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Abstract

Let M be a d-dimensional connected compact Riemannian manifold with boundary
OM, let V € C?(M) such that u(dz) := ¢V@dz is a probability measure, and let X;
be the diffusion process generated by L := A + VV with 7 :=inf{t > 0: X; € OM}.
Consider the empirical measure py := % fg dx.ds under the condition t < 7 for the
diffusion process. If d < 3, then for any initial distribution not fully supported on 0M,

c Zl — )\0 5 < htrgloglf%r;ft {tE[W2(Mt,M0)2‘T < T]}
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m:l
holds for some constant ¢ € (0,1] with ¢ = 1 when M is convex, where pg 1= ¢3u
for the first Dirichet eigenfunction ¢g of L, {\n, }m>0 are the Dirichlet eigenvalues of
—L listed in the increasing order counting multiplicities, and the upper bound is finite
if and only if d < 3. When d = 4, supthE[Wg(ut,ﬂo)2|T < 7| decays in the order

t~!logt, while for d > 5 it behaves like t_d%, as t — oo.
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1 Introduction

Let M be a d-dimensional connected compact Riemannian manifold with a smooth boundary
OM. Let V € C?(M) such that p(dx) = e”®duz is a probability measure on M, where dx is
the Riemannian volume measure. Let X; be the diffusion process generated by L := A+VV
with hitting time

7:=inf{t > 0: X, € OM}.
Denote by & the set of all probability measures on M, and let E” be the expectation taken
for the diffusion process with initial distribution v € &?. We consider the empirical measure

1 t
My = —/ 5X5d8, t>0
t 0

under the condition that ¢ < 7. Since 7 = 0 when X, € OM, to ensure P¥(7 > t) > 0,
where P¥ is the probability taken for the diffusion process with initial distribution v, we only
consider
ve Py={reP: v(M°) >0}, M°:=M)\OM.

Let {A\}m>0 be all Dirichlet eigenfunctions of —L on M, which are listed in the increasing
order counting multiplicities. Let {¢, }m>0 be the associated unit Dirichlet eigenfunctions,
i.e. Loy = —Anbm, dmloanr = 0 and {¢,, }m>0 is an orthonormal basis of L?(u). Moreover,
we take ¢o|pe > 0 as ¢p is non-zero in M°. It is well known (see [5]) that Ao > 0 and

1.1 (bm 00 SOCO\/E, Oéilm% S)\m—)\og@om%, m>1
0

holds for some constant ag > 1.

Let po = ¢2u. We investigate the convergence rate of EY[Wy(uy, po)?|t < 7] as t — oo,
where W, is the L?-Wasserstein distance induced by the Riemannian metric p. In general,
for any p > 1,

WP(MI?MZ) = lnf (/ p(may)pﬂ(dx7dy)) y M1, M2 S y?
MxM

TEE (p1,12)

where € (1, p12) is the set of all probability measures on M x M with marginal distributions
w1 and po, and p(z,y) is the Riemannian distance between z and y, i.e. the length of the
shortest curve on M linking x and y.

Recently, the convergence rate under Wy has been characterized in [24] for the empirical
measures of the L-diffusion processes without boundary (i.e. dM = ()) or with a reflecting
boundary. Moreover, the convergence of Wy (uy, 149) for the conditional empirical measure

i =E (ult<7), t>0

is investigated in [20]. Comparing with E*[Wy(u, po)?|t < 7], in p? the conditional ex-
pectation inside the Wasserstein distance. According to [20], Wo(uY, 119)* behaves as t72,
whereas the following result says that E[Wy (s, o)?|t < 7] decays at a slower rate, which
coincides with the rate of E[W, (i, 1)?] given by [24, Theorems 1.1, 1.2], where fi; is the
empirical measure of the reflecting diffusion process generated by L. See also [21] on the
study for diffusion processes on non-compact manifolds, [22] for semi-linear SPDEs, and [23]
for subordinated diffusions.



Theorem 1.1. Let {\,,}m>0 be the Dirichlet eigenvalues of —L listed in the increasing order
counting multiplicities. Then for any v € Py, the following assertions hold.

(1) In general,

[e.9]

2
(1.2) hﬁigp {tsupE [Wg(,ut,,uo ‘T <T } < Z TO)Z,
= (

and there exists a constant ¢ > 0 such that
(1.3) llgglf {tlnfE [Wa (4, o) |T <T } cmZ::l — )\0
If OM is conver and d < 3, then

li tE” |W. T < = 0.

Jim sup [Wa (g, p0)*|T < 7] n; - )\0

(2) When d = 4, there exists a constant ¢ > 0 such that
(1.4) sup B [Wo (g, p10)*|T < 7] <t 'logt, t> 2.
T>t

(3) When d > 5, there exist a constant ¢ > 1 such that
= < E¥ [Wl(pt,uo)2|T < 7‘] < E* [Wg(ﬂt,ﬂo)2‘T < 7'} < ct_ﬁ, T>t>2.

Let X? be the diffusion process generated by Lo := L +2V log ¢y in M°. It is easy to see
that for any initial distribution supported on M° and any to > 0, the law of {X? : t € [0, ]}
is the weak limit of the conditional distribution of {X; : t € [0,%o]} given T' < 7 as T' — 0.
Indeed, for T > ty and s € [0,1y], let ¥, = PP1 and let {X} : ¢ € [0,T)} be the diffusion
process on M° generated by A + 2Vlogyr_,t € [0,T). It is easy to see that for any
feC(Me) and t € (0,t], the process

Ptes (fwT—t)

M, =
Ptgszft

(X7), s€[0,4]
is a martingale, so that

T _ PtD(fl/}T—t) T o _ mx T o
B [(X)IT < 7] = LTV () megy — B, = B(A(XT)), @ e M
PFyry
By the Markov property, this implies that the law of {X} : ¢ € [0,o]} coincides with the
conditional law of {X; : t € [0,t0]} given T' < 7. Since

lim Vlogyr_; = Vlog ¢g

T—o0
locally uniformly on M° x [0, o], as T — oo the law of { X[ : t € [0, 0]} converges weakly to
the law of {X? : ¢ € [0,%0]}. In conclusion, the conditional distribution of {X; : t € [0, %]}

given T' < 7 converges weakly to the law of {X} : ¢ € [0,¢]} as T — oo. Therefore, the
following is a direct consequence of Theorem 1.1.
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Corollary 1.2. Let pf = L [ 6xods. Let v € Py with v(M°) = 1.
(1) In general,

lim sup {tEV [WQ(M?,/L(J)Q]} < Z TR

t—o00

and there exists a constant ¢ > 0 such that

lim inf {t mf [Wa (e, 110)? }} > ci 2

t—o00

If OM s convez, then
lim {tEV (W (422, 120) } Zl = Ao
(2) When d = 4, there exists a constant ¢ > 0 such that
E” [Wa(ug, p0)?] < ct™'logt, t> 2.

(3) When d > 5, there exists a constant ¢ > 1 such that

T SE[Wo(ul, p)?] < o772, t2>2.

In the next section, we first recall some facts on the Dirichlet semigroup and the diffusion
semigroup P generated by Lo := L+2V log ¢y, then establish the Bismut derivative formula
for P? which will be used to estimate the lower bound of E*[Wy(uy, po)?|t < 7). With these
preparations, we prove Propositions 3.1 and 4.1 in Sections 3 and 4 respectively, which imply

Theorem 1.1.

2 Some preparations

As in [24], we first recall some well known facts on the Dirichlet semigroup, see for instances
[5, 6,12, 19]. Let ps be the Riemannian distance function to the boundary M. Then ¢; ' ps

is bounded such that

(2.1) 166 |22 (uo) < 00, p € [1,3).

