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1. INTRODUCTION

The basic algebra for computing in arithmetical structures starts
with rings and fields, with their operations

x + y, −x, x · y.

Although a field has inverses for non-zero elements, to study
division we must add an operator. The choices begin with its
formulation: there is the inverse operator, with its notations

x−1, 1/x

and the division operator, with its notations

x/y, x ÷ y,
x

y
.

One can derive each from the other, of course, e.g. x/y = x·1/y.
For rings and fields with inverse or division we have coined the
term meadow in [1].

Whatever the choice, we have to deal with division by zero.
There are several designs for the algebra of division by zero:
the operators can simply be partial, or made total in different
ways (we will mention some later). For general information on
division by zero see the survey papers [2] and [3].

We will focus on division in fields in the case that division by
zero is total and its value is a flag ⊥ that propagates, suspending
further computation. Technically, this means that if ⊥ is an
argument to an operation then the value is ⊥. We call this ⊥
an absorbtive element. The addition of division and ⊥ changes
the algebra of rings and fields immediately. For example, in
a commutative ring 0 · x = 0 but on adding an absorbtive
element ⊥,

0 · x �= 0 because 0 · ⊥ = ⊥.

These changes form part of the emerging theory of common
meadows, to which this note is a contribution.
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Common meadows are algebraic structures close to rings and
fields that are defined by a set of equational axioms [4–6]. The
axioms were designed to accommodate the changes wrought by
adding ⊥ to totalize inverse or division, i.e. setting 0−1 = ⊥
or x/0 = ⊥; division is needed to make the field of rational
numbers into an abstract data type.1 Not surprisingly, there are
a number of variations for the axioms and one objective here
is to review the axioms of common meadows and pick out
significant alternatives that are elegant and/or useful: we clarify
their relationship with commutative rings and their relevance
for different theoretical tasks and agendas.

It is not an accident that different notations exist for inverse
and division; as well as historical reasons, they embody points
of view. This is most notable in the case of ‘fractions’ which are
everywhere in elementary teaching and essentially disappear as
a concept in advanced mathematics. What exactly is a fraction?
In [7], the informal term fraction is replaced with the formally
defined syntactic concept of a fracterm. A fracterm is an
expression or term over an arithmetic signature having division
as its leading function symbol. In this paper, we examine the
axiomatization of common meadows re-expressed as a calculus
of fracterms; we call this axiomatization the common meadow
fracterm calculus.

Looking at the axioms of common meadows in a notation for
fracterms adds to the theory both in its scope and technically.
An important example is as follows: central to using fractions
are calculations like

2
3
4
5

= 2

3
· 5

4
= 10

12
.

Here, a complex fracterm is transformed into a simple fracterm
containing only one division. A fracterm is flat if the division
operator occurs only once and it does not have an occur-
rence of ⊥. Given a fracterm, the derivation of an equivalent
flat fracterm is called flattening [7]. From [4], we know that
the equational axioms of common meadow fracterm calculus
enable all fracterms to be flattened. Here, we seek the most
relevant equational axiomatization to deliver this fundamental
property of flattening; this is a slightly weaker set than those of
the common meadows.

A second task is to gauge the strength of the set Ecmfc of
equational laws of the common meadow fracterm calculus.
How much can be proved using them? A useful extension of
common meadow fracterm calculus imposes the requirement
that the characteristic is zero, by means of adding an infinite
set

χ0 =
{

n

n
= 1| ∈ N, n > 0

}

1 Data types are minimal algebras: this condition requires that all rational numbers can

be generated by applying the operations to the constants 0, 1.

of closed equations expressing n/n = 1 for non-zero natural
numbers n. From [6], we know that Ecmfc ∪ χ0 axiomatizes
all the equations true in all common cancellation meadows
with characteristic 0. While many conditional equations can be
derived, here we will show that Ecmfc ∪ χ0 does not prove all
conditional equations which hold in all common cancellation
meadows of characteristic 0.

In summary, our new contributions are to shed new light on
the following:

(i) totalized arithmetic division through several structured
axiomatizations of common meadows and their relation-
ships with some key algebraic and logical properties;

(ii) known and unknown completeness properties of the
axiomatizations for equations and conditional equations,
notably with a new incompleteness theorem; and

(iii) the literature on these matters, showing how earlier sets
of axioms may be adapted and reinterpreted.

