
Taking stock of available technologies for
compliance checking on first-order knowledge⋆.

Livio Robaldo1, Sotiris Batsakis2, Roberta Calegari3, Francesco Calimeri4,
Megumi Fujita5, Guido Governatori6, Maria Concetta Morelli4, Giuseppe

Pisano3, Ken Satoh5, and Ilias Tachmazidis2

1 Legal Innovation Lab Wales, Swansea University livio.robaldo@swansea.ac.uk
2 Huddersfield University {s.batsakis,i.tachmazidis}@hud.ac.uk
3 University of Bologna {roberta.calegari,g.pisano}@unibo.it

4 University of Calabria {francesco.calimeri,maria.morelli}@unical.it
5 National Institute of Informatics of Japan {kuma,ksatoh}@nii.ac.jp

6 Independent researcher guido@governatori.net

Abstract. This paper analyses and compares some of the automated
reasoners that have been used in recent research for compliance check-
ing. We are interested here in formalizations at the first-order level. Past
literature on normative reasoning mostly focuses on the propositional
level. However, the propositional level is of little usefulness for concrete
LegalTech applications, in which compliance checking must be enforced
on (large) sets of individuals. This paper formalizes a selected use case in
the considered reasoners and compares the implementations. The com-
parison will highlight that lot of further research still need to be done
to integrate the benefits featured by the different reasoners into a sin-
gle standardized first-order framework. All source codes are available at
https://github.com/liviorobaldo/compliancecheckers

Keywords: Compliance checking · Normative reasoning · LegalTech

1 Introduction

LegalTech is experiencing growth in activity. Current LegalTech technologies
mostly use Natural Language Processing (NLP) [17] or Machine Learning (ML)
[7] to process documents and replicate legal decision-making.

However, ML is based on statistical reasoning : new cases are classified by
similarity with the cases included in the training set. As a result, performance
are intrinsically limited. Furthermore, and most important of all, as it is well-
known ML tends to behave like a “black box” unable to explain its decisions and

⋆ Copyright © 2022 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). Livio Robaldo has been
supported by the Legal Innovation Lab Wales operation within Swansea University’s
Hillary Rodham Clinton School of Law. The operation has been part-funded by the
European Regional Development Fund through the Welsh Government.



2 Robaldo et al.

it can therefore lead to biases and other discriminatory outcomes: ML trained
on biased datasets tend to replicate the same biases on new inputs.

In order to overcome the limits of ML, lot of recent research has been devoted
to investigate approaches in symbolic AI. The idea is to plug into the ML-
based system human-understandable symbols, i.e., concepts and other logical
constructs, that enable forms of logical reasoning [3].

Logical formalization of norms requires deontic operators to represent the
involved modalities (obligatory, permitted, prohibited) and non-monotonic op-
erators fit to handle the central role of defeasibility in normative reasoning [14].

Formalizations found in past relevant literature are typically propositional,
i.e. their basic components are whole propositions. However, propositions are
of little usefulness for legal reasoning tasks needed within real-world LegalTech
applications [1], due to their very limited expressivity. It is necessary to enhance
the expressivity of the underlying logical format to the first-order level, fit to
distinguish individuals from predicates and to allow the evaluation of deontic
formulae to iterate over (large) sets of individuals.

This paper focuses on compliance checking with conflicting and compensatory
norms. Compliance checking is the normative reasoning task of assessing whether
a certain state of affairs complies or not with a set of norms. We are interested
here in sets of norms where some of them conflict with others, for which it is
necessary to establish preference criteria among them and to introduce defeasible
operators to implement the overriding. On the other hand, compensatory norms
are those that may be added “on the fly” to the set of norms in force whenever
a violation occurs. For instance, if a traffic warden finds my car parked on the
pavement, he will oblige me to pay a sanction. The payment of the sanction is
then seen as a compensatory obligation for my illegal parking.

In this paper, we follow [19], which distinguishes between monotonic knowl-
edge, encoded within an OWL ontology for the GDPR called PrOnto [20], and
non-monotonic knowledge, i.e., the deontic and defeasible legal rules that imple-
ment the selected GDPR norms, encoded within a separate knowledge base in
LegalRuleML [2]. Following [20], in this paper we will formalize the monotonic
knowledge of our use case in OWL and we will define separate legal rules in the
formats that we will compare.

2 The use case

In this paper, we use the following use case:

(1) - Art. 1. The licensor grants the licensee a licence to evaluate the product.
- Art. 2. The licensee must not publish the results of the evaluation of
the product without the approval of the licensor. If the licensee publishes
these results without the approval, the material must be removed.

- Art. 3. The licensee must not publish comments about the evaluation,
unless the licensee is permitted to publish the results of the evaluation.

- Art. 4. If the licensee is commissioned to perform an independent eval-
uation of the product, then the licensee is obliged to publish its results.



