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Which Arithmetical Data Types

Admit Fracterm Flattening?

Jan A. Bergstra1

John V. Tucker2

Abstract

The formal theory of division in arithmetical algebras reconstructs
fractions as syntactic objects called fracterms. Basic to calculation is
the simplification of fracterms to fracterms with one division opera-
tor, a process called fracterm flattening. We consider the equational
axioms of a calculus for calculating with fracterms to determine what
is necessary and sufficient for the fracterm calculus to allow fracterm
flattening. For computation, arithmetical algebras require operators
to be total for which there are several semantical methods. It is shown
under what constraints up to isomorphism, the unique total and min-
imal enlargement of a field Q(÷) of rational numbers equipped with a
partial division operator ÷ has fracterm flattening.

Keywords: fracterm, fracterm flattening, common meadow, rational
numbers, equational specification, initial algebra semantics.

1 Introduction

The basic algebra for computing in arithmetical structures starts with rings
and fields, with their operations x + y, −x, x · y. Although a field has
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inverses for non-zero elements, to study division we must add an operator,
either an inverse 1

y or a division x÷ y; one can derive each from the other,

of course, e.g., x÷ y = x · 1y . For rings and fields with inverse or division we
have coined the term meadow [10].

For computing, we need algebras that are total so we have to deal with
division by zero. Totalising division is standard in computer arithmetics,
where error, unsigned infinity∞, or signed infinities +∞,−∞ are familiar.
For general information on division by zero see the survey paper [3].

We will focus on the fields Q of rational numbers in which division
is made total. Two scenarios for totalisation can be distinguished when
starting with a structure Q(÷) of rational numbers equipped with a partial
division operator, i.e., a partial meadow of rational numbers; we can use

1. Internal methods: No new elements are added to the domain of Q(÷)
so that x/0 is defined as some element of the field Q for each element x
of the field; and

2. External methods: One or more new elements are added to the domain
Q(÷), so that the algebra is properly extended and is an enlargement.

Additional new elements are so-called peripheral numbers. In this paper,
we will focus on external methods and especially the method of adding a
single peripheral number to Q(÷) that we denote ⊥, for which x ÷ 0 = ⊥
in Q, and which is absorbtive, i.e., if ⊥ is an argument to an operation then
the result is ⊥. This method is quite general and applied to rings with
division produces what we have chosen to call common meadows. Common
meadows have a growing algebraic theory [7, 9].

Now, in the case of the rationals, we observe that “fractions” are every-
where in elementary measurements, calculation and teaching (though they
tend to disappear as a concept in advanced mathematics). In [4], the infor-
mal term fraction is replaced with the formally defined syntactic concept of
a fracterm. Central to using fracterms are calculations like
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where a complex fracterm is transformed into a simple fracterm containing
only one division. Here are the definitions:

Definition 1 Let Σ be a signature with a division operator. A fracterm is
a Σ-term with division as its leading function symbol. A flat fracterm is
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a fracterm which contains no occurrences of division in its numerator and
in its denominator, and contains no occurrences of constants other than 0
and 1.

As a property of an arithmetical algebra we define [4]:

Definition 2 Let Σ be a signature with a division operator and B a Σ-
algebra. The algebra B has fracterm flattening if for every fracterm t over Σ
there is a flat fracterm r such that

B |= t = r.

Given a fracterm, the process of finding an equivalent flat fracterm is called
fracterm flattening.

Totalising operators can have a dramatic effect on algebraic properties
as certain classic laws of arithmetic fail; this is very noticeable in the case of
the rationals. However, ideally, the method of totalising can be axiomatised
in a meaningful and memorable way. For our totalising method of making
common meadows there are several axiomatisations using equations [13];
and there are equational specifications of the common meadow of rational
numbers under initial algebra semantics.

Thus, fracterm flattening can be considered relative to an axiomatic
theory E, and then refers to finding a flat fracterm r which is provably
equal to a given fracterm t using a theory E. When we work with fracterms,
we call an axiomatisation a fracterm calculus. In this paper, we will use a
fracterm calculus based on the axioms of a common meadow.

The fracterm representation and flattening are essential in practical
calculation with rational numbers. Now in [6], it was shown that Internal
Scenario 1 cannot lead to a totalisation ofQ(÷) for which fracterm flattening
holds.

However, in External Scenario 2, when peripheral values are admitted,
flattening becomes possible. The enlargement of Q(÷) with an absortive
peripheral number ⊥ used to totalise division – x/0 = ⊥ – makes the com-
mon meadow Enl⊥(Q(÷)). From [7], we know that the equational axioms of
a common fracterm calculus – the fracterm form of the axioms of common
meadows – enable all fracterms to be flattened. Here we analyse the equa-
tional axioms for calculating with fracterms to determine what is necessary
and/or sufficient for a calculus to allow fracterm flattening. Our method is
to discover small sets of axioms F for which we can prove:
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Working Principle. Let B be an algebra with flattening. If B satisfies
the equations in F then B ∼= Enl⊥(Q(÷)).

