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Abstract 

Single nucleotide polymorphisms (SNPs) are often associated with conferring risk for 

disease, and are associated with many complex diseases such as breast and ovarian 

cancer. The BRCA1 gene is known to carry mutations that can predispose an individual to 

such diseases. Currently, the clinical significance of most SNPs remains unknown due to the 

lack of successful and reliable classification tools, leading to the possibility that many 

pathogenic SNPs are not considered during genetic screening. In order to investigate the 

role of SNPs within crucial pathways and the structural effects of SNPs, a database and data 

collection pipeline was constructed that sourced information from Reactome, ClinVar, and 

UniProt. A second pipeline was created that allowed for the modelling of variant proteins. 

Through querying the database, direct pathway associations with BRCA1 were identified. 

Protein variant modelling revealed a novel approach to structural analysis of SNPs, allowing 

for differences in heuristic structural functions to be measured between pathogenic and 

benign variants. Of particular interest, the heuristic functions that showed the most significant 

differences were the van der Waals contacts and strict hydrogen bonds. Identification of 

SNPs within genes linked to complex diseases, such as BRCA1, can inform better targets of 

genetic screening and potentially provide new drug targets. 
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1. Introduction 
 

1.1The Genetic Code 
 

All genetic information is stored in long, double-helix strands called deoxyribonucleic acid 
(DNA). The genetic instructions contained within the DNA inform all processes of life, such as 
growth and repair, development, and metabolic processes. DNA consists of two 
polynucleotide chains that coil around each other to form a helix. DNA is formed of four main 
monomeric building blocks or ‘bases’ called nucleotides. These four nucleotides can be 
separated into two subgroups: purines and pyrimidines. These four bases are adenine and 
guanine (the purines) and thymine and cytosine (the pyrimidines), each often abbreviated to 
the first letter of the name (A, T, C, G). Each nucleotide contains nitrogen, allowing the two 
opposite bases to form hydrogen bonds holding the two strands together according to the 
base pairing rule. The base pairing rule dictates which two bases can be found opposite each 
other within the DNA where two of the same subgroup cannot be found opposite; pyrimidines 
are always found opposite purines. The rule also states there must be a 1:1 protein 
stereochemistry; this means the amount of guanine must equal the amount of cytosine, and 
the amount of thymine must equal the amount of adenine. 

 
DNA is catatonically known to exist in right-handed DNA helices where the DNA can adopt 
one of at least two known naturally occurring structures: A-DNA and B-DNA. The B-form is 
predominantly observed in cells and is most stable in high humidity, but there is a shift to the 
A-form upon a decrease of water activity. The shift from B-type to A-type affects the 
dynamics of transcription by removing direct access to the DNA, and also alters the 
physicochemical properties of the polymer. 

 
DNA is transcribed in groups of three nucleotides, known as triplets or a codon. DNA is 
transcribed onto ribonucleic acid (RNA), where the opposite base to the parent DNA strand is 
represented on the RNA strand. Unlike DNA, the four bases of RNA are adenine, cytosine, 
guanine and, uracil (A, C, G, U). Uracil is seen in the place of thymine. This means that were 
an A is seen in the parent DNA, an U is added to the RNA strand. Each codon represents a 
specific amino acid or signal; these signal the start of the protein and the end of the protein, 
and are named start and stop codons. Redundancy is seen in the genetic code within these 
codons, where each amino acid can be represented by a number of different codons. 
Methionine is the only amino acid is coded by a singular codon, AUG, which also represents 
the start codon. The stop of transcription is coded by three codons, UAA, UAG, and UGA, 
and these do not encode any amino acids unlike the start codon. 
 
DNA methylation is the epigenetic modification of the C5 position of cytosine through the 
covalent transfer of a methyl group. DNA methylation is generally important in the correct 
development; playing an important role in genomic imprinting, X-chromosome inactivation, 
and suppression of transcription and gene regulation (Jin, Li, & Robertson, 2011). The role 
of DNA methylation in carcinogenesis has been of increasing interest lately, and there have 
been multiple links between alterations in DNA methylation and cancer (Das, & Singal, 
2016). It is thought that in particular, hypermethylation, a process that represses 
transcription of tumour suppressor genes leading to gene silencing, has been recognised as 
a cause of carcinogenesis.  

 

1.2 Protein Synthesis and Folding 
 

Protein synthesis occurs through a number of steps: transcription, translation, and 
posttranslational modification and folding. 

 
1.2.1 DNA Transcription 
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There are three main steps to the transcription process: initiation, elongation, and 
termination. 

 
During the initiation step, RNA polymerase binds to the promoter region of DNA, found near 
the beginning of genes. Each gene has its own promoter. RNA polymerase is the main 
enzyme in the transcription step; it uses a single-stranded DNA template to generate a 
complementary RNA molecule (Bailey, 2020). DNA is read from the 3’ to the 5’ end, while 
RNA is built in the 5’ to 3’ direction (each new nucleotide is added to the 3’ end). 

 

The second step, elongation, involves the formation and synthesis of the RNA strand by RNA 
polymerase. RNA polymerase builds the RNA strand with complimentary nucleotide bases to 
that of the DNA antisense (template) strand, meaning that the RNA strand carries the same 
information as the sense (non-template) strand of DNA (Khan Academy, 2021). The process 
can be seen visually in figure 1 below. 

 
 
 

Figure 1 – The elongation step of DNA transcription. Transcription takes place in the 3’ to 5’ direction, while RNA is built in 
the 5’ to 3’ direction. RNA polymerase builds the new RNA strand with complimentary nucleotide bases to the template DNA 
strand. The complimentary base pairs are shown, including the base uracil in the place of thymine in the RNA strand. 

 

The final step is termination of transcription, which can be achieved through a variety of 
mechanisms in eukaryotes depending on the RNA polymerase in use. Where there are 
protein-encoding genes, the signal for the termination of transcription occurs between a GC 
rich sequence and a U-rich tract (Roberts, 2019). These are separated by approximately 
40 to 60 bp on the RNA strand and so the termination signal is contained within the RNA 
itself. This termination method is known as rho-independent (Jun, S., Warner, & Murakami, 
2013). The termination of transcription of this method is intrinsic to the RNA strand (Zenkin, 
2014). 

 
1.2.2 DNA Translation 
During DNA translation, the protein itself is produced is the cell’s cytoplasm. Before this can 
occur, the RNA strand must leave the cell nucleus. The RNA strand is modified to become a 
messenger RNA (mRNA) strand, and it often referred to being a pre-mRNA strand before 
this modification takes place (Gao, & Wang, 2020). Additionally, many eukaryotic pre-mRNA 
sequences need to undergo splicing to remove non-coding regions of DNA (introns) 
(Bhagavan, & Ha, 2015). If these introns are not removed, they will be translated along with 
the exons; producing a faulty polypeptide. Modified mature mRNAs are identified and are 
exported from the nucleus through the nuclear pore. As with transcription, translation occurs 
in three steps: initiation, elongation, and termination. 

 
Initiation of translation begins once the start AUG codon is recognised, which is specific to 
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the amino acid methionine and is nearly always the start of the polypeptide chain (for 
proteins that do not begin with methionine, this residue is removed post-translation) (Warren, 
2020). 

 
During translation elongation, transfer RNAs (tRNAs) carry amino acid residues to the mRNA 
molecule for the ribosome mechanism to add to the polypeptide chain. Complementation of 
the mRNA codons and the tRNA anticodon results in protein synthesis dependent on the 
mRNA nucleotide code (Pollard, Earnshaw, Lippincott-Schwartz, & Johnson, 2017). The 
polypeptide chain is extended via translocation of the ribosome along the mRNA. A visual 
version of the elongation step of translation can be seen below in Figure 2. 

 

Figure 2 – the elongation step of DNA translation. The ribosome is a protein comprised of two subunits: the smaller 40S and 
the larger 60S subunits. A complimentary transfer RNA (tRNA) molecule binds to the respective codon on the RNA strand, 
and carries the matching peptide down into the ribosome. This peptide is added to the existing peptide chain, and the 
ribosome continues down the RNA chain until the next tRNA molecule. 
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Termination of translation occurs when one of the three stop codons passes into the 
ribosome in the A site. No tRNA can bind to these codons, so the growing polypeptide chain 
is released following the hydrolysation of the ribosome( Clancy, & Brown, 2008). 

 
1.2.3 Post translational Modifications and Folding 
Many proteins must undergo enzymatic posttranslational modifications (PTMs) in order to 
achieve the mature protein product via protein folding. Protein folding is the process by which 
polypeptide chains are converted into their native 3D structure, and often here the protein 
becomes biologically active (Cheriyedath, 2019). This process occurs in the cell’s 
endoplasmic reticulum (the ER) and the Golgi apparatus, located within the cytoplasm. 
Conformational changes via methods such as ubiquitination and phosphorylation are 
introduced via PTMs, and increase protein stability and control localisation (Leach, & Brown, 
2012). 

 
PTMs can be reversible and irreversible chemical changes to the polypeptide chain following 
transcription and translation (Uversky, 2013). These modifications can occur on the amino 
acid side chains, or directly onto the protein backbone via the protein’s C or N termini (Voet, 
2006). Modifications can range from the addition of groups to the cleaving of peptide bonds, 
and often the sites targeted by PTMs often contain a functional group that can act as a 
nucleophile during the reaction. Functional groups such as phosphates can also be added 
through PTMs. The most common PTM is phosphorylation, and is an important mechanism 
in the regulation of enzymatic activity (Khoury, Baliban, & Floudas, 2011). Additionally, 
another common modification is glycosylation; the addition of sugar or glycan to help      promote 
protein folding and alter stability and function, and to act as protein destination signalling 
(Eichler, 2019). 

 
Proteins have layers of structure that form the 3D structure beginning with the first structure: 
the amino acid sequence. This sequence determines the types of interactions between 
various atoms and regions within a protein as it folds. The second layer to a protein is the 
secondary structure; architectural structures that branch out into one dimension. α-Helices 
and β-sheets are included structures within the secondary structure layer, with α-helices 
being the most common structure within proteins. Both structures are held together by 
hydrogen bonds (Parker, Schneegurt, Thi Tu, Lister, & Forster, 2017) They form the 
backbone of the protein, and provide support to the folding process. Following the secondary 
structure, the tertiary structure of the protein is formed where the α-Helixes and β-sheets are 
further folded in a three dimensional structure. These helixes and sheets can contain 
amphipathic (hydrophilic and lipophilic), hydrophilic, or hydrophobic portions, which aids in 
the tertiary structure formation as the hydrophilic sides will fold to face the aqueous 
environment. The hydrophobic proteins will fold to either be in the centre of the protein, or be 
facing towards the centre. Once tertiary structure has formed and stabilised by hydrophobic 
interactions, disulphide bridges and covalent bonds may form also (Haim, Neubacher, & 
Grossmann, 2021). The final layer of protein structure isn’t observed in all proteins and is 
termed the quaternary structure, and involves the assembly of multiple tertiary structures 
(subunits) to form a protein. Through this, many polypeptide chains can be folded around 
each other and interact to form the quaternary structure. 

 
Protein folding is controlled by many molecular interactions such as the thermodynamic 
stability of the protein, the hydrophobic interaction, and the disulphide bridges formed 
(LibreTexts, 2021). The largest factor in dictating if a protein is able to fold is the 
thermodynamic properties. Since protein folding is a spontaneous process, the Gibbs free 
energy of the folding must be negative. In order for this value to be negative, then either the 
enthalpy or entropy (or both) of protein folding must be favourable due to the direct linkage of 
the Gibbs free energy to these properties (Voet, Voet, & Pratt, 2014). Minimising the 
hydrophobic interactions on the protein side chains helps to reduce the energy of folding. 
Hydrophobic regions of the protein orientate themselves towards the centre of the protein, 
away from the aqueous external environment. Water molecules from this environment tend 



8  

to aggregate around the side chains or hydrophobic regions of the proteins generating a 
water shell (Cui, Ou, & Patel, 2016). This shell reduces the entropy of the system by forming 
an orderly layout around these regions, and it is this interaction that causes the hydrophobic 
collapse. This collapse is the inward folding of the hydrophobic regions into the protein, 
releasing the shell water of ordered water molecules, thus reintroducing entropy back into the 
system. The interaction of the hydrophobic core greatly increases the stability of the protein 
after folding, largely through van der Waals forces (in particular, London dispersion forces). 
Finally, disulphide bridges also play a role in the folding of the protein. These are sulphur to 
sulphur bonds that link non-adjacent cysteine residues, that are a stable part of a protein’s 
final structure (Fu, Gao, Liang, & Yang, 2021). These bonds commonly help a protein fold 
back and link onto itself, and bonds between cysteine are very stable once created. 
 
Splice variants arise from the alternative splicing of the introns and exons within the gene. 
The splicing process is catalysed by the spliceosome, a protein-RNA complex containing 
over 100 proteins and five small ribonucleoproteins (snRNAs) (Abramowicz, & Gos, 2018). 
The nature of these snRNA allows for the formation of RNA-RNA complexes and 
identification of the splicing sites. Errors within the splicing process can lead to improper 
removal of introns, altering the open reading frame of the gene. The cis elements within the 
process are crucial to identifying the splicing sites, and are known as the consensus splice 
sites. In general, splice variants arise when point mutations occur at the consensus site 
leading to incorrect identification of exons and introns (Sterne-Weiler, & Sanford, 2014). 
There has been clear links to suggest that splicing variants may be the cause of genetic 
disorders through alteration of the splicing pattern, and that there is potentially 
misclassification of mutations that are in fact splicing disorders.  