Compliance checking on first-order knowledge 3

The use case in (1) is a simplification of use case 2 from [4]. We simplified the
use case by removing all temporal information [26]. For instance, in the original
version of Article 2 the licensee is obliged to remove the material within 24
hours after he had published it. We believe that adding time management will
not constitute a relevant additional element of comparison; although we consider
it as part of our future work, it is not in the scope of the present one. Thus, we
interpret norms with respect to the state of affairs holding at the time “now”. If
“now” the licensee has published the material without the approval and he has
“now” removed it, then he is “now” complying with Article 2.

According to standard legal theory [29], norms are formalized as if-then rules
having a deontic statement (i.e., obligation, permission, or prohibition) in the
consequent and, in the antecedent, the conditions for this statement to hold true.

Norms and corresponding if-then rules may be defeasible, in the sense that
some of them may override others. Therefore, in order to properly formalize
the articles in (1), we must also identify and formalize which norms override
which other ones. In Art.1, the licensee is by default prohibited to evaluate the
product; however, if he has the licence he is permitted to do so and this overrides
the prohibition. Similarly, in Art.2, he is prohibited to publish the results unless
he has the approval. In Art.3, the licensee is by default prohibited to publish
comments unless he is permitted to publish the results. Finally, Art.4 states that
in case the evaluation has been commissioned, the licensee is obliged to publish
the results and this overrides any prohibition to do so.

On the other hand, as said above, some of the rules may compensate violation
of others. These rules specify obligations that, when fulfilled, repair the non-
compliance of other rules. The use case in (1) contains a single compensation
in Article 2: if the licensee publishes the result of the evaluation without the
approval, a new obligation holds for him: the licensee is obliged to remove them.
In case this obligation is fulfilled, the violation has been repaired/compensated.

3 Formalizing norms at the first-order level

In this research work, we implemented the norms in (1) in six available formats
for legal reasoning: SHACL [28], ASP-Core-2 [11], PROLEG [30], DLV [9], Arg2P
[10], and SPINdle [16]. The if-then rules in (1) has been implemented at the first-
order level, except in SPINdle in which the rules must be grounded.

Space constraints forbid us to report all formalizations in the paper. Thus, we
will focus only on the two reasoners that have been identified as the “extremes”
of the current state of the art: ASP-Core-2 and Arg2P. The reader is however
invited to examine and execute all formalizations available on GitHub7.

In line with [20], we stored all the monotonic knowledge of the use case within
an OWL ontology, shown in Figure 1. The if-then rules representing the norms
are separately formalized in the considered formats. These rules will all involve
predicates corresponding 1:1 to the OWL resources in the ontology.

7 https://github.com/liviorobaldo/compliancecheckers



4 Robaldo et al.

Fig. 1. Classes and object properties of the reference ontology (implemented in
Protégé); the class Approve is shown in full detail.

Nevertheless, the concepts in Figure 1 are not enough to formalize the norms.
We also need concepts to model the deontic modalities, the defeasible rules,
and the compensations. These concepts are inserted in a new separate ontology
shown in Figure 2. To facilitate comprehension of the formulae, in Figure 2 we
introduce subclasses of Exception whose names directly refer to the articles
in the use case denoting the exceptions. The ontology includes a further object
property compensate, not shown in Figure 2, that relates individuals of the class
Obligation with individuals of the (union) class Obligatory ∪ Prohibited.
Finally, we insert a further class Violation whose individuals will refer to the
violated (and not compensated) obligations or prohibitions.

Fig. 2. Extra classes to implement deontic modalities and defeasibility

3.1 Implementing the use case in ASP

In this subsection, we formalize the if-then rules as Answer Set Programming
(ASP) rules. ASP is a widely used formalism for knowledge representation and



Compliance checking on first-order knowledge 5

reasoning; see [8] for an introduction. ASP is one of the most popular formalisms
for AI, even at the industrial level [23]. Over the decades research has led to the
definition of a variety of ASP “dialects”, supported by corresponding ASP rea-
soners. The scientific community recently agreed on the definition of a standard
input language for ASP systems, namely ASP-Core-2 [11].

ASP is a purely declarative formalism based on (if-then) rules. A given com-
putational problem is solved in ASP by building a declarative logic program
whose intended models, called answer sets, correspond 1:1 to the solution of
the problem at hand. Since ASP is purely declarative, the order of the rules is
irrelevant. Knowledge is just additive, and the ASP reasoner solves a program
by searching for answer sets that satisfy all rules at once.

The ASP rule encoding Art.1 in (1), which states that the licensee is prohib-
ited to evaluate the Product unless exceptionArt1b holds, is shown in (2)8.

(2) prohibited(Ev):- evaluate(Ev), hasAgent(Ev,X), licensee(X),

hasTheme(Ev,P), product(P), not exceptionArt1b(Ev).

