ORIGINAL ARTICLE

Metal-organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors

Edwin T. Mombeshora1 | Edigar Muchuweni1 | Matthew L. Davies1,2 | Vincent O. Nyamori1 | Bice S. Martincigh1

1School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
2SPECIFIC IKC, Materials Science and Engineering, Faculty of Science and Engineering, Swansea University, Swansea, UK

Abstract

In practice, the capacitance from the electrochemical double layer formation on porous carbon-based electrodes is still below preferred values, limiting their use in electrochemical capacitors. The current drive is to innovate ways that generate additional capacitance in the electrochemical double layer capacitive nature of carbon nanomaterials towards both a high specific energy density \(E_s\) and power density \(P_s\). Herein we report the use of metal-organic chemical vapor deposition (MOCVD) to coat multiwalled carbon nanotubes (MWCNTs) with anatase titanium dioxide (TiO_2) to induce pseudocapacitive charge storage characteristics on a carbon-based electrode. The study shows that MWCNTs were coated in bundles, and targeted TiO_2 loadings were successfully attained, though the TiO_2 agglomerates also increased with TiO_2 wt.%. The 10 wt.% TiO_2 TiO_2-MWCNT material displayed the best capacitive behavior with associated specific discharge capacitance \(C_d\), \(E_s\), and \(P_s\) values of 907 F kg\(^{-1}\), 55.56 Wh kg\(^{-1}\), and 2.78 W kg\(^{-1}\) at 0.1 A g\(^{-1}\), respectively, due to the synergistic effect of the two components of the composite. Additionally, the integral capacitance \(C_s\) of the 20 wt.% TiO_2 material was enhanced more than 5000-fold relative to that of the 5 wt.% TiO_2 TiO_2-MWCNT composite at higher scan speeds of 100 and 200 mV s\(^{-1}\). Electrochemical measurements further demonstrated the possible positive tuning of capacitive characteristics (charge/discharge rates, \(C_d\) and \(C_s\)) with TiO_2 wt.% control. The MOCVD synthesis method imparted the TiO_2-MWCNT composites with suitable traits that showed high potential in improving physicochemical processes favorable in electrical energy storage.
1 | INTRODUCTION

The continuous growth in the global population and advances in technology have triggered high demands for clean, sustainable, and renewable energy, and effective energy storage systems.\(^1\)–\(^5\) Electrical energy storage systems include batteries,\(^6\) compressed air,\(^7\) flywheels,\(^8\) pumped hydro-energy,\(^9\) conventional capacitors\(^10\) and electrochemical capacitors (ECs).\(^11\) ECs bridge the gap between batteries and conventional capacitors as emerging energy storage and power supply devices\(^2,12,13\) due to environmental compatibility, lower costs, potentially higher energy and power densities, low-temperature dependencies, and better cyclabilities than conventional capacitors.\(^2,14–16\) Hence, ECs have tremendous potential as static, passive, and portable energy storage devices, such as memory backup and hybrid/electric vehicle systems, that require rapid charge/discharge cycles.\(^17\)

The energy storage capabilities of ECs are largely dependent on both the electrolyte and electrode materials.\(^12,13\) Several materials, such as conducting polymers,\(^18\) redox-based metal oxides\(^19,20\) and carbon-based materials,\(^21,22\) have been reported as suitable EC electrode materials. Of these, carbon-based materials offer attractive advantages that include lower cost, higher stability and conductivity, and better rate capability and reversibility than conventional redox-based metals/materials.\(^1,23\) For instance, multiwalled carbon nanotubes (MWCNTs), due to their high surface area to volume ratio and facile surface functionalization that promotes polarizability, have been reported as suitable electrodes for charge storage devices.\(^21,24–27\)

However, the specific capacitance of MWCNTs is far below the theoretical values of 400–500 F g\(^{−1}\).\(^28,29\) The current drawbacks of carbon-based materials include their low capacitive characteristics, partly because of poor polarizability and wettability associated with the electrode surfaces, which limit the available surfaces for energy storage.\(^1,30\) To improve on the weaknesses of carbon-based materials, the synthesis of composite materials can engineer interconnected structures that have ample potential to shorten the charge diffusion path length of carbon materials.

