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Abstract—Feature attribution XAI algorithms enable their
users to gain insight into the underlying patterns of large datasets
through their feature importance calculation. Existing feature
attribution algorithms treat all features in a dataset homoge-
neously, which may lead to misinterpretation of consequences of
changing feature values. In this work, we consider partitioning
features into controllable and uncontrollable parts and propose
the Controllable fActor Feature Attribution (CAFA) approach to
compute the relative importance of controllable features. We
carried out experiments applying CAFA to two existing datasets
and our own COVID-19 non-pharmaceutical control measures
dataset. Experimental results show that with CAFA, we are
able to exclude influences from uncontrollable features in our
explanation while keeping the full dataset for prediction.

Index Terms—Explainable AI, Feature Attribution, Medical
Application

I. INTRODUCTION

Feature attribution algorithms [15] are a popular class of
Explainable AI (XAI) algorithms. Given a prediction instance,
they tell the relative “importance” of each feature in the
instance. In addition to “explaining” the prediction model,
importance measures also reveal insight about the instance
being explained, e.g., [4] shows that XAI can help “gener-
ating the hypothesis about causality” in developing decision
support systems. In this sense, feature attribution algorithms
are considered as a data mining tool for extracting and discov-
ering patterns in large datasets. For instance, [6] uses feature
attribution algorithms to understand important factors affecting
cancer patient survivability; [7] employs feature attribution al-
gorithms to study factors affecting the transmission of SARS-
CoV-2; and [14] uses feature attribution to analyse factors
affecting foreign exchange markets. However, existing feature
attribution algorithms (see e.g., [2], [17], [22] for overviews)
treat all features homogeneously when computing their relative
importances. Such homogeneity may not always give desirable

interpretations when feature attribution algorithms are used
for data mining purposes. Consider the following hypothetical
example.

Suppose we want to estimate the chance for some
individual having breast cancer, with features like
age, gender, weight, alcohol intake, smoking habits,
family history, etc. A predictive model estimates the
likelihood of the person having breast cancer; and
a feature attribution algorithm gives attributions like
age: 0.3, gender: 0.13, weight: 0.27, alcohol intake:
0.15, smoking: 0.3, family history: 0.36, etc.

From these calculated values, we notice that certain features,
such as age, gender and family history, while being influential
to the prediction, are uncontrollable risk factors [5]. Knowing
the relative importance of these features makes little contribu-
tion to clinical decision making. On the other hand, features
representing controllable risk factors such as weight, alcohol
intake and smoking habits are vital to clinical interventions
[5]. Thus, from an intervention perspective, it is necessary
to distinguish these two classes of factors and compute their
influences accordingly. We raise the question:

What are the influences of controllable factors used in a
prediction?

To answer this question, a naive approach would be to build
another predictive model, which only considers controllable
factors, and apply feature attribution algorithms to that model.
However, as explained in [8] and [24], dropping features from
models can negatively impact the model performance as we
will show in Table I in experimental study. Thus, instead
of building models with fewer features, we suggest creating
algorithms that are able to treat controllable factors differently
from uncontrollable ones.

In this paper, we present Controllable fActor Feature Attri-
bution (CAFA). Through selective perturbation and global-for-



local interpretation, CAFA computes the relative importance
of controllable factors for individual instances using prediction
models built from all features. We apply CAFA on lung cancer
data in Simulacrum1 and on the UCI breast cancer dataset2

to study the influence of controllable factors on survival
time or recurrence. In a second experiment, we apply CAFA
to a COVID-19 virus transmission case study (Section V)
to explore the effectiveness of non-pharmaceutical control
measures.

II. BACKGROUND

Given a prediction model f ∈ F where F is a set of
models, let y = f(x) be the prediction made by f on the input
x = ⟨x1, . . . ,xm⟩ ∈ Rm, and a feature attribution algorithm
give an explanation Φx = ⟨ϕ1, . . . , ϕm⟩ ∈ Rm, where ϕi can
be viewed as the relative importance of xi for the prediction
y = f(x). We briefly review two feature attribution algorithms
supporting this work as follows.

