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1  Introduction
Reservoir computing (RC), also known as echo state network (ESN), has been attract-
ing widely interests [1–5]. Compared with the conventional recurrent neural network 
(RNN), the RC is characterized by its simplicity that only the output connection weights 
need to be trained by a linear regression algorithm. Apart from applications such as spo-
ken digit recognition [6], noisy image recognition [7] and fault diagnosis [8], the RC is 
also performed as a powerful paradigm for multivariate time series prediction [9–12]. 
For example, Lu et  al. [13] used RC to deduce the time-varying state of a dynamical 
system from a limited number of concurrent system state measurements. Rafayelyan 
et  al. [14] proposed an optical scheme performing RC over very large networks for 
realizing spatiotemporal chaotic systems prediction. In order to cope with more com-
plicated tasks relating to time series prediction, various improved RC models in terms 
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of structure modification have been proposed. These include double-reservoir in par-
allel RC (DRESN) [15], broad-ESN [16], hierarchical delay-memory echo state network 
(HDESN) [17], integer echo state networks (intESN) [5], etc. Particularly, it is worth to 
mention that L. Appeltant et al. introduced an architecture of RC that only used a single 
dynamical node with delay feedback–time-delay reservoir (TDR), which can be seen a 
special class of RC characterized by resource-efficient implementation[18].

Very recently, researchers from the field of nonlinear dynamics used the RC based on 
conventional structure for realizing chaos synchronization [13, 19, 20]. Different from 
the tasks of pure time series predication, realizing stable and complete synchroniza-
tion between the RC and practical dynamical systems is challenging. On the one hand, 
the sensitivity to initial values and parameters mismatch regarding to chaotic systems 
impose a negative impact on maintaining synchronization. On the other hand, general 
RC models have limitations in extracting the valuable evolution patterns from previous 
time series because of a short-term memory. RC models that can be used for achieving 
high quality of chaos synchronization need to be explored in depth covering aspects of 
network structure, training mechanism and hardware realization.

It is well known that the chaos synchronization plays a vital role for realizing secure 
communication [21–24]. In conventional scheme of chaos-based secure communica-
tion, the receiver is somehow demanded to equip a chaotic system (responser) identical 
to the one (driver) used for encryption in the transmitter, or a very complicated coupling 
between the driver and responser (in the case that driver and responser use different 
types of dynamical systems) needs to be well-designed [25, 26]. In addition, for the sake 
of security [27, 28], the chaotic system used for encryption in the transmitter needs to 
be changed, and if so the receiver has to do the same, which may undesirably involve the 
replacement and resetting of the hardware. Solving the above-mentioned issues is signif-
icant for developing advanced secure communications based on chaos synchronization.

In this work, we focus on realizing chaos synchronization and propose a new kind 
of TDR-based machine learning paradigm, i.e., chain-structure time-delay reservoir 
(CSTDR) computing. The model can synchronize to chaotic systems with high accuracy 
in an adaptive manner. Based on the CSTDR, a novel secure communication scheme is 
designed, in which the receiver is endowed with the ability for decoding encrypted signal 
generated by any dynamical systems in the transmitter. There is no complicated coupling 
needed to be designed, while instead the chaos synchronization between transmitter 
and receiver can be achieved by training. Numerically, the image transmission encrypted 
by Lorenz chaotic system is simulated. Moreover, the electronic realization of the pro-
posed CSTDR and secure communication scheme based on FPGA is implemented. The 
practical application of video transmitting employing this communication scheme is 
experimentally conducted, proving the effectiveness and feasibility of our scheme. The 
work sheds light on developing smart secure communications applications-based reser-
voir computing. Moreover, academically, the CSTDR would attract attention for digging 
intrinsic properties of state dynamics of layered TDRs, for example, how the dynamical 
properties of CSTDR are related to its memory capacity (MC) and how that can be used 
for optimization. The continuous study in academic would further make CSTDR more 
mature and facilitate to develop better bespoke systems for applications in industry.

The contributions of this paper are listed as follows: 
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1.	 A chain-structure time-delay reservoir (CSTDR) computing is for the first time pro-
posed. It can be used for achieving stable and complete synchronization with one-
order higher accuracy than traditional TDR computing.

2.	 A novel scheme of secure communication based on CSTDR is designed, solving 
practical design constrains and shedding light on developing machine learning-based 
secure communication.

