTSUM Gen2L correlators

for Np = 1− 5

(a) Np = 1 (b) Np = 2

(c) Np = 3 (d) Np = 4

Figure 3.3: Comparison of reconstructed correlator for Np = 1 − 4 and FASTSUM Gen2L

correlator for the Υ.
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(a) ηb (b) Υ

(c) χb0 (d) χb1

Figure 3.4: Comparison of reconstructed correlator for Np = 1 − 4 and FASTSUM Gen2L

correlator for the χb1.
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we have not even considered including a continuum. Nevertheless, these results

provide a reasonable starting point for the following work.

3.2.3 Thermal Modification

We conclude this chapter with the examination of thermal dependence of the corre-

lators for ηb, Υ, χb0, and χb1 channels. This was done using the ratio G(T )/G(T0),

where G(T0) ≈ G(Nτ = 128) which corresponds to T = 47 MeV. This was done us-

ing bootstrap analysis for all the other temperatures from Table 1.1 with the central

value for G(T0) and the configurations for G(T ) (see Fig. 3.5).

(a) ηb (b) Υ

(c) χb0 (d) χb1

Figure 3.5: Thermal modification, G(τ ;T )/G(τ ;T0) with T0 = 47 MeV, of the correlation func-

tions.

There are two observations to be made regarding these plots. The first is common

to all four states and that is that the largest increases occurs between 125 MeV and

187 Mev. Recall from Chapter 1 that the crossover region is estimated to lay within

this range of temperatures. Thus we observe that the largest increase corresponds
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to a change of phase. The second observation is the difference in vertical scales

between the S and P-wave states. For both the ηb and Υ this is an increase of ∼ 4%

whereas for the χb0 and χb1 there is an increase ∼ 12%. Again this is expected from

the discussion of sequential suppression in Chapter 1, as P-wave states dissociate

at a lower temperatures than S-wave states, and therefore have a more pronounced

thermal dependence. These observations, will be used in the following section for

the generation of training data.
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Introduction to Kernel Ridge Re-

gression

In recent years there has been a growing interest in machine learning and the tech-

niques that fall under this term. If the ill-posed problem of spectral reconstruction

is treated as 1D image reconstruction, a common problem in machine learning, then

it should be possible to apply these methods. For this work we decided to develop

a Kernel Ridge Regression (KRR) model using the work of [66] as inspiration.

4.1 Regression methods

4.1.1 Linear regression

The method of linear regression is simple, and one that most will be familiar with.

Despite this familiarity, a brief description will still be provided so that the explana-

tion of KRR will be easier to follow, by making use of analogies to linear regression.

An example has also been provided to help with this explanation. For further in-

sight, see [67, 68].

For any form of regression the aim is to develop a mapping between input data x

and target data y. This requires a dataset of both input and target data, represented

by the column vectors x, and y, respectively. The length of these vectors is equal to

the number of datapoints, or observations we have, which we will refer to as Ntrain.

In the simplest case we assume y to only be dependent on a single variable,

y = g(x) + η(µ, σ), (4.1.1)

where g(x) is the true function that maps x to y and η is noise and is introduced

to represent the uncertainty in the data. Usually this noise is chosen for each x

from a normal distribution with mean µ = 0 and suitable standard deviation σ. To
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determine this mapping we assume

y = f(x)w, (4.1.2)

where w is a vector of parameters to be determined, and f(x) is a matrix where

each row corresponds to a different x and each columns is a different function of x,

f(x). The form of f(x) is arbitrary but for this example we will use powers of x so

that

f(x)w =
∑
n

wnx
n. (4.1.3)

In this case fn(x) = xn. Note that polynomials are a poor choice for f(x), especially

if there is an error associated with the data, as it is numerically unstable. The

problem worsens with the number of terms used. However for the purpose of this

example it will be adequate. We can replace f(x) with the matrix X. If the number

of terms of the polynomial is defined as N , then we see that w is a column vector of

length N and X is a matrix of size Ntrain×N and the j-th column now corresponds

xj.

The first step of regression is to determine the optimal values of w, ŵ, which is

usually done by minimizing a cost function or maximizing likelihood. We refer to

this step as the training the model. For Linear Least-Squares (LLS) regression we

choose the cost function E,

E(w) = |y −Xw|2 . (4.1.4)

Differentiating the above with respect to wn and setting this gradient to 0 gives [69],

ŵ =
(
XTX

)−1
XTy. (4.1.5)

It becomes possible to predict new values of y using

ynew = f(xnew)ŵ. (4.1.6)

We have reverted to using f(x), as the method is the same regardless of definition

of f(x). For the following example we have chosen ytrue = sin(x) for the true form

of the target data, though ordinarily we would not know the true form of y which

is why we resort to regression. For each observation of x the corresponding y is
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determined with the addition of noise, η(0, 0.1). Therefore, for a single element of

y,

y = sin(x) + η(0, 0.1) =
∑
n

wnx
n. (4.1.7)

In Fig. 4.1a, b, and c we have plotted three separate models with n = 4, 10,

and 16 for
∑

nwnx
n respectively. The input data consisted of 50 values of x, hence

Ntrain = 50. We see that even with only 4 terms it is possible to obtain a curve that

closely resembles the true function. This is quite the positive result, especially when

we consider that ŵ is generated using the noisy data. As we increase the number

of terms to 10, the curve generated by our model more closely resembled the true

function. However, note the final curve that was generated using 16 terms and how

it diverges from the true function to pass through the noisy data instead. Recall

that we are using noisy data to train our model, and in reality we would not know

what the true function. One issue with this is that to the model, the path of the

noisy data is the true function. Therefore it will try to best match that. As we make

the model more complex, for example by adding more terms, it will be better able

to match the noisy data. This behaviour is referred to as overfitting. The main issue

with this is that when we introduce new data, a new x, the model will be unlikely

to make a reasonable prediction of the corresponding y. In order to resolve this we

need to regulate the model.

4.1.2 Ridge Regression

Despite the success of LLS in the example above, there are two flaws with LLS. The

first is overfitting which we discussed above. The second is that when X is singular

it becomes impossible to calculate ŵ as XTX is no longer invertible. To resolve

both these issues, we implement Ridge Regression (RR), which is identical to the

above apart from an additional term in the cost function,

E(w) = |y −Xw|2 + λ|wTIw|2, (4.1.8)

where I is the identity matrix of size N × N , and λ is the regularization con-

stant. Ridge Regression is a special case of the more general Tikhonov regulariza-

tion [70, 71]. See [68] for a discussion on LASSO regression, an alternative to RR.
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(a) n = 4

(b) n = 10

(c) n = 16

Figure 4.1: Example of Linear Least-Squares regression using polynomials with 4(a), 10(b), and

16(c) terms.
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Determining ŵ is done in the same manner as above and hence it follows,

ŵ =
(
XTX + λI

)−1
xTy (4.1.9)

We have plotted the models, see Fig. 4.2(a), (b), and (c), again using n = 4, 10,

and 16, generated using the new definition of ŵ with λ = 0.1.

For both n = 4 and n = 10 we see little change between the LLS models and the

RR models. However for n = 16, the curve produced by our model has smoothed

out to resemble Fig. 4.2b. Although this is certainly an improvement compared

to Fig. 4.1c, we need to consider whether generating a model with more terms is

necessary as there is little difference between the n = 10 and n = 16 cases. We

have already commented that the numerical instability that comes from trying to

fit polynomials increases with the number of terms.

4.1.3 Kernel Ridge Regression

Unfortunately both the above suffer from the same problem; how many basis func-

tions to use in f(x). Rather than attempting to determine this we introduce Kernel

Ridge Regression (KRR). In principle, the method is identical to the above; mini-

mizing a cost function to determine parameters and using these to make predictions.

The main difference comes from replacing the input data x with a kernel function

C(xi, xj), from which the method gets its name. There is no standard kernel, but the

function must be a distance between elements xi and xj. For this reason common

kernel functions involve L-1 or L-2 norms. For this example we used the following

kernel function,

Cij = C(xi, xj) = exp
(
−γ [xi − xj]2

)
(4.1.10)

where γ is the scale length and is used control the magnitude of correlations between

xi and xj. The parameters λ and γ are the model’s hyperparameters. Now, rather

than testing models with different f(x), we only need to determine a suitable value

for γ. By using all elements x for xi and xj in Eq.(4.1.10), we generate a matrix C

of size Ntrain ×Ntrain.

The cost function is redefined as,

E(α) = |y −Cα|2 + λ|αTCα|2, (4.1.11)
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(a) n=4

(b) n=10

(c) n=16

Figure 4.2: Example of Ridge regression with λ = 0.05 using polynomials with 4(a), 10(b), and

16(c) terms.
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Figure 4.3: Example of Kernel Ridge regression using a radial basis function (RBF) kernel with

γ = 0.1, and λ = 0.1.

where α is a matrix of parameters that replaces w, with dimensions Ntrain × 1 for

this example. Regardless of the form of C(xi, xj), it follows that the optimal matrix

of parameters, α̂, is defined as

α̂ = (C + λI)−1 y (4.1.12)

Finally we define a prediction using new data as

ynew = CT
newα̂ (4.1.13)

where elements of Cnew are given by Eq.(4.1.10) but with xj → xnew so that Cnew is

a column vector of length Ntrain. The example in Fig. 4.3 was done using γ = 0.1.

In Table 4.1 we include the mean absolute error (MAE) of each model for y and

ytrue, denoted by MAEtarget and MAEtrue respectively, for comparison.

With this table of errors it becomes easier to determine how the various models

compare. Firstly, the error from the target data decreases as n increases for both

LLS and Ridge regression models. This is expected, since there will exist a model

with more term capable of producing a curve that goes through all data points with

MAEtarget = 0. This however would be an extremely overfitted model. Regarding

MAEtrue, all errors are lower than the corresponding MAEtarget so even with the

noise, all models are capable of producing good estimates of the true function. We
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Model MAEtarget MAEtrue

LLS4 0.0932 0.0624

LLS10 0.0738 0.0218

LLS16 0.0636 0.0370

RR4 0.1001 0.0652

RR10 0.0759 0.0217

RR16 0.0695 0.0280

KRR 0.0848 0.0388

Table 4.1: Mean Absolute Error on each model, determined using the noisy target data, y, and

true values, sin(x).

also remark that for both LLS and Ridge regression, the n = 10 model is the best.

The addition of the regulator has worsened the n = 4 and n = 10 models, though

this is to be expected due to its effect on the cost function. The improvement for

the n = 16 is negligible. Finally, although the KRR model does not have the lowest

errors of the models, the convenience of not having to decide the number of terms

and not having to be concerned about the numerical instability of the polynomial

make it the most practial of the models.

In order to relate KRR to spectral reconstruction, it is useful to substitute x and

y with the functions G(τ) and ρ(ω) respectively. With this substitution we redefine

the kernel, C(xi, xj)→ C (Gi(τ), Gj(τ)) with the form

Cij = exp

(
−γ

Nτ∑
nτ=4

(Gi(aτnτ )−Gj(aτnτ ))
2

)
. (4.1.14)

For the time being it is assumed that

ρ(ω) = CTα. (4.1.15)

Note that there is no addition of noise for the time being. The cost function becomes,

E =
∣∣ρ−CTα

∣∣2 + λ|αTCα|2, (4.1.16)

Hence, the optimal matrix is given by,

α̂ = (C + λI)−1 ρ (4.1.17)

Here α has dimensions Ntrain×Nρ, where Nρ is the number of points used to generate

ρ, typically O(1000).
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4.2 Data Generation

4.2.1 Spectral functions

Before we begin to implement KRR though, we require training data in order to

train the model and generate α. The generation of the training data is a key step,

not just for KRR, but for many machine learning methods that require training.

Disregarding the obvious reason that any such algorithm is incapable of making

predictions without training, and hence training data, there is a more subtle im-

portance to the training data. It is only at this stage that prior knowledge of the

system can be incorporated to provide restrictions on the later predictions.

For now the training data was generated as follows. Each spectral function is a

superposition of 4 Gaussian functions,

ρ(ω) =

Np∑
r

Arexp

(
−(ω −mr)

2

Γr

)
, (4.2.1)

where m, Γ, and a represent mass, width and amplitude respectively. The upper

limit Np is the number of Gaussian functions, or number of peaks. The reuse of Np

from Chapter 3 is intentional, as these Gaussians will substitute for δ(ω − mj) in

Eq. (3.2.8). In fact, the reason Gaussian functions were chosen was due to their

resemblance to a δ function in the limit Γ → 0. In Sec. 3.2.2 we have already

discussed why Np = 4 is a more appropriate choice, particularly for S-wave states

which we will be focusing on for this initial testing of a KRR model. For simplicity

we have not included a continuum or any low frequency behaviour to represent a

transport peak. Instead our concern for the time being will be to generate mock

functions that mimic the bottomonium groundstate and excited states. A dataset

of 20000 functions was generated.