“not” implements negation-as-failure. Thus, “not exceptionArt1b(Ev)” is true
when exceptionArt1b(Ev) is either false or unknown. exceptionArt1b(Ev)
holds if the agent of Ev is granted a licence to evaluate the product. In such
a case, the evaluation is permitted. However, the basic ASP language does not
support conjunction of literals in rule heads; hence, in order to model such
situations the typical approach consists of introducing a specific rule to define
the condition, and then using it as antecedent of more than one rule:

(3) condition1(Ev):- evaluate(Ev), hasAgent(Ev,X), licensee(X),

hasTheme(Ev,P), product(P), isLicenceOf(L,P),

licence(L), grant(Eg), rexist(Eg), hasTheme(Eg,L),

hasAgent(Eg,Y), licensor(Y), hasReceiver(Eg,X).

exceptionArt1b(Ev) :- condition1(Ev).

permitted(Ev) :- condition1(Ev).

Since condition1(Ev) is only used in these three if-then rules, indeed the first
if-then rule in (3) is logically equivalent to a bi-implication, i.e., a definition.

Article 2 of the use case specifies both a prohibition and a compensatory
obligation. Licensees are prohibited to publish the result of an evaluation unless
this was approved by the licensor (first exception) or unless they were commis-
sioned to perform an independent evaluation (second exception). Licensees who
violate this prohibition are obliged to remove the published material.

The following rules define the prohibition described in Article 2a. The two
mentioned exceptions are represented by the predicates exceptionArt2b and
exceptionArt4a. We omit the ASP rules that entail exceptionArt2b as they
are similar to (3). The ones that entail exceptionArt4a is shown below in (8).

8 To model our use case, we will only consider Action(s) that exhaustively specify all
(and only) their thematic roles. If these are unknown, the formula in (12) should not
include thematic roles in the pre-conditions.



6 Robaldo et al.

(4) condition2(Ep, X, R):- publish(Ep), hasAgent(Ep, X), licensee(X),

hasTheme(Ep, R), result(R), hasResult(Ev, R), rexist(Ev),

evaluate(Ev), not exceptionArt2b(Ep), not exceptionArt4a(Ep).

prohibited(Ep):- condition2(Ep, X, R).

In order to model the compensatory obligation in Article 2c, we introduce a
set of ASP rules that allow us to derive the same knowledge expressed by the
following first-order logic well-formed formula:

(5) ∀Ep∀X∀R[(rexist(Ep) ∧ condition2(Ep,X,R))→∃Y[obligatory(Y) ∧
remove(Y)∧ hasAgent(Y,X)∧ hasTheme(Y,R)∧ compensate(Y, Ep)]]

The ASP vocabulary does not include existential quantifiers. Thus, we make use
of function symbols to simulate existential quantification via Skolemization. In
particular, in this case, we use the function symbol “ca” (as for “compensatory
action”) and replace Y by ca(Ep,X,R):

(6) obligatory(ca(Ep,X,R)) :- rexist(Ep), condition2(Ep,X,R).

remove(ca(Ep,X,R)) :- rexist(Ep), condition2(Ep,X,R).

hasAgent(ca(Ep,X,R),X) :- rexist(Ep), condition2(Ep,X,R).

hasTheme(ca(Ep,X,R),R) :- rexist(Ep), condition2(Ep,X,R).

compensate(ca(Ep,X,R),Ep) :- rexist(Ep), condition2(Ep,X,R).

Article 3 defines the prohibition to publish comments on the evaluation of the
product unless the licensee is allowed to publish the results of the evaluation of
the product. The rules encoding Article 3 are shown in (7).

(7) prohibited(Ep) :- publish(Ep), hasAgent(Ep, X), licensee(X),

hasTheme(Ep, C), comment(C), isCommentOf(C, Ev),

evaluate(Ev), rexist(Ev), not exceptionArt3b(Ep).

condition4(Ep) :- publish(Ep), hasAgent(Ep, X), licensee(X),

hasTheme(Ep, C), comment(C), isCommentOf(C, Ev), rexist(Ev),

evaluate(Ev), hasResult(Ev, R), hasTheme(Epr, R),

hasAgent(Epr, X), publish(Epr), permitted(Epr).

exceptionArt3b(Ep) :- condition4(Ep).

permitted(Ep) :- condition4(Ep).

Finally, Article 4 establishes the obligation to publish the results of the evalua-
tion in case this was commissioned, and thus an exception to Article 2.

(8) condition5(Ep) :- publish(Ep), hasAgent(Ep, X), licensee(X),

hasTheme(Ep, R), result(R), hasResult(Ev, R),

evaluate(Ev), rexist(Ev), hasTheme(Ec, Ev),

commission(Ec), rexist(Ec).

exceptionArt4a(Ep) :- condition5(Ep).

obligatory(Ep) :- condition5(Ep).



Compliance checking on first-order knowledge 7

Compliance checking via ASP rules. The ASP rules shown in the previous
subsection infer which actions are either prohibited or obligatory. Further ASP
rules are then needed to infer the violations occurring in the state of affairs.

We remind that a violation occurs either in case an action is performed even
if prohibited or in case an action is not performed even if obligatory. However,
in both cases if the action is associated with a compensatory obligation and the
latter was performed, the former does not indeed trigger any violation. The ASP
rules in (9) are able to carry out the desired inferences.

