
Swarm and Evolutionary Computation 74 (2022) 101125

Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

A new moving peaks benchmark with attractors for dynamic evolutionary

algorithms

Matthew Fox

∗ , Shengxiang Yang , Fabio Caraffini ∗

Institute of Artificial Intelligence, School of Computer Science and Informatics, De Montfort University, Leicester LE1 9BH, United Kingdom

a r t i c l e i n f o

Keywords:

Benchmark

Attractor

Evolutionary dynamic optimization

Evolutionary algorithm

Performance metric

a b s t r a c t

Prediction in evolutionary dynamic optimization (EDO), such as predicting the movement of optima, or when

and how an environment will change, is a topic that is still under investigation and presents unsolved challenges.

A few studies approach prediction based on re-initialising a population or requirement satisfaction problems such

as Robust Optimization Over Time. The benchmark problems in these studies inherently use randomly changing

parameters and therefore such randomness may make it difficult to compare these algorithms with other EDO

approaches. In this paper, we introduce a new benchmark, called Moving Peaks Benchmark with Attractors,

which incorporates an attractor heuristic that attracts peaks to a certain location in the environment into the

moving peaks problem. The proposed benchmark is fully flexible where the dynamics of the attractors and the

rate at which a peak is attracted to such attractors can be modified. By adjusting these characteristics, certain

styles of movements can be achieved by a peak. We also introduce a new performance measure that focuses

on the comparison of algorithms that use prediction. Seven EDO algorithms based on different working logics

are chosen to give a wide representation of the state-of-the-art in this area. We argue that having predictable

characteristics in the benchmark problem is more adequate for studying the performances and behaviours of those

algorithms that embed prediction mechanisms. Experimental results obtained with the proposed benchmark show

it’s suitability for the EDO domain as all algorithms featuring prediction capabilities display higher accuracy than

their competitors.

1

f

[

n

c

i

l

c

o

t

i

m

u

[

e

c

s

a

a

i

i

i

t

d

t

R

o

t

s

t

p

p

w

f

o

h

R

A

2

. Introduction

Most real-world optimization problems deal with changing objective

unctions, constraints and problem environments over a period of time

1,11,20,47] . These time-varied optimization problems, known as Dy-

amic Optimization Problems (DOPs), require algorithmic solutions to

ontinuously “chase ” moving optima. Other challenges include detect-

ng when the problem changes. DOPs are conceived from the belief that

earning from previous evaluations, when assuming the problem has not

hanged significantly can increase the efficiency and reliability of the

ptimiser, thus allowing for a quicker and more informed convergence

o a solution.

There are various methods of dealing with DOPs that include track-

ng moving optima (TMO) on each environmental change, which re-

ains one of the most widely researched topic. Two strategies can be

sed to improve on TMO approaches: one is to use historical information

52] and the other is to maintain the population diversity [17] . How-

ver, TMO approaches do not take into account the cost of frequently

hanging solutions if the solution chosen is too costly or impossible to

witch to.
∗ Corresponding authors.

E-mail addresses: p13191539@my365.dmu.ac.uk (M. Fox), syang@dmu.ac.uk (S.

ttps://doi.org/10.1016/j.swevo.2022.101125

eceived 19 December 2021; Received in revised form 15 April 2022; Accepted 2 Ju

vailable online 16 July 2022

210-6502/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
There also exist DOPs that include requirement satisfaction problems

s an objective to be optimised. For example, one approach that finds

 solution that remains acceptable over several environmental changes

s robust optimization over time (ROOT). Proposed by Yu et al. [50] ,

t’s goal is to find consecutive solutions over time that can have a vary-

ng degree of quality rather than finding the global optimum at each

ime interval. Approaches to solving ROOT problems include the pre-

iction of the fitness landscape following future environmental changes

o estimate how long a solution will remain acceptable. According to the

OOT metric, a solution is chosen according to either the average fitness

f a solution given a predetermined length of environmental changes or

he survival time, i.e., how long a solution’s fitness remains above a

et threshold [13] . A perfect predictor of the fitness landscape ensures

hat a perfect solution can be chosen, however, any errors within the

redictor may lead to prediction deception.

