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Abstract 10 

With the development of experimental measurement technology and high-fidelity numerical 11 

simulations of granular materials, empirical-based classical constitutive models may not be able to 12 

take full advantage of the rapidly increasing available datasets. Machine learning-based models 13 

can inherently avoid phenomenological assumptions to directly learn the constitutive relationship 14 

from the datasets, and the trained model is sufficiently flexible to be reconstructed once new 15 

training samples are added. In this work, a coupled finite element method and machine learning 16 

(FEM-ML) computational framework is proposed for simulating granular materials. Gaussian 17 

process-based random loading paths and coupled FEM-DEM simulations are used to generate 18 

training samples. A parametrisation of the material deformation history is used to represent the 19 

historical influence of granular materials. An uncertainty-level based active learning is utilised to 20 

evaluate the informativeness of data points for network training and then to establish an effective 21 

resampling scheme from a massive dataset. Two examples are provided to show the applicability 22 

of the implemented FEM-ML framework. The performance of the proposed framework is also 23 

evaluated, the error is systematically analysed, and possible improvements are discussed. The 24 

results demonstrate that the FEM-ML framework offers considerable improvements in terms of 25 

computational efficiency and competence to simulate the mechanical responses of granular 26 

materials. 27 
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1 Introduction 28 

Granular materials such as gravel, sand, and powders are ubiquitous in industry and geotechnical 29 

applications, and they are considered to be the second most abundant material on Earth after fluids 30 

[1]. The discrete nature of granular materials and dissipative interactions among particles give rise 31 

to a rich and complex bulk behaviour, making them differ significantly from solids, liquids, and 32 

gases. The complexity of granular media can be partially attributed to its unique features, such as 33 

inherent anisotropy and heterogeneity [2, 3], pressure and rate-dependence [4–6], continuous 34 

evolving microstructure and complicated strain localisation phenomenon within unstable granular 35 

materials [7–11]. Accurately reproducing the mechanical behaviour of granular materials subject 36 

to various external loads through mathematical equations is intricate but crucial for engineering-37 

scale numerical simulations.  38 

 39 

In general, the mechanical behaviour of history-dependent granular materials has been described 40 

by empirical constitutive laws formulated within continuum thermodynamics and elastoplastic 41 

theory. Internal variables characterise the material state according to phenomenological 42 

assumptions. Advancements in micro-mechanical simulations and the internal fabric statistical 43 

description [12–15] have inspired physics-based internal variables that encapsulate the micro-44 

structure and motivated the bottom-up mathematical modelling of granular materials by linking 45 

contact fabric tensor to macro-mechanical responses [6, 15–18]. Nearly in parallel, another class 46 

of bottom-up modelling approaches, the hierarchical multi-scale modelling, which directly bridges 47 

the macroscopic response of granular materials and the macroscopic boundary conditions [19–24], 48 

has also been developed due to computer hardware development. In the framework of hierarchical 49 

multi-scale modelling, the models of two scales are solved concurrently, and the results are 50 

exchanged on-the-fly. Both the two conventional modelling paradigms have achieved quite a 51 

success. 52 

 53 

However, there are still considerable challenges in the way of their further progress. For the 54 

mathematical-based phenomenal approach, uncertainty arises due to the imperfect knowledge of 55 

the functional form of the constitutive laws and the parameter calibration is subject to the 56 
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increasing complexity. On the other hand, the classical hierarchical multi-scale computation is 57 

indecently time-consuming because a large number of lower-scale simulations are concurrently 58 

required during the computation of a macroscopic model. 59 

 60 

In addition to the continuum mechanics modelling and hierarchical multi-scale modelling, the use 61 

of neural-network-based constitutive models can be traced back to the 1990s and the beginning of 62 

the 21st century [25–29]. Data-science-based model is a general term used for the recently arising 63 

new modelling method related to massive datasets, statistics, machine learning and data mining. 64 

Some related work in the fields of computational mechanics, geomechanics and geotechnical 65 

engineering can be found in recent reviews [30–34] and references therein. 66 

 67 

In the case of the surrogate model constructed by the neural network, [27, 35–41], material 68 

informatics uses database techniques to identify parameter correlations and then uses machine-69 

learning regression techniques to provide the quantitative predictive model. Due to the powerful 70 

high-dimensional mapping capability of the neural network, this method can reproduce the 71 

constitutive response of materials more precisely than the traditional mathematical based models, 72 

provided that sufficient data is available. For hierarchical multi-scale computation, a promising 73 

application of the neural network-based approach is to accelerate multi-scale mechanical 74 

calculations because of the higher computational efficiency over the conventional framework [37, 75 

42, 43]. 76 

 77 

Unlike the regression-based modelling approach, another kind of data-driven method directly 78 

chooses the samples which best satisfy the compatibility and equilibrium constraints from the 79 

prepared database composed of strain stress pairs [44–47]. Instead of calibrating the parameters of 80 

the pre-constructed model through the datasets, this pure data-based method, which is solely based 81 

on the datasets, transforms the solution problem into a minimum distance optimisation, further 82 

avoiding the errors associated with the regression process, and almost wholly reproduces the 83 

results of the conventional multi-scale method. However, the particularity and computational 84 

efficiency of this ad hoc method may hinder its further development. 85 

 86 
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History dependence, fundamentally the intrinsic characteristic of granular materials [48], is 87 

another challenge for the data-driven modelling of granular materials. Internal variables based on 88 

plasticity mechanics approaches are often used to describe the historical state of the material in 89 

traditional elastoplastic constitutive models.  90 

 91 

In the data-driven modelling work, some scholars use RNN (recurrent neural networks) to deal 92 

with the material history dependence and their works have demonstrated that stress-strain 93 

responses of granular materials can be predicted satisfactorily in certain stress-strain spaces [37, 94 

38, 49–52]. However, the training is normally quite time-consuming as this model is not suitable 95 

for GPU parallel training because of its inherent sequential nature. Additionally, using different 96 

step sizes not included in the training samples will deteriorate the computational stability once the 97 

model is employed in boundary value problems [49, 50]. Due to the development of granular 98 

material simulation and the emergence of internal fabric description methods, some scholars use 99 

energy-based variables or fabric tensors to calibrate the current state of granular materials [46, 47]. 100 

This approach requires encoding the loading history of the material as the describer of the current 101 

state with as few parameters as possible, but how to take the sequence of macroscopic information 102 

(e.g. strain, stress, etc.) and encode it into historical state variables is again a tricky problem. Also, 103 

some preceding work attempts to discover some parameters to encode the history strain-stress path 104 

experienced by materials. In one example [39], the accumulation of the absolute values of the 105 

strain increments is used to uniquely represent the history state and appears to perform well in 106 

boundary value problem simulations. 107 

 108 

The tangent operator of the strain-stress relation is necessary for the nonlinear iteration using the 109 

Newton-Raphson method in FEM simulations. In contrast to the FEM simulation of continuous 110 

materials, the particle simulation of granular materials, such as DEM (discrete element method), 111 

exhibits a random nature. The stress-strain curve can rise and drop sharply after entering the 112 

plastic regime, so the Jacobians of the network computed stress to the input strain cannot represent 113 

a proper tangent operator of the material. The approach that uses the perturbation method to 114 

numerically compute the Jacobian performs poorly in nonlinear iteration [22]. Therefore, the 115 

partial derivative tangent operator [28, 37] used for continuous materials may not work well for 116 
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granular materials. A viable solution, to be introduced in Section 3, is to replace the tangent matrix 117 

with a scant matrix in the non-linear iteration. 118 

 119 

This work aims to propose a neural-network-based constitutive model as the surrogate model that 120 

directly learns the multi-scale mechanical relationship from the raw data collected from the 121 

consistent FEM-DEM multi-scale simulation. This model can be integrated into the FEM program 122 

with minimal intrusion and is considerably more computationally efficient than the classical multi-123 

scale procedure. The history effect of the strain-stress relationship is considered by an internal 124 

variable-based parameterisation. The secant matrix is adopted to replace the Jacobian operator in 125 

the nonlinear iteration. 126 

 127 

The rest of the paper is organised as follows. We first introduce the FEM-DEM framework in 128 