The results of Chapter 3 have been used as inspiration for selecting the values

of the parameters themselves. Given the results in Table 3.2 the masses have an

approximate range of 9 - 16 GeV. Rather that using a uniform distribution, an

exponential distribution was chosen instead. This was to allow for peaks to appear

beyond 16 GeV, as well as favouring lower energy for the masses. To generate the
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masses, values were chosen using the following distribution,

p(ω) =
1

κ
exp

(
−ω
κ

)
, (4.2.2)

where κ is the scale parameter the of the distribution. In this case κ = 1. An additive

constant of 8.5 was added to the selected values in order for them to represent masses

in GeV, MGeV. Before the spectral functions can be generated, they need converting

to lattice units which was done using,

mlat =
MGeV − E0

a−1
τ

. (4.2.3)

Widths, Γ, were chosen by first taking a random number, x, from a uniform

distribution such that −4 ≤ x ≤ 0 which is related to Γ by Γ = 10x. By selecting

Γ this way, it is hoped that we will generate a balanced selection of narrow peaks,

Γ = O(10−4), and broad peaks, Γ = O(1). Selecting a number from 10−4 to 1,

directly would have led to broader peaks dominating. Amplitudes were initially

chosen from a uniform distribution such that 0.1 ≤ A′ ≤ 10, then scaled accordingly

to get A. To understand why it needs scaling, consider Eq. (3.2.4) for τ = 0,

G(0) =

∫ ωmax

ωmin

dω

2π
ρ(ω). (4.2.4)

This sets the condition that ρ(ω) must be normalised to G(0). From the Gen2L

ensembles we find that G(0) ≈ 6 for ηb,Υ, and hb, whilst G(0) ≈ 12 for χb0 and

χb1. In order to satisfy this condtion, we need to decide on appropriate values for

ωmax and ωmin. As we are working on the lattice, the range for ω cannot be infinite

and must instead be chosen judiciously. For now, we determine the range using the

unimproved NRQCD lattice dispersion relation,

aτE(n) = −log

(
1− p̂(n)2

2ξasMb

)
, (4.2.5)

where p̂(n)2 is the lattice momenta at site n in the first Brillouin zone, defined as,

p̂(n)2 = 4
3∑
i=1

sin2

(
πni
Ns

)
, ni = −Ns

2
+ 1, ...,

Ns

2
. (4.2.6)

To determine a range for ω, we decided to initially use a range that corresponded to

the range of energy ∆E(n). This depends on the maximum and minimum momenta

which are 12 (n = (Ns/2, Ns/2, Ns/2)) and 0 (n = (0, 0, 0)) respectively. This leads
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to aτ∆E(n) = 1.86. In order to use this to set range for ω, we introduce the free

lattice spectral functions for S-waves states

asρS(ω) =
4πNc

ξN3
s

∑
n

δ (aτω − 2aτE(n)) , (4.2.7)

where Nc is the number of colour charges, usually 3. In this case it does not matter

what Nc is as we are only concerned about the δ function which is only non-zero for

ω = 2E(n). Hence aτ (ωmax − ωmin) = 3.72. Rather than setting ωmin = 0 and ωmax

= 3.72, there was an offset of 0.0005, so ωmin = 0.0005 and ωmax = 3.7205. The offset

from 0 is for later computational convenience. Using these values, ρ is normalised

by first selecting the parameters from the distributions above and substituted into

Eq. (4.2.4). We define a normalization constant z, such that,

G(0) = z

∫ ωmax

ωmin

dω

2π
ρ(ω). (4.2.8)

All original amplitudes scaled accordingly, A′r → Ar = zA′r.

There are several constraints imposed. The first of these is that the smallest

masses corresponds to the smallest widths and largest amplitudes. For the largest

masses, the inverse is true. To justify this, recall the sketches from Chapter 2 in

Fig. 2.1 where higher order states are more affected by thermal effects. Next,

ρ(ωmin) = ρ(ωmax) ≈ 0 and mj < ωmax had to be obeyed. These together ensure

that the spectral function can only be non-zero between our chosen range for ω.

The final condition set was that ρ > 10−100 between the range ωmin ≤ ω ≤ ωmax, the

justification for this will follow shortly but it is mentioned here for transparency.

In Fig. 4.4 the distributions of the selected parameters are displayed, along-

side a representation of the original distributions in blue. Note that none of the

distributions of selected parameters follow the original. It was expected that the

amplitude would vary in terms of range due to the scaling, but that the shape of

the distribution is closer to an exponential distribution is unexpected. The exact

reason for these deviations is currently unknown but it is in part due to the imposed

constraints.

4.2.2 Representations of spectral functions

Clearly any predictions of ρ using one of the above regression methods will produce

a discrete depiction of the spectral function. Hence we need to decide how many
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(a)

(b)

(c)

Figure 4.4: Distribution of unconstrained parameters (blue) and distribution of selected param-

eters (orange)
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points are needed to produce a seemlingly continuous spectral function. For this

work, we decided O(1000) points would be sufficient. Given the correlators have

Nτ points with ranges from 8 to 128, we see that this inversion is ill-posed as we

stated at the end of Chapter 2. To help with this ρ can be represented by a set

of parameters instead which we will refer to as θ, with length Nθ. This alters Eq.

(4.1.17),

α̂ = (C + λI)−1 Θ (4.2.9)

where Θ is a matrix of parameters for all ρ, with size Ntrain ×Nθ. The j-th row of

Θ would correspond to θj, the parameters for the j-th training ρ. The matrix α̂

now has dimensions Ntrain × Nθ. We have actually already introduced the first of

our representations above where θ = (mr,Γr, Ar).

An alternative representation uses Bryan’s method [72], which involves taking

the Singular Value Decomposition (SVD) of a thermal kernel K(τ ′, ω, ) to generate

a set of orthogonal basis functions, f(ω). This representation will henceforth be

referred to as the SVD representation. We use τ ′ in the kernel because this kernel

may correspond to a different Nτ than that of the correlators used for training or

predictions. In this work Nτ ′ = Nθ = 80. We then define the spectral function,

ρSVD(ω) = m(ω)exp

(
80∑
j=1

fj(ω)cj

)
, (4.2.10)

where m(ω) is the default model. In this case θ = (c1, ..., c80) is a set of coefficients

determined by,

θ = f(ω) · log

(
ρSVD(ω)

m(ω)

)
, (4.2.11)

which makes use of the orthogonality of the basis functions. To see this, consider

the contribution to ρ(ω) from the j-th basis function and coefficient,

ρ
(j)
SVD(ω) = m(ω)exp (fj(ω)cj)

cjfj(ω) = log

(
ρ

(j)
SVD(ω)

m(ω)

)

cjfi(ω) · fj(ω) = cjδij = fj(ω) · log

(
ρ

(j)
SVD(ω)

m(ω)

) (4.2.12)

In the final line, we make use of the fact that f(ω) is a set of orthogonal basis

functions. Note that the logarithm in Eq. (4.2.10) is the reason for our requirement
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that ρ(ω) > 10−100, otherwise log (ρ(ω)) cannot be computed numerically. The

default model is set by to normalizing ρ(ω) according to

m(ω) = G(0)/

[
∆ω

ωmin∑
ωmax

exp

(
80∑
j=1

fj(ω)θj

)]
, (4.2.13)

where ∆ω = ωn+1−ωn. Therefore m(ω) in this work is just a normalisation constant,

B.

The final part of the data generation is calculating the corresponding correlators

for each of the mock spectral functions. Rather than using Eq. (3.2.4), the discrete

definition was used since ρSVD is discrete,

GSVD(τ) = ∆ω
ωmax∑
ωmin

K(τ, ω)ρSVD(ω) = B∆ω
ωmax∑
ωmin

e−τωexp

(
80∑
j=1

fj(ω)θj

)
. (4.2.14)

With the mock data generated, it is now time to implement KRR.

4.3 A first look a KRR

Since ρ is now defined terms of the parameters θ, the cost function and optimal

matrix are as follows

E =
∣∣Θ−CTα

∣∣2 + λ|αTCα|2, (4.3.1)

α̂ = (C + λI)−1 Θ, (4.3.2)

The kernel, C, is still as written in Eq. (4.1.14).

In order to test the predictability of a KRR, a second dataset is required that

shares no functions with the original training set. This set is referred as the testing

set with size Ntest. The predicted Θ are given by,

Θpred = CT
testα̂, (4.3.3)

where an element of Ctest is defined as,

C
(test)
ij = exp

(
−γ
∑
τ

(Gi(τ)−Gj(τ))2

)
. (4.3.4)

The index i = 1, ..., Ntrain and the index j = 1, ..., Ntest

In the following example, Ntrain = 10000, Ntest = 1000, the SVD representation

was used with Nθ = 80, and Nτ = 40. The normalization constant B is not included
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in θ as it can determined afterwards. The first 4 timeslices are neglected for the same

reason given in Sec. 3.2.2; they are affected by lattice artifacts. The hyperparameters

(σ, λ) were both set to 1. In order to gain insight into the predictive ability of the

KRR model, the mean-squared-error (MSE) was used. For now it will be determined

using the actual values of the coefficients and the predicted values θtest, rather than

the corresponding ρ,

MSEtest =
1

Ntest

1

Nθ

Ntest∑
n=0

Nθ∑
j=0

(
θ

(test)
j,n − θ(pred)

j,n

)2

. (4.3.5)

The value of the MSE alone will not mean much but as changes to the current KRR

model are made, the error should decrease. The definition of the training MSE is

the same after the substitution Ntest → Ntrain and θtest → θtrain. For the MSE of

the coefficients for a single spectral function, drop the factor of 1/Ntest, or 1/Ntrain,

and the appropriate summation.

The MSEs for the entire training and testing sets, alongside the lowest, median,

and highest MSEs in the testing set, MSElow, MSEmed, and MSEhigh respectively, are

shown in Table 4.2. These numbers alone mean very little so the spectral functions

for three example MSEs have been plotted in Fig. 4.5. These plots provide a visual

interpretation of the KRR model’s current predictive ability. The SVD coefficients

were used instead of the parameters (mr,Γr, Ar) in recreating the original spectral

functions, which is especially obvious in Fig. 4.5c as there are more than 4 peaks.

This is because at this stage it is more important to demonstrate the KRR model’s

ability to predict the correct coefficients rather than its ability to recreate the correct

ρ. By low and high MSE, this is relative to the MSEs of the test set and not a

universal standard. Going forward, these three sets of coefficients will be used to

determine if the changes to be made are improving the KRR model or not.

Before moving onto improving the KRR model, there are observations to be

made even from this simple example. The model struggles as the separation of the

peaks increases, though when comparing the spectral functions directly, it would be

difficult to distinguish which of these has the largest error. Observe as well that the

median MSE is much less than the mean MSE for the test set. Therefore it would

seem that the mean MSE is skewed by a minority of the dataset. This means when

it comes to minimizing the MSE, it may be that any decreases to the mean MSE

50



CHAPTER 4. INTRODUCTION TO KERNEL RIDGE REGRESSION

(a)

(b)

(c)

Figure 4.5: Comparison of spectral functions from original and predicted coefficients for MSElow

(a), MSEmed (b), and MSEhigh (c), for (λ, γ) = (1, 1).
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(λ, σ) (1, 1)

MSEtrain 4425.97

MSEtest 4547.88

MSElow 15.63

MSEmed 2847.49

MSEhigh 40179.18

Table 4.2: MSEs for training and testing sets, alongside the lowest, median, and highest MSEs

of the testing set for the hyperparameters displayed.

come about by changes to the sets of coefficients with highest MSE.

There is no way to check how this choice of hyperparameters has affected every

function in the test set without looking at each. Given that Ntest = 1000, this

would be inefficient. To observe any effects of changing the KRR model, these

three examples will be used. This leaves the question of how to improve the KRR

model. As of yet no consideration has been given to what values γ, and λ should

take [73]. The decision to use 1 for the initial value of both hyperparameters was

just to provide an example of the KRR model, albeit a bad example.

4.3.1 Regularization constant

As discussed above, the purpose of regularization is to prevent singular matrices so

that α̂ can be calculated and also reduces overfitting. In using functions for our

input and target data, the concept of overfitting becomes more abstract but is still

a concern as λ→ 0. For the first attempt at improving the KRR model we vary λ

using a range of −10 ≤ log10(λ) ≤ 0. Smaller values of λ have a risk of (C + Iλ)

becoming singular. The training and testing MSEs have been plotted in Fig. 4.6

against λ.