The equations we find for F are surprisingly simple. The most promi-
nent is the distribution law.

Thus, in this way, we will find under what conditions is a common
meadow Enl⊥(Q(÷)) of rational numbers the unique total and minimal en-
largement of the partial meadow Q(÷) that has fracterm flattening (up to
isomorphism).

Finally, continuing to explore External Scenario 2, we discuss in detail
the alternative totalisation method for division called wheels [21, 16], which
uses ∞ and ⊥. We show that a wheel of rational numbers does not have
fracterm flattening.

The structure of the paper is this: Section 2 contains some algebraic
preliminaries that we need. In Section 3 we set up the basics of common
meadows. In Section 4 we prove the theorems. In Section 5 we focus on the
necessity of the distribution law. In Section 6 we discuss the case of wheels.
In Section 7 we discuss related work and offer some concluding remarks.

2 Algebraic Preliminaries

2.1 Basics

We assume the reader is familiar with the theory of algebraic specifications
for data types [17, 19].

Definition 3 A partial data type is an algebra A of signature Σ that is
minimal, i.e., each element of the domain A is the interpretation in A of a
closed Σ term. A partial abstract data type is the isomorphism class A of
a partial data type A.

The condition of minimality means that every element of the data type
can be constructed by applying the operations of the data type to its named
constants. As we are focussed on arithmetic we need only consider single-
sorted data types with signature Σ.

Let T (Σ) be the set of all closed terms made from the operations and
constants of Σ, and let T (Σ, X) be the set of all terms made with variables
from X.

For simplicity, we will work with data types rather than abstract data
types. To specify a data type, we use equations with the standard initial
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algebra semantics for total data types. To specify a total data type B by an
equational specification (Σ, E) we make an initial algebra using the concrete
construction:

T (Σ, E) = T (Σ)/ ≡E
∼= B

where t ≡E t′ ⇐⇒ E ` t = t′. The initial algebra semantics of (Σ, E) is
the isomorphism class I(Σ, E) of T (Σ, E).

2.2 Transforming Data Types

A data type A can be changed by adding or removing constants and opera-
tions without changing its domain A; these internal changes we call expan-
sions, enrichments or reductions. A data type A can be also be changed
by adding, or removing, constants and operations that require changing its
domain A; these external changes we call extensions or restrictions. Exten-
sions followed by expansions we call enlargements. We will use the following
transformations to increase and reduce domains.

At the heart of our theorising are ways to make a total algebra from a
partial algebra. Recalling our internal and external scenarios, two methods
stand out as quite general.

Internally, the easiest way is to use a single element from the partial
algebra to totalise the partial operations; we do not have to adjust the values
of the operators if they are already defined. Let A be a partial minimal
algebra of signature Σ. Let t ∈ T (Σ) be a closed term such that t has a
value in A. Then we define B = Tott(A) to be the total algebra obtained
by using the value of t in A to make the partial operations of A total by
returning the value t. Typically, we can use a constant from Σ.

Alternately, externally, we can add a single new element to make the
partial operations total; however, we must define all the operators on any
such new element. An easy way to do this adjustment is as follows:

Let A be a partial minimal algebra of signature Σ. Let ⊥ /∈ A be an
element new to A that is absorbtive, i.e., if ⊥ is an argument to an operation
of A then its value is ⊥. Then we define

B = Enl⊥(A)

to be the total algebra obtained by using the new value of ⊥ in A to make
all partial operations of A total by returning the value ⊥.
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3 Arithmetic Data Types and Common Meadows

Let N , Z and Q be sets of natural numbers, integers and rational numbers,
respectively.

3.1 Arithmetic Data Types

The basic algebra of arithmetic is the algebra of rings and fields. These
axiomatise the operations of addition x + y, its additive inverse −x, and
multiplication x · y. Let Σcr be the signature of rings and fields.

Although each non-zero element x ∈ K of a field has multiplicative
inverse, K does not have an inverse operator x−1 or a division operator ÷.
On adding a unary inverse operator −1, or binary division operator ÷, the
algebras K(−1) or K(÷) become partial.

To make division ÷ total, consider the two methods of Section 2.2.
Suppose we do this by using an element of K such as the constant 0 then
we get an involutive meadow Tot0(K) = K0(÷) of signature Σm.

Alternately, if we add an absorbtive element ⊥ to K(÷) then we get a
common meadow Enl⊥(K(÷)) with the signature Σcm = Σm ∪ {⊥}.

Let Q(÷) be the field Q of rational numbers with division ÷. The
algebra Q(÷) is partial meadow with signature Σm. Note that the field Q
does not qualify as a data type for computation as it is not a minimal
algebra. However, the meadow Enl⊥(Q(÷)) is minimal and so does qualify
as a data type for computation.