The Dirichlet heat kernel has the representation

(2.2) Ze Aty (2)m (y), t > 0,2,y € M.

m=0



Let E* denote the expectation for the L-diffusion process starting at point x. Then Dirichlet
diffusion semigroup generated by L is given by

PP @) = Ef(X)1en) = [ oP (o) uldy)
(2.3) o
=Y e M (G f)bm(x), t>0,f € L(p).
m=0
Consequently,
(2.4) lim {'P"(t < 1)} = hm {e/\ot (PP1)} = uldo)v(do), v E P,.

t—o00

Moreover, there exists a constant ¢ > 0 such that

_ _d(g—p)
2.5)  NPPllroraq = (lstlu? I1PP fllzagy < ce™@(AAt)" 20, t>0,g>p>1.
(| fIP)<1

Indeed, the Sobolev inequality implies

d
2

HPtD“Ll(,u)%LOO(u) <c(tN1)7z, t>0
for some constant ¢ > 0, which together with

PP\l 2y < e, t>0

and the interpolation theorem (see for instance [6]), implies (2.5).
On the other hand, let
L() =L+ 2V10g¢0

Noting that Lo f = ¢ L(f¢o)+Aof, Lo is a self-adjoint operator in L?(1) and the associated
semigroup P := e'fo satisfies

(26) Ptof = eAOt¢51PtD(f¢0)a f € L2(:u0)7 t Z 0.

S0, {dg "B }mso is an eigenbasis of Ly in L?(pg) with

(27) L0(¢m¢al) = _( - )\O)quqbo ) PO(¢m¢O ) =e >\7n_)\0)t¢m¢0 , m > 0 t > 0.

Consequently,
(2.8) Pf = pmo(fomdy e M 2on000, f € L (),
m=0

and the heat kernel of P? with respect to g is given by

(2.9) P, y) = (bmde ) (@) (Gmeg )(y)e P2 2y e Mt > 0.
m=0



By the intrinsic ultracontractivity, see for instance [13], there exists a constant a; > 1 such
that

Ckle_()‘l_AO)t

(2.10) 17 = pollzuoysr2uo) = sup_ [I1P'f = po(f)lloc € ————5— t>0.
po(lFN=1 (IA)™>

Combining this with the semigroup property and the contraction of PP in LP(u) for any
p > 1, we find a constant as > 1 such that

(2.11) I1P) = ptolloguoy == sup  [|P2f — po(F)|o(ue) < aoe™ 720 ¢ >0,p > 1.
po(|f|P)<1

By the interpolation theorem, (2.10) and (2.11) yield that for some constant az > 0,

(d+2)(g—p)

(212) 1P — ptoll o (o) Lague) < cze” MR AT e > 0,00 > ¢ > p > 1.

By this and (2.7), there exists a constant ay > 0 such that

d+2

(2.13) | Pm®o oo < qum2d, m > 1.

In the remainder of this section, we establish the Bismut derivative formula for PP
which is not included by existing results due to the singularity of Vlog ¢y included in Ly:
|V log ¢o| ~ py' and |[Hessiogg,|| ~ p5> around the boundary, where Hess is the Hessian
tensor. Let X! be the diffusion process generated by Lg, which solves the following It6 SDE
on M°, see [§]:

(2.14) A" X0 = V(V + 2log ¢)(X0)dt + V2U,dB,,

where d’ is Ito’s differential, B, is the d-dimensional Brownian motion, and U; € O xo(M) is
the horizontal lift of X} to the frame bundle O(M). Let Ric and Hess be the Ricci curvature
and the Hessian tensor on M respectively. Then the Bakry-Emery curvature of L is given
by

Ricr, := Ric — Hessy 1 210g ¢ -

Let Ric?,(U;) € R? @ R? be defined by
(Ric, (Uy)a, b)ga = Ricy, (Ura, Upd), a,b € R
We consider the following ODE on R¢ ® R%:

(2.15) %Qt = —Ric}, (U)Q:, Qo =1,

where [ is the identity matrix.

Lemma 2.1. For any ¢ > 0, there exist constants 61,09 > 0 such that
(2.16) E* [e fot{%(xg)}—?ds} < a5 % (2)e®, ¢t > 0,2 € M°.

Consequently,



(1) For any e >0 and p > 1, there exists a constant k > 0 such that
1
VP f(2)[* < ko) ™ { B[V (2)}r, feCy(M).

(2) For anye >0 and p > 1, there exists a constant k > 0 such that for any stopping time
T,

E°[||Qenr [IP] < Kgpo(z) %™, t > 0.

Proof. Since Lpg = —Xoo, ¢o > 0 in M°, ||do|lec < 00 and [Vy| is strictly positive in a
neighborhood of OM, we find a constant ¢y, cs > 0 such that

Lolog ¢g" = =y ' Lo + 65 % [Vo|* — 2657 Vo] < e1 — cadhg”.
So, by (2.14) and It6’s formula, we obtain
dlog 65" (X7) < {er — e2dp” (X))}t + V2V Iog 65 (X7), Uid By).

This implies

]Ez/ [¢a2(Xg)]ds < i(cﬁ—i— log gzﬁgl(x) + Elog gbO(XtO))
0 C2

= Ci(clt +log ¢y ' () + log ||do|ec) < ct + clog(l+ ¢y ') (z), t>0
2

(2.17)

for some constant ¢ > 0, and for any constant > 0,
E* [eacQ I ¢52(Xg)}ds] < E" [66 log ¢y ! () +0 log o (X )+c15t—3v/2 [ (V log ¢0(X§),Usst>]
< g5 () o2, (B (o5 (Vo) 3
Letting c3 = 4||V |2, and taking § € (0, c/c3], we derive
E* [eacg I qsg?(xg)}ds] < e2clét¢625<x>, 5 € (0, c/cs].
This implies (2.16) for € € (0, 2c¢a/c3]. Since for € > 2¢y/c3 we have
0% 2 6" g,

(2.16) also holds for € > 2¢y/c3. Below we prove assertions (1) and (2) respectively.
Since V € CZ(M), ¢ € CE(M) with ¢o > 0 in M°, and

~ Hessy, i Vo ® Vo > Hess,

—Hess), = = )
o0 %0 o %0
we find a constant o > 0 such that
(2.18) Ricp, (U, U) > —ay¢y N (2)|U]?, ©€ M°, U € T, M.



By (2.14), (2.18), and the formulas of It6 and Bochner, for fixed ¢ > 0 this implies
AV fI(XF)
= {Lo| VP fIP(XY) = 2(V P, f,VLoP)  f)}ds + V2(VIV P f*(X)), U.dBy)
> 2Ricpo (VP f, VP f)(X])ds + V2(VIVPL f*(X]), UsdBy)
=200 {0y VL fIP}(X)ds + VAVIVEL f(X,), UsdBy)ds.

Then by a Gronwall type inequality, we obtain

VP f(2)]* = E* VP fI*(X5) < E*[|Vf[*

(X
< (B3 00 (KDY PO £ (2) )5,

025 2a1¢al<X2>du]

Noting that

2,2

/(ﬁ(J X0d8<51/¢0 XOdS—I—ﬁ, 01 > 0,

2
(2.19) ap

by combining this with (2.16), we prove (1).
Next, by (2.15) and (2.18), we obtain

HQt/\r H < M fo XO)ds t>0.

This together with (2.16) and (2.19) implies (2).

Lemma 2.2. For any t > 0 and v € C*([0,]) with v(0) =0 and y(t) = 1, we have

t
(2.20) VP f(x) =E" [f(Xf)/ 7’(3)Q;dBS], x € M°, f € By(M°).
0
Consequently, for any € > 0 and p > 1, here exists a constant ¢ > 0 such that

ey ©
VIAL

Proof. Since (2.21) follows from (2.20) with v(s) := 2 and Lemma 2.1(2), it suffices to
prove the Bismut formula (2.20). By an approximation argument, we only need to prove for
f € CH(M). The proof is standard by Elworthy-Li’s martingale argument [7], see also [15].

By ||V f|ls < 0o and Lemma 2.1(1) for ¢ = 1, we find a constant ¢; > 0 such that

(2.21) VPO f| < (PlfIP)7, ¢ >0, f € By(M°).