The structure of the note is as follows. In Section 2, we study
axiomatizations of common meadows and the fracterm cal-
culus. In Section 3, we prove the incompleteness result for
conditional equations. In Section 4, we comment on the context
of these investigations.

We assume the reader is versed in basic algebra and equa-
tional logic; familiarity with the theory of abstract data types is
desirable but not necessary.

2. COMMON MEADOW FRACTERM CALCULUS

We will build up the axioms for common meadows and the
fracterm calculus in stages, starting with commutative rings.

2.1. Commutative rings

First, let us simply add the flag ⊥ to a ring. Let �cr be the
signature of commutative rings and fields. Let �cr,⊥ be �cr
with a constant ⊥ added.

As we noted in the Introduction, the absorbtion property ⊥
changes the algebra (recall 0·x �= 0). Table 1 contains equations
for commutative rings that are weakened so as to be compatible
with the presence of an absorptive element ⊥. Let this set of
equations be denoted Ewcr,⊥.

The axioms are mostly those of commutative rings, only
0 · x = 0 · (x · x) is unfamiliar but is true of ⊥. The equation
x + ⊥ = ⊥ is an absorption property. We note that the other
absorbtion properties are derivable:

Ewcr,⊥ � x · ⊥ = ⊥ and Ewcr,⊥ � −⊥ = ⊥,

following [4].
Consider the semantics. Following [8], given any commu-

tative ring R, we define the transformation Enl⊥(R) to be the
algebra that results from R by extending the signature with a
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TABLE 1. Ewcr,⊥: Weakened equations for commutative rings.

(x + y) + z = x + (y + z)
x + y = y + x

x + 0 = x
x + (−x) = 0 · x

x · (y · z) = (x · y) · z
x · y = y · x

1 · x = x
x · (y + z) = x · y + x · z

−(−x) = x
0 · x = 0 · (x · x)

x + ⊥ = ⊥

new element ⊥ as a constant and then extending all operations
such that ⊥ is an absorptive element of the new algebra.

The following proposition confirms the soundness of the
axiomatization Ewcr,⊥ and is easy to prove:

Proposition 2.1. Let R be a commutative ring then Enl⊥(R) |�
Ewcr,⊥.

We assume that x1, . . . , xn is a fixed listing of n variables
and we consider multivariate polynomials with no other vari-
ables than these n variables. A monomial is a product of an
integer coefficient and a product of non-negative powers of
these variables, where the powers of variables are given by
x0 = 1, xn+1 = xn · x. A monomial is determined by the
coefficient and the vector of its powers. A polynomial is a sum
of monomials written in lexicographical ordering of the power
vectors with (implicit) bracketing to the left.

A CM-polynomial over x1, . . . , xn is a sum

t + 0 · t′,

where t is a polynomial and t′ is either 0 or a sum xi1 + . . .+xik
of different variables (chosen from x1, . . . , xn) none of which
have occurrences with a positive power in t; CM is for common
meadow.

We will now prove the converse with the help of these
lemmas.

Proposition 2.2. For each term r with free variables
x1, . . . , xn,

Ewcr,⊥ � 0 · r = 0 · (x1 + . . . + xn).

Proof. Straightforward with induction on the structure of r,
making use of the fact that Ewcr,⊥ � 0 · (x · y) = (0 · x)+ (0 · y),
which is an immediate corollary of the results of [4]. �

Proposition 2.3. For each term r with free variables among
x1, . . . , xn there is a CM-polynomial t + 0 · t′, with variables in
x1, . . . , xn, such that

Ewcr,⊥ � r = t + 0 · t′.

Proof. Straightforward with induction on the structure of t. �

Theorem 2.1. Suppose for an equation t = r that for every
ring R, Enl⊥(R) |� t = r. Then Ewcr,⊥ � t = r and so
combined with soundness we have

Ewcr,⊥ � t = r ⇐⇒ Enl⊥(R) |� t = r.