Section 2, followed by the description of the neural network-based constitutive model, a self-129 

consistent sampling method, a general procedure of the uncertainty level-based active learning 130 

method and the model training process in Section 3. We first present the baseline numerical 131 

simulation of a biaxial compression problem to validate our implemented framework in Section 4. 132 

This is subsequently employed in a retaining wall simulation to evaluate its generalisability. The 133 

advantages and disadvantages of the FEM-ML framework and possible further improvements are 134 

summarised in the conclusion. 135 

 136 

2 Multi-scale FEM-DEM framework 137 

The multi-scale FEM-DEM framework for solving a granular problem consists of two main parts: 138 

(1) macro model which is implemented in FEM; (2) representative volume element (RVE) which 139 

is concurrently simulated through DEM. The main procedures in the FEM-DEM framework are 140 

shown in Figure 1. 141 
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 142 

Figure 1 Flow chart of the FEM-DEM multiscale scheme 143 

 144 

2.1 Macro model 145 

Governing equation. In the FEM solver, the nodal displacements are solved as the basic unknown 146 

quantity constrained by the equilibrium equation and the compatible condition. Without 147 

considering the body force, the macro equilibrium is governed by: 148 

 
0    in     Ω

on  Ω

  =


 = 

σ

n σ t     
 (1) 149 

where  σ  is the gradient of the stress tensor, n  is the unit vector of the outer normal of the 150 

boundary, t  is the boundary traction, and Ω  and Ω  are the domain and the boundary of the 151 

macro model, respectively. The governing equation can be written in the weak form as: 152 

 
Ω

dΩ 0 = ω σ  (2) 153 

where ω  is the test function that is often chosen as the shape function in the Galerkin method. 154 

 155 

Discretisation. The domain is discretised into elements where the shape functions N  are defined. 156 

With integration by parts and some routine operations, Eq. (2) is changed to: 157 

 
Ω Ω

dΓ dΩT Tt


− = N B σ 0   (3) 158 

where ( )T=  +B N N . Or simply as: 159 
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with the external traction vector 
Ω

dΓT


= T N t  and the internal force vector 

Ω
dΩT= F B σ . 162 

 163 

Nonlinear solution. Due to the plasticity of granular materials, nonlinear iteration should be 164 

introduced to obtain the solution. For a given initial solution 0u , the internal force F  as a 165 

function of the solution u  can be approximated as 166 

 ( ) ( )0 Δ= +F u F u K u  (5) 167 

where ( )0 0
Ω

dΩT= F u B σ , and K  is the stiffness matrix with a general expression: 168 

 
Ω

dΩT= K BDB   (6) 169 

where the matrix D  depends on the material constitutive model used. Then the displacement 170 

increment Δu  can be obtained by solving 171 

 Δ ( )=K u R u   (7) 172 

where ( ) = −R u T F is the residual force vector of the macro model. 173 

 174 

The matrix D  can be a tangent or secant operator, depending on which solution procedure is used, 175 

but the former may lead to a faster convergent rate. In the Newton-Raphson method, the tangent 176 

operator D  is needed to construct the tangential element stiffness matrix in order to achieve a 2nd 177 

order convergence. In multi-scale calculations, the perturbation method [21] is often used to 178 

calculate D . In Guo’s FEM-DEM framework [53], an approximate secant elastic matrix is used. 179 

 180 

2.2 Micro model 181 

In the FEM-DEM framework, a particle assembly solved by DEM serves as the RVE at each 182 

Gauss point to capture the local material responses. The RVE used in the current work has 500 183 

particles with their diameters uniformly distributed from 0.006 to 0.014. This particle number is 184 

chosen without conducting a convergence test in terms of accuracy for the RVE but is in line with 185 

some previous studies. For instance in [22], 400 particles are used in the RVE which seems 186 

sufficient to reproduce the homogenisation of the contact fabric tensor at the initial state. More 187 

importantly, because the accuracy of the FEM-DEM framework is not the main concern, but rather 188 

the machine-learning representation effectiveness of the FEM-DEM model, so choosing a 189 
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reasonably large number of particles for each RVE should suffice. The boundary condition 190 

(deformation) for each RVE is imposed based on the macro strain  obtained at the Gauss point 191 

by the macro FEM solver. Then the corresponding stress σ  and matrix D  are derived from the 192 

RVE via DEM and passed to the FEM solver to update the macro solution.  193 

 194 

The periodic boundary and Hertz’s contact model are employed in the DEM simulation. The 195 

normal and tangential contact forces between two contacting particles are calculated as: 196 

 

c
n n n

c
t t t

k

k

 =


=

f u

f u
  (8) 197 

where c
nu  and c

tu  are the relative normal and tangential displacement vectors between the two 198 

particles; and nk  and nk  are the normal and tangential stiffness respectively and defined by 199 
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= −


 =
 −

 (9) 200 

where G  and   are the shear modulus and Poisson’s ratio of the particle material respectively; 201 

the relative normal displacement is commonly referred to as the overlapping of the two particles; 202 

( ) ( )1 2 1 22 /r r r r r = +  is the equivalent radius of the particles with 1r  and 2r  being their radii.  203 

 204 

In the multi-scale simulation, the contact forces in an RVE should be transformed into the average 205 

stress tensor. The homogenised stress tensor of the particle assembly is calculated as [54–56]: 206 

 ( )
1

1

2

cN
c c c c

cV =

=   +σ f d d f   (10) 207 

where V  is the total volume of the particle assembly, cN  is the total number of contacts within 208 

the volume, f  and d  are the contact force vector and the branch vector connecting the centres of 209 

the two contacted particles, respectively.  210 

 211 

In the FEM-DEM framework, the matrix D  is statistically approximated from the contacts and 212 

homogenised elastic modulus of the particle assembly. The analytical form based on the 213 

assumption of a uniform strain field is given by [57]: 214 
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1

1
( )

cN
c c c c c c c c

n t
c

k k
V =

=     +   D n d n f t d t d   (11) 215 

where cn  and ct  are unit normal and tangential directions of contact c , respectively. 216 

 217 

2.3 FEM-DEM coupling method 218 

The algorithmic procedures of the coupled FEM-DEM solver is given in Algorithm 1. The multi-219 

scale coupling method can reproduce the micro-scale mechanical property of granular materials at 220 

the macro scale, as macro strain and micro-scale material response obtained from the RVE 221 

simulation are fully exchanged at the Gauss points. However, a large number of DEM simulations 222 

are required which makes this simulation considerably time-consuming [53, 58]. Most of the 223 

computational time is spent on evaluating the micro DEM model for each Gauss point of the 224 

macro model. In addition, there is a large amount of statistical data generated in this simulation, 225 

including sequences of stress, strain, pore ratio, fabric information, and even the details of the 226 

particle packings at every iteration step. It seems that these datasets are underutilised, and most of 227 

them are discarded after the concurrent simulation. 228 

 229 

The machine learning method can be employed to take full advantage of the intermediate data 230 

generated in the concurrent computations and substantially accelerate the multi-scale computation. 231 