(2.22) VP f|(2) < c195 /*(x), s €0,t],2 € M°.
Next, since Loy = — oo implies Logy' = Aoy *, by Itd’s formula we obtain

(2.23) E*[éy " (Xins, )l < 65" (2)e™, ¢ > 0,n > 1,



where 7, = inf{t > 0 : ¢o(X?) < 1} 1 0o as n T co by noting that the process X} is
non-explosive in M°.
Moreover, by Ito’s formula, for any a € R?, we have

d(VPL, f(X)),U,Qsa) = V2Hessp, ;(UsdB;, U,Qsa)(X),
AP f(X?) = V2(VP,f(X?),UdBs), se€[0,t].

Due to the integration by part formula, this and v(0) = 0 imply

-l [ e@aan)]

—e| [ v v - )
B[ )t A TV EL i F(XS0 ), Quanaa)] — (VP24 (), Upa)
—5[ [ 0= R ). U.0.0)
B[ =) AT (TP F(X), Qurnna)] — (VRS (@), Vo), 02 1.

Since 7y is bounded with 7(¢) = 1 such that (1 —v)(¢A7,) — 0 as n — oo, and (2.22), (2.23)
and Lemma 2.1(2) imply

(2.24)

N|=

SupEvaRfoft/\‘rnf( t/\‘rn> Qt/\Tn > } S C1 Sup( [¢0 ( t/\Tn)])%(EIHQt/\TnH ) 007

n>1 n>1

by the dominated convergence theorem, we may take n — oo in (2.24) to derive (2.20). O

3 Upper bound estimates

In this section we prove the following result which includes upper bound estimates in Theo-
rem 1.1.

Proposition 3.1. Let v € Z.
(1) (1.2) holds.
(2) When d =4, there exists a constant ¢ > 0 such that (1.4) holds.

(3) When d > 5, there exists a constant ¢ > 0 such that

v 2 -2
sup EY [Wo (¢, 110) |T<7‘] <ct a2, t>2.
T>t

The main tool in the study of the upper bound estimate is the following inequality due
to [1], see also [24, Lemma 2.3]: for any probability density g € L*(uo),

VL' (g—1)
| o [ IV
(3.1) Wa(gpo, po)” < /M (1) dpo,

9



where ///(a b) M)
pir := PO for some r > 0, where for a probability measure v on M°, vP? is the law of the
Ly-diffusion process X? with initial distribution v. Obviously, by (2.9) we have

L{ans>0}- To apply this inequality, as in [24], we first modify p, by

d,ut T 1

Pty = d,U(’J = t/pr( s ds—l—l—z ~Am =0 ()b

(3.2) 1
-2 / {Bmg " }(X,)ds

which are well-defined on the event {t < 7}.

Lemma 3.2. (1) If d < 3 and v = hy with héy' € LP(po) for some p > 2. then there
exists a constant ¢ > 0 such that

. ) 2(Am—Xo)r
sup [tE VL, F—1 T < 7' -2
sup (" (| Y Lg (v = D) Z myWE
<ct” 1( - —l—l{d oy log 7™ 1), re (0,1],t > 1.

(2) If d > 4 and v = hyw with ||héy || < 00, then for any k > 42, there exists a constant
¢ > 0 such that

sup tE” [110(|V Lo (prr — 1)|P)|T < 7]

T>t

< c{r_d%4 + 1ga=gy logr—t + t_lr_k}, t>1,re€(0,1).
Proof. By the Markov property, (2.6) and (2.3), we have

E* [f(XS>1{T<T}] =E* [1{s<7}f(Xs)EXS1{T—s<7’}}

(33) = PP{fPP_1}(z) = e ™" (¢oPX{ fP)_ 05" }) (), s<T.

By the same reason, and noting that EV = [, E*v(dz), we derive

EY[f (X)) f (X)) irany] = /MEI [Lsrcr f (X )EX 1 { f (X5 ) Lgrsi<ry ] v(d)
T ((b [ So— sl{fPYQ 52(2501}]) $1 < 82 < T.
In particular, the formula with f = 1 yields

(3.4) PY(T < 1) = e T u(ggPloy ).

Since V(Pmey ) m>1 is othornormal in L?(j), we have
Dm—rg Jm> M

2




Combining these with (3.2), we obtain

o0

tEV [[LQ(|VLal(pt,T - 1)|2)‘T < 7—} - Z

m=1

1B [ (8)*|T" < 7]
e20m=20)r (X, — Ag)”

Noting that EV(¢|T < 7) := % for an integrable random variable £, by (2.7) and and

the symmetry of P? in L?(jug), we deduce from this for v = hyu that

tE" [10(IV Lg (e — DI*)|T < 7]

= 2 Jy don f B [Lran) (900 ) (X)) (8 1) (Xoo)] dso
= (00 (3, = M) (00 PRy )

(3.5) B i 2 [y dsy [ v(¢5 Po{dmdy P [bmdo PY_ 00" 1})ds

= te2Om=2o)r(\ - — \o)v(do P )
_y? Jo ds1 J3, no({PS (h6g")} o Pl [0mds PP, 00 ) dso

te2m=20r (X, — Xo)pio(dg ' PL(Ry ")) ‘

Since ||y || £2(u0) = 1 and ||y || L1 () = p(hdo) < ||¢olloe < o0, by (2.12) we find a constant
¢y > 0 such that

|1o(65 " Pp(heg ) — 1u(do)v(do)l < lldg " (Pr — 110) (heg )| o)

< 1P = toll oy 220u0) 1105 | 11 oy < cxe” M7 T > 1,

m=1

m=1

(3.6)

On the other hand, write
1o ({P (hy ")} omdy ' Py, [0mdy ' Pr_y 00 )
= (o) (o )e~Pm A=) L T (51 s5) + Jo(s1, S2) 4 J5(s1, 52),
2.7),
= po({ P2 (hey ") = i(heo) Yomey  PY ., [dmd (Pr_y,d5" — (o)),

(¢hg)e~Am=20)l2=50) 0 ({P2 (hpy ) — pu(hbo) Hbmo ' 1),
(hepo)e™Pm=20)2=90) o ({0 F2{ PR_, 00" — (o) }).

t t t 1 — e—()\m—)\o)t
d ~(Am=Ao)(s2-51) 45, — _
/o Sl/s ) D WD P O D W

1

(3.7)

Noul
—
V)
K
V)
(Y]
~—_— ~— ~— —
I
= T

we find a constant k > 0 such that

©_ 020
tE” [1o(IV Lo (prr — 1)[H)|T < 7] —22 —>\0

sup
T>t

K 0 (eQ()\m /\0) e~ >\m )\0)7‘
t 2 \x

(3.8)

m_)\0>2+ WD /d81/ |J1+J2+J3|(82,82)d32) t>1.

11



Below we prove assertions (1) and (2) respectively.
(1) Let d < 3. Since [|hdg ||lLrguy) < 00, |85 |Loguy) < oo for 8 < 3 due to (2.1),
lém®o | £2u0) = 1, by (2.12), for any 6 € (2,3), we find constants ¢1, ¢ > 0 such that

| J1(s1, S2)| < 1||PY = piol 2o uo)— 1o (uo) || * [16m®0  (Pp_oy o — 1(00))| £2(u0)

(3.9) < Cl” s1 :uOHLP (o)=L HO)HPT 32 NOHL@(#O)%L"O(#O)
d+2

< cpemMITMEAT =) (1 A 5 ) 75 {1 A (T = 85)} 57,
and

[(J2 4+ J3) (51, 52)]
(3.10) < cre”Am—Ao)(s2=51) (||P£1 — f10/lp—so0 + ||P:/Q—52 - N0||L9(uo)—>L°°(uo))
< Cze—(Am—)\o)(SQ—sl) ({1 A 81}*%;26—()\1—)\0)81 + {1 A (T _ 82)}_ 29 e —(A— )\0)(t—82))‘