A. Local Interpretable Model-agnostic Explanations
(LIME) [19]

To explain how a model f predicts a data instance x, LIME
generates a new dataset D = {(x1, f(x1)), . . . , (xn, f(xn))}
consisting of n perturbed samples x1, . . . ,xn within some
proximity πx of x, and then fits an interpretable model g to
D. The parameters of the new model are the explanation of
x. Formally, LIME computes explanations as:

LIME(x) = argmin
g∈G

L(f, g, πx) + Ω(g), (1)

where L is a loss function comparing f and g, G ⊆ F is a
class of interpretable models, and Ω(g) the complexity of g.

B. SHapley Additive exPlanations (SHAP) [15]
SHAP is based on the coalitional game theory concept of

a Shapley value, assigned to each feature of instance x. The
Shapley value of a feature is its marginal contribution to the
prediction thus explains the prediction. Specifically, let g be
the explanation model. For an instance x with m features, there
is a corresponding z ∈ {0, 1}m such that SHAP specifies g
being a linear function of z:

g(z) = ϕ0 +

m∑
j=1

ϕjzj , (2)

where ϕj(0 < j ≤ m) is the Shapley value of feature j
and ϕ0 is the “average” prediction when none of the features
in x is present. Both SHAP and LIME are local methods in
the sense that they explain individual instances in a dataset.
Global explanation, which describes the average behaviour of
the dataset, can be simply obtained by taking the average of
local explanations of instances in the dataset [17].

1Simulacrum is a dataset developed by Health Data Insight CiC derived
from anonymous cancer data provided by the National Cancer Registration
and Analysis Service, which is part of Public Health England.

2http://archive.ics.uci.edu/ml/datasets/Breast+Cancer

III. OUR APPROACH

CAFA computes feature importances for controllable factors
through selective perturbation and global-for-local interpreta-
tion. Conceptually, CAFA is inspired by LIME such that a
set of perturbed samples is generated to compute the feature
importance. However, there are two main differences. Firstly,
unlike LIME where the perturbation is carried out uniformly
throughout all features, CAFA selectively perturbs features
representing controllable factors. Secondly, with the dataset
generated, instead of fitting a weak interpretable model for
computing explanations, a strong model is chosen to fit the
dataset. We then determine the feature importance of con-
trollable factors by using an explainer to compute the global
explanation on the dataset. Fig. 1 illustrates CAFA’s selective
perturbation strategy.

Given a prediction model f , for a data point x with m
features partitioned into two sets Fc (controllable) and Fu

(uncontrollable) such that Fc ∩ Fu = {}, to compute feature
importance for Fc, we construct a data set with n points

Dx = {(x1, f(x1)), . . . , (xn, f(xn))}

such that for all (xi, f(xi)) ∈ Dx, the following two condi-
tions hold:

1) δ(x,xi) ≤ πx, where δ is a distance function and πx is
some proximity threshold, and

2) for x = ⟨v1, . . . , vm⟩, and xi = ⟨vi1, . . . , vim⟩, for all j
(1 ≤ j ≤ m), it is the case that if feature j is in Fu, then
vj = vij .

For two instances x1 = ⟨v11 , . . . , v1m⟩ and x2 = ⟨v21 , . . . , v2m⟩,
the distance function δ(x1,x2) is

δ(x1,x2) =

∑m
i=1 ωid(v

1
i , v

2
i )∑m

i=1 ωi
, (3)

where ωi is the weight of feature i and d(v1i , v
2
i ) is defined

by3:
• if feature i is categorical, then

d(v1i , v
2
i ) =

{
0 if v1i = v2i ,
1 otherwise;

(4)

• if feature i is continuous, then

d(v1i , v
2
i ) = |v1i − v2i |. (5)

We then build a strong prediction model g from Dx and
calculate the global explanation g(Dx) using SHAP by first
computing local explanations for all instances in Dx and
then averaging the results. Overall, for an instance x and
explanations Φi computed over Dx,

CAFA(x) =
1

n

n∑
i=1

Φi. (6)

3Note that we assume some standard normalization / scaling pre-processing
is performed on the dataset so all continuous features take values in the range
[0,1].