In particular, composites of MWCNTs with metal oxides, such as MnO\(_2\), NiO, Fe\(_2\)O\(_3\), and TiO\(_2\), have been used to improve the specific energy density and integral specific capacitance (\(C_s\)) linked to MWCNTs.\(^23,31\) The use of titanium dioxide (TiO\(_2\)) in several applications has been motivated by its semiconductor properties, long-term chemical stability, and availability of surfaces for chemical processes.\(^2\) TiO\(_2\) is known for its high rate of agglomeration and wide band gap (\(\sim 3.2\)eV), which have limited its applications. For instance, the wide band gap limits effective utilization of visible light and causes rapid electron/hole recombination, thereby lowering the photocatalytic activity\(^32,33\) and power conversion efficiency of solar cells.\(^34\) Effective charge separation (electron transport) in TiO\(_2\) for catalytic applications has been achieved through composite synthesis with carbonaceous materials and creating maximum contact between components, although sample homogeneity is a common shortcoming.\(^33,35,36\) Similarly, a wide band gap and agglomeration effects have led to a lower theoretical capacitance and high resistivity (strong internal resistance).\(^1,2\) Despite the shortcomings, TiO\(_2\) can be used as a coating material since it can tune the physicochemical properties of MWCNTs, such as hydrophilicity of the electro-active surfaces, and introduce pseudocapacitive effects on MWCNTs due to its variable oxidation state.\(^13,21,37\) Also, electron/hole recombination of TiO\(_2\) is minimal in composites with MWCNTs.\(^34,38\) In addition, all the phases of TiO\(_2\), namely, rutile (most thermodynamically stable), brookite, and anatase (most kinetically stable, low sintering temperature), have been studied in EC applications and the studies show that capacitance depends more on the structural features, such as sizes, rather than phases.\(^39–41\) Hence, due to low sintering temperature requirements, the anatase phase may be preferable.

Studies on TiO\(_2\)-MWCNT composites for EC applications have been previously reported. For example, Hsieh et al.\(^14\) synthesized a TiO\(_2\)-MWCNT composite for EC applications in an H\(_2\)SO\(_4\) electrolyte from titanium isopropoxide through a wet impregnation method followed by heating. They concluded that a high TiO\(_2\) wt.% blocks the electrochemical double layer capacitance (EDLC) contributions from MWCNTs. The same authors also reported a wet impregnation synthesis method, followed by microwave deposition of TiO\(_2\) from tetra-butylic titanate onto MWCNTs, which improved \(C_s\) by 1.37-fold in H\(_2\)SO\(_4\) electrolyte.\(^13\) Kim et al.\(^30\) synthesized TiO\(_2\)-MWCNT composites by a sol-gel method from titanium isopropoxide that enhanced the \(C_s\) 1.68-fold also in the H\(_2\)SO\(_4\) electrolyte. Krishnaveni and Anandan\(^42\)
also reported unzipped MWCNTs in TiO2-MWCNT through an ultrasound-assisted method for EC applications in Na2SO4 that achieved an 8.54-fold enhancement.

The synthetic method of a material is crucial in developing suitable alternatives to conventional electrode materials. This is because each method imparts unique merits/demerits to the physicochemical properties of the material, such as substantial isolated TiO2 agglomerates common in composites synthesized by means of the sol-gel method. Hence, the current work reports the use of a metal-organic chemical vapor deposition (MOCVD) method to synthesize TiO2-MWCNT composites from a titanium(IV) methoxide precursor for EC applications. To the best of our knowledge, no such report exists in the literature. The study also aims to increase the charge/discharge rates of MWCNTs and facilitate the pseudocapacitive characteristics and the electrochemical double layer behavior of pristine MWCNTs by the addition of TiO2. The effect of the morphology of the MWCNTs coated with anatase TiO2 in terms of associated physicochemical properties and EC applications was also investigated. Hence, the current study investigated the MOCVD synthesis of TiO2-MWCNT, culminating in a unique morphology and charge storage capabilities.

2 | EXPERIMENTAL SECTION

2.1 | Materials and reagents

MWCNTs (outer diameter: 8–15 nm, length: 10– 50 μm, ash: <1.5 wt.%, SSA: >233 m2 g⁻¹, EC: >10⁻² S cm⁻¹, SKU number 030102, ~95 wt.%) were purchased from Cheaptubes.com. Concentrated sulfuric acid (AAR, 98%–100%) and hydrochloric acid (≥32%) were procured from SSM Instruments, while nitric acid (≥69%) and both titanium (IV) methoxide (95%) and Nafion (20 wt.%) solutions in lower aliphatic alcohols/H2O containing 34% were from Sigma-Aldrich. Na2SO4 (97%) for the electrolyte was purchased from Merck.