Since § > 2 and p > &2 imply L2 v de < 1 for d < 3, by (3.9) and (3.10), we find a
constant ¢ > 0 such that

t t
/ dSl/ |J1+J2+J3|(81782)d82§0, TZtZ 1,m2 1.
0 S1

Combining this with (3.8) and (1.1), we find constants cs, ¢4, ¢5, ¢ > 0 such that

o (Am—=Xo)r
e~
sup [tE” VL . — NT < 7' E
TZIE [M0(| Pt ‘ _ ()\m EPWE
03 > e Am )\0 C4 & E 1 (d_2)+ 1
< T § W 7 1 sTae 5T ds < et (r~ 2 +1lig=plogr™), t>1.

m=1

(2) Let d > 4. Let v = hu with |h¢y'| < C for a constant C > 0, we have

(3.11) E” :/ E*v(dr) < Cu(py) 'E™.
Rd
On the other hand, by (3.4), we see that

Prt<t) v 0P oy ")
Pro(t < T) o P 0 )

vo (o
VO((¢ )) (0,00) due to (2.4). So, there exists a

>0

is continuous in ¢ > 0, and it converges to
constant ¢ > 0 such that

Prt<T)>cP?(t<T), t>0.
Combining this with (3.11), we find a constant K > 0 such that

E"(Licr)
Pv(t <)

KE» (1t<7">
Pvo(t < )

(3.12) B/t < 7) = < = KE"(|t <7), t>0.
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So, it suffices to prove for v = 1. In this case, hoy' = u(¢o)~! is a constant, so that
Ji = Jp = 0. By (2.12), |¢mdg  [l2204) = 1 and @0l o¢u,) < oo for 6 € (1,3), we find a

constant ¢; > 0 such that

| Ja(s1, 82)| < cpem Pm =202 | [[(PO ) — 1io) (g )P (PP_, —MO)QSEIHU(“O)

< ¢rem mA0)ls2msmr)) O V2 = 101720 0y 12 (o) || PP — poll 0)||¢al|’L9(uo)

—>LP p=T(
e (m=20) (s =1 =r)=(a—Ao)(T—s2), ~ 3 o 82)]—7“”2”2950 e [1,0/(0 - 1).
Let py := 25:120) Since
i G201 _d—4
plpo 2p 6
o (d+2)0—(0—1)p d+2)(3—2p )
jp D20l 2B ¢ 0,1y i p e (32,

for any k > 9=, there exists § € (1,3) and p € (po, 527) such that

[@+2p=1) _, @21y

= < 1.
2p - c 260p

Thus,
| J3(51, 82)| < coe”AmmA0)ls2msimn) == 20)(T=s2) =[] A (T — 55)] 7%,
Since J; = Jy = 0, this implies

cqePm=Ao)ry—k

¢ ¢
/ dSl/ |Jy + Jo + J5](s1, $2)dsy < ——————, t > 1,7 € (0,1)
0 s1 >\m _)‘0

for some constant c¢3 > 0. Substituting into (3.8) for v = 1y, we find a constant ¢4, > 0 such
that

sup tE” [11o(|V Ly (pr — 1)) |T < 7]

T>t
o—2(Am—o)r C4r—k X o= (Am=Ao)r

<2 S —
> e U X

which implies the desired estimate since by (1.1),

2, e~ (Am=Ao)r oy 2 d—4
2 o S o [ 5ot < oo 4 e logr )
m=1 m 1

holds for some constants ¢, cg > 0 and all r € (0, 1).
0

Lemma 3.3. There exists a constant ¢ > 0 such that for any t > 0 and nonnegative random
variable £ € 0(Xs: s <t),

sup EVE|IT < 7] < BY[Et < 7], t>1,v € .
T>t

13



Proof. By the Markov property, (2.5) for p = ¢ = 0o and (2.4), we find constants ¢y, ca > 0
such that

E[€1ir<ny) = B [€l ey PP, 1(X,)] < cre P TIE €1y,
PY(T < 7) > coP(t < 7)e T T >¢>1.

Then

E”[fl{T«}] < ClEy[fl{t<‘r}] _ ﬁEu[at < 7-].

BT < 7] = P (T <7) = ePrt<7t)

]

Lemma 3.4. Let d < 3 and denote vy =
constant ¢ > 0 such that

sy For any e € (3V 55,1), there exists a

sup E"° [|pt7T(y) — 1|2‘T < T} < eyt trTe, t> 1,7 €(0,1),y € M°.
T>t

Proof. By Lemma 3.3, it suffices to prove for T' = t replacing 7' > t. For fixed y € M°, let
f=p%y) — 1. We have
IOtr / f

(313) B [Joun(y) — 1 lgen] = / dsy / B [Lur) f(Xa) F(Xo,)|dso.

Then

By (3.3), uo(f) = 0, and the symmetry of P? in L?(u), we obtain

I = MR [1{t<7}f(Xsl)f(st)} = pu(¢o) " o (Po {f Py, sl(fPtO %% )})
(3.14) = u(do)” Ho(f so— 51(fPt0 32¢61)) = p(¢o)” Mo({fpto 32%1} sp—s1 )
= (o) o ({f Py, 0 ' H Py oy — 10} 1)

Taking g € (2,3) so that e; := dz—ff <1 ford <3 and ||y "] raguy) < 0o due to (2.1), for any
p € (1,2] we deduce from this and (2.12) that

p(b0)T < N fllzo(uo) 1Py b0 o (o) | (Pey—sy — 110) f
(3.15) = I flleetuo) 1P, [l 29Gu0) 1 o) 160 | ) | Py —s, “OHL?(MOHLP%WO)HfHLQ(“‘”

B _@EDEmp)
< all ool flzqo T A (E=s2)} H{1A (52— s1)} 7 20 e Pamrollemsn)

LPl

holds for some constants ¢; > 0. Since f = p2(-,y) — 1 and inf ¢y ' > 0, by (2.5) and (2.6),
we find constants 1, 52 > 0 such that

120y < 14 R0 )l 2oy < 1+ €005 ()16 07 ()| 2o

a(p

S 1 +ﬁl¢al(y)||¢0”j|lp?(7y>||Lp(u) S ﬁqu(;l(y)riT;Ua S (Oa 1]7p € [1a2]

14



Combining this with (3.15) we find a constant ¢ > 0 such that

_dlp— (d+2)(2—p)

I < copy*(y)r 5 _1{1 At —5)} 1A (59— 51)} 2 e M2la=s) e (7 2],

Letting pg :=1V 25:62 and taking p > pg such that
d+2)(2 — 5(2 —
L. @+2C=p) _52-p) |
4p 4p

we arrive at

_d(p—1)

I< 62¢—2(y) 5 —1{1 A (t _ s )}751{1 A (82 o Sl)}fszef()qf)\o)(szfm)

for some constants €1,e5 € (0,1). Combining this with (3.13), we obtain

dlp—1) _d

B [lp,(y) — 1Pt < 7] <egp®(y)t—'r™ 2“1, ¢t>1.

Noting that

. (dlp—1) d d d?

i {100 D g

s\ 2p 4 2dra ~ores
for any € € ( \% 25+4, 1), there exists p > py such that il 2d+4 < e. Therefore, the proof is
finished. [

Lemma 3.5. Let d < 3 and denote i, (t) = + fg(¢m¢al)(Xs)ds. Then there ezists a constant
¢ > 0 such that for any p € [1,2],

p(d+4)—d—8

sTu>[zE”° [[m@®*[t <7] <em™ 20 ¢, t>1,m>1,r€(0,1).

