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Abstract

This paper presents a novel variational phase-field model for different fracture processes in fully saturated

porous media. As a key feature, the model employs a micromechanics-based theory for the description of

brittle-tensile and compressive-ductile fracture. As such, the field variables are linked to physical mecha-

nisms at the microcrack level, with damage emerging as the consequence of microcrack growth. Similarly,

plasticity emerges as a consequence of the frictional sliding of closed microcracks. In this way, the evolution

of opening microcracks in tension leads to (mode I) brittle fracture, while the evolution of closed microcracks

in compression/shear leads to (mode II) ductile fracture. These failure mechanisms are coupled to fluid flow,

resulting in a Darcy-Biot–type hydromechanical model. Therein, in the tensile regime, plasticity naturally

vanishes, while damage is driven by poroelastic energy, accounting for the pressure in fluid-filled opening

microcracks. On the other hand, in the compressive/shear regime, the plastic driving force naturally follows

as a Terzaghi-type effective stress in terms of the local stress field acting on the microcrack surfaces, while

damage is solely driven by the frictionally blocked free energy. As another important feature, the model

includes a non-associative frictional plasticity law. Nevertheless, a thermodynamically consistent variational

framework is employed, for which different energetic principles are discussed. Finally, the numerical sim-

ulations show that the model captures relevant hydromechanical coupling effects in benchmark problems,

including mechanically induced shear fracture and hydraulically induced tensile fracture.
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1. Introduction

Quasi-brittle geomaterials such as rocks and concrete are subject to variations in pore pressure as fluid

flows through their porous microstructure. This mechanism and its interplay with mechanical deformation

involve porosity changes that alter the material’s structural properties. Consequently, the evolution of

porosity is considered to be the key for understanding and predicting the behavior of porous media, including

transport properties, strength, and fracture [1]. The study of these phenomena is crucial to assess the

strength of materials under fully or partially water-saturated conditions, as encountered, for instance, in

offshore structures, whose load-bearing capacity is strongly influenced by pore pressure [2]. Moreover, fluid-

related fracture processes are crucial in several engineering applications such as tunnel excavation, nuclear

waste storage, and hydraulic fracture for oil and gas extraction or the stimulation of geothermal reservoirs.

Assessing the applicability and the risk associated with such practices calls for a deep understanding of the

coupled hydromechanical behavior of geomaterials, particularly under failure conditions.
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The dissipative behavior of quasi-brittle geomaterials is modulated by the evolution of microcracks in the

solid skeleton. Depending on the stress state and the kinematics at the microcrack level, different macro-

scopic behaviors are observed: brittle behavior in a tensile regime, associated with opening microcracks,

and ductile behavior in a compressive/shear regime, associated with the frictional sliding of closed micro-

cracks. Phenomenological damage and plasticity models in the context of geomaterials characterize such

responses using internal variables defined at the continuum scale. While successful models of this type have

been proposed [3–9], they often lack physical meaning and involve a large number of parameters. Some

constitutive models [10, 11] overcome these shortcomings, presenting close links to the micromechanical de-

scription of damage and (friction-induced) plasticity in microcracked quasi-brittle materials [12–17]. In these

latter works, coupling between microcrack growth and frictional sliding is considered to derive constitutive

equations via suitable homogenization schemes, endowing the model with a clear physical meaning.

The studies above deal with dry materials or monophasic solids. Conversely, extensions of both phe-

nomenological and micromechanics-based plastic-damage models have been proposed to consider the effect

of pore pressure [18–24], usually in line with Biot’s macroscopic theory for porous media [25]. We refer the

reader to Coussy [26] for a thorough account of poroelasticity and poroplasticity and to Dormieux et al.

[1] for a treatment based on micromechanics. For the purposes of the present study, we highlight the work

of Xie et al. [23], where the micromechanics approach to damage and frictional plasticity [15] was extended

to porous media in fluid-saturated conditions. This topic was further studied in Jia et al. [24].

The plastic-damage models discussed so far are based on local internal variables and are thus unable

to handle softening responses with strain localization, where the well known loss of ellipticity leads to

pathological mesh-dependence and vanishing energy dissipation in finite element simulations. Remarkably,

similar issues have been reported in non-associative plasticity models [27, 28], despite their widespread

application to geomaterials. Thus, a delicate treatment of localized responses is required to model failure

in geomaterials. Different techniques for this purpose can be roughly divided into (i) models with sharp

discontinuities and (ii) models with regularized kinematics. The first class involves, for instance, the use of

strong discontinuities [29–31], as recently considered in a micromechanics-based plastic-damage model for

quasi-brittle materials [32]. Strong discontinuities have also been applied in phenomenological poroplasticity

models to capture shear bands in fluid-saturated materials [33–36]. A similar approach was recently employed

in a discrete beam lattice model [37, 38]. On the other hand, the second family of models includes rate-

dependent [39, 40], Cosserat [41, 42], non-local [43–45], and gradient-enhanced [46–48] theories. Most of

these works focus on material softening, although recent attention has also been placed on non-associative

plasticity [28, 49, 50]. As in the case of sharp discontinuities, regularized models have also been applied to

describe hydromechanical failure in porous media [51–53]. A comparative overview of techniques belonging

to the two mentioned classes in the context of hydraulic fracture can be found in Yoshioka et al. [54].

Of special interest for the present work is the phase-field approach to fracture, a topic that has gained sig-

nificant attention in the past decade. Phase-field models have shown great ability to describe crack initiation,

propagation, branching, and merging, providing a powerful paradigm in computational fracture mechanics.

Starting with the variational formulation of Griffith’s fracture [55] and its subsequent regularization [56], the

phase-field approach has become widely accepted in the mechanics community as a specific case of gradient

damage [57–65]. Several modifications of the original theory have been proposed, for instance, to account

for tension/compression asymmetry using energy splits, either in a variational form [57, 58, 66–68] or by

abandoning the variational structure of the original theory [69, 70]. Tension/compression asymmetry has

also been incorporated without resorting to energy splits [71], albeit in a non-variational form.
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Despite this progress, most phase-field models cannot describe the peculiar fracture behavior of geoma-

terials. For instance, in rock-like materials, the critical energy release rate for mode I (tensile) fracture

is significantly lower than the critical energy release rate for mode II (shear) fracture [72]. Moreover, the

fracture mode is strongly pressure-dependent (in the sense of confining stress), exhibiting a brittle-to-ductile

transition with increasing confinement [73]. Several variations of phase-field models have been proposed

to address these problems. Initial efforts focused on shear fracture [74], while subsequent works [75–77]

considered mixed-mode fracture, mostly inspired by the so-called F-criterion [72]. Other studies have taken

pressure-dependent frictional behavior into account [78], as well as plastic coupling [79–82]. More recently,

a micromechanics-based approach to fracture in geomaterials was proposed [83, 84], where the macroscopic

crack phase-field and the plastic strain tensor are linked to mechanisms at the microcrack level. In ad-

dition to preserving variational consistency, this approach provides a physically meaningful description of

tensile-brittle and compressive-ductile behavior, without employing heuristic energy splits.

All phase-field models discussed so far focus on monophasic materials. However, phase-field models

have also been extended to fluid-driven fracture in porous media [85–95] (see Heider [96] and Wick [97] for

overviews). Therein, Darcy’s law is usually employed as a phenomenological assumption to model fluid flow

through the unbroken porous material, governed by the pressure (or chemical potential) gradient. On the

other hand, a different law is employed to describe fluid flow in fully developed cracks. For instance, assuming

small crack openings, a Poiseuille-type flow is considered in some studies [95, 98–101]. Then, an evolving

anisotropic permeability tensor is introduced, represented by a deformation-dependent function scaled by

the crack opening and coupled to damage evolution. Only a few recent works [2, 102, 103] have extended this

approach to ductile behavior. Therein, a phenomenological Drucker-Prager plasticity model is considered.

The purpose of the present work is to introduce a new hydromechanical coupled model able to describe

the main features of geomaterial failure in fluid-saturated conditions, including both brittle and ductile

behavior. In contrast with purely phenomenological models, we take the micromechanics-based phase-field

approach to tensile-brittle and compressive-ductile fracture, recently proposed by Ulloa et al. [83], as a point

of departure, and extend the formulation to hydromechanical coupling under saturated conditions. The

resulting model can thus be viewed as a multiphysics extension of the model presented in Ulloa et al. [83].

Concerning the constitutive behavior, we highlight the following features of the present study: the mi-

cromechanical root of field variables, material parameters, and constitutive relations, endowing the model

with a clear physical interpretation; an asymmetric behavior in tension and compression that does not re-

quire the heuristic energy splits typically considered in phase-field models; a natural distinction between

mode I (tensile-brittle) and mode II (compressive-ductile) fracture regimes; and the use of a non-associative

frictional plasticity law, allowing for a realistic description of the dissipative behavior of geomaterials. These

mechanisms are hereby coupled to fluid transport, for which the permeability tensor entails a transition from

Darcy flow to Poiseuille flow between intact and fully broken material points. For this purpose, the standard

approach set forth by Miehe and Mauthe [95] and related works [98, 100, 103] is adopted, although different

techniques could also be employed without altering the novel aspects of the model.1

From the perspective of the formulation, the main feature of this study is a rigorous and thermody-

namically consistent variational framework. To this end, we employ the principles of the energetic for-

mulation [104], namely, energy balance and stability, considering a combination between rate-independent

1As reported in the literature, the specific approach adopted to modify the permeability tensor at fracture presents certain
limitations, to be discussed in the sequel, for which we do not intend to provide a solution. Instead, the focus of this work lies
in the variational micromechanics-based treatment of damage and plasticity and its coupling to fluid flow.
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dissipative processes and the rate-dependent process of fluid transport. The non-associative evolution law

is carefully incorporated in the variational framework using a state-dependent dissipation potential and a

generalization of the principle of maximum dissipation [105]. The developed formulation is linked to compact

rate-type minimization and saddle-point variational principles.

The paper is structured as follows. Section 2 presents the general modeling framework and introduces

variational principles for porous solids with gradient-extended internal variables coupled to fluid flow. These

concepts are used to construct the proposed micromechanics-based phase-field model in section 3, starting

with a brief description of the micromechanical background. The numerical implementation is discussed

in section 4, while numerical simulations that highlight the main features of the model are presented in

section 5. Concluding remarks are finally drawn in section 6.

2. Variational framework for porous media with gradient-extended internal variables

The purpose of this section is to introduce a general variational framework for gradient-extended dissipa-

tive solids coupled to fluid flow. We begin by presenting the problem outline and some classical definitions in

sections 2.1–2.3. Then, section 2.4 establishes the evolution problem in terms of the energetic formulation,

where, following Mielke and Roub́ıcek [104], an extension to rate-dependent phenomena is considered to

incorporate the fluid transport equations. In section 2.5, this formulation is linked to compact rate-type

minimization and saddle-point principles, in agreement with Miehe et al. [106, 107] and related works.

2.1. Problem outline

Consider a deformable porous solid in a fixed reference domain Ω ⊂ R3 with boundary Γ (figure 1). The

goal is to describe the evolution of the porous medium due to hydromechanical actions. The deformation

process is assumed to be quasi-static, occurring in a time interval T := [0, tmax], where strain localization

and fracture may develop. Concerning mechanical loads, the boundary is split into a Dirichlet part Γu
D with

prescribed displacements u(x, t) ∈ R3 and a Neumann part Γu
N with prescribed tractions t̄(x, t) ∈ R3, where

Γu
D ∪ Γu

N = Γ and Γu
D ∩ Γu

N = ∅. The solid may also be subjected to body forces per unit mass b(x, t) ∈ R3.