Clearly the minimum testing MSE corresponds to λ = 10−10. A new KRR model

was determined using this value of λ and the new MSEs for the training and testing

sets, as well as MSElow, MSEmed, and MSEhigh are displayed in Table 4.3. There is

a clear improvement across the five MSE with the exception of MSElow.

However when we consider the new reconstructed spectral functions in Fig. 4.7,

it appears to suggest a different behaviour. In Fig. 4.7a and 4.7b the predicted
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Figure 4.6: Training and testing MSEs as a function λ. Note the values on both axes are

logarithmic.

(λ, γ) (1,1) (10−10, 1)

MSEtrain 4425.97 2295.77

MSEtest 4547.88 2762.75

MSElow 15.63 200.05

MSEmed 2847.49 919.19

MSEhigh 40179.18 389.84

Table 4.3: MSEs for training and testing sets, alongside the lowest, median, and highest MSEs

of the testing set for the hyperparameters displayed.

spectral functions have the correct number of peaks and in the correct positions.

Meanwhile in Fig. 4.7c any similarity with the low frequency region of the original

spectral function has been lost. Now only the position of the final peak matches,

contrary to the initial case. For now, our focus is on how the hyperparameters affect

the test set as a whole, so we will not examine the SVD in detail at this time.

4.3.2 Scale Constant

Next we will investigate the effect of varying γ and how the MSEs change. Before

this though, we will provide further explanation of γ. It was previously referred to
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(a)

(b)

(c)

Figure 4.7: Comparison of spectral functions from original and predicted coefficients for MSElow

(a), MSEmed (b), and MSEhigh (c), for (λ, γ) = (10−10, 1).
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(λ1, γ) (1, 1) (10−10, 1) (1, 101.5)

MSEtrain 4425.97 2295.77 3985.66

MSEtest 4547.88 2762.75 4268.37

MSElow 15.63 200.05 333.47

MSEmed 2847.49 919.19 4141.96

MSEhigh 40179.18 389.84 40239.93

Table 4.4: MSEs for training and testing sets, alongside the lowest, median, and highest MSEs

of the testing set for the hyperparameters displayed.

as the scale length. In Fig. 4.8 three examples of the kernel from Eq. (4.1.14) have

been displayed as surface plots. 1000 correlators from the training set were used

and the correlators for these plots were sorted by their second timeslice for clarity.

In Fig. 4.8a the entire kernel ∼ 1, meaning that predictions will be influenced by

the entire training set. In Fig. 4.8c the entire kernel ∼ 0 with the exception of

the diagonal and near off-diagonal elements. This means that predictions will only

be influenced by training correlators that are equal or extremely similar to the new

data. Fig. 4.8b represents a kernel between these two extremes where predictions

will be influenced by the entire training set but to varying degrees.

We return to examining the effect of varying γ. This was done using a range

of −5 ≤ log10(γ) ≤ 5 for λ = 10−10 and λ = 1. By using two values for the reg-

ularization constant, it is possible to confirm whether the hyperparameters can be

optimized independent of one another when minimizing the cost function. To begin

we look at the case where λ = 1, the training and testing MSEs of which are shown

in Fig. 4.9. Unlike the regularization constant where both MSEs decreased with

λ, there is a minimum. Although difficult to distinguish, the minimum corresponds

to γ = 101.5. We know this corresponds to a kernel like Fig. 4.8c which could

be due to the relatively large value of λ. Both the training and test MSE display

similar behaviour with varying γ, as as the case when varying λ. The usual MSEs

are displayed in Table 4.4, where we see an improvement in the MSEs for the entire

training and testing sets but the three examples have worsened. Again these exam-

ples are plotted in Fig. 4.10. There is little difference to Fig. 4.5 apart from the

appearance on a small peak in the correct position in Fig. 4.10a and 4.10c.
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(a)

(b)

(c)

Figure 4.8: Examples of an ordered kernel calculated using Eq.(4.1.11) for γ = 10−2 (a), 1 (b),

and 102 (c).
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Figure 4.9: Training and testing MSEs as a function γ for λ = 1. Note the values on both axes

are logarithmic.

For the case where λ = 10−10, there is a clear difference in behaviour between the

training and testing MSEs. For γ ≥ 10, the errors begin to diverge from one another

and whilst this did occur for the regularization constant, both errors in that case

continued to decrease. This is the first instance in which the testing MSE suffers as

the training MSE improves. To understand this behaviour it is useful to consider the

effect of varying γ on the kernel functions from a qualitative perspective. Consider

the examples in Fig. 4.8, in particular 4.8c. With high γ, the only contributions to

the predictions will correspond to
∑

τ (Gi(τ) − Gj(τ))2 → 0, where i = 1, ...Ntrain

and j = 1, ...Ntrain or j = 1, ...Ntest. Hence the training MSE→ 0, as all the diagonal

elements C = 1. Predictions of the test set suffer as a consequence as there should

not be any shared functions between the training and test set.

The minimum in this case occurs at γ = 10−0.5. As before, the usual MSEs are

displayed in Table 4.5 and the corresponding predicted spectral functions for the

usual examples are plotted in Fig. 4.12. Rather than discussing the changes, we

focus on the main observation: (λ, γ) cannot be optimized individually.
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(a)

(b)

(c)

Figure 4.10: Comparison of spectral functions from original and predicted coefficients for MSElow

(a), MSEmed (b), and MSEhigh (c), for (λ, γ) = (1, 101.5).
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Figure 4.11: Training and testing MSEs as a function γ for λ = 10−10. Note the values on both

axes are logarithmic.

(λ, γ) (1, 1) (10−10, 1) (1, 101.5) (10−10, 10−0.5)

MSEtrain 4425.97 2295.77 3985.66 2446.35

MSEtest 4547.88 2762.75 4268.37 2757.06

MSElow 15.63 200.05 333.47 212.59

MSEmed 2847.49 919.19 4141.96 1520.80

MSEhigh 40179.18 389.84 40239.93 514.11

Table 4.5: MSEs for training and testing sets, alongside the lowest, median, and highest MSEs

of the testing set for the hyperparameters displayed.
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(a)

(b)

(c)

Figure 4.12: Comparison of spectral functions from original and predicted coefficients for MSElow

(a), MSEmed (b), and MSEhigh (c), for (λ, γ) = (10−10, 101.5).
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Figure 4.13: Surface plot of MSEtest for hyperparameters grid search. The green square marks

the optimal hyperparameters.

4.3.3 Grid Search

In order to determine an optimal pair of hyperparameters, it is necessary to find a

global minimum for the cost function Eq. (4.3.1). This could be achieved using a

gradient descent method. However this would required including α̂ as an additional

variable to be minimized. Since we know that α̂ can be determined for a particular

(λ, γ) pair using Eq. (4.3.2), it was decided that a grid search method would be

used instead. This method is exactly as it sounds, a grid of hyperparameters pairs

is generated. In this case the same ranges from the previous test for λ and γ was

used. From each pair of hyperparameters, the cost function is determined and then

used to calculate α̂. A surface plot is then generated using all these values for the

cost function, as seen in Fig. 4.13.

Ideally there would be a clear minimum which is not the case here. Unfortu-

nately, the value of λ cannot be decreased much further without the calculation of α̂

suffering due to the inversion involved. Furthermore, it is unlikely we would want to

decrease it further since it is questionable already whether λ = 10−10 is large enough

to prevent overfitting should it be necessary in future. By coincidence, the optimal

pair appears to be λ = 10−10 and σ = 10−0.5. Hence the errors and examples plots

can be seen in Table 4.5 and Fig. 4.10 respectively.
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4.4 First prediction of NRQCD data

Whilst testing is certainly important, it is ultimately redundant if the model cannot

make good predictions when faced with the actual NRQCD data. For that reason

it is appropriate to observe the predictive ability of the current model using an

unknown dataset. For this we use the Υ as this was the channel used to set E0.

From effective mass calculations, we expect a peak around 9.460 GeV. From the

ratio G(τ ;T )/G(τ ;T0) we don’t expect to see significant variation as Nτ changes.

To reiterate, the setup of the model is by no means the optimal choice. 80

coefficients were used solely as an example as these are sufficient to reproduce the

mock spectral functions in most cases. 128 coefficients could have been used instead,

but this approaches Nθ � Nτ for the smaller values of Nτ . This is not currently the

focus though, as the point of this chapter was simply to introduce algorithm, data

generation and one method of selecting the hyperparameters.

This provides an opportunity to test whether the hyperparameters have any de-

pendence on Nτ , or thermal dependence. For each Nτ the setup previously described

was used, G(τ) was calculated using Eq. (4.2.14) aand the training kernel is deter-

mined using Eq. (4.1.14), ignoring the first 4 timeslices. The hyperparameters are

then identified using the grid search method and used the define the optimal α̂. The

parameters were calculated using,

θΥ = CT
Υα̂ (4.4.1)

where CΥ is a new kernel and i-th element of CΥ is defined as,

CΥ
i = exp

(
−γ
∑
τ

(Gi(τ)−GΥ(τ))2

)
. (4.4.2)

The correlator in this case is the central value of the appropriate configurations. We

found that for Nτ = 20, 24, 28, and 32, the optimal scale length was γ = 1, whilst

for Nτ = 36, 40, 48, 56, 64, and 128, the optimal scale length was γ = 10−0.5. In

both case the optimal regularization constant was λ = 10−10. Though the optimal

value of γ appears to have some thermal dependence, it may be less significant then

it currently appears. Increasing the resolution of γ would be the only way to check

how much it actually varies with temperature.
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Figure 4.14: First attempt at reconstructed spectral function for Υ using KRR for various

temperatures. Black dashed lines represent the masses shown in Table 3.2 that were determined

using the CORFITTER package with the Υ correlator for Nτ = 128, which corresponds to T =

47 MeV.

The first prediction for the Υ using the KRR model for a selection of tempera-

tures can be seen in Fig. 4.14. It is immediately obvious that prediction is not what

we would expect. The only temperature for which a peak coincides with the ground-

state mass is T= 187 MeV. The dominant peak occurs at higher energies, which is

true for all the temperatures displayed. This may be due to the L-2 distance in Eq.

(4.1.14) which dominated by the earlier timeslices. At early timeslices the correlator

is affected by any excited states, whilst the groundstate influence grows with nτ . For

Nτ = 128 it reaches a point where the groundstate is the sole contribution to the

correlator. It would be generous to claim that the higher order peak are close to the

expected values, especially T = 187 MeV and 250 MeV. Rather than this prediction

for the spectral function being correct, it is more probable that the KRR needs

improving. This can be done by examining the training data to determine if it is

appropriate or requires improvement, or altering how the input and target data is

fed into the KRR model.
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4.5 Alternative methods

We conclude this chapter with a discussion of alternative methods that have been

implemented for either mock data or data from lattice simulations. The purpose of

this is to demonstrate that due to spectral reconstruction being an ill-posed problem,

it is only when multiple methods agree that we should trust the predictions.

This discussion of other spectral reconstruction methods is by no means a com-

plete list. Work has been done to reconstruct spectral functions using other machine

learning methods such as Neural Networks [74,75] and Gaussian processes [76]. The

purpose of introducing these methods was to demonstrate the range of alternatives

that can be used for comparison, as was done in recent work by the FASTSUM

collaboration [77].

4.5.1 Ansatz

This method is perhaps the simplest of the alternative to be discussed. An ansatz

that can parameterized is proposed for ρ. The number of fit parameters should

be less than the number of data points which is determined by Nτ . The ansatz

can be as simple as a single Gaussian and delta function [78], but many studies

use an ansatz consisiting of a single bound state peak, a transport peak, and a

continuum to represent perturbative contributions [78–81]. A corresponding form

for the correlator can be determined by using Eq. (3.2.4). The parameters used

to define ρ are then fitted using a minimization of χ2, maximum likelihood, or an

alternative method of parameter fitting.

The issue with this method is that any proposed ansatz introduces bias that is

difficult to overcome. Care needs to be taken to choose a form of ρ that will exhibit

temperature dependence, should we expect ρ to behave differently at high and low

temperatures, as we might for the P-waves states.

4.5.2 Backus-Gilbert

Another alternative is a method proposed in 1968 by Backus and Gilbert [82]. For

work studies of spectral reconstuction using Backus-Gilbert, see [83–86] An estimate
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solution to Eq. (3.2.4), ρ̂, is generated from the true spectral function via,

ρ̂(ω0) =

ωmax∫
ωmin

dω A(ω, ω0)ρ(ω), (4.5.1)

where A(ω, ω0) is the set of resolution functions that would ideally approximate

to δ(ω − ω0). These resolution functions are given by a linear combination of the

thermal kernel, K(τ, ω),1

A(ω, ω0) =
∑
τ

bτ (ω0)K(τ, ω) (4.5.2)

where bτ (ω0) are a set of coefficients to be determined, the Backus-Gilbert coeffi-

cients. Substituting Eq. (4.5.2) into Eq. (4.5.1) gives,

ρ̂(ω0) =
∑
τ

bτ (ω0)G(τ). (4.5.3)

The Backus-Gilbert coefficients are then determined by minimizing

J(ω0) =

ωmax∫
ωmin

dω [A(ω, ω0)− δ(ω − ω0)]2 .