2.2 | Composite synthesis

A mass of 1 g of MWCNTs was acid-treated in 3:1 (v/v) HNO3/HCl, respectively, by means of an ultrasonic water bath for 4 h. The acid-treated MWCNTs were then washed with double-distilled water until the filtrate was neutral in pH and, thereafter, dried at 120°C in an oven (Scientific Economy Series, Model 220-224). Subsequently, a predetermined mass of acid-treated MWCNTs was mechanically mixed with a known mass of titanium(IV) methoxide using a pestle and mortar to synthesize composites (5, 10, and 20 wt.% TiO2). The mixture was loaded into an MOCVD reactor, reported elsewhere, and the reactor was inserted in a horizontally aligned tubular furnace (Scientific Economy Series, Model 220-224). Initially, during the synthesis, the MOCVD reactor, connected to a vacuum pump, was evacuated to an absolute pressure of 0.01 mbar, measured with a Thyracount VD84/1 Pirani vacuum gauge. Thereafter, the furnace temperature was increased to 100°C at a rate of 2°C min⁻¹ and then held constant for 60 min. The vacuum pump was turned off, and the valve connector to the reactor was also closed before another temperature increase to 400°C at 2°C min⁻¹. The temperature was held constant at 400°C for 60 min before cooling to room temperature.

2.3 | Physicochemical characterization

The TiO2-MWCNT nanocomposites were characterized by various techniques. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses were carried out using JEOL TEM 1010 and JEOL JSM 6100 electron microscopes, respectively. X-ray energy-dispersive (EDX) spectra were acquired with a Bruker X-ray spectrometer attached to the JEOL JSM 6100 SEM instrument. For textural analyses, the samples were degassed at 90°C for 60 min and thereafter at 160°C overnight, and the actual analyses were performed with a Micromeritics TriStar 3020 (V1.03) surface area and porosity analyzer at 77 K with N2 gas as the adsorbate. For Fourier transform infrared spectroscopy (FTIR) analysis, spectra were acquired with a PerkinElmer FTIR spectrometer (Spectrum RXI, version 5.3), and samples mixed with KBr at a known ratio were pelleted in a 25-ton ring press (00-25 model, Research Industrial Company, England). The Raman analysis was performed at 514 nm with 50% laser power and a 10 s exposure time using a Renishaw inVia Raman microscope. The Raman bands were fitted to a Gaussian function. Powder X-ray diffraction (XRD) analysis was done by means of a D8 Advance diffractometer (BRUKER AXS, Germany) with PSD Vantec-1 detectors. Measurements were done with a θ-2θ scan in a locked coupled mode and Cu-Kα radiation (λ = 1.5406 Å). The International Centre for Diffraction Data database for 1998 and EVA software (BRUKER) were used for peak assignment. Thermal stability analysis was carried out with a TA Instruments Q series™ Thermal Analyzer DSC/TGA (Q600) coupled with TA instruments Universal Analysis 2000 software for data acquisition and thermogram analysis.
2.4 | Electrochemical measurements

Electrochemical characterizations were performed by galvanostatic charge/discharge (GCD), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) techniques. The fabrication of a CV working electrode involved mixing 95 wt.% composites with 5 wt.% Nafion as a binder (5 wt.% Nafion) and thereafter casting onto a 3 mm diameter glassy carbon electrode that had previously been cleaned and polished. The working electrode was dried under room temperature conditions. A Metrohm 797 VA Computrace electrochemical workstation (Metrohm, Switzerland) comprising of a three-electrode system (Pt counter and Ag/AgCl reference electrodes), 1 M Na₂SO₄ electrolyte (typically degassed with nitrogen for five min before analysis), a scan range of 0–0.8 V, and scan speeds of 10, 25, 50, 100 and 200 mV s⁻¹, were used for CV. The \(C_s \) from the CV curve was calculated by using the following equation: \(^{(17,23,26)}\)

\[
C_s = \frac{1}{2} \int \frac{idV}{ms\Delta V},
\]

where \(i \) (A), \(m \) (g), \(s \) (V s⁻¹), and \(\Delta V \) (V) are the current, active material mass, scan speed, and voltage window, respectively. Integration was done by use of the Lorentzian function.

EIS and GCD were carried out using a Princeton Applied Research VersaSTAT 3F, model-500, potentiostat/galvanostat with a three-electrode system (working electrode with 95 wt.% composite and 5 wt.% Nafion binder cast onto a glassy carbon, Pt counter, and Ag/AgCl reference electrodes). The VersaStudio software (version 2.60.6.0) was used for data acquisition. For EIS, the frequency range was 100,000–1 Hz, and the AC voltage used was 5 mV. A current density of 0.1 A g⁻¹ was used in GCD analysis for the determination of specific discharge capacitance \((C_d) \), specific energy density \((E_s) \), and power density \((P_s) \) of the TiO₂-MWCNT composites. Equation (2) can be used to determine \(C_d \) in F kg⁻¹ from the GCD plots. \(^{(1,2)}\)

\[
C_d = \frac{i_d\Delta t}{m\Delta V},
\]

where \(i_d \) (A), \(\Delta t \) (s), \(\Delta V \) (V), and \(m \) (kg) are the discharge current, discharge time, potential window on the time-voltage graph (GCD curve), and the active material mass, respectively. Equation (2) can be simplified to Equation (3); hence, for the determination of \(C_d \), Equation (3) was used.