Fluid-driven external actions are considered at the boundary by means of a prescribed flux h̄(x, t) ∈ R on

Γp
N and a prescribed pore pressure p̄(x, t) ∈ R on Γp

D, where Γp
D ∪ Γp

N = Γ and Γp
D ∩ Γp

N = ∅. For the sake

of simplicity, the effect of gravity on the fluid is neglected, and no internal fluid source in Ω is considered.

t̄(x, t)

Γu
D

Γu
N

ū(x, t)

Γp
D

Γp
N

h̄(x, t)

p̄(x, t)

diffuse microcracks

porous network

strain localization

Ω ⊂ R3

mechanical problem

fluid flow problem

BVP

pores

microcracks

microstructure

Fig. 1. Schematic representation of the multiphysics boundary value problem in a microcracked porous solid with a strain
localization zone, representing, e.g., a smeared fracture.

The microstructure of the solid consists of a porous matrix embedded with microcracks, as depicted in

figure 1. The microcrack mechanisms will be discussed in detail in section 3. On the other hand, Biot’s

macroscopic theory [25] is adopted to describe the porous medium under fully saturated conditions. As such,
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the matrix material is permeated by an interconnected pore space, assumed to be either completely dry or

completely filled with a viscous fluid. In the dry case, the effect of air is neglected and the material can be

viewed as a monophasic solid. Conversely, the saturated matrix material is described at the continuum scale

as a biphasic system, where each material point x ∈ Ω corresponds to an elementary volume dΩ = dΩs+dΩf .

Here, dΩs is the volume of the solid phase and dΩf is the volume of the fluid phase occupying the pore space.

Then, the volume fractions ϑs and ϑf characterize the saturation condition

ϑs + ϑf = 1 with ϑs =
dΩs

dΩ
and ϑf =

dΩf

dΩ
,

where ϑf is a (Lagrangian) porosity. The mixture density at each material point reads

ρ = ρs + ρf with partial densities ρs = ϑsρsR and ρf = ϑfρfR,

where ρsR = ms/dΩs and ρfR = mf/dΩf are the mass densities of the solid phase and the fluid phase.

2.2. State variables and fundamental balance laws

The small strain hypothesis is assumed throughout this work. The displacement field u : Ω× T → R3 is

then taken as a primary variable, with the compatible strain tensor ε : Ω×T → R3×3
sym := {e ∈ R3×3 | e = eT}

obeying the linear relation ε = ∇su. The fluid phase is characterized by the normalized fluid content

variation

ζ :=
ρf − ρf0
ρfR0

=

�
ρfR
ρfR0

�
ϑf − ϑf

0,

where the subscript 0 denotes an initial quantity, i.e., at t = 0. The evolution of ζ is associated with the

pore pressure field p : Ω × T → R; as will become clear in subsequent developments, the pressure field is

conveniently considered as an independent variable in the formulation. For the sake of simplicity, we assume

hereinafter that the fluid is incompressible, such that ρfR = ρfR0 remains constant and ζ = ϑf−ϑf
0 at all times.

Concerning the dissipative behavior of the microcrack structure, i.e., the evolution of microcracks and

their localization into macroscopic fractures, the framework of thermomechanics with gradient-enhanced

internal variables is adopted in this work. In the general formulation presented in this section, this behavior

is characterized by a generic set of internal variables a : Ω× T → Rm and their first-order spatial gradients

∇a : Ω× T → R3m. The internal variables will take a specific form in the model proposed in section 3.

The evolution of the state variables above must comply with the fundamental laws of continuum mechan-

ics. The first is the balance of linear momentum, enforced through the static admissibility of the Cauchy

stress tensor σ : Ω× T → R3×3
sym. This condition implies the equilibrium equations for all t ∈ T:

divσ + ρb = 0 in Ω and σ · n = t̄ on Γu
N, with u = u on Γu

D, (1)

where n is the outward normal unit vector. The second fundamental law is the balance of mass, which

accounts for fluid diffusion in terms of the fluid flux vector h : Ω×T → R3. The balance of mass is enforced

for all t ∈ T by the fluid balance equations

ζ̇ + divh = 0 in Ω and h · n = h̄ on Γp
N, with p = p̄ on Γp

D. (2)

At this point, constitutive equations are required to relate the primary fields to the quantities σ and h

appearing in the balance laws (1) and (2). Moreover, additional evolution equations are required to describe
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the evolution of the internal variables contained in a. These missing ingredients are introduced below.

2.3. Thermomechanical framework: constitutive relations and evolution equations

In line with the theory of generalized standard materials [108], the evolution of the system is characterized

by two basic energy quantities: an internal energy density and a dissipation potential. Concerning the former,

we let ψ := ψ(ε, ζ, a,∇a) denote a Helmholtz-type free energy density. The second law of thermodynamics

is taken as an a priori restriction, given for isothermal processes by the Clausius-Duhem inequality

δ := σ : ε̇+ p ζ̇ − ψ̇(ε, ζ, a,∇a)− h ·∇p ≥ 0. (3)

Due to the distinct nature of the dissipative processes, stronger conditions are generally employed to enforce

the Clausius-Duhem inequality [109], where the intrinsic dissipation δint and the convective dissipation δcon

are enforced to be non-negative separately. In the present case, from inequality (3), one has

δint = σ : ε̇+ p ζ̇ − ψ̇(ε, ζ, a,∇a) ≥ 0, (4)

δcon = −h ·∇p ≥ 0. (5)

From the intrinsic dissipation inequality (4), the Coleman-Noll procedure yields the constitutive relations

σ =
∂ψ

∂ε
(ε, ζ, a,∇a) and p =

∂ψ

∂ζ
(ε, ζ, a,∇a). (6)

On the other hand, the generalized stresses conjugate to a read

s = −δaψ(ε, ζ, a,∇a), (7)

where δ⋄ := ∂⋄ − div[∂∇⋄] denotes the spatial Euler-Lagrange operator. Using equations (6) and (7), and

evaluating inequality (3) in integral form, the condition δint > 0 yields

s · ȧ ≥ 0 in Ω and −

n · ∂∇aψ(ε, ζ, a,∇a)

�
· ȧ ≥ 0 on Γ. (8)

For rate-independent systems, the dissipation rate δint is characterized by a thermodynamically ad-

missible dissipation potential ϕint, i.e., a non-negative, convex 1-homogeneous function in {ȧ,∇ȧ}, non-

differentiable and vanishing at null rates. Then, defining for notational simplicity the constitutive state as

c := {ε, ζ, a,∇a}, we have

δint := ϕint(ȧ,∇ȧ; c, s) ≥ 0. (9)

Following Ulloa et al. [105], the intrinsic dissipation potential depends on the generalized stresses s to account

for non-associative flow; this aspect is key for the model presented in Ulloa et al. [83] as well as for the present

extension to saturated porous media. From equations (7)–(9) the evolution equations for the internal variable

set a follow as
δaψ(ε, ζ, a,∇a) + δȧϕint(ȧ,∇ȧ; c, s) ∋ 0 in Ω,

n ·

∂∇aψ(ε, ζ, a,∇a) + ∂∇ȧϕint(ȧ,∇ȧ; c, s)

�
∋ 0 on Γ.

(10)

Here, in view of the non-differentiability of ϕint, the multivalued subdifferential ∂⋄□(⋄) of a function □ at ⋄
(embedded in the operator δ⋄□(⋄)) is employed in the context of convex analysis (see, e.g., Francfort [110]).
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Equation (10) represents the strong form of the evolution equations for gradient-extended internal variables,

e.g., describing the evolution of the microcrack structure and the resulting strain localization in figure 1.

Finally, we proceed to evaluate the convective dissipation inequality (5). Similar to the intrinsic counter-

part, we enforce the non-negativity of δcon by means of a suitable dissipation potential ϕcon, which in this

case is a 2-homogeneous convex function of the flux h. Specifically, we have

δcon :=
∂

∂h
ϕcon(h; c) · h ≥ 0. (11)

For subsequent developments, it is convenient to define the Legendre transform

ϕcon(h; c) = sup
�
q · h− ϕ⋆

con(q; c)
	
, with q := −∇p, (12)

where ϕ⋆
con is the dual convective dissipation potential, a convex 2-homogeneous function of the negative

pressure gradient q. Then, we obtain the relation between the flux and the pressure gradient as

h =
∂

∂q
ϕ⋆
con(q; c) = −K(c) ·∇p. (13)

In the present context, equation (13) entails a Darcy-type law, where K is a second-order permeability

tensor. Note that, in line with previous works [107, 111], the convective dissipation inequality (5) is fulfilled

by the convexity of ϕ⋆
con with respect to q.

Remark 1. In agreement with Anand [112], the present constitutive framework for porous materials can be

seen as a specific case of chemomechanics. In particular, the pair {ζ, p} may be replaced by more general vari-

ables {c, µ}, where c is the species concentration and µ is the chemical potential. Then, equation (13) plays

the role of a generalized Fick’s law. Furthermore, if the free energy ψ also depends on ∇c, the formulation

accounts for, e.g., Cahn-Hilliard–type diffusion, as outlined in Miehe et al. [111] for elastic solids.

At this point, starting with the Clausius-Duhem inequality (3), we have derived the constitutive rela-

tions (6). In addition, from the notion of dissipation potentials, we have obtained the evolution equations for

internal variables (10) and the relation between the flux and the pressure gradient (13). These ingredients

are appended to the fundamental balance laws (1) and (2) to completely determine, in strong form, the

governing equations of a porous medium with gradient-extended internal variables coupled to fluid flow.

2.4. Energetic formulation of the rate-independent/rate-dependent coupled system

This section recovers the governing equations of the dissipative porous medium in a variational form,

using an extended energetic formulation in agreement with Mielke and Roub́ıcek [104, chapter 5]. Specifically,

the rate-independent processes in the solid are coupled to the rate-dependent process of fluid transport.

2.4.1. Global energy quantities

In order to proceed with the energetic formulation, we begin by defining the required energy functionals.

To this end, we first assume suitable function spaces for the primary fields and their admissible variations.

The specific form of the function spaces depends on the material model; for now, we set Q := U × Z × A ,

such that {u, ζ, a} ∈ Q. Similarly, we define the admissible test space Q̃ := Ũ × Z̃ × Ã , which em-

beds homogeneous Dirichlet boundary conditions and evolution constraints, such that {ũ, ζ̃, ã} ∈ Q̃ denote

admissible variations.
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The internal stored energy functional reads

E(u, ζ,a) :=
Z

Ω

ψ(ε, ζ, a,∇a) dx. (14)

The work of mechanical loads is defined as the time integral of external power:

L

u; [0, t]

�
:=

Z t

0

�
Pu


τ, u̇(τ)

�
+

Z

Γu
D

tr(τ) · ˙̄u(τ) dS
�
dτ, (15)

where tr is the traction vector on Γu
D. The mechanical loading functional reads

Pu(t, u̇) :=

Z

Ω

ρb · u̇ dx+

Z

Γu
N

t̄ · u̇ dS. (16)

Rate-independent dissipative processes in the solid are characterized by the dissipation power functional

R(ȧ;u, ζ, a, s) :=

Z

Ω

ϕint(ȧ,∇ȧ; c, s) dx. (17)

On the other hand, concerning the convective dissipation due to fluid flow, we define the viscous functional

V(ζ̇;u, ζ, a) :=
Z

Ω

ϕ̄con(ζ̇; c) = sup
p∈P

� Z

Ω

h
− p ζ̇ − ϕ⋆

con(−∇p; c)
i
dx− Pp(t, p)

�
, (18)

where ϕ̄con is a 2-homogeneous function in ζ̇. The power of fluid injection through the boundary reads

Pp(t, p) :=

Z

Γp
N

p h̄ dS. (19)

The non-conventional expression (18) represents a generalized Legendre transform, extending the local trans-

formation (12) to an integral form and accounting for boundary conditions [111]. Here, −p plays the role of a

dissipative stress-like variable conjugate to ζ̇. In the sequel, the governing equations are derived by explicitly

considering the supremum in the right-hand side of equation (18). Note that the necessary conditions of this

principle yield the fluid balance equations (2).