The general problem we are tackling is this:

Problem 1 For which totalisation methods applied to Q(÷) is there an
appropriate fracterm calculus that admits fracterm flattening?

3.2 Commutative Rings

Following [14, 13], to prepare for the common meadows we first apply the
general process of adding an absorbtive element ⊥ to a commutative ring R.
The ring is total so its operators will only change on the new element ⊥.
Thus, given any commutative ring R, we define the transformation Enl⊥(R)
to be the algebra that results from R by extending the domain by adding ⊥
as a constant and then extending all operations such that ⊥ is an absorptive
element of the new algebra.
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(x+ y) + z = x+ (y + z) (1)

x+ y = y + x (2)

x+ 0 = x (3)

x+ (−x) = 0 · x (4)

x · (y · z) = (x · y) · z (5)

x · y = y · x (6)

1 · x = x (7)

x · (y + z) = (x · y) + (x · z) (8)

−(−x) = x (9)

0 · x = 0 · (x · x) (10)

x+⊥ = ⊥ (11)

Table 1: Ewcr ,⊥: weakened equations for commutative rings

Already the properties of the commutative ring are compromised:
x · 0 = 0 can no longer hold as x · ⊥ = ⊥. However, this semantic construc-
tion can be axiomatised by the equations in Table 1. We take Theorem 2.1
from [13]:

Theorem 1 Given an equation t = r: Ewcr ,⊥ ` t = r if, and only if, for
every ring R, Enl⊥(R) |= t = r.

3.3 Common Meadows and Flattening

We have just added ⊥ to rings and given an equational axiomatisation of
the structures. Now we will add ÷ and totalise it with ⊥ to make common
meadows.

The common meadows have a number of equivalent equational axioma-
tisations as discussed in [13]. For our purposes, we choose to work with
fracterms and add the 6 equations of Table 2 to the equations from Table 1.
This gives an equational axiomatisation

Ewcm = Ewcr ,⊥ ∪ Effl .

This we refer to as the weak axiomatisation of the common meadows, or
the weak common fracterm calculus. We notice that following [9] fracterm



94 Jan A. Bergstra, John V. Tucker

x =
x

1
(12)

−x
y

=
−x
y

(13)

x

y
· u
v

=
x · u
y · v

(14)

x

y
+
u

v
=

(x · v) + (y · u)

y · v
(15)

x

(uv )
= x · v · v

u · v
(16)

⊥ =
1

0
(17)

Table 2: Effl : Equations for fracterm flattening

calculus results from its weak version by adding the equation 1
1+0·x = 1+0·x.

Below we will not make use of the latter axiom.

In [13], it was noted that the equations of Ewcm imply that fracterms
admit flattening.

Ewcm is logically equivalent to the earliest axiom system Mda for com-
mon meadows of [7]. In [9] it is shown that the equation 0 · (x · x) = x is
derivable from the other equations of Ewcr ,⊥ ∪ Effl . It has been included
as an axiom in view of the pleasant modularisation which is thus obtained,
especially Theorem 1 above.

3.4 Homomorphic Images

An arithmetical data type is simple if it has no proper non-trivial homo-
morphic images; thus, a homomorphism is either a constant function or
an epimorphism. (The same property is referred to as being final in the
abstract data type literature, but we prefer speaking of a simple structure
as that is closer to algebraic conventions.) For Enl⊥(Q(÷)) we will use the
following fact:

Proposition 1 Enl⊥(Q(÷)) is simple.

Proof: Suppose φ : Enl⊥(Q(÷))→ B is a surjective homomorphism with
a non-trivial image B. We will distinguish two cases.
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Case (i): For any a ∈ Z, let a be the corresponding numeral. Assume that
for two different fracterms a

b and c
d with a, c ∈ Z and b, d > 0,

b, d ∈ N , φ( a
b ) = φ( c

d). Let t ≡ a
b −

c
d and r ≡ c

d −
c
d then

Enl⊥(Q(÷)) |= t 6= 0 so that Enl⊥(Q(÷)) |= t
t = 1 and B |= t

t = 1.
Moreover, Enl⊥(Q(÷)) |= r = 0 and B |= t = a

b −
c
d = c

d −
c
d =

r = 0 so that B |= 1 = 0
0 = ⊥. Now Enl⊥(Q(÷)) |= x · ⊥ = ⊥ so

that B |= x · ⊥ = ⊥ and therefore B |= x = x · 1 = x · ⊥ = ⊥
which implies B is trivial, a contradiction which completes the
proof for case (i).