Proof. By Lemma 3.3, it suffices to prove for T' = t replacing T' > t. By Holder’s inequality,
we have

B (|t ()T < 7] = B [[th (£)]*~ 2P [0 ()[4 T < 7]
< B [|¢m (8) I < 7]} P{E™ [ ()T < 7]}

Combining this with (2.4), it suffices to find a constant ¢ > 0 such that

ce Mot
3.16 E {1 () P 1ipery| < —, t>1,r€(0,1),
{t<r} o
(3.17) E" ([t ()L pery] < cv/me™™72, ¢ > 1,7 € (0,1),

(a) Proof of (3.16). Let ¢ = ¢y '. We have

(3.18) E¥° Uw ()| 1{t<7—} t2/ dsl/ 1{t<7—}¢m( 81)$m(X82)]d82'



By (2.7), (3.3), po(|ém|?) = 1, and the symmetry of P? in L2(s), we find a constant ¢; > 0
such that

e)\OtEVO [1{T<r}(£m<XS1)(%m(X82)] = VO( OPO {¢m s2— 81(¢m t— 82¢0 >})
(P 0P 5) = T (6P 05")
- ,U(¢ )MO m 52 s1\Tm t 5270 - M(CbO) Ho m t—s270

< cremAm 20D o) uo) | D0 2o (u)s P> 1.

Since d < 3, we may take p € (1,3) such that ¢ := dzti < 1 and ||¢g || rr(uy) < o0 due to
(2.1), so that this and (2.12) imply

VB [1cryom (Xo, )om(X,)] < cre™On 0 (1 A (1 — 5}

for some constant c¢3 > 0. Therefore, (3.16) follows from (3.18) and (1.1).
(b) Proof of (3.17). For any s > 0 we have

s'E" “wm( ’]‘{S<’T}
(3'19 —24/ dSl/ d82/ ng/ 1{s<r}¢m( 81 )Cgm(XSQ)QBm(XSB,)QASm(X&l)}d34

= /dsl/ dSQ/ d83/ [ Lsacry O (X, )Om( Xy )gs (53, 54)| dsa,

93(53, 84) = [0 [1{5<7—}§5m< 33)¢m 84 ‘X r< 33}
By (3.3) and the Markov property,

where

95(53; 34) = ng( ) Xs3 [1{3 53<T}$m<Xs4—83)j|
= e 0 G 00 P,y (Om Pl 05 H(Xsy), 0 <55 <54 < s,

By Fubini’s theorem and Schwarz’s inequality, (3.19) and (3.20) yield

I(s) := s* e B [|thn(5)[*115<ry ]
[fo

= 126)\08/ drl/ £ |:1{7“1<T}gs T17T2

1
<12 sup /I dr / eMOSTAMEW [T gy(ry,0)? }}erg.

rel0,s]

(3.20)

:|d7“2

Consequently,

1 2
(3.21)  I(t) < sup I(s) (12 sup / drl/ ero(Zs=r)gro (1 <r19s(r1,72)° }}Qdm) .

s€[0,t] s€[0,t]
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On the other hand, by the definition of vy, (3.3), (3.20) and that yug is PP-invariant, we
obtain

E* [1{7"1 <t} |gs (Tlv T2) |2]
e—2/\0(8—7”1)—)\07‘1

S ,u(¢0> ( {¢01‘¢m¢0 ro— r1<¢m s— 7’2 1)’2})
3.22 “xo(2s—r)
B Pl 7))
26—)\0(25 r1) ) o —1v12
< W/m(qb(){kbm( ro— 7’1 ) (¢0)| + |¢m ro— r1<¢m[Ps—r2 _MO]QSO )| }>

Then, by (3.20), (2.7), (3.3), po(|ém|?) = 1, and noting that pg is P’-invariant, we find a
constant ¢; > 0 such that

E¥ |:1{r1<T}’gs(rl>r2)|2:| S 26_/\0(28_T1)_()\m_)\0)(r2_r1)“QSmHooH¢OHOO,UO(‘ng‘|P(r,«fr1)/2¢gm‘2)

2072 [l 0 12
M(¢0) (|¢m | ro— rl (Ps ro /“L0>¢0 )‘ )

< cle—)\o(2s—r1){e—Q(Am—)\o)(rz—m)||¢m||oo||P(T27h)/2 _ H’OH%%#O)%LLL(#O)
o Nomllocll P, (Gl P, = 10)65 3,0 }-

By (1.1), (2.12), HquHLQ(uo) =1, |69 |l Lague) < o0 and € := H2 v dQLqQ <1 for q € (2,3) due
to (2.1) and d < 3, we find constants ¢, > 0 such that

d
1

[P llool| Pra—r1)/2 — MOH%2(MO)—>L4(;LO) < coV/m{L A (rg — 1)} 71,

and

||¢ml|00|| ro— 7‘1( [PSO—’I‘Q - #0]¢51)||%4(y0)
< N bmlloo 10— 122 () L) | Dl 2200 | (P, = 110) P 120 1)
< ||¢mHOO|| ro— T1||L2(u0)—)L4(,u,0 H 80 T2 _II’LOH%q(uo)%Lm(uo)||¢61H%q(uo)

< co/m e M Ro)(smr2) {IA(rg—r)} 2{1A (s —1)} %

Therefore, there exist constants ¢5 > 0 and € € (0, 1) such that
E¥ [1{T1<T}\gs(r1, 7“2)’2] < Cge*)\o(QS*TI)*()\mf)\o)(rzfn)\/E{l A (7”2 _ Tl)}fg
e/ BTN LA (ry — ) LA (1 = )}

Combining this with (3.21) and the definition of I(t), we prove (3.17) for some constant
¢ > 0, and hence finish the proof. n

Lemma 3.6. Let d < 3. Then for any p € (1,358 A 922), there exists a constant ¢ > 0
such that
sup E"[po(|VLy (per — V)T < 7] <et™, t>1.

r>0,T>t
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3d+16 A d+2
7 5d+8 A d-l—l)

Proof. By Lemma 3.3, it suffices to prove for T' = ¢ replacing T > t. Let p € (1
Remark that p > 1 implies

p

3.23 0,1

while p < 3ZE3 A T8 implies
d+2)2p —2 dip—1 d+4)+d +
(+)ip ), (p2 )+<P( +4)+ _2> -1,

hence there exists ¢ € (0, 1) such that

(d+2)(2p—2+s)+d(p—1)+<19(d+4)+d—2)+<1.

24
(3.24) 4 2 4

By (2.21), Lgl = — fooo P%ds, and applying Holder’s inequality, we find a constant ¢y, ¢y > 0

such that
9 o0 2p
| VL e = D < ( / |VP£<pt,r—1>|ds) dgt
M M
') 1 2p

gc/</ PsPspT—ldes) oo “du

(3.25) " \ o V1AS{ o = D[ 0

: 2p—1

§01</ (1As) B1e jggids) ’
0
< [ (G PP (e~ DY), 00
0 4

By (3.23), we obtain

P 2pOs

(3.26) / (LAs) z-1e 2-1ds < oo, 6> 0.
0

Moreover, since ||¢g° || ;2-1(,y = 1, po(per —1) = 0, and P} is contractive in LP(y) for p > 1,

(uo)
by (2.12) and Hoélder’s inequality, we find a constant co > 0 such that

NO(%E{PQIP& (o1 — DIPY?) < HP2|P§S (prr — |pHLrE N [ R

012 0 2p
<UPRIE o P8 = ) (P = 1) P
< PS P, —1
<Pl BTN L R
SclAs) T e B Py [ s> 0

Combining this with (3.26), we find a function ¢ : (0, 00) — (0, 00) such that
B [Lpperyo(|V Lo (o1 = DIY))]

3.27 o0 poare
(327) gc(e)/ (L As) AT
0

e—(Al—AO)psEVO [1{t<7}“P§ptr 1||L2( } S, 6> 0.