2.4.2. Evolution problem

With the energy functionals at hand, we are now able to establish an energetic formulation of the evolution

problem. The first principle of the energetic formulation is energy balance, a restatement of the first law

of thermodynamics given in the most general setting in a derivative-free form. The second principle is a

stability condition on the rate-independent processes, given in its most general setting in a global form. In

what follows, only the necessary steps to recover the governing equations are presented for the sake of brevity.

Therefore, we assume sufficient regularity conditions, allowing us to state energy balance as a power balance

expression. Moreover, a local directional stability condition is employed, from which only the first-order

conditions are discussed. The reader is referred to Mielke and Roub́ıcek [104] for a thorough account of the

energetic formulation and to references [105, 113–117] for applications in solid mechanics.

In the present study, following Mielke and Roub́ıcek [104, chapter 5], we focus on incorporating the

rate-dependent fluid transport process into the originally rate-independent formulation. This is achieved

by including the viscous dissipation in the statement of energy balance through the functional defined in

9



equation (18). We then consider that a process {u, ζ, a} : T → Q satisfies energy balance if the following

condition holds for all t ∈ T:

d

dt
E

u(t), ζ(t), a(t)

�
+R


ȧ(t);u(t), ζ(t), a(t), s(t)

�
+ 2V


ζ̇(t);u(t), ζ(t), a(t)

�
− d

dt
L

u; [0, t]

�
= 0. (20)

On the other hand, a rate-independent process {u,a} : T → U × A satisfies first-order stability if the

following condition holds for all t ∈ T:

δE

u(t), ζ(t), a(t)

�
ũ, 0, ã) +R


ã;u(t), ζ(t), a(t), s(t)

�
− Pu(t, ũ) ≥ 0 ∀ {ũ, ã} ∈ Ũ × Ã , (21)

with δ□(⋄)(⋄̃) denoting the Gâteaux derivative of a functional □ in the direction ⋄̃. As in the case of rate-

independent systems, conditions (20) and (21) provide a variational form of the governing equations of the

solid phase, i.e., the mechanical balance equations (1) and the evolution equations (10). However, in the

present extended framework, we also recover from (20) the evolution of the fluid phase, given in primal form

as a Biot-type equation analogous to (10)1 (see Miehe et al. [111] for similar derivations):

∂

∂ζ
ψ(ε, ζ, a,∇a) +

∂

∂ζ̇
ϕ̄con(ζ̇; c) = 0. (22)

Note that, in view of equation (18), the last expression entails the constitutive equation (6)2.

2.5. Rate-type variational principles

The variational evolution problem (20)–(21) can be equivalently written as a rate-type stationarity prin-

ciple. Formulations of this type have been widely employed in problems relevant to the present study [106,

111, 118, 119], including both canonical minimization problems and saddle point problems.

In the present formulation, the (primal) minimization problem reads

inf
u̇∈U̇

inf
ȧ∈ ˙A

inf
ζ̇∈Ż

�
d

dt
E(u, ζ, a) + V(ζ̇;u, ζ, a) +R(ȧ;u, ζ, a, s)− Pu(t, u̇)

�
, (23)

where the function spaces U̇ , Ż , and ˙A must account for Dirichlet boundary conditions and evolution

constraints. In agreement with the energetic formulation (20)–(21), this principle yields the following neces-

sary conditions: (i) the mechanical balance equations (1), (ii) the Biot-type evolution equations (10) for the

internal variables, and (iii) the Biot-type evolution equation (22) for the fluid phase.

An apparent difficulty inherent to the canonical minimization principle (23) is that V(ζ̇;u, ζ, a) is gen-

erally not known a priori, but rather defined through the generalized Legendre transform (18) (we refer

the reader to Mielke and Roub́ıcek [104, equation 5.2.67] for a non-trivial evaluation of such a functional).

Therefore, in agreement with Miehe et al. [107, 111], it is convenient to define the mixed fluid dissipation

functional

VM(ζ̇, p;u, ζ, a) :=

Z

Ω

h
− p ζ̇ − ϕ⋆

con(−∇p; c)
i
dx. (24)

This expression is replaced in (23) to yield the saddle-point problem

inf
u̇∈U̇

inf
ȧ∈ ˙A

inf
ζ̇∈Ż

sup
p∈P

�
d

dt
E(u, ζ, a) + VM(ζ̇, p;u, ζ, a) +R(ȧ;u, ζ, a, s)− Pu(t, u̇)− Pp(t, p)

�
, (25)

which is mixed in terms of the conjugate pair (ζ̇,−p) but primal in terms of u and a. This principle

10



directly yields the following necessary conditions: (i) the mechanical balance equations (1), (ii) the Biot-

type evolution equations (10) for the internal variables, (iii) the constitutive relation (6)2, and (iv) the fluid

balance equations (2) in terms of p.

In the following section, after presenting the ingredients of the model, the governing equations are derived

by taking the saddle-point problem (25) as a point of departure. However, the local field ζ̇ is condensed out,

resulting in an extended version of the classical u – p formulation to account for the evolution of gradient-

extended internal variables. An alternative derivation is presented in appendix A, where the dependence on

ζ̇ is a priori removed from the variational statement in a reduced saddle-point principle.

3. Micromechanics-based variational phase-field model coupled to fluid flow

This section presents the proposed model for fracture in fluid-saturated geomaterials. The formulation

extends the model presented in Ulloa et al. [83] to hydromechanical coupling under fully saturated conditions.

After a brief description of the micromechanical considerations in section 3.1, the model is constructed in

section 3.2 by invoking the variational formulation presented in section 2.

3.1. Micromechanical background

As a prelude, we briefly present the local micromechanical arguments that constitute the conceptual

backbone of the non-local model proposed in section 3.2. We take as a point of departure the micromechanics-

based approach to damage and plasticity in quasi-brittle geomaterials [11, 12, 15] and, in particular, the

extension to saturated porous media presented in Xie et al. [23]. In this context, we consider a porous

material weakened by microcracks. For now, no strain localization is assumed at the macroscale and the

discussion is limited to the material point level.

RVE

nc

microcracks porous

network

Fig. 2. Schematic representation of the RVE consisting of a matrix-inclusion system (left). The inclusions are penny-shaped
microcracks with random normal orientations nc (middle) and the matrix is a homogenized porous material (right).

As in Xie et al. [23], the main focus is the characterization of inelastic processes caused by the evolution of

microcracks, namely, macroscopic damage and friction-induced plasticity. Consequently, the representative

volume element (RVE) is a matrix-inclusion system with a homogenized porous matrix material and a set of

randomly distributed penny-shaped microcracks, assumed to be much smaller than the RVE (figure 2). The
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matrix material is linear (poro-) elastic and isotropic, characterized by the fourth-order elasticity tensor2

C = K1⊗ 1+ 2µ

�
I− 1

3
1⊗ 1

�
, (26)

where 1 and I denote the second- and fourth-order identity tensors. The bulk and shear moduli K and

µ describe the elastic behavior of the porous matrix material and are thus presumably smaller than the

corresponding stiffness parameters of the solid phase Ks and µs. The intrinsic energy dissipation of the

RVE is induced by the microcracks embedded in the porous matrix. For simplicity, a uniform distribution of

microcracks in all directions is assumed, consistent with a direction-independent characterization of damage

and an isotropic effective behavior of the RVE [1]. In this context, we shall be concerned with two possible

macroscopic scenarios: (i) a state of opening microcracks in a tensile regime and (ii) a state of closed

microcracks subject to frictional sliding in a compressive/shear regime.

In the case of opening microcracks, the macroscopic elasticity tensor of the RVE takes the form

Chom(ω) = Khom(ω)1⊗ 1+ 2µhom(ω)

�
I− 1

3
1⊗ 1

�
, (27)

where ω is an internal variable directly related to the microcrack density [15]. The macroscopic bulk and

shear moduli Khom(ω) and µhom(ω) follow from a suitable homogenization scheme. For instance, considering

the Mori-Tanaka scheme [121], one has3

Khom(ω) =
K

1 + bKω
and µhom(ω) =

µ

1 + bµω
with bK =

16

9

1− ν2

1− 2ν
, bµ =

32

45

(1− ν)(5− ν)

2− ν
, (28)

where ν is the Poisson’s ratio of the porous matrix material. Then, the macroscopic free energy density of

the RVE can be written in agreement with Coussy [26] as

ψopen(ε, ζ,ω) =
1

2
ε : Chom(ω) : ε+

Mhom(ω)

2


Bhom(ω) tr ε− ζ

�2
. (29)

Note that equation (6)2 yields popen = −M

Bhom(ω) tr ε− ζ

�
. Thus, for popen = 0, the second term in (29)

vanishes, recovering the macroscopic free energy density of a dry material. On the other hand, in a saturated

material, ω 7→ Bhom(ω) gives the macroscopic Biot coefficient and ω 7→ Mhom(ω) gives the macroscopic Biot

modulus, both accounting for the effect of fluid-filled open microcracks. In particular, one has [1, 22, 23]

Bhom(ω) = 1− Khom(ω)

Ks
= B + (1−B)

�
1− Khom(ω)

K

�
= B + (1−B)

bKω

1 + bKω
, (30)

1

Mhom(ω)
=

1

Ks


Bhom(ω)− ϑf

0

�
=

1

M
+

1

Ks
(1−B)

�
1− Khom(ω)

K

�
=

1

M
+

1

Ks
(1−B)

bKω

1 + bKω
. (31)

On the right-hand side of these expressions, B = 1 − K/Ks and 1/M = (B − ϑf
0)/K

s denote the Biot

2We note that the present scheme implies a separation of scales between the microcrack network and the saturated porous
microstructure, the latter being defined at a smaller scale. A similar treatment can be found in recent computational ho-
mogenization schemes for porous rocks [120]. Of course, a full micromechanical analysis of the present model would imply a
micromechanical treatment of the porous matrix as well. However, this topic is out of scope in the present study.

3In this work, the Mori-Tanaka scheme is chosen as a specific example, in agreement with the cited references on the
micromechanics-based modeling of dry and saturated rock-like materials with microcracks [1, 23, 24]. Of course, different
choices, e.g., the Ponte-Castaneda and Willis scheme, can be equally made at this point.
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parameters of the undamaged porous matrix, while the second terms represent the contribution of open

microcracks. Note that the constant parameters are recovered as the microcrack density vanishes (ω → 0).

On the other hand, in the compressive/shear regime, the free energy must account for the frictional sliding

of closed microcracks. This mechanism calls for the introduction of a plastic strain tensor εp, directly linked

to the averaged displacement discontinuities across the surfaces of frictional microcracks in the RVE [12, 15].