 
 

1.3 When Biology goes Wrong: Mutations 

Variation in the genetic code via changes in amino acid sequences through mutations have 

been known to influence disease for many years. Mutations affect proteins through many 

different changes, ranging from altering protein folding and stability to changing protein 

expression and localisation. Changes to protein observed through mutations can result in 

loss of protein function and protein-protein interaction sites, or sometimes may even be 

beneficial to the organism (Clark, Pazdernik, & McGhee, 2019). 

There are many different types of mutations, most of which have minor effects or even no 

noticeable effects, due to humans carrying two copies of a gene. Unless the mutant is 

dominant, the second allele counteracts the mutation (Clancy, 2008). DNA sequence can be 

altered through a number of different mutations, and can have a number of different 

outcomes and presentation. Mutations that affect a single base are otherwise known as point 

mutations. These mutations are listed below: 

• Base Substitution 

• Deletion (can also affect many bases) 

• Insertion (can also affect many bases) 

 
1.3.1 Base Substitutions 

Base substitutions occur when one nucleic base is replaced by another, thus altering the 

sequence, shown below in figure 3. There are two different types of substitutions: transitions 

and transversions. During a transition substitution, a pyrimidine is replaced by a pyrimidine, 

and a purine is replaced by a purine. During a transversion substitution, the base is replaced 

by the opposite type (eg, purine to pyrimidine). 
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Figure 3 – DNA substitution mutations. The top section shows the difference between a transition substitution (a change 

from one nucleotide to another of the same type), and a transversion substitution (a change from one nucleotide to another 
of a different type). Below is an example of a substitution mutation The example is affecting a single base position and is 

therefore a point mutation. Here, the amino acid cysteine is changed to arginine. 
 

1.3.2 Deletions 

Deletion mutations denote the removal of a base, or bases, from the genetic sequence, shown in figure 4. 
The effect of the deletion largely depends on the number of bases removed from the sequence. Point 
deletions (affecting a single base) can still have a large impact on pathogenic presentation if they fall 
within a reading frame for a coding gene. Despite this, effects are mostly seen from gross deletions of a 
number of bases. 
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Figure 4 - An example of a deletion mutation The example is affecting a single base position and is therefore a point 
mutation. Here, a frameshift mutation is observed; the deletion of a single base alters the reading frame so different codons 

are used. 
 

1.3.3 Insertions 

Insertion mutations are the opposite event to deletion mutations; they denote the addition of 

bases to the genetic sequence, shown in figure 5. Genes can be inactivated through the 

addition of extra bases. When a foreign segment is added to a gene, the gene is said to be 

disrupted and is usually completely inactivated, though the effect varies depending on the 

amount of sequence added and the location. 
 
 

 

 
 

 
Figure 5 - An example of an insertion mutation The example is affecting a single base position and is therefore a point 

mutation. Here, a frameshift mutation is observed; the insertion of a single base alters the reading frame so different codons 
are used. 
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1.3.4 Causes of Mutations 

There are a range of ways mutations can be introduced into the genome including errors 

from mispairing and recombination, spontaneous mutations from DNA polymerase errors, 

chemical mutagens, radiation, and tautomerisation. 

Damage to DNA caused by chemical mutagens is known as induced mutations. Toxic 

chemicals that react with DNA bases and alter their properties are the most commonly 

observed form of mutagens. Nitrile, for example, converts the amino acid group on cytosine 

to a hydroxyl group causing a change to uracil (Alsøe et al., 2017). The altered bases are 

misread by DNA polymerase during replication, and incorrect bases are placed in place of 

these in the new strand. Other chemical mutagens include base analogues and intercalating 

agents. Base analogues mimic the natural bases, such as bromouracil which mimics the 

shape of thymine. Within the cell, bromouracil is converted into bromouridine triphosphate 

and is inserted into the strand in place of thymine. Bromouracil can also be observed in an 

alternate form, where it resembles cytosine and is paired with guanine (Holroyd, & van 

Mourik, 2015). Bromouracil can alternate between these isoforms. When the second isoform 

is observed within a template DNA sequence, a guanine base is inserted into the new strand 

instead of adenine. During the process of intercalation, a foreign mutagen such as acridine 

orange is inserted between two bases on a single DNA strand, interrupting the base pairing 

(Husain, Ishqi, Sarwar, Rehman, & Tabish, 2017). Where an intercalating agent is observed 

during replication, an additional base is inserted in the place of the mutagen, leading to an 

insertion mutation. 

Recombination occurs between closely-related DNA sequences on the same strand, and can 

occur either intra-strand and between the corresponding chromosomes (Guirouilh-Barbat, 

Lambert, Bertrand, & Lopez, 2014). When two gene copies exist in the same orientation, 

intra-strand recombination forms a loop between the two copies. Through this, a circular 

closed fragment is made with the sequence between the first and second gene copy. This 

fragment is discarded, and the strand remains with one copy of the gene, potentially resulting 

in deletion of other genes. When two copies are seen, there can also be recombination 

between the two corresponding chromosomes. Mispairing of the copies and crossing over 

results in a duplicate copy on one chromosome, and a deletion on the other chromosome 

leaving one copy and nothing downstream between the two. 

Errors can occur during DNA replication, and while human DNA polymerase has high fidelity, 

over time these errors can result in a serious mutation within a coding gene (Pandey, 2020). 

Errors in replication are often corrected via the proof-reading system of the DNA 

polymerases, however there exist cells where this mechanism has been destroyed or 

disabled due to mutations in the polymerase gene itself leading to a large increase in the 

number of spontaneous errors. There also exist cases when the sequence is a large number 

of repeating bases, or short tandem repeats, where DNA can slip and become misaligned 

between the template and the new strand. Cases of this exist within humans involving 

trinucleotide tandem repeats, such as the CAG trinucleotide repeat within Huntington’s 

Disease (Nakamori et al., 2020). DNA slippage can lead to deletion of the repeat or insertion 

of further repeats into the new strand. 

Rare cases of tautomerisation of the bases can occur and lead to mis-paired bases. Each 

nucleotide base exists in two forms: the main stable isoform, and the secondary less stable 

tautomers. If the second tautomer is within the cell when replication occurs, it can be 

incorporated into the new strand. Both thymine and guanine have keto and enol tautomers, 

with the keto form appearing most commonly (Li et al., 2014). When the enol form is 

observed, thymine instead base pairs to guanine while the enol form of guanine base pairs to 
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thymine. Meanwhile, adenine and cytosine exist in the stable amino form and the inimo form. 

Adenine while in the inimo base pairs with cytosine, but both forms of cytosine pair with 

guanine. While these mutations are rare, the probability of the wrong tautomer being 

incorporated increases with the temperature (Gheorghiu, Coveney, & Arabi, 2020). 

1.4 Single Nucleotide Polymorphisms 

A SNP is a substitution of a single base (a point mutation) within the genome. They must be 

largely present within the population to be classified as a SNP. A large number of studies 

have shown that SNPs can have biological effects, with particular importance placed on 

those that generate pathogenic effects. These involvements range from association in 

complex diseases, to differing reactions to treatments and medication. Genome wide 

association studies (GWAS) show that there is often an association with SNPs that increase 

susceptibility to certain complex diseases such as cancer and heart disease (Nguyen, 

Huang, Wu, Nguyen, & Li, 2015). GWAS is the rapid observational study of genome-wide 

genetic markers to find associations between genetic variants and a trait, such as a complex 

disease (NIH, 2020). Often these studies include both individuals with the trait, and control 

individuals without the trait in order to completely assess the association of a trait with 

genetic variants. There has also been association studies for SNPs that reduce susceptibility 

to complex disease, such as SNPs within the apolipoprotein E (APOE) gene reducing risk of 

Alzheimer’s disease. These SNPs remain in the genome for the duration of a person’s life, 

making them powerful diagnostic tools over other current techniques, such as microarray 

gene expression assays taken from specific tissues (Batnyam N. et. al., 2013). 

 

SNPs can occur anywhere in the genome, and their location directly results in the biological 
impact they may confer. They can be found in the coding regions of genes, non-coding 
regions of genes, and in the intergenic regions. SNPs within the coding region can be 
classified into two main categories: synonymous and non-synonymous. Synonymous SNPs 
are those that do not change the protein sequence, and non-synonymous SNPs are those 
that change the amino acid sequence of the protein. These non-synonymous SNPs are 
broken down into three further categories of mutation: missense and nonsessense 
(Bethesda, 2005). Often a direct change in the coding region of a gene does not impact the 
protein product produced due to the degeneracy of the genetic code. SNPs in the non-
coding region can still have biological effects as they can affect the splicing of genes, 
transcription factor binding, the sequence of non-coding RNA, and mRNA degradation. The 
altered expression seen by these types of SNPs is referred to as expression SNPs, or 
eSNPs. They can be upstream or downstream of a gene. 

 

To date, there are 1,071,975,857 validated human SNPs in the NCBI dbSNP database, with 

98,202 confirmed to be pathogenic, 170,131 confirmed to be benign (NCBI dbSNP, 2021), 

figures shown in table 1. The remaining SNPs are likely pathogenic, likely benign, a drug 

response, or of other clinical significance. On ClinVar, there are currently 895,843 single 

nucleotide variants. On here, 59,273 are confirmed to be pathogenic, and 119,392 are 

confirmed to be benign. ClinVar also shows SNPs of unknown or uncertain clinical 

significance, and currently there are 373,831 SNPs of unknown significance (NCBI ClinVar, 

2021). The remaining are either likely to be pathogenic, or likely to be benign. Due to the 

large scale discovery of SNPs, there has been a growth in the interest in SNPs, particularly 

within the field of disease biomarkers and their role in complex diseases. 
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Table 1 – the number of human SNPs recorded in the dbSNP database and the ClinVar database (filtered for “single 
nucleotide mutation”). The number of characterised SNPs in disease highly varies between the two, and the data shows the 
number of SNPs that are unknown pathology. Data modified from the dbSNP and ClinVar databases from searches taken 
place in September 2021. 

 

Database Total SNPs Pathogenic Benign Unknown Other 

dbSNP 1,071,975,857 98,202 170,131 - 1,071,707,524 

ClinVar 894,650 59,238 119,364 373,464 342,584 
 
 

1.4.1 Application of SNPs 

As interest has grown in SNPs, further applications of SNPs have been discovered. Such 

applications have been identified and researched in areas such as biomarkers for complex 

disease, forensic evidence, and to study population genetics. 

Population genetics: As next generation sequencing (NGS) improvements continue to 
advance the ease of high through-out genotyping and sequencing, population genetics has 
seen a shift from the use of microsatellites to direct analyses of sequence variation, such as 
SNPs (Grover, & Sharma, 2013). SNPs make for good genetic markers due to the availability 
of annotated markers, low error scores, the ease of calibration in the laboratory setting (as 
opposed to length based markers), and the ability to combine data sets from multiple 
laboratories. Not only this, but SNPs offer a simple mutation model, and the ability to study 
neutral variation, and variation under selected regions. Microsatellites have far larger allelic 
diversity over SNPs, but despite this SNPs show high promise as informative markers, even 
outperforming microsatellites in a small number of studies for population structure analysis. 
The advantage of SNPs over microsatellites lies in how strongly individual SNPs can 
segregate in a given population (Heylar et al., 2011). 

 
Forensics: When there is too little template DNA, or the DNA is too degraded, alternate 
markers are needed. The applications of NGS expand into the area of forensic work through 
the use of short tandem repeats (STRs), mRNA, and SNPs (Phillips, 2012). SNPs in 
particular offer advantages for use in forensic identification due to the abundance of markers 
present in SNPs throughout the genome, the fact they are easily adapted into automated 
processes, and that the read length can be very short (60-80bp). SNP samples can provide 
an insight into kinship analyses, missing persons family reconstruction, identifying human 
remains, and possibly even provide evidence for lead cases with no suspect. There are four 
categories of SNPs used in forensic analyses depending on what is needed in a case by 
case situation. These are identity-testing SNPs; lineage informative SNPs; ancestry 
informative SNPs; and phenotype informative SNPs (Budowle, & van Daal, 2018). Identity- 
testing SNPs offer genetic information needed to differentiate populations and people, and so 
exclude individuals based on if they can be the progenitor of the evidentiary sample, or if 
they can be a potential family member. They require high heterozygosity, and low population 
heterogeneity (low inbreeding). Lineage SNPs are used to identify missing persons through 
the use of kinship analyses to find relations. They are mostly found on the mtDNA genome 
and on the Y chromosome. There is a lack of recombination in these regions and a low 
mutation rate, making them ideal to study samples that are separated by several 
generations. Ancestry informative SNPs are used to provide insight into the biogeographical 
information of a person. From this ancestry, potential phenotypic characteristics can be 
indirectly inferred and applied to a case where the suspect’s appearance is known. 
Phenotype informative SNPs allow for high probability analyses that an individual has certain 
phenotypic features that match the description for an investigative lead. These features 
include hair colour, eye colour, and skin colour. 
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Complex disease biomarkers: SNPs can be used as biomarkers themselves for disease, 

revealing an individual’s predisposition to a particular disease. This gives prewarning for 

treatment and preventative measures. Association studies are often carried out to identify 

relations between genetic variation and disease. SNPs have been used as biomarkers for 

complex disease such as Alzheimer’s disease, where early onset is caused by mutations in 

the amyloid precursor protein (APP), and the presenilin genes (PSEN-1 and PSEN-2) 

(Erdoğan, & Son, 2014). SNPs can also be used to measure levels of disease biomarkers 

using machine learning methods. This method is a very powerful diagnostic tool and provides 

a useful complementary tool to standard diagnostic methods. New polygenic scores (PGS) 

are trained for biomarker prediction, aiding in predictive biomarker volume from a SNP. 