The changes in DOPs could be predicted if factors exist that allow

rediction based on the view that previous fitness landscapes correlate

ith future fitness landscapes with a small degree of changes. Such in-

ormation could be exploited to allow an optimiser to increase diversity

r reduce the convergence time to the best solution. Using prediction to
 Yang), fabio.caraffini@dmu.ac.uk (F. Caraffini) .

ly 2022

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.swevo.2022.101125
http://www.ScienceDirect.com
http://www.elsevier.com/locate/swevo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2022.101125&domain=pdf
mailto:p13191539@my365.dmu.ac.uk
mailto:syang@dmu.ac.uk
mailto:fabio.caraffini@dmu.ac.uk
https://doi.org/10.1016/j.swevo.2022.101125
http://creativecommons.org/licenses/by/4.0/

M. Fox, S. Yang and F. Caraffini Swarm and Evolutionary Computation 74 (2022) 101125

t

d

a

m

m

m

t

A

a

s

fi

f

c

o

b

l

o

w

b

p

f

l

m

t

t

t

t

[

i

w

s

l

p

T

c

a

f

t

i

w

m

c

p

f

I

i

S

2

2

D

s

t

a

a

e

s

a

l

O

k

e

q

t

t

t

t

g

t

[

i

b

e

h

m

t

[

c

r

i

i

n

m

a

t

o

a

e

p

v

f

t

w

o

t

c

c

w

t

a

l

rack moving optima is a common approach and includes influencing the

iversity after an environmental change [36,45,51] , or estimating the

reas to re-initialize individuals after a change occurs [18] . Prediction

ethods are also integrated within problems where there are require-

ent satisfaction constraints on the fitness of a solution. It is used in two

ethods; in the ROOT framework where the goal is to find one solu-

ion that will be good enough across successive environmental changes.

nd also to solve time-linkage problems, where the impact of choosing

 good solution now may impact the future environment, future land-

cape changes are predicted using historical information on individuals’

tnesses and approximated solutions as the training data.

Using benchmark problems with different characteristics, such as

actors that change, cyclic/periodic/recurrent changes, or changes that

an be detected, allows researchers to identify certain characteristics

f algorithms. Appropriate benchmark problems should be designed to

e flexible, simple, and allow for generalisation with real-world prob-

ems [31] . Current benchmarks are designed to exploit a certain type

f fitness landscape with varying changes and include prediction only

hen these varying changes exhibit certain behaviours. Developing a

enchmark problem that allows for predictable characteristics to com-

are the performance of algorithms to solve DOPs is greatly needed for

urthering research in ROOT and EDO. There is also a small amount of

iterature on using prediction in the optimiser, a benchmark such as this

ay help future research into this topic by providing tools and measures

o evaluate predictive characteristics.

In this paper, we propose a new benchmark problem that tests

he validity of algorithms that use prediction methods as a heuristic

o guide the search. The proposed moving peaks benchmark with at-

ractors (MPBA) uses the modified moving peaks benchmark (MMPB)

5,21,49] as the base and extends the peaks centre movement by includ-

ng an attractor function that attracts a peak towards a given location

ithin the fitness landscape. By using a weighting factor to adjust the

trength of the attraction and extensible functions to move the attractor

ocation across the fitness landscape, we create a versatile benchmark

roblem that allows an optimiser to predict the movement of peaks.

he attractor creates a fully configurable benchmark problem where the

ombination of movement types, change frequency and weighting of the

ttractor creates different movement effects on the optima, which allows

or studies of EDO algorithms under various conditions. We test a selec-

ion of algorithms from the EDO literature against MMPB and MPBA to

dentify any differences and show that a better predictable benchmark

ill be more suitable to EDO algorithms that incorporate a prediction

ethod, than those benchmarks that are fully random.

The main contributions of this paper are summarised as follows:

1. We introduce a new benchmark problem where the movement of

the optima is predictable under varying conditions. This allows re-

searchers to study the inclusion of prediction and other forecasting

techniques within the optimiser using a benchmark that has a fully

configurable degree of predictability. Currently, benchmark prob-

lems in DOPs either are random, or fully deterministic by definition.

Having the flexibility to control how the optimiser responds to in-

formation that may be predictable will ensure that the optimiser is

robust in most environments. The benchmark allows the researcher

to choose the severity, the direction of the movement, and how ran-

dom an optimum moves through the landscape.

2. A new performance metric is introduced to measure the performance

of algorithms that incorporate prediction in their optimiser. This

measure looks at the distance between the global optima and the

closest individual after the environment has changed. Taking an av-

erage of this distance measure over some environmental changes

shows how successful the individual initialization is in an optimiser

that uses prediction.

This paper is organised as follows. In Section 2 , related works and

urrent benchmark problems within DOPs are discussed. Section 3 pro-

oses our new benchmark problem and highlights some important
2
eatures. The new performance measure is proposed in Section 4 .

n Section 5 , we compare our proposed benchmark with MMPB us-

ng current methods to solve DOPs found in the literature. Finally,

ection 6 concludes this paper.

. Related work

.1. Evolutionary dynamic optimization (EDO)

Many problems in evolutionary optimization can be modelled as

OPs where the variables of the problem change over time. Compared to

tationary optimization, where the goal is to find the optimal solutions,

he goal of EDO is to track the optima through the environment space

cross successive iterations. This stems from Branke [5] in which the

uthor illustrated the issue of treating DOPs as a static problem for each

nvironment, where the optimiser is restarted and converged to a new

olution. Static optimization techniques were found to be impractical

nd inefficient for solving DOPs.

