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Abstract

The flow of nematic liquid crystals can be described by a highly nonlinear stochastic hydrodynamical
model, thus is often influenced by random fluctuations, such as uncertainty in specifying initial conditions
and boundary conditions. In this article, we consider a 2-D stochastic nematic liquid crystals with the
velocity field perturbed by affine-linear multiplicative white noise, with random initial data and random
boundary conditions. Our main objective is to obtain the global well-posedness of the stochastic equations
under the sufficient Malliavin regularity of the initial condition. The Malliavin calculus techniques play
important roles when we obtain the global existence of the solutions to the stochastic nematic liquid
crystal model with random initial and boundary conditions.

Keywords: Stochastic nematic liquid crystals flows; Anticipating initial condition; Malliavin derivative; A
priori estimates; Skorohod integral

1 Introduction

The liquid crystal is an intermediate state of a matter, which possesses some typical properties of a liquid
as well as some crystalline properties. One can observe the flow of nematic liquid crystals as slowly moving
particles where the alignment of particles and the velocity of the fluid sway each other. The history of
the hydrodynamic theory for liquid crystals traces back to 1960’s, Ericksen [8] and Leslie [12] expanded the
continuum theory to design the dynamics of the nematic liquid crystals. The so-called Ericksen-Leslie system
is well designed for describing many special flows for the materials, especially for those with small molecules,
and is widely applied in the engineering and mathematical communities for studying liquid crystals.

Later on, the most fundamental form of dynamical system describing the orientation as well as the
macroscopic motion for the nematic liquid crystals was introduced by Lin-Liu [13]:

dv +[(v-V)v — uAv + Vpldt = =V - (Vd © Vd)dt,V - v =0,
dd + (v - V)ddt = v(Ad + |Vd|*d)dt, |d|* = 1.

In order to avoid the nonlinear gradient in the above system, as suggested by Lin-Liu [13], one can use
the Ginzburg-Landau approximation to ease the constraint |d|> = 1, and the corresponding approximation
energy is

1 1
~|vd|® + —(|d]* — 1)?| dz.
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Then one arrives at the following approximating system

dv +[(v-V)v — pAv + Vpldt = -V - (Vd © Vd)dt,
V.-v=0,

1
dd + (v - V)ddt = v (Ad - —(d]* - 1)d> dt.
U

The above system can be viewed as the simplest mathematical model whilst still keeps the most important
mathematical structure as well as essential difficulties of the original Ericksen-Leslie system (see [13]). This
deterministic system with Dirichlet boundary conditions has been well studied in a series of work theoretically
(see [13, 14]) and numerically.

Along with the developments of the deterministic system, the random case has also drawn a lot interests
in recent years. In the papers [1, 2], Brzezniak-Hausenblas-Razafimandimby studied the nematic crystal flow
model perturbed by multiplicative Gaussian noise and gave the global well-posedness for the weak and strong
solutions in 2-D case. For the pure jump noise case in 2-D, Brzezniak-Manna-Panda [3] obtained the global
well-posedness for the martingale solution. A weak martingale solution result was also established for three
dimensional stochastic nematic liquid crystals with pure jump noise in [3]. Meanwhile, the authors in [3]
also proved the Wentzell-Freidlin type large deviations principle for the two dimensional stochastic nematic
liquid crystals using weak convergence method.

As far as we know, the present work is the first attempt to study stochastic nematic liquid crystal
equations with random initial and boundary conditions. Our motivation firstly derives from the limitation
of predicting dynamical behavior in nonlinear systems due to uncertainty in initial data, which has been
widely investigated (see [10]). The related study has drawn a lot attention in the geophysical community
(see [18, 19, 20]). Our main result in this article implies that each stationary point of the present stochastic
model generates a pathwise anticipating stationary solution of the Stratonovich stochastic equations. Another
motivation of our work is that, near stationary solutions, multiplicative ergodic theory techniques ensure the
existence of local random invariant manifolds which necessarily anticipate the driven noise. One can refer
to [7, 16] and related works for more details. Hence, the study of a dynamic characterization of semiflows as
well as invariant manifolds will appeal to the analysis of the stochastic nematic liquid crystal equations with
anticipating initial data and corresponding random boundary conditions. This can be viewed as a necessary
first step in the analysis of the regularity of invariant manifolds.

In this article, we consider in D x R, , where D C R? is a bounded domain with smooth boundary, the
stochastic version of the nematic liquid crystals flows with random initial and boundary conditions. The
model is formalized in details as follows:

vi+ (v:-V)v—pAv+Vp+ AV - (Vde Vd) = Zakv o Wy, + UOI/IA;O, (1.1)
k=1
V-v(t) =0, (1.2)
1
dt—l—(v-V)d—v(Ad—nQ(dQ—l)d) =0. (1.3)

The unknowns are the fluid velocity field v = (v!,v?) € R?, the averaged macroscopic/continuum molecular
orientation field d = (d',d?,d3) € R?, and the pressure function p(x,t). p,\,7 are positive constants and
stand for viscosity, the competition between kinetic and potential energies, and macroscopic elastic relaxation
time for d, respectively. The operation [Vd ® Vd];; yields a 2 x 2 matrix whose entry is given by

3
VAo Vd]; =Y 0,,d"0,,d", i,j=1,2.
k=1
For the stochastic term, {Wi(t)¢cjo,77}x>1 is a sequence of independent, identically distributed one dimen-
sional Brownian motions which are also independent of a space-time noise Wy(¢,x). The space-time noise

Wo(t,z) is a Brownian in the time variable ¢ € R, and smooth in the space variable z € D. Wy, /V[70 are
the formal time derivatives. The random forces are all defined on the same completely filtered Wiener space
(0, F, (Ft)i>0,P). We also assume that og € R and Y - | 07 < oo.



We supplement the stochastic nematic liquid crystals equations with the following random initial and
boundary conditions:

v(z,0) = R,(z), d(z,0) = R4(z), for x € D; (IC)
v(z,t) =0, d(z,t) = Rq(z), for (x,t) € 0D x RT, (BC)

where the initial conditions R,,, Rq are F ® B(D)-measurable random fields on D.

In this article, our main objective is to establish the global well-posedness of the stochastic model (1.1)-
(1.3), with random initial and boundary conditions (IC)-(BC). In the following, we would like to list some
essential difficulties and novelties of this article.

1. Compared with 2-D Navier-Stokes equations [16], the stochastic nematic liquid crystal model is more
complicated since there are three nonlinear terms with different forms, and this causes essential diffi-
culties in obtaining moment estimates. To overcome this difficulty, we take advantage of the special
geometric structure of the nematic liquid crystal equation to obtain the adjoint estimate of V-(Vd®Vd)
and (v - V)d. This is essential to establish the a priori estimates for the solutions.

2. In [16], the random initial data is required to be in the strong solution space, so as to show the weak
solution is Malliavin differentiable. With an approximating argument, they have achieved the Malliavin
derivatve of the weak solution without extra assumption. The aim of our article is to obtain the global
well-posedness of the strong solution to the nematic liquid crystal equation with random initial and
boundary conditions. During the procedure, we observe that the regularities of the strong solution are
sufficient for obtaining nice bounds of nonlinear and coupling terms. Therefore, we prove the Malliavian
differentiability of the strong solution without using approximating method. Moreover, we conclude
that, if the existence of the strong solution is not available for a stochastic nonlinear equation, one
can not obtain the Malliavin derivative of the weak solution. Throughout our work, we infer that, the
structure of the stochastic equation should be regular enough, so as to address the global well-posedness
of the stochastic model with random initial and boundary conditions. In other words, for a nonlinear
partial differential equation, if the global well-posedness is only valid for the weak solution, then one
cannot achieve the global well-posedness of the corresponding stochastic version with random initial
data and random boundary condition. This is a significant difference between the partial differential
equations and stochastic partial differential equations.

3. As shown in (1.1)-(1.3), our model deals with the case that only the velocity field is disturbed by the
noise. This is because one needs to make use of the particular geometric structure of the nematic liquid
crystals equations, the basic balance law (see [13] or Lemma 2.4 for reference), to obtain the energy
estimates of velocity field as well as orientation field in certain regular spaces. We would also like to
point out that, according to our work, the structure of the stochatic equations should be regular enough
in order to obtain the global well-posedness of the stochastic model with random initial conditions.
That is to say, for a nonlinear partial differential equations, if the global well-posedness is only valid
in the weak sense, then one can not obtain the global well-posedness for the corresponding stochastic
model with random initial conditions.

4. In this article, we consider the initial and boundary problems for the nematic liquid crystal equations
with multiplicative noise, here both the initial and boundary conditions are random, which leads to
the stochastic integral defined via Skorohod integral, instead of It integral. Thus, in order to show
the global well-posedness result for the random initial and boundary problems (see Theorem 2.10 or
Theorem 5.1), we must establish the regularities of the solutions with respect to the initial data as
well as the sample path. Specificaly saying, we need to show the solutions v(¢, R,,w),d(t, R4, w) are
differentiable with respect to the random fields R,, R4 and sample path w. We would like to mention
that the regularity results established in Theorem 3.7 and Theorem 4.2 are new and profound which do
not exist in previous work even for the deterministic case. In the proving process, the main difficulties
lie in bounding the highly nonlinear terms and the coupling terms. So in order to conquer that, we make
full use of the geometric structure obtaining more delicate estimates: Proposition 2.5, Proposition 2.6,
which are key a priori estimates to establish the regularities of the present stochastic system with
random initial and boundary conditions.



The rest of this article is organized as follows: in Section 2, we define some functional spaces and give the
abstract model expression for the stochastic model. The main result is also given in this section. In Section 3,
the a priori estimates and new regularity properties of the solutions are established, according to which, we
discuss the Fréchet differentiability of the stochastic model with deterministic initial conditions.Furthermore,
Malliavin differentiability of the stochastic model with deterministic initial conditions is discussed in Section 4
upon Galerkin approximations. Finally, in Section 5, we get back to the anticipating model and prove
the global well-posedness of the stochastic nematic liquid crystals flows with random initial and boundary
conditions.

As usual, the constant C' may change from one line to another except that we give a special declaration,
we denote by C(a) a constant that depends on some parameter a.

2 Preliminaries and the main result

We first set a space
V ={ve (C&D)*:V-v=0}.

Now we define spaces H, V, and H™ as the closure of V in (L?*(D))?, (H*(D))? and (H™(D))?, respectively.
Let |- |2 and (-, ) be the norm and inner product in the space H, and let ||-||; and (,)v stand for the norm
and the inner product in the space V, where (, )y is defined by

(v,u)y := / Vv -Vudz, for v,ueV.
D

Moreover, by Poincaré’s inequality, there exists a constant ¢ such that for any v € V we have ||v]|; < ¢|Vv|a.