Fluctuation of the levels of a biomarker limit the reliability of the prediction, so therefore a 

more stable phenotype without fluctuating levels would therefore be more suitable for use of 

SNP only prediction (Widen, Raben, Lello, & Hsu, 2021). 

 
1.5 Bioinformatics 

Bioinformatics is a complex and diverse field within the biological sciences that combines 
computer science, mathematics, statistics, and biology to develop software tools and 
methods to understand biological data. Bioinformatics is used in silico, with the development 
of pipelines for repeated use of analyses and as well as the integration of computational 
methods to standard biological studies. This discipline is an important part of many other 
biological fields including genetics, molecular biology, and proteomics. The driving goal of 
bioinformatics is to ultimately increase the understanding of biological processes through 
applying computationally intensive techniques, setting it apart from other biological 
disciplines. 

 
1.5.1 Structural Bioinformatics 

The structural information of proteins is one of the most crucial data points to understanding 
biological function. Structure can be separated into four different levels: primary, secondary, 
tertiary, and quaternary (see section 1.4.3 for more information). The primary structure of a 
protein can easily be derived from the sequence of the coding gene, and in the majority of 
cases this primary structure can directly determine a unique protein structure within the native 
environment. Structural bioinformatics takes into account the interaction between these 
layers of structure, and the space coordinates of atoms and bonds. 

 
Homology is an idea that runs throughout the entire discipline of bioinformatics; if one known 
biological product (eg. a gene, protein, genome) is similar to an unknown, then it is likely that 
the unknown product has many shared properties with the known product. This is shared 
within the branch of structural bioinformatics, where homologous proteins are likely to share 
either similar structure, function, or both. Homology is used to infer which regions of an 
unknown protein are significant in structure formation and protein interaction. Additionally, 
through a method known as homology modelling (detailed in section 1.2), uses homology 
between protein sequences and structures to predict structure of an unknown protein. A key 
idea within structural bioinformatics is that the structure of a protein is directly linked to its 
function. From this, homology between proteins can also be used to predict the function from 
the structure of similar proteins. Comparisons between the structure of an unknown protein 
and a collection of known proteins can derive multiple plausible protein functions. 

 
1.5.2 Large Data Storage 

Protein structure data that has been experimentally derived from methods such as crystal 
analysis is stored into large online databases such as the Protein Data Bank (PDB), making 
computational access easy to obtain. The use of bioinformatics spans across multiple fields, 
allowing for access to genetic information, information on genetic variants, and disease 
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informatics. Often these databases are kept separate on individual hosting sites, such as 
Reactome, UniProt, and ClinVar. UniProt is the most expansive and accessible database for 
proteins, allowing you to follow protein structure and function from sequence. UniProt 
incorporates data from a number of sister databases, while the UniProt Knowledgebase itself 
consists of two main sections: Swiss-Prot and TrEMBL. Swiss-Prot contains manually 
annotated and reviewed entries from literature and computational analysis carried out by 
curators, while TrEMBL contains automatically annotated and unreviewed entries that are 
queued for full manual annotation (UniProt Consortium, 2021). The advancements to high 
throughput sequencing led to data being produced and submitted faster than Swiss-Prot was 
able to annotate and review, driving the need for a second database to store these 
unannotated or computationally annotated entries. Table 2 details the differences in number 
of entries (UniProtKB/Swiss-Prot Consortium, 2021) (UniProtKB/TrEMBL Consortium, 2021) 
between the two different databases, highlighting the need for TrEMBL to store unreviewed 
entries as Swiss-Prot couldn’t keep with number being inputted for review. 

Table 2 – The entries within each UniProt Knowledge Database as of 2nd June 2021. Swiss-Prot contains manually annotated 
and reviewed entries. TrEMBL contains automatically annotated entries that are not reviewed (adapted from the 
UniProtKB/TrEMBL and UniProtKB/Swiss-Prot Consortium statistics data, 2021). 

 

 Swiss-Prot TrEMBL 

Sequence Entries 565,254 219,174,961 

Fragments 9,261 23,817,622 

Additional Sequences (via 
splicing, initiator or 
promoter usage, or 

ribosomal frameshift) 

 

40,563 
 

N/A 

 
 

Where medical data is concerned, ClinVar is an open accessible source for relationships 
between human variants and phenotypes. ClinVar can be used and queries for multiple 
purposes, such as searching for a particular disease or phenotype, a particular gene, or 
position on a chromosome or assembly. The scope of ClinVar is large, and covers variants 
found within any part of the human genome, including the mitochondria. The variants 
covered within ClinVar can be of any length; single nucleotide polymorphisms (SNPs), small 
insertions or deletions, or to full copy number changes and cytogenetic rearrangements 
(Landrum et al., 2015). Within ClinVar, the variants recording have been observed both 
within a clinical environment and a research setting. Those discovered or have had further 
research studies add depth to the clinical significance through experimental evidence. 

Molecular pathway data is stored within the Reactome database which is a bioinformatics 

database for the visualisation, interpretation, and analysis of pathway knowledge. The data 

inputted into the database is peer-reviewed and curated by the Reactome team (Reactome 

Organisation, 2021). Reactome is a novel platform using a relational database of signalling 

and metabolic pathways, and their relationships sorted into biological pathways and various 

processes. The core of the Reactome system is the reactions, while entities such as nucleic 

acids, proteins, complexes, vaccines, etc. that are part of the reaction form the network of 

interactions are grouped within the pathways. 

Connecting these databases above can yield potentially crucial new information about the 

links between disease, pathway, and variants. Linking through data through all steps of the 

biological process from gene transcription and translation, to protein generation, will allow for 

more in depth analysis of variants and localising where pathogenic elements happen within a 

biological system. 

 
1.6 Homology Modelling for Structural Bioinformatics 

Assessing the impact that individual variants had on structure and interacting regions relied 



16  

on the use of protein modelling methods to generate visual aids and representations. 
Homology modelling is considered the most reliable, and easiest, form of structural prediction 
modelling and is frequently used for many biological applications. Homology modelling 
makes use of the primary (1D structure) amino acid sequence, and builds up from this to 
generate secondary structures (2D structures) and finally tertiary structures (3D structure). 
The amino acid sequence of a given protein often contains enough information to obtain a reliable 3D 
structure prediction. It is often assumed that protein function is closely related to sequence composition - 
and that the structural resemblance of proteins implies structural similarity (Krissinel, 2007). 

Homology modelling usually consists of four steps: sequence alignment, multiple sequence 
alignment, model construction, and finally model refinement (Grumezescu, 2018). 

 
1.6.1 Sequence Alignment 
The target sequence that is being queried is named the model sequence, while any 
sequences with known structures are named templates. 
If the sequence similarity alignment of two proteins is above a certain threshold, then it is 
highly likely that they fold into the approximate same structure. Likewise, if this falls below 
the threshold (known as the ‘protein twilight zone’ as the threshold limit is highly debated 
though commonly taken as 30% similarity (Khor, Tye, Lim, & Choong, 2015)), then it is 
inconclusive if these proteins will fold approximately the same or very different. Similarity 
tools such as BLAST (for local alignments) and FASTA (for global alignments) are used to 
determine the sequence identity between the model and the template proteins (Makigaki, & 
Ishida, 2020). Both programmes utilise a scoring matrix (BLOSUM) to compare the model 
sequence with all sequences with a known structure in the Protein Data Bank (PDB) 
repository. A list of template sequences is returned, often ordered from highest similarity 
downwards. When doing homology modelling, it is possible to take the singular highest 
template, or use a combination of templates above a set threshold. The latter approach uses 
multiple sequence alignment (MSA) and is used by tools such as Swiss-Model 
(Padmanabhan, 2014). 

 
1.6.2 Multiple Sequence Alignment 
MSA is the process in which three or more biological sequences (generally DNA, RNA, or 
protein) are aligned. In many cases these sequences are thought to have an evolutionary 
relationship; where they share a common ancestor or share a linkage. From an MSA, 
sequence homology can be obtained. Often, these results are used for phylogenetic 
analysis and ancestry studies. MSA results can be used across nearly all of bioinformatics. 
Within structural bioinformatics, these can also be used to assess sequence conservation 
across secondary structure, tertiary structure, protein domains, individual amino acids, or 
nucleotides (Thompson, Linard, Lecompte, & Poch, 2011). Some alignments methods, such 
as 3D-Coffee and PROMALS3D use tertiary 3D protein structures to improve sequence 
alignment, but these methods rely on the tertiary structure of proteins and is not suitable for 
all proteins as a result (Deng, & Cheng, 2011).  

 
Once an initial template list has been generated using the sequence alignment step detailed 
above, it can be further refined and corrected using MSA. Such regions that benefit from 
correction include those where the percentage similarity is very low and so it is difficult to 
align the template structures to the model structure. Using inherent structural information 
from this alignment better informs specific features in regions, such as hydrophobic residues, 
and increases the final model performance (Chatzou, Magis, Chang, Kemena, Bussotti, Erb, 
& Notredame, 2015). There are tools that use these position-specific scoring matrices to 
better improve models, such as T-Coffee. 

 
1.6.3 Model Construction 

Once alignment has been carried out, construction of the model can begin. The model 
construction process begins with the protein backbone generation. Where there are multiple 
templates, an average structure is taken, where the template structure distribution is 
weighted by the local similarity identity. In cases where a single model is used, the backbone 
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coordinates of aligned residues from the template are transferred into the model (Saxena, 
Sangwan, & Mishra, 2013). The last step of model construction involves generating the 
residue side chains. If the percentage similarity of the template sequences are over 40% at 
any residue, then the side chain conformation is transferred directly into the model, 
conserving the orientation. Where low levels of similarity are seen, another knowledge-based 
approach is applied. Rotamer libraries are scanned, and each conformation within the library 
is scored with a number of energy functions and the highest scoring conformation is used in 
the model (vlab.amrita.edu., 2012). 

 
1.6.4 Loop Modelling 

Loops often represent regions of high disorder in protein, which in turn are often linked to 
regions of unaligned sequence from the sequence alignment. The more amino acids there 
are in a loop, the more inaccurate the loop becomes (Adhikari, Peng, Wilde, Xu, Freed, & 
Sosnick, 2012). There are two main approaches to loop modelling; energy based and 
knowledge based. Energy based loop modelling determines the quality of a loop by using an 
energy function, and so finds the best conformation using a statistical model. The loop is 
then subjected to energy minimisation using molecular dynamics techniques or a molecular 
dynamics simulator (Tang, Zhang, & Laing, 2014). MODELLER uses this non-template 
based technique. Knowledge based loop modelling (or template based) utilises the PDB by 
scanning for loops of similar length with relative end-point geometry from proteins with 
known structure (Soto, Fasnacht, Zhu, Forrest, & Honig, 2008). The identified protein (or 
proteins) is then aligned to the target protein gap, and the loop coordinates are transferred. 
The quality of the loop depends on the quality of the alignment; since loops are the least 
conserved regions, a known template cannot always be found that aligns with the gap in the 
target protein. SuperLooper is a specialised protein loop structure predictor that uses this 
template based method (Health Sciences Library System, 2014). 

 
1.6.5 Model Refinement 

To accurately solve the model structure, the main backbone chain of the protein must be 
energy minimised to find the best confirmation for the side chains. The model can be 
optimised by running a MD simulation. ModRefiner is a commonly used tool to solve this 
and provide protein structure refinement using MD simulations. 
ModRefiner constructs and refines protein structures using C-alpha traces based on a two- 
step, atomic level energy minimisation process (Dong & Zhang, 2011). Main-chain structures 
are first constructed from the C-alpha traces, and then the side chains are refined alongside 
the backbone atoms using composite physics and knowledge-based force field solutions. In 
chemistry, a force field is the functional form (the potential energy in bonded forms that 
describe electrostatic or van der Waals forces) and various parameters set to calculate the 
potential energy of a system of atoms, and estimates forces between the atoms within a 
molecule. These parameters are typically set through previous physical experiments (physics 
based), or through calculation by quantum mechanics (knowledge based) (Frenkel & Smit, 

2007). All-atom force field systems provide parameters for all atoms in the system 
individually, including hydrogen atoms (Raval, Piana, Eastwood, Dror & Shaw, 2012). The 
two steps that Modrefiner uses includes a low-resolution generation of the backbone, 
followed by a high-resolution all-atom refinement guided by these force fields with two 
different parameters (knowledge based and physics based). 

 
Model refinement can also be done through iterative threading, as used in I-TASSER (Roy, 
Kucukural, & Zhang, 2010). The process can be seen below in figure 6. This platform 
generates and refines protein models through creating a 3D-structure from multiple threading 
alignments and iterative structural function assembly. Refinement by iterative threading 
involves an additional fragment assembly step based on the clusters selected in the second 
step (structure assembly). This structure re-assembly has the same I-TASSER potential, but 
additional restraints are placed upon the construction by pooling previous threading 
alignments and PDB structures closest to the cluster. This second iteration is designed to 
remove steric clashes and refine the protein topology. I-TASSER also suggests a protein 
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function for the model by searching for structurally matching the 3D model with known 
proteins in the PDB (Zhang, Freddolino, & Zhang, 2017). 