Moreover, in view of the small strain hypothesis, the macroscopic strain tensor ε is decomposed as

ε = εe + εp, (32)

where εe denotes the elastic strain tensor. The corresponding macroscopic free energy density accounting

for the porous nature of the matrix is derived in Xie et al. [23]. Here, we state this quantity as

ψclose(ε, ζ, εp,ω) =
1

2
(ε− εp) : C : (ε− εp) +

1

2
εp : Hblock(ω) : εp +

M

2

�
B tr(ε− εp)− (ζ − tr εp)

�2
. (33)

Note that equation (6)2 yields pclose = −M
�
B tr(ε − εp) − (ζ − tr εp)

�
. Thus, for pclose = 0, equation (33)

recovers the macroscopic energy derived for the case of dry materials in Zhu et al. [15]. The first term in (33)

then represents the elastic strain energy stored in the solid matrix, while the second term represents the en-

ergy blocked on the surface of frictional microcracks. These terms constitute a quadratic elastoplastic energy

density with kinematic hardening, revealing the frictional sliding of microcracks as the microscopic origin of

plasticity in quasi-brittle materials. However, in contrast with purely phenomenological hardening/softening

models, the function ω 7→ Hblock(ω) directly follows from the coupling between microcrack growth and fric-

tional sliding and does not require phenomenological assumptions. Instead, it is derived from imposing, at

the transition between the open/closed states, continuous differentiability of the free energy, i.e., equivalence

between expressions (29) and (33) as well as their first derivatives. These conditions yield [15, 83]

Hblock(ω) =
h
Chom−1

(ω)− C−1
i−1

=
K

bKω
1⊗ 1+

2µ

bµω

�
I− 1

3
1⊗ 1

�
. (34)

In a saturated material, the last term in (33) further accounts for the pressurizing fluid. Note that its form is

in agreement with, e.g., Coussy [26]. In this term, ζ − tr εp represents a reversible variation of fluid content,

with tr εp representing a plastic variation of fluid content. In the present framework, this mechanism is

solely due to the volumetric plastic deformations induced by the sliding of frictional microcracks. Therefore,

no plastic changes occur in the porous matrix material (figure 2).

Remark 2. The cited references on the adopted micromechanical theory [22, 23] present the formulation in

terms of the grand-canonical energy density ψf⋆ = ψ − p ζ, replacing the dependence on ζ by dependence

on p. This equivalent approach is employed in the reduced saddle-point principle presented in appendix A.

At this point, according to the formulation presented in section 2, a thermodynamically admissible

dissipation potential may be defined to establish the governing equations of the model. However, the formu-

lation above is inherently local and therefore unsuitable for damaging solids with strain localization at the

macroscale. Thus, as in Ulloa et al. [83], we first replace the local internal variable ω with a gradient-extended

variable, i.e., with the crack phase-field. The proposed model is described in the remainder of this section.
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3.2. The proposed micromechanics-based phase-field model

A phase-field model is now constructed by taking the micromechanical arguments of the previous section

as a point of departure and rigorously following the variational formulation presented in section 2. As such,

the free energy density is first defined, followed by the intrinsic and convective dissipation potentials, which

consider microcrack growth, frictional sliding, and fluid transport. The free energy and the dissipation

potentials are then taken as inputs to derive the governing equations from the variational principle (25).

3.2.1. Free energy density and constitutive relations

As in section 2, consider the response of a porous solid in Ω× T with possible localization and fracture.

Adopting the phase-field approach to fracture, the response of the solid is characterized by the displacement

field u : Ω×T → R3 and the crack phase-field α : Ω×T → [0, 1], where intact material points and completely

fractured material points are given by α(x, t) = 0 and α(x, t) = 1 , respectively. The plastic strain tensor

εp : Ω×T → R3×3
sym represents a macroscopic measure of the frictional sliding of closed microcracks, while the

pore pressure field p : Ω×T → R characterizes the fluid flow. The different mechanisms and their interactions

in the multiphysics model are depicted in figure 3 and discussed in detail in the following paragraphs.

ε̇p ̸= 0

ε̇p ̸= 0

Γp
D

tr sp = 0
(open microcracks)

tr sp < 0
(closed microcracks)

t̄(x, t)

Γu
N

ū(x, t)

Γu
D

h̄(x, t)

Γp
N

p̄(x, t)

(ε,α, p)(ε,α, εp, p)

tensile

shear

Ω ⊂ R3

εp
α

α0

1

Fluid
flow

Microcrack
evolution

Fig. 3. Schematic representation of the multiphysics boundary value problem and the mechanisms of the proposed model,
showing the microcrack evolution and the fluid flow in both the compressive/shear and the tensile regimes.

Let us begin the formulation by defining the macroscopic elasticity tensor and the consequences thereof.
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The fundamental idea is to restate the ω-dependent tensor (27) as a function of the crack phase-field via

Chom(ω) ≡ Cdam(α), (35)

which provides a direct relation between the microcrack density parameter and the crack phase-field, i.e.,

ω = ω(α), depending on the degradation functions gK(α) and gµ(α) and the micromechanics-based quantities

Khom(ω) and µhom(ω). In view of isotropic behavior, the function α 7→ Cdam(α) reads

Cdam(α) := gK(α)K1⊗ 1+ 2 gµ(α)µ

�
I− 1

3
1⊗ 1

�
. (36)

Considering the Mori-Tanaka scheme, equations (27), (28), and (36) imply that

ω(α) =
1− gK(α)

bK gK(α)
and ω(α) =

1− gµ(α)

bµ gµ(α)
. (37)

Thus, the functions gK(α) and gµ(α) may not be defined independently. In the present study, we set

gK(α) :=
(1− α)2

1 + (b− 1)[1− (1− α)2]
. (38)

This function, taken from Alessi et al. [122] and also employed in the previous related works on dry mate-

rials [83, 84], includes a single tuning parameter b. This parameter allows us to recover the more common

quadratic version (1− α)2 for b = 1 and to consider a smoother softening stage, i.e., a less brittle response,

for b > 1. Using equation (37), we derive the shear degradation function

gµ(α) =
gK(α)

gK(α) +
bµ
bK

[1− gK(α)]
. (39)

Note from equations (37), (38), and (39) that a complete damage process α → 1 and vanishing damage

α → 0 correspond to ω → ∞ and ω → 0, respectively.

Using the ansatz (35), the constitutive functions (30), (31), and (34) are restated as functions of α via

Bhom(ω(α)) ≡ Bdam(α) = 1− Kdam(α)

Ks
= B + (1−B)


1− gK(α)

�
, (40)

1

Mhom(ω(α))
≡ 1

Mdam(α)
=

1

Ks


Bdam(α)− ϑf

0

�
=

1

M
+

1

K
(1−B)2


1− gK(α)

�
, (41)

Hblock(ω(α)) ≡ Hkin(α) =
h
Cdam−1

(α)− C−1
i−1

= Hkin
K (α)1⊗ 1+Hkin

µ (α)

�
I− 1

3
1⊗ 1

�
, (42)

where the damage-dependent kinematic hardening moduli read

Hkin
K (α) =

gK(α)K

1− gK(α)
and Hkin

µ (α) =
2 gµ(α)µ

1− gµ(α)
. (43)

Note that the constitutive functions above follow directly from the degradation functions gK(α) and gµ(α).

In view of the homogenized energy densities (29) and (33) for porous solids with open and closed micro-
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cracks, and labeling these cases as open and closed hereinafter, the free energy density reads

ψ(ε, ζ, εp,α) =





1

2
ε : Cdam(α) : ε+

Mdam(α)

2


Bdam(α) tr ε− ζ

�2
if open,

1

2
(ε− εp) : C : (ε− εp) +

1

2
εp : Hkin(α) : εp +

M

2

�
B tr(ε− εp)− (ζ − tr εp)

�2
if closed.

(44)

The constitutive equations (6) yield the stress-strain relation

σ(ε, ζ, εp,α) =
∂ψ

∂ε
=




Cdam(α) : ε+Bdam(α)Mdam(α)(Bdam(α) tr ε− ζ)1 if open,

C : (ε− εp) +BM
�
B tr(ε− εp)− (ζ − tr εp)

�
1 if closed,

(45)

and the constitutive relation between the pressure and the fluid content variation

p(ε, ζ, εp,α) =
∂ψ

∂ζ
=




−Mdam(α)(Bdam(α) tr ε− ζ) if open,

−M
�
B tr(ε− εp)− (ζ − tr εp)

�
if closed.

(46)

Similarly, we obtain the generalized stress conjugate to the plastic strain tensor

sp(ε, ζ, εp,α) = − ∂ψ

∂εp
=




0 if open,

C : (ε− εp)−Hkin(α) : εp −M
�
B tr(ε− εp)− (ζ − tr εp)

�
(1−B)1 if closed.

(47)

Note that equation (47) naturally embeds the microcrack opening/closure condition through sp = 0. Thus,

in view of isotropic behavior, we employ the conditions

(
tr sp(ε, ζ, εp,α) = 0 if open,

tr sp(ε, ζ, εp,α) < 0 if closed
(48)

to signal open microcrack states in the tensile regime and closed microcrack states in the compressive/shear

regime (figure 3). Finally, the generalized stress conjugate to the crack phase-field reads

sd(ε, ζ, εp,α) = −∂ψ

∂α
=





−1

2
ε : Cdam′

(α) : ε+
∂

∂α

�
Mdam(α)

2


Bdam(α) tr ε− ζ

�2
�

if open,

−1

2
εp : Hkin′(α) : εp if closed.

(49)

According to this expression, damage in the open state is driven by poroelastic energy, while damage in the

closed state is solely driven by the blocked plastic energy that results from frictional sliding.

For subsequent developments, we further note that in view of equation (46), equations (45), (47), and (49)

equivalently read (with an abuse of notation)

σ(ε, p, εp,α) =




Cdam(α) : ε−Bdam(α) p1 if open,

C : (ε− εp)−B p1 if closed,
(50)
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revealing that σ is in agreement with Biot’s effective stress;

sp(ε, p, εp,α) =




0 if open,

C : (ε− εp)−Hkin(α) : εp −B p1+ p1 if closed,
(51)

revealing that the plastic driving force takes the form of Terzaghi’s effective stress (cf. Zhao and Borja [123])

in terms of sp in the compressive/shear regime; and

sd(ε, p, εp,α) =





− 1

2K
g′K(α) (K tr ε−Bp+ p)2 − g′µ(α)µ εdev : εdev if open,

−1

2
Hkin

K

′
(α)(tr εp)2 − 1

2
Hkin

µ

′
(α) εpdev : εpdev if closed,

(52)

where we have also used equations (40)–(42), revealing that damage in the open state is driven by elastic

energy in terms of Terzaghi’s effective stress (cf. [1, equation 10.102] for B = 0). From these expressions, one

observes that setting B = 0 in the open state uncouples the fluid pressure from the total stress but not from

the damage driving force. Thus, if the influence of fluid pressure in the porous matrix is neglected, the fluid

pressure remains active in the opening microcracks and drives damage. Conversely, in the closed state, the

damage driving force does not depend on the fluid pressure. Indeed, because the matrix is poroelastic, the

plastic-damage response is solely due to microcrack growth and frictional sliding. Moreover, setting B = 0

in the closed state uncouples the fluid pressure from the total stress but not from the plastic driving force.

In this case, if the influence of fluid pressure in the porous matrix is neglected, the fluid pressure modulates

the volumetric plastic component of sliding microcracks but does not promote damage directly.

It is worth recalling that the piecewise conjugate variables (45), (46), (47), and (49) are continuous due

to the continuous differentiability of the free energy, as ensured by the structure of the kinematic hardening

tensor (42). As discussed in Ulloa et al. [83] for the case of dry materials, owing to the micromechanical

considerations, the present model presents some interesting features that are not present in conventional

phase-field models. In particular, by virtue of equation (44), the present model embeds a natural distinction

between a tensile-brittle regime and a compressive-ductile regime, associated with opening microcracks and

frictional sliding, respectively. This feature allows us to capture different failure modes and to preclude

unrealistic compressive fracture without introducing heuristic energy splits. Moreover, when compared to

phase-field models for ductile fracture, by virtue of equation (43), the present model does not require the

definition of phenomenological hardening parameters or plastic degradation functions. Note further that for

α → 0, the functions in (43) approach infinity, yielding an elastic response and implying that no frictional

sliding can occur in the absence of microcracks. In the present work, these features are further enhanced by

taking into account the effect of pore pressure, as described in the preceding passages.

3.2.2. Dissipation potentials

As discussed in section 2.3, the adopted variational framework requires the definition of the intrinsic

dissipation potential ϕint and the convective dissipation ϕcon, the latter being alternatively defined in terms

of its convex conjugate ϕ⋆
con through equation (12). Let us address these constitutive functions below.