The rest of the paper is dedicated to developing a neural network-based constitutive model that 232 

serves as an efficient surrogate for the concurrent DEM simulation.   233 
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 234 

Algorithm 1 The FEM-DEM solver 

Given: Discretised FEM model, and initialised RVE packings (0)  

  ( ) ( )(0) (0) (0) (0), ,=σ D φ                        Initialise the stress and matrix D  

  For 1,2, ,n N=   do                                              Loading step 

    Apply the boundary condition at step n  to the FEM model 

    Set 0m = , 1ue =  

    Get ( , )Δ n m
u  by solving Eq. (7) 

    While u tole e  do                                         Nonlinear iteration 

      Compute the strain increment ( , )Δ Δ n m= B u  

      Apply Δ  to the RVE packing ( , )n m  

      Evaluate ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ), ,n m n m n m n m n m=σ D φε  

      Update ( , )n m
R and ( , )n m

K  based on ( )( , ) ( , ), ˆˆ n m n m
σ D  using Eqs. (5) and (6) 

      Get Δu  by solving Eq. (7) 

      Update ( , ) ( , 1)Δ Δ Δn m n m−= +u u u  

      Compute the error ( , 1) ||| Δ || / || |Δ n m
ue −= u u   

      1m m= +  

    end While 

Update 
( ) ( 1) ( , ) ( ) ( , ) ( ) ( , )Δ , ,n n n m n n m n n m−= + = =u u u σ σ D D  

  end For 

 235 

3 The neural network-based constitutive model 236 

3.1 Surrogate micro model constructed by neural network 237 

Classical constitutive models are mainly developed based on some phenomenological assumptions. 238 

It is generally sufficient to use a small set of experimental data to calibrate the parameters in the 239 

model. However, due to the improvement of observation and simulation techniques, these 240 

constitutive models may become inadequate to incorporate rapidly increasing high-quality data. 241 

Unlike conventional constitutive models, machine learning models directly mine constitutive 242 

relationships from data, almost without making any assumptions, since neural network models are 243 

sufficiently sophisticated to reproduce various mechanical behaviours of the material [29, 59]. 244 

 245 

In the FEM-DEM simulation, the particle assembly attached to each Gauss point is saved in the 246 
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computer RAM for the next loading step to reproduce the history-dependent effect of the granular 247 

material, which is also the inherent reason for its huge memory cost. One of the central challenges 248 

of the machine learning model is to characterise a general loading history with as few variables as 249 

possible. As the network-based model will no longer gain access to the particle assembly, proper 250 

internal variables should be included to account for the history-dependent (plastic) state of 251 

granular materials in the FEM-ML framework. However, it is hard to explicitly calibrate the 252 

plastic state, such as plastic work and yield surface, since they cannot be easily derived from the 253 

macro DEM simulated results (i.e. strain, stress, void ratio).  254 

 255 

Unlike traditional internal variables, the history variables used for machine learning can have no 256 

physical meaning and can be merely used to quantify the historical influence or sequence order. 257 

Thus, they only need to possess some very basic mathematical properties, such as monotonicity. In 258 

this work, the accumulation of the absolute strain increments: 259 

 ( ) ( )| Δ |
n

i

n i= φ  (12) 260 

which is conveniently available and interpretable, is used as the history variable. Subsequently, the 261 

constitutive relationship to be obtained can be expressed as 262 

 ( )( ) ( ) ( )( , ) 1ˆ ,...,n n n n N= =σ φ  (13) 263 

where  denotes a multi-layer fully connected neural network, the superscript n  represents 264 

the sample number and N  is the total number of training samples. Then the prediction error is 265 

measured by the MSE (mean square error) as: 266 

 ( ) ( ) 21
ˆ

N
n n

n

err
N

=  −σ σ   (14) 267 

Our experiments show that using the accumulation of the absolute strain increments defined in Eq. 268 

(12) as the internal variable seems to be able to encode the unique stress-strain historical state of 269 

materials and that the trained network can effectively capture the path-dependent behaviour of 270 

granular assemblies.  271 

 272 

In the FEM-DEM framework, the approximated secant matrix is used as the stiffness matrix 273 

which is derived from the fabric of the particle assembly (i.e. Eq. (11)), parallel with the stress and 274 

other state variables. The requirement of some specific micro-scale information in FEM-DEM 275 
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calculation, such as the configuration and dynamic properties of the assembly, will demand much 276 

greater computational time and memory resources, dramatically slowing down the multi-scale 277 

scheme. There are various features (such as stress, strain, void ratio, and fabric information) 278 

generated at every time step in the whole FEM-DEM simulation. However, only necessary 279 

features should be involved in machine learning to calculate the operator D . Simplifying and 280 

encapsulating these features into simple pairs as ( ), , ,φ D  will alleviate difficulties in the 281 

network training and accelerate the computation. 282 

 283 

There are mainly two ways to represent the operator D  for the nonlinear iteration in a machine 284 

learning scheme: (1) tangent operator, and (2) secant operator. The tangent operator will be ideal 285 

for the Newton-Raphson solution of the nonlinear problem if the stress-strain function is 286 

sufficiently smooth and differentiable. In machine learning-based work, some computations for 287 

continuous media use the AD (Automatic Differentiation) in Tensorflow [60] to obtain 




σ
D =

ε
 288 

[28, 35–37] or the automatic differentiation tool AceGen [61] to directly update the stiffness 289 

matrix via 


=


R
K

u
 [62]. 290 

 291 

Unfortunately, the stress-strain curves extracted from granular material simulations fluctuate 292 

dramatically, as shown in Figure 2. The network is trained to capture the main trend of these 293 

characteristics but is not intelligent enough to distinguish the valuable constitutive relationship 294 

from the fluctuations. Thus, the tangent operator calculated via the auto-differentiation may 295 

change sharply and largely deviate from the right direction, which will adversely affect the 296 

computational stability.  297 

 298 



13 

 

Figure 2: Schematic of the approximate secant matrix and the tangent matrix 299 

 300 

The secant matrix can be approximated via Eq. (11) since the contact details in a particle assembly 301 

are available in DEM simulation. It is also theoretically available via the machine learning as 302 

strain  and history variable φ  are both input variables. Therefore, in consideration of the 303 

computational stability, the approximate secant operator together with the stress is adopted via the 304 

 to complete the nonlinear iteration: 305 

 ( ) ( ) ( ) ( )( , ) ( , )ˆˆ n n n n=σ D φ  (15) 306 

 307 

3.2 Procedures of the multi-scale coupling method 308 

The procedure of the FEM-ML framework is outlined in Algorithm 2. There are no particle 309 

assemblies that need to be initialised and updated since the neural network will directly calculate 310 

the stress and the secant operator after the strain and history variables are fed into the trained 311 

network. Note that the only physical parameter involved in our neural network-based constitutive 312 

model is the particle-scale Hertz contact law for discrete element modelling of granular materials. 313 

There are no other phenomenological constitutive models involved in the FEM-ML modelling. 314 

  315 
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 316 

Algorithm 2 The FEM-ML solver 

Given: Discretised FEM model, and well-trained neural network  

  ( ) ( )(0) (0) (0) (0)ˆˆ , ,=σ D φ                       Initialise the stress and matrix D  