Fig. 1: Selective Perturbation in CAFA. The point of interest (explanation point) and the generated dataset are shown in the
figures. The red dot denotes the point of interest in a 2D space. The yellow curve is the decision boundary. Blue “+” and green
“-” denote generated positive and negative samples, respectively. The figure on the left illustrates the standard perturbation
(LIME), where both features x and y are perturbed; the figure on the right illustrates the selective perturbation (CAFA), where
only the x axis, representing the controllable factor, is perturbed.

Thus, we use the global explanation computed with a strong
predictor on Dx as the local explanation for x. This global-
for-local interpretation is superior to LIME’s local surrogate
approach, as it has been shown that SHAP is more robust than
LIME [10], [16], [21], [23].

Algorithm 1 describes the process in detail. Since all points
in Dx have the same values for their uncontrollable features,
these features have no correlation to class labels of points in
Dx. Thus, their feature importance will be assigned to 0, as
they make no contribution to the prediction. By setting that
each class contains K samples (Line 7), we ensure that Dx is
balanced.

Algorithm 1 Selective Perturbation and Global-for-Local In-
terpretation.
Input: Data point x, Prediction model f , Proximity threshold
πx, Distance Function δ, Controllable features Fc, Sample
class size K Output: Feature Importance Φ

1: Let D′
x = [];

2: do
3: Randomly generate a data point x′ such that for all

features v ∈ Fu, x′ contains the same value as x in v and
δ(x,x′) ≤ πx;

4: Append (x′, f(x′)) to D′
x;

5: Let r be the size of the smallest class in D′
x;

6: while r < K;
7: Construct Dx from D′

x by sampling K elements from
each class in D′

x;
8: Let Φ be the global explanation for g(Dx) with a strong

predictor g;
9: return Φ;

IV. EXPERIMENTS WITH TWO EXISTING MEDICAL
DATASETS

As an experiment, we apply CAFA to the lung cancer data
in Simulacrum and the UCI breast cancer dataset. We predict
12-months survival on the lung cancer dataset, which contains
2,242 instances specified by 24 features:

• Four uncontrollable features: age, ethnicity, sex and
height;

• 20 controllable features: morph, weight, dose administra-
tion, regimen outcome description, administration route,
clinical trial, cycle number, regimen time delay, cancer
plan, T best, N best, grade, CReg code, laterality, ACE,
CNS, performance, chemo radiation, regimen stopped
early, and M Best.4

The breast cancer dataset comprises 286 data instances,
predicting cancer recurrence, each containing 9 features, which
are:

• Two uncontrollable features: age and menopause;
• Seven numerical controllable features: tumor size, inv-

nodes, node-caps, deg-malig, breast, breast-quad, and
irradiate.

Random forest classifiers are used in both cases.
Firstly, we illustrate that simply dropping uncontrollable

features will negatively impact the prediction accuracy. As
shown in Table I, the accuracy drops across the three datasets,
i.e., lung cancers, breast cancer, and covid19 (we will intro-
duce covid19 dataset in the next section), suggesting features
importances achieved from models from fewer features may
be different from the ones achieved from using the original
dataset.

Original Controllable features only
Lung Cancer 0.97 0.85
Breast Cancer 0.79 0.76

COVID19 0.94 0.88

TABLE I: The prediction for lung cancer, breast cancer, and
COVID19 dataset by using the original dataset and the dataset
with controllable features only.

We then explore the influence of controllable features on
prediction results on individual instances (local explanations).

4Description of features used in this dataset can be found at the Cancer
Registration Data Dictionary and the SACT Data Dictionary, with links
available at:
https://simulacrum.healthdatainsight.org.uk/available-data/table-descriptions/.



To this end, we randomly sample an instance from each
dataset, as follows:

• Lung Cancer: age 71; ethnicity 5; sex 0; morph 8140;
weight 49.8; height 1.83; dose administration 8; regimen
outcome 1; administration route 1; clinical trial 2; cycle
number 1; regimen time delay 0; cancer plan 0; T Best
3; N Best 0; grade 3; CReg Code 401; laterality 2; ACE
9; CNS 99; performance 0; chemo radiation 0; regimen
stopped early 1; M Best 0.