3.	 The electronic implementation of the CSTDR-based secure communication using 
FPGA is present. Taking the video transmission as example, the feasibility of the 
idea is verified, laying a foundation for practical application of CSTDR in the field of 
secure communication.

2 � The regular time‑delay reservoir (TDR) computing and its performance 
in chaos synchronization

The standard structure of a traditional RC is shown in Fig.  1a. It consists of an input 
layer, a hidden recurrent layer (reservoir) and an output layer. In the hidden recurrent 
layer, there are N sparsely connected neurons. In order to reduce the usually required 
large number of elements in traditional reservoir, a novel architecture that utilizes a 
nonlinear node with delayed feedback (TDR) for replacing the traditional reservoir is 
introduced [18]. The basic structure of TDR computing thus includes an input layer, an 
output layer and a link layer with N virtual nodes as shown in Fig. 1b. The virtual nodes 
are obtained by dividing the delay loop into N intervals and using time multiplexing. The 
weights of the output layer can be adjusted to make the TDR computing output desired 
signals. The training of the readout follows the standard procedure for RC.

Fig. 1  Basic structure of traditional RC and TDR computing
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The nonlinear Mackey–Glass oscillator because of its easy implementation by elec-
tronic circuit is widely chosen for being the dynamical system to generate virtual nodes, 
which can be written as:

where the η is intensity of feedback and γ is input scale. The J is a temporal input stream 
derived by multiplying the input state at any input time t0 with a Mask. The Mask is an 
N-dimensional vector of random numbers in the range [0,1]. The X(t − τ ) denotes the 
state of the node at t0 − τ time. The exponent p can be used to tune the non-linearity. 
In each τ period, there are Nθ ( θ = τ/N  ). During one τ time, the state of each node is 
updated once.

The Lorenz system was first proposed in 1963 by Lorenz [29], and it becomes one of 
the most famous nonlinear model for studding chaos. Here, we first study the realization 
of chaos synchronization between a TDR computing and Lorenz system. The model of 
Lorenz system is expressed as:

where σ = 10 , γ = 28 and β = 8/3 and in such a parameter setting the system works in 
chaotic state. Equation 2 can be solved numerically to get a three-dimensional Lorenz 
chaotic sequence L(t) ( Lx(t) , Ly(t) and Lz(t) ). In the training phase, we take a part of the 
Lx(t) and Lz(t) as the input signal and target signal (the rest part of L(t) is used for test-
ing), respectively, which is different with the traditional training that the dimension of 
target signal is chosen as same as the input. Before training, the signals can be scaled to 
[0, 1] through the following procedure:

Assuming that the length of Lx(t) is M, the J ( N ×M ) can be derived by multiplying the 
Mask ( N × 1 ) and Lx ( 1×M ) expressed by:

The J is then input into the Mackey–Glass oscillator for evolution, and the dynamical 
state x ( N ×M ) can be stored. After discarding the initial 100 points, the ridge regres-
sion can be used to calculate w ( 1× N  ), and thereby to make the output of the TDR as 
close as Lz(1×M ), in which the ridge regression [30] is given by :

where � is a parameter with a size of 1× 10−6 for avoiding over fitting, and II is an iden-
tity matrix. The calculated w is then needed to be deployed to the output layer of the 

(1)Ẋ(t) = −X(t)+ η
X(t − τ )+ γ J

1+ (X(t − τ )+ γ J )p

(2)
ẋ = σ(y− x)

ẏ = γ x − y− xz

ż = xy− βz

(3)
Lx =

Lx

max(Lx)−min(Lx)
× 0.8+ 0.5

Lz =
Lz

max(Lz)−min(Lz)
× 0.8+ 0.5

(4)J = Mask × Lx

(5)w = Lzx
T xxT + �II

−1
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TDR. The training phase is done. Next, if we let the output value of the TDR feeding 
back into the input layer, the TDR computing can automatically generate values close to 
actual Lz(t) but only for a few time steps. However, if we expect a long and stable output 
values that synchronize to actual Lz(t) , the signal Lx should be kept for inputting. Dur-
ing the synchronization, as the sequence Lx flowing into the TDR, the output value Uz is 
given by:

To investigate the performance of a TDR computing for achieving chaos synchroniza-
tion in Lorenz system, we study the cases (L(t) as the dataset): the x time series as input 
signal, y and z as target (to synchronize with) signals; y as input signal, x and z as target 
(to synchronize with) signals; and z time series as input signal, x and y as target (to syn-
chronize with) signals. The results are summarized in Table 1.