Let H™ = (H™(D))3,m =0,1,2,.... When m = 0, set H = H° = (L?(D))3 for simplicity. Then similarly,
let |- |2 and (-,-) be the norm and inner product in the space H, and let ||-||; and {,)m stand for the norm
and the inner product in the space H!, where (, )y is defined by

(d, ) ;:/ d~bd9c+/ Vd - Vbdz, for d,bec H'.
D D

Denote by V' the dual space of V, and define the linear operator A; : V — V' as follows:
(A1v,u) = (v,u)y, for v,ue V.

Since the operator A is positive self-adjoint with compact resolvent, by the classical spectral theorem, A;
admits an increasing sequence of eigenvalues {«a;} diverging to infinity with the corresponding eigenvectors
{e;}. Assume

Z)\iaf < 0. (2.1)
i=1

Let D(A;) := {v € V,A;v € H}, since A" is a self-adjoint compact operator as well, due to the classic
spectral theory, we can define the power A for any s € R. Moreover, D(A;) = D(A;?) is the dual space of
D(A;). And we have the compact embedding relationship

D(A) CVCHEH C V' C DA, and (-, -}y = (A;-,-) = (A7, AZ.).

We define another operator A, : H2 — H by —A satisfying D(A3) := {d € H*;d = Ry(x) € H? on dD}.
Obviously, we have the compact embedding relationship

H2CcH'cH=H c (H') c (H?).
Define the trilinear form b, by

2
bi(u,v,w) = Z / ui[“)mivjwjdm, for u € H and v,w € V and integral exists.
ij=1"D



If u,v,w € V, then
[b1(w, v, w)| < clulz||v][1]|wl]:.

Now we define a bilinear form Bi(u,v) := bi(u,v,-), then Bi(u,v) € V' for u,v € V and enjoys the
following bound:
[1B1(u, v)[lv: < cula[[v]s.

Lemma 2.1. The mapping By : V X V — V' is bilinear and continuous, and by, By have the following
properties:

bi(u,v,w) = =bi(u,w,v), (Bi(u,v),w)=—(Bi(u,w),v), foruv,weV.
b1(u,v,v) =0, (Bi(u,v),v) =0, foru,vevV.

Moreover, if u,v,w € V, we have
1 1 1 1
b1(u, v, w)| = (Bi(u,v), w) < 2[ul3|[ul]{ |v]|w|[|w]?. (22)

Define another trilinear form by by

3 2
bz(v,d,b):ZZ/ 00, &’V dx for v e H,d and b € H'.
j=1i=1"D

Define another bilinear map By on H x H! taking values in H~! such that (Bs(v,d),b) := by(v,d, b).
Lemma 2.2. Forv € V,b € H',d € H?, there exists a constant ¢ such that
[b2(v, d, b)| = [(Ba(v,d), b)| < c[v]2|d]]1][b]]1.

Moreover, we have

1B2(v, )|y < clolal[d]l1, (Ba(v,d),d) = 0.
Now define the trilinear form m by setting
2 3
m(d,b,v)= > > / Oy, "0, b7 0,07 d.
ij=1k=1"D

There exists a bilinear operator M defined on H? x H? taking values in V' such that (M(d,b),v) :=
m(d, b, v). By interpolation inequality, we can easily obtain

Lemma 2.3. For any d,b € H?,v € V, there exists a constant c such that
b bl (bl
Im(d, b, v)| < clld[|F[[d]|3 bl [[b]|3 [Iv]]:-

Thus, for any d,b € H?,
o1 1
[M(d,b)[lv: < clld]{[ld]|3[[b]lf |Ab3.

Now we arrive at the useful basic balance law and we include the proof here for reader’s convenience.

Lemma 2.4 (Basic balance law). For u € V,d € H?, we have

<M(d7 d)v u> = <BQ(ua d)a Ad>
Proof. By integration by parts and the boundary conditions (BC), we have

(M(d,d),u) =(V-(Vd © Vd),u) = /D Oz, (03,d"0,,d")ul da



- / 0y, d" 0y, d" 0y 0 d,
D
and
(Ba(u,d), Ad) =(u-Vd, Ad) = / U0y, d* 0y, dF da
D

=— / O, ' O, d* 0y, d" d — / U Oy, d* Oy, d"
D D

=- / 0, u'0,d" 0, ,d"dz = (M(d, d),u).
D

O

In the following, we will state two important results that are used several times in the rest of the article.

Proposition 2.5. For d,b € H? and u € V, we have

(M(d,b),u) + (M(b,d),u) = (By(u,d), Ab) + (Bs(u, b), Ad).

Proof. By the bilinear property of the operator M, and the basic balance law in Lemma 2.4,

(M(d,b),u) + (M(b,d),u)

=(M(d,d),w) — (M(d = b,d —b),u) + (M(b,b),u)
=(Ba(u,d), Ad) — (Bs(u,d — b), A(d — b)) + (Bz(u, b), Ab)
=(By(u,d), Ab) + (B>(u,b), Ad).

Proposition 2.6. For d,b € H? and u € V, and continuous functions a(s), B(s),s € [0,t], we get
t t t
[ atar@b)uds + [ a1 wds — [ 55)(Ba(ub). Ad)ds
0 0 0

t t
1/2 1/2 1/2 1/2
<2(|a)oo + |Blso) / 1)yl bl b1y ullds + 8w / luf|d]|1 |[b]sds;

/@(s)(M(d,b),u)ds + /@(s)(M(b,d),u)ds - /’,3(5)<Bz(u, b), Ad)ds
0 0 0
§|Oé|oo/0 \u|2|\d||1||b||3d5+(|a|oo+|5|oo)/0 lula[/bl[1|d]|3ds,

where |0 := sup |a(s)],|Ble = sup |B(s)].
0<s<t 0<s<t

Proof. With different time function coeffecients, we apply the identity in Proposition 2.5, together with
Lemma 2.2, Lemma 2.3,

/a(s)(M(d,b),u>ds—|—/ a(s)(M(b,d),u)ds—/ B(s)(Bz(u,b), Ad)ds
0 0 0
- / (a(s) — B(s))(M(d, b), u}ds + / (a(s) — B(s))(M (b, d), u)ds



+ [ B(s)(M(d.b), w)ds + / B(s) (M (b, ), u)ds - / B(s)(Bs(u, b), Ad)ds
0 0 0
- / (a(s) — B(s))(M(d, b), u)ds + / (a(s) — B(s))(M(b, d), u)ds + / B(s)(Bs(u, d), Ab)ds
0 0 0
<2(|afoc + |8loc) / 321y BBl 2l ds + 18]o / [ula/|d]1][bl|sds.

Or, direclty applying Proposition 2.5 and Lemma 2.2,
/ a(s)(M(d, b), u)ds + / a(s)(M (b, d), u)ds — / B(s)(Ba(u, b), Ad)ds
0 0 0
:/ a(s)(Bg(u,d),Ab>ds+/ O[(S)<B2(u7b),Ad>d$7\/ B(s){Bz2(u,b), Ad)ds
0 0 0
_ / a(s)(Ba(u, d), Ab)ds + / (a(s) — B(s))(Bs(u, b), Ad)ds
0 0

t t
Slaloo/o |u|2Hd”1”bH3d5+(|O‘|oo+|6|oo)/0 ulz||bll1(|d][3ds.

O

Remark 2.7. Proposition 2.5 and Proposition 2.6 are very important to bound the nonlinear terms when
we try to obtain the regqularities of the solutions with respect to initial data and sample path, please see the
results in Section 3 and Section 4. In fact, these kinds of reqularities are profound results which do not exist
in previous work even for the deterministic case. In the proving process of these results (see Proposition 3.3,
Proposition 3.5, Proposition 3.6, Theorem 3.7, Proposition 4.1, and Theorem 4.2), the difficulties lie in
bounding the highly nonlinear term which obliges us to take full advantage of the delicate geometric structure
of the stochastic nematic liquid crystals equations. Hence, Proposition 2.5 and Proposition 2.6 are the key
observations to study the reqularities of this stochastic model with random initial data and random boundary
condition.

Finally, f(d) and F(d) are given by

L 2 1 2 2
fld) = ?(|d| —1)d and F(d)= W(Idl -7
We define a function f : [0,00) — R by
~ 1
f(l‘):nﬁ(l‘—l)’ reRy,

then f(d) = f(|d|*)d and denote by F : R® — R the Fréchet differentiable map such that for any d € R3
and ¢ € R3,

F(d)[¢] = f(d) - &.
Set F' to be an antiderivative of f such that F(0) = 0. Then

~ 1
F(x)zﬁ(zz—Zx), reRy.

Definition 2.8. We say a continuous H x H' valued random field (v(.,t),B(.,t)):c(0,1) defined on (Q, F,P)
is a weak solution to problem (1.1)-(1.3) with initial and boundary conditions (IC) and (BC) if for (vo,do) €
H x H! the following conditions hold:

veC(o,T;H)N Lz([O,T];V),



d € ([0, T);H') N L([0, T]; H2),

and the integral relation
t t
(v(t), v)—l—/ (Ayv(s),v)ds +/ (v(s) - Vv(s),v)ds
0 0

+/0 (V- (Vd(s) ® Vd(s)),v)ds = {vo,v) +/ (Z oV o dWy(s),v) + (Wy(t), v),

0 k=1

(d(t), dy+ / (Asd(s), dyds + / (v(s) - Vd(s), dyds
— (dy,d) - / (f(d(s)), dyds,

0
hold a.s. for allt € [0,T] and (v,d) € V x H.

Definition 2.9. We say a continuous V x H? valued random field (v(.,t), B(.,t)):c(0.1) defined on (Q, F,P)
is a strong solution to problem (1.1)-(1.3) with initial and boundary conditions (IC) and (BC) if for (vo,do) €
V x H? the following conditions hold:

v € C(0,T]; V) n L2([0, T]; H?),
d € C([0, T); H?) N L([0, T]; H®),

and the integral relation
t t
—|—/ Alv(s)ds—i—/ v(s) - Vv(s)ds
/ V- (Vd(s) © Vd(s))ds = vo +/ Zakv o dWi(s) + Wo(t),
01—

d(t)+/0 Agd(s)ds—&—/otv(s)~Vd(s)ds:do—/0 F(d(s))ds

hold a.s. for allt € [0,T).

Now the equations (1.1)-(1.3) can be written as

dv(t) + [A1v(t) + Bi(v(t)) + M(d Z oV (t) 0 AWy () + oodWo(t), (2.3)
V- v(t) =0, (2.4)
dd(t) + [Asd(t) + Ba(v(t),d(t)) + f(d(t))]dt = 0, (2.5)

with the initial conditions v(0) = R,,d(0) = Rg.

Throughout the paper, we denote by D the Malliavin differentiation of random variables on the Wiener
space (2, F,P). And we denote by DY?(H) the Malliavin Sobolev space of all F-measurable and Malliavin
differentiable random variables 2 — H with Malliavin derivatives owing second order moments. Corre-
spondingly, D;;2(H) represents the space of random variables ¢ : Q — H that are locally in D"2(H).