Intrinsic dissipation. The intrinsic dissipation potential characterizes the evolution of the internal variables

εp and α, and it is additively decomposed into a plastic contribution ϕp and a fracture contribution ϕd:

ϕint(ε̇
p, α̇,∇α̇;α,∇α, sp) = ϕp(ε̇p; sp) + ϕd(α̇,∇α̇;α,∇α, sp). (53)
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Despite the dependence of sp on the pore pressure, these functions take the same forms presented in Ulloa

et al. [105] for dry materials; the main arguments are summarized below for the reader’s convenience.

ε̇p ∈





λ

�r
2

3
Aφ1+ ∂∥s̃pdev∥

�
Associative flow

λ

�r
2

3
Aθ1+ ∂∥s̃pdev∥

�
Non-associative flow

O

K

L(sp)A

B

(Aθ−Aφ) tr sp√
3Aθ

√
3

3
tr s̃p

s̃pdev

ε̇pdev = λ
spdev

∥spdev∥
λ

aφ aθ

(a)

K

L(0)

s̃pdev

ε̇pdev ∈ λ ∂∥spdev∥
��
0

aφaθ

O

√
3

3
tr s̃p

(b)

Fig. 4. Elastic domain K (gray region) and state-dependent domain L(sp) (brown region) for the Drucker-Prager model: (a)
flow rule at states ±sp (A and B), corresponding to smooth points of K and L(sp), and (b) flow rule at the apex. The tensors
normal to ∂L(sp) (red) correspond to the non-associative flow rule, while the tensors normal to ∂K (blue) recover the associative
case where the volumetric plastic strain rate is larger. Here, tan aφ =

√
2Aφ and tan aθ =

√
2Aθ.

The plastic contribution follows from the definition of the plasticity evolution equations in generalized

stress space. Thus, in order to consider non-associative flow, we first define the plastic yield function fp and

the plastic potential gp:

fp(sp) := ∥spdev∥+
r

2

3
Aφtrs

p and gp(sp) := ∥spdev∥+
r

2

3
Aθtrs

p. (54)

The condition fp(sp) ≤ 0 can be viewed as a friction criterion on the (isotropic) local stress field sp, taking

the form of a Drucker-Prager model at the macroscale. Here, Aφ is the friction coefficient and Aθ is the

dilation coefficient, with 0 ≤ Aθ ≤ Aφ. Note that fp(sp) does not include a cohesive term in generalized

stress space in order for spdev to vanish at the opening/closure transition (equation (48)). However, by virtue

of both the back-tress term Hkin(α) : εp and the pore pressure term p1 (for B < 1) in equation (51), a

damage- and pressure-dependent cohesion is attained in terms of the effective stress C : (ε−εp). With these

definitions, the classical plasticity evolution equations consist of the generalized stress constraint

sp ∈ K :=
�
sp ∈ R3×3

sym | fp(sp) ≤ 0
	
, (55)

where the convex set K represents the elastic domain, and the non-associative flow rule (see figure 4)

ε̇p ∈ Q(sp) :=
�
λ n̂ ∈ R3×3

sym | n̂ ∈ ∂gp(sp); λ ≥ 0, λ = 0 if fp(sp) < 0
	
. (56)

Clearly, if Aθ = Aφ, we recover the associative model. In that case, the volumetric plastic strains are

modulated by the friction coefficient Aφ. However, the non-associative model is preferred due to (i) its more
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realistic description of geomaterial behavior and failure [3, 124] and (ii) the fact that the associative model

leads to an unphysical vanishing plastic dissipation.

The main implication of adopting a non-associative flow rule is that the variational structure inherent to

associative models is seemingly lost. In order to address this apparent deficiency and allow for a variational

formulation of the present model, we follow the framework presented in Ulloa et al. [105] and introduce a

state-dependent set of generalized stresses (figure 4)

L(sp) :=
�
s̃p ∈ R3×3

sym | ∥s̃pdev∥+
r

2

3
Aθ tr s̃

p ≤
r

2

3
(Aθ −Aφ) tr s

p

�
. (57)

Employing a result of Laborde [125, Proposition 4] (see also Francfort [110] and references therein), we

then recover the generalized stress constraint (55) and the non-associative flow rule (56) as the necessary

conditions of the generalized principle of maximum dissipation [105], defined here for all ε̇p ∈ R3×3
sym as

ϕp(ε̇p; sp) = sup
�
s̃p : ε̇p − IL(sp)(s̃

p)
	
, (58)

where I□ is the indicator function of a convex set □. A consequence of non-associativity is that the dissipation

potential ϕp(ε̇p; sp) inherits the dependence on the generalized stress sp. Evaluating the supremum (58)

yields the plastic dissipation potential [83]

ϕp(ε̇p; sp) =





tr ε̇p

3Aθ
(Aθ −Aφ) tr s

p if tr ε̇p ≥
√
6Aθ∥ε̇pdev∥,

+∞ otherwise.

(59)

Note that for Aθ = Aφ, the plastic dissipation potential vanishes, rendering the associative model inconsistent

with the dissipative frictional nature of εp and thus highlighting a crucial role of non-associativity.

On the other hand, the fracture contribution to the dissipation potential (53) is defined as an extension

of conventional phase-field models [58, 116] to account for the distinction between mode I fracture in the

tensile regime and mode II fracture in the compressive/shear regime. Specifically, we define

ϕd(α̇,∇α̇;α,∇α, sp) :=





Gc(s
p)

ℓ


α α̇+ ℓ2∇α ·∇α̇

�
if α̇ ≥ 0,

+∞ otherwise,

with Gc(s
p) :=

(
GcI if tr sp = 0,

GcII if tr sp < 0,

(60)

where ℓ is the fracture length scale. The damage irreversibility condition α̇ ≥ 0 is automatically enforced

in this definition. Moreover, fracture in the tensile regime and fracture in the compressive/shear regime are

governed by the mode I fracture toughness GcI and the mode II fracture toughness GcII, respectively. This

feature of the model plays a crucial role in capturing different failure modes including mixed-mode fracture,

as thoroughly discussed for the dry case in Ulloa et al. [83].

Convective dissipation. It is left to define the convective dissipation potential that characterizes the resistance

to fluid flow. With the variational principle (25) in mind, and in agreement with equation (13), the dual

convective dissipation potential reads

ϕ⋆
con(−∇p; ε,α,∇α) =

1

2
K(ε,α,∇α) : (−∇p⊗−∇p). (61)
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The Darcy-type law then follows from (13) as

h = − ∂

∂∇p
ϕ⋆
con(−∇p; ε,α,∇α) = −K(ε,α,∇α) ·∇p. (62)

Here, the permeability tensor K is adopted from Mauthe and Miehe [98], where a transition is assumed

between Darcy flow in the unfractured material points and Poiseuille flow along macroscopic cracks, i.e.,

where α(x, t) = 1 (figure 3). To this end, the anisotropic permeability tensor

K(ε,α,∇α) :=
KD

ηvf
1+

αϵ

ηvf


wα(ε,∇α)2 −KD

�
1− nα ⊗ nα

�
(63)

is considered, where ϵ > 1 is an interpolation parameter. The first term represents the contribution of

isotropic Darcy permeability, where KD is the permeability constant and ηvf is the viscosity of the fluid.

The second term accounts for enhanced permeability along a macroscopic crack whose normal direction

is given by the vector nα ≈ ∇α/∥∇α∥. We note that this expression is an approximation of the normal

direction that has been successfully employed in the phase-field literature for hydraulic fracture as well as in

anisotropic fracture models [126]. Moreover, in equation (63), wα denotes an estimation of the crack aperture,

computed from the kinematics as the scalar quantity wα = hcnα · ε · nα; here hc is the characteristic finite

element size along the direction nα in a fractured element line.

The evaluation of the permeability tensor (63) is heuristic, particularly concerning the estimation of the

crack opening wα and the crack normal direction nα. This standard choice is made for the sake of simplicity,

in agreement with several works [95, 98–100, 103]. Nevertheless, although the contribution of the second

term in equation (63) only becomes significant as α → 1, i.e., at fully developed cracks, it must be mentioned

that the estimation of the crack opening suffers from mesh sensitivity at fully fractured states [86, 103], and

that the estimation of the crack normal direction is not consistent at the crack tip [127]. Improvements to

overcome these limitations have been proposed in the literature [86, 127, 128]. In the present work, such

improvements can be applied at this point, but are not pursued since we have mainly focused on the coupling

between fluid flow and the micromechanics-based characterization of brittle and ductile failure.

At this point, the constitutive energy functions of the model have been established in terms of the free

energy density (44) and the dissipation potentials (59), (60), and (61). These functions constitute the

building blocks of the variational formulation presented below.

3.2.3. Variational formulation and governing equations

The variational formulation of the proposed model in terms of the saddle-point principle (25) requires

the definition of the following function spaces:

U̇ := {w ∈ BD(Ω;R3) | w = ˙̄u on Γu
D}, Ũ := {w ∈ BD(Ω;R3) | w = 0 on Γu

D}, (64)

P := {q ∈ H1(Ω) | q = p̄ on Γp
D}, P̃ := {q ∈ H1(Ω) | q = 0 on Γp

D}, (65)

Ż := L2(Ω), (66)

Ḃ := {e ∈ Mb(Ω ∪ ΓD;R3×3
sym) | tr e ≥

√
6Aθ∥edev∥}, (67)

Ḋ := H1(Ω;R+). (68)

Here, we have employed the space of bounded deformations BD and the space of Radon measures Mb in

view of the perfect plasticity state that can be attained in the compressive/shear regime as α → 1 (see
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equations (43), (47), and (54)), resulting in plastic strain localization. We refer the reader to the recent

work of Crismale [129] for the mathematical treatment of a similar model in the context of dry materials.

Note that equations (67) and (68) embed the constraints present in the dissipation potentials (59) and (60),

such that the global dissipative power (17) remains finite. As such, only non-trivial conditions that fulfill

the first-order stability condition (21) are considered.

With the function spaces above, and replacing the energy densities defined in sections 3.2.1 and 3.2.2 in

the global energy functionals (14), (17), and (24), the saddle-point principle (25) takes the form

inf
u̇∈U̇

inf
ε̇p∈Ḃ

inf
α̇∈Ḋ

inf
ζ̇∈Ż

sup
p∈P

� Z

Ω

�
∂ψ

∂ε
: ∇su̇+

∂ψ

∂ζ
ζ̇ +

∂ψ

∂εp
: ε̇p +

∂ψ

∂α
α̇− p ζ̇ − 1

2
K(ε,α,∇α) : (∇p⊗∇p)

+
tr ε̇p

3Aθ
(Aθ −Aφ) tr s

p +
Gc(s

p)

ℓ


α α̇+ ℓ2∇α ·∇α̇

��
dx− Pu(t, u̇)− Pp(t, p)

�
.

(69)

The governing equations directly follow from (69) as described below.

Mechanical balance. Taking variations of the objective functional in (69) with respect to u̇ yields

Z

Ω


σ : ∇sũ− ρb · ũ

�
dx−

Z

Γu
N

t̄ · ũ dS = 0 ∀ ũ ∈ Ũ , (70)

with σ given in equation (45), recovering the weak form of the equilibrium equations (1).

Fluid balance. Taking variations of the objective functional in (69) with respect to ζ̇ yields, for all admissible

test functions ζ̃ ∈ Ż , the local constitutive relation between p and ζ, i.e., equation (46).

On the other hand, taking variations with respect to p yields

Z

Ω

�
− ζ̇ p̃−∇p ·K(ε,α,∇α) ·∇p̃

�
dx−

Z

Γp
N

h̄ p̃ dS = 0 ∀ p̃ ∈ P̃, (71)

recovering the weak form of the fluid balance equations (2).

