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Abstract

A generic strain energy-based parameter calibration method is proposed to
calibrate the elastic parameters of lattice or bonded-particle modelling of
solid materials. Unlike surrogate models or commonly used optimisation-
based calibration methods in DEM, this approach does not require running
any physical simulations to obtain tentative solutions and thus ensures high
calibration efficiency. The novelty of this method is achieved in five aspects:
(1) the calibrated parameters are physically decoupled as elastic and strength
parameters; (2) the calibration of elastic parameters is converted to an opti-
misation problem with the goal of minimising the difference of strain energy
between the discrete and continuum systems subjected to imposed global
strain/deformation fields; (3) the strain energy is analytically determined
for circular/spherical particles in both systems; (4) explicit expressions of
the gradients of the loss function facilitate obtaining the optimal particle-
scale parameters; and (5) when subjected to two independence strain fields,
a closed-form solution is derived for a pair of uniform normal and tangen-
tial stiffnesses. The proposed calibration framework is validated with four
different examples. All the results confirm the reliability of the proposed
calibration method in lattice or bonded-particle modelling of solid continua.
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1. Introduction

Solid, as one of the most fundamental states of matter in the universe,
is made of atoms or mesoscopic grains which are bound to each other in
either a regular lattice (crystalline solids, such as metals) or irregularly pack-
ing (amorphous solid, e.g. glass, rocks). The macroscopic deformation and
ductile or brittle failure of solid materials thereby originate in grain-scale
interactions. For materials which are initially continuous solids but followed
by crack and fracture in a physical process, discrete particle-based methods
offer the possibility of modelling them in a consistent framework without
extra attention [1, 2, 3]. Different particle-based methods can be regarded as
different numerical discretisations of physical objects with different degrees of
abstractions. Fig. 1 demonstrates three typical discrete particle-based mod-
els: (a) bonded block model; (b) bonded particle model and (c) lattice bond
model.

The prominent advantages of discrete particle-based methods have mo-
tivated numerous applications in the simulation of solid materials, such as
concrete [4, 5], rock [6, 7, 8], ceramic [9], and sea ice [10], to name a few.
However, calibration of particle-level parameters involved in particle-based
methods remains a great challenge which has not been properly resolved [11].
As the parameter calibration is a typical high-dimensional inverse problem,
determining optimal parameters is normally conducted in a trial-and-error
manner and often requires a large amount of time and effort. Various meth-
ods have been developed to accelerate accurate parameter calibration. Gen-
erally, existing calibration methods can be roughly classified into three types:
(1) analytical models, (2) surrogate models and (3) optimisation methods.

For analytical models, Griffiths and Mustoe [12] adopted a grillage of
discrete elements to simulate elastic continua. The use of a regular packing
enables the stiffness parameters of discrete elements to be calculated directly.
Tavarez and Plesha [13], and Le et al [14] also derived analytical solutions
based on a hexagonal 2D elementary volume, where the formulations are the
same as the results in Griffiths and Mustoe [12]. Zhao et al. [15] developed a
3D distinct lattice spring model where the relation between micro and macro
elastic material properties are established through the hyperelastic theory.
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Figure 1: Three types of particle-based modelling of a solid continuum: (a) bonded block
model; (b) bonded particle model and (c) lattice bond model.

Jarolin and Dosta [16] proposed a linearisation-based method to calibrate
the stiffness parameters of bonded-particle models by solving a linear system
of equations. These analytical approaches are efficient in determining the
particle-scale parameters but either are limited to a uniform or statistically
homogeneous RVE structure, or may not maintain high accuracy for some
modelling cases.

Surrogate modelling aims to develop an approximation relation of a real
mapping between independent and dependent variables. The reason for us-
ing surrogate models for calibration is that the relation between microscopic
and macroscopic parameters is too complex to be explicitly characterised.
Commonly used surrogate models for calibration include: (1) response sur-
faces [17, 18], e.g. polynomial and multi-adaptive regression splines (MARS);
(2) linear or nonlinear fitting based parametric studies [19, 20, 21]; (3) ma-
chine learning methods [22], e.g. artificial neural networks (ANNs) [23, 24],
random forests [25] and reinforcement learning [26]; and (4) probabilistic-
based surrogate modelling, such as the Bayesian approach [27, 28, 29]. In
addition, some experimental design methods, e.g. Taguchi methods [30],
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Plackett-Burman (PB) and central composite design (CCD) [31, 32], orthogo-
nal experiment design (OED) method [33] and Latin hypercube sampling [34],
are also used to sample data strategically and thus reduce the cost of fitting
a reliable surrogate model.

Instead of developing a comprehensive surrogate mapping relation, opti-
misation based methods are goal-oriented with the single aim to discover the
optimal microscopic parameters for macroscopic targets. Prevalent optimi-
sation methods that have been employed in parameter calibration include:
(1) statistic-based optimisation, such as simulated annealing [35] and Gaus-
sian process regression [36]; (2) population-based optimisation, e.g. Ant-
colony optimisation [37], particle swarm optimisation [38, 39], genetic algo-
rithms [40, 41]; (3) surrogate based optimisation [42, 43]; and (4) gradient-
based optimisation [44]. Recently, Qu et al. [45] developed a physics-informed
gradient-based optimisation framework for the calibration of elastic parame-
ters and cohesive bond strength parameters. The calibration method makes
use of existing micromechanics to determine the initial guesses and thus
speeds up the optimisation process. However, to calibrate a group of elas-
tic parameters or strength parameters, many physical simulations are still
required.

Despite great progress made in this field, most existing algorithms are
not always sufficiently generic and efficient. In this study, we develop a
generic strain energy-based method for the elastic parameter calibration of
two types of particle-based models, i.e. the bonded particle model within
the context of the discrete element method (DEM) (Fig. 1b) and the lattice
bond model (Fig. 1c). The lattice model can be viewed as a bonded particle-
based model with each lattice node as a particle without physical dimensions.
Alternatively, any bonded particle-based model for continuum solids can also
be conceptually abstracted as a lattice model, where each bonded particle
pair is equivalent to one lattice connection except for cases where particle
dimensions are explicitly involved in the model. The parameter calibration of
these two models can thus be viewed in a unified way and treated equivalently
within the current framework.