=

ωmax∫
ωmin

dω

[∑
τ

bτ (ω0)K(τ, ω)− δ(ω − ω0)

]2

,

(4.5.4)

which corresponds to solving,

Kτ,τ ′ · bτ ′(ω0) = K(τ, ω0), (4.5.5)

where

Kτ,τ ′ =

ωmax∫
ωmin

dωK(τ, ω)K(τ ′, ω), (4.5.6)

is the kernel width matrix. The issue with this is that K is close to singular. In Sec.

4.1.2 regularisation was introduced to ensure inversion required for calculating ŵ is

possible. In order to invert Eq. (4.5.6) we make use of regularisation again and the

covariance matrix Σ of G(τ). The kernel width matrix is transformed as such,

K → K′(λ) = λK + (1− λ)Σ, (4.5.7)

1Note the form of the kernel depends on the application and is not needed here. For NRQCD

it is given by K(τ, ω) = exp(−ωτ).
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where λ again is the regularisation constant, λ ∈ (0, 1]. As a consequence of this

transformation, there is a loss of resolving power. As the regularisation becomes

greater so does this loss. This is one of the main issues with the Backus-Gilbert

method, as poor resolving power makes it difficult to reconstruct the narrow res-

onance we would expect for the groundstate. Another issue with the method is

that the number of coefficients is temperature dependent; at higher temperatures it

becomes harder to estimate ρ as there are fewer resolution functions.

4.5.3 Maximum Entropy Method

The next method is be discussed is the popular Maximum Entropy Method (MEM)

[72, 87]. For studies involving MEM see, [88–91]. Before we go into the details of

MEM, we note that we can rescale the thermal kernel and spectral function,

K(τ, ω)→ ωK(τ, ω), ρ(ω)→ ρ(ω)/ω, (4.5.8)

to stabilise the inversion [92]. This leaves the correlators given by Eq. (2.2.24) or Eq.

(3.2.4) unchanged. The spectral function still needs parameterizing, but typically

this is done by,

ρ(ω)

ω
=
m(ω)

ω

Ncoeffs∑
i=1

bifi(ω) (4.5.9)

where bi are the coefficients to be determined. The functions m(ω) and f(ω) are the

default model and basis functions from Bryan’s method described in Sec. 4.2.2. For

simplicity we will set m(ω) = 1. Unlike KRR where the number of basis functions

is arbitrary, MEM is restricted by Nτ , as it is dependent on K(τ, ω). This leads to

poorer resolution as temperature increases.

The coefficients, bi, are determined using Bayes’ theorem,

P (ρ|DH) =
P (D|ρH)P (ρ|H)

P (D|H)
, (4.5.10)

where D is the input data, H is represents any prior knowledge of the system, and

P (A|B) is the conditional probability of A given B. Let D = G(τ), where G(τ)

correlator defined as the central value of the ensemble. In the above, P (D|ρH) is

the likelihood function, P (ρ|H) is the prior probability, and P (D|H) is the nor-

malisation. The likelihood function is typically given by P (D|ρH) = Z−1
L exp(−L),
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where ZL is a normalisation constant with,

L =
1

2

∑
j,k

(
G(τj)−G(b)(τj)

)
c−1
jk

(
G(τk)−G(b)(τk)

)
, (4.5.11)

where G(b)(τj) is the correlator from Eq.(2.2.24) using Eq.(4.5.9) for the definition

of ρ which is dictated by coefficients bi, and c−1
jk is the covariance matrix given by,

cjk =
1

Nconf(Nconf − 1)

Nconf∑
m=0

(
G(m)(τj)−G(τj)

) (
G(m)(τk)−G(τk)

)
, (4.5.12)

where Nconf is the number of configurations for that temperature, see Table 1.1, and

G(m)(τj) is the m-th configuration of the ensemble. For MEM, the prior probability

is given by P (ρ|H) = Z−1
S exp(αS), where Z−1

S is a normalisation constant and S is

the Shannon-Jaynes entropy,

S =

∞∫
0

dω

[
ρ(ω)−m(ω)− ρ(ω)log

(
ρ(ω)

m(ω)

)]
. (4.5.13)

The coefficients, bi, and therefore the MEM estimate for the spectral function, ρ̂,

are determined by maximizing αS − L.

There are alternatives to MEM that also make use of Bayesian methods. The

work of Ding et al. [81] uses stochastic analytical inference, which is proposed as

a generalization of MEM, whilst in [38], a new set of axioms is postulated for the

prior probability.
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Chapter 5

Data generation revisited

In the previous chapter we tested the current KRR model with the FASTSUM

Gen2L lattice correlators. The results were not what we had expected, suggesting

that the KRR model needs improving or at least further examination. However, we

propose at this time that further work is needed to ensure the training data involved

is appropriate. There is the advantage of having access to the lattice correlators

which can be compared with our mock data.

5.1 Examination of current data

We begin with an inspection of the current mock dataset compared with the cor-

relators for each of the bottomonium states with the exception of the hb. In order

to do this for the χb0 and χb1, for which G(0) ≈ 12, Ar needs scaling appropriately

rather than generating an entirely new dataset. This was naively done by letting

A
(P )
r = 2A

(S)
r , where A

(P )
r and A

(S)
r are the amplitudes for the P-wave and S-wave

mock data respectively.

Whilst there is little thermal modification for the S-wave states, this is not the

case for the P-waves states as can be seen in Fig. 3.5. For this reason the mock

and lattice correlators for Nτ = 32 and 128 were used. In Fig. 5.1 the distributions

for the mock correlators for Nτ = 32 and 128 have been represented as heatmaps.

Although the lattice correlators lie within the bounds of the mock correlators, they

diverge from the majority which can seen by the band of red in Fig. 5.1. The

P-waves states appear to be separate from the majority for all timeslices, and even

the S-waves states are only close to majority for the first several timeslices. Due to

the size of the mock dataset, which is 20000, the density quickly drops below 0.1

away from this majority.

In order to see there are any correlators that match with the lattice correlators

we look at the distribution for individual timeslices. Fig. 5.2 shows the distribution
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of the mock correlators at specific timeslices, nτ = 7, 31, and 127, for both S-wave

and P-wave states for Nτ = 128. These plots further demonstrate how poorly

the current mock data emulates the lattice data. There is noticeably agreement

between the S-wave states and mock data up to at least nτ = 31. For nτ = 127 for

the S-wave states and all timeslices for P-wave states there is little to no agreement

between the mock and lattice data. Therefore we have confirmed that the mock

data is inadequate. Reviewing the heatmaps for inspiration on how to resolve this,

we observed that in all cases the majority of the mock correlators are much greater

than the lattice correlators across the timeslices.

(a) S-wave, Nτ = 32 (b) P-wave, Nτ = 32

(c) S-wave, Nτ = 128 (d) P-wave, Nτ = 128

Figure 5.1: Distribution of the natural logarithm of correlators in the mock dataset at each

timeslice for Nτ = 32 and 128 for S-wave (a, c) and P-wave (b, d) states. Dashed lines represent

the upper and lower limits of the correlators in the mock dataset for each value of nτ , and white

solid line represent mean of the mock correlators. The other solid lines represent the Euclidean

correlators obtained in simulations. Note that the two channels in each figure – ηb, Υ (a, c) and

χb0 , χb1 (b, d) – are hardly distinguishable.
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However before we attempt to resolve this, there is another concern with the

current data. See Fig. 4.4a and 4.5 to observe there is a significant range for which

ρ(ω) = 0 between the final resonance and ωmax. The range of ω was thus changed

using the improved lattice NRQCD dispersion relation [56],

aτE(n) = −2 log

(
1− 1

2

p̂2

2ξasMb

)
−log

(
1− p̂4

24ξasMb

+

(
1 +

asMb

2ξ

)
(p̂2)

2

8ξ (asMb)
3

)
(5.1.1)

p̂2 = 4
3∑
i=1

sin2

(
πni
Ns

)
, p̂4 = 16

3∑
i=1

sin4

(
πni
Ns

)
, ni = −Ns

2
+ 1, ...,

Ns

2
, (5.1.2)

along with Eq. (4.2.7). The new range was determined to ωmax − ωmin = 1.4.

Rather than selecting the subset of the original mock functions that obey the

new constraint that ρ is non-zero only between ωmax = 1.4005 and ωmin = 0.0005,

a new set of mock functions was generated. This is only to ensure that there is an

equal number of functions across the two sets for later comparison. A quick check

of Fig. 4.4a shows there are masses, and hence functions, from the original set that

violate the constraint mj < ωmax for ωmax = 1.4005. The method for generating

these new functions is identical to that described in Chap 4.2. The distributions for

the parameters were kept the same but the additive constant used for generating

the masses was changed from 8.5 to 9.

The heatmaps for the updated mock dataset are displayed in Fig. 5.3 and the

distribution of mock correlators at specific timeslices are displayed in Fig. 5.4.

Even with this change of range for ω, there does not appear to be any significant

changes from the original dataset. Certainly there are some noticeably differences, in

particular Fig. 5.4e and 5.4f. There is better agreement between the later timeslices

for both S and P-wave states, whilst agreement for the early timeslices has worsened.

In principle there is a possible way of making reasonable predictions with the

KRR model. If we could ensure that these particular mock correlators, and their

corresponding parameters, are included in the training data, then it would a simple

matter of using a large scale length γ > 1.
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(a) S-wave, nτ = 7 (b) P-wave, nτ = 7

(c) S-wave, nτ = 31 (d) P-wave, nτ = 31

(e) S-wave, nτ = 127 (f) P-wave, nτ = 127

Figure 5.2: Distribution of the natural logarithm of correlators in the mock dataset at nτ = 7, 31,

and 127 for S-wave (a, c, e) and P-wave (b, d, f) states. Solid lines represent the Euclidean

correlators obtained in simulations.
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(a) S-wave, Nτ = 32 (b) P-wave, Nτ = 32

(c) S-wave, Nτ = 128 (d) P-wave, Nτ = 128

Figure 5.3: Distribution of the natural logarithm of correlators in the updated (ωmax = 1.4005)

mock dataset at each timeslice for Nτ = 32 and 128 for S-wave (a, c) and P-wave (b, d) states.

Solid and dashed lines represent the same as Fig. 5.1.
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(a) S-wave, nτ = 7 (b) P-wave, nτ = 7

(c) S-wave, nτ = 31 (d) P-wave, nτ = 31

(e) S-wave, nτ = 127 (f) P-wave, nτ = 127

Figure 5.4: Distribution of the natural logarithm of correlators in the updated (ωmax = 1.4005)

mock dataset at nτ = 7, 31, and 127 for S-wave (a, c, e) and P-wave (b, d, f) states. Solid lines

represent the same as Fig. 5.2
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5.2 Data generation with NRQCD influence

With that in mind, we set about developing a method for producing a better dataset.

To begin, we selected mock correlators according to

i = argmin
Nτ−1∑
nτ=4

∣∣∣∣log

[
Gi(nτ )

GNRQCD(nτ )

]∣∣∣∣ . (5.2.1)

In the above, the ratio of the i-th mock correlator and the NRQCD correlator

at each timeslice from nt = 4 to nt = Nτ − 1 is determined. The natural logarithm

of these ratios is taken and summed. After this has been calculated for each of the

mock correlators have been calculated, we select the index of the mock correlator

corresponding to the minimum sum. The correlator itself is unimportant. Instead,

it is the parameters, (mr,Γr, Ar), that generated the corresponding spectral function

that are retained. This was done for all Nτ in Table 1.1 for the all states except hb,

which will be disregarded from now on. In total we select 20 sets of parameters for

S and P-wave states using this method.

For each of these subsets of parameters, the mean and variance were calculated.

A multivariate Gaussian distribution can then be generated using these means and

variances. With this multivariate distribution, we follow the same method described

in Sec. 4.2, only that the parameters are selected from this multivariate distribution

rather than the distributions described previously. However, rather than using the

means and variances for Γ and A directly, the following was used instead, 1

xΓ = log10(Γ), a = log10(A) (5.2.2)

σx =
1

ln(10)

σΓ

Γ
, σa =

1

ln(10)

σA
A
. (5.2.3)

This is to prevent negative values for the widths and amplitudes being selected.