We end this section with our main theorem, which gives the existence and uniqueness of solutions to
the stochastic model (1.1)-(1.3), or (2.3)-(2.5), with random boundary conditions (BC) and random initial
conditions (IC).

Theorem 2.10. Assume the initial random field R, € Dllog (H)N'V,R; € Dllof (H') NH?2, then the stochastic
nematic liquid crystals flows have a unique strong solution (v(t, Ry),d(t, Rq)) for allt € [0,T].
Moreover, v(t,R,) € Dy2(H),d(t, Ry) € D> (H') for all t € [0,

,d
loc T] :

loc



3 Regularity of Fréchet derivatives

3.1 Decomposition

Consider the stochastic model with a deterministic initial condition (vo,dg) € V x H?,

dv(t,vo) + [A1v(t,vo) + B1(v(t,vo)) + M(d(t,do))] Z o v(t) o dWi(t) + oodWo(t), (3.1a)
dd(tv dO) + [A2d(ta dO) + B2(V(tv VO)» d(t’ dO)) + f( (tv dO))]dt = 07 (31b)
v(0,vg) = vo €V, d(0,dg) = dy € H> (3.1c)

The global well-posedness for the strong solution of (3.1) has been studied in [2] and [9], and it is known that
under the condition (2.1), for any T' > 0, v(-,vo) € C([0,T]; V) N L*([0,T]; H?), d(-,do) € C([0,T];H?) N
12((0,T); B).

Define

Q(t) = exp {Zam(t)} ,

k=1

then Q(0) = 1, by Novikov condition and Doob’s maximal inequality, for any fixed T > 0, we have
E [ sup Q”(t)} < oo, for any n € Z.
0<t<T

For simplicity of notations, we use |Q[o represent supg< <, [Q(s)|-
Let Z(t) be the unique solution to the stochastic equation:

dZ(t) = —A1 Z(t)dt + ooQ(t) " dWy(t);
Z(0) = 0;
Z(t,x) =0, x € dD,t > 0. (3.2)

Now define u(t, vo) := v(t,vo)Q(t) "1 —Z(t), t > 0, then by It6’s formula, u, d satisfy the following equations:

du(t) + [Aju(t) + Q(t) By (u(t) + Z(t)) + Q(t) "' M(d(t))]dt = 0, (3.3a)
dd(t) + |A2d(t) + ( )Ba(u(t) + Z(t),d(t)) + f(d(t))}dt =0, (3.3b)
u(0) = vy, d(0) = (3.3¢)

Using the estimates in [1] or [9], we obtain the following estimates,

Proposition 3.1. For vo € V,dy € H? and w € Q. Denote by (u(t,vo,w),d(t,dg,w)) the unique solution
0 (3.3) on [0,T]. Then the following estimates hold:

T T
s [t vo.w)ff + e, do. )]+ [ tvo. )i+ [ lde.do.o)las
0 0

<c(volz, [|doll1, |Qlow, sup [|Z]2,T),
0<t<T
and

T T
s [t vo, @)l + (e do.) 3]+ [ e, vo, )t + [ do.co) e

T
<c(|[voll1,[ldoll2, |@|oc, sup ||Z||27/ 1Z||3dt,T).
0<t<T 0



Remark 3.2. Now set n:= /> ,., 0% and define
W) 1§: Wi(t),t >0
== OLWk s U =2 Ul
M=
Then W (t) is a new one-dimensional standard Brownian motion with

Z orv(t,vg) o dWy(t) = nv(t,vg) o AW (2).
k=1

Without loss of generality, here and in the future, we assume the stochastic model (3.1) is driven by Brownian
motion W (withn = 1), and Q(t) = exp{W (¢)}.

We now further discuss the continuity property of u(¢, vo), d(¢, dg) with respect to the initial data (vg, dg).

Proposition 3.3. For (vq,dy), (ug,bg) € V x H2, and any h € R,

lim sup { sup [|[u(t,vo + hug) — u(t, vo)||3 + ||d(¢,do + hbg) — d(¢,do)||3]
=0 g ||y +[bo <1 L 0<t<T

T T
+/ [u(t, vo + hug) — u(t,v0)||§dt+/ |d(t, do + hbg) — d(t,do)ugdt} 0. (3.4)
0 0

Proof. We use the equations satisfied by (u(t, v + hug,w),d(t,dy + hbg,w)) and (u(t, vo,w), d(t, do,w)),
then multiply u(¢, vo + hug, w) — u(t, vo,w) with Ay (u(t, vo + hug,w) —u(t, vo,w)) and integrate over D, for

simplicity, we denote by u(t,w) = u(t,vo + hug) — u(t, vo), d(t,w) = d(¢,do + hbg) — d(¢, do),
[a(t, w)[li =h%[luol[Y — 2/0 [Aru(s, w)lads
- 2/0 Q(s){B1(u(s,vo + hug) + Z(s),a(s,w)), Aja(s,w))ds
- 2/0 Qs)(By (0(s, ), (s, vo)) + Z(s), Aru(s, w))ds
- 2/0 Q(s)"H(M (d(s,dg + hbg),d(s,w)), A1u(s,w))ds

o / Q)" (M (d(s,w), (s, do)), Arti(s, w))ds
0
=ky A+ + k. (3.5)

By Lemma 2.1 and Young’s inequality,
t
g =2 / Q(s)(B1(V(uls, vo + hug) + Z(s)), (s, w)), Vii(s, w))ds
0
t
<< [ Ja(s.w)lfds
0
23 [ 2/3
+ QI sup [u(t, vo + huo) + Z(®)[7/ / [u(s, vo + hug) + Z(s)|3* (s, w)||3ds.
0<t<T 0
In view of Sobolev’s embedding theorem and Young’s inequality, we obtain that

t
ky <c sup IQ(t)\/ 0o [[uls, vo) + Z(s)[1]Aru(s, w)|ads
0<t<T 0

10



t t
<e / Aa(s,w)|ads + C sup Q1) / lallZ s, vo) + Z(s)|2ds.
0 0<t<T 0

By Proposition 2.5,
ks + ke = / Q(s) By (Au(s,w),d(s,w

- 2/ Q(s) 1 (By(Au(s,w),d(s,do)), Ad(s,w))ds

)), Ad(s,dg + hbyg))ds

Sa/ |Aa|3ds + Ch?|[bo |3 SFP]\Q_QMAd(SadO)@‘F|Ad(57do+hbo)|g)-
s€[0,T

Now taking inner product between Ad; and Ad, we obtain that

t
At w) 2 =h2[do|2 — 2 / (AALA(s,w), Ad (s, w))ds

— 2/0 Q(s)(ABy(u(s,vo + hug) + Z(s),d(s,w)), Ad(s,w))ds

_2/0 Qs)(ABy((s,w), d(s, do)), Ad(s, w))ds
72/0 <Af(d(s,d0+hb0)),Aa(s,w)>d5+2/0 (Af(d(s,dp)), Ad(s,w))ds
il (3.7)

First we have lo = —2 nga(s,w)H%ds. By Lemma 2.2, and (Bz2(u,d),d) = 0, we have

I3 =— 2/ Q(s){Ba(A(u(s,vo + hug) + Z(s)),d(s,w)), Ad(s,w))ds
- 2/ Q(8){Ba(V(u(s,vo + hug) + Z(s)), Vd(s,w)), Ad(s,w))ds
<e / (s, w)|3ds + QP / s, vo + ho) + Z(s) [3]1d(s, w) |2ds

t
QP sup ult,vo + hug) + Z(1)|2 / (s, w)|2ds.
0<t<T 0

With (3.6), and by Proposition 2.5,

t t
o+ 1y <e / a(s,w)2ds + ¢ / (s, w)2ds
0 0

t
@l +1Q7 )" sup [t do + o)t do + b3 [ (s, s
Sts 0

t
(1Qlo + 1@ o0)? OiltlgT”d(t’ do + hbo)llz/ [[d(s,do + hbo)|ls[|d(s,w)|[1[|d(s, w)[|2ds
ASAS 0

t
+e(1Q7 Moo +Qloo)* sup IId(t,do)llfHd(t,do)H%/ 1d(s,w)||5ds
0<t<T 0
t
+e(|Q 7 oo +1Ql)? sup IId(t,do)II2/ [d(s, do)llslld(s,w) [1[|d(s,w) | 2ds
0<t<T 0

t t
QP / (s, do + hbo) [2]1d(s, ) 2ds + | QP / (s, do)|12 (s, w) 3ds

11



t
+QL% /0 (s, do)[3[1T(s, w)|{ds.

Finally, we have
t
1o = =2 [ (V(7(d(sudo + Wbo)) — (o)), VA5 ) ds
0
t t
< [ aG.w)lds +e [ @)l
0 0
Combining the estimates for terms in (3.5) and (3.7) and applying Gronwall’s inequality yield that
sup {|[a()[f + IId(t)||§}+/ ||ﬁ(8)||§d8+/ d(s)l[3ds < h?[|luo|F + [bol[3]91 (1),
0<t<T 0 0
where
o3 [T 2/3
9:(T) :—expc{T+ QIS sup [fult,vo + o) + 20177 [ (e, vo + huo) + Z(0)3 e
0<t< 0
T
+1QI1% sup [Ju(t,vo) + Z(1)|[IT + Q|5 sup IIU(t,Vo)+Z(t)||f/ [u(t, vo) + Z(1)||5dt
0<t<T 0<t<T 0
T
+1Q% / [u(t, vo + huo) + Z(t)|3dt + QI3 sup [lu(t,vo + huo) + Z(1)[FT
0 0<t<T
+(|Qlos +1Q 7 oo)* sup [|d(t,do + hbo)|[3]|d(t, do + hbo) 3T
0<t<T
T
+(1Qloc +1Q7 0)? sup [ld(t,do + th)llz/ 1d(¢,do + hbo)||sdt
0<t<T 0
+ (107 oo +1Qlo0)* sup [|d(¢, do) |7l (¢, do)||5T
0<t<T
T
+(1Q7 oo +1Ql)? sup ||d(t,d0)||2/ 1d(t, do)||sdt
0<t<T 0
T T T
10 [ llate.do + mbo)lar + Q. [ fate.anliar + QR [ fateanlar .
0 0 0
This indicates that for all v, up € V,dg, by € H?, and any h € R, (3.4) holds. a

3.2 Fréchet derivatives

In this subsection, we will show the regularity of Fréchet derivatives. We denote by (u(t, vo,w),d(t, do,w))
or (u(t,vp),d(t,dg)) the solution to the random problem (3.1). Then for (vo,dg) € V x H?, we aim to show
that the solution map (vo,do) — (u(t, vo,w),d(t,do,w)) € V x H? has continuous Fréchet derivatives given
by

Du(t,vg,w) = u(t, vo,w)(+), Dd(t,dg,w) = d(t, do,w)(-),
where @(t,vo)(ug), d(t,do)(bp), with (ug,bg) € V x H2, satisfy the the following random equations:

u(t, vo)(ug) =ug — /O/Alﬁ_(s,vo)(uo)ds - /0 Q(s)B1(a(s,vo)(ug),u(s,vo) + Z(s))ds
—/O Q(s)B1(u(s,vo) + Z(s),u(s,vp)(up))ds 7/0 Q(s)~'M(d(s,dy)(bg),d(s,do))ds

—/0 Q(s)"'M(d(s,dy),d(s,do)(bg))ds; (3.8)

12



d(t do)(bo) bo —/ A2 do)(bo dS—/ Q BQ( (S Vo)( )7d(8,d0))d8

_ /0 Q(s)Bs(uls, vo) + Z(s),d(s, do)(bo))ds — /O Vaf(d(s, do)) - d(s, do)(bo)ds, (3.9)

where V3 = (0;,0y,0.). Obviously, the equations (3.8)-(3.9) are linear, the global well-posedness of the
strong solutions is easy to show. We omit it here. One can see [1], [21] and other references.