Given that previous fitness landscapes may be correlated with future

andscapes, DOPs may be solved efficiently using various approaches.

ne method is to maintain diversity during environmental changes to

eep a baseline of diversity to influence future searches in successive

nvironments without losing information by converging to the solution

uickly [3,42] . Another method is to understand how the environmen-

al changes between successive landscapes, as areas in the environment

hat do not contain an individual, may change which will affect the solu-

ions quality [9] . Finally, memory techniques allow the current popula-

ion to use historical evaluations in guiding their search and preserving

ood solutions. Memory methods include an implicit memory scheme

hat stores more information than needed to be used in future iterations

6,8,48] . On the other hand, explicit memory schemes store and retrieve

nformation based on a set of rules. A full survey on the approaches can

e found in Nguyen et al. [32] .

Prediction methods in EDO attempt to exploit patterns in changing

nvironments that may be predictable. Such patterns may be found in

istorical data from previous fitness evaluations, or through approxi-

ation methods using interpolation. Currently, three main approaches

o prediction in EDO exist; predicting the movement of the optima

18,36,45,51] , and predicting when the next environmental change oc-

urs and what environment will appear [39,40] . Some approaches di-

ectly influence the placement of individuals in new environments or

ncluded as part of operators within the algorithm.

In [36] the authors consider a Kalman based prediction to track mov-

ng optima under the assumption that real world application changes are

ot random and can be learnt. Their experiments show that prediction

echanisms are helpful in order to improve the tracking capabilities of

n evolutionary algorithm, but they must not be overestimated because

hey can lead to an excessive convergence, which has a negative impact

n the algorithm.

Hatzakis and Wallace [18] combines a forecasting technique with

 evolutionary algorithm where the location of the optimal solution is

stimated using a forecasting method, created using the sequence of

rior optimum locations, in order to better place a new group of indi-

iduals around the estimated location. This approach aims to create a

aster convergence to the new global optimum. The results indicate that

he approach improves algorithm performance, especially in problems

here the frequency of objective change is high.

Considering approaches where the next environmental change will

ccur, Simões and Costa [39] uses linear regression and Markov chains

o estimate the generation when a change in the environment will oc-

ur and also to predict to which state (or states) the environment may

hange, respectively. They note that knowing á priori when a change

ill take place and which environment will appear next, we can in-

roduce useful information in the population before change happens,

voiding the performances decrease usually observed with standard evo-

utionary algorithms.

M. Fox, S. Yang and F. Caraffini Swarm and Evolutionary Computation 74 (2022) 101125

m

p

p

r

w

e

u

[

c

t

m

u

n

c

d

d

p

r

p

c

2

b

t

a

e

t

fi

t

t

s

i

a

s

r

s

n

l

f

P

h

[

d

t

t

p

d

s

p

w

a

o

f

u

c

m

t

t

c

a

2

a

B

c

d

fl

T

t

o

i

p

t

i

w

c

m

c

i

l

o

f

u

d

m

a

n

s

m

m

t

i

r

p

t

c

o

p

c

a

p

f

3

3

i

o

t

t

h

p

fl
Meier and Kramer [26] uses prediction as a third attractor in the

ovement function of a PSO algorithm to bias the movement of the

articles towards the predicted optima regardless of the quality of the

rediction and shows promising results. Further work proposes a new

einitialization mechanism placing individuals of an evolution strategy

ider in dimensions where the prediction is likely to be inaccurate [27] .

As DOPs are said to have a correlation between the old and new

nvironment, transfer learning models of solutions or fitness can be

sed to correlate environment changes with previous environments. In

23] neural networks to implement a transfer model of environment

hanges, learnt from past solutions, which is then used to assist the op-

imization in the new environment. Jiang et al. [19] constructs a transfer

odel in objective space and then transferred the optimal objective val-

es in past environments to new values in new environments. Neural

etworks was also used in Liu et al. [24] , where a neural network based

hange prediction method to discover the change law of the optima in

ifferent subareas and predict new optima.

Enhancements in the multi-objective space include studies that pre-

ict characteristic points [14,34,35,46] who presents a multi-directional

rediction strategy to enhance the performance of evolutionary algo-

ithms in solving a dynamic multi-objective optimization problem. The

opulation is clustered into a number of groups by a proposed classifi-

ation strategy and used predict the moving location of the Pareto set.