A unique advantage of this new method is that it does not require running
physical simulations to search particle-scale parameters. When a particle
packing/lattice is given, a group of reliable particle/lattice level parameters
will be automatically obtained. It may be expected that the great improve-
ment in the efficiency of parameter calibration will further promote the ap-
plication of particle-based methods in unveiling micro-scale deformation and
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damage mechanisms of solid materials.
The rest of the paper is structured as follows. Section 2 proposes the basic

framework of the strain energy-based calibration method and the strategy to
obtain the optimal values of the parameters to be calibrated. After a brief
revisit of the parallel bond (PB) model, Section 3 demonstrates how to extend
the proposed framework to discrete element modelling with the PB model. In
Section 4, a series of numerical examples are performed to verify the proposed
method. A detailed discussion on the potential origins of calibration errors,
extensions to other types of elastic parameter representation methods, and
the calibration of non-linear elastic contact models, are given in Section 5.
Some concluding remarks are made in Section 6.

It is noted that although both lattice and bonded particle-based mod-
els can be used interchangeably in the proposed methodology as previously
stated, bonded circular/spherical particle-based models will be primarily
used below, for the sake of consistence and clarity in description. Further-
more, unless stated otherwise, the Einstein summation convention is adopted
throughout the paper.

2. A strain energy-based parameter calibration method

2.1. The overall framework

A complete particle-based simulation requires both elastic parameters
(e.g., Young’s modulus and Poisson’s ratio) and strength parameters (fric-
tional coefficient, tensile strength and cohesive strength) to characterise re-
versible elastic deformation and irreversible plastic or brittle instability. For
a deformation process incorporating irreversible damages, both types of pa-
rameters are intertwined and cannot be differentiated explicitly. The conse-
quence of calibrating all the parameters based on overall observations of a
large deformation process is that the parameter space remains unnecessarily
large and thus the calibration has to be time-consuming. Also, a greater
probability of multiple solutions in a high-dimensional space can affect the
calibration quality adversely.

An important but often overlooked fact is that solids can undergo certain
elastic deformation without the failure of particle-scale cohesive bonds in a
small strain condition. Physical simulations at this stage are simply affected
by elastic parameters, without the involvement of strength parameters. We
can make use of this fact to decompose the parameter calibration into two
separate tasks: one is for the elastic parameters and the other one is for the
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strength parameters. Such a decoupling strategy will shift a high-dimensional
problem to a relatively low-dimensional one and thus effectively simplify the
calibration process. Note that the decoupling strategy here is different from
the elasticplastic deformation decomposition in the phenomenological consti-
tutive modelling framework. The latter is an assumption under a relatively
large deformation condition while the current one is a fact under the small-
strain elasticity state. This study will focus on the calibration of elastic
parameters for bonded particle models and lattice bond models. The cali-
bration of strength parameters can be referred to our preceding work [45].

The lattice/particle-scale elastic interaction formulation that determines
the bond behaviour can be of a linear or non-linear type. Also, even linear
elasticity can be characterised in different ways. In the following text, we will
introduce a calibration framework with the most widely used combination
of normal and tangential stiffnesses (kn and ks) in the linear elastic model,
under the assumption that a set of uniform kn and ks are used to characterise
the interaction between two contacting particles or points. The strategy to
extend the proposed calibration framework to non-uniform kn and ks and
other elastic descriptions will be discussed in Section 5.

This calibration method is inspired by the understanding that the strain
energy stored in a physical domain and its numerical twin (or counterpart)
due to any deformation should be the same or very close to each other if the
numerical simulation reproduces the physical entity. The fundamental idea
of the parameter calibration is then to search the particle-scale parameters
which minimise the difference in strain energy between a bonded particle
system and the equivalent continuum subject to a given deformation field F:

[kn, ks] = argmin (Ud(F)− Uc(F))2 (1)

where Ud and Uc represent the strain energies in both discrete and continuum
systems, respectively; argmin returns the optimal kn and ks values which min-
imise the squared difference between Ud and Uc. Different optimal stiffness
values may be obtained by imposing different deformation fields though.

2.2. Strain energy in a discrete particle-based system

In this section, the strain energy of a particle-based system will be derived
by taking the bonded circular/spherical particle model as an example. The
same formulation of the strain energy can be applied equally to a lattice bond
model. The strain energy stored between two (bonded) particles is equal to
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the work done by the interaction forces acting from the undeformed state
until the current deformation state specified by a given deformation field F.

For a solid or structure which is idealised or discretised by an assem-
bly of points and their bonds, the entire strain energy of a specimen is the
summation of the strain energy stored by all the individual interaction bonds
throughout the volume. As the rotation and twisting of two circular/spherical
particles do not change the topology of the microstructures of a particle-based
assembly, only normal and tangential relative displacements are responsible
for changes in strain energy of the equivalent continuum.

Without considering rolling and twisting stiffnesses, the total strain en-
ergy stored in the entire discrete system can be given as follows:

Ud =
Nc∑
k=1

(∫ ∆u
(k)
n

0

Fn · dδn +

∫ ∆u
(k)
s

0

Fs · dδs

)
(2)

where ∆u
(k)
n and ∆u

(k)
s denote the normal and tangential relative displace-

ments of bond k, respectively; Fn and Fs are the interaction forces in the
normal and shear directions, respectively; dδn and dδs are infinitesimal de-
formations in the normal and shear directions, respectively; and Nc is the
total number of bonds.