Case (ii): Assume that φ(⊥) = φ( a
b ) for some a ∈ Z, b ∈ N, b 6= 0. Now

we find that B |= ⊥ = ⊥ − ⊥ = a
b −

a
b = 0 so that for

B |= x = x + 0 = x + ⊥ = ⊥ with as a consequence that B is
trivial in case (ii) as well. �

4 Axioms Delivering Flattening

4.1 Extensions by Peripheral Elements

As we stated in the introduction, there are a number of semantic methods for
making division total in Q(÷). For example, as well as common meadows,
there are wheels [21, 16] and transreals [2, 20], both of which add more than
one peripheral elements. Our focus is on adding the absorbtive element ⊥
for division by zero. We isolate a general form of extension of Q(÷):

Definition 4 We say that a Σcm-algebra B is an extension of Q(÷) by
peripheral numbers if B contains Q and

(i) one of the new elements denotes the closed term 0 ÷ 0; this element
we denote ⊥;

(ii) all of the new elements are interpretations of closed Σcm-terms;

(iii) all closed Σcm-terms have an interpretation in B.

As implied by the assumption that algebra B has signature Σcm, we do
not make these new elements constants of B except ⊥ and we do not add
operations either.

Notice that (ii) and (iii) makes B a total minimal algebra and, in
particular, implies that ÷ is total on 0.
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4.2 Flattening in Extensions

The result in Section 3.3 that Ewcm = Ewcr ,⊥ ∪ Effl enables fracterm flat-
tening for all common meadows is theoretical fact whose importance grows
as we seek the fate of flattening for other totalisation methods. Our results
strengthen our theory of common meadows:

Proposition 2 Let B be a Σcm-algebra that is a total minimal extension
of Q(÷) by peripheral numbers. Suppose that B admits flattening. If B |=
Ewcr ,⊥ ∪ Effl then B ∼= Enl⊥(Q(÷)).

Proof: Let χ0 = {n÷n = 1 | n ∈ N,n > 0}. Because B is an enlargement
of Q(÷), B |= χ0. Now from combining results of [8, 7] and [13] we know
that Ewcr ,⊥ ∪χ0 is an initial algebra specification of the abstract data type
of Enl⊥(Q(÷)) so that B must be a homomorphic image of Enl⊥(Q(÷)).
As B is an enlargement of Q(÷) it is non-trivial, so that with Proposition 1
it follows that B ∼= Enl⊥(Q(÷)). �

We now dig into the axioms of Ewcr ,⊥ ∪ Effl that are at work:

Proposition 3 Let B be a Σcm-algebra that is a total minimal extension
of Q(÷) by peripheral numbers. Suppose that B admits flattening. If B
satisfies distribution equation 8 of Table 1, and the equations 14, 15 and 17
of Table 2, then B ∼= Enl⊥(Q(÷)).

Proof: Because of flattening each closed expression t equals in B an
expression r ÷ s with r and s closed and without division and without ⊥.
Because B is an enlargement of Q(÷), for some n ∈ Z and m ∈ N , r = n and
s = m in B. From this observation it follows that all (and only) peripheral
elements of B are interpretations of expressions n÷ 0 in B.

Lemma 1 For n 6= 0, we have

(i) B |= n÷ 0 = 1÷ 0

(ii) B |= 1÷ 0 = 0÷ 0

(iii) B |= 1÷ (1÷ 0) = 1÷ 0

(iv) B |= −(1÷ 0) = 1÷ 0
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Proof: We notice first that for n 6= 0: n÷ 0 = 1÷ 0 as follows: n÷ 0 =
(n · 1)÷ (n · 0) = (n÷n) · (1÷ 0) = (1÷ 1) · (1÷ 0) = (1 · 1)÷ (1 · 0) = 1÷ 0.

Next we will show (ii). Indeed: 1÷0 = (1 ·1)÷(1 ·0) = (1÷1) ·(1÷0) =
1 ·(1÷0) = ((1÷2)+(1÷2)) ·(1÷0) = ((1÷2) ·(1÷0))+((1÷2) ·(1÷0)) =
((1·1)÷(2·0))+((1·1)÷(2·0)) = (1÷0)+(1÷0) = ((1·0)+(0·1))÷(0·0) = 0÷0.
It is now immediate to prove that 1 ÷ 0 is absorptive for · and + with the
help of equations 14 and 15 which B both satisfies by assumption.