 

Figure 6 – The schematic representation of the I-TASSER protocol. Threading can be seen in the first step, where the 
query protein is matched against non-redundant proteins in the PDB, then threaded through a representative PDB 
library. The structural assembly within I-TASSER is conducted ab-initio, outlined in section 3.4.3. Iterative threading 
occurs in the third refinement step, where fragment assembly occurs a second time dependent on the cluster selected 
in the step before. The second iteration removes steric clashes and refine the topology of the protein. In the final step, 
the protein function is inferred by structurally matching the model with the PDB library (Roy, Kucukural, & Zhang, 
2010) . 

 

1.7 The BRCA1 Gene and Protein 

Even before the discovery of the BRCA genes, it was thought that there were genetic origins 

for familial breast cancer and later ovarian cancer. Family studies conducted by Henry Lynch 

were the first to characterise this (Murthy & Muggia, 2019). It was later discovered through 

cloning and identification that the genes for these diseases were located on chromosome 17, 

and that two genes were responsible. These genes were termed breast cancer susceptibility 

gene 1 (BRCA1), and breast cancer susceptibility gene 2 (BRCA2). BRCA1 has been found 

to be expressed within a large number of different tissues, ranging from cervix, liver, uterus, 

prostate, pancreas, lung, kidney, bone, brain, to the lymph nodes, skin, and bladder. As 

such, BRCA1 has been associated to have a role within other cancers beyond that of familial 

breast and ovarian cancer. 

The BRCA1 gene encode for proteins that are involved in the DNA repair mechanism, and 

are involved in a number of different cellular pathways vital to genomic stability such as 

chromatin remodelling, protein ubiquitination, transcriptional regulation, and apoptosis (Liu et 

al., 2021). The gene product of BRCA1 is heavily involved in tumour suppression, and loss of 

the BRCA1 protein is associated with failure of homologous recombination (HR), a system of 

DNA repair. BRCA1 translocates to the DNA damage site, where it coordinates both the DNA 

damage repair and the DNA damage signalling, where through multiple steps BRCA1 

promotes the use of HR to repair double-strand breaks (DSBs) in DNA (Liu, & Lu, 2020). 

Exogenous or endogenous DNA damage via harmful agents or mechanism failure, can result 

in a variety of changes including DSBs, single-strand breaks (SSBs), base damages, 

intrastrand cross-links, and interstrand cross-links (Zhang, 2013). 

BRCA1 contains multiple functional domains, including a highly conserved zinc finger at the 
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N terminal contributing to E3 ligase activity. It is also noted that BRCA1 both directly and 

indirectly interacts with a number of other molecules. The earliest, and most direct, indication 

that BRCA1 was involved within HR repair was its association with RAD51, a homolog of the 

yeast protein involved with HR (Tavares, Wright, Heyer, Le Cam, & Dupaigne, 2019). BRCA1 

has also been identified to interact with another repair protein, RAD50, forming a distinct 

nuclear foci from that of RAD51. The loss of BRCA1 functions leads to defects within the S 

phase and the G2/M phase of the cell cycle, and spindle checkpoints (Mylavarapu, Das, & 

Roy, 2018). Defects within these phases causes an increase in genetic instability, 

consequently leading to an increase in DNA damage response; increasing the risk of tumour 

formation. 

Glycosylation was one of the first biomarkers for cancer due to the extensive role of 

glycosylation in the process of the cell cycle, and ultimately the ability to evade cell cycle 

checkpoints. Specific glycosylation motifs can control certain cell signalling pathways such as 

abnormal growth factor signalling, a critical feature of cancer tumour growth. Changes of 

glycosylation within cancer cells typically involve an increase of certain patterns, such as an 

increase of sialyl Lewis structures and N-glycan branching, and the exposure of the mucin-

type O-glycan (Reily, Stewart, Renfrow, & Novak, 2019). N-glycans refer to the attachment of 

N-acetylglucosamine (GlcNAc) to the nitrogen atom of specific side chains. O-glycans refer 

to the glycosylation of amino acids with a functional hydroxyl group (eg. serine and 

threonine), and are abundant on many extracellular and secreted glycoproteins including 

mucins. Sialyl Lewis structures are generated through extrinsic glycosylation events, where 

soluble glycan-modifying enzymes circulate in the blood and conjugate a monosaccharide 

extracellularly onto an existing sugar structure (Mulloy, Dell, Stanley, & Prestegard, 2017). 

As a cancer cell evolves, the changes in glycosylation pattern can be tracked in parallel with 

the metabolic changes. It is known that receptor tyrosine-protein kinase erbB2 (HER2) is 

overexpressed within many cancers, including familial breast cancer. HER2 is a 

protooncogene encoding for epidermal growth factor, and in breast cancer HER2 is 

overexpressed by 15% - 20% and is linked to protein overexpression (Ahn, Woo, Lee, & 

Park, 2019). HER2 screening is possible for breast cancer prognosis, and is associated with 

a high rate of recurrence and morality. It currently remains the only marker for HER2-

targetting agents, such as trastuzumab. Identification of other markers for these targeting 

agents would greatly increase the prognosis for breast cancers by increasing optimisation of 

screening. 

It has been reported that SNPs within cancer causing genes have a relationship with a 

variety of different forms of cancer, including familial breast and ovarian cancer from BRCA1. 

It is known that SNPs can occur in gene promoters, exons, introns, and effect gene 

expression through a number of different mechanisms. Also, SNPs can cause alterations in 

epigenetic regulation of genes, increasing the complexity of SNP susceptibility to cancer 

(Deng, Zhou, Fan, & Yuan, 2017). 

In 2018, a meta-analysis was conducted by Xu et al. into SNPs within the BRCA1 gene that 

were associated with disease. Within this analysis, four gene polymorphic variants were 

selected using specific criteria. The selected variants were rs799917, rs1799950, rs1799966, 

and rs16941. It was discovered that rs799917 was able to decrease the risk of various 

cancers within Asian populations, rs1799950 could decrease risk of breast cancer within 

Caucasian populations, and rs16941 could increase the overall risk for any cancers. Despite 

these findings, it was noted that the sample size and the number of cancer types within this 

study were limited. Therefore, the overall conclusion was that more research needs to be 

conducted into SNPs in BRCA1, and their impact on cancer risk. 

Furthering this work, in early 2021 a novel study was conducted by Coignard et al. was 

undertaken to expand the knowledge of SNPs within breast cancer and the BRCA1 gene. 
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The study was based off of GWAS data from breast cancer cases within the Breast Cancer 

Association Consortium (BCAC) and mutation carriers from the Consortium of Investigators 

of Modifiers of BRCA1/2 (CIMBA). This novel study was the first analysis of genetic modifiers 

of breast cancer that examined the difference between common genetic variants with breast 

cancer risk within the general population and in women with BRCA1 (or 2) mutations. This 

novel study was the first analysis of genetic modifiers of breast cancer that examined the 

difference between common genetic variants with breast cancer risk within the general 

population and in women with BRCA1 (or 2) mutations. This study was able to identify eight 

novel SNPs within the BRCA genes associated with breast cancer risk; 4 within BRCA1 and 

4 within BRCA2, which had not been reported in previous association studies. Research into 

the precise effects of SNPs in both these genes in mutation carrier could provide insights into 

the biological mechanism of cancer development. The study concluded that more detailed 

mapping and functional analysis is required to not only elucidate the role of the newly 

discovered variants, but also other variants. 

There is a large number of BRCA1 variants with unknown clinical significance; as of early 

September 2021 there were 2,868 unknown significance single nucleotide variants on 

ClinVar (NCBI ClinVar, 2021). Table 3 below details the number of variants within each 

category on ClinVar. The data on ClinVar highlights a growing and pressing need for the 

quick determination of clinical significance – with current sequencing technologies, the 

number of novel SNPs will continue to grow and be discovered. In silico methods of analysis 

of known variants could be undertaken to prioritise variants that are potentially pathogenic, 

accelerating the clinical study of these variants. Identifying these uncertain variants aids with 

therapeutic treatments and management, as well as early diagnosis and prevention of further 

cancers (Kim et at., 2021). 

Table 3 – Search results of BRCA1 on ClinVar as of September 2021. Results were filtered by single nucleotide variants and 
the total variants by clinical significance are shown. Data adapted from ClinVar, 2021. 

 

Clinical Significance Number of Variants 

Pathogenic 756 

Benign 633 

Likely Pathogenic 147 

Likely Benign 1,586 

Uncertain Significance 2,868 

Conflicting Interpretations 394 

Risk Factor 0 
 
 

A recent reclassification of clinical variants with uncertain significance of both BRCA1 and 2 

was performed in a Korean Hereditary Breast Cancer (KOHBRA) study by Kim et al. in 2021. 

Variants were reclassified using ClinVar data and data from the Korean Reference Genome 

Database (KRGDB). The odds ratio for each SNP was calculated using Korean population 

data from the KRGDB by the Wald Chi-Squared Test. The confidence interval was calculated 

via the same method. The OR was calculated based on the occurrence of the variant in the 

2403 patient cases and from the KRGDB. Roughly two thirds of the variants in the KOHBRA 

study were reclassified as benign or likely benign, which included a total of 69.42% of all 

patients with a BRCA1 mutation. In this study, six unclassified variants were reclassified as 

pathogenic or likely pathogenic, four of which occurred as BRCA1 mutations. All six variants 

were supported by evidence by past studies and were not reported in the general Korean 

population database. Additionally, the mutations were all found to be deleterious, which 

account for nearly all pathogenic variants. As the study suggested, patients who are found to 

have these mutations can be referred for counselling or management, such as genetic 

familial testing and risk-reducing medication and surgery. 
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1.8 Project Aims 

The main aim of this project is to establish the role of BRCA1 SNPs within disease, and 

apply this information to SNPs with unknown clinical significance in order to classify them. 

The large wealth of data stored in various data sources can provide links between the 

function of BRCA1 in pathways, the structural impacts of SNPs, and potentially reveal the 

role of SNPs in disease. This project hopes to be able to not only classify unknown SNPs, 

but also reveal where in pathways these SNPs have an effect. Additionally, identifying 

interactions that are interrupted by pathogenic SNPs could provide new drug targets. 

Classifying unknown SNPs aids in the diagnosis of BRCA1 related diseases, where 

patients with these variants can be treated early before the spread of the worst effects of 

disease. It is hoped that these reclassifications can ultimately improve prognosis of cancer 

patients, and those with other BRCA1 related diseases. 

A number of target questions for this project have been generated and can be seen below: 

• What are the direct pathway associations with BRCA1? 

• Where do most variants occur in BRCA1? 

• Can a structural model be generated for BRCA1? 

• What are the structural impacts of SNPs in BRCA1? 

• Are there any trends within the structural impacts of SNPs that could be used for 

profiling SNPs as pathogenic or benign? 
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2. Methods 

2.1 Preliminary Study 

A preliminary study was carried out into the nature of the BRCA1 gene, and its variants using 
Human3DProteome and ESP. The gene was mapped from chromosome, to gene, to protein, 
to metabolic pathway, and then to disease. The number of variants was recorded in table 4. 

Table 4 - Preliminary research findings. The first column after the headings include the basic information, and the second 
column includes detailed information about the research area highlighted in the heading and specific examples. 

 

Protein Human_BRCA1 
Human Breast 
Cancer type 1 
susceptibility 
protein 

Uniprot P38398-2 

Gene BRCA1 
 

Chromosome 17 17:41199671 

SNP Variants 385 entries - 
pathological link 
often unknown 

VAR_007769 selected (pathogenic link known) 
Missense variant 
rs28897696 

G>A 
Protein change A1729V 

Metabolic/Signalling 
Pathways 

Central role in 
DNA damage 
repair by 
facilitating 
response to DNA 
damage. Has E3 
ubiquitin-protein 
ligase activity - 
needed for 
tumour 
suppressing 
function. 
Required for cell 
cycle arrest, and 
progression from 
G2 to mitosis. 

acetyl-CoA-carboxylase alpha (ACACA) 
catalyses irreversible carboxylation of acetyl- 
CoA to malonyl-CoA. Important first step in 
fatty acid synthesis. 

Potential Disease PolyPhen2 
rating: Probably 
damaging (1.0) 

Prevents ACACA binding. BRCA1 reduces 
ACCA activity through its phospho-dependent 
binding to ACCA. Control of lipogenesis. 

Issues? Many variants. https://thebiogrid.org/interaction/697233/brca1- 
acaca.html 

 

 
2.2 Database Creation 

The preliminary research highlighted the need to generate an external database to store all 
the information regarding BRCA1, its variants, and pathways with which it is associated. For 
this, SQLite was used via a virtual machine connection to a server. Before it was possible to 

https://thebiogrid.org/interaction/697233/brca1-acaca.html
https://thebiogrid.org/interaction/697233/brca1-acaca.html
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create the database and insert data, the database was planned to eliminate irrelevant 
associations and highlight any errors or additional information that was found to be required 
following the preliminary research. It became clear that additional information was required 
from the preliminary data, as well as a need to reorganise the data and remove information 
that didn’t address to the target questions. 

 
SQLite is a widely used relational database scripting and management tool contained within 
a C library (a collection of non-volatile resources written in the C language). SQLite is not a 
client-server model, meaning that it is only accessible via a file system rather than via a 
server (Schenker, 2020). SQLite saves and stores the entire database as a singular cross- 
platform file onto the local host machine. Due to being without a server, a SQLite database 
requires little to no configuration compared to client-server databases and is termed zero- 
conf (SQLite Organisation, 2021). There is no setup procedure; there are no server processes 
that must be stopped, started, or paused in order to use SQLite. There is also no need for 
access control within SQLite (granting access permissions to users) as the access is handled 
by the file-system permissions given directly to the database file itself. Furthermore, there are 
no troubleshooting processes needed to use SQLite. These advantages and ease of use 
made SQLite the ideal tool to craft a database. 