  For 1,2, ,n N=   do                                              Loading step 

    Apply the boundary condition at step n  to the FEM model 

    Set 0m = , 1ue =  

    Get ( , )Δ n m
u  by solving Eq. (7) with ( 1) ( 1), ˆˆ n n− −

σ D   

    While u tole e  do                                         Nonlinear iteration 

      Compute ( , ) ( 1) ( , )Δn m n n m−= + B u   

      Evaluate ( ) ( )( , ) ( , ) ( , ) ( 1)ˆˆ , ,n m n m n m n−=σ D φ   

      Obtain ( , )n mR and ( , )n mK  from ( )( , ) ( , ), ˆˆ n m n mD  via Eqs. (5) and (6) 

      Get ( , )Δ n m
u  by solving Eq. (7) 

      Calculate ( , ) ( , 1) ( , 1)|| |||| Δ Δ / || Δn m n m n m
ue − −= −u u u   

      1m m= +  

    end While 

Update 
( ) ( 1) ( , ) ( ) ( , ) ( ) ( , )Δ ,  ,  n n n m n n m n n m−= + = =u u u σ σ D D  

  end for 

 317 

3.3 Network architecture 318 

Most of the work in machine learning, especially deep learning, uses fairly complex network 319 

structures [37, 38, 49, 63], while traditional phenomenological constitutive models of granular 320 

materials generally use around ten parameters to approximately describe the stress-strain 321 

relationships. As shown in [64], PINNs (Physics-constrained neural networks) constructed by 322 

parsimonious networks can exhibit fairly good prediction accuracy. Using simpler networks can 323 

also largely reduce the number of parameters involved. Additionally, we found that simple neural 324 

networks are more conducive to computational stability, which may be related to the fact that the 325 

predicted values given by a simple network tend to be smoother. By considering the simplicity of 326 

deployment, computational stability and efficiency, a simple multilayer fully connected network is 327 

chosen in our work to be integrated with FEM calculation, with the expense of slightly lower 328 

training accuracy. 329 

 330 
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Figure 3 shows the neural network used, which is composed of two fully connected hidden layers, 331 

each having 40 neural nodes (or neurons). The ReLU (Rectified Linear Unit) activation function is 332 

adopted except for the output layer (without activation function). The input layer includes the 333 

current strain and history variables, and the output layer produces the corresponding stress and D  334 

matrix. The Adam algorithm (with lr =1e-3, betas =(0.9, 0.999), eps =1e-8, _ ecayweight d =0) is 335 

employed to optimise the weights and biases in the training process. PyTorch is used to implement 336 

the neural network. Note that no attempt has been made to optimise the network in terms of the 337 

number of hidden layers and neurons in each layer. 338 

 339 

Figure 3: Architecture, input and output features of the neural network  340 

3.4 Sampling 341 

In general, machine learning models are good interpolators but often do not perform well for 342 

extrapolation. To develop a machine-learning-based constitutive model suitable for a wide range 343 

of strain paths, one solution is to accommodate as many strain-stress pairs as possible, so that all 344 

the “extrapolation” become “interpolation”. This, however, imposes two challenges. Firstly, it will 345 

be extremely challenging to generate sufficient training datasets to fully cover all the possible 346 

strain-stress paths for a certain type of granular material. The task becomes practically impossible 347 

when further considering all possible loading-unloading combinations. This is a sharp contrast to 348 

the conventional constitutive model where the model parameters can be calibrated by a relatively 349 

small number of conventional triaxial tests in geomechanics. Secondly, the presence of a large 350 

number of datasets is also a challenge for the training of neural networks—a large number of 351 

datasets demand expensive computational costs. Thus, it is important to utilise any useful 352 

condition to increase the effectiveness of the training dataset, leading to the reduction of sampling 353 

and training costs. 354 

 355 
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For homogeneous materials, some symmetric properties can be exploited for reducing material 356 

sampling requirements in the data-driven paradigm [39, 44]. For instance, both strain and stress 357 

tensors at any data point pair can be mapped to their principal components via a proper rotation. 358 

With this principal space mapping, the dimensions of the strain/stress sampling space are reduced 359 

from six to three [39, 63]. In Tang’s work [65–67] the 3D sampling space is further reduced to a 360 

1D space. Note, however, that for granular materials, the strain and stress matrix may not be 361 

simply mapped to the principal space because the principal directions of the strain and stress start 362 

to deviate since plasticity (or non-affine deformation) emerges [8, 68]. This non-coaxial issue is 363 

considered in our work by casting all components of the strain and stress tensor into the network 364 

model.  365 

3.4.1 Sample generation 366 

Gaussian process is introduced to generate smooth random loading paths in order to cover a large 367 

sampling space of ( ),σ  in our work. In some machine learning frameworks [38, 49], Gaussian 368 

process [69] is used in the micro-scale random loading path preparation. However, the DEM 369 

simulations may return unreasonable results when the granular materials are over-compressed or 370 

pulled up. So, this work applies the randomly generated loading paths as macro boundary 371 

conditions instead of the micro-scale RVE. The computed strain at each Gauss point of the macro 372 

model is applied as the boundary condition to the corresponding micro-scale RVE. In this way, a 373 

large number of samples closely related to the solution space can be directly generated. Applying 374 

the boundary condition directly to the macro model is also much simpler, as there is no need to 375 

check the compatibility of the generated results.  376 

 377 

The macro model used to generate training data is a simple biaxial test discretised by three 378 

different finite element meshes. The detail will be described in Section 4.1 and shown in Figure 6. 379 

A series of FEM-DEM biaxial simulations subject to randomly constructed boundary loading 380 

paths is carried out to generate training data. To avoid over-compression or stretching, the random 381 

path is only applied to control the transverse confining pressures for the biaxial compression test. 382 

All the REV particle models are initially compressed by an isotropic confinement pressure of 383 

100kPa. Further details will be given in Section 4. 384 
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 385 

The Gaussian process defines a distribution function ( )f x  that is completely specified by its 386 

mean function ( )m x  and covariance kernel function ( , )κ x x , i.e., a Gaussian process can be 387 

represented as: 388 

 ( ) ( ( ),  ( , ))f m x x κ x x   (16) 389 

where the mean value ( )m x  is kept to be the initial confinement pressure of 100 kPa. The 390 

smoothness of the generated sequence can be controlled by specifying the kernel function. 391 

The squared distance function is used as the covariance kernel function and described by: 392 

 
2

( , ) exp( )( )c kv = − −κ x x x x x   (17) 393 

where variable  0,1x  can be regarded as the pseudo-time to control the loading step, and its 394 

discretised values [0.01,0.02,...,1]=x , corresponding to 100 loading steps, are used as the vector 395 

for kernel κ  generation; [1,5]cv   is a coefficient used to control the curvature of the random 396 

path (a larger cv  narrows the band of the kernel, but increases the curvature of the stress curve, as 397 

illustrated in Figure 4); and ( )k x  is a linear function of x  starting from 0 to ensure that the 398 

random confining pressure starts from the initial consolidation pressure of 100 kPa.  399 

The Gaussian process outlined above is used to generate ten random loading paths for the 400 

confinement pressure for each finite element model (Figure 6). The total number of samples is 401 

summarised in Table 1, with an overall sum of nearly 17 million data points generated. Due to the 402 

nonlinear macroscopic mechanical properties of granular materials, each loading step needs 403 

nonlinear iteration. On average, a loading step takes about 20 iterations. Therefore, more than 404 