Remark 3.4. Since the stochastic equations (1.1)-(1.3) is a coupled system of linear momentum (1.1) and
and angular momentum (1.3), then when we consider the differentiability of the solutions to (1.1)-(1.3) with
respect to the initial data, we need to calculate the derivative of equation (1.1) and (1.3) with respect to the
initial data (vo,do) at the same time. In other words, if we only consider the derivative of the equation of
u with respect to vg or the derivative of the equation of d with respect to dg is not true. See, for example,
(3.8)) and (3.9). Therefore, the coupled system (1.1)-(1.3) is more difficult than 2D stochastic Navier-Stokes
equations and other stochastic hydrodynamic systems. We should carefully deal with this kind of stochastic
coupled system.

Proposition 3.5. For (vo,do), (ug, bg) € V xH2, (1a(t, vo)(ug), d(t, do)(bo) € L(V xH?) for any t € [0,T),
where L(V x H?) represents the space of bounded linear operators from V x H? to V x H?2.

Proof. Multiplying (3.8) with A1G(¢, vo)(u) and integrating over D yields that
(¢, vo) (ao) 2 =Iluoll? — 2 / (s, vo) (o) [3ds
2 / Q(s)(B1 (s, v0) (o). u(s, Vo) + Z(s)), Arti(s, vo) (uo))ds
= / QUs)(B1 (s, vo) + Z(5). (s, vo) (). Aria(s. vo) (o) ds
2 / Q)™ (M(A(s. o) (bo). (s, dy)), Arta(s, vo) (o)) ds
2 / Q(s)"*(M(d(s, o), d(s. dy)(by)), Art(s, vo) (o)) ds. (3.10)
Taking inner product between Ad and Ad,, we get
. o) o) =1 —2 | (A 2(5,d) (bo), Ad(s,do) (bo))ds
72/ Q(s){ABy(t(s,vp)(u ),d(s,do)),A&(s,do)(bo»ds
2 / Q){ABa(u(s,vo) + Z(s). d(s, do)(bo)), Ad(s, do) (bo))ds

~2 [ (AV(d(s.d0)) - d(s,o)(bo). Ad(s. o) (b)) . (3.11)

With similar discussion as it is in the proof of Proposition 3.3, we get the estimates for the terms in (3.10)
and (3.11), then applying Gronwall’s inequality yields that

sup_[|a(t, vo)(uo)|[3 + |d(t, do) (bo)]13] / [[a(t, vo)(uo) \|3d5+/ d(#, do)(bo)|3ds
0<t<T

<(lluoll} + Iboll3)g(T),

where

T
9(T) == eXPC{TJrIQIio sup |[u(t,vo) + Z(t)|3T + sup IIU(LVO)JrZ(t)HfIQ\io/ a(t,vo) + Z(t)|3dt
0<t<T 0<t<T 0

13



HIQIL sup fuft.vo) + 20 / l(t, vo) + Z()|[2 2t
QI sup [ult,vo) + ZOB ]t vo) + Z0) T + QL / ld(t, do) 2t
St 0

T T
H1QE [ It d)lBar + Qs sup [la(t.do) BT+ QL [ u(t.vo) + Z(0)at

(1@ oo + Qo) sup [[d(t, do) 2 (t, do) [T
0<t<T
T
007 e +1Q1)? sup (o)l [ e, o)
0<t<T 0
FIQE sup At do)2T + sup ||d<t,do>|%T}-
0<t<T 0<t<T

Since u(t, vo)(up), &(t, do)(bg) are linear with respect to ug, by, respectively. The above discussion, together
with Proposition 3.1, implies that (4(t, vo)(uo),d(t,do)(bo)) € L(V xH?) for any ¢ € [0,T], and a(t, vo)(-) €
L(V, 12([0, T} ), d(t, do)(-) € L(H?, L2([0, T]; HY)), that is,

sup [|[(t, vo) (o) 7w + A (£, do) (bo) |7 )
0<t<T

T
+/O ||f1(taVO)(UO)||2L(V,L2([0,T];H2))dt++/0 (¢, do) (bo) 17 2, .2 ([0, 7m0y At < (w0, do, Q, Z, T).

In the following, we show that the aforementioned (¢, vo)(-), d(t, do)(-) are Fréchet derivatives.

Proposition 3.6. For (vo,dg) € V x H?, (vo,do) — (u(t, vo,w),d(t,do,w)) has Fréchet derivatives given

by
Du(t,vo,w) = a(t,vo,w)(-),  DdA(t,do,w) = d(t,do,w)("). (3.12)

Proof. To verify (3.12), it suffices to show

t h —u(t
u(t,vo + 1107;:) u(t, vo,w) _ u(t, vo)(uo)

H d(t, d(] =+ hb()7w) — d(t, do, )
N D

lim sup {

h=0 jjug |1 +([bol2 <1 1

—d(t, do)(bo)

2} =0 (3.13)

holds. For ¢ € [0,7],h € R\ {0}, for simplicity of notations, set

(t Vo + han ) — u(t,VQ,LU)

U(t,vo,ug,h) = - , X(t,vo,ug,h) =U(t,vp,ug, h) — a(t, vo)(up);
d(t, dg + hbg, w) — d(t, do, w .
D(t,do,bg, h) = (£ do 0 h) (¢, do )7 Y (t,do, bo, h) = D(t,do, bg, h) — d(t,do)(bo).

Then X (t,vo,ug, h), Y (t,dg, bg, k) satisfy the following equations:
¢ t
X(t,vo,up,h) =— / A1X (s,vg,ug,h)ds — / Q(s)Bi(u(s,vo) + Z(s), X(s,vo,up, h))ds
0 0
t
- / Q(s)B1(X (s, vg,ug, h),u(s,vo + hug) + Z(s))ds

/ Q(s)Bi(a(s, vo)(ug),u(s,vo + hug) — u(s,vo))ds
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- /Ot Q(s)"*M(d(s,dy), Y (s,dg, by, h))ds — /Ot Q(s) "M (Y (s,do, bo, h),d(s,do + hbyg))ds
_ /Ot Q)" M(d(s,do) (bo), d(s, do + hbo) — d(s, do))ds.
Y (t,do,bg, h) = — /Ot AsY (s,dg, bg, h)ds — /Ot Q(s)Ba(X(s,vg,up, h),d(s,do))ds
- /Ot Q(s)Ba(u(s, vo + huy) + Z(s), Y (s, do, by, h))ds
[ @1 Batu(s,vo + ) — s, o), s, o) )i

— [ Fr(a(s.do +0)) = f(@(s.do)lds + [ V(5. d0)) - s o) ().

We multiply X (t,vo, uo, h) with A; X(t,vo, ug, h) and integrate over D,
Ix(@ = -2 / 1 (s)3 - 2 / Qs)(Br(u(s, vo) + Z(s), X (5)), A1 X (5))ds
72/ Qs)(By(X(5), uls, vo + huo) + Z(s)), A1 X (s))ds
2 / QUs){B1 (1(s, v0) (o). u(s, Vo + ntg) — u(s, vo)), A1 X (s))ds
72/ Qs (s,do), Y (s )),AlX(s)>d572/O Q(s)" 1M (Y (s), d(s, do + hby)), A1 X (s))ds
—2/ Qs d(s, do)(bo), d(s, do + hbo) — d(s, do)), A1 X (s))ds. (3.14)
Now we take inner product between AY (¢, dg, by, &) and AY;(t, do, bo, k) and integrate over D,
v=-2 [ ¥ ()1 — 2 / QU AB(X (), d(s, do), AY (5))ds
—9 Ot Q(s)(ABs(u(s, vo + hug) + Z(s), Y (s)), AY (s))ds
-2 f ' QUs)(ABa(u(s, vo + o) — u(s, uo), d(s, do)(bo), AY ())ds
= (L A7y + b)) — Af((s. o)), AY (9)ds

+2 [ (A(V/(d(s.d0) - (s, do)(B0). AV (9)ds (3.15)

With similar discussion as it is in the proof of Proposition 3.3, we get the estimates for the terms in (3.14)
and (3.15), then applying Gronwall’s inequality yields that

T T
s (X + VOB + [ 1XGEds+ [ 1Y) < (i@ +1Q7 e Poa(TasT). (16)
where
T T
(D)= sup [t vo) h(s.) 17 [t vollad+ sup [a(tvollattvols [ o)
0

+sup (¢, do)(bo) [ d(#, do) (bo) |z | d(t, w ||2/ d(t, w)]|dt
t<
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s ld(t, do)(bo) 2| d(t, ) | (¢, ) Hz/ (¢, do) (bo) |t

3 (¢, do) (bo) ||1/ [0, w)|[3dt + S a(t,w |2/ (¢, do) (bo) dt,
<t< =

and

93(T) —eXPC{T+IQ4/3 sup [Ju(t, vo) + Z(¢) 1 / [u(t,vo) + Z(t)|I3 *dt

+ Q% sup Hu(t,v0+hu0)+Z( T
0<t<T
T
+ Q% sup HU(RVOJFhUO)JrZ(t)H%/ l[a(t, vo + hug) + Z(t)||3dt
0<t<T 0

T T
L IQR / ld(t, do) 2t + QI sup (¢ w)]2 / ld(t,w)|2dt
0 0<t<T 0

+1QI% sup [d(t,w)[Fd(t,w)|3T + QI sup [[d(t,do)l3T
0<t<T 0<t<T

T
+(|Q|oo+|Q’1|oo)4 ,Sup ||d(tad0)||§/ l(t, do)||3dt

+(1Qloe +1Q 7 o0)* S IId(t do) |7l (t, do)[I3T

4 (1Qloo +1Q Vo)t sup [[d(t, do + Aibo)|2 / 1d(t, do + hbo) 2dt
0<t<T 0

+ (|Qloe + Q7 oo)* sup [|d(t,do + hbo)|[3||d(t, do + hbg)||2T
0<t<T
T
1 [ It vo-+ ) + Z0)d + sup sy ||d<t,do+hbo>||%T}-
0 h 0<t<T

Note that by Proposition 3.3, g2(T") — 0 as h — 0, by Proposition 3.1, g3(T") < oo, this verifies (3.13). O

Based on the above discussions, we summarize into the following result for Fréchet derivatives of (v (¢, vo),d(t,dp)).