What remains to be done is to show that in B, 1÷ (1÷ 0) = 1÷ 0 (for
which we may not make use of equation 16) and −(1÷0) = 1÷0 (for which
equation 13 may not be used). Beginning with 1÷ (1÷ 0) = 1÷ 0, we can
show that in B, 1÷ (1÷0) = (1÷0) · (1÷ (1÷0)) from which it follows that
(in B) 1÷(1÷0) must be a peripheral element, i.e. equal to 1÷0. Calculating
in B we have: 1÷ (1÷ 0) = (1 · 1)÷ (1÷ 0) = (1 · 1)÷ ((1 · 1)÷ (1 · 0)) =
(1 · 1)÷ ((1÷ 1) · (1÷ 0)) = (1÷ (1÷ 1)) · (1÷ (1÷ 0))) = 1 · (1÷ (1÷ 0))) =
((1÷ 2) + (1÷ 2)) · (1÷ (1÷ 0)) = ((1÷ 2) · (1÷ (1÷ 0))) + ((1÷ 2) · (1÷
(1 ÷ 0))) = (1 ÷ (2 ÷ 0)) + (1 ÷ (2 ÷ 0)) = (1 ÷ (1 ÷ 0)) + (1 ÷ (1 ÷ 0)) =
(1 ·(1÷0))+((1÷0) ·1)÷((1÷0) ·(1÷0)) = (1÷0) ·(1÷(1÷0)). In order to
show that −(1÷0) = 1÷0 we notice that the fracterm flattening assumption
on B implies the existence terms p(x) and q(x) over the signature of rings
with variable x such that B |= −(1 ÷ x) = p ÷ q. In particular for all
non-zero integers n, B |= p(n) · n = −q(n). Viewed as polynomials over
the integers p(x) · x and −q(x) are the same for nonzero n so that they
must take the same value on all n so that q(0) = p(0) · 0 = 0 and therefore
B |= −(1÷ 0) = p(0)÷ 0 = 1÷ 0. �

With this lemma at hand we see that there is just one peripheral num-
ber in B which is its both own inverse and its own opposite. This number
is the interpretation of ⊥ = 0÷ 0. Now with help of equations 15 and 14 it
is immediate that ÷0 is absorptive. This concludes the proposition. �

Surprisingly, Proposition 3 can be strengthened further as follows:

Proposition 4 Let B be a Σcm-algebra that is a total minimal extension
of Q(÷) by peripheral numbers. Suppose that B admits flattening. If B
satisfies distribution equation 8 of Table 1, and the equations 14 and 17 of
Table 2, then B ∼= Enl⊥(Q(÷)).

Proof: Just as in the proof of Proposition 3 it follows that all (and only)
peripheral elements of B are interpretations of expressions n ÷ 0 in B. It
also follows in the same way that for n 6= 0: n ÷ 0 = 1 ÷ 0. Although we
have not yet obtained 1÷ 0 = 0÷ 0, it is now known that n÷ 0 can have at
most two different values: 0÷ 0 or 1÷ 0.
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By the flattening assumption there are expressions p ≡ p(x, y, u, v)
and q ≡ q(x, y, u, v) without ÷ and without ⊥, i.e., over the signature of
rings, such that B |= (x ÷ y) + (u ÷ v) = p ÷ q. With p̂ and q̂ we indicate
the multivariate polynomials denoted by p and q respectively. For these
polynomials the following holds, for all x, y, u, v ∈ Z:

y 6= 0 ∧ v 6= 0 ∧ q 6= 0→ ((x · v) + (y · u)) · q̂ = (y · v) · p̂.

We notice that q̂ cannot be zero on all argument tuples.

To see this notice that otherwise for all substitutions of x, y, z, u with
integer values p ÷ 0 with p taking an integer value. As has been noticed
above p÷ 0 can take at most two different values, and thus is would be the
case that (x÷ y) + (u÷ v) can take at most two different values on integer
arguments, which is clearly not true.

Thus, for all x, y, u, v ∈ Z:

(x · v · q̂) · ((x · v) + (y · u)) · q̂ = (x · v · q̂) · (y · v) · p̂.

Unique factorisation of integer polynomials over Z yields that for all
x, y, u, v ∈ Z:

((x · v) + (y · u)) · q̂ = (y · v) · p̂.

Using unique factorisation once more it follows that y ·v is a factor of q̂, and
that (x · v) + (y ·u) is a factor of p̂. From these factorisations it follows that
p̂(1, 0, 1, 0) = 0 and q̂(1, 0, 1, 0) = 0. Now consider the case x = 1, y = 0,
u = 1, v = 0. We know that B |= (1÷0)+(1÷0) = p(1, 0, 1, 0)÷q(1, 0, 1, 0)
and moreover B |= p(1, 0, 1, 0) = 0 (because p̂(1, 0, 1, 0) = 0) and B |=
q(1, 0, 1, 0) = 0 (because q̂(1, 0, 1, 0) = 0) so we find B |= (1÷ 0) + (1÷ 0) =
0 ÷ 0. With the latter information available the proof that 1 ÷ 0 = 0 ÷ 0
as given in the proof of Proposition 3 now works without the assumption
that B satisfies equation 15 of Table 2.

Again, it is immediate to prove that 1 ÷ 0 is absorptive for · (i.e.,
B |= (1÷0)·(n÷m) = 1÷0 with the help of equation 14). However, because
equation 15 is unavailable, it requires an additional argument to see that
B |= (1÷0)+(n÷m) = 1÷0. We will show that B |= (0÷0)+(n÷m) = 0÷0
which suffices.