(9) compensated(X) :- compensate(Y, X), rexist(Y).

violation(viol(X)) :- obligatory(X), not rexist(X),

not compensated(X).

violation(viol(X)):- prohibited(X), rexist(X), not compensated(X).

referTo(viol(X), X) :- violation(viol(X)).

Finally, we add the ASP rule in (10) in order to intercept the occurrence in the
state of affairs of a removal action that has the properties required by the removal
action denoted by ca(Ep,X,R) in (6). The rule in (10) is needed to “solve” the
existential quantification, represented as a Skolemized functional symbol.

(10) rexist(ca(Ep,X,R)) :- remove(ca(Ep,X,R)),

hasTheme(ca(Ep,X,R),R), hasAgent(ca(Ep,X,R),X),

rexist(Er), remove(Er), hasTheme(Er,R), hasAgent(Er,X).

In other words, the rule in (10) “solves” the existential quantification (repre-
sented here as a functional term) by searching for an action with the same type
and the same thematic roles and that really exists in the model. If this action is
found, also the functional term ca(Ep,X,R) is asserted as really existing.

3.2 Implementing the use case in Arg2P

Several modern approaches to legal reasoning are based on structured argumen-
tation [22]. These approaches provide an extra layer to the representation of the
inferences by including therein the graph of the arguments that either support or
reject the conclusions. Although argumentation offers more functionalities than
what we need to model our use case, we still decided to consider it in our analysis
given the prominent role that it is increasingly assuming in LegalTech.

In this paper we consider Arg2P [6], a lightweight Prolog-based implemen-
tation for structured argumentation in compliance with the micro-intelligence
definition [10]. The research in Arg2P aims to identifying different functionali-
ties offered by available defeasible reasoners and to allow the users to configure
Arg2P on the ones they need in their domain and for the purposes of their
projects.

Arg2P format allows to encode labelled defeasible inference rules each from
a conjunction of premises to a conclusion. Overriding among rules is achieved



8 Robaldo et al.

via superiority relations. Arg2P format also includes modal operators9, “o” and
“p”, respectively stating whether an action is obligatory or permitted.

Article 1 of the use case is formalized via the following Arg2P formulae, which
corresponds to the ASP formulae in (2) and (3).

(11) art1a: evaluate(Ev), hasAgent(Ev,X), licensee(X),

hasTheme(Ev,P), product(P) => o(-evaluate(Ev)).

art1b: evaluate(Ev), hasAgent(Ev,X), licensee(X), licence(L),

hasTheme(Ev,P), product(P), isLicenceOf(L,P),

hasTheme(Eg,L), hasAgent(Eg,Y), licensor(Y), grant(Eg),

rexist(Eg), hasReceiver(Eg,X) => p(evaluate(Ev)).

sup(art1b, art1a).

If the licensor grants a licence, the rules in (11) derive that the evaluation is both
prohibited (o(-evaluate(Ev))) and permitted (p(evaluate(Ev))); however, as
the superiority relation sup(art1b, art1a) states that the rule with label art1b
is stronger than the rule with label art1a, only p(evaluate(Ev)) is inferred.

The if-then rule that encodes the prohibition in Article 2 is shown in (12).

(12) art2aPart1: evaluate(Ev), rexist(Ev), hasResult(Ev,R),

result(R), publish(Ep), hasAgent(Ep,X),

licensee(X), hasTheme(Ep,R) => condition2(Ep,X,R).

art2aPart2: condition2(Ep,X,R) => o(-publish(Ep)).

The rule implementing the obligations from Article 4 is then:

(13) art4a: publish(Ep), hasAgent(Ep,X), licensee(X), result(R),

hasTheme(Ep,R), hasResult(Ev,R), evaluate(Ev), rexist(Ev),

hasTheme(Ec,Ev), commission(Ec), rexist(Ec) => o(publish(Ep)).

sup(art4a, art2aPart2).

The superiority relation in (13) blocks the first rule in (12) in case the evaluation
of the product has been commissioned. A similar rule, which we omit in this
paper, blocks the first rule in (12) in case the licensor approved the publishing.

In order to represent the rest of Article 2, we introduce a set of rules that
parallel the ASP ones in (6) above. These are shown in (14).

(14) art2cPart1: condition2(Ep,X,R), o(-publish(Ep)), rexist(Ep)

=> o(remove(ca(Ep,X,R))).

art2cPart2: condition2(Ep,X,R), o(-publish(Ep)), rexist(Ep)

=> remove(ca(Ep,X,R)).

art2cPart3: condition2(Ep,X,R), o(-publish(Ep)), rexist(Ep)

=> hasTheme(ca(Ep,X,R),R).

art2cPart4: condition2(Ep,X,R), o(-publish(Ep)), rexist(Ep)

9 See https://pika-lab.gitlab.io/argumentation/arg2p-kt/wiki/syntax



Compliance checking on first-order knowledge 9

=> hasAgent(ca(Ep,X,R),X).

art2e: condition2(Ep,X,R), o(-publish(Ep)), rexist(Ep)

=> compensate(ca(Ep,X,R),Ep).