Theorem 3.7. For (vo,dg) € V x H?, (v(t,vo,w),d(t,do,w)) € V x H?, and the solution map (vo,dg) —
(v(t,vo,w),d(t,do,w)) is CYt for all w € Q,t > 0, and has bounded Fréchet derivatives on bounded sets in
V x H?.

Moreover, the Fréchet derivative t — (Dv(t,vo,w), DA(t,dg,w)) € L(V x H?) is continuous in t, and the
Fréchet derivative is compact for any t > 0,w € Q, where L(V x H?) represents the space of bounded linear
operators from V x H? to V x HZ2.

Proof. It remains to show V x H? 3 (vo,dg) — (v(t,vo),d(t,dg) € V x H? is Fréchet C1'!, and to see that,
it suffices to show V x H2 3 (vo,do) — (a(t, vo),d(t,do)) € L(V x H2) is Lipschitz continuous on bounded
sets.

Now let vo,vh,up € V,dg,df), by € H? with |[vol1 < M,||vjlli < M,||doll2 < M,||d}l]2 < M and
[luollz + ||boll2 < 1. For simplicity of notations, we denote by Ga () := (¢, vo)(ug) — (¢, vj)(uo) and
da () := d(t,dg)(bo) — d(t,d})(bg). By (3.8), we first take inner product between tia (t) and A;fia (), then
integrate over D,

laa(®)? =2 /nuA )|2ds

9 / Q(s)(B1 (A (s), u(s, vo) + Z(5)), Arita(s))ds
0
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2 / Qs)(By(uls, vo) + Z(s), i (s)), Ayiia (5))ds
_2/ Q) (By ((s, 1) (10), (s, Vo) — (s, v})), Aviin ())ds
- 2/0 Q(s)(Bi(u(s,vo) —u(s,vg),a(s, vy)(ug)), Aaa(s))ds

9 / Q(s) " (M(d(s), d(s, o)), Ay (s))ds

- 2/ Q(s (s,dy)(bo),d(s,dg) — d(s,dy)), Araa(s))ds
—2/ Qs (s,do),da(s)), A1aa(s))ds
72/ Q(s (s,do) — d(s,dg),a(s,da)(bo)),AlﬁA(S»ds. (3.17)

With (3.9), taking time derivative of Ada (), then taking inner product with Ada (t) yields that
laatog=—2 [ ldas)3ds
-2 [ Q) AR (5. dls. ). Ada(9)ds
-2 [ Q) AB s, w) + 2(6),25(6)), Ads (5)ds
2 / Q){ABa(i(s, vh) (o), d(s, do) — (s, dj), Ada(s))ds
= / Qs)(ABs(u(s,vo) — u(s, vh), d(s, dp)), Ad (5))ds

- 2/0 (A(Vf(d(s, do)) - d(s, do) (bo) = Vf(d(s,dp)) - d(s, dy) (bo)), Ada(s))ds.  (3.18)

With similar discussion as it is in the proof of Proposition 3.3, we get the estimates for the terms in (3.17)
and (3.18), then applying Gronwall’s inequality yields that

JSup HluA()Hl_"”dA( 3 ++/ [ (t sz$+/ lda(®)13ds < el QI3 [94(T)g5(T) +96(T)g7(T)], (3.19)

where

T
94(T) == sup Hu(tvvo)_u(tvv(/)”ﬁ"’_/ [u(t, vo) — u(t, vo)|3dt
0<t<T

+ sup [[u(t,vo) — ult, vo) ;' / Jua(t, vo) — wt, vo) Iyt
0<t<T

+ sup, [u(t,vo) = u(t, vo)ly?llu(t, vo) —u(t, vo)l”* + sup [l o)l / la(t, vo) — u(t, vg) [3dt
t
+ sup [[d(t,dg) 5, vo) — u(t, vo)[[FT + sup [u(t,vo) —u(t, vo)l3 / I, dy)|3dt.
0<t<T 0<t<T 0
T
ou(T) =1Q " e sup [t o) — e, lt, o) e, ) ot ) (bo)la | (e ) o)

T
+ \Qfl\iooigngld(t, d) (bo)[l1[d(t, ) (bo)l2[|d(t, do) — d(t, d6)||2/0 (¢, do) — d(t, dp)llsdt
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+ sup [d(t.dy)(bo)| / 1d(t, dy) — d(t, db)|Zds
0<t<

+ sup [d(t,do) — (t,dé)\ﬁ/ (¢, dg) (bo) |3t
0<t<T 0

T
T+ sup [ld(t do) — d(t, )2 / i, vb)|2dt
0<t<T

T
+ sup [t vo)l} / ld(t, do) — d(t, dj)[2dt + sup [a(t,v))]2 / ld(t, do) — d(t, dj)2dt,
0<t< 0<t<T 0

and

g5(T) := exp c{T + \Q|ic sup ||u(t,vo) + Z(t)||§T
0<t<T
T
+1QIA sup utvo) + ZOIF [t vo) + Z(0) o
0<t<T
+1QIL sup [u(t.vo) + 2]} / lu(t, vo) + Z(H)||2

+\QIZ§O ,Sup IIﬁ(t,Vé)(uo)H?/ [a(t, v6) (uo)||3dt

+1Q1% s, [t v5) (o) (e, v6) (w0 T + QI sup e, v5) ()17
+IQl / Jate vt -+ Q2 [ e, v + QB s Ja(tanlBT .
0 =
()= expef 10 [ 10t a3 + (@l + 1@ )" s (o) 3 (a0 3T
e
Qe +1Q7 )? sup [tz [ d(t. do) ot
0<t<T 0
T
+1QE [ (e, vo) + ZO)[Bat + QR sup [[ult,vo) + Z(ORT
0 0<t<T

s (o) ET -+ sup (e )2l do) + e, 0 T}

0<t<

It was shown in [9], or using the same discussion in the proof of Proposition 3.3 yields that

sup_[[lu(t, vo) —u(t,vo)[[7 + |d(t,do) — d(t, d)]|3]
0<t<T

T

b ey e+ [ At do) - a s
0

<)o = vhI? + o — 3],

where ¢(T) is bounded given the initial value norms are bounded by M. Thus, we conclude that

sup |[a(t,vo) — a(t,vo)|7 (v +/ [a(t, vo) = a(t, vo) 7 (v.z2(fo,7):m2)) dt
0<t<T 0

T
+021tl£ [d(t, do) — d(t, df) || (2 +/o Id(t, do) — d(t, dy)II7 ez, 12 (o, 770 At
<c[[lvo = volli + [ldo — dy|I3], (3.20)
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M, ||do|l2 < M,||dj|ls < M. Hence, we prove that the map V x H2 3 (vo,dg) — (0(t,vo),d(t,do)
L(V x H?) is Lipschitz continuous on bounded sets.

To see the compactness of the Fréchet derivative, we can follow the method in [9] and use the Aubin-Lions
Lemma as well as the regularity of solutions. One can also adopt the method in Theorem 3.1 of [15] to show
the compactness of (Dv(t,vo,w), Dd(t,dg,w)) : V x H? — V x H? for ¢t > 0. O

where ¢ is a positive constant that is independent of initial data provided that [[vol|l1 < ||V6H1 <
€

4 Galerkin approximation and Malliavin regularities

In this section, we consider Galerkin approximation and write {ex};>1 as an orthonormal basis for V, serving
as eigenvectors of —A; subject to the boundary condition (BC), with corresponding eigenvalues {rj}r>1,
that is, Ajer, = —rpeg. Let V,, be n-dimensional subspace spanned by {ei,...,e,}, and define

n

Vor =3 (vorex)en.

k=1

Similarly, let {py}r>1 be an orthonormal basis for H?2, which serves as eigenvectors of —A, subject to the
boundary condition. Let H2 be n-dimensional subspace spanned by {p1,...,pn} and define

n

do,n = Z<d07pk>Pk

k=1

Now we let (u,,(t, von),dn(t,don) € V,, x H2 be the unique solution to the following equations:

du, (t,von) = —A1u,(t,vo,)dt — Q(t)By(un,(t,von) + Z())dt — Q(t) " M(d,(t,do.,))dt, (4.1a)
V- (un(t,von) + Z(t)) =0, (4.1b)
dd,,(t,do,n) = —A2d,, (¢, do,n)dt — Q(t)Ba(un(t,von) + Z(t),dn(t, don))dt — f(dn(t,don)))dt,  (4.1c)
U, (t, von)lop =0, dy(t,don)lop = don, (4.1d)
u,(0,von) = Von, dn(0,don) =don- (4.1e)

It was shown in [9] that (u,,d,) — (u,d) in H* x H2. We first discuss the Malliavin regularities of
un(t7V0,n)adn(tad0,n)-

Proposition 4.1. For vo € V,dg € H?, the solution (u,(t,vo,n),dn(t,do)) to (4.1) are Malliavin differ-
entiable, and u,(t,vo,) € D}’ 2(V), d,(t,do,) € DL2(H2). In details,

loc loc
Sup [|Duttn(t, Vo) + [IDodn(t, do) 2] / 1Dyttt o) |I2 dt+/ IDodn(t, o) | 2dt
0<t<T
<c(|vol2, [doll1, @lso, sup [|Z]2,T), (4.2)
0<t<T

and

T T
sup (Dot Vo)l + [Duc(tdon) 8+ [ Dot volBde+ [ Dkt o) 3
0<t<T 0 0

T
<c([lvollr; Idoll2; |@lso, sup ||Z||27/ 1Z(t)l[3dt, T). (4.3)
0<t<T 0

Proof. To show u,(t,vo,) € D 2(V)7 d,(t,doy) € Dllc;f(H ), if suffices to prove for any N, ul (t,vo,) €

loc

DY2(V),d) (t,do,n) € DV2(H?) on Qn = { sup ([W(H)|V[Z(t)|2) < N}, where u)) (t,vo,),d} (t do,») are
0<t<T
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unique solutions to the equation (4.1) with Q(t), Z(t) replaced by Qn (t) := exp {W () 1{jw|<ny} ), Zn (1) =
Z(t)14)z|l,< N}, respectively. For simplicity, we still use @, Z to represent Qn, Zn.