In fact since this prevents negative values for the widths and amplitudes we will use

these parameters instead in future predictions using the KRR model. 20000 spectral

functions, each with four peaks, were generated along with the corresponding cor-

relators. The exact form of ρ, Eq. (4.2.1) was used for calculating the correlators,

1We write ln rather than the usual log to avoid confusion.
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which were calculated using,

G(τ) = ∆ω
ωmax∑
ωmin

K(τ, ω)ρ(ω) = ∆ω
ωmax∑
ωmin

e−τω
4∑
r=1

Arexp

(
−(ω −mr)

2

Γr

)
. (5.2.4)

where Γr = 10xr and Ar = 10ar . The heatmaps for this new dataset are displayed

in Fig. 5.5 and the distributions for the usual timeslices are displayed in Fig. 5.6.

(a) S-wave, Nτ = 32 (b) P-wave, Nτ = 32

(c) S-wave, Nτ = 128 (d) P-wave, Nτ = 128

Figure 5.5: Same as Fig. 5.3 but for improved dataset.

Whilst there are still some flaws, this new dataset is certainly a better imitation

of the lattice correlators. We can see that the majority follows a similar path to that

of the lattice correlators, though there is a greater spread than the original dataset

in Fig. 5.1. The similarity between the mock data and lattice correlators for early

timeslices could be better but there are now a reasonable number of mock correlators

that match with the P-wave correlators for nτ = 7, which did not occurred in either

of the previous cases. The spread of the data is not an issue as the KRR model

requires correlators that bare little resemblance to the lattice correlators. Rather
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(a) S-wave, nτ = 7 (b) P-wave, nτ = 7

(c) S-wave, nτ = 31 (d) P-wave, nτ = 31

(e) S-wave, nτ = 127 (f) P-wave, nτ = 127

Figure 5.6: Same as Fig. 5.4 but for improved dataset.
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than simply taking this new dataset to continue the investigation of KRR, there is

an opportunity to examine alternative spectral functions.

5.3 Alternative datasets

We used the above method to generate new datasets for 2 alternative cases. The

first of these is similar to the above but with a change to distributions for Γ and A

and we introduce an additional peak. The second dataset makes use of the same

starting dataset as the first case but uses the corresponding SVD coefficients in an

attempt to make an improved dataset.

5.3.1 Alternative parameter distributions

As we stated above for the first alternative dataset we are considering, the distri-

butions for Γ and A were changed. For Γ we still used a uniform distribution but

with the range −6 ≤ x ≤ 0, where Γ = 10x. For A, a uniform distribution with

the range 0.1 ≤ A ≤ 100 was used, then rescaled as described in Sec. 4.2.1. Until

now, four Gaussian have been used due to the results of Chapter 3. However these

results were dependent of the spectral function being a series of δ functions, not

a series of Gaussian as we are currently using. By using these larger ranges for

parameter and an additional peak, it is hoped that there will be a greater range of

mock spectral functions. The method described above for generating an improved

dataset was repeated and heatmaps for this new dataset are displayed in Fig. 5.7

and the distributions for the usual timeslices are displayed in Fig. 5.8.

Other than Fig. 5.6b and Fig. 5.8b, there does not appears to be any change.

By comparing these two plots, we observe that the new dataset would appear to

be somewhat worse as there are fewer matching correlators than in Fig. 5.6b. This

could be due to the additional peak; recall from the results of Chapter 3 that Np = 4

was chosen as the appropriate number of peaks.

5.3.2 SVD coefficients

The final dataset to be considered is one generated using the SVD representation.

Before discussing this further though, it is worth examining the SVD representation
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(a) S-wave, Nτ = 32 (b) P-wave, Nτ = 32

(c) S-wave, Nτ = 128 (d) P-wave, Nτ = 128

Figure 5.7: Same as Fig. 5.4 but for dataset generated from alternative parameter dataset.
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(a) S-wave, nτ = 7 (b) P-wave, nτ = 7

(c) S-wave, nτ = 31 (d) P-wave, nτ = 31

(e) S-wave, nτ = 127 (f) P-wave, nτ = 127

Figure 5.8: Same as Fig. 5.4 but for dataset generated from alternative parameter dataset.
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in more detail than we have thus far. A selection of the basis functions, for both

ranges of ω, are shown in Fig. 5.9. Reproducing narrow peaks in the spectral

functions requires the later basis functions, though more basis functions become

relevant with this shorter range for ω. Even so, it is unlikely a spectral function

containing a Gaussian with width Γ ∼ O(10−6) can be reconstructed using the SVD

representation. Rather than trying to, we decided to generate a new dataset directly

from the basis functions.

In Fig. 5.10 are box and whisker plots to show the mean and extent of the

coefficients for the dataset used in Chapter 4 and the original dataset generated

in Sec. 5.3.1. This helps explains the large errors we saw in Chapter 4 which we

expect is mainly due to the first several coefficients. However since these correspond

to simple functions such as the one seen in Fig. 5.9a, which is unfortunate as the

current KRR model will prioritise reducing this error. In future we must determine

a way in which all the coefficients are of approximately equal magnitude. For now

though, we return our focus to generating a dataset using the SVD representation.

The first step of this was to determine coefficients from the spectral functions

using Eq. (4.2.11), which has already been done to produce Fig. 5.10b. Corre-

sponding correlators are calculated using Eq. (4.2.14). Using these correlators, a

subset of the SVD coefficients excluding B are selected using the method described

in Sec. 5.2 and Eq. (5.2.1). There coefficients are used to generate the multivariate

distribution as opposed to the parameters (mr,Γr, Ar). 20000 sets of coefficients, θ,

are selected from this distribution and the corresponding spectral functions are cal-

culated using Eq. (4.2.10). During this step B is determined such that Eq. (4.2.4)

holds. Any spectral function with B > 5 is rejected and replaced. This is to prevent

spectral functions consisting of a single narrow peak.

In previous datasets there is an assumption that the spectral functions for the

lattice correlators would be a series of Gaussian functions. The reason for using the

SVD representation to generate a dataset is to avoid this assumption. Admittedly

the original spectral functions are generated from a series of Gaussian functions, so

the assumption still has some influence on the final version of this dataset. The

heatmaps for this dataset are displayed in Fig. 5.11 and the distributions for the

usual timeslices are displayed in Fig. 5.12.
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(a)

(b)

(c)

Figure 5.9: The first (a), twentieth (b), and eightieth (c) basis functions for the SVD represen-

tation for ω range ωmax − ωmin = 3.72 and ωmax − ωmin = 1.4.
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(a)

(b)

Figure 5.10: Box and whisker plots for the coefficients of the original dataset with ωmax−ωmin =

3.72(a) and the dataset described in Sec. 5.3.1 before improvement.
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(a) S-wave, Nτ = 32 (b) P-wave, Nτ = 32

(c) S-wave, Nτ = 128 (d) P-wave, Nτ = 128

Figure 5.11: Same as Fig. 5.4 but for dataset generated from coefficients.
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(a) S-wave, nτ = 7 (b) P-wave, nτ = 7

(c) S-wave, nτ = 31 (d) P-wave, nτ = 31

(e) S-wave, nτ = 127 (f) P-wave, nτ = 127

Figure 5.12: Same as Fig. 5.4 but for dataset generated from coefficients.
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Whilst the dataset does not imitate the lattice correlators as well as the previous

two cases, that is not to say it is inadequate. The majority of the dataset is close

to the lattice correlator, though it is worse for the P-wave data, than it was in the

previous cases. The spread of the data is also similar to that of the alternative

dataset of Sec. 5.3.1. Despite the previous datasets appearing to more appropri-

ate training data, the greater range of possible spectral functions provided by this

current dataset makes it worth trialing.

5.4 NRQCD correlator noise

Until now we have ignored an important component of regression; noise or uncer-

tainty on the training data. This is introduced in order to better simulate the

lattice data with its own level of uncertainty, which was observed in Chapter 3 when

calculating the effective masses. Given that we have attempted to generate data

that resembles these ensembles, it follows that we would use the lattice correla-

tors again to estimate suitable noise. Noise will be added to the training data by

adding a value chosen from a multivariate Gaussian distribution for each timeslice,

η(0,σS,P ), where σS,P is the standard deviation of the distribution. The subscript

refers to whether the training data is for the S-wave or P-wave states. As there is a

separate dataset for the S and P-wave states, excluding hb, it follows that the noise

to be added is dependent on which state the KRR model is being trained for. The

method for estimating the appropriate noise for the training data is as follows: first

determine the standard deviation for each state and Nτ at each value of τ , then add

in quadrature for S-wave and P-wave states.

σS =
√
σ2
ηb

+ σ2
Υ, σP =

√
σ2
χb0

+ σ2
χb1

(5.4.1)

Given the results of Chapter 3, it is expected that the noise will be more significant

in the P-wave states than S-wave states, see Fig. 3.1. to confirm this, the relative

errors for Nτ = 128 at each timeslice, σS/GΥ and σP/Gχb1 , are plotted in Fig. 5.13

using the central values for the Υ and χb1. Indeed we see a significant difference

between the S-wave and P-wave states. For S-wave we see an increase of ∼ 8%

whilst for the P-wave, the increase is ∼ 6000%. If we decide to add noise to the

training data, we may need an alternative for the P-wave states.
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(a)

(b)

Figure 5.13: Relative uncertainty for Υ (a) and χb1 (b) for Nτ = 128.
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Chapter 6

Improvements to the KRR Model

In the previous chapter several datasets were generated and compared to the lattice

correlators to determine if they are appropriate for training data. Now we look to

improve KRR model using the improved datasets from Sec. 5.3.1 and 5.3.2, despite

the improved dataset of Sec. 5.2 appearing to be better suited. This is because the

chosen datasets potentially correspond to a greater variety of spectral functions. We

state potentially since this cannot be confirmed without checking all 20000 functions

for each dataset. For the proceeding work we will refer to the improved datasets

from Sec. 5.3.1 and 5.3.2. as the Parameter and SVD datasets, as these were the

representations used to generate each one.

In the following we will consider several methods that may potentially improve

the KRR model. These will be the scaling the target data, scaling the input data,

and increasing the size of the training set. We will also introduce a new method of

selecting the optimal hyperparameters.

Throughout this chapter we will focus of four KRR models, in particularly the

latter two. These are: model 1 which is the model from Chapter 4, model 2 which

uses the Parameter dataset and SVD representation, model 3 which uses Parameter

dataset and θ = (mr, xr, ar) representation, and model 4 which uses the SVD dataset

and SVD representation.

6.1 Initial Testing

Before any attempts are made at improving the KRR, we will compare the four

models. However, there is an issue that requires that an alternative measure of

performance be used. The magnitude of the parameters θ = (mr, xr, ar) differs

significantly from the coefficients θ = (c1, ..., c80), making the comparison of MSEs

difficult. Hence, the mean coefficient of determination, R̄2 will be used instead. This
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is given by,

R̄2
test =

1

Nθ

Nθ∑
j=1

R2
j , (6.1.1)

where,

R2
j = 1−

(
θpredj − θtruej

)2

(
θtruej − θ̄j

true
)2 , (6.1.2)

where θ̄true is the mean of the j-th parameter of the test set. Currently the optimal

hyperparameters are determined using only 1000 test functions without any consid-

eration for the larger training set. To counter this, we now use a larger test set of

Ntest = 5000. The quantity R̄2 can vary between 1 and −∞. A value of 1 would

mean our model is able to perfectly predict the true values of all the parameters. A

value of 0 for R̄2 could either mean that this is the case for all parameters or that

the sum in Eq. (6.1.1) is equal to 0 due to the presence of negative and positive R2
j .

Finally, a negative value of R̄2 would mean that any predictions made by the model

are worse than simply taking the mean of the true parameters. For this reason, any

negative values of R̄2 have been manually set to 0.

To begin, we compare models 1 and 2, using the similar setups for the KRR

models. Recall that in Chapter 4 we used the SVD representation with 80 basis

functions for Nτ = 40. For consistency, we generated an additional set of mock

correlators using Eq. (4.2.14) as was done in Chapter 4. For a fair comparison,

we performed a grid search for each of the datasets to determine optimal hyperpa-

rameters. Although a grid search has already been done for the original dataset of

Chapter 4, this was done using the testing MSE and for a smaller test set so there

is no guarantee that this will select the same optimal hyperparameters. As before,

we used Nτ = 40. In Fig. 6.1, we have plotted the colourmaps of R̄2 for the two

KRR models.