2000 calculation results are generated in 100 loading steps. 405 

  406 
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 407 

Table 1 Summary of the training samples generated at three mesh levels 408 

Loading path number Coarse Medium Fine 

0 76064 308608 1295360 

1 75456 316544 1243136 

2 75264 308736 1314304 

3 81696 309248 1303040 

4 77984 304768 1312768 

5 77472 317440 1304576 

6 76128 303744 1288704 

7 75296 310016 1285632 

8 75040 313472 1296896 

9 75456 331904 1330176 

Total training samples 16864928 

 409 

 410 
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 411 

Figure 4: Random loading path generation via Gaussian process: the kernel functions 412 

(left) and random paths (right) for different cv  values 413 

 414 

3.4.2 Active learning-based resampling.  415 

It may not be a good idea to use all the available data points, particularly in huge datasets, for 416 

network training. Using all data points may prevent the optimizer from finding the most 417 

informative datasets for the targeted training as there may be many data points that are repetitive 418 

or very similar. In this work, we adopt an active learning strategy to effectively select samples 419 

from our prepared large datasets. 420 

 421 
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The active learning method [70] is introduced for effective resampling from a dataset with 422 

massive data points. The key idea behind is that a machine learning algorithm can achieve greater 423 

accuracy with fewer training samples if the algorithm is facilitated to choose essential data points 424 

according to what it has learned. In addition to resampling, active learning can also guide sample 425 

generation, especially when generating a sample is expensive. The active learning method is able 426 

to evaluate the network performance at a data point (i.e. strain and internal variable) without 427 

knowing the output/response (i.e. stress) and thus can determine whether the data point is valuable 428 

to be generated for network training. 429 

 430 

The active learning procedure used is as follows. Firstly, a selected number of networks with the 431 

same architecture and hyperparameters but different randomly generated initial weights and biases 432 

are trained on partial datasets or smaller datasets generated based on a subset (i.e. in the coarse FE 433 

mesh here). Subsequently, these trained networks are used to make predictions at different data 434 

points (i.e. in the fine FEM mesh), and then evaluate their uncertainty levels  , defined to be the 435 

standard deviation of all the predictions at each datapoint. The process can be summarised as: 436 
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where m  is the number of the randomly trained networks i  ( 1,2,...,i m= ), ( )ˆ n
y  is the 438 

averaged output of all the networks at a selected Gauss point n  in the fine-meshed model. After 439 

evaluation, points with an uncertainty value higher than a certain level will be added to the 440 

training samples to retrain the models until a satisfactory level of uncertainty is achieved for all 441 

the Gauss points concerned. Then one of the trained models is chosen to be used for prediction in 442 

the FEM-ML solver. Thus the active learning in the present work acts as a detector to seek the 443 

locations where the randomly trained model performs poorly, i.e. the data points are 444 

underrepresented yet. This active learning resampling is referred to as the uncertainty-level based 445 

active learning scheme. 446 

In addition to the above uncertainty-level base active learning scheme, some other indicators 447 

can also be utilised to guide the resampling process. An alternative, equivalent shear strain-based 448 
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resampling scheme is another possible option for the problems concerned in Section 4. The details 449 

of using this option and comparison with the uncertainty-level base scheme are given in Section 450 

4.1.2. 451 

3.5 Training  452 

The neural network is trained on the dataset collected from a random Gaussian process controlled 453 

biaxial loading. The datasets are split into training, validating, and testing sets weighing 70%, 15%, 454 

and 15%, respectively. The early stopping technique [71] is utilised in the training process to avoid 455 

overfitting and thus maximise the generalisation ability of the ML model. The MSE (mean square 456 

error) of both training and validation datasets is evaluated every ten epochs. The training process 457 

is ceased once the MSE of the validation dataset has no improvement after 1,000 training epochs. 458 

 459 

After training, the prediction ability of the model and the prediction error are checked, as shown in 460 

Figure 5. The trained  model, in most cases, is competent to predict with satisfactory 461 

accuracy, especially in the prediction of the two stress components ( 11  and 22 ) and four 462 

components ( 21111 112 22 1 22212, , ,D D D D ) of the material matrix. However, the  model seems 463 

not to perform well in predictions of 12 , 1112D  and 1222D , as shown in the right column of 464 

Figure 5 where the relative errors reach around more than 100 per cent. Nevertheless, this is 465 

because, in an isotropic hyper-elastic model or quasi-elastic stage of the granular material, the 466 

components of 1112D  and 1222D  should be zero [72] and 12  is also close to zero. Thus, it is more 467 

appropriate to check the absolute error for these components. The left column of Figure 5 shows 468 

that their predicted values are indeed close to zero, indicating their prediction accuracy is also 469 

satisfactory.  470 
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 471 

Figure 5: ML prediction versus the results of the DEM simulation – left column: 472 

comparison; right column: relative error. 473 

4 Computational examples 474 

4.1 Baseline problem - the biaxial compression test 475 

 476 

Figure 6: Configuration of the biaxial compression test and three meshes 477 

The biaxial compression test, shown in Figure 6, is simulated as the baseline to validate the 478 

proposed FEM-ML framework. Three different meshes are used to discretise the problem domain: 479 

coarse ( 2 4  elements), medium ( 4 8  elements) and fine (8 16  elements) meshes, with each 480 
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element having 4 Gauss points.  481 

Table 2 Parameters of the granular materials 482 

Density (kg/m3) Young’s 

modulus (MPa) 

Poisson’s ratio Friction angle 

(rad) 

Damping ratio 

2650 600 0.8 0.5 0.1 

 483 

Initially, the vertical displacement-controlled loading is linearly applied to the top boundary of the 484 

biaxial model until the macro vertical strain reaches 0.1. The Gaussian process outlined in Section 485 

3 is used to generate ten random loading paths to control the confinement pressure for each 486 

meshed model. Parameters used in the lower-scale DEM simulation are shown in Table 2. Both 487 

the FEM-DEM and the FEM-ML simulations are carried out for the coarse and fine meshes with 488 

an identical loading/boundary condition to assess whether our proposed FEM-ML framework is 489 

capable of reproducing the multiscale mechanical response and effectively accelerating the 490 

computation. The medium mesh is used later in Section 4.1.4. 491 

 492 

4.1.1: Comparison of the prediction results with different meshes.  493 

To comprehensively compare the prediction capability of the proposed FEM-ML framework, six 494 

cases that combine the two meshes (coarse and fine) for both the training dataset generations and 495 

the FEM-ML simulations are considered and listed in Table 3. The simulated results are displayed 496 

in Figure 7 (top force) and Figure 8 (displacement field). 497 

 498 

Table 3 The cases using different meshes for training and FEM-ML simulations 499 

Case 
Mesh used for obtaining 

training samples 

Mesh used for FEM-ML 

simulations 

A Coarse Coarse 

B Fine Coarse 

C Hybrid Coarse 

D Fine Fine 

E Coarse Fine 

F Hybrid Fine 

 500 

These two figures illustrate that all results agree well with the DEM simulations except for 501 

Case E. The shear band simulated with the fine mesh is narrower than that with the coarse 502 

mesh in the FEM-DEM simulations. The final deformed configuration of Case E is more 503 
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similar to Case A instead of the fine-meshed FEM-DEM simulation. In Cases A and E, only 504 

datasets collected from the coarse mesh simulations are employed to train the neural network. The 505 

Gauss points are clearly sparser in the coarse mesh, thus there are not sufficient points to represent 506 

the strain-stress relationship in the fine mesh. 507 

 508 

On the other hand, due to the neural network’s good interpolation ability, all of the stresses and 509 

tangent matrices in the shear bands in the fine mesh can be well approximated by the network 510 

trained on the coarse datasets. Although the fine mesh is used for the macro-level simulation in 511 