\[
E_s = \frac{1}{2}C_s\Delta V^2,
\]

\[
P_s = \frac{E}{\Delta t}.
\]

3 | RESULTS AND DISCUSSION

In this study, composites of MWCNTs coated with three different amounts of TiO₂, namely, 5, 10, and 20 wt.%, were prepared by an MOCVD method. The physico-chemical and electrochemical properties of the synthesized materials were fully characterized to determine the unique characteristics imparted by the synthetic method used, especially as regards the enhancement of properties required for their use in EC devices.

Scanning electron microscopy provided evidence that the degree of coating on the tubular MWCNTs increased with increasing TiO₂ wt.% (Figure 1A,C,E,G). The decrease in the visibility of the inner cavity of MWCNTs in the TEM micrographs corroborated with the increase in TiO₂ coating determined by means of SEM (Figure 1D–F and Supporting Information: Figure S1). In the case of the 5 wt.% material, the coating of the tubes was not uniform, with some bare parts visible in TEM micrographs, SEM images and superimposed EDX (Figure 1C,D and Supporting Information: Figure S2). This effect could have been influenced by the location of oxygen-containing groups in which these sites are preferred initially, but at higher TiO₂ loadings, this effect is minimal. Contrary to other synthetic methods, such as sol-gel \(^{(14)}\) and wet impregnation, \(^{(24)}\) which coated MWCNTs individually, MOCVD coated bundles of MWCNTs together (highlighted by circles in Figure 1). This possibly arose because the MOCVD method involved the vaporization of the titanium methoxide precursor under vacuum in facilitating the deposition of TiO₂ on the MWCNTs, and the method had no control over the number of tubes that were coated together, despite the mechanical mixing of the starting materials with a pestle and mortar before loading into the reactor. Hence, some MWCNTs were coated with TiO₂ into bundles at 20 wt.% TiO₂ (circled in Figure 1G–H). Unlike the report by Hsieh et al., \(^{(14)}\) which involved the synthesis...
Figure 1 SEM and TEM images respectively of (A, B) MWCNTs and TiO$_2$-MWCNT composites coated with (C, D) 5 wt.%, (E, F) 10 wt.%, and (G, H) 20 wt.% TiO$_2$. SEM, scanning electron microscopy. TEM, transmission electron microscopy.
of TiO₂-MWCNT through a chemical-wet impregnation method, isolated aggregates of TiO₂ were not observed in the current work at higher TiO₂ wt.%.

Energy-dispersive X-ray (EDX) spectroscopy was used for qualitative purposes, and it confirmed the incorporation of TiO₂ and MWCNTs in composites (Supporting Information: Figure S2). An increase in the Ti signal supported the changes in wt.% in the composites, and SEM morphologies agreed with the changes in the elemental distribution in the superimposed EDX spectra (Supporting Information: Figure S2). The superimposed EDX spectra for the composites support the coating of bundles of MWCNTs with TiO₂ with no visible isolated TiO₂ aggregates (Supporting Information: Figure S2).

The Brunauer–Emmett–Teller (BET) surface areas and pore volumes of the three composite materials decreased as the TiO₂ wt.% increased (Table 1). This was ascribed to the bundling of the coated MWCNTs. A similar decline in BET surface areas was also reported for composites synthesized by the sol-gel method.30 Despite this clear inversely proportional effect as regards porosity and BET surface area, the pore sizes were smallest for the

<table>
<thead>
<tr>
<th>TiO₂ wt.%</th>
<th>BET surface (m² g⁻¹)</th>
<th>Pore volume (cm³ g⁻¹)</th>
<th>Pore size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>143</td>
<td>0.50</td>
<td>13.98</td>
</tr>
<tr>
<td>5</td>
<td>139</td>
<td>0.84</td>
<td>23.84</td>
</tr>
<tr>
<td>10</td>
<td>130</td>
<td>0.68</td>
<td>20.24</td>
</tr>
<tr>
<td>20</td>
<td>126</td>
<td>0.63</td>
<td>22.34</td>
</tr>
</tbody>
</table>

Table 1: Textural characteristics of TiO₂-MWCNT nanocomposites.

Abbreviations: BET, Brunauer–Emmett–Teller; MWCNT, multiwalled carbon nanotube.