Finally, Article 3 of the use case is formalized as in (15): the publishing of the
comments is prohibited unless the publishing of the results is permitted.

(15) art3a: publish(Ep), hasAgent(Ep,X), licensee(X),

hasTheme(Ep,C), comment(C), isCommentOf(C,Ev),

evaluate(Ev), rexist(Ev) => o(-publish(Ep)).

art3b: publish(Ep), hasAgent(Ep,X), licensee(X), comment(C),

hasTheme(Ep,C), isCommentOf(C,Ev), hasResult(Ev,R),

evaluate(Ev), rexist(Ev), hasTheme(Epr,R), hasAgent(Epr,X),

publish(Epr), p(publish(Epr)) => p(publish(Ep)).

sup(art3b, art3a).

Compliance checking via Arg2P rules. Arg2P represents obligatory, prohib-
ited, and permitted actions via two modal operators “o” and “p”. Since Arg2P’s
input format does not allow to quantify over the predicates outscoped by “o”,
we must assert a different rule for each action that may be prohibited. In our
use case, two actions may be prohibited: the evaluation of the product and the
publishing of either its results or comments about it. Each of these two actions
is associated with a different Arg2P rule that detects the violation of its prohi-
bition. “∼” is the Arg2P operator for negation-as-failure.

(16) ccRuleEv: o(-evaluate(Ev)), rexist(Ev), ∼(compensated(Ev))
=> violation(viol(Ev)).

ccRuleEp1: o(-publish(Ep)), rexist(Ep), ∼(compensated(Ep))
=> violation(viol(Ep)).

On the other hand, in our use case there are two actions that may be obligatory:
the publishing of the results, which is obligatory in case the evaluation has been
commissioned, and the removal of the results, which is obligatory in case the
licensee publishes the results even if he was not allowed to do so.

(17) ccRuleEp2: o(publish(Ep)), ∼(rexist(Ep)), ∼(compensated(Ep))
=> violation(viol(Ep)).

ccRuleEr: o(remove(Er)), ∼(rexist(Er)), ∼(compensated(Er))
=> violation(viol(Er)).

Finally, we need Arg2P rules to infer when the remove action ca(Ep,X,R) really
exists and, consequently, when the prohibited publishing have been compensated:

(18) ccRuleComp1: remove(ca(Ep,X,R)), hasTheme(ca(Ep,X,R),R),

hasAgent(ca(Ep,X,R),X), rexist(Er), remove(Er),

hasTheme(Er,R), hasAgent(Er,X) => rexist(ca(Ep,X,R)).

ccRuleComp2: compensate(Y,X), rexist(Y) => compensated(X).



10 Robaldo et al.

4 Comparison, discussion, and future works

We developed a dataset generator that creates synthetic ABox(es) in the input
format of each reasoner. The reasoners are then executed on these ABox(es)
to compare their performance. The GitHub repository contains instructions to
recreate the datasets locally and to execute the reasoners on them.

Table 1 shows the time performance on three datasets respectively including
10, 30, and 50 states of affairs. All experiments reported in this paper were run
on a PC with Intel(R) Core(TM) at 1.8 GHz, 16 GB RAM, and Windows 10.

Table 1. Time performance of the compliance checkers

Size SHACL
ASP

(clingo)
ASP

(DLV2)
DLV PROLEG Arg2P SPINdle

10 0.091s 0.019s 0.0552s 0.0347s 0.398s 398.338s 0.063s

30 0.122s 0.025s 0.0337s 0.0505s 0.631s 1039.668s 0.099s

50 0.148s 0.051s 0.0553s 0.097s 1.374s 1927.389s 0.187s

From the results reported in Table 1, it is evident that PROLEG and, in partic-
ular, Arg2P are much slower than the other reasoners. We were indeed surprised
ourselves that Arg2P’s time performance were so much lower.

Since Arg2P is one of the most modern implemented reasoners for structured
argumentation, the assessed slow performance definitely demands for much fur-
ther research. Structured argumentation has been mainly studied so far from a
theoretical point of view but it is time now to research ways of making the the-
oretical findings usable in practice. This could be perhaps achieved by modeling
problems in argumentation precisely as problems in ASP, in order to make the
most of the format’s efficiency, a solution already advocated in [8].

Similar considerations hold for PROLEG. However, contrary to Arg2P, PRO-
LEG is not a stand-alone legal reasoner. It is a library that must be loaded within
other Prolog reasoners, e.g., SWI Prolog10. Thus, carrying out further research
to improve PROLEG efficiency most likely amounts to carrying out further re-
search to improve the efficiency of reasoners for standard Prolog.

On the other hand, although computational performance is of primary im-
portance in the big data era, it cannot be the sole criterion for comparison.

Before using the formulae, these must be built and checked/debugged. The
use case in (1) is just a constructed example inspired by existing norms. Still, it
required us considerable time to be formalized. Therefore, other parameters such
as human-readability, easy of editing, explainability, etc. must be considered.