Taking p and q as above we find that p̂(0, 0, n,m) = 0 because it has
(0 ·m) + (n · 0) as a factor, and that q̂(0, 0, n,m) = 0 because it has 0 ·m as
a factor. From these facts it follows that B |= p(0, 0, n,m)÷ q(0, 0, n,m) =
0÷ 0.
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What remains to be shown is that in B,

1÷ (1÷ 0) = 1÷ 0 and− (1÷ 0) = 1÷ 0.

The argument for−(1÷0) = 1÷0 is the same as in the proof of Proposition 3.

Regarding 1÷ (1÷ 0) = 1÷ 0, we will show that for no n,m ∈ Z with
m 6= 0 it is the case that B |= 1÷ (1÷0) = n÷m. Given that fact it follows
that B |= 1÷ (1÷ 0) = 1÷ 0 because 1÷ 0 is the unique peripheral element
of B. To see the impossibility of B |= 1÷ (1÷0) = n÷m for n,m ∈ Z with
m 6= 0 we consider once more the identity B |= (x÷y)+(u÷v) = p÷q. From
the above arguments we recall that (x·v)+(y·u) is a factor of p̂ from which it
follows that y occurs in P and that y ·v is a factor of q̂ from which it follows
that y occurs in q. Now consider the case x = 1, y = 1÷0, u = 0, v = 1, then

B |= 1÷ (1÷ 0) + (0÷ 1) = p(1, 1÷ 0, 0, 1)÷ q(1, 1÷ 0, 0, 1).

Because y occurs in p as well as in q we find, making use of the fact that
1 ÷ 0 (= 0 ÷ 0) is absorptive for addition and multiplication (which has
been established already above) that B |= p(1, 1 ÷ 0, 0, 1) = 1 ÷ 0 and
B |= q(1, 1÷0, 0, 1) = 1÷0. Therefore B |= p(1, 1÷0, 0, 1)÷q(1, 1÷0, 0, 1) =
(1÷0)÷(1÷0). Moreover: 1÷0 = (1 ·1)÷(1 ·0) = (1÷1) ·(1÷0) = 1 ·(1÷0)
and 1 ÷ 0 = (1 · 1) ÷ (0 · 1) = (1 ÷ 0) · (1 ÷ 1) = (1 ÷ 0) · 1 so that
(1÷0)÷ (1÷0) = ((1÷0)÷1) · (1÷ (1÷0)). With B |= 1÷ (1÷0) = n÷m
for m 6= 0 we find:

B |= n÷m = ((1÷ 0)÷ 1) · n÷m.

In order to see that this cannot be the case consider expressions r ≡
r(x) and s ≡ s(x) such that B |= (1 ÷ x) ÷ 1 = r ÷ s. We find that for all
x ∈ Z

x 6= 0 ∧ ŝ 6= 0→ r̂ · x = ŝ

which implies that for all x ∈ Z

x · ŝ · r̂ · x = x · ŝ · ŝ

It cannot be the case that for all x ∈ Z, ŝ(x) = 0 because then (1÷ x)÷ 1
takes only one value (1÷ 0) on integers x. Thus q is nonzero and by unique
factorisation for all x ∈ Z

r̂ · x = ŝ
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from which it follows that ŝ(0) = 0 so that B |= (1÷0)÷1 = r(0)÷0 = 1÷0
and then

B |= n÷m = (1÷ 0) · n÷m = 1÷ 0

which is a contradiction as B is an enlargement of Q(÷) which contains a
value for n÷m while 1÷ 0 is a peripheral number in B i.e. not an element
contained in Q(÷) already. �

Problem 2 Can Proposition 4 be improved by weakening or even removing
the assumption that B satisfies equation 14 of Table 2?

The other equation 17 in Proposition 4 is the defining equation,
0−1 = ⊥, for the peripheral ⊥.

5 On the Distribution Law

The condition that

B |= x · (y + z) = (x · y) + (x · z)

is an important equation of commutative rings that is preserved as equa-
tion 8 of Ewcr ,⊥. It plays a role in all the Propositions 2, 3, and 4. We will
show that it cannot be removed.

We will construct a minimal algebra B of signature Σcm with these
properties:

(i) B not isomorphic to Enl⊥(Q(÷));

(ii) B has flattening;

(iii) distribution of · over + fails.

To do this we take inspiration from wheels, which employ two periph-
eral numbers ∞ and ⊥ – see Section 6 below.

First, we consider an enlargement of Q(÷) by the single peripheral
number ∞̂ to make a partial data type B0 = Q(÷, ∞̂). The idea of ∞̂
is that

1÷ 0 = ∞̂ but 0÷ 0 is left undefined.

Note that there is no ⊥ in B0 but shortly we will make the counter-example
by setting B = Enl⊥(B0).
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Addition and multiplication are commutative, though partial, in B0.