FTIR spectral analysis showed the presence of a Ti–O–OC bond at 1100 cm⁻¹, which indicates that some TiO₂ molecules were covalently attached to the MWCNTs through the oxygen-containing moieties (Figure 2). During the first step of the MOCVD synthesis, the temperature was increased to 100°C and the valve was opened, thereby eliminating water vapor from the reagents. The peak at 3400 cm⁻¹ was ascribed to the hydroxyl groups from atmospheric moisture. The peaks at 2300, 1600, and 600 cm⁻¹ were attributed to H-bonding effects from oxygen-containing moieties, C=±C in the MWCNTs framework, and the presence of the anatase phase of TiO₂, respectively (Figure 2).

Consistent with FTIR spectrophotometry, Raman spectroscopic bond vibrational analysis showed the presence of anatase TiO₂ through the observed peaks at ca. 154 cm⁻¹ (Eg), 399 cm⁻¹ (B₁g) and 639 cm⁻¹ (Eg), and similar peaks were detected for the TiO₂-MWCNT composites (Figure 3 and Supporting Information: Figure S4).1,35,45–47 Also, the small peak at 800 cm⁻¹ was ascribed to the Ti–O–H covalent bond vibration,45 which corroborated with the FTIR data (Figures 3 and 4). The Ti–O–H covalent bond is an indication that TiO₂ also interacted with MWCNTs via OH functionalities on the tube walls. The Raman bands at 1350 and 1600 cm⁻¹ were assigned to the structural defects of the C-C framework (D-band) and C-C tangential in-plane stretching (G-band), respectively.1,42

Figure 2 (A) FTIR spectrum of MWCNTs, and (B) representative FTIR spectrum for the nanocomposites, acquired as KBr discs. FTIR, Fourier transform infrared spectroscopy; MWCNT, multiwalled carbon nanotube.
The higher TiO$_2$ wt.% led to a wider full width at half maximum (FWHM) of the G-band, suggesting that either TiO$_2$ sits on the MWCNT defects or the covalent link through oxygen moieties reduces the defect intensity. A similar trend was observed in the defect intensity (I_D/I_G) calculated as the ratio of the area under the D-band to that under the G-band (Table 2 and Supporting Information: Figure S4). Despite all composites displaying higher defect intensities than pristine MWCNTs, the Raman data probably suggests that the TiO$_2$ wt.% investigated were not excessively straining (less defective) on the carbon backbone. This is consistent with the higher defect intensity not being strictly related to TiO$_2$ content.

Table 2 Raman data for the nanocomposites synthesized using the MOCVD approach

<table>
<thead>
<tr>
<th>TiO$_2$ (wt.%)</th>
<th>D band Position (cm$^{-1}$)</th>
<th>FWHM</th>
<th>G band Position (cm$^{-1}$)</th>
<th>FWHM</th>
<th>I_D/I_G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1349</td>
<td>58</td>
<td>1602</td>
<td>42</td>
<td>0.59</td>
</tr>
<tr>
<td>5</td>
<td>1343</td>
<td>59</td>
<td>1571</td>
<td>58</td>
<td>0.93</td>
</tr>
<tr>
<td>10</td>
<td>1346</td>
<td>66</td>
<td>1576</td>
<td>63</td>
<td>0.91</td>
</tr>
<tr>
<td>20</td>
<td>1345</td>
<td>66</td>
<td>1574</td>
<td>67</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Abbreviations: FWHM, full width at half maximum; MOCVD, metal-organic chemical vapor deposition.
previous reports in that the amount of TiO$_2$ may not necessarily affect the defect intensity but an increase in the amount of TiO$_2$ may shift the G-band position to lower energies (Table 2).48–50 In addition, the shift for the ill-organized graphite (D-band) indicates that MWCNTs are adsorbed and bound to the TiO$_2$ surfaces as deduced by means of FTIR spectrophotometry (Figure 2).49,51

The crystallinity and phase of TiO$_2$ present in the composites were evaluated by powder XRD. The X-ray diffractograms exhibited peaks at 2θ values of 42°, 78°, 25°, 36°, 48°, 54°, 63°, and 70°. These were assigned to the reflection from the (100) and (222) planes of MWCNTs, TiO$_2$ (101) plane/MWCNTs (002) plane overlap, and (004), (200), (105), (204), (220) and (215) planes of anatase TiO$_2$, respectively (Figure 4).14,23,30,44,52 Additionally, the relative intensity of peaks due to the reflections of the (200), (105), (204), and (220) anatase TiO$_2$ planes (insert in Figure 4) increased in proportion to the wt.% of TiO$_2$ providing further evidence to support the composition of the composites. This suggests that a TiO$_2$ deposition temperature of 400°C in the final MOCVD synthesis step agrees with the reported stability of the anatase phase of TiO$_2$ at temperatures lower than 500°C.2,21 The presence of characteristic peaks from both composite components indicates that the nanocomposites were effectively synthesized via the MOCVD method. The sharp peaks observed for all samples indicate the presence of TiO$_2$ crystallites in the composites (Figure 4).