In Table 1, the minimum normalized mean square error (NMSE) [31] is used to evalu-
ate the discrepancy of the achieved synchronization, which is defined as :

where the G(t) represents the actual signal. It can be seen from Table 1 that the NMSE 
can reach a relatively smaller value when the x- and y-dimension is taken as input signal. 
For the case of z time series as input, the NMSE gets larger. The reason for this desyn-
chrony is attributed to the inherent dynamics of the Lorenz system [32]. There is one 
positive conditional Lyapunov exponent for z driving, which leads the desynchrony in 
subsystem (x, y).

Similarly, the performance of the TDR for achieving synchronization in Rossler system 
is also studied. The Rossler system is seen as another famous nonlinear dynamical sys-
tem for having chaos [33], which is given by:

where ω = 1,α = 0.2,β = 0.2, γ = 5.7 are adopted for generating chaotic time series. 
Again, we calculated the NMSE of this model considering different cases, and the results 
are summarized in Table 2. It is overall satisfactory with somehow the NMSE can reach 
as low as 10−3 , except for the z-dimension as input signal. Similar situation as the Lorenz 
system.

3 � Method: the proposed chain‑structure time‑delay reservoir (CSTDR) 
computing and its performance in chaos synchronization

As shown in Fig. 2, a chain-structure time-delay reservoir (CSTDR) computing which has 
a few TDRs in series connection is proposed. There is an additional output layer designed 
for connecting the virtual nodes in all TDRs, which is different from the general DeepESN 
schemes. It should be noted that the TDR adopted in the proposed CSTDR could be more 
or less depending on practical need. For the task of synchronizing chaotic signals, we have 

(6)Uz = w × x

(7)NMSE =

∑

t [G(t)−Uz(t)]
2

∑

t Uz(t)2

(8)
ẋ = −ωy− z

ẏ = ωx + αy

ż = β + z(x − γ )



Page 6 of 17Jin et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:68 

calculated the performance of CSTDR in the following discussion section. In this work, 
there are four TDRs with each having 12 virtual nodes generated by Mackey–Glass oscilla-
tor used in the CSTDR model.

Taking the CSTDR computing with four reservoirs (both reservoirs are generated by 
Mackey–Glass oscillator) as example, the training procedure includes the following steps:
① Train the first TDR as same as the standard method for traditional RC. The specific 

training process for the first TDR can be expressed as:

(9)















J = Mask × Tx, (a)

Ẋi(t) = −Xi(t)+ η
Xi(t−τ)+γ J

1+(Xi(t−τ)+γ J )p , (b)

Wi = TzX
T
i (XX

T
i + �II)−1, (c)

Ux−i = Wi × Xi (d)

Table 1  Performance comparison of TDR and CSTDR computing for achieving chaos 
synchronization with Lorenz system

Driving Sync NMSE(TDR) NMSE(CSTDR)

x y 0.014435000 0.004093500

x z 0.011834000 0.000560200

y x 0.000199440 0.000019790

y z 0.033652000 0.004502300

z x 0.089724000 0.089737000

z y 0.061575000 0.062309000

Table 2  Performance comparison of TDR and CSTDR computing for achieving chaos 
synchronization with Rossler system

Driving Sync NMSE(TDR) NMSE(CSTDR)

x y 0.01842000 0.00409600

x z 0.00195150 0.00060731

y x 0.00179330 0.00179210

y z 0.00928880 0.00194980

z x 0.05558000 0.09885000

z y 0.07602900 0.07166000

Fig. 2  The proposed chain-structure time-delay reservoir (CSTDR) computing
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where i = 1 represents the first TDR. The x-dimension of training set Tx(t) is input to 
the first TDR and multiplied by the Mask, i.e., Eq.  9a. Dynamical states Xi are gener-
ated by Eq. 9b, in which the parameters are taken the same as described in last section. 
Equation 9c. is the standard linear regression algorithm for calculating the output layer 
weight: Wi (i=1). Last, the output of the first TDR: Ux−1 can be derived by using Eq. 9d.
② Take the output of first TDR as input for the second TDR, and train it as same as 

the first TDR, outputting Ux−2.
③ Input Ux−2 into the third TDR and train it as same as the first TDR, outputting 

Ux−3.
④ Input Ux−3 into the fourth TDR. The training procedure for this one can be skipped.
⑤ Use the ridge regression to calculate the weights of the additional output layer Wout 

( 1× 4N  ) by combining dynamical states in all TDRs, i.e., X ( 4N ×M ) into considera-
tion, that is:

where � is a parameter with a size of 1× 10−6 used for avoiding over fitting, and II is an 
identity matrix.