First of all, we find that redoing the grid search for the original data was the

correct decision, as the optimal γ has shifted from 10−0.5 to 10−1. Note how the

regions of better hyperparameters - the areas of yellow in the surface plots - have

shifted with the change in training data. For the new model the optimal hyper-

parameters are (λ, γ) = (10−1, 102). Apart from this though there is little change

between the two models in terms of performance. In fact, it would appear the new

model is marginally worse.
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(a) Model 3

(b) Model 4

Figure 6.1: Colourmaps of R̄2 for models 1 (a) and 2 (b). The green square marks the position

of optimal hyperparameters.
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Model R̄2
train R̄2

test MSEtrain MSEtest

1 0.1274 0.0994 2570.95 2802.38

2 0.1724 0.0862 4130.29 4404.49

3 0.2743 0.2554 0.0495 0.0494

4 0.0386 0.0291 498.11 502.52

Table 6.1: R̄2 and MSEs for training and testing sets for models 1, 2, 3, and 4.

From this point on, we focus on models 3 and 4. Again, we have done a grid

search to determine the optimal hyperparameters so that a comparison with the

previous two models can be made. The colourmaps representing these grid searches

are shown in Fig. 6.2. The training and testing MSEs and R̄2 are displayed in Table

6.1. The optimal hyperparameters for models 3 and 4 are (λ, γ) = (10−3.75, 1) and

(10−2, 10) respectively.

The MSEs have been shown to justify our change in metric; clearly the different

orders of magnitude for the different models make it difficult to compare the models

with the MSEs. With these alone, it would appear model 4 is better than model 1

or 2. Yet with R̄2, we see that model 4 is the worst. Model 2 is worse that model

1, yet not as significant as the MSEs would suggest. Certainly though the superior

model at this time is model 3. Even so, a value of ∼ 0.25 for R̄2 is a poor result,

and provides motivation to find methods for improving the KRR models.

6.2 Attempts for improvements

6.2.1 Scaling of Θ

The first proposed method of improving the models is to scale the target data, Θ,

such that all elements are of O(1). If the metric for determining the fit of the model

were still the MSE, then this scaling may be more beneficial. As we have already

seen in Fig. 5.10, the coefficients obtained by Bryan’s method differ by several orders

of magnitude with the first contributing significant to the MSE. Whilst to a lesser

extent, this is true in the case where θj = (mr, xr, ar) as well. However, as R̄2 is

now the chosen metric, any improvement to the model is likely to be less significant.
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(a) Model 3

(b) Model 4

Figure 6.2: Colourmaps of R̄2
test for models 3 (a) and 4 (b). The green square marks the position

of optimal hyperparameters.
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Even so, we will consider the technique in the hope of some improvement.

The target data is scaled as follows,

θj → θ′j =
θj − θ̄
σθ

, (6.2.1)

where θ̄ is the mean set of parameters for the training data, and σθ is the standard

deviation of the parameters in the training data. Note that the testing set is also

transformed this way using the mean and standard deviation of the training set.

Again a grid search was performed for models 3 and 4, but with scaled target data.

The results of these grid search are displayed in Fig. 6.3. The optimal hyper-

parameters for both models have not changed with the scaling of target data. The

R̄2 for the training and testing set are given in Table 6.2. For model 3 there is

noticeably improvement but the R̄2 for training and testing sets are still lower than

we would like. The improvement for model 4 it is negligible. Thus we continue with

our attempts to improve the models.

Model R̄2
train R̄2

test

3 0.2848 0.2717

4 0.0387 0.0295

Table 6.2: R̄2 and MSEs for training and testing sets for models 3 and 4 with scaled target data.

6.2.2 Scaling of correlators

Next we consider scaling the correlators in the hopes of further improving the KRR

models. The motivation for scaling the correlators is so that all timeslices of a

correlator are of equal magnitude. As we discussed in Sec. 4.4, early timeslices are

likely be the largest contributors to the L2 distance in all the kernels. However, we

would rather the value of G(τ) at each timeslices contributes relatively equally. The

scaling of the correlators was done using Gj(τ)→ G′j(τ) = Gj(τ)/Ḡ(τ), where Ḡ(τ)

is the mean of the training correlators. This was also done for the testing set though

the denominator of this ratio is still the mean of the training set.

The results of this scaling are plotted in Fig. 6.4. The optimal hyperparameters

have shifted for both models with this scaling. The new optimal pairs are (λ, γ) =
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(a) Model 3

(b) Model 4

Figure 6.3: Colourmaps of R̄2
test for models 3 (a) and 4 (b) with scaled target data. The green

square marks the position of optimal hyperparameters.
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(10−4.25, 10−3) and (10−1.2, 10−1.8) for model 3 and model 4 respectively. The R̄2 for

the training and testing set are given in Table 6.3. Again we see for model 3 there

is noticeable improvement but to a lesser extent than the previous case. The R̄2 for

training and testing sets are still lower than we would like. For model 4 only the

training R̄2 has improved and to a greater extent than the previous case. As for the

testing R̄2 it is negligibly worse.

Model R̄2
train R̄2

test

3 0.2967 0.2768

4 0.0453 0.0289

Table 6.3: R̄2 and MSEs for training and testing sets for models 3 and 4 for scaled target data

and scaled correlators which are input data.

6.2.3 Training Set Size

Until now we have used Ntrain = 10000. This is partly due to computing resources

and to ensure the grid searches could be completed in reasonable time. However with

access to better computing resources such as Swansea’s supercomputer, Sunbird, we

can consider using a larger training set. For this test Ntrain ranges from 1000 to

19000 in increments of 1000, whilst Ntest = 1000 again to prevent any overlap of

the two datasets. The models 3 and 4 were used with scaled target and input data,

with their respective optimal hyperparameters given in Sec. 6.2.2. The training and

testing R̄2 for the training sizes are plotted in Fig. 6.5. We see that R̄2
train acts as

an upper limit for R̄2
test, and that there is little improvement in either model if we

increase the training size beyond 10000. Increasing the training size beyond 20000

may result in further improvement but we are not able to perform grid searches for

this size of training set with the current computing resources.

6.2.4 Cross-validation

Despite there only being a minor increase in R̄2
test beyond 10000, we chose to increase

the training size to 18000. This is because it will provide a greater range of functions

to learn from when it comes to finally applying the KRR models to the NRQCD
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(a) Model 3

(b) Model 4

Figure 6.4: Colourmaps of R̄2
test for models 3 (a) and 4 (b) with scaled correlators and target

data. The green square marks the position of optimal hyperparameters.

95



CHAPTER 6. IMPROVEMENTS TO THE KRR MODEL

(a) Model 3

(b) Model 4

Figure 6.5: Training and testing R̄2 as a function training data size for Model 3 (a) and Model

4 (b).
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lattice correlators. We keep the final 2000 functions for testing purposes.

It has already been discussed that the issue with selecting optimal hyperparam-

eters is dependent solely on optimizing R̄2
test. Consider Fig. 6.5, where any increase

in R̄2
test comes at the expense of R̄2

train. In Chapter 4, Fig. 4.11, we see the training

MSE increase as the testing MSE approaches the minimum for 1 ≤ γ ≤ 104. In Fig.

6.6 we have plotted R̄2
train for models 3 and 4 using the scaled input and target data.

Again we see that R̄2
train is reduced in order to improve R̄2

test.

The issue with this is that the testing set is the minority, especially now it only

consists of 2000 functions. A new method for selecting optimal hyperparameters is

required that takes both the training and testing set into consideration. This can

be done using k-fold cross-validation. This is similar to the grid search method,

except the KRR models are trained k times at each pair of hyperparameters. The

full training set is split into a smaller training set and a testing set, where the size

of testing set is Ntrain/k = 18000/k and smaller training set consists of the rest

of the functions. For this following work k = 5. Each iteration of training for

a particular pair of hyperparameters using a different set of functions for training

and testing, such that no function appears in two or more of the testing sets. We

have shown schematically in Fig. 6.7 for a single pair of hyperparameters. For each

iteration R̄2
train and R̄2

test are determined, and the mean of these are used for the final

estimates of R̄2
train and R̄2

test. Using 5-fold CV, the optimal hyperparameters were

found to be (λ, γ) = (10−2.75, 10−1.5) and (λ, γ) = (10−1, 10−1.6) for models 3 and 4

respectively. The R̄2 for the training and testing set for both models are given in

Table 6.4. Similar to the previous cases there are only minor increases in R̄2.

Model R̄2
train R̄2

test

3 0.3257 0.2790

4 0.0455 0.0309

Table 6.4: R̄2 and MSEs for training and testing sets for models 3 and 4 after 5-fold cross-

validation.

Unfortunately this has exhausted our ideas for improving the KRR models. De-

spite this, both KRR models will be applied using the NRQCD lattice data. For the

model 3, this is to obtain estimates for the groundstate mass and width for the Υ
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(a)

(b)

Figure 6.6: Colourmaps of R̄2
train for models 3 (a) and 4 (b) with scaled correlators and target

data. The green square marks the position of optimal hyperparameters.
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Figure 6.7: Schematic of 5-fold cross-validation. Each row represent a different iteration. Blue

blocks represent the testing set and white space of each row represent the training data.

and χb1. For model 4, this is simply to investigate the potential of a SVD dataset.

Before we implement this let us consider the R2 for the individual parameters in

θ for each model. To do this, each model was trained using 18000 functions and

the optimal hyperparameters determined by the 5-fold cross-validation. Testing was

then done with the final 2000 functions of the mock dataset. The individual R2 for

the parameters are plotted in Fig. 6.8.

We find that whilst model 3 is reasonably good at predicting the masses of the

resonances, it suffers with the other parameters, especially the widths. Whilst it

is comforting that when we apply it to the NRQCD correlators the prediction for

the groundstate masses should be reliable, that the prediction for the widths will be

not is disappointing. The amplitude is of less concern. The R2 of the coefficients of

model 4 make it clear why the R̄2
test has always been so low. It is interesting that the

largest R2 corresponds to the 5th coefficient; not because it is the 5th specifically

but that there is a specific coefficient that the model has favoured. It in unclear why

the R2 for model 4 has this pattern but if the underlying reason can be determined

it should be possible to improve the model. This could also true for model 3 with

regards to the widths and amplitudes. The issue with model 4 is that we need the

later coefficients for the finer details of the spectral functions such as the narrow

peaks. Even so, we will attempt to implement both models now using the NRQCD

lattice correlators.
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(a)

(b)

Figure 6.8: Individual R2 for the training and testing data models 3 (a) and 4 (b) using 18000

training functions and the hyperparameters determined using 5-fold cross-validation.
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6.3 Application to NRQCD

We will be using model 3 to predict the groundstate masses and widths for the

ηb,Υ, χb0 and χb1, along with the corresponding spectral functions. For model 4

we will only be attempting to produce reasonable spectral functions to determine

whether the SVD dataset is a viable mock dataset. In order to do a full analysis,

we needed to do the cross-validation for all temperatures. For transparency, the

optimal hyperparameters for both models and for both S and P-wave datasets are

shown in Table 6.5.

Nτ 20 24 28 32 36 40 48 56 64 128

Model 3, S-wave

log10(λopt) -3.25 -3.5 -3.0 -3.5 -2.75 -2.75 -3.0 -3.0 -3.0 -3.0

log10(γopt) -1.5 -1.75 -1.75 -2.25 -1.5 -1.5 -1.75 -1.75 -1.75 -1.75

Model 3, P-wave

log10(λopt) -3.5 -3.75 -3.5 -3.75 -4.0 -3.75 -3.0 -2.75 -2.75 -2.75

log10(γopt) -1.5 -2.0 -1.5 -1.75 -2.0 -2.0 -1.25 -1.25 -1.25 -1.25

Model 4, S-wave

log10(λopt) -1.8 -1.8 -2.2 -1.6 -1.4 -1.0 -1.2 -1.4 -1.0 0.6

log10(γopt) -1.0 -1.2 -1.8 -1.6 -1.6 -1.6 -1.8 -2.0 -1.8 -0.8

Model 4, P-wave

log10(λopt) -2.4 -1.8 -1.8 -1.2 -1.0 -1.0 -0.6 0.4 0.4 0.2

log10(γopt) -1.2 -1.2 -1.4 -1.2 -1.2 -1.2 -1.2 -0.4 -0.4 -0.6

Table 6.5: Optimal hyperparameters for models 3 and 4 for both S-wave and P-wave datasets.

Provided for reproducibility purposes.

The predictions for the groundstate masses and widths for the four states men-

tioned above are shown in Table 6.6 - 6.9 done using these hyperparameters with

the appropriate training data for model 3. There are two uncertainties associated

with each of these predictions. The first is the statistical δstat uncertainty that is

generated from bootstrapping using the configurations rather than the central value.

The second is the systematic that is an estimate of the error of the KRR model. It
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is determined using the spare 2000 functions from the mock dataset. The model is

trained, then tested using these spare functions. The mean-absolute-error (MAE) for

each parameter θj which could be one of (m1,m2, ..., x1, x2, ..., a4, a5) is determined

using,

MAEj =
1

2000

2000∑
n=1

∣∣θ(test)
n − θ(pred)

n

∣∣ , (6.3.1)

and taken as the estimate of uncertainty of the model itself. In Table 6.6 and 6.7

there is no δΓstat stated as it is several orders of magnitude smaller than δΓsys.