Case E, the strain-stress relationship is still derived from the coarse mesh datasets. Therefore, the 512 

shear band obtained in Case E still looks like a duplicate of Case A.  513 

 514 

 515 

Figure 7: The comparison of the top force between different cases 516 

  517 

Figure 8: The final deformed configurations of the different cases 518 
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 519 

Due to the fact that the strain distributions in the upper and lower regions of the domain are very 520 

similar for both coarse and fine meshes, attentions are focused on the shear band obtained from 521 

different cases. Cases C and F are subsequently carried out to investigate this issue, where the 522 

network models are trained on datasets gathered through a hybrid sampling method as shown in 523 

Figure 9. In this hybrid sampling method, the data points in the shear band are obtained from the 524 

fine mesh simulations, while the data points in the upper and lower triangular regions are collected 525 

from the coarse-meshed simulations. 526 

 527 

Figure 8 shows that the final deformed configurations of Cases C and F agree well with the FEM-528 

DEM simulations. This suggests that the training datasets in the shearing band significantly 529 

influence the performance of the purely data-based model. Only with the proper training datasets, 530 

can the network model work well and attain the expected results. 531 

 532 

 533 

 534 

Figure 9: Collecting the training datasets in a hybrid way 535 

 536 

4.1.2 Automatic resampling via active learning.  537 

The two hybrid cases (Cases C and F) indicate that the significance of different data points varies 538 

greatly. The points in the shear band play a significant role in the current problem. In contrast, 539 

constitutive relationships contained by points in the upper and lower triangles of the fine-meshed 540 

model can be easily represented by the data points from the coarse-meshed model. To fully utilise 541 

these features, the uncertainty-level-based active learning scheme introduced in Section 3.4.2 is 542 

used for automatic resampling. The detailed procedure is outlined in Figure 10 and explained 543 
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below: 544 

1) Choose five separate networks with the same architecture and hyperparameters as described in 545 

Section 3.3 but with different randomly initialised weights and biases which are pre-trained 546 

based on the datasets obtained from the coarse mesh.  547 

2) Use the five pre-trained models to predict the stresses and D  matrices for all strains of the 548 

data points collected from the fine mesh FEM-DEM simulations.  549 

3) Evaluate the prediction uncertainty level at each data point based on the five predicted stresses 550 

by Eq. (18).  551 

4) Add 30% of the data points that have the highest uncertainty levels to the training samples 552 

used in the pre-training phase.  553 

5) Re-train one pre-trained model on the enriched dataset and use it as the network model for the 554 

final FEM-ML simulation.  555 

 556 

Note that the number of NNs used in the above active learning resampling cannot be determined 557 

analytically but is a result of trial and error in practice. The main principle is that we wish to use 558 

as few NN models as possible to find a reliable variance ranking which can effectively recognise 559 

the most informative points to improve the current NN predictions. To strike a balance between 560 

accuracy and computational costs, 5 is found to be a satisfactory number of the required networks 561 

in the current work. 562 

 563 

Figure 10 clearly illustrates that the prediction uncertainty is prominent in the shear band, 564 

indicating that the data points in the shear band have a stronger influence on the network 565 

prediction. Locations of the points with high uncertainty levels agree well with the red data points 566 

extracted on the right side of Figure 9, which explains why the result of Case F is improved. Thus, 567 

active learning can be used as a filter to identify the locations where the trained network model 568 

performs poorly and samples at these locations should be generated or added to enrich the training 569 

dataset.   570 
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 571 

Figure 10: The flowchart of the model training process based on the active learning 572 

resampling 573 

 574 

As the newly added data points in the above active learning resampling process are almost all 575 

located in the shear bands of the deformed configuration, it indicates that the magnitude of shear 576 

strain may be utilised as an alternative indicator for the resampling purpose. To investigate the 577 

possibility of using the equivalent shear strain as the indicator for active learning resampling, we 578 

compute the equivalent shear strains at all Gauss points at each load step. Then 30% of the data 579 

points having the highest uncertainty levels at several load steps are depicted on the top row in 580 

Figure 11 (where the average uncertainty values are also given), while the bottom row shows the 581 

corresponding contour plots of the equivalent shear strain.  582 

 The figure shows that the shear band (or strain localisation) starts to emerge at around load 583 

step 29 and fully develops from step 59 onwards. The corresponding distributions of the Gauss 584 

points with 30% of the highest shear strain for these load steps are indeed around the shear band 585 

and these coincide with the prediction by the uncertainty-level based active learning scheme 586 

shown in Figure 10. Thus it seems reasonable to conclude that the (equivalent) shear strain can be 587 

used as an alternative indicator for the active learning resampling. However, at the beginning of 588 

the loading and well before the shear band is formed, the strain field is nearly uniform across the 589 
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whole domain. Consequently, the shear strain indicator is unable to distinguish the difference 590 

between data points over the whole domain, and the selected data points may not be ideally 591 

located. It is clearly displayed for the first two load steps where the selected points are not 592 

uniformly distributed across the domain.  593 

 594 

Figure 11 The shear strain based active learning resampling at seven load steps: Top 595 

row – 30% of the data points with highest uncertainty levels (the number in red is 596 

their average value); Bottom row – equivalent shear strain distribution 597 

 598 

In conclusion, the shear strain can serve as a simple alternative indicator for resampling 599 

where large shear strain or shear localisation may be a dominant feature, but it may not be an 600 

effective indicator when the shear strain difference is small over the problem domain. More 601 

importantly, the shear strain indicator is problem-specific and hence its applicability is rather 602 

limited. For different problems, we may need to seek different problem-specific indicators for 603 

resampling in an indicator-based sampling scheme. On the contrary, the uncertainty-level based 604 

active learning may be slightly more complex in terms of usage, but it is generic and completely 605 

based on the evaluation of the uncertainty level of prediction results without any prior knowledge 606 

of the datasets concerned. 607 

 608 
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4.1.3 Comparison of strain-stress predictions at Gauss points 609 

To further assess the validity of the new proposed framework, the strain-stress responses obtained 610 

by various models at Gauss point level are checked. The two Gauss points, #100 and #300, whose 611 

locations are shown in Figure 6, are chosen for inspection. In the right column of Figure 12, the 612 

blue line is the stress evolution history from the FEM-DEM simulation. The green line is the 613 

predicted stress from the trained network model fed with the strain obtained from the FEM-DEM 614 

simulation. The orange line is the stress from the FEM-ML simulation. The triangles denote the 615 

stress predicted by the network model using the strain obtained from the FEM-ML simulation. 616 

 617 

Figure 12: Comparison of the local strain and stress responses from different solution 618 

schemes 619 

The FEM-ML framework works well in predicting the main trends of the macroscopic stress 620 

response of granular materials. However, the trained network model inherently produces a smooth 621 

output but cannot reproduce a more oscillating output induced by the transient nature of DEM 622 

simulations, as notably visible in the FEM-DEM results. In FEM-DEM simulations, the strain 623 

updated via  = B u  will also oscillate because the DEM-induced stress fluctuation is 624 
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passed on to the FEM solver, as shown in the left column of Figure 12. 625 

 626 

It is worth noting that the fluctuating or noisy output is the main obstacle in network model 627 

training, especially in high-dimensional problems, since it will aggravate the difficulty to 628 

distinguish useful information from the noise. Large and sharp fluctuations make the predicted 629 

curve nondifferentiable, which is also the reason that the automatic differentiation method 630 

available in most machine learning libraries cannot be directly used to obtain tangent operators in 631 

granular material simulation. 632 

 633 

The network prediction directly using the strain obtained from the FEM-DEM simulation (green 634 

line) seems to have fully captured the fluctuation of the RVE results, except for the initial stress 635 

predictions of x . After further inspection, we find that the initial strain returned by the FEM-ML 636 

solver is slightly different from the FEM-DEM solver due to the error in the predicted stress at the 637 

initial state. As the stress component x  is supposed to be near 100 kPa over the whole course of 638 

loading, its error in the figure is relatively more visually obvious than the other two. 639 