18



By (2.7), (3.2) and Hélder’s inequality, we obtain

= — — r+s P
P2, — 1HL2 (o) <Ze (Am—20)(2r+ /Q)Iwm(t)!2>
m=1

o p—l &9]
< <Z e—(Am—Ao)(2T+S/2)> 3 ety (1),
m=1 m=1

Noting that (1.1) implies

o0

Z e~ Cm=20)2r+5/2) < al/ e—w(?”s/?)t% dt <az(1As) 2
1

1S9

m=1

for some constants oy, as, a3 > 0, we derive

Evo [||P§Pt,r . 1‘@%(%)# < 7_] < 63(1 A S)_d(pz—l) Z e~ (Am=20)(2r+s/2)gro [|¢m(t)’2p‘t < 7_]

m=1

for some constant ¢3 > 0. Combining this with Lemma 3.5, (1.1), we find constants
4, C5, Cg, 7 > 0 such that

- L=y [0 3 pra)-d-s
EVO [“ngtﬂ‘ - 1||i€(u0)‘t < 7—] S C4t p(]_ /\ S) p2 \/1' e C5sudup ¥ du

oo
_ _dp=1) o_p(dtd)+d p(d+a)d _, _
<cgt P(IAS) 2z & 1 / t Se~tdt

S

d(p—1) (p(d+4)+d

<t P(IAs)” = © 27 og(2+ 571,

where the term log(2 + s™') comes when ’W — 3 = —1. This together with (3.24) and

(3.27) for 6 € (0, \; — \g) implies the desired estimate. O
Lemma 3.7. Letd < 3. Ifry =t~ for some o € (1, %/\ 2‘5;4), then prry v, = (1=7¢)pro, + 11
satisfies

lim sup B (1o (|4 (pr, vy, 1) = DT < 7] =0, ¢>1.

l=00 7>¢

Proof. By Lemma 3.3, it suffices to prove for T = t replacing T" > t. By the same reason
leading to (3.16) in [24], for any n € (0,1),y € M, we have

Ew“/{(pt,m,n(y),nﬂ_1|q‘t<r <‘\/_ pp ) + o (!pm() 1|>7)|t<7).

Combining this with Lemma 3.4 we find constants ¢ > 0 and ¢ € (0,a™!) such that

( ) 2t—1+o¢a‘

B [ A (pory ,1—1—1qt<¢<‘ ‘—{—cl
M (), 1) 101 e

Since po(¢y?) = 1, we obtain

E* 1t0(# (9t L et pe )21

DT =19t < 7] <‘\/_ T

Noting that ae < 1, by letting first £ — oo then n — 0, we finish the proof. ]
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Lemma 3.8. Let i, = (14 prrr)pio, where prpp = (1 —1)p,. + 1 forr € (0,1]. Assume
that v = hu with héy' € LP(uo) for some p > 1. Then there exists a constant ¢ > 0 such
that

sup E¥ [Wg(,umr,utﬂT < 7'] <ecr, t>0,r€(0,1].
T>t

Proof. By Lemma 3.3, it suffices to prove for 7' = ¢ replacing T" > t. Firstly, letting D be
the diameter of M, we have

Wy (p,v)? = inf / p(w,y)*m(dz, dy)
MxM

TEE (1,v)

(3.28) 1
<D* it w({(w,9):x#y}) = 5D li—vller

WSAORY)

where || — v||var := supygy <1 [(f) — v(f)] is the total variation norm. Then

(3.29) W2(Mt,r,r,ﬁbt,7~)2 < D2”Nt,m~ — it rllvar = D2M0(|Pt,r,r — perl) < 2D%r, 1€ (0, 1].
Next, by the definition of j,,, we have

(dz,dy) := pe(dz) P (2, dy) € C (s, ),
where PY(z, ) is the distribution of X? starting at z. So,

(3.30) Wi pe)” < / E*[o(z, X°)?] s (d).

M
Moreover, by It6’s formula and Lo = L 4 2V log ¢y, we find a constant ¢; > 0 such that

dp(z, X7)? = Lop(z,-)*(X))dr + dM, < {c1 + a1y ' (X)) }dr + dM,

holds for some martingale M,. Combining this with (2.17), and noting that log(1 + ¢5') >
log(1 + [|¢oll}) > 0, we find a constant ¢, > 0 such that

W (g, prer)® < 017“+61/ (Em/ ¢01(X2)d5> pe(daz)
M 0

¢
Cor
< corp(log(1 + ¢y h)) = %/ log{1 + ¢y (X,)}ds, 7€ (0,1].
0
Combining this with (3.29), (3.3), || P||Le(u) = 1 for t > 0 and p > 1, and noting that
: —1p0 41
inf pio(hg" Py ™) > 0,

we find constants c3, ¢4 > 0 such that

Ey[l{t<7}w2(,ut,r,ra Mt)2]
Pv(t <)
t
(3.31) < car / —1p0 -1
< T po(hoy P log{1+ ¢y })ds
tuo(hey 1Pt0¢0 1) 0 oo 0
< e3r]|hg o o) 1 log (1 + ¢ )

Combining this with (3.29) we finish the proof.

E” [Wa (gt ., )t < 7] =

HLP%(#O) < eyr, T € (0,1].
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We are now ready to prove the main result in this section.

Proof of Proposition 3.1(1). Since the upper bound is infinite for d > 4, it suffices to consider
d < 3.

(a) We first assume that v = hu with h < C¢, for some constant C' > 0. Let py,,,, =
{(1=r¢)per, +71}pto with ry = ¢ for some o € (1,4 A 244). By Lemma 3.8 and the triangle
inequality of Wy, there exists a constant ¢; > 0 such that for any ¢t > 1,

(3.32) E"[Wa(pur, o) |t < 7] < (14 €)E” [Wa(pig sy, pto)?|t < 7] +c1(1+e71)t7%, e>0.
On the other hand, (3.1) implies

IVLy (per, — DI?
'%(pt,"'tﬂ"t ) 1)

(333) E” [W2<:ut,7‘t,7‘t7 ﬂ0)2|t < 7—] S E” |:/ d,u()
M

t<7':| §[1+[2,

where

L= E" [uo(|VLy (per, — DD |t < 7],
I =B [10(IV L5 (prr, = DL (prrerin 1) = 1) [ < 7]

By Lemma 3.2(1), we have

> 2
limsuptl; < —,
t—>oop b= Z - /\0>2

while by Lemma 3.6 with p € (1, ¥£53 A 12), Lemma 3.7 for ¢ = 25, and (3.12), we derive

' B5d+8 1 d+1 1
limsup tls
t—o0
1 1
< limsupt(E” [1o(IV Ly (prre = D)t < 7])7 (B [0 (Pt )™ = N[t < 7])7
—00
=0.

Combining these with (3.33) and (3.32) where o > 1, we prove (1.2).
(b) In general, for any ¢t > 2 and ¢ € (0,1), we consider

1 t
£ = dx.ds.
M t—&f/a X

By (3.28), we find a constant ¢; > 0 such that
WQ(,U?»M?&)Q < DQHPJt - #i”var
3.34 t 1 1 D2 €
( ) §D2/ ( ——>ds+7/ ds < ¢ret™, t>2e€(0,1).
€ 0

t—e¢ t

On the other hand, by the Markov property we obtain
B [111<ryWa(f, 110)?] = B [11eant B (Lppmecry Wa (bte—e, 110)?)]
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=P"(e < T)E"™ [1{t—s<T}W2(MH, ,UO)Q}
=P (t —e < 7)P’(e < T)E"* [Wa (e, o)’ |t — € < 7],
where v, = h.p with
hlw) = o= [ PP (dn) < e n)inty)
for some constant c(e, ) > 0. Moreover, by (2.2), (2.4) and v. = h.u, we have
Pt —e < 17)P(e <7)

li =
= Pv(t < 1)

So, (a) implies
lim sup {tE” (W (pf, o) |t < T}}

t—o0
Pve(t — P>
— limsup (t—e<T)P’(e<T)
t—00 ]P)V(t < 7')

<Z _/\0

Combining this Wlth (3.34), we arrive at

lim sup {t]E” (W (pae, p10)?[t < T}}
t—00

{tEVE (W (pe-e, mo)?[t — € < T}}

<(1+ 5%) lim sup {tE” [Wa (kg po)?|t < 7] } + ce(1+ 5_%)
t—00

> T
m=1 ()‘m o )\0)2
By letting ¢ — 0, we derive (1.2). O

< (1+¢2) +ee(l+e72), €€ (0,1).