Nτ 128 64 56 48 40 36 32 28 24 20

T [MeV] 47 94 107 125 150 167 187 214 250 300

m0 [MeV] 9381 9382 9382 9381 9382 9380 9369 9374 9382 9385

δmstat [MeV] 1 2 2 2 2 2 2 2 3 3

δmsys [MeV] 36 36 36 36 34 35 41 40 42 48

Γ0 [keV] 19.2 19.2 19.2 19.2 19.1 19.3 19.6 20.3 20.8 22.2

δΓsys [keV] 11.2 11.2 11.2 11.2 11.2 11.3 11.5 12.0 12.3 13.2

Table 6.6: Predicted groundstate mass and width for ηb for the range of temperatures using

model 3.

Nτ 128 64 56 48 40 36 32 28 24 20

T [MeV] 47 94 107 125 150 167 187 214 250 300

m0 [MeV] 9404 9404 9404 9403 9404 9402 9390 9395 9400 9399

δmstat [MeV] 1 1 1 1 1 1 1 1 1 1

δmsys [MeV] 36 36 36 36 34 35 41 40 42 48

Γ0 [keV] 18.3 18.3 18.3 18.3 18.3 18.5 18.2 19.2 19.5 20.6

δΓsys [keV] 10.7 10.7 10.7 10.7 10.7 10.8 10.7 11.3 11.6 12.3

Table 6.7: Predicted groundstate mass and width for Υ for the range of temperatures using model

3.
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Nτ 128 64 56 48 40 36 32 28 24 20

T [MeV] 47 94 107 125 150 167 187 214 250 300

m0 [MeV] 9917 9911 9912 9904 9898 9869 9832 9828 9918 9941

δmstat [MeV] 56 52 56 64 57 66 70 51 43 47

δmsys [MeV] 16 16 16 16 18 18 18 20 26 30

Γ0 [keV] 7.7 7.5 7.6 7.5 7.5 7.2 6.6 6.9 8.9 10.0

δΓstat [keV] 0.2 0.2 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1

δΓsys [keV] 2.1 2.0 2.0 2.0 2.0 1.9 1.8 1.9 2.4 2.8

Table 6.8: Predicted groundstate mass and width for χb0 for the range of temperatures using

model 3.

Nτ 128 64 56 48 40 36 32 28 24 20

T [MeV] 47 94 107 125 150 167 187 214 250 300

m0 [MeV] 9945 9941 9941 9934 9934 9907 9869 9864 9952 9969

δmstat [MeV] 33 32 34 41 35 41 44 31 26 30

δmsys [MeV] 36 36 36 36 34 355 41 40 42 48

Γ0 [keV] 7.48 7.38 7.38 7.27 7.40 7.07 6.55 6.81 8.68 9.64

δΓstat [keV] 0.14 0.13 0.14 0.16 0.14 0.15 0.13 0.08 0.05 0.04

δΓsys [keV] 2.00 1.98 1.98 1.95 1.98 1.89 1.77 1.84 2.37 2.65

Table 6.9: Predicted groundstate mass and width for χb1 for the range of temperatures using

model 3.

These results are summarised in Fig. 6.9, with the experimental masses for com-

parison. The errorbars represent the error associated with the quantities added in

quadrature. It is encouraging to see that with the exception of the Υ, the predictions

for masses largely agree with these experimental values. It is surprising that the Υ

is does not agree given that it was the state used to tune the Gen2L ensembles. It

is unclear at this time if this is coincidence or not. The masses for S-wave states

appear to be consistent which we expect from our work on the thermal modification

in Chapter 3, in that there is little change with temperature. We would however ex-

pect to see some increase in P-wave masses as temperature increases. The behaviour

we see instead is a possible indicator that our training data is still inadequate as
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there should not be the dip between 175 - 225 MeV.

Regarding the width predictions, recall from Chapter 2 that the widths of these

resonances are related to the thermal effects of medium and not on any decays as

we have not included QED or the weak force in the theoretical model for the lattice

simulations. Therefore we have no experimental results to compare these widths. We

also note that these predictions are limited by the training data, making it impossible

to predicts a width smaller than any Γ used in the mock spectral functions. The

purpose of these width prediction was to test the model, so that we may be able

to compare with other methods in the future. There is one interesting observation

though, which is the significant difference in uncertainty between the S-wave and P-

wave states. We see that the S-waves states suffer from a large uncertainty, though

this is not surprising given Fig. 6.8. It is surprising that the P-waves do not suffer

from a similar level of uncertainty. At this time, it is unclear why there is this

discrepancy between the S and P-wave states. Finally we note that for the S-wave

states, there is a slight increase in groundstate width as T > 200 MeV, but given

the large uncertainties this cannot be confirmed.

The final inquiry of this work will be to reconstruct the spectral functions of the

correlators using both models. The spectral functions produced from using model 3

for the S-wave and P-wave states shown in Fig. 6.10 and Fig. 6.11 respectively, for a

selection of temperature. We have omitted error bands for clarity, as the motivation

of this test is to determine the whether this method has further potential.

For both S-wave states, the predictions are fairly consistent though the reso-

nances fail to match with any of the exponential fits. The first resonance appears

close, but we have already shown in Fig. 6.9a that this is not the case. For the

P-wave state there is reasonable agreement across the prediction for the position

of the groundstate, a central resonance, and the final one. However, none of the

temperatures are capable of matching the exponential fits beyond the groundstate.

However the interesting feature of these predictions is the final peak. Though we

have not included a continuum feature in the mock data, it could be that the model

is making use of the final resonance as a substitute for the continuum. It could

simply be a coincidence though.

In Fig. 6.12 we have plotted the predictions using model 4 for the S-wave states
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for a selection of temperatures. There is little agreement with the exception of the

peak at ∼12 GeV in Fig. 6.12a. Any agreement between the peaks of the spectral

functions and the exponential fits could just as likely be by chance as a successful

reconstruction of a resonance. However, this dataset and model was developed as a

trial of using basis functions to generate a mock dataset. With refinement, it may

be possible generate a suitable dataset with greater freedom and range of possible

spectral functions than a series of Gaussian functions.
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(a)

(b)

Figure 6.9: Prediction of bottomonium groundstate masses (a) and widths (b), with uncertainties.

Dashed lines of the same colour in (a) represent the experimental masses for the bottomonium

states.
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(a) ηb

(b) Υ

Figure 6.10: Predicted spectral functions using model 3 for the bottomonium S-wave states: ηb

(a), Υ (b).
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(a) χb0

(b) χb1

Figure 6.11: Predicted spectral functions using model 3 for the bottomonium P-wave states: χb0

(a), and χb1 (b).
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(a) Υ

(b) χb1

Figure 6.12: Predicted spectral functions using model 4 for Υ (a) and χb1 (b).
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Conclusion

The work of this thesis has been to develop a machine learning method capable of

investigating thermal NRQCD.

In Chapter 3 we focused on analysis of the NRQCD lattice correlators. Using

a simple ansatz of a single δ function for a spectral function, effective masses for

the bottomonium states were determined. The effective mass for the Υ was used

to set the energy shift E0 = 7.465 GeV. The CORFITTER package was used to

determine the masses of the groundstate and excited states for the bottomonium

states. We investigated the thermal modification of the states and determined that

whilst the S-waves are relatively unaffected for the temperatures used in this work,

there is a noticeable enhancement for P-wave states of ∼ 12%.

In Chapter 4 we developed an initial KRR model. A detailed study of determin-

ing optimal hyperparameters was given. It was shown explicitly that they cannot be

determined separately and thus a grid search method was implemented. The KRR

was tested using the FASTSUM correlators for the Υ for a range of temperatures.

The spectral functions predicted by KRR were unexpected and indicated this KRR

model was inadequate.

Before trialing methods to improve the KRR model, we considered whether the

training data we had was suitable, which we determined it was not. Chapter 5 was

dedicated to producing more appropriate data for training the KRR model. The

importance of appropriate training data is not restricted to KRR but any regression

machine learning method. It is hoped that the ideas put forward in this chapter

could help other studies of spectral reconstruction. A method was developed by

making use of an initial dataset and selecting appropriate functions by comparing

mock correlators with the NRQCD lattice correlators. Two dataset were produced

using a series of Gaussian functions for one and basis functions from Bryan’s method

for the other. This chapter ended with a consideration of how to estimate suitable

noise using the NRQCD correlators. This noise could be added to the training data

to simulate uncertainty in the system.

The final chapter of the thesis we considered methods with the aim of improv-

ing two new KRR models using the new datasets. These methods produced some
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improvement but not as much as hoped. Cross-validation was introduced as an

alternative to the the grid search method for determining the optimal hyperparam-

eters. The groundstate masses and widths for bottomonium states were predicted.

The masses were found to be consistent with experimental values with the exception

of the Υ.

There are other studies that this work could be applied to. For one, despite our

consideration of estimating appropriate noise, we did not produce a KRR model

trained with noisy data in this work. There are also alternative configurations that

have used a smeared source. Despite the work done to improve the generation

of appropriate data, it could be taken further by including a continuum and/or

transport peak.

Despite the promising result of prediction of the groundstate masses and its

consistency with experimental mass for three of the bottomonium states, there are

still clear issues with the KRR models presented in this work. However, it is hoped

that the work and ideas presented in this thesis will provided a step towards a

successful method of spectral reconstruction using KRR.
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Lattice formulation

In this appendix we outline some of the steps for deriving the Euclidean path integral.

The relationship between the path integral and statistical mechanics is discussed

afterwards. For a more in depth derivation see [16,93].

A.1 Path integral of a 1D system

For simplicity we will consider a particle of mass m restricted to motion along the

x-axis only, a potential V (x). The Hamiltonian of the system is given by,

Ĥ =
p̂2

2m
+ V̂ (x) (A.1.1)

where p̂ is the momentum operator,

p̂ = i
d

dx
, (A.1.2)

with eigenstates ‖p〉 and eigenvalues p. Note that we use natural units (c = ~ = 1).

The position operator, x̂, with eigenstates ‖x〉 and eigenvalues x , and p̂ obey the

commutation relation,

[x̂, p̂] = i. (A.1.3)

Consider the system starts at time ti in an initial position, xi(ti) and evolves to

with time until some later time tf in a final position xf (tf ). This evolution would

be given by following transfer probability

Ti,f = 〈xi|e−iĤ(tf−ti)|xf〉. (A.1.4)

It is possible to decompose this into two evolutions by introducing the identity

matrix

I =

∫
dx′ |x′〉〈x′| =

∫
dp′ |p′〉〈p′| (A.1.5)

into the the original definition of the transfer probability,

Ti,f =

∫
dx′ 〈xi|e−iĤ(t′−ti)|x′〉〈x′|e−iĤ(tf−t′)|xf〉. (A.1.6)
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The integrand represents the evolution of the system from the state |xi(ti)〉 to |x′(t′)〉

then from the intermediate state |x′(t′)〉 to |xf (tf )〉. we obtain the original probabil-

ity by integrating over all possible x′. We can repeat this process N times so that the

time evolution of each iteration becomes infinitesimal, (tf − t′N = t′N − t′N−1 → dt).

Ti,f =

∫
dx′1...dx

′
N 〈xi|e−Ĥdt|x′1〉〈x′1|e−Hdt|x′2〉...〈x′N |e−iĤdt|xf〉. (A.1.7)

Again we obtain the original transfer probability by integrating over each x′. The

next step in obtaining the path integral of the system is to introduce the identity

matrix again, only this time in terms of the momentum eigenstates before each |x′〉,

Ti,f =

∫
dx′1...dx

′
N dp′1...dp

′
N〈xi|e−iĤdt|p′1〉〈p′1|x′1〉

×〈x′1|e−iĤdt|p′2〉〈p′2|x′2〉...〈x′N |e−iĤdt|p′N〉〈p′N |xf〉.
(A.1.8)

It order to simplify the above, we use the following result

〈x|p〉 =
1√
2π
eipx. (A.1.9)

For example, if we consider a single evolution and V̂ (x) = 0.

〈x|e−tp̂2/2m|x′〉 =

∫
dp 〈x|e−tp̂2/2m|p〉〈p|x′〉

=

∫
dp 〈x|p〉〈p|x′〉e−tp2/2m

=
1

2π

∫
dp e−i(x−x

′)pe−tp
2/2m

= Ce−(x−x′)2m/2t.