After training, the output of the additional output layer is G(t), which can be given by:

4 � Results and discussion
To verify the proposed model, we first test it with the Lorenz model. Similar to the case 
using a single TDR in last section, we take a part of Lx(t) and Lz(t) as the input and tar-
get signal, respectively. The rest of L(t) is used for testing the performance of CDSTDR 
in realization of chaos synchronization. The preliminary simulation result is given in 
Fig. 3. It is seen that the output of our proposed CSTDR after training can completely 
synchronize to the actual signal of z-dimension.

To further illustrate the performance of our proposed model CSTDR in realization of 
chaos synchronization, we also investigate all the cases considered in last section where 
the traditional (single) TDR computing is used. The CSTDR computing here employs 
four TDRs with each having 12 virtual nodes generated by Mackey–Glass oscillator. 
The training and testing data set is generated by Lorenz system and Rossler system with 
unchanged parameters as same as in last section. The results are given in Tables 1 and 
2. It can be seen that the NMSE can reach one order lower compared with the results 
derived by TDR in executable cases, while in some cases the NMSE is not improved. 
That is due to the inherent character of the specific dynamical systems as discussed 
above, which is nothing to do with methods adopted. All the results take the average of 
ten independent tests to avoid random errors.

In order to confirm the universality of our proposed CSTDR computing in realization 
of chaos synchronization, the Lorenz system and Rossler system with different param-
eters setting are also investigated.

(10)
Wout = TzX

T (XXT + �II)−1

X = [X1;X2;X3;X4]

(11)
G(t) = Wout × X

X = [X1;X2;X3;X4]
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Part of simulation results is shown in Fig. 4. The chaotic attractors ( x − z ) of Lor-
enz system and the generated by CSTDR computing (x-dimension signal as input) 
are, respectively, plotted, as shown in upper sub-figures of Fig. 4a–c. Meanwhile, the 
output signal of the CSTDR computing (G(t)) and actual signal ( Uz ) and their dif-
ferences with varying time are also presented in the middle and lower sub-figures 
of Fig. 4a–c. All these results confirm that the proposed CSTDR computing can be 

Fig. 3  Synchronization result of CSTDR computing

Fig. 4  Synchronization results between actual chaotic signal and output of CSTDR computing with Lorenz 
and Rossler system using different parameters. a and b in a, b and c: Chaotic attractors of the original Lorenz 
system and the trained CSTDR computing, respectively; c in a, b and c: Plot of time-varying output signal and 
actual chaotic signal of Lorenz system; d in a, b and c: Plot of time-varying differences between output signal 
of CSTDR and actual signal in Lorenz system. Captions of a, b and c with replacing the Lorenz with Rossler 
apply to d, e and f 
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used for achieving chaos synchronization. Likewise, the Rossler system with differ-
ent settings is also under investigation, with results shown in Fig. 4d–f. Overall, the 
proposed CSTDR performs much better than the traditional TDR computing.

To investigate how the key parameters: the number of employed TDR in CSTDR 
and the number of virtual nodes in each TDR, affect the realization of chaos synchro-
nization, we calculate minimum normalized mean square error (NMSE) between G(t) 
and Uz by varying them in [1, 8] and [2, 50], respectively.

The result is shown in Fig. 5. It can be seen that as the number of reservoirs and 
the number of virtual node increase, the NMSE decreases gradually. Specifically, 
when the number of reservoirs switches between 1 and 2, the change of NMSE is 
particularly obvious. It seems to explain that single TDR computing cannot syn-
chronize the chaotic system, while the CSTDR computing can. Meanwhile, along 
the dimension of number of virtual node, it is shown that when the TDR is in the 
range of [2, 8], there is a step change of NMSE when the number of virtual nodes 
changes from 2 to 4. It is also verified that when the number of reservoirs is larger 
than 8, the change of NMSE is becoming not obvious. Here in this work, we select 
the number of reservoirs to be 4 and the number of virtual nodes to be 12 as the 
optimal parameters.