Plasticity evolution equations. In agreement with the derivations of previous works [83, 105], taking varia-

tions of the objective functional in (69) with respect to ε̇p yields the bulk condition

sp ∈ 1

3Aθ
(Aθ −Aφ) tr s

p1+ ∂IR+


tr ε̇p −

√
6Aθ∥ε̇pdev∥

�
≡ ∂1ϕ

p(ε̇p; sp), (72)

with sp given in equation (47). Here, the indicator function accounts for the conic constraint in the dissipation

potential (59), embedded in the function space (67), and ∂1ϕ(□; •) denotes the subdifferential of ϕ with

respect to □. This expression is a primal representation of the plasticity evolution equations (cf. [105, 110])

fp(sp) ≤ 0, λ ≥ 0, λ fp(sp) = 0 (73)

and

ε̇p = λ n̂, n̂ ∈ ∂gp(sp) = ∂∥spdev∥+
p

2/3Aθ1. (74)

Thus, we recover the generalized stress constraint (55) and the non-associative flow rule (56).
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Damage evolution equations. Finally, taking variations of equation (69) with respect to α̇ gives

Z

Ω

�
− sd α̃+

Gc(s
p)

ℓ


α α̃+ ℓ2∇α ·∇α̃

�
+ IR+(α̇) α̃

�
dx ∋ 0 ∀ α̃ ∈ H1(Ω;R), (75)

where the indicator function accounts for the irreversibility constraint in the dissipation potential (60),

embedded in the function space (68). After integrating by parts, we recover the conditions

fd(sd; sp) ≤ 0, α̇ ≥ 0, α̇ fd(sd; sp) = 0 in Ω, and ∇α · n = 0 on Γ, (76)

where the damage yield function reads

fd(sd; sp) := sd − Gc(s
p)

ℓ
α+ ℓ div[Gc(s

p)∇α]. (77)

Finally, for post-processing purposes, we define the equivalent plastic strain in the compressive/shear

regime as a measure of frictional sliding:

κ̇ :=

(
0 if tr sp = 0 (open),
p
2/3 ∥ε̇p∥ if tr sp < 0 (closed).

(78)

Table 1. Energy quantities and state equations.

Free energy and state equations

Stored energy ψ(ε, ζ, εp,α) =





1

2
ε : Cdam(α) : ε+

Mdam(α)

2


Bdam(α) tr ε− ζ

�2
if open,

1

2
(ε− εp) : C : (ε− εp) +

1

2
εp : Hkin(α) : εp

+
M

2

�
B tr(ε− εp)− (ζ − tr εp)

�2
if closed

Generalized stresses

σ(ε, ζ, εp,α) =
∂ψ

∂ε
,

p(ε, ζ, εp,α) =
∂ψ

∂ζ
,

sp(ε, ζ, εp,α) = − ∂ψ

∂εp
,

sd(ε, ζ, εp,α) = −∂ψ

∂α

Opening/closure transition

(
tr sp(ε, ζ, εp,α) = 0 if open,

tr sp(ε, ζ, εp,α) < 0 if closed

Intrinsic dissipation potential: ϕint = ϕp + ϕd ≥ 0

Plastic dissipation potential ϕp(ε̇p; sp) =





tr ε̇p

3Aθ
(Aθ −Aφ) tr s

p if tr ε̇p ≥
√
6Aθ∥ε̇p

dev∥,

+∞ otherwise

Damage dissipation potential ϕd(α̇,∇α̇;α,∇α, sp) =





Gc(s
p)

ℓ


α α̇+ ℓ2∇α ·∇α̇

�
if α̇ ≥ 0,

+∞ otherwise

Convective dissipation potential: ϕ⋆
con ≥ 0

Dual fluid dissipation potential ϕ⋆
con(−∇p; ε,α,∇α) = 1

2
K(ε,α,∇α) : (−∇p⊗−∇p)

Darcy-Poiseuille law h = − ∂

∂∇p
ϕ⋆
con(−∇p; ε,α,∇α)
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Overview. At this point, we have obtained the governing equations of the multiphysics coupled system,

consisting of mechanical balance, fluid balance, the plasticity evolution problem, and the damage evolution

problem. Depending on the opening/closure transition (48), the model can be viewed as a modified brittle

phase-field model coupled to poroelasticity (tensile regime) or as a ductile damage model coupled to poroplas-

ticity, where fracture is only driven by plastic strains (compressive/shear regime). At the microcrack level,

the former is associated with opening microcracks, while the latter is associated with a coupling between

microcrack growth and frictional sliding. Tables 1 and 2 present an overview of the proposed model.

Table 2. Governing equations according to the energetic formulation.

Kinematic admissibility

Infinitesimal strain ε(u) = ∇su

Dirichlet boundary condition u = ū on Γu
D

Pore pressure admissibility

Dirichlet boundary condition p = p̄ on Γp
D

Mechanical balance

Stress σ(ε, p, εp,α) =

(
Cdam(α) : ε−Bdam(α) p1 if tr sp = 0 (open),

C : (ε− εp)−B p1 if tr sp < 0 (closed)

Equilibrium divσ(ε, p, εp,α) + ρb = 0 in Ω

Neumann boundary condition σ(ε, p, εp,α) · n = t̄ on Γu
N

Fluid balance

Pressure p(ε, ζ, εp,α) =

(
−Mdam(α)(Bdam(α) tr ε− ζ) if tr sp = 0 (open),

−M
�
B tr(ε− εp)− (ζ − tr εp)

�
if tr sp < 0 (closed)

Flux h = −K(ε,α,∇α) ·∇p

Fluid flow ζ̇ + divh = 0 in Ω

Neumann boundary condition h · n = h̄ on Γp
N

Plasticity evolution problem

Generalized stress sp(ε, p, εp,α) = C : (ε− εp)−Hkin(α) : εp −B p1+ p1

Yield function fp(sp) = ∥sp
dev∥+

p
2/3Aφtrs

p

Plastic potential gp(sp) = ∥sp
dev∥+

p
2/3Aθtrs

p

KKT system fp(sp) ≤ 0, λ ≥ 0, λ fp(sp) = 0

Flow rule ε̇p = λ n̂, n̂ ∈ ∂gp(sp) = ∂∥sp
dev∥+

p
2/3Aθ1

Damage evolution problem

Generalized stress sd(ε, p, εp,α) =





− 1

2K
g′K(α) (K tr ε−Bp+ p)2

−g′µ(α)µ εdev : εdev if tr sp = 0 (open),

−1

2
Hkin

K

′
(α)(tr εp)2 − 1

2
Hkin

µ

′
(α) εp

dev : εp
dev if tr sp < 0 (closed)

Yield function fd(sd; sp) = sd − Gc(s
p)

ℓ
α+ ℓdiv[Gc(s

p)∇α]

KKT system fd(sd; sp) ≤ 0, α̇ ≥ 0, α̇ fd(sd; sp) = 0 in Ω

Boundary condition ∇α · n = 0 on Γ
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4. Numerical implementation

Let us now discuss the main aspects of the numerical implementation of the evolution equations sum-

marized in table 2. We consider a time discretization 0 = t0 < · · · < tn < tn+1 < · · · < tnt
= tmax, where all

quantities are known up to tn, and the goal is to find the state at the current time step tn+1. We denote

a quantity □ evaluated at the previous time step tn as □n, while a quantity evaluated at tn+1 is written

without a subscript, i.e., □ := □n+1. Moreover, ∆□ := □−□n denotes an increment of □ from tn to tn+1.

In order to incorporate the effect of fluid flow, the numerical implementation of the present model follows

a straightforward extension of the procedure described in detail in Ulloa et al. [83]. Therefore, for the sake

of brevity, only the new features are emphasized in the sequel and the reader is referred to Ulloa et al. [83,

section 3] for details on the reference procedure.

4.1. Staggered algorithm

In order to solve the multiphysics coupled system, an algorithmic decoupling is employed by means of

a semi-staggered scheme. Therein, the elastoplastic problem, the fluid balance problem, and the damage

problem are iteratively solved for {u, εp}, p, and α, respectively. Therefore, the scheme resembles the

iterative split often employed in poromechanics [130], hereby extended to elastoplasticity and fracture. The

solution procedure is summarized in algorithm 1.

Algorithm 1. The staggered solution procedure.

Input: primary fields at the previous time step un, ε
p
n, pn, and αn.

Output: primary fields at the current time step u, εp, p, and α.

1: Initialize iterations with j := 0 and {u(0), εp(0), p(0),α(0)} := {un, pn ε
p
n,αn}.

2: repeat

3: Set j ← j + 1.

4: Solve the non-linear elastoplastic problem for {u(j), εp(j)} using {p(j−1),α(j−1)} (section 4.2).

5: Solve the linear fluid balance problem for p(j) using {u(j), εp(j),α(j−1)} (section 4.3).

6: Solve the non-linear damage problem for α(j) using {u(j), εp(j), p(j)} (section 4.4).

7: Update

RES
(j)
stag :=

Z

Ω

h
σ

∇su(j), p(j), εp(j),α(j)

�
: ∇sũ− ρb · ũ

i
dx−

Z

Γu
N

t̄ · ũ dS ∀ ũ ∈ Ũ .

8: until
��RES(j)stag

�� ≤ TOLstag.

9: Set {u, εp, p,α} := {u(j), εp(j), p(j),α(j)}.

4.2. Elastoplastic evolution problem

According to algorithm 1, the task of finding {u, εp} with fixed {α, p} can be viewed as a classical non-

linear elastoplasticity problem, where the plastic strains evolve according to a non-cohesive Drucker-Prager

model with kinematic hardening. This problem is solved by linearizing the mechanical balance equation

Z

Ω


σ(ε, p, εp,α) : ∇sũ− ρb · ũ

�
dx−

Z

Γu
N

t̄ · ũ dS = 0 ∀ ũ ∈ Ũ (79)
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and updating the plastic strain tensor εp via local return-mapping [131–133]. The procedure for the dry case,

i.e., with p = 0, is presented in detail in Ulloa et al. [83]. In the present study, the effect of a non-vanishing

p, known at this stage from the algorithmic decoupling, is readily incorporated into the procedure through

the constitutive equations (50) and (51).

4.3. Fluid balance problem

According to algorithm 1, given {u, εp,α}, a linear fluid balance problem is solved in terms of the pore

pressure p. To achieve this, we first invert equation (46) and compute

ζ̇ =





ṗ

Mdam(α)
+Bdam(α) tr ε̇− 1

K
(1−B)g′K(α)(K tr ε−B p+ p)α̇ if open,

ṗ

M
+B tr ε̇+ (1−B) tr ε̇p if closed.

(80)

Note that this step can be skipped if the reduced saddle-point principle discussed in appendix A is directly

employed. Introducing the temporal discretization described at the beginning of this section, we consider

the incremental approximation ζ̇ ≈ ∆ζ/∆t, with

∆ζ =





∆p

Mdam(α)
+Bdam(α) tr(∆ε)− 1

K
(1−B)g′K(α)(K tr ε−B p+ p)∆α if open,

∆p

M
+B tr(∆ε) + (1−B) tr(∆εp) if closed.

(81)

Then, the incremental version of equation (71) takes the following linear form with p as the primary unknown:

Z

Ω

�
∆ζ p̃+∆t∇p ·K(εn,αn,∇αn) ·∇p̃

�
dx+∆t

Z

Γp
N

h̄ p̃ dS = 0 ∀ p̃ ∈ P̃. (82)

The permeability tensor is evaluated at the previous time step, in agreement with the numerical treatment

of previous phase-field models for hydraulic fracture [98].