 
The entity relationship diagram (ERD) for the database can be seen below in figure 7 and 
lays out the order and flow the database will follow. Each entity (blue rectangle) represents a 
table within the database, and each of these tables contain attributes dependent on what is 
being stored within that table. The entities identified as necessary in this database were 
‘gene’, ‘pathway’, ‘sequence’, ‘variants’, and ‘disease’ data. By each entity, there are a 
number of smaller ovals that represent the attributes of the tables; this is what is stored 
within the table as an entry. Taking the gene entity as an example, the geneID acts as the 
primary key for the entity; the primary key is the unique identity point for each data set and is 
underlined in attributes (IBM Cloud Education, 2019). Each entry into the table is given an 
unique geneID assigned from 1 onwards. Each entry also includes the name of the gene in 
this instance. The unique geneID prevents the same gene from being entered into the 
database multiple times. Entities within the database are connected via relationships, either 
one to one (1 - 1), or many to many (N - N) (Levene, 2005). Where the link is a one to one 
relationship, the tables can be directly linked to each other, such cases include where one 
gene can have one sequence. There are often more complex relationships than one to one, 
such as where one variant can cause many diseases, and a disease can be caused by many 
variants (N - N). Where this is seen, the entities must be linked via an associative entity (pink 
diamond). The associative entity solves many to many relationships and is implemented into 
the database structure via associative tables. Associative tables contain two or more primary 
keys from the tables that they map together. These primary keys that are taken from other 
linking tables are known as foreign keys. As such, these tables contain a number of foreign 
keys, each from a one to many relationship from the junctioning associative table to the 
individual data tables (Moes & Sheldon, 2005). The primary keys of the associative table are 
these foreign keys. 

 
The design of the database takes into account the relationship between gene, variant, 
pathway, and disease. The nature of their relationship means that it was possible to directly 
link these four entities together and build the additional sections of the database around 
these. For instance, a pathway can have a number of genes within it, and these genes can 
have an individual variant, and these variants can be involved in a number of different 
diseases. Through this, it is possible to trace the relationship through the entire database, 
aiding to eliminate the need for manual linking. 
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Figure 7 – The entity relationship diagram for SQLite3. Entities can be seen within the blue rectangles and are: Gene, 
Variant, Disease, Pathway, and Sequence. Pathway and Gene are linked via the associative entity (seen in the pink 

diamonds) Reacts. Variant and Disease are also linked via the associative entity Indicates. An entity functions as a table 
which contains a number of attributes (seen in the ovals) which is the information being saved into each table. The unique 

primary key for each entity is underlined. Relationships between the entities are denoted as either one to one (1 – 1) or 
many to many (N – N). Many to many relationships are split via associative entities. 

 
 
 

2.3 Automating the Data Collection 

2.3.1 Data Collection Pipeline 

To assist in automating the process of data retrieval and reduce human error when inputting 

data into a database, a web scraping pipeline was developed by integrating a number of 

smaller scripts used to parse data from individual websites. Data was largely collected from 

two main sources: ClinVar and Reactome, as well as UniProt for a small amount of data. 

ClinVar was selected for it’s widely applicable use in human diseases, with most entries 

containing information on the pathological effects (or, are given unknown clinical 

significance to highlight cases where this information isn’t yet known). Reactome was used 

due to the 
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wide scope of pathways included in the database; while alternative pathway data sources 

exist containing more detailed metabolic pathway information (eg. KEGG), Reactome was 

selected as pathways outside of metabolic reactions, for example, cellular and signalling 

pathways, are also included. Seeing how BRCA1 is identified to be key during the cell 

cycle and mitosis/meiosis, it was crucial that a wide variety of pathways could be 

considered. 

A visual flow chart of the data collection pipeline can been seen below in figure 8, 

highlighting the scripts, sources, and data collected and used during the process, as well as 

how this relates to the information inputted into the database. The majority of scripts were 

written using Python, with a few smaller simpler scripts written in BASH (such as the 

“search_uniprot” script). The overall pipeline was written to string together the individual 

data mining scripts and reduce the time taken to complete the process; by automatically 

continuing onto the next step without human input. 

This pipeline takes the input as a gene name, and inputs this gene name into a series of 

scripts that returns and enters the data into the database in the required format. There are 

essentially two sides to the pipeline: one side searches ClinVar for variants, while the other 

uses UniProt IDs to search Reactome for pathway information. The ClinVar search can be 

seen down the left side of figure 8 and the UniProt/Reactome search can be seen down the 

right side. In the pipeline, these process continuously run one after each other with the left 

occurring before the right, but for the visual representation they are treated as separate 

processes that run parallel. 

For the left hand process, the gene name is taken and inputted into Entrez to construct a 

complex search query. Entrez comprises of 39 molecular and literature databases, and is 

constantly growing as medical science develops and new data types are created (NCBI 

Bookshelf, 2016). All search boxes on NCBI websites connect to Entrez to generate a search 

query using Boolean operators, indexed fields, query translation, and automatic term 

mapping. This query building function is able to be utilised to create a query ID with the given 

input gene and pre-defined search conditions. The pre-defined search conditions for this 

study are: single nucleotide variants, single gene, missense, and nonsense mutations, 

pathogenic, likely pathogenic, benign, and likely benign variants. These search parameters 

were chosen to restrict the search to only SNP variants with the most frequent types of 

mutation. It was also chosen to restrict the search to only single genes to avoid confusion 

around interacting genes. The Entrez query ID is then taken, within the same script, and 

used to connect to ClinVar and generate list of search results found within the given search 

parameters. This list is then inputted into the final script before the data can be inserted into 

the database. This last script processing the search results list from ClinVar, and inserts the 

input gene into the database if it is not already found within the database. The discovered 

variants for the gene are also inserted, as well as their clinical significance and the disease 

associated with the gene. The disease and gene are linked via a separate “indicates” tab le, 

which shows which gene indicates which disease(s). 

For the process shown on the right of figure 8, the gene name is taken and is used for a 

search on Uniprot. This, and the following three steps, are contained within a smaller pipeline 

known as “pipeline_uniprot_reactome”, which takes the gene name and returns reactome 

information in XML files through Uniprot IDs. As it is more effect to search via UniProt codes 

for Reactome pathways to reduce irrelevant search results, the first step of this smaller 

pipeline is to convert the gene name into a UniProt ID code. This UniProt ID is then 

resubmitted back to the UniProt website, and all Reactome pathway IDs associated with the 

the UniProt ID are returned. Each associated Reactome ID is then submitted to the 

Reactome website, and the XML file for that pathway is downloaded and saved onto the 
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server. The data within the XML file is stored in such a way that additional data parsing was 

required in order to extract the desired information. A final script is used within the smaller 

pipeline in order to achieve this. This parsing script searches the XML files for directly 

interacting proteins with the query gene, and outputs a log of these proteins. Direct protein- 

protein interactions were selected in order to minimise the ambiguity of the involvement of 

the query gene within a reaction, since this makes structural analysis of mutations on 

interaction sites more apparent – the exact location of interaction is known. Finally, a list of 

all pathway protein neighbour associations is outputted from the smaller pipeline, and is used 

as the input for the final step of the overall pipeline: processing the Reactome results in order 

to insert them into the database. Here, the script searches for all new genes not already 

present in the database, and inserts these new genes in as entries. Additionally, the 

pathways are also inserted into the database, and are connected to the genes via a “reacts” 

table. 
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Figure 8– Flowchart of the data pipeline used to collect and store information within the database. Each shape represents a 
type of information or resource: the purple oval is the input, the blue rectangles are the induvial scripts within the pipeline, 
the orange clouds are the internet sources, the pink circle is data types, and the yellow cylinder is the database. The input is 
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simply a gene name, which is inserted into the pipeline which runs two processes to extract pathway, disease, and variant 
information from online data sources. First, the gene is inputted into a Entrez query link outlining the ClinVar filters for the 
search: single nucleotide mutation, single gene, missense, and nonsense mutations during the ClinVar search script. This 

Entrez link is used to connect to the ClinVar database, returning the search results for the filtered query as a list. This list is 
then run through another command to process the results, which scans the list for new genes, variants, diseases, and the 

indication of gene to a disease, and inputs these into the specified database. The pipeline then enters the gene name into a 
search on UniProt, and returns a UniProt ID; which is then used to gather information on the pathways associated with the 

UniProt ID on Reactome. These UniProt IDs and Reactome IDs are inputted into a script to download the Reactome pathway 
XML files. These files need to be parsed before they are readable, and this is achieved in the process Reactome results script. 

The same script inputs the data it has extracted from the XML file into the specified database. 
 
 
 

2.3.2 Data Pipeline Iteration 

The data collection pipeline was iterated to increase the number of genes within the 

database and give a wider view of the impact of SNPs. Genes that were identified as 

neighbouring pathway members are included within the iteration. Figure 9 below summarises 

the process of the iteration of the pipeline. The original gene, in this study BRCA1, is the first 

entry into the pipeline and is therefore iteration zero. Once the complete data pipeline has 

been run, the database is searched for new genes that were added from the pathways 

identified to contain BRCA1. These new genes are then submitted back into the pipeline 

individually, and the process is repeated. The process is currently limited to three iterations 

to prevent collection of data that isn’t detailed or relevant to the original target gene. 
 
 

 
 

Figure 9 – Flowchart of the simplified process of the data pipeline iteration. Each shape represents a type of information or 
resource: the purple oval is the input, the blue cylinder is the data pipeline detailed above, the pink circle is data types, and 
the yellow cylinder is the database. The original query gene is inputted into the pipeline, and the resulting additions to the 
database are scanned for any new genes. If any new genes are identified, then these genes are then individually inputted 

back into the pipeline, and are similarly processed. The process is capped at three iterations currently. 
 

2.4 BRCA1 Structural Modelling 
 

The BRCA1 query sequence was input into an in-house modelling pipeline (written by Dr 
Karl Austin-Muttitt, Swansea University Medical School) in order to generate a homology 
model. The schematics of the pipeline is shown in figure 10. To begin, the query sequence 
is inputted into BLAST to identify a range of homologous proteins using Blocks Substitution 
Matrix (BLOSUM) scoring. Proteins with a low similarity to the query are discarded (often 
below 30%, otherwise 
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known as the ‘twilight zone proteins’), and proteins with similarity above 30% are kept. These 
are then run through MSA steps using both MAFFT (Rozewicki, Li, Amada, Standley, & 
Katoh, 2019) and 3D-COFFEE (Taly et a., 2011) to provide potential structural information on 
gaps in the protein alignment by using sequence conservation. 3D- COFFEE utilises given 
sequences and structure to perform a MSA – so for where there are 19 sequences and 1 
query, 3D-COFFEE is given these sequences and the corresponding 19 structures 
(O'Sullivan, Suhre, Abergel, Higgins, & Notredame, 2004). Due to the nature of the query, it is 
important to use 3D-COFFEE instead of T-COFFEE, where the latter will search the PDB for 
a structure to assign the query also. 3D-COFFEE searches for the 3D overlap of each 
inputted structure and applies this to the query. MAFFT is additionally used to set the global 
alignment constraint. Homology modelling is then performed using MODELLER. 
There are two unique spaces that MODELLER assesses: the sequence space and the 
structural space (Eswar, Webb, Marti-Renom, Madhusudhan, Eramian, Shen, Pieper, & Sali, 
2016). The combined output of these results in a homology based protein model. Within the 
sequence space, the query sequence is compared to a singular homologous template 
sequence. Each time the sequence matches in a certain amino acid position, this is 
translated into the structural space. The protein structure of the homologous template 
sequence is cross referenced with the sequence space; so that where a match has been 
identified, the query sequence is assumed to have the same structural identity in this position 
as the template. This is performed for all homologous sequences. The protein model is then 
further refined through a number of methods to generate the high quality model. The 
following were considering in the refinement step: the fundamental stereochemical 
properties, statistical properties (angles within the protein), and energy minimisation. The 
output is given as a .pdb file and contains the model information suitable for viewing in 
Chimera (Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, & Ferrin, 2004). 
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Figure 10 – Protein homology pipeline. The BRCA1 sequence is inputted as the query sequence. Homologous sequences are 
identified using a BLAST search, and any with similarity over 30% are carried forward into a MSA run with both MAFFT and 

3DCOFFEE. MAFFT sets the global alignment constraint and 3DCOFFEE searches for 3D overlaps from the inputted 
sequences and structures to apply to the query sequence (which had no structure provided). MODELLER is used for the 
homology modelling steps, and considers both sequence space and structure space. Model refinement is run last and 
considers the following: fundamental stereochemical properties, statistical properties (angles within the protein), and 

energy minimisation. The output is the query protein model. 
 

 

Alongside the above method, some online tools were also used to generate comparative 

models. I-TASSER (Yang & Zhang, 2015) and Phyre2 (Kelley, Mezulis, Yates, Wass, & 

Sternberg, 2015) were selected for their strong ab initio approach to structural modelling. 

Due to the length of the entire BRCA1 protein, there was a need to split the protein into 

domains in order to be able to submit the sequence to these tools. A search of BRCA1 on 

InterPro (EMBL-EBI, 2021) yielded information about 4 possible domains and a linking 

disordered region. The BRCA1 sequence was split into these 5 regions and submitted to 



31  

each tool. When using Phyre2, the intensive mode was selected so that multiple templates 

and ab initio methods were used across the entire protein region. These 5 individual regions 

were then re-joined using a pipeline (written by Dr Karl Austin-Muttitt, Swansea University 

Medical School) to create a whole BRCA1 model. 