In addition to 1÷ 0 = ∞̂, we have in partial algebra B0:

Partiality: 0 · ∞̂, ∞̂ · 0, 1÷ ∞̂ and ∞̂+ ∞̂ are undefined;

Inverse: −∞̂ = ∞̂;

For n,m ∈ Z with m 6= 0,

Division: (n÷m) + ∞̂ = ∞̂+ (n÷m) = ∞̂.

Multiplication: ∞̂ · ∞̂ = ∞̂, and (n÷m) · ∞̂ = ∞̂ · (n÷m) = ∞̂.

Now B = Enl⊥(B0), i.e, B = Q⊥(÷, ∞̂) = Enl⊥(Q(÷, ∞̂))) which is a total
minimal Σcm-algebra.

Proposition 5 The algebra Q⊥(÷, ∞̂) satisfies the axioms of Ewcr ,⊥ ∪Effl

with exception of distribution of · over + (equation 8), but it is not isomor-
phic to Enl⊥(Q(÷)).

Proof: By inspection of the various equations one may easily confirm the
algebra satisfies the equations of Ewcr ,⊥∪Effl with exception of distribution.
Distribution fails because:

(1 + 1) · ∞̂ = 2 · ∞̂ = ∞̂ but 1 · ∞̂+ 1 · ∞̂ = ∞̂+ ∞̂ = ⊥

The algebras are not isomorphic because equations are preserved by homo-
morphisms and distribution is not preserved. �

It follows that Q⊥(÷, ∞̂) is a minimal and total enlargement of Q(÷),
the fracterm calculus of which allows fracterm flattening, which implies the
necessity of distributivity for Propositions 2, 3 and 4.

The structure Q⊥(÷, ∞̂) we made is a modification of the wheel of
rationals: we set 1 ÷ ∞̂ = ⊥ instead of 1 ÷ ∞ = 0 as in wheels. The
structure allows fracterm flattening but for wheels this is not the case.

6 The Wheel of Rational Numbers Does Not
Allow Fracterm Flattening

Semantically, a wheel is an arithmetical structure containing an unsigned∞
and a ⊥ in which

1

0
=∞ and

1

∞
= 0.

Wheels have an established algebraic theory [21, 16] and, in particular,
the wheel of rational numbers has an equational specification under initial
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algebra semantics [12]. We will show that the wheel of rational numbers
does not have flattening.

To see this we will use the following Proposition:

Proposition 6 In a wheel (with 0 6= 1) each expression p(x) which does
not contain division, and no occurrences of variables different from x, and
in which x actually occurs has the property that p(∞) =∞ or p(∞) = ⊥.

Proof: With induction on the structure of P , for the constants 0 and 1
the required implication holds because the premise is false, there is no oc-
currence of x in a constant. For non-constant terms there are three cases.

If p(∞) = ∞ then −p(∞) = −∞ = ∞ according to the design of a
wheel.

If p(∞) = ⊥ then −p(∞) = −⊥ = ⊥ because ⊥ is absorptive.

Thirdly, let p ≡ r + s, if r (∞) = ⊥ or s(∞) = ⊥ then p(∞) = ⊥,
if r(∞) = s(∞) = ∞ then p(∞) = ∞ + ∞ = ⊥. Finally if p ≡ r · s,
if r (∞) = ⊥ or s(∞) = ⊥ then p(∞) = ⊥, if r(∞) = s(∞) = ∞ then
p(∞) =∞ ·∞ =∞. �

Proposition 7 There are no expressions p and q over the signature of com-
mutative rings such that 1 + (1÷ x) = p÷ q in a wheel of rationals.

Proof: Assume that expressions p and q over the signature of rings exist
such that

1 + (1÷ x) = p÷ q

in a wheel of rationals. We will derive a contradiction from this assumption.

Clearly p and q need not contain any variable different from x. Further
p ÷ q is not a closed term, there must be at least one occurrence of x in
either p or in q. If q contains no occurrence of x (so that q ≡ q(0)) the only
way in which 1 + (1÷ 0) = p(0)÷ q can hold is by having q = 0, which then
fails on choosing x = 1. So we know that x has an occurrence in q because
1 + (1÷ 1) = p(1)÷ 0 cannot hold in a wheel for any value of p(1).

Suppose that x does not occur in p, then choosing x = ∞ we know
that 1 = 1+0 = 1+(1÷∞) = p÷q(∞). Now using Proposition 6 there are
two cases: if q(∞) = ⊥ then p÷ q(∞) = ⊥ 6= 1, and otherwise if q(∞) = ⊥
then one uses the fact that there is no possible value for p in a wheel so that
1 = p÷∞.
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Now, in a wheel ∞÷∞ = ⊥ and from this it follows, that x cannot
occur both in p and in q. Indeed otherwise, by once more using Proposi-
tion 6, there are two cases for p(∞) and two cases for q(∞) and in each of
the resulting four cases 1 = 1 + (1÷∞) = p(∞)÷ q(∞) = ⊥. �

7 Concluding Remarks

7.1 The Research Programme

The origin of fracterm flattening is the simplification of numerical fractions
in school arithmetic – a tricky topic for young pupils and the subject of
educational research (e.g., [18]). We take an interest in the formal details
of these matters, under the assumption that investigating the details of
arithmetic with division can be simplified by working with total functions.
This, in turn, involves our peripheral numbers, i.e., values which do not
qualify as conventional numbers.