Since uy, (t, vo,n), dn(t, do,n) are solutions to the finite-dimensional random ordinary differential equations,
it is well known that u,(t,vo ), dn(¢,don) are Malliavin differentiable and the corresponding Malliavin
derivatives Dyu,(t, vo,n), Dpdy(t, do,yn) satisfy the following random ODEs:

Dyun(t, von) = — /Ot A1Dyuy, (s, von)ds
- /Ot Q(8)B1 (Dyun(s,von) + Dy Z(s), un(s,von) + Z(s)) ds
—Z}mwu%@wm+ﬂ$m%@wm+mﬂww
i[DM@BNM@WH+Z@WS
- /0 ' Qs) " M (Dydn (5, o). (s, don))ds — /O ' Q(s) " M (dn (s o). Dod (5, o) s
—AH%M$1MwMa%wm& (4.4
Dydn(t, do.n) = — /O " AoDodn (s, don)ds
[ QI BP 5 v + P6), o)
i[@@&hM&mm+ﬂ@DNA&%mms
l[D&@BNM@WM+Z@AM&%MMS
— /Ot Vf(dn(s, dO,n)) . Dvdn(s, do)n)ds. (4.5)
Taking inner product of D,u,, D,d,, with D,u,,, AsD,d,,, respectively, then integrating over D, we have
WMM@VWM§=—QAmDMMGNWJﬁ%
—2£Q@@M%%@ww+%ﬂ$mﬁwmﬂﬂ®%%%@%wﬂs
—%KQ@@M%@WM+ﬂ$%w@ww+ﬂz@%%%@wmm
—;[D&mx&maawm+zwmvaawmm3
=2 [ Q) (D1t 5. 02) 5, 0)) Dyt v0)) s
—-zjétc9<s>—1<A4<dn<s,doﬂg,z>vdn<s,doﬂn>,1>vun<s,vOJ»>ds

—2/ DUQ(S)_1<M(dn(s,doyn)),Dvun(&vo,n))ds
0

t
Hﬂddu¢mmf=—2éﬂﬂdda%mM@s
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— 2/0 Q(8)(B2(Dyuy(s,vo ) + Dy Z(s),dn(s,don)), A2Dydp(s,dopn))ds
— 2/0 Q(s)(B2 (un(s,vo.n) + Z(s), Dydy(s,do.n)) , A2Dydy (s, do ) ds
— 2/0 DyQ(3)(Ba(un(s,von) + Z(s),dn(s,don)), A2Dyd, (s, dorn))ds

-2 /t<vf(dn(87 do,n)) : Dvdn(sa dO,n)7 A2Dvdn(5a d07n)>d3
0
=Q1+ -+ Qs (4.7

By Lemma 2.1, we have
t t t
Po <z [ IDuu(s,von) s + QL [ (s, Vo) + Z) 1D (s, vo) s - [ D5, v0,) s
0 0 0
¢
+C|Q\§o/o 1D Z(5)|211Pu Z(5) 11 [un (s, Vo) + Z(s)|[1ds.
Since (Bj(u,v),v) =0, we have
t
Py=—2 / Q5)(B1 (un (5, Vo) + Z(5), DoZ(s)) . Dytn(s, von))ds
0
t t
§5/ HDvun(s,vo,n)Hfderc/ Do, (s, vo.n)|3ds
0 0

t
+Ql3 / (s, von) + Z(s)l2lun(s, Vo) + Z(s)[l | DuZ(s) || ds.
0

Similarly, one can get

Pi<e | D sn(s, voo)|2ds + efDL QL2 / a5, Vo) + Z(5)Bllun(s, vo) + Z(s) s

By Proposition 2.5, we obtain that

Ps+ Ps = 72/ Qs BQ(D U, (8, von), dn(s,don)), ADydy(s,do,n))ds

i / Q) (Ba(Duttn (5, vo ) Dodn (5, do ), Ad (s, do.n))ds. (4.8)
By (4.8), Proposition 2.6, we get
t t

Ps+ Ps + Q- gs/o |22 I ES d()’n)H%dS + 5/0 ||’Dvun(s,voﬁn)||%ds

Q7+ Q1) [ (5, o) 21 (s, o) [21Dadn (s, o) [2ds

+elQi | (s, do 31Dt (s, vo ) dsds + Qe / (s, do )31 Do (5, o) [2ds

+elal [ 1D, Z(5) 211 (s, do) [2ds + QL2 / 1D, ()31 (s, do) [3ds.
Similarly, we have

t t
Pr e [ D ouas,vo)ds + eDuQ s [ s o) 215, o) s
0 0
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By the chain rule and Lemma 2.2,
t
QS :2/ Q(S) <B2(V(un(3; VO,n) + Z(S)), Dvdn(sa dO,n))y VDvdn<s7 dO,n>>d5
0
t t
< [ 1D, don) s + QP [ lhan(s. o) + 2 FIDd (s, o) s
0 0
And
t t
Qu <z [ IDudu(siddon) s + DG [ fian(s Vo) + Z(5)Fdu(s, o) s
0 0
t
DAL [ fan(s Vo) + 2Bl (5. o) s
0
Finally, since |V f(d)|s < c[|d||?, we have
t t
Qs <= [ IDudu(sidon) s+ ¢ [ (s da)[H1Docd (5. do) s
0 0

With the above estimates for terms in (4.6) and (4.7), applying Gronwall’s inequality yields that

T T
EUET“Dvun(tvv(),n)g + [|Dpdn(t, dO,n)H%] +/ HDvun(taVO,n)”%dt +/ [Dydn(t, dO,n)H%dt
0<t< 0 0

Schl (T) h2 (T) y

where
T
m(D) =10 [ 1D ZOLaIDuZ )1 ant,vo) + Z(0)
’ T
QB [ an(tv0) + ZOlallan(t,v0) + 201D, 2(0) e
0 T T
QL [ Tt vo.) + 20 Bl (b, von) + ZON3de +1QE, [ 1201w, o)
TO T °
10 [ IDZOB I don) B+ 1D, e [ (e do)Fd (1) e
0 . 0
L ID.QP / [t Vo.n) + Z(8) 2 [dn(t, do ) |2t

T T
+ |DUQ|§O /O Hun(thO,n) + Z(t)”%”dn(ta dO,n)H%dt + |DuQ‘§o /0 |un(taV0,n) + Z(t)‘§||dn(t7 dO,n)Hgdt)

and
T T

ha(T) ::expc{T+|Q|zo / I (t. Vo) + Z0)|2dE + (1Q oo + Q1) / 1 (t, o) 211 d ¢, do ) |3
0 0

T T
L IQ / (¢, o) |24 + / |dn<t,do,n>|1*dt}.

In view of Proposition 3.1, hy(T'), h2(T) are constants depending on |vo|2, [|doll1, |@lecs sup ||Z]l2, T
0<t<T

Moreover, we have

t
1Dyt (£, v0.0) 2 = — 2 / Dy, (s, vo ) |2ds
0
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) /Ot Q) (B1 (Dutty (5, von) + Do Z(s), tn(5,v0n) + Z(5)) , A1 Dyttn (5, von))ds

-2 / t Q(s)(B1 (W, (5, Vo) + Z(5), Dyun(s,von) + Do Z(s)), A1Dyuy (s, vo.n))ds

fz/ D, Q(s)(By (1, (5. Vo) + Z(s)), 41Dyt (s, v0,0))ds

_2/ Qs Ao (5, o), (s, don))s A1 Dyt (5, vo ) ds

72/0 Q(s)"H(M(d,(s,don), Dudn(s,don)), AiDun (s, Vo n))ds

=2 [ D) (M (A5 o) APt 50, (19)
IDudalt o)1 =~ 2 [ 1Dt (5. o) s

=2 [ QUOABDut(s:¥00) + Du5), o5 l). S5l

=2 [ Q) OB (5. v02) + 205) Duta(5,)) - Ayl

=2 [ DU Baluals:v00) + Z(5) (s do) ADuch 5. o)

-2 /O t<AVf (dy(s,don)) - Dydn(s,don), ADyd, (s, do.pn))ds. (4.10)

With similar discussion as before, we get the estimates for the terms in (4.9) and (4.10), then applying
Gronwall’s inequality yields that

50 (Dot (1. v0,0) [ + Dot o ) / Dyt (t, von) 2t + / 1Dyt do,) |2
t<

<chy(T)ha(T),

where
T
hs(T) =|QI%, / D0 Z(8) [ D Z(8) 2l (£, vo.0) + Z(0)] 3t
T
Lo / D Z(1) 2| Do Z () 1 (£, von) + Z(1) |2t
T
QR / (Vo) + ZO)l1 (Vo) + Z(0) |21 Du Z () |2t
T
L IQ / [t Vo) + Z(0) l[un(t, Vo) + Z(8) L[ D2 (1) |3dt
0
T
L D,QP, / 1t Vo) + ZO)I it Vo) + Z(8)]|2dt
0
T
L ID.QP / [t Vo) + Z(0) 2l un(t, Vo) + Z()|3dt
0
T
L DQ / (£, do ) 11 1 (£, do ) [211d 2, do ) s

T T
Lo / 1Dy Z ()3l (¢, dou) |2t + QP2 / 1Dy Z(8) 21 (t, do) |2t
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T T
L ID.QP / lan(ts Vo) + Z(8)31dn(t, don)Ide + [DuQP / [t Vo) + Z(8) Bdn(t, do0)|3dt
T
L ID.QP / (£, Vo) + Z(8) |2 dn(t, do.) 2,
and
T T 4/3
ha(T) = expc{T+ Q. [ lhan(tvo,) + ZOde + Q1L [ ualtvon) + 2] de
0 0
T
QI [t o) + ZOI an b, vo) + Z(0)]3 e
0
T T
L lQ / it Vo) + Z(0)2dt + QP / (£, Vo) + Z(8)| 3t
0 0
T
(1@l + Qo) / o (¢, do ) 2/ld (¢, do ) 2t
T T
Qoo+ Qo) / 1o (¢, doun) 2l (£, don) lade + QP2 / |, (¢, do.) 2dt
T T T
Lol / Ity o) 32 + QP2 / o (8, do.p ) |2t + / ||dn<t,do,n>||%dt}.

In view of Proposition 3.1, h3(T), he(T) are constants depending on ||vol|1, [[do||2, |Q|ce, sup [|Z]|2, fOTHZ(t)H%dt, T.
0<t<T
O

Now we are ready to discuss the Malliavin differentiability for the solution to the stochastic nematic
liquid crystal equations.