4.4. Damage evolution problem

According to algorithm 1, having determined {u, εp, p} at the current staggered iteration, we are now

able to solve the damage evolution problem in order to update the crack phase-field α. Considering the

incremental irreversibility condition ∆α ≥ 0, the incremental version of equation (75) reads

Z

Ω

�
− sd(ε, p, εp,α) α̃+

Gc(s
p
n)

ℓ


α α̃+ ℓ2∇α ·∇α̃

�
+ ∂IR+

(∆α) α̃

�
dx ∋ 0 ∀ α̃ ∈ H1(Ω;R). (83)

In order to resolve numerical instabilities related to brutal crack propagation, we consider a standard viscous

regularization in the damage evolution problem [58], where a numerical damage viscosity parameter ηvd is

introduced. This parameter must be chosen as small as possible to avoid significant deviations from the

original problem. Equation (83) is then augmented as

Z

Ω

�
−sd(ε, p, εp,α) α̃+

Gc(s
p
n)

ℓ


α α̃+ℓ2∇α ·∇α̃

�
+∂IR+

(∆α)+
ηvd
∆t

(∆α) α̃

�
dx ∋ 0 ∀ α̃ ∈ H1(Ω;R). (84)

The adopted solution procedure for equation (84) consists of the following sequential steps: (i) evaluating

the damage driving force sd in terms of sp

ε(j), p(j), εp(j),α(j−1)

�
, i.e., by assuming that the opening/closure
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transition (48) is known from the solution of the elastoplastic problem and the pressure problem; (ii) adopting

an extension of the history field approach [58] to handle the irreversibility constraint ∆α ≥ 0 and render

the inclusion (84) an equality; and (iii) employing a standard Newton-Raphson linearization to handle the

non-linear terms in the driving force (52). The numerical solution procedure for the dry case, i.e., with p = 0,

is presented in detail in Ulloa et al. [83]. In the present study, the effect of a non-vanishing p, known at this

stage, is readily incorporated into the procedure through the constitutive equation (52).

4.5. Spatial discretization

Equations (79), (82), and (83) are discretized using standard finite elements, where the global primary

fields u, p, and α are interpolated with bilinear shape functions, while the local field εp is evaluated at Gauss

integration points. This straightforward procedure is not elaborated here for the sake of brevity.

We remark that the chosen finite elements cannot describe the discontinuities in the function spaces (64)

and (67), for which discontinuous finite element techniques should be considered. Nevertheless, it has been

shown for ductile phase-field models with perfect plasticity that a strong concentration of plastic strains is

attained, representing a regularized version of the discontinuous response, where the element size plays the

role of a convergence parameter [122]. This behavior is observed for the proposed model in the dry case [83]

and in the numerical simulations presented in section 5 for the present extension to saturated porous media.

Note that this remark is only relevant if p = 0 in the compressive/shear regime at the limit of α → 1.

5. Numerical simulations

This section is devoted to finite element simulations that highlight the main features of the proposed

model. In all examples, plane-strain conditions are assumed, and a low-level initial damage α0 = 1× 10−5 is

uniformly distributed in the domain to allow for plastic-damage evolution in the compressive/shear regime.

5.1. Homogeneous response

As a prelude to more involved boundary value problems, we first present the homogeneous response of the

model, aiming for an illustrative description of the hydromechanical coupling effects. To this end, a single

quadrilateral element of unit area is loaded in uniaxial compression by applying monotonic displacements

on a single side while keeping the opposite side fixed in the direction of the load. Moreover, undrained

conditions are simulated by setting the element sides impermeable, i.e., not fixing the pore pressure.

The following material parameters are selected: Young’s modulus E = 14 GPa, Poisson’s ratio ν = 0.31,

and friction coefficient Aφ = 0.401. A reference dilation coefficient Āθ = 0.289 is chosen, and the influence

of non-associativity is assessed by varying the dilation coefficient as Aθ ∈ {Āθ, Āθ/2, 0}. In a homogeneous

response in the compressive/shear regime, tr sp < 0 holds at all times; thus, the mode I fracture toughnessGcI

does not play a role, and the damage behavior is solely modulated by the ratio between the mode II fracture

toughness and the length scale, chosen as GcII/ℓ = 0.581 N/mm2, and the fracture degradation parameter,

chosen as b = 10. Similarly, the permeability parameters play no role in the undrained homogeneous response;

the fluid effect is modulated by the Biot coefficient, chosen as B = 0.9, and the Biot modulus, varied as

M ∈ {100, 500, 1000} MPa in order to study the hydromechanical coupling.

Figure 5 shows the response of the model for the single element test, comparing the results of varying

M with the results of the dry case, i.e., with p = 0 at all times. We note that significant differences are

observed between the dry case and the fluid-saturated cases, exhibiting notable hydromechanical coupling

effects. Moreover, these differences strongly depend on the amount of plastic dilation. For Aθ = Āθ,
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Aθ = Āθ Aθ = Āθ/2 Aθ = 0

(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

(a4) (b4) (c4)

Fig. 5. Imposed displacement vs. (x1) force, (x2) pressure p, (x3) equivalent plastic strain κ, and (x4) damage α for uniaxial
compression in the dry case (red) and the saturated case with M = 100 MPa (light blue), M = 500 MPa (blue), and
M = 1000 MPa (dark blue). The dilation coefficient is varied as Aθ = Āθ (ax), Aθ = Āθ/2 (bx), and Aθ = 0 (cx).
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figure 5(a) shows that for the dry case, a typical hardening-softening response is observed, modulated by the

coupled plastic-damage evolution. On the other hand, the saturated cases with increasing M show enhanced

hardening and an apparent increase in strength. This response is due to the evolution of negative pore

pressure, which in turn is due to the growth of volumetric plastic strains. This behavior can be further

explained from equations (81) and (82), which show that (i) the pressure increment scales linearly with M

and (ii) dilatant volumetric strains are related to pressure drops. Thus, an initial contraction causes the

pressure to increase, but later, the volumetric plastic strains dominate the response, promoting a cohesive

mechanism in the pore space. Clearly, this apparent increase in strength does not reflect the mechanical

properties of the solid, since letting the fluid drain at constant displacements would cause the force in

figure 5(a1) to drop. Figure 5(b) shows qualitatively similar results for Aθ = Āθ/2, but in this case, the

apparent strengthening of the sample is less pronounced as a consequence of lower dilation. Finally, for

Aθ = 0, the opposite effect is observed: the absence of plastic dilation results in positive pore pressures,

which cause the saturated samples to be weaker than the dry sample. As expected, this weakening is more

pronounced as the pressure increases, as achieved by higher M values. The results of this example suggest

that the influence of the dilation coefficient is significant in the hydromechanical coupled evolution, and that

an overestimation of volumetric plastic strains may lead to an overestimation of hardening effects. Therefore,

the non-associative frictional plasticity model employed in this work plays a crucial role in the response.

5.2. Biaxial compression

The second example highlights the ability of the model to describe shear banding and shear fracture in

saturated porous media. To this end, we consider a biaxial compression test in a rectangular sample with a

central hole (figure 6). A uniform mesh of ∼43000 quadrilateral elements with a characteristic element size

30 mm
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Fig. 6. Schematic representation of the biaxial compression test in a specimen with a central hole of 3.4 mm diameter. The
confining stress is fixed at σ0 = 5 MPa during the displacement loading stage.
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(a) (b)

Fig. 7. Imposed vertical displacement vs. (a) force and (b) average pressure p for the biaxial compression test. The specimen
has an out-of-plane thickness of 100 mm.

hc = 0.3 mm is employed. The test is divided into two loading stages. In the first stage, confining stress

is gradually applied until σ0 = 5 MPa, keeping the vertical displacements at the bottom edge fixed, where

only the center node is also fixed horizontally. In this loading stage, the specimen is completely drained. For

the second loading stage, the lateral confining stress σ0 is fixed while vertical displacements ū are imposed

downwards in increments of 0.01 mm and time steps ∆t = 5× 10−5. Moreover, free fluid flow, i.e., p̄ = 0, is

assumed through the walls of the central hole as well as the top and the bottom edges, while an impermeable

boundary is considered for the left and the right sides.

For this example, we select the following material parameters: Young’s modulus E = 14 GPa, Poisson’s

ratio ν = 0.31, friction coefficient Aφ = 0.401, dilation coefficient Aθ = 0.289, mode I fracture toughness

GcI = 1.033 N/m, mode II fracture toughness GcII = 58.108 N/m, degradation parameter b = 25, length scale

ℓ = 0.97 mm, Biot coefficient B = 0.9, Biot modulus M = 100 MPa, permeability constant KD = 5× 10−8

mm2, fluid viscosity (for water) ηvf = 1× 10−9 MPa · s, and transition exponent ϵ = 50. Finally, the damage

viscosity is fixed as ηvd = 2 × 10−9 MPa · s; this value did not show a noticeable effect in the response and

can thus be viewed as a purely numerical artefact.

Figure 7(a) shows the force-displacement curve at the top edge. A peak load is observed at ū = 0.61 mm,

followed by a softening stage that ends in a residual strength plateau. Note that here, the residual strength

of the solid skeleton is modulated by the friction coefficient and the confining stress, as expected in a sliding

failure mode. In particular, figure 8 shows a hydrostatic generalized stress profile at peak load where the

tensile region (tr sp = 0, i.e., open microcracks) can be clearly distinguished from the compressive/shear

region (tr sp < 0, i.e., closed microcracks with frictional sliding). The equivalent plastic strain and damage

profiles hint shear banding before the peak load, with cracks nucleating at the hole. At the post-peak stage,

two shear cracks propagate from the hole in (practically) the same direction, where figure 8(b2) shows a

strong concentration of plastic strains in a very narrow band, exhibiting a clear mode II fracture process.

Figure 7(b) shows the average pressure in the specimen versus the imposed vertical displacement, while

figure 9 shows the pressure profiles at different time steps. When the loading starts, overpressures are

generated throughout the specimen, reaching an average peak at ū = 0.3 mm. Subsequently, the pressure

drops as a consequence of plastic dilation, particularly in the regions near the hole. At the peak load

(ū = 0.61 mm), the pressure profile shows marked regions of negative pressure, coinciding with the regions of

plastic strain concentration in figure 8(b1). The physical interpretation of this result is that fluid is strongly

drawn towards regions with a significant growth of frictional-dilational microcracks. This is further observed
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(a) (b1) (b2) (c1) (c2)

trsp [MPa] κ [-] α [-]

Fig. 8. Shear fracture process in the biaxial compression test for the perforated saturated specimen: (a) pre-failure hydrostatic
generalized stress tr sp [MPa], (b) pre- and post-failure equivalent plastic strain, and (c) pre- and post-failure damage profile.

Fig. 9. Evolution of the pore pressure p [MPa] during the shear fracture process in the biaxial compression test.
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at ū = 0.62 mm, when the macroscopic shear cracks are fully developed, showing a negative pressure band

along the failure plane. We note that qualitatively similar results have been obtained in previous studies

employing strong discontinuities [34, 37]. Finally, during the residual plateau, figure 7(b) shows that the

negative pressure slowly dissipates. This is further evidenced in figure 9 for ū = 0.75 mm where, due to its

enhanced permeability, the macroscopic crack resembles a permeable boundary with vanishing overpressure.

(a) (b)

Fig. 10. Biaxial compression test for different mesh sizes hc [mm], showing the imposed displacement vs. (a) the
reaction force and (b) the average pore pressure in the domain.

Finally, figure 10 shows the response for different mesh sizes. The force-displacement curves suggest mesh

convergence throughout the entire response, including the post-fracture stage at the residual strength plateau.

Similarly, the average pressure shows mesh convergence up to failure; however, the average pressure response

suggests a slower, non-monotonic convergence in the post-fracture stage. This result does not reflect upon

the novel aspects of the present model but rather on the expected limitations of the heuristic computation

of the crack aperture. As previously discussed, more dedicated definitions of the crack aperture [86, 127] can

be adopted to improve the mesh convergence, without altering the novel aspects of the model. Nevertheless,

it is worth remarking that the model essentially converges to two sliding blocks at the post-fracture stage.