Thermal analysis of the materials in an atmosphere of air confirmed the TiO$_2$ wt.% loadings on the MWCNTs. The residual mass beyond 650°C was ascribed to the TiO$_2$ component, as metal oxides are thermally stable below 1000°C under air (Figure 5A). The residual mass was proportional to the TiO$_2$ wt.% and was slightly more than the target TiO$_2$ loadings. Despite purification in acid, the slight variation was due to the residual Fe from the pristine MWCNT synthesis; hence, this suggests a successful TiO$_2$ loading. The TiO$_2$ quantification, using TGA, of similar precision to the preparative values has been previously reported.2,13 The wt.% of TiO$_2$ exhibited a negligible effect on the thermal stability of C≡C bonds in the MWCNTs framework (Figure 5). All the materials decomposed at approximately the same temperature of 600°C. The shoulder on the derivative wt.% curve of 5 wt.% TiO$_2$ TiO$_2$-MWCNT is attributed to uncoated MWCNTs (Figure 5B).

After confirming that the composite materials had been successfully synthesized by the MOCVD method, they were characterized electrochemically for their possible application in charge storage devices. Quasi-rectangular CV curves were observed at low scan speeds, but these deteriorated with an increase in scan speed (Figure 6A–E and Supporting Information: Figure S5 showing that the voltammograms of 5 wt.% TiO$_2$ material are present in Figure 6B–E but not visible due to Figure 6 scale). At low scan speeds, voltammograms also display that the composites had better quasi-rectangular CV shape and were similar to bare MWCNTs, but at high scan speeds, higher wt.% composites are better than bare MWCNTs and the 5 wt.% composites (Figure 6). This infers that at low scan speed, charge reversal was faster and exhibited charge storage mostly via the EDLC mechanism.1,15 The elliptical shape of the CV curve (deviation from rectangular shape) at higher scan speeds can be attributed to the high pore resistance of the composites, poor wettability, and minimal contributions of electrolyte ions to charge transfer processes at the material interfaces.53 The increase in current response as scan speed was raised was attributed to the

![Figure 5](image.png)

Figure 5 Thermal stability of the TiO$_2$-MWCNT nanocomposites determined in an atmosphere of air: (A) thermograms and (B) derivative thermograms. MWCNT, multiwalled carbon nanotube.
corresponding decrease in diffusion layer size due to the better rate capability of the composites. \cite{23,54} At 10 mV s\(^{-1}\), the 5 and 20 wt.% TiO\(_2\) materials displayed the best and worst capacitive qualities, respectively. A probable reason for the 5 wt.% TiO\(_2\) composites displaying the best EDLC quality at 10 mV s\(^{-1}\) (Figure 6A) is that the BET surface area reflected the available electrochemically active surfaces; hence, since the 5 wt.% TiO\(_2\) material exhibited the largest surface area, this enhanced the surfaces available for the formation of the electrochemical double layer (Table 1). This trait is also supported by the BET surface area and capacitive quality of MWCNTs (0 wt.% TiO\(_2\)) relative to the 10 and 20 wt.% TiO\(_2\) materials (Figure 6A and Table 1). The positive effect of composite synthesis was displayed by the severe deterioration of EDLC quality and capacitance of pristine MWCNTs with the increase in scan speed (Figure 6A–F).