• Breast Cancer: age 40; menopause 0; tumor-size 6; inv-
nodes 0; node-caps 1; deg-malig 3; breast 0; breast-quad
3; irradiate 0.

For each instance x, we generate Dx containing 1,000 per-
turbed instances (binary classification, K = 500) and carry
out the CAFA calculation as shown in Algorithm 1. We let
πx be the average distance between points and feature weights
ωi = 1. Results from SHAP and CAFA are shown in Fig. 2. In
this figure, the x-axis shows the features; y-axis shows feature
importance. For each feature, the left (blue) bar shows the
SHAP result of the feature, and the right (red) bar shows the
importance calculated with CAFA. We observe that:

1) For uncontrollable features, i.e., “age”, “ethnicity”, “sex”,
and “height” from the lung cancer dataset as well as
“age” and “menopause” from the breast cancer dataset,
the assigned importance value is 0, as expected;

2) For controllable features, there is a strong correlation,
0.96 for lung cancer and 0.99 for breast cancer, between
values represented by the blue and the red bars, suggest-
ing that CAFA is agreeable with SHAP.

This suggests that CAFA successfully excludes influences of
uncontrollable features with its calculation, while maintaining
properties of standard feature attribution algorithms such as
SHAP.

We further study the influence of uncontrollable features
with CAFA for global explanations. We randomly sample 100
instances from each dataset and compute global explanations
with SHAP and CAFA. We produce “violin plots” using the
summary plot function from the SHAP library. Fig. 3 (a)
and (b) illustrate global explanations for the lung and breast
cancer datasets, respectively. There, the x-axis is the feature
importance and the y-axis is the features. Color (red to blue)
represents the value of a feature.

For Fig. 3 (a) and (b), the left-hand side figures show
results from SHAP; and at the right-hand side figures show
results from CAFA. We can see that: (1) as seen in local
explanation cases (Fig. 2), all uncontrollable features are
assigned an importance value 0; (2) similar patterns to SHAP
on controllable features can be seen from CAFA, i.e., similar
color patterns for a specific feature; (3) the orders of feature
importance differ from SHAP to CAFA. We conclude that, for
global explanations, CAFA precludes uncontrollable features
from contributing to explanations, and CAFA produces distinct
explanations to SHAP even if uncontrollable features are
excluded.

V. UK COVID-19 CASE STUDY

With the outbreak of the COVID-19 pandemic in De-
cember 2019, many countries have implemented some non-
pharmaceutical control measures to contain the spread of the
virus in the absence of effective vaccination and treatment. In
this case study, we use CAFA to study the effectiveness of the
non-pharmaceutical control measures implemented in the UK.

We formulate the effectiveness of control measures as an
XAI modelling problem. We focus on studying the relationship
between control measures and the daily reproduction rate Rt.
Rt is one of the most important metrics used to measure the
epidemic spread. A value greater than 1 suggests the epidemic
being expanding; a value less than 1 indicates shrinking. We
employ the approach presented in [9] for estimating Rt from
daily infection cases. We then pose the following classification
problem:

Given non-pharmaceutical control measures applied
on a specific day, predict whether Rt is smaller or
greater than 1 on that day.

Having this prediction problem solved by a classifier, we use
CAFA to identify control measures that make the greatest con-
tribution to the prediction. Thus, by analysing the behaviour
of the prediction model, we gain insight into the effectiveness
of control measures.

We have collected a dataset containing daily infection
numbers and control measures from 04/January/2020 to
06/September/2021. Each instance consists of uncontrollable
features (i.e., daily number of infections, cumulative cases,
daily number of deaths and tests performed, temperature and
humidity) and controllable features (i.e., implemented control
measures). The numbers of daily cases, cumulative cases,
deaths, and tests performed are collected from the Public
Health England website5. Control measure information is
retrieved from Wikipedia6 and various news articles.