Unfortunately, although ASP is so efficient, achieving explainability in ASP
could be difficult because, as explained in subsection 3.1 above, ASP is a declara-

10 https://www.swi-prolog.org



Compliance checking on first-order knowledge 11

tive language in which the reasoner tries to satisfy all rules at once. The returned
answer set does not specify which rules have been applied to obtain the facts
within the answer set. This knowledge must be inferred through an additional
“reverse engineering” process, from the returned answer set to the asserted rules.

Achieving explainability in ASP is a matter of ongoing research [13]. Several
techniques and methodologies to debug answer-set programs have been proposed,
among which [18] and [12]. The common insight of these solutions is to add an
extra-layer that relates the facts in the returned answer set with the rules that
derive them, thus allowing to trace the inferential process.

Furthermore, ASP uses negation-as-failure in place of the superiority rela-
tions used in Arg2P and PROLEG. The latter have been proved to be more
readable and intuitive than the former: while superiority relations straightfor-
wardly allow to encode the directed acyclic graph representing which rules over-
ride which other ones, negation-as-failure requires to introduce additional special
predicates that explicitly refer to the exceptions. As these additional predicates
increase in number along with the number of exceptions, it might be harder for
a human to keep track and organize them when translating large sets of norms.

On the other hand, while we were formalizing the use case in the different
formats we realized that modal operators, such as the operators “o” and “p” of
Arg2P, are rather difficult to use in conjunction with first-order formulae. On
the contrary, unary first-order predicates applied to terms that directly refer to
the actions appear to be easier for editing, reading, and debugging the formulae.

Arg2P’s modal operators can outscope a single predicate. On the other hand,
for representing the actions together with their thematic roles we need a con-
junction of predicates, e.g., publish(Ep), hasAgent(Ep,X), licensee(X), etc.

In our view, the only way to achieve the desired truth conditions in the
current version of Arg2P is then to assert the conjunction of predicates in the
antecedent of the rule and the modal operator applied to the “main” predicate
in the consequent. This was done, for instance, for rule “art4a” in (13).

Moreover, we observe that allowing the Arg2P operator “o” to also accept
a conjunction of predicates does not appear to solve the problem so simply. In
Standard Deontic Logic (SDL)11, which inspired the definition of these operators,
the axiom o(P1, P2) → (o(P1), o(P2)) holds. Thus, we may derive, for instance:

(19) o(publish(x,r), licensee(x), result(r))

=> o(publish(x,r)), o(licensee(x)), o(result(r))

(19) means that it is obligatory for the individual x to be a licensee and for the
individual r to be a result, which sounds weird and counter-intuitive.

Also the modal operators of the LegalRuleML standard12 suffer from the
same problem. Possible solutions within future versions of the standard are still
under discussion within the LegalRuleML technical committee (TC)13.

11 https://plato.stanford.edu/entries/logic-deontic/#StanDeonLogi
12 https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/os/

legalruleml-core-spec-v1.0-os.html\#_Toc38017882
13 Personal communications between Livio Robaldo, Guido Governatori, Monica Palmi-

rani, and Adam Wyner, during the recent activities of the LegalRuleML TC.



12 Robaldo et al.

These counter-intuitive derivations are not found with propositional symbols,
e.g., in SPINdle. It is a problem related to the use of modal deontic operators
in conjunction with first-order formulae, for which one should perhaps define an
alternative semantics for the modal operators that does not encompass the SDL
axiom in (19). However, this solution requires much further research to properly
investigate whether it could lead or not to other counter-intuitive effects.

5 LegalRuleML

Artificial Intelligence is currently in a transition phase, from standard solutions
based on Machine Learning to novel solutions based on symbolic reasoning fit
to support human centricity, i.e., explainability and human-readability.

This is true also in AI for the legal domain, as witnessed by lot of recent
literature, e.g., [32] and [5], as well as related initiatives such as the yearly
EXplainable & Responsible AI in Law (XAILA) workshop14.

Building symbolic knowledge is highly time-consuming, especially in Legal-
Tech where the knowledge originates from norms written in natural language.
Moreover, norms from real legislation are highly dependent on the legal do-
main they regulate (finance, health, etc.); thus, their proper formalization must
necessarily involve lawyers or other domain experts, many of whom are indeed
unfamiliar with logic and technical details.

In our view, the involvement of domain experts towards the creation of large
knowledge bases of machine-readable formulae associated with existing legisla-
tion might be achieved only via a standardized methodology, from the norms in
natural language to the executable formalizations in some legal reasoner.

In the future, we intend to define such a methodology around LegalRuleML,
which became an OASIS standard very recently, i.e., on August 30th, 202115.

LegalRuleML is an XML-based semi-formal language aiming at enhancing
the interplay between experts in law and experts in logic. By “semi-formal” we
intend that no formal model-theoretic semantics is associated with LegalRuleML.
Well-formed LegalRuleML representations need to be translated into another
language having such a semantics, e.g., the input formats of the legal reasoners
considered above, similarly to what is done in Reaction RuleML 1.0 via the
so-called “semantics profiles” [21].