Theorem 4.2. For vo € V,dg € H2 and t > 0, the solution maps w + u(t,vo,w),w — d(t,dg,w) are
Malliavin differentiable, and for allt € [0,T], almost surely their Malliavin derivatives Dyu(t, vo), D,d(t, dp)
solve the random equations (4.4) and (4.5) with u(t,vo),d(t,do) in place of up(t,von),dn(t, don)-

Proof. We can do the same localization as that in the proof of Proposition 4.1, and will show u(t,vg) €
DL2(H),d(t,do) € D2 (HY).

loc loc

Firstly, It was shown in [9] that

lim sup (|Ju,(t,von) —u(t, vo)|i + [|dn(t,don) — d(t,do)|3) =0 ass.. (4.11)
n— oo 0<t<T

Now let £,,7, be the solution to the following random equations as well as the boundary conditions (BC)
t
ltvo) == [ Mgy (s.va)ds
- [ @11 € (5.v0) + D). o) + 2060 s
— /Ot Q(s)B1 (u(s,vo) + Z(s), & (s,vo) + Dy Z(s)) ds
-[ ' D,Qs) By (u(s, vo) + Z(5))ds
~ [ Q) Moo s do)s — [ QL) M, o), o

—/0 D,Q(s) ' M(d(s,dy))ds.
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w(t,do) = / Aany(s,do)d

_ /0 Q(5)Ba(€u(s5,v0) + DuZ(s), d(s, do))ds

- / Q(5)Ba (u(s, vo) + Z(s), 7u(s, do)) ds

- /0 D,Q(s)Bz(u(s,vo) + Z(s),d(s,do))ds — /0 V£(d(s,do)) - nu(s,do)ds,

for any ¢ € [0,7]. The global well-posedness of the above equations have been studied in [5]. Since D is

closed, it suffices to show that

lim E sup HDvun(t»VO,n) - év(taVO)lg + [[Dodn(t, don) — mo(t, dO)Hﬂ =0 (4.12)

n—o0 0<v<t
For simplicity, we define the following norm notations:

C1 = sup (Jun(t,von)l2 +1[Z(t)]2),

0<t<T
Ci:= sup (Ju(t,vo)l2 +12(t)l2),
0<t<T
Mi" == sup (|Dvun(taV0,n)‘2+|sz(t>|2)a
0<t<T
M, := sup [&(t,vo)l2,
0<t<T
DY := sup |d,(t,don)|2, Dy = sup Ild (¢, don)ll1,
0<t<T 0<
D1 (= Ssup Id(t do)‘g, D2 = bup Hd(t do)Hl,
0<t<T
N == sup |D,d,(t,don)l2, N2 = bup | Dudy (¢, do,n) |15
0<t<T 0<t<
Ny:= sup [n,(t,do)l2, No:= S ||Tlv(f do)ll1,
0<t<T

We first estimate the following:
Dyun(t, von) — &ult, V0)|§

t
- / 1D ttn(5, Vo.n) — Eo(s, vo)|2ds
0

C3 = sup ([[lun(t,von)lli +1Z#)1),
0<t<T

Co = sup (|lu(t,vo)llr +[|Z(®)[1),
0<t<T

My = sup ([Dyun(t, von)l + Do Z(t)]l1),
0<t<T

My = Sup €0 (2, vo)ll1;
0<

Di = sup ||d (t,don)ll2,
0<t<
Ds := sup [d(t,do)ll2,
0<t<
Ng = sup_ IDudy(t, don)ll2;
0<t<
N3 := sup ||ny(t,do)]|2- (4.13)
0<t<T

— 2/0 Q(8){(B1 (Dyuy(s,von) + DuZ(s), un(s,von) —u(s,vo)), Dyun(s,von) — & (s, vo))ds

- 2/0 Q(5)<Bl (Dvun(saVO,n) - gv(SaVO)vu(saVO) + Z(S)) aDvun(SaVO,n) - &J(Savo»ds

— 2/0 Q(8){(B1 (un(s,von) —u(s,vo), Dyun(s,von) + Dy Z(3)) , Dyun(s,von) — & (s, vo))ds

— 2/0 Q(s){(B1 (u(s,vo) + Z(s), Dyun(s, von) — & (s,v0)) , Duun(s, von) — & (S, vo))ds

o / DyQ(3)(Br(Wn(s, Vo) + Z(5), tn (5, Vo.n) —
0

11(8, VO))7 Dvun(57 VO,n) - 61}(57 V0)>d8

— 2/0 Dy Q(s)(B1(un(s,von) —uls,vo),u(s,vo) + Z(s)), Dyun (s, von) — (s, Vo))

— 2/0 Q(s)"HM(Dyd,(s,do.n),dn(s,do.n) — d(s,do)), Doty (s, Von) — & (s, vo))ds
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=2 [ QI (D5, 0) ~ 1), (5,00, Dot 51 v0.) = ol v0)
=2 [ Q) A (a5, ) — A5, ). Dot o). Dot (5:0) = ol )
2 / Q)™ (M(d(5, do), Dyedn (5, do.n) — 1u(5, o)), Dot (5, vo.n) — Euls, vo))ds
2 / D,Q(s)” (M(da(s, o), dn (5. do ) — (s, do)), Dyt (5, Vo) — (5. vo))ds

- 2/0 DUQ(5)71<M(dn(5,dO,n> —d(s,do), d(sadO))vaun(SaVO,n) —&u(s,vo))ds

By the estimate (2.2), we get that

I, <5/ | Don (8, Von) — & (8, vo)||1ds + c|Q|2 M7 My (CF + C4) / llun(s,von) —u(s, vo)l1ds,

and
t t
< [ D0t (5 v0) = 6ol Vo) s + clQEICaP? [ 1Duta(s.v0,0) = & (s vo) s,
0 0
t t
I Sg/ Dyun (s, vo,n) — fv(sv"O)”%dS + C/ Dyun(s, vo,n) — fv(SaVO)@dS
0 0

t
+C|Q\§O[M£L]2(C?+Cl)/o [ (s, vo.n) — uls, vo)llrds,

According to Lemma 2.1, (By(u,v),v) =0, we get Is =0, and

t ¢
I ge/ IDyus (s, vo,n) — €0(5,vo)|3ds + | D, Q2 CTCH(CT + C’l)/ lun(s,von) —u(s, vo)l1ds,
0 0

and similarly we obtain that

t t
I <e / 1Dyt (5, Vo,n) — €05, vo) 2ds + | Dy Q2 C1Ca(CT + Cy) / (s, Vo) — u(s, vo) 1ds.
0 0

By Lemma 2.3, we obtain that

t t
I + Iho <¢ / IDytn(s, Vo) — £u(s, vo)Bds + |Q~ 2N NT / (s, do.) — d(s, do)|[2ds.
0 0

By Proposition 2.5, we get that
19 + Ill = - 2/ Q B2(D un(S Vo n) fv(S,Vo),Dvdn(S,do,n) - 771)(37 dO))a Ad(S, d0)>d3

— 2/ Qs BQ Dyun(s,von) — &u(s,vo),d(s,do), A(Dydp(s,don) — nu(s,do)))ds.  (4.15)

By Lemma 2.3, we get

t t
Iy <c / Dyt (5, Vo) — Eu(s, vo)|2ds + | D, Q2. Dy D} / ld, (s, do.) — d(s, do)|[2ds.
0 0

Similarly, we obtain that

t t
I3 ga/ ||Dvun(s,v0,n)—@J(s,vo)”%ds+c|DvQ—1|§oD2D3/ [ d,(s,don) — d(s,do)]|3ds.
0 0
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Now taking inner product of D,d,,(t,do n) — 1y (t, do) with A(D,d,,(¢,don) — 1y (¢, do)) yields that
IDodn(t, do,n) — 10(t, do) 17

=2 [P0 o) s
-2 f ' Q5) (T Ba (Dot (5, v0.0) + Do (5), du(s, don) — dls, do), T (Dyda(s, don) — (s, o))
#2 [ QPP 5:v0,) ~ 0(6170). s, d0) ADuch(5:0) ~ 1))
-2 f ' QU5) (VBa(u(s,v0) + Z(5), Ducda(s, don) — (5, do)), V(Dycda(s, o) — 15, do)))es
y / Q) Bty (5. v0.0) — (5. v0), Dy (5. o)), V(Do (5, dy) — 1 (s o) s
-2 /Ot D,Q(5)(VBa(un(s,vo,n) — u(s, vo),d(s,do)), V(Dydn(s,don) — 10(s,do)))ds
-2 /Ot DyQ(s){VBz(u(s,von) + Z(s),dn(s,do,n) — d(s,do)), V(Dudn(s,don) — n(s,do)))ds
2| (V152 lo)) - (Ducha (5, o) = 7052 lo))s ADucln (5, o) — o5, o)) s

+ 2/0 ((Vf(dn(s,don)) = Vf(d(s,do))) - (s, do), A(Dudn(s, do.n) — (s, do)))ds

By Lemma 2.2,
t t
Ko < [ [Dud(s,do) — (s, do)ids + QP37 [ k(s o) — dls.do) s
0 0

t
L QIR M / (s, don) — d(s, do)|3ds.
0

With (4.15), by Proposition 2.6, we have
t t
19 + Ill + K3 SE/ ||Dvun(87 VO,n) - fv(sa VO)'ﬁdS + 5/ ||Dvdn(87 dO,n) - nv(sa dO)Hgds
0 0
t t
+ Q2. D2 / Dyt (5, Vo) — Eo(5,v0) [3ds + c|QP% D2 / Do, do ) — 0 (s, do)|2ds
0 0

t
e(|Qloe + 1Q o) DD / IDyddn (s, don) — 1705, do)||2ds.

By Lemma 2.2, (Bz(u,d),d) = 0, and by Young’s inequality,

t t
Ky Sﬁ/ [Dydn (s, do) —nv(&do)\l%dSﬂLClQﬁO[CﬂQ/ IDodn(s, don) = 10(s, do)l[Fds.
0 0

Then
t t
Ko <= [ 1D, (s.do) = (s, do) s + lQE NG [ a5 v0.) = uls.vo)l s
0 0
t
+ QNG [ fan(s: V) s, vo) s,
0

t t
Ko <= [ 1D, (5.do,) = (s, do) s + D@ D [ lans,vo) = s, vo) s
0 0
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t
D, QP s / (5, Vo,n) — u(s, vo)[2ds,
0
t t
Ky <e / IDydd (5, do) — 10 (s, do)|3ds + ¢| D, Q2 [C3? / (s, dy ) — d(s, dy)|2ds
0 0
t
DL QLR[OI / (s, do.) — d(s, do)||2ds,
0

t t
Ky <c / Do (5, do ) — 15, do) |2ds + e[ D2 / IDud,y (s, do.n) — 1u(s, do) 2,
0 0

where the last inequality follows from |V f(d)|o < c||d]|3.
t
Ky SC/ |(Vf(dn(s,don)) — VF(d(s,do))) - 10(s,do)[2| A(Dydn(s,don) — 1m0(s,do))|2ds
0

t t
<z [ 1Pudas,don) = (s, do) s + NP7 [ (s, d.n) — (s do) s,

0 0
Combining the estimates for (4.14), (4.16), and applying Gronwall inequality we get that

sup {|Dvun(taV0,n) - &;(t,vo)@ + ||Dvdn(ta dO,n) — (2, dO)”%}

v<t<T

T T
+ / IDytn(t, Vo) — &t vo)[2ds + / 1D (£ o) — 70t do) [2ds
0 0
t
<L (w) / (5, Vo) — u(s, vo)lds x exp {eT(1 + QP [Col? + DIQP))
0

t
t Ly(w) / (s, o) — d(s, do)|[2ds
« exp T {|Q2D2 + DED2(|Qlwe + 10~ o) + QL% [Co? + (D312}
where
Lo () (|2 (M My + [M3P2)(CF + Cr) + DyQPa(CIC + CLCR)(CF + C)
QIR (INZT? + [NJT2) + D@L (IDa)? + [Ds]2)).
Lo(w) =e(|Q NP N + |QI2 ((MP]? + [M2?)
T IDQE (DYDY + DoDy) + [DyQ (ICFT2 + [C312) + [N]?).