Proof. Soundness of the equations for all ⊥-enlarged rings is
immediate. For completeness, assume that Enl⊥(R) |� t = r,
and let the variables of t and r be among x1, . . . , xn. Now using
Proposition 2.3 we find that there is a polynomial t′ and a term
t′′ such that

Ewcr,⊥ � t = t′ + (0 · t′′)

and such that no variable occurring in t′ also occurs in t′′. Using
Proposition 2.1, t′′ can be chosen as a sum over zero (in which
case it is 0) or more variables. Similarly, we can find r′ and a
term r′′ such that Ewcr,⊥ � r = r′ + 0 · r′′.

Now choose R = Z, then Enl⊥(Z) |� t = r. Then t and r
are equal as multivariate functions on Z, and so t′ and r′ are

the same polynomials, i.e. have the same coefficients and so
are syntactically identical as terms. Further, it must be the case
that on both sides precisely the same variables occur. The latter
is the case because of the presence of ⊥. To see this, notice
that, e.g. 0 · (x + y) = 0 · x fails in any structure Enl⊥(Z)

on a valuation (x = 0, y = ⊥). It follows that t′′ and r′′ are
syntactically identical too so that

Ewcr, ⊥ � t = t′ + (0 · t′′) = r′ + (0 · r′′) = r. �

2.2. Common meadows

To define the common meadows, we add division to commu-
tative rings. As we have noted in the Introduction, there are
various ways to do this. We add x

y in preparation for the fracterm
calculus. Let �cm be �cr,⊥ with this division operator added.

Next, we will add six equations to the axioms Ewcr,⊥ for rings
with ⊥ to make the set Ewcm that almost defines the common
meadows. These equations are given in Table 2.

Commentary on the axioms. The axiom system Ewcm is an
adaptation of the axiom system Mda that was proposed in [4]:
it is written in division notation rather than in inverse notation,
and a is renamed into ⊥; further the axiom x · ⊥ = ⊥ has
been left out as it is derivable from the axioms in Table 1, an
observation made by Alban Ponse after [4] was published, and
which has been incorporated in the updated version [5] of [4].
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TABLE 2. Ewcm: Weak equations for common meadows.

import: Ewcr,⊥
x

y
= x · 1

y

x

x
= 1 + 0

x
1

( 1
x )

= x + 0

x

1

x · y
= 1

x
· 1

y

1

1
= 1

1

0
= ⊥

(Currently) we call the set Ewcm the weak axioms of common
meadows as shortly we will add an equation that is needed
for a completeness theorem. This commentary is continued in
Section 4.2.

The distinction between inverse notation and division nota-
tion was discussed in detail in [9] for the case of involutive
meadows, where the transformation to division is as follows:
add an equation x

y = x · 1
y , which expresses division in terms of

inverse, and replace all occurrences of r−1 by 1
r , and in some

cases replace t · r−1 by t
r .

An explicit construction of an initial algebra of (�cm, Ewcm)

has been given in [10].
In [4] the following is shown (though stated in terms of

inverse notation):

Proposition 2.4. (Fracterm flattening I). For each open
expression t over �cm there are expressions r and s without
an occurrence of division such that

Ewcm � t = r

s
.

2.3. Simpler axioms for fracterm flattening

Flattening is so important in arithmetic that it is wise to find out
the basic laws that enable it. Table 3 contains straightforward
equations that have been collected with the sole purpose to
axiomatize fracterm flattening.

Using the results from [4] we can show that the equations of
Table 3 are derivable from the equations Ewcm. In fact, it is the
case that:

Proposition 2.5. The equational specifications Ewcm and
Ewcr,⊥ ∪ Effl are logically equivalent.

Proof. This result was obtained by Alban Ponse with the help
of the system Prover9 [11]. �

TABLE 3. Effl: Equations for fracterm flattening.

x = x

1

−x

y
= −x

y
x

y
· u

v
= x · u

y · v

x

y
+ u

v
= (x · v) + (y · u)

y · v
x

(
u

v
)

= x · v · v

u · v

⊥ = 1

0

In other words the equations of Ewcm can be replaced by an
extension of the weakened commutative ring equations Ewcr,⊥
by Effl, being an equational inductive definition of fracterm
flattening plus an explicit definition of the constant ⊥.