We have considered control measures school closures (SC),
restrictions on meeting friends and family indoors (MInd),
meeting friends and family outdoors (MOut), domestic travel
(DT), international travel (IT), hospitals and nursing home
visits (HV), opening of cafes and restaurants (CR), accessing
pubs and bars (PB), sports and leisure venues (SL), and
non-essential shops (NS). The values for control measures
are binary, e.g, for “school closure”, the values are “open”
and “closed”; for “restrictions on meeting indoors” the values
are “High” (H) or “Moderate” (M). To accommodate the
temporal effect of control measures, each feature is represented
categorically. For instance, if they are open, then the “school
closure” feature takes value 0; if the schools are closed for
0-5 days, then it takes value 1; etc.

In total, we have collected 4,256 data points across 12 UK
regions: East Midlands, East of England, London, North East,
North West, South East, South West, West Midlands, Yorkshire

5COVID-19 Dashboard (UK): https://coronavirus.data.gov.uk
6For example, for Wales the control measure data has been collected from

https://en.wikipedia.org/wiki/Timeline\ of\ the\ COVID-19\ pandemic\
in\ Wales



(a) A lung cancer instance randomly selected from the Simulacrum dataset. Uncontrollable features are: Age, Ethnicity, Sex, and Height.

(b) A breast cancer instance randomly selected from the UCI breast cancer dataset. Uncontrollable features are Age and Menopause.

Fig. 2: Illustration of CAFA vs. SHAP on two explanation instances selected from two medical datasets. We observe that (1)
with CAFA, all uncontrollable features are assigned importance 0; (2) for controllable features, CAFA produces results that
are agreeable with the ones given by SHAP.

and Humber, Northern Ireland, Scotland and Wales. To remove
noise and achieve a more accurate Rt estimation, we drop data
points with cumulative cases less than 20 for each region and
keep 3,936 instances. A sliding-window mean filter of size 3
has been used to filter noise in daily cases.

We split the dataset as 70% for training and 30% for
testing, and use a random forest classifier. We achieve a high
prediction accuracy of 94.4%. Since we aim to obtain a bird’s-
eye view of how control measures are affecting the disease, we
focus on calculating global explanations. To this end, for each
instance x, we generate Dx with K = 500. πx is the average
distance between any two instances; ωi = 1. By following
Algorithm 1, we obtain feature importance using CAFA. The
global explanations are shown in Fig. 4, right-hand side, with
SHAP results shown on the left.

The SHAP results at the left demonstrate that the number of
daily cases and cumulative cases both have strong impact in
predicting Rt. However, as both are uncontrollable, knowing
that they have strong influence to the prediction does not
help us understand the effectiveness of control measures.
With CAFA (Fig. 4 right-hand side), the importance of all
uncontrollable features are assigned to 0. Overall, we observe
that:

• SHAP considers High Restriction on Cafes and Restau-
rants Access (CR H), High Restriction on Pubs and
Bars Access (PB H), Number of Daily Infections (Cases),
Number of Daily Infections (Cases), Medium Restriction
on Pubs and Bars Access (PB M), and High Restriction
Sport and Leisure Facilities (SL H) as the top five
effective control measures; whereas

• CAFA considers CR H, PB H, PB M, Medium Restric-
tion on Hospital and Nursing Home Visits (HV M) and
Medium Restriction on Cafes and Restaurants Access
(CR M) as the top five effective control measures.

CAFA’s results are in alignment with WHO’s COVID-19
guideline stating the “Three C’s” rule that the virus is more
transmissible with (1) Crowded places; (2) Close-contact
settings; and (3) Confined and enclosed spaces with poor venti-
lation.7 Focusing on restricting access to cafes and restaurants
as well as pubs and bars seem to be a very reasonable strategy
in reducing the virus transmission, for the reason that these are
the most prominent locations meeting the Three C’s for most
of the population.

7https://www.who.int/news-room/q-a-detail/
coronavirus-disease-covid-19-how-is-it-transmitted



(a) Global views of lung cancer cases in the Simulacrum (left: SHAP; right: CAFA). Uncontrollable features are: Age, Ethnicity, Sex, and
Height.

(b) Global views of the UCI Breast Cancer dataset (left: SHAP; right: CAFA). Uncontrollable features are: Age, and Menopause.