2.5 Protein Mutation 

Once a final model was constructed using the method above, the model was subjected to 

mutations identified within each of the 5 regions. An equal number of pathogenic mutations 

from each region were selected at random to be implemented into the model. For the benign 

mutations, some regions contained a low number of variants and therefore were all 

implemented; the number of mutations from regions with a higher number were kept as equal 

as possible. 

In order to mutate the protein, a new set was scripted pipeline was written that utilised 

quick re-calculation of model coordinates to generate a new model for the mutated protein 

with the best possible dynamics. This script required the complete wildtype model, and a 

new .fasta file of the mutated bases. The output of this script was the mutated .pdb file, 

suitable for viewing in Chimera. 

Originally, each mutated protein was viewed in Chimera for visual differences to answer 

questions such as: 

• What is the size difference between the new and wildtype side chain? 

• Does the new side chain block any important regions? 

• Does the new side chain alter the orientation of the amino acid? 

• Is there a change in the hydrogen bonding of this residue? 

• Is there a change in the clashes and contacts of this residue? 

While effective, when the number of proteins was scaled up, it was evident that this approach 

would prove to be too time consuming and allow for too many human mistakes (such as 

errors in counting or setting the hydrogen bonds up incorrectly). This process was also 

automated by using a connection to Chimera through the server to run the processes that 

were originally completed by hand. This process took a specified residue location and the 

.pdb file of the protein in question, and produced the hydrogen bonds, clashes, and contacts 

for the neighbouring atoms and residues to the specified location. The hydrogen bonds were 

set to be either ‘strict’ or ‘lenient’, where lenient applies a tolerance of 0.4 A and 20 degrees 

to the standard length and angle definitions for a hydrogen bond. This generated numerical 

values for each of these conditions, and allowed for quantitative analysis between the 

mutated models and the wildtype model. The change between the wildtype and mutant was 

recorded as an absolute value of the difference between the two readings for each position 

specified. Absolute values were chosen to prevent negative changes from skewing the data 

result since the scale of change was the parameter, not the direction of the change. To 

assess the significance of the change between the pathogenic and benign datasets, 

statistical tests were applied to the data. Welch’s t-test was used to generate p-values for the 

difference between the two datasets, and to suggest significance. 
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3. Results 

3.1 Database Findings 

3.1.1 Variants in the Database 

After completion of the data collection pipeline, the database was searched to identify all 

listed BRCA1 variants, this can be seen in table 5. This query was undertaken in order 

to see the differences between the total number of pathogenic and benign variants to 

assess the impact of SNPs. 

Table 5 – the total number of variants in the database after running the pipeline to completion, including a breakdown of 
the pathogenic and benign mutations. 

 

Total Number of Variants Pathogenic Variants Benign Variants 

6,448 4,840 1,608 
 
 

3.1.2 Genes Within the Database 

Querying the database following one iteration of the pipeline revealed an additional 7 

directly interacting genes were added into the system, excluding the original BRCA1. These 

genes are listed below in table 6, along with their role in pathways containing BRCA1. Each 

gene listed has a direct interaction with BRCA1 in the pathway specified, and were identified 

as potential targets for structural impact in SNPs. The majority of direct interactions are 

seen to occur during the formation of the meiotic single-stranded DNA invasion complex. 

Table 6 – the 7 associated genes with BRCA1, found through pathway analysis. The pathway identifier of the shared 
pathway is shown, as well as the role of the gene in the stated pathway. Data taken and adapted from Reactome, 2021. 

 

Gene Name Pathway Name Biological Pathway Role 

UBE21 PIAS1,4 SUMOylates 
BRCA1 with SUMO1, 
PIAS1,4 SUMOylates 
BRCA1 with SUMO2,3 

PIAS1,4 SUMOylate BRCA1 
with SUMO1:C93-UBE21, 

SUMO2:UBE21, and 
SUMO3:UBE21. 

BARD1 BRCA1 forms a 
heterodimer with BARD1 

BRCA1 and BARD1 form a 
heterodimer between 

sequences surrounding the N- 
terminal RING domains. 

DMC1 Formation of meiotic 
single-stranded DNA 

invasion complex 

A RecA homolog, coats the 
single-stranded 3’ DNA 

produced by resection of 
double stranded breaks. 

CDK4 Formation of meiotic 
single-stranded DNA 

invasion complex 

Regulate the cell-cycle during 
G1/S transition. 

RAD51 Formation of meiotic 
single-stranded DNA 

invasion complex 

A RecA homolog, coats the 
single-stranded 3’ DNA 

produced by resection of 
double stranded breaks. 

BRCA2 Formation of meiotic 
single-stranded DNA 

invasion complex 

Participates in the loading of 
DMC1 and RAD51 onto single 

strand DNA. 

ATM Formation of meiotic 
single-stranded DNA 

invasion complex 

Localised to double-strand 
breaks to phosphorylates 

histone H2AX. 



33  

3.1.3 Variant Clusters 

The pathogenic variants within the database were clustered by location to elucidate further 

information  about where mis-sense mutations due to SNPs were commonly located within 

the BRCA1 protein. This information can be used further to target SNPs searches to 

regions of high levels of variants, and identify potentially crucial structural regions of 

BRCA1 by pathogenic effect. Figure 11 below shows the distribution of unique variants 

across the entire protein, grouped by 100 amino acid locus. 
 

 
Figure 11 – The distribution of unique variants within amino acid clusters of 100 locus within the BRCA1 protein. The average 
number of variants across the regions was found to be 43 (to the nearest whole number). 6 regions were identified to be of 
interest as they contained higher than the average number of variants: 0 – 99, 600 – 699, 1200 – 1299, 1400 – 1499, 1600 – 

1699, and 1700 – 1799. 
 

Cluster analysis of the variants revealed 6 regions of interest with higher than the average 

number of variants, highlighted with an asterisk (*). 4 (1200 – 1299, 1400 – 1499, 1600 – 

1699, and 1700 – 1799) of these over average clusters occurred in the latter half of the 

protein, compared to 2 in the first half of the protein (0 – 99, 600 – 699).These 6 identified 

regions were further investigated in slices of 10 amino acid loci in order to further discover 

where variants occurred most frequently across the protein and the results of this analysis 

can be seen in figure 12. 
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Figure 12 - The distribution of unique variants within amino acid clusters of 10 locus within clusters of interest in the BRCA1 protein. Within each of the loci, 
clusters that were above the average were identified. Graph A) 0 – 100 amino acid loci, contains 4 regions above average: 0 – 9, 30 – 39, 40 – 49, 60 – 69. 
Graph B) 600 – 700 amino acid loci, contains 3 regions above average: 670 – 679, 680 – 689, 690 – 699. Graph C) 1200 – 1300 amino acid loci, contains 2 
regions above average: 1200 – 1209, 1210 – 1219. Graph D) 1400 – 1500 amino acid loci, contains 5 regions above average: 1400 – 1409, 1410 – 1419, 

1450 – 1459, 1460 – 1469, 1490 – 1499. Graph E) 1600 – 1700 amino acid loci, contains 3 regions above average: 1660 – 1669, 1680 – 1689, 1690 – 1699. 
Graph F) 1700 – 1800 amino acid loci, contains 3 regions above average: 1700 – 1709, 1710 -1719, 1730 – 1739. 

 

Analysis of the smaller clusters of interest revealed different levels of regions above the area 

for each cluster. Graph A in figure 12 contains 4 regions, Graph B contains 3 regions, graph 

C contains 2 regions, Graph D contains 5 regions, Graph E contains 3 regions, and Graph F 

contains 3 regions of above average numbers of unique variants. It can be seen within some 

clusters that variants occur more frequently at the start of the cluster (as in Graph C and 
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Graph F), or more frequently towards the end of the cluster (as in Graph B and Graph E), 

perhaps indicating functional regions of the protein. 

 

3.2 BRCA1 Protein Modelling 

 
3.2.1 Homology Modelling of BRCA1 

Homology modelling as per the method outlined in section 1.2 was applied to the BRCA1 
gene sequence. The model had low confidence across the middle regions of the BRCA1 
protein, between the known start and end domains. The model contained these regions of 
lower quality because of low template homology across the whole protein; BRCA1 is a large 
protein, therefore not all regions had homology. Additionally, there has been a focus on 
identifying crystal structures for the main functional domains. Due to this model being of poor 
quality, additional tools to the original pipeline, such as iTasser and Phyre 2, were used to 
generate models. 

 

3.2.2 Domains of BRCA1 
Using InterPro, the BRCA1 sequence was broken down into 5 domains for modelling based 
on the domain predictions due to sequence length restrictions on the modelling tools. This 
breakdown can be seen below in table 7. Phyre2 and iTasser were both chosen to model 
these domains, and a comparison of the models produced was conducted. Models for 
domain 1 and 5 were not generated until the modelling tool was selected for the joined 
BRCA1 structure due to already having known structure. 

 
Table 7 – the breakdown of the domain predictions of BRCA1 used for modelling, taken from InterPro. If the domain 
name/function is known, it has been listed. 

 

Domain Length Domain name (if known) 

1 1 – 107 Zinc Finger 

2 108 – 570 Serine-rich domain 
associated with BRCT 

3 571 – 1181 n/a 

4 1182 – 1608 n/a 

5 1609 – 1863 BRCT Domain 

 

3.2.3 Modelling with Phyre2 
Phyre2 predominantly produced globular protein structures of the individual domains, where 
these structures were not expected based off of the known domains. Models for domain 2 
and 3 can be seen in figure 13 and 14. Domain 4, shown in figure 15, was the only one 
constructed to be structured and ordered, however, from previous searches on InterPro, this 
domain was found to be the intrinsically disordered region of BRCA1. Domain 2 was found to 
be 62% disordered, with 0 residues modelled at above 90% confidence. Domain 3 was 
found to be 69% disordered, with 0 residues modelled at above 90% confidence. Finally, 
domain 4 was found to be 79% disordered, with 0 residues modelled at above 90% 
confidence. Therefore, the models generated from Phyre2 were not used in the joined 
BRCA1 model. 
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Figure 13 – domain 2 of BRCA1, model generated by Phyre2 and visualised in Chimera. The model produced had an 
unexpected globular structure. 

 
 

 

 
Figure 14 – domain 3 of BRCA1, model generated by Phyre2 and visualised in Chimera. The model produced had an 

unexpected globular structure. 
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Figure 15 - domain 4 of BRCA1, model generated by Phyre2 and visualised in Chimera. The model produced was ordered, 
structured, and globular. The expected structure for domain 4 was disordered with little organised structure. 

 

 

3.2.4 Modelling with iTasser 

Models produced by iTasser appeared to have structures that were expected for the BRCA1 
protein based off of the known domain structures. In the case of domain 1 and 5, only one 
model was produced, which matched the NMR structure in the PDB for both domains (PDB 
ID 1JM7 and PDB ID 3PXE respectively) . For the remaining 3 domains, 5 models were 
produced for each and were returned in order of confidence. Each model was assessed for 
the structural likelihood based on confidence score and knowledge of the function of BRCA1. 
For domain 2, the top model in the list was taken as there was no compelling reason to 
dispel it and can be seen in figure 16. PDB ID 5JCS was used as a template with a 0.913 
alignment score. For domain 3, the top model was discarded due to containing a specific 
motif for trimerisation that was unexpected within the protein. The third model for domain 3 
contained a large helix section that was unexpected. Therefore, the second model was taken 
as the overall shape appears to contain similar folds and can be seen in figure 17. PDB ID 
5A1U was used as a template with a 0.895 alignment score. Arguably the most difficult 
domain to model was domain 4 due to the intrinsic disorder. Model 1 contained no structural 
order, and so could not be discredited. 
Model 2 was discarded due the structure appearing as a single long helical structure. The 
third model produced contained structured regions and was discarded for containing too 
much order. As such, model 1 was selected for use and can be seen in figure 18. PDB ID 
2NBI was used as a template with a 0.854 alignment score. Interesting, this protein is a cell 
wall protein, further adding to the assumption that this domain is highly disordered. 
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Figure 16 - domain 2 of BRCA1, model generated by iTasser and visualised in Chimera. The model produced shows a 
potential docking site, and follows an expected structure. 

 

 

Figure 17 - domain 3 of BRCA1, model generated by iTasser and visualised in Chimera. The model produced shows a 
potential docking site, and follows an expected structure. 
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Figure 18 - domain 4 of BRCA1, model generated by iTasser and visualised in Chimera. The model produced is highly 
disordered and expected for this domain. 

 
 

 
3.2.5 Joined BRCA1 Model 

The combined model was generated by linking together the 5 individual domain models from 
iTasser using the method in section 2.4. Individual domains were not analysed due to the 
potential structural effect across entire protein structure. The combined model can be seen 
below in figure 19 coloured by domain. The domains have been coloured according to this 
scheme: domain 1 red, domain 2 yellow, domain 3 green, domain 4 cyan, and domain 5 
purple The model follows the rough structure of 2 main sections made of domains 1, 2, and 3 
and then domain 5, linked by the disordered region domain 4 as expected. 
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Figure 19 – the complete joined BRCA1 model, generated from individual iTasser models visualised in Chimera. The domains 
have been coloured according to this scheme: domain 1 red, domain 2 yellow, domain 3 green, domain 4 cyan, and domain 

5 purple. The joined model had the expected structure of two distinct regions linked by the disordered domain. 
 

 3.3 Structural Analysis 

All models generated from the mutation pipeline were analysed for heuristic hydrogen bonds 
and van der Waals clashes and contacts around a specific residue. The mutated BRCA1 
proteins and the wildtype BRCA1 proteins were compared for differences in the values 
between these measurements. Any differences could indicate a change in structure – 
potentially effecting binding regions or overall stability of the protein. Whole protein structure 
was considered to maintain rotamer constraint, opposed to analysis by individual domains.  