For the linear bond model, the interaction forces can be expressed with
relative displacements of particles as follows:

Fn = kn∆un,Fs = ks∆us (3)

where kn and ks are the normal and tangential stiffnesses of the bond, re-
spectively; un and us are normal and tangential relative displacements of the
bond, respectively. The strain energy stored in bond k with a linear relation
is given by:

U(k) =
1

2
(kn∆u(k)

n ·∆u(k)
n + ks∆u(k)

s ·∆u(k)
s ) (4)

By equating the displacements of particles to the displacements of the
corresponding points in the continuum, the relative displacement of particles
∆u

(k)
i can be characterised by the equivalent local strain ε

(k)
ij obtained from

the given deformation field F in the continuum as:

∆u
(k)
i = ε

(k)
ij L

(k)ξ
(k)
j (5)

where L(k) is the length between the centres of two bonding particles; i and
j are indices in {1, 2} for 2D, and {1, 2, 3} for 3D, with 1, 2, 3 representing
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(a) 2D, polar coordinates (b) 3D, spherical coordinates

Figure 2: Two contacting particles in a global coordinate system

x, y, z directions in the global coordinate system. ξ
(k)
j is the jth component

of the direction vector of bond k. As shown in Fig. 2, in the spherical
coordinates (r, θ, ϕ), ξ

(k)
j = (ξ

(k)
1 , ξ

(k)
2 , ξ

(k)
3 ) = (sin θ cosϕ, sin θ sinϕ, cos θ),

while in the polar coordinates, ξ
(k)
j = (ξ

(k)
1 , ξ

(k)
2 ) = (cosϕ, sinϕ). Recalling

that the coordinate transformation of displacements, the magnitude (scalar)

of normal relative displacement ∆u
(k)
i can be expressed as

∆u(k)
n = ∆u

(k)
i ξ

(k)
i = ε

(k)
ij (x

(B)
j − x(A)

j )ξ
(k)
i = ε

(k)
ij L

(k)ξ
(k)
i ξ

(k)
j (6)

The normal displacement ∆u
(k)
n is:

∆u(k)
n = ∆u(k)

n ξ
(k)
i (7)

The tangential relative displacement ∆u
(k)
s can be written as

∆u(k)
s = ε(k)

mnL
(k)ξ(k)

n − ε
(k)
ij L

(k)ξ
(k)
i ξ

(k)
j ξ(k)

m (8)

Substituting Eqs. (6) and (8) into (4), the energy stored in the particle-
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based system can be rewritten as:

Ud =
Nc∑
k=1

U (k) =
1

2

Nc∑
k=1

[
kn

(
ε

(k)
ij L

(k)ξ
(k)
i ξ

(k)
j

)(
ε

(k)
kl L

(k)ξ
(k)
k ξ

(k)
l

)
+

ks

(
ε(k)
mnL

(k)ξ(k)
n − ε

(k)
ij L

(k)ξ
(k)
i ξ

(k)
j ξ(k)

m

)(
ε

(k)
nkL

(k)ξ
(k)
k − ε

(k)
lk L

(k)ξ
(k)
l ξ

(k)
k ξ(k)

m

)]
(9)

In the case that a compatible strain field εij (or equivalent F) is imposed

on a specimen, a local strain ε
(k)
ij at position x is required to equal the global

strain εij(x) for the corresponding continuum

ε
(k)
ij (x) = εij(x) (10)

The strain energy of the discrete system can thus be formulated as:

Ud =
1

2

Nc∑
k=1

(
L(k)

)2

[
kn

(
εijξ

(k)
i ξ

(k)
j

)(
εklξ

(k)
k ξ

(k)
l

)
+

ks

(
εmnξ

(k)
n − εijξ

(k)
i ξ

(k)
j ξ(k)

m

)(
εmkξ

(k)
k − εlkξ

(k)
l ξ

(k)
k ξ(k)

m

)]
(11)

2.3. Strain energy in a continuum system

By applying a compatible strain field (can be uniform or position-dependent)
to a given domain Ω in a continuum, the stored strain energy Uc should be:

Uc =
1

2

∫
Ω

σijεijdΩ =
1

2

∫
Ω

CijklεklεijdΩ (12)

where Cijkl is the elastic stiffness tensor of the material; the expansion of
strain energy in the case of a uniform strain field is:

Uc =

{
1
2

(σ11ε11 + σ12γ12 + σ22ε22)S (2D)
1
2

(σ11ε11 + σ22ε22 + σ33ε33 + σ12γ12 + σ13γ13 + σ23γ23)V (3D)
(13)

where γij is the engineering shear strain with γij = 2εij(i 6= j); S and V
represent the area (2D) and volume (3D) of the domain, respectively.
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As stated in Section 2.1, a set of reasonable particle-scale parameters
should minimise the strain energy between the bonded particle and contin-
uum systems, when subjected to the same imposed strain field. So the cali-
bration of particle-scale parameters can be reformulated into a minimisation
problem as:

[kn, ks] = argminL(kn, ks) (14)

where the loss function L can be formulated as:

L =
1

4

{∫
Ω

CijklεklεijdΩ−
Nc∑
k=1

(
L(k)

)2

[
kn

(
εijξ

(k)
i ξ

(k)
j

)(
εklξ

(k)
k ξ

(k)
l

)
+

ks

(
εmnξ

(k)
n − εijξ

(k)
i ξ

(k)
j ξm

(k)
)(

εmkξ
(k)
k − εlkξ

(k)
l ξ

(k)
k ξ(k)

m

)]}2

(15)

2.4. Virtual strain field

To calculate the strain energy of a system, one has to specify the defor-
mation or strain fields applied. Here virtual strain fields are imposed on both
the continuum and bonded particle systems and the parameter calibration is
performed completely based on virtual strain energies. Fig. 3 demonstrates
two virtual loading cases: (1) a compressive strain field, and (2) a pure shear
strain field on a 2D domain. These two strain fields are mathematically
described as:

(1)

[
0 0
0 δε22

]
(vertical compression); (2)

[
0 δε12

δε21 0

]
(pure shear)

where ε22 and ε12 are infinitesimal compressive or shear components of a
virtual strain field, which is equivalent to a virtual linear displacement field
in the body. Note that these strain fields applied are completely nominal and
no real simulations are performed on the specimens.