Fig. 3: Global explanations calculated using SHAP and CAFA on the Simulacurm Lung Cancer dataset and the Breast Cancer
dataset. Same as Fig. 2, we see that uncontrollable features in both datasets have importance 0; and CAFA produces similar
results to SHAP for controllable features.

VI. RELATED WORK

There has been some research conducted to extend feature
attribution algorithms to achieve more meaningful explana-
tions. For example, [1] extended the Kernel SHAP method
to handle dependent features through different approaches to
estimate the conditional distribution. Experiments over simu-
lated datasets suggest that the dependencies between features
are handled properly using proposed Shapley value approxi-
mations. An aggregation of the Shapley values of dependent

features was also introduced to ease the interpretation and use
of the Shapley values. In [20], a model-agnostic explanation
approach ‘anchors’ was proposed based on if-then rules,
which depends on input perturbation to approximate local
explanations. Experimental results over classification, struc-
tured prediction, and text generation machine learning tasks
demonstrated the usefulness of anchors. In [3], a variant of
LIME for continuous data was proposed. Theoretical analysis
was performed to derive explicit closed form expressions for
the explanations output. It was also demonstrated that post hoc



Fig. 4: Global views of the COVID dataset (SHAP Left; CAFA Right). Uncontrollable features are: Humidity (Humid),
Temperature (Temp), Cumulative Cases (Cum cases), Daily Infections (Cases) and Regions.

explanation methods will converge to the same explanations
when the number of perturbed samples used by these methods
is large.

A large amount of effort has been put into studying the
effectiveness of control measures for containing the COVID-
19 pandemic. For example, in [13], the authors estimated
the instantaneous reproduction number (Rt) of COVID-19
in four Chinese cities and ten provinces. They found that
tough aggressive non-pharmaceutical interventions (e.g., city
lockdown) had abated the first wave of COVID-19 outside of
Hubei. The effect of physical distancing measures on the pro-
gression of the COVID-19 epidemic was explored in [18]. An
extensive simulation based on an age-structured susceptible-
exposed-infected-removed model [12] was carried out. The
simulation results show that sustained physical distancing
measures have a potential to reduce the magnitude of the
epidemic peak of COVID-19. The impact of physical distanc-
ing measures in the UK was evaluated through comparing
the contact patterns during the “lockdown” to patterns of
social contact made before the epidemic [11]. It was found
that the estimated change in reproduction number significantly
decreased, suggesting that the physical distancing measures
adopted by the UK public would probably lead to a decline
in cases.

VII. CONCLUSION AND FUTURE WORK

Feature attribution XAI algorithms tell users the relative
contribution of a feature in a prediction, which can help users
gain insight by shedding light onto the underlying patterns in
large datasets. However, existing feature attribution algorithms
treat controllable and uncontrollable features homogeneously,
which may lead to incorrect estimation of the importance
of controllable features. In this paper, we proposed CAFA
to compute the relative importance of controllable factors
through generating perturbed instances. Specifically, for each
prediction instance, CAFA creates a dataset by selectively per-
turbing features representing controllable factors while leaving
uncontrollable ones unchanged and then computing the global
explanation on the generated dataset as the local explanation
for the prediction instance.

We tested CAFA on two existing medical datasets, the lung
cancer data from the Simulacrum dataset and the UCI breast
cancer dataset. Experimental results show that with CAFA,
although the prediction model is built over all features, the
explanations of controllable features are not interfered with
by the uncontrollable ones. We further applied CAFA in a
case study on understanding the effectiveness of COVID-19
non-pharmaceutical control measures implemented in the UK
during the period of January 2020 to February 2021. We found
that restricting access to cafes and restaurants as well as pubs
and bars are the most effective measures in containing the



disease, represented by reaching an Rt value smaller than 1.

Our work was carried out on classification tasks using a
popular class of supervised machine learning techniques. In
future, we want to further refine our CAFA technique. First,
we plan to extend it to studies involving time series, and
secondly, when sampling perturbed data points, we aim to
take the density of the data into account and integrate a more
fine-grained proximity measure. We expect this to extend the
applicability of this technique and to increase its robustness.
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