As we localize @, Z at the beginning of the proof, they are bounded by N. Moreover, since the initial
conditions are deterministic, by Theorem 3.7 and Proposition 4.1, all the norms defined in (4.13) are uniformly
bounded with respect to w,n. Hence by (4.11) and dominated convergence theorem,

lim E sup {|Dyu,(t,von) — &(t,vo)|5 + | Dudn(t,do.n) — 1o (t,do)||3} = 0.

n—oo v<t<T

Thus, (4.12) gets proved. O

5 The global well-posedness of stochastic nematic liquid crystals

flows with random initial and boundary conditions
In this section, we replace the deterministic initial condition (vq,dg) in (3.3) by the random field (R,, Rq),
and obtain the global well-posedness by adopting the method in [16, Theorem 4.1]. In details, we first

operate parametrization and time-discretization to the anticipating model and obtain the expressions (5.3)-
(5.4). Note that the pathwise continuity in time ¢ of (u,d) will be preserved with random initial data
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in place of deterministic initial data, it remains to deal with the non-adapted Skorohod integral by using
Malliavin-type integration by parts, see (5.5). On one hand, the convergence of K™ should be delicately
handled such that both K™ and the Malliavin derivative of K™ converge, Proposition 3.1, Theorem 3.7 and
Proposition 4.1 are applied to ensure this result; on the other hand, Fréchet derivative of u and Malliavin
derivative of the random initial data are involved in estimating L™, see (5.8). Pathwise continuity of Fréchet
differentiation in time, as well as Malliavin calculus techniques are utilized to arrive at the required result
for the Stratonovich integral, see (5.9).

In the following, we restate the main result of this article, the global well-posedness for the stochastic
nematic liquid crystals flows with random initial and boundary conditions.

Theorem 5.1. Let R, € D2(H) NV, Ry € D2(HY) NH2, then there exists a unique strong solution

loc loc

(v(t,Ry),d(t, Rq)) of the following anticipating stratonovich model:
t ¢ ¢
v(t, Ry) :RU—/ Alv(s7Rv)ds—/ Bl(v(s,Rv))ds—/ M(d(s, Ra))ds
0 0 0
t
+/ v(s, Ry) 0 dWV(s) + ooWo(t), (5.1)
0
¢ t ¢
d(t, Ry) :Rd—/ AQd(S,Rd)dS—/ BQ(V(S,Rv),d(S,Rd))dS—/ f(d(s, Ry))ds. (5.2)
0 0 0

Proof. We will adopt the method in [16] to show the existence. For any fixed t > 0, denote by {0 =ty <
t; < ---t, =t} an arbitrary partition such that 7, := max (tx — tx—1) — 0 as n — oco. Then we have
SKESn

v(t, Ry) — Ry — Q(1)Z(t) = Q(H)u(t, Ry) — Ry
:Z (te)ulte, Ro) — Q(tk—1)ult—1, Rv))
k=1
= Q(tk)(u(tka Rv) - tk 1, + Z tk 1))u(tk—17Rv)
k=1
__ Z " QU A Rds -3 [ QU@ Byu(s. )+ Z(5))ds
th—1 k=1"tk—1
_ Z ’ Q(tr)Q(s)"*M(d(s, Rq))ds + Zu(tk,l, R,) ' Q(s)dW(s) + % u(tg—1,Ry) ' Q(s)ds
k=171 k=1 te—1 k=1 te—1
=4+ I (5.3)
d(t,Ryg) — Zd te, Rq) — d(tk—1, Ra)

:_Z/k Asd(s, Ry ds_z " Q(s)Ba(u(s, Ry) + Z(s), (s,Rd))dS_Z/k (o, R)is
tp—1 tp—1 k—1Ytk—1

—JP 4 JP o+ JY (5.4)

Since u(s, R, ),d(s, Rq) and Q(s) are contiuous with respect to time s, we have

t t
lim I = —/ Alv(s,Rv)ds—F/ Q(s)A1Z(s)ds,
0 0

n— oo
¢ ¢

le 13 = f/ Q(s)?Bi(u(s, R,) + Z(s))ds = f/ Bi(v(s,Ry))ds,
¢ 1t

nh_)n;olg = _/0 M(d(s, Rq))ds, nh—>12015 = 5/0 Q(s)u(s, R,)ds;
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¢
lim Ji' = —/ Aad(s, Rq)ds
0

lim Jp = /OQ(S)Bg(u(s,Rv)+Z(s),d(s Ra)) /B2 s Ry),d(s, Ry))ds,

¢
lim J3' = / f(d(s,Rq))ds
n— oo 0

It remains to deal with I}'. By the property of the Skorohod integral (See Proposition 1.3.5 in [17]) we get

Ig:fz/k u(ti—1, Ry)Q(s)dW (s) + ) ) Dy(u(tp—1,Ry))Q(s)ds

k=1"tk-1 k=1"1tk—1
t n t n

— [ altt R)QU AW (s) 4 [ 37 Duluatis, R)IQ (51
0 k=1 0 k=1

_. /0 K (s (s) + /0 " In(s)ds. (5.5)

Denote by LY2(H) the class of H-valued process v(t) € D2(H) for almost all ¢, and there always exists a
measurable version of Dyv(t) satsifying E (fOT fOT |Dsv(t) %dsdt) < 00. We say v(t) € L12(H) if there exists

loc
a sequence {{2,} C F such that Q, increases to Q and vlg, € L1'2(H). Without loss of generality, we can
assume |Ry|l1 < M, [|Z(s)]]l2 < M and @ = Qn, or we can always do truncation otherwise. As u(s, R,) is
continuous in s, we have for all s > 0, K™(s) — u(s, R,)Q(s), and by Proposition 3.1 and the localization,
we have

sup |K"(s)[2 < sup [Q(s)| sup [u(s, Ry)l2
0<s<t 0<s<t 0<s<t

< sup |Q(s)|c(|Rul2, [ Rall1, [[Z]]2)-
0<s<t

Applying dominated convergence theorem yields that

n—oo

hmE[/ K7 (s) — u(s, R)Q(s)3| = 0. (5.6)

Moreover, the Malliavin derivative of K™ is given by
D,K"(s) = i[Q(s)’Dyu(tk,h R,) +DyQ(s)u(tr—1, Ry)| 11,y 21(8)
k=1
—ZD Q(s)u(tr—1, Ry)L(t,_,.1,1(5)
+ ZQ )[Dou(te—1, Ry) + Dulty—1, Ro)DuRu]lis, .00 (5),

where Du(s,y) represents the Fréchet derivative at v € V, and Dyu(tg_1, Ry) := Dyu(ti—1,7)|y=r,. As
u(s, R,), Du(s, R,) and D,u(s, R,) are continuous in s, we have lim D,K"(s) = D,[u(s, R,)Q(s)] for any
n—oo

s > 0, and by Proposition 3.1, Theorem 3.7 and Proposition 4.1, we get

DK™ (s)]2 <c(|Rul2,[|Z]]2) sup [DuQ(s)]
0<s<t

T
+c(|Roll1; |@Qloo, sup ||Z||27/ 1Z][3ds, T)|Q oo
0<t<T 0
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Hence, following the dominated convergence theorem yields that

im 2] [ [ 12,5(5) - Dufats, R)Q v 57)

n—oo

From (5.6) and (5.7), we conclude that K"(-) — u(-, ¥)Q(-) in L"?(H). Hence,

loc

t

lim [ K" (s)dW (s) = /O als, Ry)Q(s)dW (s).

n—oo 0

Now we estimate L"(s),

L™(s) =Q(s) Y _[Dsulte_1, Ry) + Du(ty_1, Ro)DsRu]l(s, _, 1,1(5)

_Q( )Z (tkfhRv)Dsva(tk,l,tk](3)~ (58)

Since Du(s, R,,) is continuous in s, we get that

t

t
lim [ L"(s)ds = / Q(s)Du(s, Ry)Ds Ruds.
0

n—oo 0

Back to (5.3), sending n — oo yields that

v(t,Ry) — R, — Q(t)Z(t) =Q(t)u(t, R,) — Z (tr)u(ty, Ro) = Q(te-1)u(ty—1, Ry))

k=1

t
/Alv(sR dsf/Bl (s,Ry) dsf/M (s, Rq))ds

/ Q(s) A1 Z(s)ds + / Qs W(s)
w5 [ Qs s + / Q(s)Du(s, R, D Ryds,
0 0
for all ¢ > 0. By It6’s formula, we first have

Q) Z(t) = / $) 0 dQ(s /Q o dZ(s

= —/ Q(s)A1Z(s)ds + oo Wy(t) +/ Z(8)Q(s) o dW (s).
0 0

To obtain the form (5.1), it remains to show for ¢ > 0,

t 1t
/ u(s, Ry)Q(s) o dW (s / Q(s VAW (s) + 5/ Q(s)u(s, Ry)ds
0 0
—|—/ Q(s)Du(s, R,)DsR,ds (5.9)
0

In view of Theorem 3.1.1 in [17], the left hand side can be written as

t 1t

[ uts moe) cawis) = [ ot Wi+ 5 [ (ViatR)QO).ds

0 0

where

(Tl RIQUI() = 5 (lim, Pufuls + & RIQUs + 2] + i Dufuls — = )Q(s - )]

1
2
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By chain rule, we know that
Ds[u(t, R,)Q(t)] = Dsu(t, Ry)Q(t) + Duf(t, Ry )(Ds Ry )Q(t) + u(t, Ry )DQ(1).

Now replacing ¢ in the above identity by s+ ¢, s — €, respectively, and using the face that Dsu(s — ¢, R,) =
0,D:Q(s —e) =0, one can get

Diu(s —¢,R,)Q(s —¢e)] =Du(s — ¢, R,)(DsR,)Q(s — €);
Dilu(s +¢,R,)Q(s +¢)] =Dsu(s +¢,R,)Q(s +¢) + Du(s + ¢, R,)(DsR,)Q(s + €)
+u(s+e,R,)DsQ(s+¢).

Sending € — 0+, by the continuity of Dsu(t, R,) and Q(t) in ¢, we get

1
(V[u(, Ro)Q()])(s) = Du(s, By)(Ds Ry)Q(s) + u(s, Ro)Q(s)-
This proves (5.9) and is the end of proving the existence result.
For the uniqueness result, with the arguments in Subsection 3.1, we note that the model (2.3)-(2.5) is
equivalent to (3.3) when the initial random fields R, € DL2(H) NV, Ry € DY?(H') N H2. The proof of
uniqueness is then very close to that in [11], [22], so we omit here. O
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