We note that without the presence of the constant name ⊥ it
is still the case that 0

0 is absorptive so that the weakening (by
omitting x + (−x) = 0 and adopting x + (−x) = 0 · x instead)
of Ecr to Ewcr is unavoidable. Indeed, w.r.t. values of closed
expressions:

0

0
· n

m
= 0 · n

0 · m
= 0

0
and

0

0
+ n

m
= 0 · m + n · 0

0 · m
= 0

0
.

2.4. Common meadow fracterm calculus

In [6] it was noticed that in order to prove a completeness result
for the equational theory of common cancellative meadows of
characteristic 0, the axiom

1

1 + 0 · x
= 1 + 0 · x

is needed; this cannot be derived from the equations of Ewcm
in Table 2. Thus, adding this equation as an axiom, removing

redundant axioms, and using a division notation leads to a set
of equations we refer to as the equations of common meadows
and can be denoted Ecm. With a focus on syntax rather than on
semantics, we present the equations of common meadows of
Ecm as the equational rules of the common meadow fracterm
calculus Ecmfc as displayed in Table 4; for this version we use
CFC as an abbreviation.

According to [6], the axioms of Table 4, as given in that
paper in inverse notation, are logically independent (with the
exception of 0·x = 0·(x·x) that comes with Ewcr,⊥ while it is not
mentioned in the version of the axioms Mda from [6]). Indeed,
although Table 4 makes use of an attractive modularization
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TABLE 4. Ecmfc: Equations of common meadow fracterm calculus.

import: Ewcr,⊥
x

y
= x · 1

y

x

x
= 1 + 0

x
1

x · y
= 1

x
· 1

y

1

1 + 0 · x
= 1 + 0 · x

1

0
= ⊥

of the equational axioms, the preference for having Ewcr,⊥ as
a modular component for which a meaningful completeness
result (i.e. Proposition 2.1) can be shown leads to the inclusion
of 0 · x = 0 · (x · x) in Ewcr,⊥, while, remarkably, by including
further equations about division, that same equation becomes
derivable.

A version of these axioms in division notation is given in
Table 4, the equations of which correspond to the equations of
common meadows as given in [6] (see Table 2 of [6]) though
written in division notation. Following [9] the step from inverse
notation (as in Table 2 of [6]) to division notation is made by
introducing division defined by x

y =def x · y−1, and writing

x−1 = 1
x .

Proposition 2.6. In Ecmfc, the equation 0 · x = 0 · (x · x) is
derivable from the other equations, and the other equations of
Ecmfc are logically independent.

Proof. This was established by Alban Ponse with the Mace4
tool (see [11]) as reported in [6] for the table of equations
in inverse notation and subsequently for the equations of
Table 4. �

Finally, we repeat the flattening property that is shown in [6]:

Proposition 2.7. (Fracterm flattening II). For each CFC
expression t there are CR expressions (i.e. CFC expressions
without occurrences of the division operator) r and s such that

Ecmfc � t = r

s
.

In any case, allowing fracterm flattening has been the main
design requirement for the common meadow fracterm calculus.
Another design requirement for the common meadow fracterm
calculus has been that its equations axiomatize the equational
theory of a meaningful class of arithmetical datatypes, which
we discuss next.

3. AN INCOMPLETENESS RESULT FOR CFC

The term meadow reflects the concept’s intimate relationship
with fields (see [1]). Although meadows are a wider class of
algebras, the following property brings them closer: A meadow
M is cancellative if for all x, y ∈ M,

x �= 0 ∧ x �= ⊥ �⇒ x

x
= 1.

A common cancellation meadow is a common meadow which
is the enlargement of a field with division and ⊥.

In [6] it was shown that Ecmfc together with the equations

χ0 =
{

n

n
= 1| ∈ N, n > 0

}

axiomatizes all the equations true in all common cancellation
meadows with characteristic 0.

Many conditional equations can be derived from these equa-
tions, however we will show that Ecmfc∪χ0 does not completely
axiomatize the conditional equational theory of common can-
cellation meadows.

We will focus on the following conditional equation φ:

φ ≡ 1

x
= ⊥ → 0 · x = x

which is trivially valid in all common cancellation meadows,
because only 0 and ⊥ will meet the premise of the conditional
equation in such structures.