In reality, the input signal is usually disturbed by noise. Here, we test the robustness 
of our proposed scheme under the impact of white noise. The white noise is added to 
the chaotic signals L(t) (generated by Lorenz system), and the CSTDR is trained for 
fitting the Lz . The calculation result is shown in Fig. 6. It is seen that with the increase 
in signal-to-noise ratio (SNR), the NMSE between the actual signal of the Lorenz sys-
tem and the output of CSTDR computing decreases continuously, and when the SNR 
exceeds 42dB, the NMSE stabilizes below 10−3.3 . It can be concluded that the system 
has a certain level of anti-noise ability.

Fig. 5  Influence on synchronizing performance based on different number of time-delay reservoirs and 
virtual nodes in each TDR
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5 � Secure communication scheme based on CSTDR computing
The proposed secure communication scheme is shown in Fig. 7, which mainly consists of 
two parts: transmitter and receiver. The overall idea is that the receiver in the proposed 
scheme can be trained, and then to synchronize the chaotic signal used for encryption in 
the transmitter based on RC [32]. With synchronization that we express in previous sec-
tion, the hidden message can be decoded by subtraction.

In the transmitter, the signal h(t) to be sent is encrypted by one vector of chaotic signal 
L(t) (z-vector: Lz(t) in our case) which is generated by a three-dimensional chaotic sys-
tem. The S(t) represents the signal after encryption. During the working process with the 
scheme, the chaotic signal L(t) generated by a chaotic system in the transmitter needs to 
be divided into two time continuous parts, i.e., T(t), U(t). The z-vector of U(t) ( Uz(t) ) is 
used to encrypt the signal h(t). The T(t) is deliberately left for training the receiver.

In the training phase (indicated by the yellow letter), the CSTDR computing of receiver 
learns the received training set T(t). The Tx(t) is input into the CSTDR computing, and 

Fig. 6  Calculation of NMSE with varying SNR ratio

Fig. 7  a The conventional secure communication scheme in general. b The proposed scheme based on 
CSTDR
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training follows the method we proposed in previous section with target at Tz(t) . After 
training, it is believed that the receiver has learned the chaotic signal used for encryp-
tion in the transmitter.

In the synchronizing phase (indicated by the blue letter), the transmitter only needs 
to send the scalar signal Ux(t) , the x-vector of signal U(t), to the receiver to drive the 
CSTDR, and the receiver can synchronize and generate a desired signal: G(t), which is 
supposed to be synchronized with z-vector of U(t), i.e., Uz(t) . Finally, we can decrypt 
the encrypted information S(t) with signal G(t) to receive the signal h(t).

To compare with the conventional scheme of secure communication shown in Fig. 7, our 
proposed method is designed based on a totally different idea, which has the following mer-
its. First, the receiver in our scheme does not need equip a fixed dynamical system which is 
normally supposed to be as same type as the one in the transmitter. It can synchronize to the 
chaotic signal generated by any dynamical systems for encrypting in an adaptive manner. A 
complicated coupling between transmitter and receiver such that in conventional scheme is 
saved. Second, our proposed method can better adapt to the changes occurring in the cha-
otic system employed in transmitter. Normally, in traditional technique once the encrypting 
chaotic system is changed, the design of coupling and dynamical system in receiver has to 
be changed accordingly, which could involve hardware replacement and security reduced, 
while the proposed here can update itself in-time just by learning a limited length of chaotic 
signal. Therefore, the security is enhanced and the cost is reduced. In terms of cost, though 
the CSTDR looks more complicated than a single TDR, its practical realization actually can 
use only one TDR. In the following hardware implementation of CSTDR-based secure com-
munication, only one TDR is made by FPGA, the CSTDR computing can be conducted by 
multiplexing the same one. The cost increased is more about the algorithm part.

6 � Numerical simulation and hardware implementation of the CSTDR‑based 
communication scheme

6.1 � Numerical results: image transmission using CSTDR‑based communication scheme

In order to verify the effectiveness of the proposed scheme, the secure communication 
of image is numerically simulated. Taking the image shown in Fig. 8a whose standard 
size is 300× 300× 3 as an example, the image is firstly arranged into an one-dimen-
sional vector signal h(t). The signal h(t), as an useful signal waiting to be transmitted, 
needs to be encrypted. It is modulated to encrypted signal. The encryption equation can 
be adopted as follows:

where the Uz(t) is one vector the chaotic signal U(t) and S(t) is one-dimensional vector 
after encryption. In order to increase the security performance, the absolute value of 
K1/K2 is taken as large as possible. K1 = 1.3 and K2 = −0.3 are chosen in the study.