For an isotropic solid, the elastic properties of the specimen can be de-
termined provided that two individual elastic parameters are known. Two
different strain fields, which can be normal (compressive or tensile) or pure
shear strain, are thus required, as will be explained in Section 2.5. Such
a selection of loading cases is normally sufficient to calibrate particle-scale
parameters for an isotropic solid from a macroscopic perspective.

When considering multiple (N) strain fields, this would be a multi-objective
optimisation problem, but can be reduced to a single objective optimisation
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(a) Compressive strain (b) Shear strain

Figure 3: Schematics of imposed virtual strain fields (2D)

problem with its loss function L being the average of the corresponding in-
dividual loss functions Li:

L =
1

N

N∑
i=1

Li (16)

2.5. Simplified calibration solutions for a linear bond model with uniform
contact stiffness

For a bonded particle system with a linear bond model and two uniform
interaction stiffnesses kn and ks, the loss function L in Eq. (14) is a quadratic
function. The first-order gradients of the loss function with respect to kn and
ks can be derived:

∂L
∂kn

= −1

2

Nc∑
k=1

(
L(k)

)2 (
εopξ

(k)
o ξ(k)

p

) (
εqrξ

(k)
q ξ(k)

r

){∫
Ω

CijklεklεijdΩ−

Nc∑
k=1

(
L(k)

)2

[
kn

(
εijξ

(k)
i ξ

(k)
j

)(
εklξ

(k)
k ξ

(k)
l

)
+

ks

(
εmnξ

(k)
n − εijξ

(k)
i ξ

(k)
j ξ(k)

m

)(
εmkξ

(k)
k − εlkξ

(k)
l ξ

(k)
k ξ(k)

m

)]}
(17)
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∂L
∂ks

= −1

2

Nc∑
k=1

(
L(k)

)2 (
εopξ

(k)
p − εqrξ(λ)

q ξ(k)
r ξ(k)

o

) (
εstξ

(k)
t − εuvξ(k)

u ξ(k)
v ξ(k)

s

)
{∫

Ω

CjiklεklεijdΩ−
Nc∑
k=1

(
L(k)

)2

[
kn

(
εijξ

(k)
i ξ

(k)
j

)(
εklξ

(k)
k ξ

(k)
l

)
+

ks

(
εmnξ

(k)
n − εijξ

(k)
i ξ

(k)
j ξ(k)

m

)(
εmkξ

(k)
k − εlkξ

(k)
l ξ

(k)
k ξ(k)

m

)]}
(18)

The optimal kn and ks that minimise the loss function L can be found
from the conditions

∂L
∂kn

= 0,
∂L
∂ks

= 0 (19)

which can be reduced to a linear equation

an1kn + bs1ks = c1 (20)

where

an1 =
Nc∑
k=1

(
L(k)

)2
(
εijξ

(k)
i ξ

(k)
j

)(
εklξ

(k)
k ξ

(k)
l

)
bs1 =

Nc∑
k=1

(
L(k)

)2
(
εmnξ

(k)
n − εijξ

(k)
i ξ

(k)
j ξ(k)

m

)(
εmkξ

(k)
k − εlkξ

(k)
l ξ

(k)
k ξ(k)

m

)
c1 =

∫
Ω

CjiklεklεijdΩ

In order to uniquely determine kn and ks, one more independent strain
field needs to be imposed to the specimen to obtain the second linear equation

an2kn + bs2ks = c2 (21)

where an2, bs2 and c2 can be evaluated in a similar way under the second
strain field. Then the values of kn and ks can be found by solving Eqs. (20)
and (21) simultaneously in the following closed form

kn =
c1bs2 − c2bs1
an1bs2 − an2bs1

ks =
an1c2 − an2c1

an1bs2 − an2bs1

(22)
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Although Eq. (22) can yield a group of unique values for kn and ks, dif-
ferent combination of strain fields will give rise to different optimal solutions.

In the case of non-uniform kn and ks, i.e., the stiffness values vary from
bond to bond, the unique solutions of the unknown stiffnesses (both normal
and tangential) can only be obtained provided that the number of unknown
stiffnesses is equal to the number of mutually different strain fields imposed.
However, it is practically difficult to implement such a large number of strain
fields simultaneously. Therefore, the solutions of non-uniform kn and ks pa-
rameters will have to be sought using other methods. This part of extension
will be investigated in our future work.

3. Applications to parallel bond modelling in DEM

The parallel bond (PB) model, originally developed by Potyondy and
Cundall [46], is probably the most prevalent model for the simulation of
various cohesive solids in the DEM framework [47, 48, 49]. In this section, we
attempt to incorporate the parallel bond model into the proposed calibration
method. The detailed formulation conversion and simulation requirements
are elaborated. Such an extension will enable an efficient calibration for DEM
simulations of cohesive interactions between particles using the PB model.

3.1. The formulations of linear parallel bond contacts

The mechanical behaviour of a parallel bond is governed by two separate
parts: the first part is equivalent to the linear contact model, while the
second part is the parallel bond contact (see Fig. 4). A parallel bond can
resist tensile loads and moments when bonded but the linear contact model
cannot. These two contact models act in parallel with each other when
undergoing external loads. Therefore, for a compressive load, both linear
and parallel bond models will act simultaneously. For tensile loads, only the
parallel bond part involves computations.