 640 

4.1.4 Performance comparison 641 

It is important to evaluate the efficiency of the FEM-ML framework. The performance of both 642 

FEM-DEM and FEM-ML simulations for Case D is compared without including the active 643 

learning resampling on a laptop computer (i5-8500 6 Cores@3.00GHz). All six cores are used in 644 

the FEM-DEM simulation, while only a single core is used in the FEM-ML simulation.  645 

 646 

Table 4 shows that per iteration in the FEM-ML framework is nearly 82 times faster than the 647 

FEM-DEM. In addition to the substantial improvement in efficiency, huge computer memory is no 648 

longer needed, thus significantly alleviating the memory requirement of the FEM-DEM multiscale 649 

computation and also saving the communicating cost for distributed memory parallel platforms. 650 

The number of iterations required at each load step is also recorded in Figure 13 for further 651 

comparison. Note that the medium mesh with 4×8 elements, as shown in Figure 6, is also 652 

simulated. As shown in Figure 13, both FEM-DEM and FEM-ML methods can converge at every 653 
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loading step, but more quickly during the initial (near) elastic stage. Then the number of iterations 654 

per loading step significantly increases until the peak is reached at around step 20. Afterwards, the 655 

iterations per step decrease steadily towards around 20 iterations.  656 

 657 

Table 4: Summary of the number of iterations and clock time consumed in the 658 

simulation with the fine-meshed model 659 

 FEM-DEM (multi-cores) FEM-ML (single) Speed up 

Time (h) 8.02 0.11 72.9 

Total iterations 2510 2820 0.89 

Time per iteration (s) 11.50 0.14 82.1 

 660 

 661 

Compared to the FEM-DEM simulation for the medium mesh, a slightly larger number of 662 

iterations are required by the FEM-ML simulation with all three meshes. This results from the 663 

error between the ML model prediction and the lower-scale RVE simulation. Because of this error, 664 

the FEM-ML framework will in general not converge as fast as the FEM-DEM, but still can obtain 665 

the final equilibrium state through iterations.  666 

 667 

In summary, the results demonstrate that no notable difference is found in the number of iterations 668 

between FEM-ML and FEM-DEM simulations, which further supports the claim that ML models 669 

can be a satisfactory surrogate model for lower-scale RVE simulations. 670 

 671 

  672 

Figure 13: The number of iterations required for the FEM-DEM and FEM-ML 673 

simulations with the three meshes 674 
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4.2 Retaining wall example 675 

To evaluate the generality of the proposed neural network model, the well-trained neural network 676 

model in the previous biaxial compression case is employed in a retaining wall problem. The 677 

details of the problem are shown in Figure 14, where the normal constraint is applied to the left 678 

boundary; the bottom is constrained in the x  and y  directions; and a prescribed displacement is 679 

applied to the right boundary, acting as the retaining wall, to compress the soil in the normal 680 

direction. 681 

 682 

Figure 14: Schematic of the retaining wall problem 683 

 684 

Figure 15a shows a prominent cambered shearing band emerging from the FEM-DEM simulation. 685 

The total force applied by the retaining wall versus the transverse strain is depicted in Figure 16.  686 

 687 

Two FEM-ML approaches have been considered. Note that the first FEM-ML approach, labelled 688 

FEM-ML 1, is trained only on the datasets collected from the biaxial simulations described in 689 

Section 3, while the second approach, labelled FEM-ML 2, is trained based on the enhanced 690 

datasets, as will be explained below. 691 

 692 

In the FEM-ML 1 simulation, the solution process breaks down at about the 80th load step. The 693 

problem arises due to the accumulated error of the strain and the internal variable when their 694 

values are far beyond the network training ranges. The shearing band of the FEM-ML 1 simulation 695 

is approximately lying on a straight line, which largely results from the training dataset gathered 696 

from the multiscale biaxial simulations, whose shearing band is a straight line. The failure of the 697 

FEM-ML 1 simulation indicates that the neural network model trained based on the data from the 698 

biaxial compression test cannot fully reproduce the micromechanical response in the retaining 699 

wall simulation due to the limitation of the loading paths in the training samples. 700 
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 701 

The FEM-ML 2 approach uses an enhanced network, where the network used in FEM-ML 1 is 702 

retrained after the datasets of the retaining wall simulations with FEM-DEM are added to the 703 

original training samples. Figure 15c and Figure 16 show that the performance of the enhanced 704 

network is significantly improved in both displacement and force calculations. Therefore, the 705 

proposed methodology is adaptable to upgrade the network model once new datasets are available. 706 

  707 

Figure 15: Displacement distributions of the soil at some load steps when compressed 708 

by the retaining wall and obtained by (a) FEM-DEM, (b) FEM-ML 1, and the (c) 709 

FEM-ML 2  710 

 711 

  712 

Figure 16: The integrated force on the retaining wall 713 

We have extracted the strain at the Gaussian point of the retaining wall simulation to illustrate that, 714 
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as is shown in following figure, unloading has occurred in our example, or that the direction of 715 

strain increment has reversed rather than being a single loading. Without the use of internal 716 

variables to calibrate the granular material state, the network would not be able to reproduce this 717 

path-dependent property. 718 

  719 

（a）Points #520 in retaining wall simulation 720 

  721 

（b）Points #580 in retaining wall simulation 722 

Figure 17 Curves of stress and strain of Gauss points 723 

 724 

5 Conclusion 725 

Our work is primarily devoted to developing a FEM-ML framework and training a network-based 726 

constitutive model to replace the micro RVE model via DEM, thus accelerating the classical 727 

multiscale FEM-DEM simulation. A multi-layer fully connected neural network, together with the 728 

use of the accumulated absolute values of the strain increments as an explicit parametrisation of 729 

the strain-stress relationship, is chosen as the surrogate model. This simple network appears to be 730 

reasonably able to reproduce the history-dependent mechanical response of granular materials. A 731 

Gaussian process-controlled random loading is applied to a biaxial compression problem to 732 
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generate training samples. In particular, an uncertainty-level-based active learning scheme is 733 

utilised to evaluate the informativeness of data points and select the points with high uncertainty 734 

levels to enrich the training dataset. This resampling strategy is generic and proved to be highly 735 

effective at least for the current problem concerned. A simpler but problem-specific shear strain-736 

based resampling scheme is also discussed.  737 

 738 

The drained biaxial compression tests conducted demonstrate that the FEM-ML framework can 739 

genuinely reproduce the micro-scale response of the granular material at a considerably lower 740 

CPU cost than the FEM-DEM approach. The generality or extrapolation capability of the 741 

proposed framework is also examined in the retaining wall example. The numerical result 742 

illustrates that this framework is sufficiently flexible to improve its performance as long as the 743 

training datasets are abundant or can be enriched. 744 

 745 

The numerical examples provided highlight that a considerable improvement in the computational 746 

efficiency can be made based on the trained surrogate network models which may help to extend 747 

the multiscale computational framework to practical engineering problems. With the development 748 

of advanced numerical simulations and physical experiments, more high-fidelity datasets will be 749 

available. This tendency will contribute to developing a more accurate and general  network-based 750 

constitutive mode and therefore further promote the application of machine learning-based 751 

constitutive models. 752 

  753 
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Response to the reviewers: 

Reviewer #1: The following reviewer comments which were previously mentioned have not been 

resolved yet, and the authors are encouraged to address them: 

We are sorry that we did not reply and express the last revision clearly. Thank you for your interest 

in our work and for your valuable comments both last time and this time. One important point is the 

loading/unloading process. The unloading points surely exist in the retaining wall simulation and even 

in the biaxial compression. We have taken all your suggestions into consideration and thank you for your 

advice. 