Thus, we are mainly concerned with the response of the model up to complete fracture, captured reliably in

the present simulation in terms of mesh sensitivity.

5.3. Hydraulic fracturing of a square specimen

The third example considers a benchmark problem for the phase-field modeling of hydraulic fracture [100,

101, 128], consisting of a tensile fracture process driven by fluid volume injection. The boundary value

problem in figure 11(a) shows a square plate with a single predefined notch. The domain is discretized using

quadrilateral elements of characteristic size hc = 0.5 mm in a wide central region parallel to the axis of the

notch. The displacements are fixed in both directions at the boundary, where the pressure is also set to

zero. A constant fluid flux h̄ = 0.75 mm2/s is injected through the notch for an interval of 2.5 s, discretized

in the simulation in time steps ∆t = 0.001 s. Figure 11(b) shows the predefined crack surface modeled

by setting α = 1 in the corresponding nodes and obtaining the optimal profile, i.e., solving equation (83)

with sd = 0. We consider the following material parameters: fracture length scale ℓ = 5hc = 2.5 mm,

degradation parameter b = 1, damage viscosity ηvd = 1× 10−3 MPa · s, Biot coefficient B = 1, Biot modulus

M = 300 MPa, and permeability constant KD = 1 × 10−10 mm2. All other material parameters are the

same as in the previous example.
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Fig. 11. Schematic representation of the hydraulically induced fracture test on a square specimen (left). A constant flux
h̄ = 0.75 mm2/s is applied during 2.5 seconds in time steps ∆t = 0.001 s. The initial fracture where the fluid is injected is
modeled by setting α = 1 along the crack and obtaining the corresponding optimal profile (right).

(a) (b)

Fig. 12. (a) Time vs. maximum pore pressure in the specimen for different tolerances and (b) convergence of the staggered
scheme at different time steps for the stricter tolerance.

We first illustrate in figure 12(a) the evolution of the maximum fluid pressure in the crack region versus

the fluid injection time. It is noted that the pressure initially increases up to a peak. Thereafter, as expected

from previous studies [88, 100, 101], a drop in fluid pressure is observed. Additionally, in figure 12(a), the

maximum pressure versus time is plotted for different tolerance values TOLstag (see algorithm 1), showing a

rather stable behavior. Note that, as reported in the phase-field literature [96, 134], some pressure oscillations

are observed along the crack path, resulting from a stepwise pressure build-up–crack propagation process.

We also investigate the convergence performance of the algorithm based on the staggered residual, shown in

the logarithmic scale for different time steps in figure 12(b). In all cases, at most 6 staggered iterations are

required to reach convergence for
��RESstag

�� ≤ 1× 10−5.

Figure 13 illustrates the main mechanisms of the proposed model, showing (a) the vertical displacement

uy, (b) the fluid pressure p, (c) the hydrostatic generalized stress trsp, and (d) the crack phase-field α

at different injection times. At t = 0.17 s, the crack begins to grow into the tensile regions at the notch

tips due to the fluid-induced pressure build-up. Thereafter, the central crack propagates horizontally in

both directions towards the boundary. At all times, figure 13(c) shows a clear tensile region (tr sp = 0,
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Fig. 13. Hydraulic fracture process in the square specimen at different time steps: (a) vertical displacement component uy

[mm], (b) pore pressure p [MPa], (c) hydrostatic generalized stress tr sp [MPa], and crack phase-field α.

i.e., open microcracks) ahead of the crack tips, while the material above and below the crack is under

compression/shear (tr sp < 0, i.e., closed microcracks with frictional sliding). Thus, the model properly

predicts a brittle fracture process, in agreement with the micromechanical considerations. Owing to the

permeability enhancement in equation (63), figure 13(b) shows that the fluid readily fills up the crack as it

propagates. Therefore, at a given time, the pressure stabilizes and is nearly constant over the length of the

crack. As time goes by, the pressure in the fracture drops, as already evidenced in figure 12(a).

6. Conclusions

In this work, a new variational micromechanics-based phase-field model for hydromechanical fracture

in fluid-saturated quasi-brittle materials has been presented. The energetics of the model are established
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from micromechanical considerations and include (i) a brittle tensile regime associated with mode I fracture,

corresponding to the growth of opening microcracks, and (ii) a non-associative ductile compressive/shear

regime associated with mode II fracture, corresponding to the growth of closed microcracks subject to

frictional sliding. These mechanisms are coupled to a Biot-Darcy-Poisseulle model for fluid flow in fracturing

porous media under saturated conditions. Despite the non-associativity, the model is constructed using

thermodynamically consistent variational principles that couple the rate-independent dissipative processes

of the solid skeleton to the rate-dependent fluid transport process.

The paradigmatic numerical simulations suggest that the model is able to capture relevant hydromechan-

ical coupling effects in fracturing solids, in agreement with previous findings in the literature. However, to

our knowledge, the present phase-field model is the first in the literature to be based on a micromechanical

description of damage and plasticity in porous media. The benefit is that these processes are endowed with

a clear physical meaning and thus require limited phenomenological assumptions. Moreover, both shear and

tensile fracture can be captured in a unified manner, under both mechanical and fluid-driven external actions.

Several topics of future research emerge from the present study. The assumption of isotropic behavior

can be relaxed by considering crack families with given orientations. For this purpose, the anisotropic

version of the micromechanical framework [14] can be taken as a point of departure. Concerning fluid flow,

a more dedicated computation of the permeability tensor at fracture can be considered, aiming to resolve

the limitations of the adopted estimation of the crack aperture and direction [86, 127]. In this context,

bridging the permeability tensor with the micromechanical aspects of the model appears as a worthy task.

Additionally, the negative pore pressure related to plastic dilation calls for enhancements of the model to

consider, e.g., cavitation effects. Extensions of the model to fatigue are of interest for materials under

hydromechanical cyclic loading, as often present in offshore structures. Here, ideas from the phase-field

modeling of fatigue in ductile materials [64] may be taken into account. Concerning numerics, the use of

alternative strategies, e.g., meshless techniques employed recently in complex multiphysics problems [135,

136], appears as an interesting direction to explore. Finally, experimental verification and further numerical

simulations are required for parameter identification. Here, several factors can be considered, for instance,

concerning the role of initial damage and/or porosity conditions. For this task, the Bayesian inversion

framework developed in recent works [100, 137] suggests a possible starting point.
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Appendix

A. Reduced saddle-point formulation

In addition to the variational statements of section 2.5, we may further establish a reduced saddle-point

principle in terms of the triplet {u̇, ȧ, p}. To this end, we introduce a grand-canonical potential [112]

ψf⋆(ε, p,a,∇a) = ψ

ε, ζ̌(ε, p,a,∇a), a,∇a

�
− p ζ̌(ε, p,a,∇a), (A.1)

which provides the constitutive relations (6) and (7) in terms of p:

σ̌ =
∂ψf⋆

∂ε
(ε, p,a,∇a), š = −δaψ

f⋆(ε, p,a,∇a), and ζ̌ = − ∂

∂p
ψf⋆(ε, p,a,∇a). (A.2)

In this appendix, the notation □̌ is employed to denote a dependent state variable as a function of p rather

than ζ. Defining the potential energy functional

E f⋆(u, p,a) =

Z

Ω

ψf⋆(ε, p,a,∇a) dx (A.3)

and the dual fluid dissipation functional

V⋆(p;u, ζ, a) = −
Z

Ω

ϕ⋆
con(−∇p; c) dx, (A.4)

the reduced saddle-point principle reads

inf
u̇∈U̇

sup
p∈P

inf
ȧ∈ ˙A

�
d

dt
E f⋆(u, p,a) + V⋆(p;u, ζ, a) +R(ȧ;u, ζ, a, s)− Pu(t, u̇)− Pp(t, p)

�
. (A.5)

This formulation is primal for the solid phase and dual for the fluid phase, in terms of {u, ȧ} and p,

respectively. The necessary conditions of (A.5) coincide with those of (25), but with the local constitutive

relation (6)2 already condensed out. This approach can be viewed as an extended version of the classical u – p

formulation in poroelasticity, further accounting for the evolution of gradient-enhanced internal variables.

With the variational principle (A.5) in mind, the grand-canonical potential (A.1) evaluated for the model

proposed in section 3.2 takes the form

ψf⋆(ε, p, εp,α) =





1

2
ε : Cdam(α) : ε− p2

2Mdam(α)
−Bdam(α) p tr ε if open,

1

2
(ε− εp) : C : (ε− εp) +

1

2
εp : Hkin(α) : εp − p2

2M
−B p tr(ε− εp)− p tr εp if closed.

(A.6)

The constitutive equations (A.2) yield the relations

σ̌(ε, p, εp,α) =
∂ψf⋆

∂ε
=

(
Cdam(α) : ε−Bdam(α) p1 if open,

C : (ε− εp)−B p1 if closed,
(A.7)
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and

ζ̌(ε, p, εp,α) = −∂ψf⋆

∂p
=





p

Mdam(α)
+Bdam(α) tr ε if open,

p

M
+B tr(ε− εp) + tr εp if closed.

(A.8)

Likewise, we obtain the generalized stress conjugate to the plastic strain tensor

šp(ε, p, εp,α) = −∂ψf⋆

∂εp
=

(
0 if open,

C : (ε− εp)−Hkin(α) : εp −B p1+ p1 if closed,
(A.9)

and the generalized stress conjugate to the crack phase-field

šd(ε, p, εp,α) = −∂ψf⋆

∂α
=





− 1

2K
g′K(α) (K tr ε−Bp+ p)2 − g′µ(α)µ εdev : εdev if open,

−1

2
Hkin

K

′
(α)(tr εp)2 − 1

2
Hkin

µ

′
(α) εpdev : εpdev if closed,

(A.10)

which are equivalent to the ζ-dependent forms (47) and (52). The saddle-point problem (69) is then replaced

by its reduced version in the sense of (A.5), which takes the form

inf
u̇∈U̇

inf
ε̇p∈Ḃ

inf
α̇∈Ḋ

sup
p∈P

� Z

Ω

�
σ̌ : ∇su̇− ζ̌ ṗ− šp : ε̇p − šd α̇− 1

2
K(ε,α,∇α) : (∇p⊗∇p)

�
dx− Pp(t, p)

+

Z

Ω

�
tr ε̇p

3Aθ
(Aθ −Aφ) tr s

p +
Gc(s

p)

ℓ


α α̇+ ℓ2∇α ·∇α̇

��
dx− Pu(t, u̇)

�
,

(A.11)

with σ̌, šp, šd, and ζ̌ given as functions of u, p, εp, and α in equations (A.7), (A.8), (A.9), and (A.10). The

mechanical balance, the plasticity evolution equations, and the damage evolution equations directly follow

from (A.11) in the same way as in section 3.2.3, albeit with the stress and the driving forces in terms of p.

On the other hand, taking variations of the objective functional in (A.11) with respect to p yields

Z

Ω

�
∂

∂p

�
σ̌ : ∇su̇− ζ̌ ṗ− šp : ε̇p − šd α̇

�
p̃−∇p ·K(ε,α,∇α) ·∇p̃

�
dx−

Z

Γp
N

h̄ p̃ dS = 0 ∀ p̃ ∈ P̃. (A.12)

In the first term, we readily identify the negative rate of fluid content variation:

∂

∂p

�
σ̌ : ∇su̇− ζ̌ ṗ− šp : ε̇p − šd α̇

�
=

∂

∂p

�
d

dt
ψf⋆(ε, p, εp,α)

�
=

d

dt

�
∂

∂p
ψf⋆(ε, p, εp,α)

�
= −ζ̇ . (A.13)

Thus, equation (A.12) represents the weak form of the fluid balance equations (2).
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