It has long been known from computer arithmetics that adding pe-
ripheral numbers to make data types total causes familiar arithmetical laws
to fail. We have embarked on a programme to explore how they can be
controlled and axiomatised by equations. To date, we have explored and
mapped some of the basic algebra and logic of computing with peripheral
elements. Focussed by computing with the rational numbers, our agenda
has included:

(i) axiomatisations by equations and conditional equations;

(ii) initial algebra specifications of data types of rational numbers;

(iii) logical issues of independence, completeness, and incompleteness;

(iv) the semantics of equality for partial terms;

(v) calculating with fractions as a theory of terms;

(vi) new methods of specifying data types with partial operators.

Starting in 2007, together with several colleagues, we have analysed in some
detail four semantic options for the totalisation of division: involutive mead-
ows [10], common meadows [9], wheels [12] and transreals [11].

This paper addresses the question when precisely fracterms can be
flattened. It was shown in [6] that flattening fails if 1/0 = 0 is adopted,
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which implies that flattening requires the presence of peripheral numbers.
Following [5], flattening of fracterms fails in complicated arithmetical data
types involving a plurality of peripheral numbers including signed infinities
∞,−∞.

Whilst using no peripheral numbers or a single absorbtive peripheral
number ⊥ leads to rather stable general semantical theories, in the course of
this paper we have seen that adding just two peripheral numbers ⊥ and ∞
complicates the semantic options and changes their algebraic consequences.
Crudely speaking, we have seen that on adding ⊥ and ∞, if we choose
1÷∞ = 0, as in wheels (Proposition 7), then flattening fails for fracterms,
whereas if we choose 1÷∞ = ⊥ then flattening is possible (Proposition 5).

We notice that different views on the proper nature of algebraic sim-
plification exist. For instance, in [22], it is argued that simplifying x/x
can lead to 1 under the side condition that x 6= 0 thereby preventing an
undesired extension of the domain. More generally, [22] claims that simpli-
fication of expressions should preferably not be treated in terms of equality
alone. Undeniably our notion of fracterm flattening is highly specific for
equational logic.

We have been able to find reasonably limiting conditions under which
fracterm flattening can be done. We found that common meadows as pro-
posed in [7] provide the most plausible option for fracterm flattening, though
not the only option.

The work on fracterm calculus in this paper is focused on particu-
lar arithmetical data types and thereby it complements preceding work
in [7, 9, 13] taking the axioms for fracterm calculus as an equational the-
ory amenable to proof theory and model theory, with a focus on classes of
models rather than on particular models.

7.2 Options for Future Work

As to future work, we notice that the results of this paper are not yet best
possible. Problem 2 leaves open various options for improving upon the
results obtained above. However, even without solving Problem 2, we see
fracterm flattening as a desirable feature for any fracterm calculus. For
that reason, we see the above results as providing an intrinsic motivation
for work on the common meadow of rational numbers, which comes close to
being the most plausible arithmetical datatype admitting fracterm flatten-
ing, and for work on the model theory and proof theory of the corresponding
fracterm calculus.
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Regarding fracterm calculus, three open problems stand out. An open
issue is whether or not its equational axioms can be represented by means
of a complete term rewriting system. A weak negative result on that matter
was obtained in [8]. A second open question concerns the axiomatisation of
conditional equations that hold in the common meadows of rationals. An
initial result is reported in [13] where it is established that the equational
axioms of fracterm calculus cannot be taken for an axiomatisation of the
relevant conditional equations. We notice that in the case of involutive
meadows (i.e., working with 1/0 = 0, see [1] for historical information on
that proposal and [3] for a brief survey) the situation differs, because in
the case of involutive meadows the equational theory also axiomatises the
relevant conditional equations. Finally, the decidability of the equational
theory of the common meadow Enl⊥(Q(÷)) is unknown.

These three open problems on fracterm calculus seem to be quite dif-
ficult. Perhaps less demanding challenges are options for further work too,
we mention:

(i) axiomatizing ordered, or rather signed, common meadows and revis-
iting flattening in the presence of a sign function;

(ii) reworking axioms of probability in the context of the common meadow
Enl⊥(Q(÷)), i.e., extending fracterm calculus with probability mass
functions;

(iii) characterising the finite models of Ewcm, a question which was settled
for involutive meadows in [15], a model of Ewcm with 12 elements is
described in detail in [8];

(iv) extending fracterm calculus with various forms of conditional
operators.
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