Proof of Proposition 3.1(2)-(3). Let d > 4. By (3.34), it suffices to prove the desired esti-
mates for i replacing p;. Therefore, we may and do assume v = hy with ||héy ! |ls < co.
By Lemma 3.2(2) and the following inequality due to [11, Theorem 2| for p = 2:

Wa(fho, 110)* < 4po(IVLg ' (f = 1)), fro € P,
for any k£ > %, we find a constant ¢ > 0 such that

tBY [Wa(ptrrs p0)*|T < 7] < c{r_% + lggegplogr™" +t7r7*}, T >t>1,r€(0,1).

Combining this with Lemma 3.8, we find a function ¢ : (%%, 00) — (0, 00) such that

E” [W2(Mt,ﬂo)2’T < 7'] <c(k {t_lr_% + t_ll{d:4} logr=t 4+t 2r % 4 7’},
(3.35) d—4
for T>¢t>1,r€(0,1), k>T

(a) Let d = 4. We take for instance k = 1 and r = ¢! for ¢ > 1, such that (3.35) implies
(1.4) for some constant ¢ > 0.

(b) When d > 5, we take for instance k = &2 and r = £~ for t > 1. Then (3.35)
implies the inequality in (3). O
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4 Lower bound estimate

This section devotes to the proof of the following result, which together with Proposition 3.1

implies Theorem 1.1.

Proposition 4.1. Let v € &y. There exists a constant ¢ > 0 such that (1.3) holds, and
when OM is convex it holds for ¢ = 1. Moreover, when d > 5, there exists a constant ¢ > 0

such that

(4.1) %%ft {tE[Wa (p1g, po)|T < 7]} > dtta, > 1.

To estimate the Wasserstein distance from below, we use the idea of [1] to construct a

pair of functions in Kantorovich’s dual formula, which leads to the following lemma.

Lemma 4.2. There exists a constant ¢ > 0 such that

z 1
Wa(pters 110)* = mo(IVLg  (prr — DI*) = ellprr = Ul (L + llpes — 1%), 7> 0.
Proof. Let f = Ly*(prr — 1), and take

o5 = —clog Phe 1 6e0,1],¢> 0.
We have ¢f = f and by [24, Lemma 2.9],
c 1 1
Piy) = (@) < 5{p(x,9)* +ell(Lof) oo + cre2 IV}
€ 1 2 -1 4
po(f = 1) < ro(IVFT) + ere™ [V Flle:
Since Lo f = pt, — 1, this and the integration by parts formula imply
1 1 €
5 Walkiers 10)” + ellprr = Uloo + 122 [V 1% = p0(5) = (/)

(4.2) .
= po(1 — f) — no(fLof) = §uo(|Vf!2) — e VEL, >0,

Next, by Lemma 2.2 for p = oo and (2.11), we find constants ¢z, c3, ¢4 > 0 such that
IV £l = IV L3 et = Dl < TP (o1 — 1)edls
<o T 5P — 1)lds
< el — e [ (7 He O <l 1
0

Combining this with (4.2) we find a constant ¢5 > 0 such that for any € > 0,

_ 1 _
Waers 10)* 2 po(IVLG (pra — DI*) = es{ellprr = Ul + €2 lper — L3 + 7 lper — LI}

4
By taking € = ||ps,» — 1||& we finish the proof.
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By Lemma 4.2, to derive a sharp lower bound of Wy (s, 110)?, we need to estimate
1ot — 1loe and E” [po(|V Ly (per — 1)|*)|T < 7], which are included in the following three
lemmas.

Lemma 4.3. For anyr > 0 and v = hu with ||h¢y'||e < 00, there exists a constant c(r) > 0
such that

sup E” [|| pr, — 1||io}T <7] <e(r)t? t>1.

T>t

Proof. By Lemma 3.3 and (3.12), it suffices to prove for v = vy and T' = t replacing T > t,
i.e. for a constant ¢(r) > 0 we have

(4.3) E™ ([, — 15|t < 7] <elr)t™?, t> 1.
By (3.22), (2.7), (2.11), and /¢y || z2(4e) = 1, we find a constant ¢; > 0 such that

E" [1{T1<T} 195(r1,72) ’2]
< Cle—/\o(28—/\1)||¢§m||io{e—(/\m—>\o)(r2—ﬁ) + e—(Al—Ao)(S—m)}’ §>1y>1 > 0.

By (3.21) and P (t < 7) > cpe 0! for some constant ¢y > 0 and all ¢ > 1, this implies

EY0[ |3 () [*1 1<ry]
Pvo(t <)

B [[¢m ()]t < 7] := <ol gmllit™ m>1t>1

for some constant ¢y > 0. Combining with (3.2) gives

E [llor, — 11t < 7]

[e'e) 3 oo
N 4
S <§ :e(/\m)\o)rH¢mHgo) § :e (Am—Xo)r )\OtEVO[l{T1<T}|¢m(t)‘4]
m=1

m=1
[e9) . 4 .
< (e 1al) et 3o et
m=1 m=1

By (1.1) and (2.13), this implies (4.3) for some constant ¢(r) > 0. O

Lemma 4.4. Let v = hy with ||h¢y || < 00. Then for any r > 0 there exists a constant
c(r) > 0 such that

’nL

<A sy
—)\0

t

sup
T>t

tEY [1o(IV L (pre — V)P)|T < 7] =2 Z

Proof. Let {J; : i = 1,2,3} be in (3.7). By (2.11), (2.13), and [|¢mllz2(u) = 1, we find a
constant ¢; > 0 such that for any ">t > s > s1 > 0,

‘Jl(sla 32)’ S “h¢61“00|yp.501 - :LLO”L‘X’(NO)”¢m(b61H?X)HP:,QiS2 _ MOHLl(HO)H(ﬁalHLl(uO)
S Cl||¢m¢al Hgoe*()\lf)\o)(t+81752)’
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| T (51, 52)] < [ @oloce™ P22 70| hy | oo [|PE, — prol| 2% (o)
< Cle*(kl*)\o)sz7

| J3(s1, 82)| < [|ol|sce™ P20 2=0 16 b2 PR — 10l 22 (o) 160 |1 (o)
< 1| pmepy |26 M),

Substituting these into (3.8) and applying (1.1) and (2.13), we find a constant ¢(r) > 0 such
that the desired estimate holds. O

Lemma 4.5. Let v = hp with ||hoy || < 00. Then for any r > 0 and p > 2, there ezists a
constant c¢(r,p) > 0 such that

IVLy (o — 1)\l 220 (o) < c(r,p), t> 0.

Proof. Since pe, = 1 [ p0(Xa, s, we have jio(pr) = 1 and [lpeslloo < (o8]l < co. Then
by (2.11) and ||¢g ' ||z2(u0) = 1, We find a constant ¢;(r) > 0 such that

o 65 (PP (s = DIPF) < 165 i | (P = i)
< ||P% _MOHiﬁP(MO)HptrH% < Cl( ) —3(>\1—)\0)s.
Combining this with (3.25) for e = 1 and 6 € (0, Ali)@)) we finish the proof.

]

Finally, since pi;,, = 1 P2, to derive a lower bound of Wy (uuy, p10) from that of Wa(py.., o),
we present the following result.

Lemma 4.6. There exist two constants Ky, Ky > 0 such that for any probability measures
s p2 on M,

(4.4) Wo (i Py, poPy) < K" Wa(u, o), ¢ > 0.
When OM is convez, this estimate holds for K = 1.
Proof. When OM is convex, by [20, Lemma 2.16], there exists a constant K such that

Ric — Hessy 1210549 > — K,

so that the desired estimate holds for Ky =1 and Ky = K, see [14].

In general, following the line of [18], we make the boundary from non-convex to convex
by using a conformal change of metric. Let N be the inward normal unit vector field of
OM. Then the second fundamental form of OM is a two-tensor on the tangent space of OM
defined by

I[(X,Y):=—(VxN,Y), XY e€ToM.