 

3.3.1 Pathogenic SNP Dataset 

The pathogenic dataset consisted of 32 SNP mutations. Each was inputted into the mutation 
pipeline, generating a mutated protein model which was used to calculate values for the 
number of hydrogen bonds and van der Waals forces around the mutated residue. This data 
was used to assess structural impact of SNPs, with the idea that pathogenic SNPs would 
affect structure more than benign SNPs. The results of these are shown below in figure 20. 
The data is presented in the raw collection form, where no adjustments to measurements 
have been taken. The highest and lower point is marked by the error bars and excludes any 
outliers to the data. The lower quartile and the upper quartile are represented in the box 
plots, and the median of the data is shown within the box. Notably, there is a large variation 
in number of stabilising van der Waals contacting residues and atoms. In some variants the 
number of disruptive van der Waals clashes are high, while the number of hydrogen bonds 
remains low across all variants. 



41  

 

 
Figure 20 – The distribution of structural heuristic functions applied to the mutated residue in known pathogenic SNPs. The 
largest spread in data occurs in the stabilising van der Waals forces, while there exists a small number of disruptive van der 

Waals clashes. 
 

3.3.2 Benign SNP Dataset 

The benign dataset also consisted of 32 SNP mutations. Each was inputted into the mutation 
pipeline, generating a mutated protein model which was used to calculated values for the 
number of hydrogen bonds and van der Waals forces around the mutated residue to assess 
structural impact. The results of these are shown below in figure 21. The data is presented in 
the raw collection form, where no adjustments to measurements have been taken. The 
highest and lowest point is marked by the error bars and excludes any outliers to the data. 
The lower quartile and the upper quartile are represented in the box plots, and the median of 
the data is shown within the box. There is a large spread in the number of stabilising van der 
Waals contacts, however the number of disruptive van der Waals clashes are low. The 
number of lenient hydrogen bonds varies within the benign mutations. 
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Figure 31 – The distribution of structural heuristic functions applied to the mutated residue in known benign SNPs. The 

largest spread in data occurs in the stabilising van der Waals forces, while there are only a small number of disruptive van 
der Waals clashes. 

 

3.3.3 Pathogenic SNP Dataset versus Wildtype Residue Dataset 

The wildtype dataset was collected in order to visualise and calculate the differences in these 

bonds and forces. The wildtype dataset was collected by specifying the same locations 

identified as SNPs, but using the wildtype model as the reference instead of a mutated 

protein. Here, the raw data collected from the wildtype sample and the pathogenic sample 

are compared to reveal the changes in heuristics and can be seen in figure 22. Throughout 

the measurements taken, there are clear differences between the number of the pathogenic 

and wildtype proteins. The comparison between the pathogenic mutations and the wildtype 

reveal that on average, there is a smaller number of stabilising van der Waals contacts, as 

well as fewer hydrogen bonds in the pathogenic mutants than the wildtype. 
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Figure 22 – A comparison showing the different distribution of structural heuristic functions applied to the mutated residue 
in known pathogenic SNPs (pink) and the corresponding unmutated residue in the wildtype (orange). The comparison shows 

that the pathogenic mutated residues have on average more van der Waals clashes, fewer stabilising van der Waals 
contacts, and fewer H-bonds than they would in the wildtype protein. 

 

Welch’s T-test was used to identify which heuristic functions showed significant difference 

(p<0.05) between the mutant pathogenic dataset and the wildtype protein dataset and the 

results can be seen in table 8. Significant values are indicated in the table by an asterisk (*). 

The P-value for nearly all functions was less than 0.05, showed significant difference. 

Interestingly, the only function identified as not significantly different was the van der Waals 

connecting atoms. Van der Waals clashes and contacting residues, as well as both types of 

hydrogen bonding, were identified as significantly different in the pathogenic proteins 

compared with the wildtype proteins. 

Table 8 – Welch’s T-test of the measured value at target residue of structural heuristic functions of known pathogenic SNPs 
and the corresponding unmutated residue in the wildtype. Van der Waals clashes, contacting residues, and both types of 
hydrogen bonds were identified as being statistically significantly different (p>0.05) between the wildtype and pathogenic 
proteins, and are marked with an asterisk (*). 

 

Heuristic Function p-Value 

Clashing Atoms 0.001004 * 

Clashing Contacts 0.001007 * 

Contacting Atoms 0.692 

Contacting Residues 0.003501 * 

Lenient Hydrogen Bonds 0.004478 * 

Strict Hydrogen Bonds 0.00116 * 
 
 

3.3.4 Benign SNP Dataset versus Wildtype Residue Dataset 

The wildtype dataset was collected in order to visualise and calculate the differences in these 

bonds and forces. The wildtype dataset was collected by specifying the same locations 

identified as SNPs, but using the wildtype model as the reference instead of a mutated 

protein. Here, the raw data collected from the wildtype sample and the benign sample are 
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compared and can be seen in figure 23. This comparison shows that on average, the 

difference in heuristic functions between the benign mutations and the wildtype protein is 

minimal. There is a slight decrease in the stabilising van der Waals contacts between 

residues, but also slightly more disruptive van der Waals clashes between both atoms and 

residues in the benign mutations compared to the wildtype residues. 
 
 

 

 
Figure 23 – A comparison showing the different distribution of structural heuristic functions applied to the mutated residue 

in known benign SNPs (blue) and the corresponding unmutated residue in the wildtype (orange). The comparison shows that 
the benign mutated residues have slightly fewer stabilising van der Waals contacts between residues, and more disruptive 

van der Waals clashes between both atoms and residues than they would in the wildtype protein. 
 

Welch’s T-test was used to identify which heuristic functions showed significant difference 

(p<0.05) between the mutant benign dataset and the wildtype protein dataset and the results 

can be seen in table 9. Significant values are indicated in the table by an asterisk (*). Two 

functions were identified as being statistically different between the wildtype and benign 

mutants with a p-value less than 0.05: the van der Waals clashing residues and the lenient 

hydrogen bonds. While these are statistically significant at this p-value, the differences are 

markedly less significantly different than for the pathogenic mutations for the same functions. 

The remaining functions are not statistically different between the wildtype residues and 

benign mutants. 
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Table 9 - Welch’s T-test of the measured value at target residue of structural heuristic functions of known benign SNPs and 
the corresponding unmutated residue in the wildtype. Van der Waals clashing residues and lenient hydrogen bonds were 
shown to have a statistical significant difference (p>0.05) between the wildtype and benign proteins, and are marked with 
an asterisk (*). 

 

Heuristic Function p-Value 

Clashing Atoms 0.06574 

Clashing Residues 0.04488 * 

Contacting Atoms 0.5722 

Contacting Residues 0.5556 

Lenient Hydrogen Bonds 0.02062 * 

Strict Hydrogen Bonds 0.2016 
 
 

3.3.5 Pathogenic SNP Dataset Absolute Deviation 

The absolute deviation of the pathogenic data from the wildtype data was calculated by 

finding the difference in the values between the two datasets for each specified residue and 

can be seen in figure 24. These changes can be used to infer which changes potentially 

have a large impact on structural stability. An absolute value was taken to remove any 

negative changes between the two datasets. The data shows that there was a large change 

in the number of stabilising van der Waals contacting atoms, and a smaller but noticeable 

change in the van der Waals contacting residues. Smaller changes can be observed in the 

van der Waals clashes and hydrogen bonds, with changes in the hydrogen bonds being on 

average greater than that of the van der Waals clashes. 
 

 
Figure 24 – The distribution of absolute deviation from the wildtype of structural heuristic functions applied to the mutated 
residue in known pathogenic SNPs. The largest change in data occurs in the stabilising van der Waals forces between both 

atoms and residues, while smaller changes are seen in the van der Waals cashes and hydrogen bonds. 
 

3.3.6 Benign SNP Dataset Absolute Deviation 

The absolute deviation of the pathogenic data from the benign data was calculated by finding 

the difference in the values between the two datasets for each specified residue and can be 
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seen in figure 25. An absolute value was applied to remove any negative changes between 

the two datasets. The data showed a significantly small change in most measurements 

taken, with four measurements having the largest change of less than 5 from the wildtype of 

the same location. The van der Waals clashes and hydrogen bonds had on average an 

equally sized change. As with the pathogenic dataset, the largest change can be observed in 

the van der Waals contacting atoms, but also a smaller change in the van der Waals 

contacting residues can be seen. 
 

 
Figure 25 - The distribution of absolute deviation from the wildtype of structural heuristic functions applied to the mutated 

residue in known benign SNPs. The largest change in data occurs in the stabilising van der Waals forces between both atoms 
and residues, while equal changes are seen in the van der Waals cashes and hydrogen bonds. 

 

3.3.7 Pathogenic SNP Dataset versus Benign SNP Dataset 

The pathogenic and benign datasets were then compared to each other using the absolute 

deviation of the values from the wildtype and can be seen in figure 26. The comparison 

shows that there is a larger change in the stabilising van der Waals contacts in the 

pathogenic dataset compared to the benign dataset. However, the disruptive van der Waals 

clashes appear to have almost equal changes in both the pathogenic and benign dataset. It 

can also be seen that the strict hydrogen bonds have a similar level of change between the 

pathogenic and benign datasets, while there is a slightly larger change in the lenient 

hydrogen bonds in the pathogenic dataset compared to the benign dataset. 
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Figure 26 - A comparison of the different distributions of absolute deviation from the wildtype of structural heuristic 
functions applied to the mutated residue in known pathogenic SNPs (pink) and in known benign SNPs (blue). The comparison 

shows that there is a larger change in the stabilising van der Waals contacts in the pathogenic dataset compared to the 
benign dataset, while the disruptive van der Waals clashes appear to have almost equal changes in both the pathogenic and 

benign dataset. 
 

Welch’s T-test was used to identify which heuristic functions showed significant difference 

(p<0.05) between the mutant pathogenic dataset and the mutant benign absolute deviation 

dataset and the results can be seen in table 10. Significant values are indicated in the table 

by an asterisk (*). Three functions were identified as being statistically different between the 

pathogenic and benign mutants with a p-value less than 0.05: the van der Waals contacting 

atoms and residues, and the strict hydrogen bonds. The remaining functions are not 

statistically different between the pathogenic mutants and benign mutants. 

Table 10 - Welch’s T-test of the absolute deviation value at target residue of structural heuristic functions of known 
pathogenic SNPs and known benign SNPs. Van der Waals clashing residues and lenient hydrogen bonds were shown to have 
a statistical significant difference (p>0.05) between the wildtype and benign proteins, and are marked with an asterisk (*). 

 

Heuristic Function p-Value 

Clashing Atoms 0.5275 

Clashing Residues 0.7836 

Contacting Atoms 0.01014 * 

Contacting Residues 0.04702 * 

Lenient Hydrogen Bonds 0.1642 

Strict Hydrogen Bonds 0.01232 * 
 

 

4. Discussion 
4.1 Summary 

A semi-manual run, requiring some human input, of the entire process from gene name to 

generating variant protein models, was completed with a small set of just over 60 SNPs 

spread between both pathogenic and benign variants. This process was aided by the use of 
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computational tools such as databases to ensure consistency of data, and pipelines to 

reduce the need for human input and human error. Without these tools, the analysis done by 

this project wouldn’t be possible due to the sheer scale of data and errors that arise when 

databases are created by hand. 

Structural analysis of the proteins generated through homology modelling methods and 

mutation modelling pipelines shows promising significance in the change between selected 

heuristic functions – hydrogen bonding and van der Waals forces. The most significant 

difference between the benign and pathogenic changes lies within the contacting atoms and 

residues, suggesting that the alteration in these features can potentially be used to determine 

pathogenicity. 

Areas of interesting further study were also identified through this project, such as the 
consideration of SNP location within the protein (i.e. does this lie within an important 
functional region?), the proteins that BRCA1 directly interacts with (i.e. is the interaction 
disrupted by a mutation?), and the thermodynamics of protein stability (i.e. does the increase 
or decrease of heuristic functions within a protein cause a physical, measurable, change to 
stability?). 

Additional areas of future study and incorporation were identified, such as the inclusion of 
splice variants, that were not currently present in the pipeline. Splice variants were not the 
focus point of this study currently, but it would be possible to account for these without 
modification to the pipeline if there was a known UniProt ascension code for each splice 
variant. Additionally, information about PTMs and DNA methylation would be interesting to 
add within the pipeline. However, there is currently a shortage within the pool of known 
structures with this information. With both DNA methylation and PTMs, such as acetylation, 
there is a lack of faithful modifications, reducing the ability to generate accurate and reliable 
structural models. 

 

4.2 BRCA1 Pathway Associations 

The direct interactions with BRCA1 found from pathway analysis reveal specific target 

locations to study for SNP structural changes. Using existing knowledge of the interactions 

between BRCA1 and the newly added genes, shown in table 6 in section 3.1.2, protein- 

protein binding and interaction sites on BRCA1 can be discovered and further analysed for 

changes within these regions. Disruptive mutations within a binding site can potentially 

destroy protein function by removing access to this interaction. The function in regards to 

BRCA1 of each new gene is detailed below, indicating potential areas for study of the 

interactome. 