Theorem 3.1. The conditional equation φ is not derivable
from Ecmfc ∪χ0; hence Ecmfc ∪χ0 does not axiomatize the con-
ditional equational theory of common cancellation meadows of
characteristic 0.

Proof. Suppose for a contradiction that Ecmfc ∪ χ0 � 1
x =

⊥ → 0 · x = x. Then for some K ∈ N,

Ecmfc ∪
{

n

n
= 1| ∈ N, 0 < n < K

}
� 1

x
= ⊥ → 0 · x = x.

We will show that such a number K does not exist.
To this end choose a prime number p such that p > K. Let

H be the ring Z/p2
Z. Upon extending the signature with a new

constant ⊥, the interpretation of which will be denoted with ⊥
as well, H is enlarged to Enl⊥(H). We notice that Enl⊥(H)

satisfies the first nine equations of Table 4. Next, a division
function is added to the signature and an expansion of Enl⊥(H)

to Enl⊥(H)(–) is obtained.
For that purpose the interpretation of the division function

is given by x
y = x · 1

y while choosing inverses 1
x as follows:

1
0 = 1

⊥ = ⊥; if n is a multiple of p then 1
n = ⊥; otherwise if

gcd(n, p) = 1 then find m < p2 such that n·m = 1 mod p2 and
let 1

n = m. We notice that m is unique: suppose that for some
u < p2, u �= m, n · u = 1 mod p2. W.l.o.g. we may assume
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6 J. A. Bergstra and J. V. Tucker

that m > u. Then n · m − n · u = n · (m − u) = 0 mod p2 and
it follows that n must have a factor p because m − u < p2 and
m − u cannot be a multiple of p2.

We will check that Enl⊥(H)(–) satisfies the other equations
of Ecmfc∪{ n

n = 1| ∈ N, 0 < n < K}. For 0 < n < K, 0 < n < p

and thus gcd(n, p) = 1 so that Enl⊥(H)(–) |� n
n = 1. For the

equations about division of Ecmfc all cases are immediate except
for 1

x·y = 1
x · 1

y . By distinguishing four cases (gcd(n, p) = 1 or
not and gcd(m, p) = 1 or not) it is easily checked that for all
n, m with 0 < n, m < p2, Enl⊥(H)(–) |� 1

n·m = 1
n · 1

n . �

Question. Does the conditional theory of common meadows
of characteristic 0 have an attractive axiomatization?

4. CONCLUDING REMARKS

Partial data types may be bearable in system design and spec-
ification but total data types are needed in implementations.
Totalizing operators that are partial is complicated semantically
but any method must allow algebraic and logical analyses to
be useable and safe. The apparently simple method of using
an absorbtive element ⊥ to make division total leads to subtle
semantical consequences for other arithmetic operations; it
also leads to a forensic interest in designing new equational
specifications to capture and control them.

4.1. Summary

We have re-examined the axioms for common meadows and
tried to provide a modular construction that allows the theory
to be re-focussed or customized for various agendas.

We started the modularization with the equational theory
Ewcr,⊥ of commutative rings with an absorbtive flag ⊥ added.
With this base, we focused on additional axioms designed to
accommodate division. To illuminate elementary arithmetic,
the set Ewcm of axioms and its equivalents were shown to be
enough to enable flattening. Adding one more axiom produced
Ecm and its form as the common meadow fracterm calculus
Ecmfc. This last axiomatization enables a completeness theo-
rem that axiomatizes the whole equational theory of common
meadows of characteristic 0. However, we showed that Ecmfc
does not axiomatize the conditional equational theory.

4.2. On axiomatizing the common meadows

This paper is about axiomatizations. All established classes
of algebras have several axiomatizations and closely related
weaker formulations. These are acquired as their theories
develop, often over many years – one thinks of the theory
of groups, rings and fields, and their many derived classes
of algebras. Indeed, they are still developing as our work on
meadows of various kinds demonstrates.

Since their proposal in [4], the common meadows have
found several applications and with each application come
new opportunities for developing their theory, which includes

refinements of their axiomatizations. Criteria that shape our
development so far have been

(i) equational axiomatizations,
(ii) initial algebra models of the rationals,

(iii) classical properties and practices with calculating with
fractions and

(iv) logical issues of independence, completeness, and
incompleteness.