The parallel bond model conceptually implements a group of evenly dis-
tributed elastic springs with constant normal and tangential stiffnesses over
a cross-section lying on the contact plane. The normal and tangential forces
( Fn and Fs, respectively) for the parallel bond model are updated as follows:

Fn := Fn + k̄nĀ∆δn (23)

F := Fs − k̄sĀ∆δs (24)
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Figure 4: Contact behaviour of a parallel bond contact model: (a) two particles and their
contact; (b) bonded contact, and (c) unbonded contact [50]

where k̄n, k̄s, ∆δn and ∆δs are relative normal- and shear- parallel bond stiff-
nesses and displacement increment, respectively; k̄n and k̄s represent the unit
stiffness over the interaction area, and their dimension is [stress/displacement]
while the counterpart for the linear model is [force/displacement]. Ā is the
cross-sectional area and its value can be calculated as:

Ā =

{
2R̄, 2D
πR̄2, 3D

, with R̄ = λ̄min
(
R(1), R(2)

)
(25)

where λ̄ is the radius multiplier, and R(1) and R(2) are the radii of the two
contacting particles.

3.2. Parameter assignment when using a parallel bond model

The bond stiffness values calibrated from the proposed method are the
total stiffnesses of an interaction, similar to the beam stiffness in the beam-
particle approach [2]. Considering the basic formulation of a parallel bond
model in Section 3.1, a feasible strategy to ensure the same tensile and com-
pressive stiffness when undergoing external loads is by inactivating the linear

15



contact part, i.e. using the parallel bond part only before the damage of con-
tacts occurs. Furthermore, the parallel bond stiffnesses should be converted
from the derived stiffnesses as shown below:

k̄n =
kn

2λ̄min (R(1), R(2))
, k̄s =

ks
2λ̄min (R(1), R(2))

(26)

4. Numerical verifications

Four numerical examples are used to verify the applicability of the pro-
posed strain energy-based calibration methodology to particle-based meth-
ods for modelling solid materials. Section 4.1 is a hexagonal cantilever beam
subjected to bending moment and end loads; Section 4.2 demonstrates a 2D
uniaxial tensile testing case; Section 4.3 gives 3D uniaxial compression tests;
and Section 4.4 shows a 3D slender square column subjected to external
loadings at its free end.

4.1. A hexagonal cantilever beam via lattice bond model (plane stress)

To verify the reliability of the proposed calibration method in lattice bond
modelling of solid materials, an example of a 2D cantilever beam subjected
to complex load conditions (a transverse load F , a tensile load P , and a
bending moment M) at the free end of the beam is simulated via lattice
bond models.

The material and geometrical materials are as follows: (1) Youngs mod-
ulus: 21 GPa (2) shear modulus: 8.47 GPa, (3) length: 1 m, (4) height: 0.2
m. A total of 657 lattice nodes are adopted. The lattice bond stiffness values
are calibrated by considering three different combinations of three uniform
strain fields:

(1) SF1, a horizontal strain δε11 and a shear strain δγ12;
(2) SF2, a vertical strain δε22 and a shear strain δγ12;
(3) SF3, a horizontal strain δε11, a vertical strain δε22 and a shear strain

δγ12.
For all the three combined strain fields, the stiffness parameters can be

computed via Eq. (19) readily but the obtained parameters are different
from each other. The obtained particle-scale parameters are shown in Ta-
ble 1. Note that the volume of the specimen used for calculating the strain
energy in the corresponding continuum should be carefully considered, and
the selection of the volume is associated with the width of the bond between
particles, especially at the boundary of the specimens.
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The closed-form solutions for the axial extension ∆x and transverse de-
flection ∆y of a cantilever beam based on EulerBernoulli beam theory are
given by

∆x =
PL

EA
, ∆y =

FL3

3EI
+
ML2

2EI
(27)

where L and A are the length and cross-section area of the cantilever beam,
respectively; and E is Young’s modulus. The moment of inertia I of a beam
is calculated as

I =


ab3

12
(3D)

b3

12
(2D)

(28)

where a and b are the width and height of the beam, respectively. In this
problem, a total of 4four different load combinations are considered:

Case 1: only a tensile load P=5000 kN;
Case 2: only a bending moment M =-1400 kNm;
Case 3: only a transverse load F=-5000 kN;
Case 4: both a bending moment M=-1400 kNm and a transverse load

F=5000 kN.
In each load case, the bonded particle system using the parameters cal-

ibrated from one of the combined strain fields is solved until a quasi-static
equilibrium state is reached. Note that the analytical solutions in Eq. (27)
may no longer be valid when a large tensile load is imposed on a deflected
beam, as the model may become geometrically nonlinear. Thus the tensile
load condition is only simulated as a separate case in Case 3.

For comparison purposes, the formulae proposed by Griffiths and Mus-
toe [12] and Tavarez and Plesha [13] for estimating the particle-scale stiff-
nesses in a lattice structure are also used. The equations are listed below for
convenience:{

kn = Et√
3(1−ν)

ks = (1−3ν)Et√
3(1−ν2)

(plane stress) or

{
kn = Et√

3(1−2ν)(1+ν)

ks = (1−ν)(1−4ν)Et√
3(1−2ν)

(plane strain)

(29)
where t is the thickness (out of plane direction) of the model and is taken to
be a unit thickness for a 2D model.

The simulated results are illustrated in Fig 5. A detailed comparison
between the lattice bond simulations and the analytical solutions (from beam
theory) is given in Table 1. Note that the focus of Case 1 is the axial extension
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∆x, while Cases 2, 3 and 4 mainly concern the transverse deflection ∆y at
the right end of the cantilever beam.