Since M is compact, we find a function f € C;°(M) such that f > 1, N || Vf (i.e. they are
parralell each other) on OM, and N log f|snr + I(u,u) > 0 holds on OM for any u € TOM
with |u| = 1. By [18, Lemma 2.1] or [19, Theorem 1.2.5], 9M is convex under the metric

<" '>/ = f_2<'a >
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Let A/, V' and Hess' be the Laplacian, gradient and Hessian induced by the new metric
(-,-)'. We have V' = f?V and (see (2.2) in [16])

Lo=f72N + f2V{V + 2log éo + (d— 2)f ).

Then the Lo-diffusion process X} with X having distribution p; can be constructed by
solving the following It6 SDE on M° with metric (-,-)" (see [2])

4.5) X ={f2V'(V +2log o + (d —2)f X))t + V2 £ (X)) Ud By,

where B; is the d-dimensional Brownian motion, and U; is the horizontal lift of X? to the
frame bundle O'(M) with respect to the metric (-,-)".
Let YOO be a random variable independent of B, with distribution us such that

(4.6) Wa (1, p2)* = E[p(Xg, Y7)?).

For any x,y € M°, let P, : T,M — T,M be the parallel transform along the minimal
geodesic from z to y induced by the metric (-, -)’, which is contained in M*° by the convexity.
Consider the coupling by parallel displacement

@) AP = [V 4 2logen + (d = Df )t + VIS (V) Phg Ui B

As explained in [2, Section 3], we may assume that (M°, (-,-)’) does not have cut-locus
such that P’ is a smooth map, which ensures the existence and uniqueness of Y,?. Since
the dlstrlbutlons of X and YY are pp, po respectively, the law of (X?,Y}) is in the class
C (P2, uaPP), so that

(48) W2(:U’1‘PtOMMQPtO>2 < E[p(XE7 }/160)2]’ t>0.

Let p/(z,y) be the Riemannian distance between z and y induced by (-,-) := f72(-,-). By
1< fe (M) we have

(4.9) 1fllp < p < p.

Since except the term f~2V’log ¢y, all coefficients in the SDEs are in Cp°(M), by Itd’s
formula, there exists a constant K such that

(4.10) dp' (X9, Y0)? < {Kp/(XP,Y")* + I}dt + dM,,
where M; is a martingale and

I = ((f7V'log ¢o)(m), 1) = ((f*V"log 6o) (70), F0)',

where v : [0,1] — M is the minimal geodesic from X? to Y,? induced by the metric (-, ),
which is contained in M° by the convexity, we obtain

1
T= [ U o)) 4y
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(9'720) 2 (V900 3 {7 ul1. 50V,
(F260) ()

¢0(’75)
{(¢51f_2)(7s)HeSS;0 (Ys ¥s) + fzz [<V/f_2(75), "ys>/]2}ds < Cp/(X?, }/;0)2

/1 {f‘Q(%)HeSS;O(%,%) +
0

1
<
0
for some constant C' > 0, where the last step is due to (¥, %) = p/(XP,Y0)?, 1 < f €
Cp° (M), and that by the proof of [20, Lemma 2.1] the convexity of OM under (-,-)" implies

Hess;, < c¢ for some constant ¢ > 0. This and (4.10) yield
E[p/ (X7, Y{')’] < E[p/(Xg,Y)?e ™, ¢ > 0.
[l

Combining this with (4.6) and (4.9), we prove (4.4) for some constant K, Ky > 0.

We are now ready to prove the main result in this section.
= hp with

Proof of Proposition 4.1. (a) According to (3.34), it suffices to prove for v
|hég||oe < 00. Let 7 > 0 be fixed. By Lemma 4.2, we obtain
LY [Wa(pter 10)*|T < 7] 2> 4B [1p,,, 1) ey Wttt 10)*| T < 7]
(4.11) >t [14)p0 - 1wzertto(|VEg (o1 = D) T < 7] — ce®
> tEY [u0(|VLal(pt7r — 1)|2)‘T < T] — ce?
— B [1per—1) et io([ VL Hprr — )P)|T < 7], €>0,T > t.

By Lemma 4.3 and Lemma 4.5 with p = 3, we find some constants ¢y, co > 0 such that

B [ —1) et o[V Ly (e — DT < 7] < crt{P" (|l oty — oo > €|T < 7)}?

2
S Clt&‘i%{Ey(Hpt,r - 1H§O‘T < 7')}3 S C267%t7%, T Z t.
Combining this with (4.11) and Lemma 4.4, we find a constant ¢z > 0 such that
tEY (Wa (e, 110)2|T < 7)) > B [10(|V Lo (per — V)P)|T < 7] — &

o —2(Am—Xo)r - .
>t>1,

€ ~1
5 — &t —cst

>2 —_—
a m=1 (/\m - AO)

where \
. 8,1
g 1= mE{ce2 + e 3173} » 0ast — oo
e>

Therefore,
. . . v 2 > (§
> -
hgglf%nzft {tE [Wz(,ut,r,,uo) ‘T < 7‘}} > 2 El O — ) r > 0.

Combining this with Lemma 4.6, we derive
2 0—2(Am=2o)r
lim inf inf r > 0.

t—oo T>t
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Letting r — 0 we prove (1.3) for ¢ = K;'. By Lemma 4.6, we may take ¢ = 1 when dM is
convex.

(b) The second assertion can be proved as in [24, Subsection 4.2]. For any ¢ > 1 and
N €N, let iy := % Zfil dx,,, where t; := (ijvl)t, 1 <7 < N+ 1. [10, Proposition 4.2] (see
also [9, Corollary 12.14]) implies that for some constant ¢o > 0,

(4.12) Wi (fin, o) > coN"4, N €N, t> 1.
Write N
1 N [t
= — — 0x.ds.
By the convexity of W32, which follows from the Kantorovich dual formula, we have
N t: N t:

1 N i+1 1 i+1
413 Wy (j 2Ny Wy (0x, ,0x,)°ds = - / X, X,)%d
(413 Wl < Do [ o s = 3 [ a0 X0

On the other hand, by the Markov property,

(414) Ey[p(Xtm Xs)Ql{T<T}] =FE |:1{ti<T}P£ti{p(Xti7 >2P7?—31}(Xt1)} .
Since PP1 < ¢ie™! for some constant ¢; > 0 and all £ > 0, (2.6) implies

P2, {p(x,)*Pr_1}(x)

(415) < Cle—Ao(T—S)PsD_tip(g(;, )2<CL’) < C1€_AO(T_S)¢O(x)Pso—ti{p<x7 )2¢61}<x>

It is easy to see that
Lo{p(x,")*¢"} < c26”
holds on M°® for some constant ¢y > 0. So, by (2.17), we find a constant c¢3 > 0 such that

PO {p(z, )’y " H(z) < E” /0 o ¢y 2 (X, )dr < cs(s — t;) log(1 + ¢y ' ().

Combining this with (4.14) and (4.15), and using PP1 < ¢;e~?! observed above, we find a
constant ¢5 > 0 such that

EY[p(Xt,, Xo) Lirary] < cse™Tv(log(1 4 ¢51)) (s — t;)
< sl hy loort(@o log(1 + log dg ™)) (s — ti)e T < cs(s — t;)e T, s> ¢,

Since P*(T < 7) > cpe T for some constant ¢y > 0 and all T > 1, we find a constant ¢ > 0
such that
E[p(Xy,, X,)?|T < 7] < c(s—t;), s>t

Combining this with (4.12) and (4.13), we find a constant ¢g > 0 such that

B [W (11, p0)2|T < 7] > %N—% —tN7Y, T >t
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Taking N =sup{i e N:i < atd%?} for some a > 0, we derive

c 27
2 >

2
200d Q

2 i (Wi o, )T < 7]} >

Therefore,

2 . Co 2c
ta—z inf EY[W; (uo, )| T < 7] > ( ——)>0, t>1.
P E W o, e[ < 7] 2 sup (2 T = z

O
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