Still, LegalRuleML defines a specification, in terms of an XML vocabulary
and composition rules, that is able to represent the particularities of the legal
normative rules with a rich, articulated, and meaningful markup language.

The advocated annotations in LegalRuleML may be facilitated via a special
graphical editor that allows to compose the if-then rules and store them in the
XML standard. Something similar has been recently done in [25], which present
a graphical editor to annotate norms in reified I/O logic [27], a novel deontic
logic based on reification [15] [24] which features a computational complexity
lower than standard approaches based on possible-world semantics [31]. The

14 https://www.geist.re/xaila:start
15 See https://www.oasis-open.org/standard/legalruleml



Compliance checking on first-order knowledge 13

LegalRuleML annotations so produced can be then automatically translated in
a computational language to check the compliance of the denoted norms with
respect to a given state of affairs.

In our future works, we will implement advanced editors for LegalRuleML,
as well as translation algorithms from LegalRuleML to executable formats. Fur-
ther modules may be developed as well, e.g., NLP procedures to suggest draft
LegalRuleML representations that the annotators must validate or amend.

These editors will allow us to promote annotation campaigns involving do-
main experts or even law students. These campaigns will be possibly part of the
future activities of the LegalRuleML technical committee and they are expected
to stimulate and guide future research towards standardized and interoperable
solutions for automated legal reasoning.

6 Conclusions

In this paper, we investigated some of current technologies for compliance check-
ing at the first-order level, with conflicting and compensatory norms.

Most implemented legal reasoners, first of all SPINdle, are propositional.
Nevertheless, propositional reasoning is too limited for existing applications.
Thus, we investigated and compared some of main current reasoning languages
with respect to a shared use case and a shared vocabulary of atomic predicates
each of which corresponds to a concept in the ontology from Figure 1.

So far these reasoning languages were mostly studied in isolation. Investigat-
ing them altogether with respect to a shared use case and a shared vocabulary
of predicates allowed to highlight their respective peculiarities.

Arg2P and PROLEG are inefficient, in particular Arg2P. However, these two
reasoners are currently the only ones able to explain their derivations. Con-
versely, ASP is very efficient but lacks explainability because the declarative
nature of the language itself makes it difficult to debug the inferences.

Finally, we observed that some of the operators used in the different formats,
e.g., modal operators and negation-as-failure, could be hard to manipulate. Read-
ability may be improved by defining one-to-one translation procedures from/to
LegalRuleML. LegalRuleML aims at being an easy and intuitive formal language
to allow domain experts, even those unfamiliar with logic and technical details,
to contribute in the construction of large knowledge bases of legal rules.

References

1. Antoniou, G., Baryannis, G., Batsakis, S., Governatori, G., Islam, M.B., Liu, Q.,
Robaldo, L., Siragusa, G., Tachmazidis, I.: Large-scale legal reasoning with rules
and databases. Journal of Applied Logics - IfCoLog Journal 8(4), 911–940 (2021)

2. Athan, T., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.: LegalRuleML:
Design Principles and Foundations. Springer International Publishing (2015)

3. Bartolini, C., Giurgiu, A., Lenzini, G., Robaldo, L.: Towards legal compliance by
correlating standards and laws with a semi-automated methodology. In: BNCAI.
Communications in Computer and Information Science, vol. 765. Springer (2016)



14 Robaldo et al.

4. Batsakis, S., Baryannis, G., Governatori, G., Tachmazidis, I., Antoniou, G.: Legal
representation and reasoning in practice: A critical comparison. In: Legal Knowl-
edge and Information Systems, JURIX (2018)

5. Bibal, A., Lognoul, M., de Streel, A., Frénay, B.: Legal requirements on explain-
ability in machine learning. Artificial Intelligence and Law 29(2), 149–169 (2021)

6. Billi, M., Calegari, R., Contissa, G., Lagioia, F., Pisano, G., Sartor, G., Sartor, G.:
Argumentation and defeasible reasoning in the law. J 4(4) (2021)

7. Boella, G., Di Caro, L., Rispoli, D., Robaldo, L.: A system for classifying multi-
label text into eurovoc. In: Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Law. pp. 239–240. ICAIL ’13, ACM (2013)

8. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Communications of the ACM 54(12), 92–103 (2011)

9. Buccafurri, F., Faber, W., Leone, N.: Disjunctive logic programs with inheritance.
Theory and Practice of Logic Programming 2 (2002)

10. Calegari, R., Omicini, A., Pisano, G., Sartor, G.: Arg2P: an argumentation frame-
work for explainable intelligent systems. J. of Logic and Computation 32 (2022)

11. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T.,
Leone, N., Maratea, M., Ricca, F., Schaub, T.: Asp-core-2 input language format.
Theory and Practice of Logic Programming 20(2), 294–309 (2020)