Figure 5: Hexagonal cantilever beam (a) Case 1: tensile loads; (b) Case 2: a bending
moment; (c) Case 3: a transverse load and (d) Case 4: a bending moment and a transverse
load

The results show that the average error of the closed-form solutions is
about 6.08%, which is higher than those of the other three strain energy-based
solutions. An interesting finding here is that the parameters determined
by SF2 predict Case 1 with relatively large errors, and a similar situation
happens when using the parameters given by SF1 for prediction in Case 2. In
all three strain fields, the parameters given by SF3 yield the best predictions
(an average error of 1.58%). The results indicate that the parameters should
be calibrated with the strain fields as closer as possible to what are expected
to occur in the system concerned. In the condition that the strain fields of
the system cannot be predetermined, several basic strain fields should be
accounted for in the calibration. Thus, the SF3 strain fields will be employed
in the following numerical examples.
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Table 1: Simulated results of cantilever beam modelling

Determination
of kn, ks

Calibrated
kn, ks (Pa)

Loading
cases

Numerical
solutions
(m)

Beam
theory
solutions
(m)

Relative
Errors
(%)

Closed-form
solutions

1.59× 1010
Case 1 1.10× 10−3 1.05× 10−3 5.07
Case 2 -0.0363 -0.0341 6.58

3.61× 109
Case 3 -0.086 -0.0811 6.08
Case 4 0.0501 0.047 6.59

SF1
(δε11+δε12)

1.54× 1010
Case 1 1.06× 10−3 1.05× 10−3 0.68
Case 2 -0.0355 -0.0341 4.11

5.94× 109
Case 3 -0.0837 -0.0811 3.23
Case 4 0.0486 0.047 3.4

SF2
(δε22+δε12)

1.75× 1010
Case 1 9.92× 10−4 1.05× 10−3 7.74
Case 2 -0.0331 -0.0341 2.85

3.95× 109
Case 3 -0.0785 -0.0811 3.2
Case 4 0.0457 0.047 2.79

SF3
(δε11+δε22+δε12)

1.68× 1010
Case 1 1.0510-3 1.05× 10−3 0.13
Case 2 -0.0348 -0.0341 2.12

3.42× 109
Case 3 -0.0825 -0.0811 1.77
Case 4 0.0481 0.047 2.28

4.2. 2D uniaxial tensile test

The calibration framework is further validated with a direct tensile test
of sea ice via DEM. The width and height of the specimen are 0.07 m and
0.175 m, respectively. The specimen consists of 798 circular particles with
the particle radii uniformly distributed in the range from 1.68 × 10−3 m to
2.52 × 10−3 m. Each particle is cemented with its contacting particles via
the parallel bond model.

The macroscopic Young’s modulus and Poisson’s ratio are 10 GPa and
0.3, respectively. Through the proposed calibration method based on the SF3
strain fields, the particle scale normal and tangential stiffnesses are calibrated
as: 8.92 × 109 N/m and 1.68 × 109 N/m, respectively. Then the calibrated
stiffnesses are converted to parallel bond stiffness parameters via Eq. (26).
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Note that the bond strength is set to a relatively large value to ensure that
the whole loading process takes place in an elastic state. The same setting
is applied to all the simulations throughout this study.

When performing the test, the particles at the top and bottom rows
are identified as boundary particles. The tensile loading is implemented by
moving the top row particles upwards and the bottom particles downwards
at a rate of 1× 10−4 m/s. No force or displacement conditions are imposed
on the lateral boundaries of the specimen. The model configuration is shown
in Fig. 6.

Figure 6: 2D uniaxial tension test

During testing, the stress is computed by averaging the contact forces
within a measurement circle with a radius of 0.0324 m in the centre of the
specimen. The strain is measured by the average relative displacements of the
top and bottom boundary particles divided by the initial distance between
them. The loading is terminated when an axial strain of 5× 10−4 is reached.
The stress-strain curve is shown in Fig. 7. A linear relation is observed and
the corresponding Young’s modulus is 1.02 × 1010 Pa, with a relative error
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of 2.11% compared to the targeted Youngs modulus.

Figure 7: Stress-strain curve for the 2D uniaxial tension test

4.3. 3D uniaxial compression tests

A 3D uniaxial compression test (UCT) is performed with a parallel bond
model in DEM to show the applicability of the proposed calibration frame-
work in a 3D scenario. To generate a densely packed and well-connected
assembly to reproduce a solid with highly interlocked grains, the modelling
is performed with six steps:

(1) Generate initial assembly: a total of 4196 spherical particles with their
radii uniformly distributed from 0.1 to 0.2 m are generated within a cubic
domain.

(2) Install prescribed confining pressures: by running DEM models and
moving the boundaries iteratively to develop an isotropic confining pressure
of 100 kPa.

(3) Eliminating the number of floating particles: Loop through all the
particles and recognise the floating particles which have a contact number
less than 3. The radii of floater particles are multiplied by a factor of 1.02
and the model is rerun to an equilibrium state. Repeat the procedure until
the number of floating particles is reduced to zero.

(4) Parameter calibration: Obtain the corresponding contact or bond
stiffnesses based on the proposed calibration method in Section 2.
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(5) Install parallel bond contacts: The parallel bond model is installed
all over the assembly and the calculated parameters in Step 4 are assigned
to the parallel bond model following the parameter conversion in Eq. (26).
Note that inter-particle contacts are inactivated and only the parallel bond
contact is adopted.

(6) Remove specimen boundary: The boundary constraints are removed,
and the model is solved to an equilibrium state. Now the model generation
stage terminates, and the specimen is ready for tests.

In this example, an isotropic cubic solid is simulated. The macroscopic
properties are Young’s modulus: 2.1 × 1010 Pa and Poisson’s ratio: 0.24.
By considering the SF3 combination of strain fields, the calibrated particle-
scale normal and tangential stiffnesses via Eq. (19) are 1.53 × 1010 Pa, and
4.54× 109 Pa, respectively.

A layer of particles at each of the six boundaries of the specimen is recog-
nised as a boundary plate. The loadings are implemented by moving the
boundary particles at a fixed rate. For example, as shown in Fig. 8, the up-
per plate moves downwards, and the bottom plate moves upwards to impose
the compressive force along the vertical direction. Note that three separate
groups of loadings along different directions (x, y, and z directions in the
global coordinate frame) are required to obtain Young’s modulus in each
direction. The strain is computed by dividing the initial distance between
the two loading plates by the relative average displacements between them.
The stress is measured by creating a measurement sphere in the centre of the
specimen and by averaging the contact forces within the sphere.