Additionally, while the TiO\(_2\)-MWCNT composite of 5 wt.% TiO\(_2\) deteriorated severely, worse than MWCNTs, in terms of EDLC characteristics at scan rates of 25 and
50 mV s$^{-1}$, the optimum TiO$_2$ wt.% was 10 (Figure 6B,C). This could be because the 10 wt.% material had a more homogeneous coating with a thin and conformal TiO$_2$ deposition on individual CNTs, thus, maximizing the wettability and electrochemically active surface area even though it had the smallest pore sizes (Figure 1 and Table 1). Beyond 50 mV s$^{-1}$, despite the severe EDLC character decline due to insufficient time for electrolyte ions to penetrate inner pores, the 20 wt.% TiO$_2$ composites exhibited the best EDLC behavior. Similarly, the highest enclosed area in the CV loop, indicating the highest calculated C_s, at low and high scan speeds, was obtained from low and high wt.% of TiO$_2$ in TiO$_2$-MWCNT, respectively (Figure 6E). As pristine carbon-based materials portray well-observed EDLC mechanisms,10,12,55 a more plausible explanation of the observed traits is that at low scan speeds, the charge storage contributions, mostly from MWCNTs, are not influenced by the wettability effect of TiO$_2$. Also, at 10 mV s$^{-1}$, enough time was afforded for electrolyte ion penetration into the pores, and therefore the surface area effect was more dominant in influencing C_s (Table 1 and Figure 6F). However, the C_s was independent of BET surface area at higher scan rates. Unlike the usual C_s decline of metal oxide-based electrodes as the scan rate is increased because of associated low conductivities, the C_s of the 20 wt.% TiO$_2$ TiO$_2$-MWCNT increased. This could be because surface-controlled reactions induced by TiO$_2$ in electrodes increased as scan speed was raised.56 Additionally, at 10 mV s$^{-1}$, the current work is in agreement with the work reported by Kim et al.30 (involving 4, 6, 17, and 33 wt.% of TiO$_2$) in that C_s declines with an increase in TiO$_2$ wt.% in TiO$_2$-MWCNT (Figure 6F). However, the current work varied from this trend at higher scan rates (100 and 200 mV s$^{-1}$) in that the 20 wt.% TiO$_2$ TiO$_2$-MWCNT material displayed a 5000-fold improvement of C_s relative to that of 5 wt.% (Figure 6F and Supporting Information: Table S1). The rationale behind the raised capacitive characteristics of the TiO$_2$-MWCNT nanocomposites at both higher TiO$_2$ wt.% and scan speeds is the synergistic effects from morphological variations, induced pseudo mechanism,13,14 and enhanced hydrophilicity from TiO$_2$. Hydrophilicity from TiO$_2$ enhances the surface available for the formation of the electrochemical double layer.13 Hence, this study highlights the effect of both the Na$_2$SO$_4$ electrolyte and the TiO$_2$ wt.% in the TiO$_2$-MWCNT composites on both the charge storage mechanism and capacitance through synergistic effects of active sites and conductivity factors introduced by the use of heat during the MOCVD synthesis method.

Similar to the deductions arrived at from CV, the 10 wt.% TiO$_2$ TiO$_2$-MWCNT composite relatively displayed the most symmetrical GCD voltage-time profile supporting the highest capacitive character with unsurpassed electrochemical reversibility during the charge/discharge cycles than the rest of the composites (Supporting Information: Figures S6 and S7). The discharge times at 5, 10, and 20 wt.% TiO$_2$ were 10, 20, and 1 s, respectively. The longest discharge time was attributed to the optimum synergistic capacitive capabilities from both the EDLC and the pseudocapacitance contributions from the 90 wt.% MWCNTs:10 wt.% TiO$_2$, in the TiO$_2$-MWCNT composite, respectively. Even though the E_s was also optimum at 10 wt.% TiO$_2$, the 20 wt.% TiO$_2$ TiO$_2$-MWCNT composite exhibited a slightly smaller value, and this could be attributed to the similar defect intensity and pore volumes of the two composites (Tables 1–3), which affects the electrolyte ion movement (carrying the charge) and penetration into the electrode material, respectively. Additionally, the power density increased significantly as the TiO$_2$ wt.% was raised (Table 3), which corroborated with the higher C_s at high scan rates (Figure 6F). The E_s and P_s values in the current work are higher than those reported for TiO$_2$ carbon-based composite materials.2 This also agrees with earlier reports in that materials with low energy density (usually poor capacitive capabilities from short discharge time) are typically associated with higher power densities.57,58 The reasons for these traits are the fast charge/discharge attributes induced by the pseudocapacitive features at higher TiO$_2$ wt.%.57,59,60

On the one hand, EIS measurements showed that the semi-circle in the higher frequency region of the 20 wt.% TiO$_2$ nanocomposite was larger than that of the 5 wt.% TiO$_2$ TiO$_2$-MWCNT nanocomposite, and this infers a higher charge transfer resistance (R_{CT}) at 20 wt.% TiO$_2$ (Figure 7).1 The higher R_{CT} of almost 110 Ω for 20 wt.% TiO$_2$ could be rationalized by the large number of TiO$_2$ agglomerates that disrupted the surface morphology interconnectivity, thereby causing poor conductivity (Figure 7). This could be further ascribed to the MOCVD bundling effect on MWCNTs because of the lack of mixing/stirring during composite synthesis. Additionally, the increase in R_{CT} at high TiO$_2$ wt.% agrees with the study results on atomic layer deposition of rutile TiO$_2$ on vertically aligned MWCNTs.21 Hence, this infers that the traits in the current