12. Cuteri, B., Dodaro, C., Ricca, F.: Debugging of answer set programs using paraco-
herent reasoning. In: Casagrande, A., Omodeo, E.G. (eds.) Proc. of the 34th Italian
Conference on Computational Logic (CILC 2019). CEUR Workshop Proceedings,
vol. 2396. CEUR-WS.org (2019)

13. Dauphin, J., Satoh, K.: Explainable ASP. In: Baldoni, M., Dastani, M., Liao, B.,
Sakurai, Y., Zalila-Wenkstern, R. (eds.) Proc. of 22nd international conference on
Principles and Practice of Multi-Agent Systems (PRIMA 2019). Lecture Notes in
Computer Science, vol. 11873. Springer (2019)

14. Gabbay, D., Horty, J., Parent, X., van der Meyden, R., van der Torre, L.: Handbook
of Deontic Logic and Normative Systems. College Publications (2013)

15. Hobbs, J.R.: Deep lexical semantics. In: Proc. of the 9th International Conference
on Intelligent Text Processing and Computational Linguistics (CICLing-2008).
Haifa, Israel (2008)

16. Lam, H.P., Governatori, G.: The Making of SPINdle. In: Proc. of International
Symposium on Rule Interchange and Applications (RuleML) (2009)

17. Nanda, R., Di Caro, L., Boella, G., Konstantinov, H., Tyankov, T., Traykov, D.,
Hristov, H., Costamagna, F., Humphreys, L., Robaldo, L., Romano, M.: A unify-
ing similarity measure for automated identification of national implementations of
european union directives. In: Proc. of the 16th Edition of the International Con-
ference on Articial Intelligence and Law (ICAL 2017). Association for Computing
Machinery (2017)

18. Oetsch, J., Pührer, J., Tompits, H.: Stepwise debugging of answer-set programs.
Theory and Practice of Logic Programming 18(1) (2018)

19. Palmirani, M., Governatori, G.: Modelling legal knowledge for GDPR compliance
checking. In: Legal Knowledge and Information Systems (JURIX) (2018)

20. Palmirani, M., Martoni, M., Rossi, A., Bartolini, C., Robaldo, L.: Pronto: Privacy
ontology for legal compliance. In: EU conference on digital government (2018)

21. Paschke, A.: Reaction ruleml 1.0 for rules, events and actions in semantic complex
event processing. In: Bikakis, A., Fodor, P., Roman, D. (eds.) Rules on the Web.
From Theory to Applications. Springer International Publishing (2014)

22. Prakken, H., Sartor, G.: Law and logic: A review from an argumentation perspec-
tive. Artificial Intelligence and Law 227, 214–245 (2015)



Compliance checking on first-order knowledge 15

23. Reale, K., Calimeri, F., Leone, N., Ricca, F.: Smart devices and large scale rea-
soning via ASP: tools and applications. In: Cheney, J., Perri, S. (eds.) Practical
Aspects of Declarative Languages - 24th International Symposium, year = 2022

24. Robaldo, L.: Distributivity, collectivity, and cumulativity in terms of
(in)dependence and maximality. The Journal of Logic, Language, and Informa-
tion 20(2), 233–271 (2011)

25. Robaldo, L., Bartolini, C., Palmirani, M., Rossi, A., Martoni, M., Lenzini, G.:
Formalizing gdpr provisions in reified i/o logic: the dapreco knowledge base. The
Journal of Logic, Language, and Information 29 (2020)

26. Robaldo, L., Caselli, T., Russo, I., Grella, M.: From Italian text to TimeML doc-
ument via dependency parsing. In: Proc. of Computational Linguistics and Intel-
ligent Text Processing (CICLing 2011). (2011)

27. Robaldo, L., Sun, X.: Reified input/output logic: Combining input/output logic
and reification to represent norms coming from existing legislation. The Journal of
Logic and Computation 7 (2017)

28. Robaldo, L.: Towards compliance checking in reified I/O logic via SHACL. In:
Maranhão, J., Wyner, A.Z. (eds.) Proc. of 18th International Conference for Arti-
ficial Intelligence and Law (ICAIL 2021). ACM (2021)

29. Sartor, G.: Legal concepts as inferential nodes and ontological categories. Artificial
Intelligence and Law 17(3), 217–251 (2009)

30. Satoh, K., Asai, K., Kogawa, T., Kubota, M., Nakamura, M., Nishigai, Y., Shi-
rakawa, K., Takano, C.: PROLEG: An Implementation of the Presupposed Ulti-
mate Fact Theory of Japanese Civil Code by PROLOG Technology. In: Onada,
T., Bekki, D., McCready, E. (eds.) New Frontiers in Artificial Intelligence (2011)

31. Sun, X., Robaldo, L.: On the complexity of input/output logic. The Journal of
Applied Logic 25, 69–88 (2017)

32. Waltl, B., Vogl, R.: Explainable artificial intelligence – the new frontier in legal
informatics. Jusletter IT 22 (2018)