The stress-strain curves along the three directions are shown in Fig. 9.
It is found that the specimen exhibits a linear elastic behaviour as there is
no irreversible damage happening at such a small strain range. The slope
of each stress-strain curve represents Youngs modulus in this direction. The
obtained three Youngs moduli can be found in Table 2. An average error of
3.92% in the three directions demonstrates that the bond-scale parameters
are well-calibrated by the proposed method.

Note that the UCTs in this section are simulated only with particles and
no wall elements are involved. If the contact parameters between particles
and wall elements need to be considered in the calibration procedure, the
verification problem should incorporate the particle-wall contacts, and vice
versa.
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Table 2: Simulated results of UCTs

Direction
Targeted Youngs
modulus (Pa)

Actual Youngs
modulus (Pa)

Relative
error (%)

x
2.1× 1010

20364364798 3.03
y 20522670058 2.2
z 19646465027 6.4

Figure 8: Uniaxial compression tests

4.4. 3D slender square column

A 3D slender square beam simulated with bonded DEM is employed as
the final example to validate the calibration method. The height and width
(side length of a square) of the column are 1.44 m and 0.2 m, respectively.
The base end of the column is fixed while the top end can move freely.

A total of 7300 spherical particles are used to simulate the column, with
the radius and the density of particles being 1 cm and 2600 kg/m3. The
macroscopic Young’s modulus and Poisson’s ratio are 22.1 GPa and 0.24, re-
spectively. By using the proposed calibration method, the bond-scale normal
and tangential stiffnesses are found to be 4.513× 1010 N/m and 3.592× 1010

N/m, respectively. The corresponding parallel bond stiffnesses for each bond
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Figure 9: Small-strain stress-strain relation for a cubic solid

are calculated via Eq. (26) and assigned accordingly.
We consider three different loading conditions at the top of the specimen:

Case 1: a horizontal load; Case 2: uniform pull loads; and Case 3: a bending
moment. These loads are uniformly imposed on the top end of the specimen.
The simulated results are provided in Table 3, after the specimen reaches a
static equilibrium state. The cross-section and final deformation state of the
column are depicted in Fig. 10. The simulated results are compared with the
analytical solutions given by Eqs. (27)-(28) and an average error of about
6.08% is found for the three loading cases. Note that Cases 1 and 3 focus on
the transverse deflection ∆y while Case 2 mainly concerns the axial extension
∆z at the free end of the column. These results further confirm the reliability
of the proposed calibration framework.

Table 3: Simulated results of 3D slender square column modelling

Case Loads
Numerical
solutions
(m)

Analytical
solutions
(m)

Relative
error (%)

Case 1 Fy = −3× 109 N -0.101 -0.107 5.61
Case 2 P = 1× 1011 N 0.016 0.017 5.88
Case 3 Mx = −2× 1011 Nm 0.069 0.074 6.76
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Figure 10: The cross section and final deformation state of the simulated slender columns

5. Discussion

In the preceding section, four different simulations have been employed
to verify the reliability of the proposed calibration framework. The opti-
mal calibrated parameters can be obtained efficiently by solving a system of
two linear equations in each case. Thus convergence is always guaranteed
in the current framework. Also, a unique solution exists for a given pack-
ing subjected to a certain combination of external deformation fields in our
proposed framework, although different selections of strain fields will yield
different unique solutions. In this section, a few more aspects of the proposed
calibration procedure are discussed below.

5.1. The origins of calibration error in the proposed framework

Although the calibrated parameters can reproduce the desired macro-
scopic elastic property satisfactorily, there is always a small discrepancy
between the discrete and continuum systems. A few reasons might be re-
sponsible for this error.
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Firstly, a global strain occurring throughout a continuum is assumed to
be the same as the local strain of all interactions in the corresponding dis-
crete system. However, in lattice/particle bonded models, external loads are
transferred in an inhomogeneous force-chain way. The actual strain field oc-
curring in the models can be highly complicated. Secondly, the selection of
strain fields relates to calibration accuracy. When the parameters are cali-
brated with the strain fields that the discrete system will exactly experience,
relatively high accuracy can be expected. As it is not straightforward to
precisely characterise the strain fields in a boundary value problem (BVP),
we often can only make use of several basic strain fields for calibration. In
this study, all the verification examples adopt uniform fields by considering
their combinations of several compression or shear strain fields.

Note that only normal and tangential relative displacements between par-
ticles are considered in this work. The interparticle rotation or twisting can
also store deformation energy if rotation-related bond interactions are con-
sidered. The additional parameters involved can also be calibrated within
the proposed framework.

5.2. The alternative linear elastic parameters represented with Young’s mod-
ulus and stiffness ratio

In addition to normal and tangential stiffnesses, an alternative way to
characterise particle-scale elastic parameters in bonded DEM is by using
particle-scale Young’s modulus E∗ and the normal to tangential stiffness
ratio k∗. These two sets of representation methods are interchangeable. For
a bond k, we have:

kn = AE∗/L(k) (30)

ks = kn/k
∗ (31)

A =

{
πR̄2 (3D)
2R̄ (2D)

, R̄ = min
(
R(1), R(2)

)
(32)

By substituting Eqs. (30-31) into Eq. (15), the original loss function can
be formulated as:

L =
1

4

{∫
Ω

CijklεklεijdΩ−
Nc∑
k=1

AE∗L(k)

[(
εijξ

(k)
i ξ

(k)
j

)(
εklξ

(k)
k ξ

(k)
l

)
+
(
εmnξ

(k)
n − εijξ

(k)
i ξ

(k)
j ξ(k)

m

)(
εmkξ

(k)
k − εlkξ

(k)
l ξ

(k)
k ξ(k)

m

)
/k∗
]}2

(33)
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The gradients of L to E∗ and k∗ can be analytically derived from Eq. (33).
The optimal particle-scale parameters can be found by enforcing the first-
order gradients to be zero under two imposed independent strain fields.