1)    The number of epochs used and training and test MSE or evolution of the loss function with 

epochs for test and training datasets need to be provided to demonstrate proper training of the network. 

Here is the evaluation of the training loss and the validation loss with the epochs of the network 

used to predict the datapoints in figure 5. Properly training the network is a very crucial condition for us 

to complete the ML-based FEM calculation framework. Actually, Figure 5 is intended to show the 

validity of the network training.  

By the way, ‘validation’ in following figure means the datapoints are split from the training datasets, 

and never be cast into the training process, only used to make sure the network is not overfitted as is 

mentioned in Line 450-455. While, points in Figure 5 in the manuscript are totally collected from the test 

set.  

 

Review2 figure 1 Evolution of the loss with training epochs of the network used in Figure 

5 

 

2)    The manuscript needs further proofreading. For example, "neutron" has been used instead of 

"neuron". 

authors' response to reviewers' comments Click here to access/download;authors' response to reviewers'
comments;response2reviews 2nd.pdf

https://www.editorialmanager.com/ageo/download.aspx?id=168981&guid=b02d62cb-dcef-498b-978e-9781df7982de&scheme=1
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We further proofread the sentences and the logical order of this text. 

3)    Performance of the model for the case of loading and unloading (e.g. cyclic load) has not been 

studied in the paper. Therefore, the authors are encouraged to be more precise in their discussion in the 

paper and explain the extent to which the capability of the model in capturing path-dependent behavior 

has been studied and potential limitations in capturing path-dependent behavior which are left for future 

work. 

Thanks for your interest in this work. We have introduced the accumulation of the absolute value 

of strain increment as internal variables to calibrate the state of the granular material. This approach, 

although not perfect, enables the neural network to describe the path dependent nature of the granular 

material.  

Your concern may be that the biaxial compression example presented in our paper without the 

add/drop cycle does not reflect the path dependence we mentioned. We have therefore extracted the strain 

at the Gaussian point of the both simulations to illustrate that, as is shown in following figure, unloading 

has occurred in our example, or that the direction of strain increment has reversed rather than being a 

single loading. Without the use of internal variables to calibrate the granular material state, the network 

would not be able to reproduce this path-dependent property. 

As you can see, we are up to the 100th load step in our loading. It may be necessary to add a few 

dozen more load steps if we are to finish unloading. A considerable problem with neural networks 

embedded in BVP calculations is error accumulation because, like recurrent neural networks, the 

predictions from the previous step are used to calculate the input values for the next prediction. Since 

our training range is not wide enough, the accuracy of the network drops dramatically when the input 

values are deviated from the training range. So if longer loading is to be accomplished, there needs to be 

a corresponding method to reduce the prediction error of the network or slow down the rate of error 

accumulating. We are still experimenting with this aspect of the work, which is a real challenge for us. 



  

（a）Points #400 in biaxial compression 

  

（a）Points #520 in retaining wall simulation 

  

（b）Points #580 in retaining wall simulation 

Review2 figure 2 Curves of stress and strain of Gauss points 

 

4)    The authors state in response to Comment 14 that "the network used in FEM-ML 1 is re-trained 

after the datasets of the retaining wall simulations with FEM-DEM are added to the original training 

samples". How many samples were added to the training set and what is the size of the final training set? 



Also, are the simulation results of the retaining wall BVP in Section 4.2 used for both training (i.e. FEM 

ML 2 model) and validating the model (i.e. Figure 15(c) and Figure 16 )? If so, the outcomes are not 

valid because a trained network typically performs well on the dataset on which it was trained, thus it 

cannot be validated using the same dataset used in training. 

In the FEM-DEM retaining wall calculations in Section 4.2, we generated close to 2 million 

additional pairs of data. These data is added to whole the data described in Table 1, from which 0.1 was 

selected completely at random for training, due to the limited memory of our graphics card and the large 

number of duplicate samples in the sample. In the end, a total of 1,879,612 pairs of data were used in the 

training of the FEM-ML 2 computational model. 

In fact, we do use all the data from the FEM-DEM retaining wall simulation. Initially we hope that 

the randomly generated training samples using the Gaussian process described in Section 3.4 would be 

sufficient to cover the prediction space required for the retaining wall calculations. However, due to the 

characteristic that granular materials are not able to withstand tensile stresses, it was not possible to 

design a completely random loading path. FEM-ML 1 did not use the FEM-DEM retaining wall 

simulation data at all, and thus is not able fully complete the retaining wall calculation, indicating that 

the sample space is not sufficient. The results of FEM-ML 2 can only be obtained after inputting the 

FEM-DEM retaining walls datasets. 

In response to the question "If so, the outcomes are not valid because a trained network typically 

performs well on the dataset on which it was trained, thus it cannot be validated using the same dataset 

used in training.". We have attached plots of the stress-strain curves at Gaussian points calculated in the 

FEM-ML 2 retaining wall simulation. It can be seen that even when all the data points are put into the 

network training, the network cannot fully reproduce the results in the FEM-DEM dataset when used 

again for BVP calculations, and there are even many points where the error at the granular ensemble 

level is still significant. So it should be a relatively difficult job to reproduce the multi-scale calculation 

via network calculation even if we have the noisy datasets, especially to calculate at all of the Gauss 

points and achieve global balance. 

Actually, the network's ability to generalise is limited and is only reflected in the prediction of the 

interpolation range. Once the input exceeds the trained range, the results obtained will be meaningless 

which is suggested by the retaining wall calculation.  

Therefore, this work is used to demonstrate the usefulness of neural networks for improving the 



efficiency of multi-scale computation and the challenges of generalisation that a purely data-driven 

approach will face in BVP computation. 

 

The reviewer has a few additional comments as listed below: 

 

1)    Figure 8 shows the simulation results with different coarse and fine meshes from Figure 6. What 

are the meshes used in the simulations and the presented results? 

Yes, the model in Figure 8 is shown in Figure 6. All of the computational details for Figure 8 are 

taken from Table 3, where we detail the level of grid division for the computational model and what level 

of grid the data used for network training came from. 

 

2)    How are the number of training samples summarized in Table 1 obtained? It seems that 10 loading 

paths were generated, each with 100 time steps, and were applied as confining pressure of the biaxial 

BVP in Figure 6. For example, for the coarse mesh, it seems to the reviewer that there are 32 Gauss 

points, each undergoing 10 loading cases with 100 steps each, leading to 32000 samples. 

Sorry we didn't explain the data generation process clearly. 

Due to the nonlinear macroscopic mechanical properties of granular materials, each loading step 

needs nonlinear iteration. On average, a loading step takes about 20 iterations. Therefore, more than 2000 

calculation results are generated in 100 loading steps, as is shown in Figure 13. For a coarse mesh, with 

32 Gaussian integration points, a single simulation can produce more than 32*100*20=64000 pairs of 

data. 

Reviewer #2: This study is innovative in machine learning use for multiscale computation framework 

for granular materials. It is interesting and practical. The revision is of considerable quality for 

publication in AG. It can be accepted in current version. 

Thanks for your kind suggestion. 