UBE21 is essential for the SUMOylation process, and through a reaction catalysed by the 

PIAS1,4 complex which acts as an E3-type small ubiquitin-like modifier (SUMO) ligase 

(Molinaro, Martoriati, Cailliau, 2021). UBE21 is found in three different complexes within the 

cell: SUMO1:C93-UBE21, SUMO2:UBE21, and SUMO3:UBE21. More SUMO2-BRCA1 and 

SUMO3-BRCA1 is observed in vivo than SUMO1-BRCA1 (Zhao et al., 2020). SUMOylation 

is a process that occurs as a response to cellular stress, with SUMOylation of SUMO2 and 3 

seen more frequently when oxidative stress occurs and SUMO1 participating in normal 

cellular responses (Wang, Qian, Yang, & Gu, 2021). SUMOylation of BRCA1 increases its 

ubiquitin ligase activity, which in turn enhances the ability of BRCA1 to bind and regulate 

particular transcription factors. 

The BRCA1:BARD1 heterodimer is necessary for maintaining the normal repair of dbDNA 

breaks by HR, the BRCA1-mediated tumour suppressor response, and normal development. 

BRCA1 contributes to the stability and maintenance of the chromosome through regulation of 

centrosomes (Yoshino, Fang, Qi, Kobayashi, & Chiba, 2021). BRCA1 and BARD1 both 

contain RING domains that have E3 ubiquitin ligase activity, which sees a dramatic increase 
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when in the BRCA1:BARD1 heterodimer (Otsuka, Yoshino, Qi, & Chiba, 2020). The 

heterodimer ubiquitinates centrosomal proteins, such as γ-tubulin, in order to regulate 

centriole duplication. There are reports of pathogenic BRCA1 mutations that abolish the 

formation of the BRCA1:BARD1 heterodimer. 

DMC1, CDK4, RAD51, BRCA2, and ATM are all involved in the same reaction pathway to 

generate the meiotic single-stranded DNA invasion complex. There are two RecA homologs 

found within this pathway: RAD51 and DMC1 (which is meiosis specific), ensuring faithful 

chromosome segregation (Okorokov et al., 2010). HR repair of dsDNA breaks generates a 

long overhanging 3’ tail which can contain hundreds of nucleotide bases. Strand invasion 

and homologous pairing through presynaptic RAD51 initiates the strand synthesis of error- 

free repair (Short et al, 2016). The catalytic activity of RAD51 causes ATP hydrolysis, 

allowing components of HR repair to dissociate. Both DMC1 and RAD51 function in a 

similar way, but DMC1 is specifically implicated in meiotic crossing-over (Da Ines et al., 

2013). 

Knockouts of both DMC1 or RAD51 result in ineffective recombination, therefore both are 

required for function recombination. BRCA1 and BRCA2 are both responsible for the 

transport of RAD51 to the site of recombination, while only BRCA2 is responsible for 

the transport of DMC1 (Jimenez-Sainz, & Jensen, 2021). BRCA2 is required to enable the 

formation of RAD51 and DMC1 filaments. 

While this project didn’t address the exploration of analysing SNPs in specific locations, the 

impact of disruptive mutations in residues that are known to interact with other proteins 

remains an exciting prospect in classifying the clinical effect of a SNP. Recent studies into 

predicting functional impacts of variants using interaction network frames revealed that 

studying the interactome as well as the protein itself will benefit functional prediction (Ozturk, 

& Carter, 2021). Additionally, a recent study into cancer-related SNPs tested a combined 

approach of structure analysis and flexible protein-protein interactions with machine learning, 

which effectively predicted structural effects and changes within interactions (Lie et al., 

2021). These recent studies suggest that further investigation into the direct protein 

interactions with BRCA1 would be beneficial to elucidating the functional impact of SNPs and 

thus the classification of unknown SNPs. 

4.3 Regional Variant Analysis Across BRCA1 

Using the table of domains seen in section 3.2.2, it can be seen that areas of high variants 

can often be observed within important functional regions. Referring to figure 11 in section 

3.1.3, it can be seen that between 0 and 99 amino acids, there are a total of 69 variants. 

These positions lie within the zinc finger of BRCA1, a highly conserved region at the amino 

terminal of the protein. Zinc finger function is known to differ between protein families such 

as oncoproteins and regulatory proteins, it is implicitly linked to inhibition of apoptosis in 

BRCA1 (Johnson, & Kruk, 2002). The cysteine-aspartate specific protease (caspase) path- 

way is the most common pathway by which cells undergo apoptosis. Disruption of the 

BRCA1 gene via a 185del mutation within the zinc linker region leads to an increase in 

caspase-3 dependent apoptotic response. Exploration of variants within the zinc finger 

domain itself might reveal similar mechanics, thus implicating the caspase pathway as a drug 

target site. 

Referring back to the same figure 11 within 3.1.3, it can be seen that across the BRCT 

domain of BRCA1, there are 2 higher than average regions of amino acids. Across the region 

of 1600 – 1699 there were 49 variants, and across the region of 1700 – 1799 there were 79 

variants. Figure 12 in section 3.1.3 shows that these variants are located in particular 

towards the end of the first region, and the start of the second region, where some of the 

functional activity is located. The BRCT domain at the BRCA1 C-terminus acts as a 
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transcriptional activator of cell-cycle regulated genes, and also as a corepressor of 

transcriptional factors during the cell cycle G2/M checkpoint through association with zinc-

finger protein 350 (ZNF350) (Zeng, & Sang, 2017). The BRCA1 BRCT/ZNF350 complex 

represses expression of gene commonly involved in the proliferation and vascular formation 

of tumours, particularly angiopoitin-1 and high-mobility group AT-hook2. Variants that lie 

within the BRCT finger can potentially disrupt the association with ZNF350, leading to a 

dampening of the repression function of the complex. Additionally, the BRCT domain of 

BRCA1 is commonly known to interact with phospho-ligands and in particular form hydrogen 

bonds with these phosphor ligands at S1655 residue (Billing et al., 2018). Pathogenic 

mutations at this S1655 residue leads to a disruption of the interaction between BRCA1 and 

its phospho-ligands. Further investigations into the particular positions of these variants 

within the BRCT domain might reveal new information knowledge about the effects of 

pathogenic mutations within important functional regions, and potentially allow for new drug 

targets. 

4.4 Heuristic Function Analysis 

The heuristic functions of van der Waals clashes, contacts, and hydrogen bonds were 

selected for testing within mutated proteins. These functions are based on physicochemical 

entities that are vital for maintaining the structural integrity of proteins, and therefore for 

maintaining protein function. Assessing the change in heuristic functions between pathogenic 

and benign variants can reveal information about the underlying molecular causation 

underlying a disruptive mutation. 

Van der Waals contacts are crucial for stabilising the tertiary (and sometimes quaternary) 

structure of a protein, often shaping structurally significant areas such as protein binding 

regions. Additionally, these forces are responsible for the structural stability of the protein, 

essentially holding together protein secondary structures and maintaining folded structures. 

Despite the weak nature of van der Waals forces, the high number of these forces within a 

protein make them significant in protein folding (Pollard, Earnshaw, Lippincott-Schwartz, & 

Johnson, 2017). Interrupting these contacts can potentially induce a change of conformation, 

resulting in the loss of structure or function of a protein. The resulting data collected across 

32 variants from both pathogenic and benign datasets shows that the level of change within 

the pathogenic variant set is significantly different to that of the benign variant set. 

Not only is there a significant difference between the pathogenic variant and benign variant 

datasets in regard to the van der Waals contacts, it can also be seen that there is difference 

in the strict hydrogen bonds. In order to be classified as a strict hydrogen bond, Chimera 

needs to consider atom types and geometric criteria (UCSF Computer Graphics Laboratory, 

2014). As above, hydrogen bonds are critical for maintaining structure right down to the 

secondary structure level. Disruption of hydrogen bonds can greatly decrease structure 

stability and function, as each hydrogen bond has been demonstrated to contribute, on 

average, around 1 kcal mol-1 per bond (Pace et al., 2014) indicating that they significantly 

contribute to protein stability. 

From table 10 in section 3.3.7, it can be seen that there is a statistically significant difference 

between the absolute change in the stabilising van der Waals contacts between the benign 

and pathogenic variants datasets. The significant difference between these implies that 

either a large increase or decrease in these stabilising contacts can alter the function of the 

protein. Decreasing these stabilising forces will disrupt the stability of the protein, and 

introduce more flexibility into functionally important regions which reduces the ability to 

maintain the suitable conformation required for specific function denaturing. Equally as 

destructive, an increase of these forces can lead to misfolding and contacts between parts of 

the protein not seen in the wildtype, resulting in insufficient flexibility to allow sufficient 
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conformational freedom required for specific function. 

The pathogenic variant dataset from section 3.3.3 can be seen to show statistically 

significant changes across nearly all functions tested when compared to the corresponding 

wildtype. Across all 6 functions tested, only one did not show significant change: the van der 

Waals contacting atoms. Meanwhile, a large change can be observed across the other 

functions. This indicates that the majority of these functions are vital to maintaining the 
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correct function of the BRCA1 protein, and that alteration in these particular heuristic 

functions can lead to damaging mutations. 

Where significant changes are observed within the benign variant dataset, these changes 

can be seen to be much less significant than the pathogenic variant dataset, as seen in table 

9 in section 3.3.4. For this dataset, the van der Waals disruptive clashes and the lenient 

hydrogen bonds are found to be significantly different to the wildtype. The decrease in 

significant changes could further help us discern which functions are crucial for maintaining 

correct function and structure; if a significant change can be seen within the benign variant 

dataset where function is broadly maintained, then it can be assumed that this 

physicochemical parameter contributes less to the overall stability as function hasn’t been 

lost, or that structural maintenance in that particular location is not so important for the 

maintenance of function. 

Disruption of both hydrogen bonds and van der Waals forces can cause loss of function 

within a protein directly by interrupting protein-protein interactions, removal of enzymatic 

activity, or though inducing structural instability leading to degradation and misfolding (Birolo 

et al., 2021). Destabilisation can be seen in many neurodegenerative disorders, such as 

Parkinson’s disease. However, thermodynamics within human proteins is still not fully 

understood, and so the process for assessing if a variant disrupting protein stability is 

disease causing or not, is not fully developed (Sanavia et al., 2020). Integration of a process 

for determining the thermodynamic change in a protein from pre- and post-mutation would 

greatly improve the insight this tool can provide. 

4.5 Potential as a SNP Classification System 

Currently, there are many SNP classification systems in use and development, focusing on 

different areas for classification. Nearly all approaches utilise machine learning methods, 

training on particular properties within known variant datasets. It is worth noting that there 

currently exists no SNP classification system that considers structural parameters, making 

this project a novel area of study and an exciting approach to not only classifying SNPs, but 

also furthering understanding of their function and effects. A recent literature review into the 

classification of SNPs in complex brain disease diagnosis using machine learning has shown 

that there is huge potential for the use of machine learning in biological settings despite 

certain drawbacks (Ahmed, Alarabi, El-Sappagh, Soliman, & Elmogy, 2021), such as small 

datasets and the intensity of such computing methods. Therefore, integration of a larger 

dataset from other sources besides ClinVar would provide the necessary dataset richness 

Classification of susceptibility to asthma based on SNPs within a person’s genome has 

shown that prediction of genotype-phenotype association can be achieved with high 

accuracy when integrating various machine learning methods (Gaudillo et al., 2019). A study 

into classifying SNPs for breast cancer diagnosis demonstrated that a variety of machine 

learning techniques are needed to achieve high accuracy within classification (Boutorh, & 

Guessoum, 2015). Reliance on a single technique produced poor accuracy, due to the large 

number of features but relatively small data sample, otherwise known as the dimensionality 

problem. 

Through further work, a classification algorithm could be developed from the premise of this 

project which serves as a proof of concept. The structural effects of deleterious SNPs in the 

human RASSF5 gene has been studied (Hossain, Roy, & Islam, 2020), where it was 

discovered that SNPs in the binding region crucial to the protein’s function reduce the affinity 

for the ligand. This further supports using structural effects for SNP prediction, where 

incorporation of structurally important regions could be considered. Additionally, the 

consideration of amino acid side chain structure could be incorporated into the system to 
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provide further scope for investigation of structural alterations. This is especially useful for 

changes such as from a small side chain into a large one. 

4.6 Conclusion 

Structural analysis by application of heuristic functions has a strong and powerful potential in 

use of characterisation of SNPs with unknown clinical significance. Through additional work 

and expansion of the pipeline/system, this tool could be used to provide insights into 

pathogenic variants, the damage these cause, and ultimately for identifying targets for 

treatment or diagnosis of breast cancer and other diseases linked to BRCA1. The benefits of 

this tool expand beyond use with the BRCA1 gene, as the pipeline can be adapted for any 

gene and protein due to the nature of the input into the command line as it is a generic 

approach. The heuristic functions of a protein associated with structural changes appear to 

be a significant factor in determining the pathogenic effects of a SNP, where significant 

differences were observed between the wildtype and pathogenic data, and also between the 

benign and pathogenic absolute deviation dataset. Further investigation into both the role of 

associate genes taken from pathway analysis and consideration of the location of a SNP 

could provide further detail of what precise mechanism determines pathogenicity. 

Additionally, integrating physics systems to quantify thermodynamic change within a protein 

would yield insightful information about the impacts of changes in protein stability. 

Further work on the project pipeline to scale data collection up to include more SNPs, a wider 

range of studied properties, and more comparisons between these properties would yield a 

deeper insight into the structural effects of SNPs, both in disease and benign variants. 

Furthermore, integration of machine learning techniques seen within current systems in 

section 4.4 would be highly beneficial for making the tool user friendly; fully automating the 

system to classify mutations as pathogenic or benign without such high reliance on clinical 

and laboratory investigations. 
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