5.3. Extending to nonlinear elastic (Hertz-type) calibration

The bond behaviour can be linear or non-linear. The magnitude of the
normal force fn of a non-linear elastic model is formulated as:

fn =
2(2R̄)1/2G∗

3 (1− v∗)
(∆un)αh (34)

where αh is a power-law exponent with αh > 1 . The selection of αh depends
on different scenarios. For the Hertz-type model, αh = 1.5 .

For the tangential direction, the magnitude of the tangential force fs is
proportional to the tangential displacement within the Coulomb limit:

∆fs = ks∆us (35)

The analytical expression of a tangential stiffness is difficult to precisely
determine because it is associated with normal interaction forces and pre-
ceding sliding history. There are currently a few different formulations for
tangential stiffnesses in the literature [51, 52, 53, 54]. Here, a widely used
equation for the nonlinear elastic tangential stiffness ks is adopted [53]:

ks =
2 (1− ν∗)

2− ν∗
αh

[
2G∗
√

2R̄

3 (1− ν∗)

]1/αh

(fn)(αh−1)/αh (36)

Then the strain energy stored in a nonlinear elastic model can be expressed
as:

U =
αh

(αh + 1)

(fn)2

kn
+

1

2

(fs)
2

ks
(37)

In the case of the Hertz-type model, the normal and tangential stiffnesses
can be reformulated as:

kn =
∂fn
∂δn

=
(2R̄)1/2G∗

(1− ν∗)
δ1/2
n =

[
3R̄G∗2

(1− ν∗)2

]1/3

(fn)1/3 (38)

ks = 2(G∗)(2/3)
[
3 (1− ν∗) R̄fn

]1/3
/ (2− ν∗) (39)
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The strain energy inside the whole specimen is given by:

Ud =
Nc∑
k=1

{
3

5

[
(1− ν∗)2

3R̄G∗2

]1/3 (
∆u(k)

n

)5/3

+
G∗(2/3)

[
3 (1− ν∗) R̄f (k)

n

]1/3

(2− ν∗)
(
∆u(k)

s

)2

}
(40)

The loss function then becomes:

L =

〈
1

2

∫
Ω

CijklεklεijdΩ−
Nc∑
k=1

{
3

5

[
(1− ν∗)2

3R̄G∗2

]1/3 (
∆u(k)

n

)5/3

+
G∗(2/3)

[
3 (1− ν∗) R̄f (k)

n

]1/3

(2− ν∗)
(
∆u(k)

s

)2

}〉2

(41)

By considering the relation between the strain tensor and the interparticle
displacements in Eqs. (6) and (8), the strain energy within a solid specimen
(Eq. (40)) can be represented with the macroscopic strain directly. Then the
gradients of the loss function L to G∗ and ν∗ can be analytically obtained
by using symbolic computation, via, e.g., Mathematica or SymPy package in
Python. However, the derived gradients are also nonlinear and an iterative
procedure, such as Newton-Raphson, may need to be used to find the optimal
solutions.

5.4. Extending to the calibration of particle-wall contact parameters

Although all the analytical derivations and numerical examples above
only involve particle-particle contacts, the proposed framework can be ap-
plied to the calibration of particle-wall contacts as well. Then the strain en-
ergy stored in particle-wall contacts should be counted as part of the strain
energy in the discrete system. Also, each contact length L(k) should be the
distance between the particle and the wall. In the case that the particle-
particle contact parameters equal to those of particle-wall contacts or both
types of parameters have a quantitative relation between them, two mutually
independent strain fields are sufficient to calibrate the parameters. In the
case that particle-wall contact parameters do not equal to those of particle-
particle contacts and no explicit relation is predefined between them, at least
four mutually different strain fields are required.
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6. Concluding remarks

In this study, a generic strain energy-based calibration framework with
novelties in several aspects has been proposed to calibrate the elastic param-
eters of particle-based modelling for solid materials. The approach is devel-
oped based on the idea of minimising the difference of strain energy between
the discrete and continuum systems under certain strain deformations. Dif-
ferent from all the existing calibration methods, the proposed method offers
an innovative solution for the parameter calibration of discrete element mod-
elling or lattice bond modelling by taking full account of the actual micro-
structure of the model. The flexibility of strain fields selected for calibration
also provides a chance to enable the calibrated parameters to suit all kinds
of potential deformation conditions. Particularly, the calibration efficiency
of this approach resembles the need of solving only a linear system of equa-
tions but has better applicability than traditional analytical methods. The
calibration accuracy is close to advanced surrogate models or optimisation-
based methods with many tentative simulations, but the proposed framework
is much more efficient.

The idea of decoupling is one of important reasons contributing to high
calibration efficiency of the proposed method. As we have stated in Section
2.1, all the parameters to be calibrated are decoupled as elastic and strength
parameters. The focus of this study is the calibration of elastic parameters,
while the other irreversible deformation phenomenon, such as evolving parti-
cle positions and brittle damage (e.g. bond breakage) are related to strength
parameters and thus not considered. For the calibration of strength parame-
ters, one may refer to the physics-informed optimisation framework reported
in our previous work [45].

The proposed method can be easily implemented. Without resorting to
the aid of third-party packages or software, the proposed method only re-
quires simple computations associated with the microstructural information
of a given particle/lattice system. Thus, the method can be readily imple-
mented not only in in-house codes but also in all major DEM computation
packages.

As having been described and verified, the proposed method is well ap-
plicable to circular/spherical particle-based packings, irrespective of loose
or dense, monodisperse or polydisperse specimens. However, in this study
the elastic strain energy in a discrete system is analytically calculated for
discs/spheres based on a uniform strain homogenization assumption, to en-
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sure an efficient calibration without involving extra computational costs. For
non-spherical particles, it may not be easy to determine the elastic strain en-
ergy in an analytical way. Instead, one may consider quantifying the strain
energy in a numerical manner. In addition to non-spherical particles and
the possible extensions discussed in Section 5, the calibration of anisotropic
elasticity and non-uniform normal and tangential interaction stiffnesses can
also be considered within the proposed framework. All these possibilities will
be further exploited and examined in our future work.
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