According to our scheme proposed above, the G(t) can be derived based on the trans-
mitted S(t). The h(t) can be demodulated by using the following decryption equation:

Finally, the h(t) can be transformed into original image through the inverse process of 
sorting the data positions, as shown in Fig. 8c.

(12)S(t) = K1Uz + K2h

(13)h(t) = (SK1 − G(t))/K2
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In this example, the Lorenz chaotic system is used, and we select x-vector of U(t) as 
the driving signal and z-vector of U(t) as the encryption signal. Specifically, the first 6100 
data points are taken for training set L(t). The rest of the data are used as encrypted data 
set U(t). In receiver, four TDRs with additional output layer are used to synchronize the 
chaotic system. And in each TDR, 12 virtual nodes are generated.

6.2 � Experimental result: practical video transmission using CSTDR‑based communication 

scheme

According to the proposed scheme shown in Fig. 7b, the Xilinx xc7z020 Soc, as a popu-
lar chip which combines the advantage of the ARM core and FPGA, is used for hardware 
implementation.

The design diagram of transmitter and receiver is presented in Fig. 9a, b, respectively. 
In Fig.  9a, it consists of HDMI module, OV5640 module and Mul module. They are 
designed for video output, camera information processing and accelerating. In Fig. 9b, 
there are modules of CSTDR, HDMI and Mul, and the core of the receiver part is the 
CSTDR module. Limited by the on-board resources of Xilinx xc7z020 Soc, we use the 
High-Level Synthesis [34] to build a single TDR model and use it for time-division mul-
tiplexing to form the CSTDR computing. The accuracy of calculations is double-preci-
sion floating-point.

The working process diagram of the CSTDR-based communication scheme is 
shown in Fig. 10a. It is seen that both the transmitter and receiver start from flash, 
and first all the modules need to be initialized. Then, the transmitter generates a 
chaotic sequences as training three-dimensional data set T(t), in which the Tx and 
Tz need to be sent to the receiver through Ethernet. After receiving, the receiver 
starts to train the CSTDR computing based on the training algorithm given in 
Sect. 3. Once the training is completed, all the weights affiliating to output layer in 
each TDR and additional output layer of CSTDR can be deployed. The rest working 
procedure including synchronization and decryption is as same as described above. 

Fig. 8  a Picture waiting to be sent, b picture encrypted, c picture after decryption
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The flowchart of data stream in the whole CSTDR-based communication process is 
shown in Fig. 10b.

Based on the FPGA design in Fig. 9a, b, the hardware realization is accomplished and 
given in Fig. 11a. An example of video transmission in the real world is experimentally 
conducted. The results are presented in Fig. 11b, c. In Fig. 11b, it can be seen that the 
video is encrypted. The receiver can decrypt the video with a high quality as shown in 
Fig. 11c.

It is worth to mention that for uncompressed video transmission based on our pro-
posed scheme the reusing encryption data set should be taken in consideration. The res-
olution of image in video is normally about 640× 480 , i.e., the size of a frame is 921,600 
bytes. Assuming 30 frames per second are transmitting, it needs at least an encryption 
data sequence of length 27,648,000 per second. Therefore, it is unrealistic to transfer 
uncompressed video without processing. One solution to this issue is to adopt reusing 
encryption data. Utilizing the method, the CSTDR-based communication can reach the 
maximum speed of 13.9 Mb/s.

7 � Conclusion
In this work, a chain-structure time-delay reservoir (CSTDR) computing is proposed 
to realize the chaos synchronization in nonlinear dynamical systems. An order higher 
accuracy of complete synchronization than traditional TDR can be achieved. Based on 
the CSTDR computing, a novel scheme of secure communication is further put for-
ward. Numerical simulation and digital implementation are both conducted for proving 

Fig. 9  The electronic design of the CSTDR-based secure communication scheme using ZYNQ 7020 Soc
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Fig. 10  Detailed working process of the CSTDR-based secure communication scheme

the feasibility of the scheme. By using ZYNQ 7020 Soc, the communication scheme is 
experimentally realized by hardware, which provides a more practical model on how 
to utilize our paradigm in reality. The work not only provides a deep RC models based 
on TDR but also extends the machine learning approach into practical applications, 
shedding light on the exploration of the intrinsic dynamics of deep TDRs and bespoke 
systems.
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