<table>
<thead>
<tr>
<th>TiO$_2$ wt.%</th>
<th>C_d (F kg$^{-1}$)</th>
<th>E_s (Wh kg$^{-1}$)</th>
<th>P_s (W kg$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>10</td>
<td>907.03</td>
<td>55.56</td>
<td>2.78</td>
</tr>
<tr>
<td>20</td>
<td>95.74</td>
<td>47.87</td>
<td>47.87</td>
</tr>
</tbody>
</table>
work can similarly be linked to the decreased ion transport caused by the location of TiO2 active sites at or near the surface. As composites with higher wt.% of MWCNTs (lower TiO2) had lower \(R_{CT} \), the current study agreed with the report by Sundaram et al.\(^{61} \) in that the MWCNT component plays a role in charge transfer reactions and internal resistance of the electrodes.

In the case of the 10 wt.% TiO2 TiO2-MWCNT composite, the absence of a semi-circle, and the presence of a straight line in the high-frequency region indicate a non-diffusion-controlled system and a relatively excellent capacitive behavior (Figure 7).\(^{1,62} \) This agrees with the highest \(C_d \) value observed for the 10 wt.% TiO2 nanocomposite (Table 3). Compared to pristine MWCNTs, the steeper and shorter curve of the 10 wt.% nanocomposites suggests a shorter diffusion pathlength that facilitates an improved capacitive character (Figure 7).

The equivalent series resistance (ESR), which is the sum of the electrode intrinsic resistance, electrolyte resistance, and contact resistance (current collector and material),\(^{2,30} \) is the point of intersection of impedance and the \(Z_{re} \) axis (insert in Figure 7). The ESR variation was negligible since the aforementioned contributors were the same except for the TiO2 wt.%. However, it was slightly lowered by an increase in TiO2 wt.% (insert in Figure 7), and this corroborated with other TiO2 composites synthesized by the sol-gel method.\(^{2,14} \)

Hence, the slight ESR variations can conceivably be regarded as negligible to the relative capacitive differences in the current composites.\(^{30} \)

4 | CONCLUSIONS

The metal-organic chemical vapor deposition (MOCVD) of anatase TiO2 on MWCNTs coated the tubes in bundled morphologies and successfully achieved the target TiO2 loadings. Electrochemical characterization (CV, GCD analysis, and EIS) revealed that the 10 wt.% TiO2 TiO2-MWCNT nanocomposite exhibited the optimum capacitive behavior with associated \(E_s \) and \(P_s \) values of 55.56 and 2.78 W kg\(^{-1} \), respectively, due to the synergism between the two components of the composite. In addition, \(C_s \) exhibited by the 20 wt.% TiO2 TiO2-MWCNT material was improved by more than 5000-fold from 5 wt.% TiO2 at scan speeds of 100 and 200 mV s\(^{-1} \). A higher TiO2 wt.% induced fast charge/discharge capabilities, which facilitated high power density. The composition of the MOCVD synthesized composites influenced the associated physicochemical properties, such as the morphology and capacitive characteristics; hence, controlling the charge/discharge rates, pseudocapacitive contributions, and deliverable power density. The current study displayed that the MOCVD synthesis method imparts the TiO2-MWCNT composites with suitable traits for improved EC applications.

ACKNOWLEDGMENTS

The authors acknowledge the University of KwaZulu-Natal (UKZN) and the UKZN Nanotechnology Platform for supporting this study by providing the necessary research infrastructure. This study is based on research supported wholly by the EPSRC Global Challenges Research Fund (GCRF) SUNRISE project (grant number: EP/P032591/1) and in part by the College of Agriculture, Engineering and Science, Eskom Tertiary Education Support Programme (TESP) and the National Research Foundation (NRF) of South Africa. MLD is grateful for the financial support of the EPSRC (EP/S001336/1) and grateful for the funding of the SPECIFIC Innovation and Knowledge Centre by the Engineering and Physical Science Research Council [EP/N020863/1], Innovate UK.
[920036], and the European Regional Development Fund [c80892] through the Welsh Government.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ORCID

Edwin T. Mombeshora http://orcid.org/0000-0002-8333-9979

Bice S. Martincigh http://orcid.org/0000-0003-1436-5238

REFERENCES

26. Mombeshora ET, Ndungu PG, Jarvis ALL, Nyamori VO. Oxygen-modified multiwalled carbon nanotubes:

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Mombeshora ET, Muchuweni E, Davies ML, Nyamori VO, Martincigh BS. Metal-organic chemical vapour deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors. *Energy Sci. Eng*. 2022;1:14. doi:10.1002/es3.1234