This paper brings into focus the effects of our theoretical
development on finding and comparing axioms. To be concrete,
let us explain the connection of our paper with three key papers
[4–6], which are three versions of [4] which first appeared in
2014. Successively, the axioms for common meadows stated
in [4] were first simplified thereby obtaining an ‘intermediate’
axiom system by removing a redundant axiom, and then by
incorporating a new axiom leading to the system presented in
[5]. Our Table 4 corresponds to the axioms of [5] though here
rendered in division rather than inverse notation.

It went unnoticed in [5] that there is indeed a clear rationale
for the intermediate system of axioms, which we display in
Table 2, again using division notation. This rationale of the
intermediate system is brought to light in Table 3, which
contains an axiom system logically equivalent to Table 2 (i.e.
to the intermediate axiomatization). Now, Table 3 provides
precisely the most straightforward inductive definition of frac-
term flattening plus a definition of ⊥ as being 1/0. We hold
that Table 3, and because of its logical equivalence Table 2
as well, captures the idea of fracterm flattening. The impor-
tance of fracterm flattening in theory and practice constitutes
a significant rationale for its independent status and study. The
choice of operators – division v. inverse – and their notations
also influences investigations and hence axiomatizations.

4.3. Division by zero as a context

The starting point for the theory of common meadows in all
its possible forms is the need to make division total. The
idea of adding a flag is not new as can be seen in antique
algebra textbooks and modern computer arithmetics, where
∞ is regularly used, or in pocket calculators, where error is
regularly used. Absorbtive properties of flags can be found in
ad hoc places in computing, e.g. where error flags are raised
and x + error = error etc. What has been missing are pukka
algebraic theories of ideas about totalization that can at least

(i) specify a method axiomatically;
(ii) map the algebraic consequences and

(iii) support verifiable computations.

This is quite a long-standing problem for arithmetic data
types and numerical computation.

There is an interesting survey of options for division by zero
by Patrick Suppes as early as 1957 in [12] (see also [13]).
Suppes approved of 1

0 = 0, though writing 1
0 = ⊥ is not among

his options.
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Our pursuit of a theory of totalization through a theories of
meadows started without flags [1]. We worked with 1

0 = 0
in order to give an equational specification of the rationals

with division using initial algebra semantics; for this purpose
we coined the term involutive meadows since inverse is an
involution. Earlier algebraic work with this option occurs in
[14] and [15] where the structures are called pseudo fields. The
same conventions are referred to as a division by zero calculus
in [16].

A corresponding fracterm calculus is called Suppes-Ono
fracterm calculus in [17]. Now, fracterm flattening fails in
involutive meadows. Taking 1

0 = 0 in the Suppes-Ono fracterm
calculus allows only quasi-flattening, i.e. an expression can be
written as a sum of flat fracterms, without any bound on the
length of the sum; see [18, 19]. We notice that for Suppes-
Ono fracterm calculus an initial algebra has been identified in
[20], while the finite models of it were characterized in [21]. (A
characterization of finite models of common meadow fracterm
calculus has not yet been determined.) Moreover, Suppes-Ono
fracterm calculus allows an attractive equational presentation
of the axioms of probability calculus, see e.g. [22].

There are other fracterm calculi. In the algebraic study of
a computer arithmetic the infinity flags ∞ (unsigned) and
+∞, −∞ (signed) have been used to totalize division by
zero, in the notions of wheels [23–25] and transreals [26–28],
respectively. These semantic models also contain ⊥ to control
the side effects of the infinities. (In the theory of transreals, the
absorbtive constant ⊥ is written as � and called nullity.)

The fracterm calculus of transreals is relatively complicated
in comparison with common meadow fracterm calculus and
Suppes-Ono fracterm caclulus. For instance, the equation

x

z
+ y

z
= x + y

z
,

referred to as the property of quasicardinality in [29], is valid
both for the common meadow fracterm calculus as well as for
Suppes-Ono fracterm calculus. However, this quasicardinality
fails for the fracterm calculus of wheels and for the fracterm
calculus of transreals.

From the point of view of fracterms, and our expectations
born of elementary teaching, the common meadow fracterm
calculus stands out.
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