(A.1.10)

The final step comes from using the Gaussian integral. Note that we had to set

V̂ (x) = 0 for this to work. As V (x) does not commute with p̂ it is not a simple

matter to reintroduce a non-zero potential. To resolve this, we split the potential

symmetrically and for a infinitesimal timestep, dt we write [16],

e−iĤdt = e−iV̂ dte−ip̂
2dt/2me−iV̂ dt(1 +O(dt)). (A.1.11)

With the leading order of this formula we find,

〈x|e−iĤdt|x′〉 = e−iV (x)dt〈x|e−ip̂2dt/2m|x′〉e−iV (x′)dt

= Ce−iV (x)dte−iV (x′)dte−(x−x′)2m/2dt.

(A.1.12)
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We can define ẋj(t) = (x′j+1 − xj)/dt + O(dt). With this results, we can redefine

Eq. (A.1.7),

Ti,f =

∫
dx′1...dx

′
N dp′1...dp

′
N 〈xi|e−iĤdt|p′1〉〈p′1|x′1〉

×〈x′1|e−iĤdt|p′2〉〈p′2|x′2〉...〈x′N |e−iĤdt|p′N〉〈p′N |xf〉

=CN

∫
dx′1...dx

′
N exp

(
−dt

N∑
j=1

[m
2
ẋj(t)

2 + V (xj)
])

.

(A.1.13)

As we increase the number of timesteps N →∞, dt
N∑
j=0

→
tf∫
ti

dt. Hence,

dt
N∑
j=1

[m
2
ẋj(t)

2 + V (xj)
]

=

tf∫
ti

dt
(m

2
ẋ(t)2 + V (x)

)
=

tf∫
ti

dtL(x, ẋ) = SE[x, ẋ],

(A.1.14)

where SE[x, ẋ] is the Euclidean action.

A.2 Relations to statistical mechanics

To see how we can write the above in the language of statistical mechanics, first

consider the partition function Z,

Z = tr
[
e−TĤ

]
=

∫
dx 〈x|e−TĤ |x〉. (A.2.1)

Note that T = tf − ti; it is not the transfer matrix given above. It follows from Eq.

(A.1.13),

Z =

∫
dx0Ti,f = CN

∫
dx0dx1...dxN exp

(
−dt

N∑
j=1

[m
2
ẋj(t)

2 + V (xj)
])

= CN

∫
Dx e−SE [x,ẋ]

(A.2.2)

where Dx =
∏
j

dxj. Hence we find we can replace the Boltzman factor e−βH from

statistical mechanics with the weight factor e−SE [x,ẋ]. Given this, we can define the

expectation value of an observable O as,

〈O〉 =
1

Z

∫
Dx e−SE [x,ẋ]O. (A.2.3)

We omit the CN as it is a constant that can be incorporated into Z.
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B.1 Bootstrap sampling

Bootstrap sampling is used in cases where simple error propagation cannot be used to

calculate the uncertainty of a result, for example if f(x) is logarithmic. It involves

taking a random selection from the dataset allowing individual correlators to be

selected multiple times new dataset must be the same size as the original dataset. For

example, consider a dataset x = {x1, x2, x3, x4, x5, x6, x7, x8}, then the new dataset

could look like this x’ = {x2, x6, x4, x6, x1, x7, x6, x4}. In this example the 4th and

6th entries of the original dataset appear multiple times in this new dataset, whilst

the 3rd, 5th and 8th entries do not appear at all. This is repeated to generate

multiple of these sampled datasets; typically 1000 such datasets are made. From

these sampled datasets, estimates for the mean and variance, x̄ and σx, can be

determined from the mean average of each sampled dataset,

x̄′ =
1

N

∑
i

x̄′i, σx′ =
1

N − 1

∑
i

(
f(x′i)− f̄(x′)

)
(B.1.1)

The variance is determined as would be expected. However this two quantities

can be determined directly from the original dataset and so bootstrap sampling is

redundant at this stage. Instead it becomes a useful tool when looking to estimate

a mean and variance of function that uses the dataset x, where error propagation is

difficult. The mean and variance for this function is then estimated by calculating

f(x′) for each sampled dataset. The mean and variance are then estimated using

f̄(x) ≈ 1

N

∑
i

f(x′i). (B.1.2)

and

Var(f(x)) ≈ 1

N − 1

∑
i

(
f(x′i)− ¯f(x)

)2
. (B.1.3)
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[8] G. Aarts, F. Attanasio, B. Jäger, and D. Sexty, JHEP 09, 087 (2016),

1606.05561.

[9] S. Ejiri, Phys. Rev. D 78, 074507 (2008).

[10] Y. Aoki, Z. Fodor, S. D. Katz, and K. K. Szabo, JHEP 01, 089 (2006), hep-

lat/0510084.

[11] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo, Nature 443, 675

(2006), hep-lat/0611014.

[12] Y. Aoki et al., JHEP 06, 088 (2009), 0903.4155.

[13] Wuppertal-Budapest, S. Borsanyi et al., JHEP 09, 073 (2010), 1005.3508.

[14] G. Aarts et al., (2020), 2007.04188.

[15] RBC, HotQCD, F. Karsch, J. Phys. G 35, 104096 (2008), 0804.4148.

[16] C. Gattringer and C. B. Lang, Quantum chromodynamics on the lattice

(Springer, Berlin, Heidelberg, 2010).

[17] A. M. Polyakov, Phys. Lett. B 59, 79 (1975).

122



BIBLIOGRAPHY

[18] A. M. Polyakov, Phys. Lett. B 72, 477 (1978).

[19] L. Susskind, Phys. Rev. D 20, 2610 (1979).

[20] C. Bonati, P. de Forcrand, M. D’Elia, O. Philipsen, and F. Sanfilippo, PoS

LATTICE2011, 189 (2011), 1201.2769.

[21] T. Matsui and H. Satz, Phys. Lett. B 178, 416 (1986).

[22] NA60, R. Arnaldi, Nucl. Phys. A 830, 345C (2009), 0907.5004.

[23] N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011), 1010.5827.

[24] H. Satz, Nucl. Phys. A 783, 249 (2007), hep-ph/0609197.

[25] R. Rapp, D. Blaschke, and P. Crochet, Prog. Part. Nucl. Phys. 65, 209 (2010),

0807.2470.

[26] A. Mocsy, Eur. Phys. J. C 61, 705 (2009), 0811.0337.

[27] CMS, S. Chatrchyan et al., Phys. Rev. Lett. 109, 222301 (2012), 1208.2826,

[Erratum: Phys.Rev.Lett. 120, 199903 (2018)].

[28] M. Strickland, Phys. Rev. Lett. 107, 132301 (2011), 1106.2571.

[29] F. Brezinski and G. Wolschin, Phys. Lett. B 707, 534 (2012), 1109.0211.

[30] FASTSUM collaboration, fastsum.gitlab.io/.

[31] G. Aarts et al., PoS LATTICE2019, 075 (2019), 1912.09827.

[32] L. D. McLerran and T. Toimela, Phys. Rev. D 31, 545 (1985).

[33] E. Braaten, R. D. Pisarski, and T. C. Yuan, Phys. Rev. Lett. 64, 2242 (1990).

[34] P. Petreczky, J. Phys. G 39, 093002 (2012), 1203.5320.

[35] C. Allton et al., J. Phys. Conf. Ser. 509, 012015 (2014), 1310.5135.

[36] G. Aarts and A. Nikolaev, Eur. Phys. J. A 57, 118 (2021), 2008.12326.

[37] O. Kaczmarek, Nucl. Phys. A 931, 633 (2014), 1409.3724.

[38] Y. Burnier and M. Laine, Eur. Phys. J. C 72, 1902 (2012), 1201.1994.

123

fastsum.gitlab.io/


BIBLIOGRAPHY

[39] S. Ejiri and T. Hatsuda, PoS LAT2005, 183 (2006), hep-lat/0509119.

[40] M. Cheng et al., Phys. Rev. D 77, 014511 (2008), 0710.0354.

[41] P. Petreczky, Eur. Phys. J. ST 155, 123 (2008), 0711.2280.

[42] M. L. Bellac, Thermal Field Theory (Cambridge University Press, 2011).

[43] M. Laine and A. Vuorinen, 925 (2016), 1701.01554.

[44] R. Kubo, Journal of the Physical Society of Japan 12, 570 (1957),

https://doi.org/10.1143/JPSJ.12.570.

[45] P. C. Martin and J. Schwinger, Physical Review 115, 1342 (1959).

[46] N. Brambilla, A. Pineda, J. Soto, and A. Vairo, Rev. Mod. Phys. 77, 1423

(2005), hep-ph/0410047.

[47] N. Brambilla, M. A. Escobedo, J. Ghiglieri, J. Soto, and A. Vairo, JHEP 09,

038 (2010), 1007.4156.

[48] M. Laine, O. Philipsen, P. Romatschke, and M. Tassler, JHEP 03, 054 (2007),

hep-ph/0611300.

[49] A. Beraudo, J. P. Blaizot, and C. Ratti, Nucl. Phys. A 806, 312 (2008),

0712.4394.

[50] Y. Burnier, M. Laine, and M. Vepsalainen, JHEP 01, 043 (2008), 0711.1743.

[51] G. T. Bodwin, E. Braaten, and G. P. Lepage, Phys. Rev. D 51, 1125 (1995),

hep-ph/9407339, [Erratum: Phys.Rev.D 55, 5853 (1997)].

[52] W. Caswell and G. Lepage, Physics Letters B 167, 437 (1986).

[53] G. P. Lepage, L. Magnea, C. Nakhleh, U. Magnea, and K. Hornbostel, Phys.

Rev. D 46, 4052 (1992), hep-lat/9205007.

[54] L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).

[55] C. Quigg, AIP Conf. Proc. 424, 173 (1998), hep-ph/9707493.

[56] G. Aarts et al., JHEP 07, 097 (2014), 1402.6210.

124



BIBLIOGRAPHY

[57] M. Cardoso, N. Cardoso, and P. Bicudo, PoS LAT2009, 233 (2009), 0910.0133.

[58] TUMQCD, N. Brambilla et al., PoS LATTICE2019, 109 (2019), 1911.03290.

[59] G. P. Lepage and P. B. Mackenzie, Phys. Rev. D 48, 2250 (1993), hep-

lat/9209022.

[60] G. Aarts et al., JHEP 11, 103 (2011), 1109.4496.

[61] P. D. Group, Phys. Rev. D 86, 010001 (2012).

[62] P. Lepage, corrfitter 8.1.1, https://github.com/gplepage/corrfitter/

releases/tag/v8.1.1.

[63] G. P. Lepage et al., Nucl. Phys. B Proc. Suppl. 106, 12 (2002), hep-lat/0110175.

[64] K. Hornbostel et al., Phys. Rev. D 85, 031504 (2012), 1111.1363.

[65] C. M. Bouchard, G. P. Lepage, C. Monahan, H. Na, and J. Shigemitsu, Phys.

Rev. D 90, 054506 (2014), 1406.2279.

[66] L.-F. Arsenault, R. Neuberg, L. A. Hannah, and A. J. Millis, arXiv e-prints

(2016), 1612.04895.

[67] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science

and Statistics) (Springer-Verlag, Berlin, Heidelberg, 2006).

[68] P. Mehta et al., 810, 1 (2019), 1803.08823.

[69] S. D. Hodges and P. G. Moore, Journal of the Royal Statistical Society. Series

C (Applied Statistics) 21, 185 (1972).

[70] A. Neubauer, Inverse Problems 5, 541 (1989).

[71] A. Tikhonov, Nonlinear Ill-Posed Problems (Springer Netherlands, 2014).

[72] R. Bryan, European Biophysics Journal 18, 165 (1990).

[73] K. Vu et al., arXiv e-prints , arXiv:1501.03854 (2015), 1501.03854.

[74] L. Kades et al., Phys. Rev. D 102, 096001 (2020), 1905.04305.

125

https://github.com/gplepage/corrfitter/releases/tag/v8.1.1
https://github.com/gplepage/corrfitter/releases/tag/v8.1.1


BIBLIOGRAPHY

[75] S. Y. Chen, H. T. Ding, F. Y. Liu, G. Papp, and C. B. Yang, (2021), 2110.13521.

[76] J. Horak et al., (2021), 2107.13464.

[77] T. Spriggs et al., (2021), 2112.04201.

[78] T. Spriggs et al., (2021), 2112.01599.

[79] A. Francis and O. Kaczmarek, Prog. Part. Nucl. Phys. 67, 212 (2012),

1112.4802.

[80] B. B. Brandt, A. Francis, H. B. Meyer, and H. Wittig, JHEP 03, 100 (2013),

1212.4200.

[81] H.-T. Ding, O. Kaczmarek, S. Mukherjee, H. Ohno, and H. T. Shu, Phys. Rev.

D 97, 094503 (2018), 1712.03341.

[82] G. Backus and F. Gilbert, Geophysical Journal International 16, 169 (1968).
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