.2. Requirement satisfaction and prediction in EDO

A new perspective on solving DOPs is to find solutions that are ro-

ust over time instead of following the changing optima [50] . ROOT

akes into account not only uncertainties in the parameter space but

lso the effect of these uncertainties over time in the time-space. Jin

t al. [21] proposed a framework consisting of a population-based op-

imisation algorithm (POA), a database, a fitness approximator, and a

tness predictor. Studies in ROOT that use this framework use an au-

oregressive predictor to forecast future individuals’ fitness. They found

hat given a good prediction a solution can remain good enough over

ome successive environmental changes. Future behaviours of the peaks

n ROOT are predicted based on information found from each swarm

nd the data is used to pick the next robust solution when the current

olution becomes unsatisfactory using a multi-swarm method [49] . The

esearch also focused on the appropriate method of estimating future

olutions.

In DOPs, the optimiser that chooses the solution at the present does

ot typically take into account the approximated solutions or the prob-

em in the future. Therefore, a solution chosen now may directly impact

uture performance. These problems are called Dynamic Time Linkage

roblems (DTLPs) [4] . To solve DTLPs, both the present and future be-

aviours of the problem must be taken into account. The DTLP approach

4] to solving time-linkage problems is a framework that learns to pre-

ict the future and optimises not only the current solution but also fu-

ure predicted environments. It utilises a genetic algorithm and a predic-

or and was tested on 2 benchmark functions: a numerical optimization

roblem, and a dynamic pickup problem. The prediction approach pre-

icts the trajectory of a solution for which the optimiser chooses the best

olution that achieves the best overall result over a length of time.

Algorithms that also use prediction to introduce diversity within a

opulation could also be said to fail under prediction-deception [4,31] ,

here accurate results can only be found using a perfect prediction, and

ny errors in such prediction will deceive the optimiser towards false

ptima. For the case of ROOT and DTLPs, one issue is how far into the

uture should prediction be made and how much historical data can be

sed to form this prediction. For both cases, it is understood that the

hoice of lengths depends on the time-linkage timespan or the maxi-

um survival times in ROOT. Another issue relates to the reliability of

he predictive model when approximations are made further into the fu-

ure. The longer the prediction, the less reliable the solution becomes. A
3
hoice that is made based on long timespans may be prediction-deceived

s it leads the optimiser to the less preferred results.

.3. Benchmark problems in EDO

Some studies in EDO research discuss the current benchmark features

nd have an extensive survey of problems giving their characteristics.

ased on the surveys, the problems can be categorised into types of

hange, e.g., predictable changes, changes that are detected using few

etectors, and cyclic/periodical/recurrent changes. Benchmarks that are

exible and simple allow for efficient analysis of EDO characteristics.

he following benchmark problems are seen as the most popular ones.

Cobb and Grefenstette [10] proposed Switching Functions, where

wo landscapes are used in three ways: a linear translation of peaks in

ne landscape, global optimum randomly moves while one landscape

s fixed, and switching between the two landscapes. In [5] , Branke also

roposed a landscape switching change in the Oscillating Peaks func-

ion, making the problem oscillate between some pre-fixed landscapes

n given intervals. Furthermore, in Gaussian Peaks [16] , a landscape

ith random peaks is subject to random movements where each peak

hanges in a predetermined gradual or abrupt way.

In the Moving Peaks Benchmark (MPB) problem [5] , at each environ-

ental change; the height, width and position of each peak randomly

hanges dependent on a severity factor. The MPB is a versatile and flex-

ble benchmark and is used extensively in EDO and ROOT.

Similarly to MPB, Morrison and Jong [30] proposed DF1, with prob-

em instances in which the width, height, and location of peaks change

ver time. Changes within this problem can be controlled by a logistic

unction to generate various step sizes. The benchmark is highly config-

rable where the number of dimensions, the number of peaks, and the

ynamics of peaks are flexible [12,29,37] .

In Dynamic Rotation [44] , the landscape is combined with a visibility

ask which allows a percentage of the search space to be masked with

 predefined fitness value where the rest of the landscape has the origi-

al values. The landscape or the mask is rotated revealing and masking

ections of the landscape.

The General Dynamic Benchmark Generator (GDBG) [22] is a bench-

ark generator that uses rotation as well as shifting to generate environ-

ental changes. GDBG is a combination of existing ideas and functions

o analyse a wide range of characteristics in DOPs. The set contains vary-

ng functions such as landscape rotation [38,42,44] , and uses dynamic

ules to control change steps [28] .

Many problems in the literature are simply fitness landscapes of a

articular design with a varying severity that can be predicted, leading

o a partially predictable fitness landscape. Other generators or problems

an have predictable features regarding the frequency and periodicity

f the changes. However, prediction is not their main characteristic. The

rediction of future environments is only reliable if a perfect prediction

an be made [4] . Bad predictions may even lead to worse results than

re obtained by optimising only the present. Hence, careful design and

erformance assessment of methods that predict the future are called

or.

. Proposed MPBA benchmark problem

.1. Definitions

We focus our benchmark to help solve for prediction problems where

t either predicts how the optimum move through the fitness landscape,

r what environment will appear next. We do so by directly influencing

he structure of the next environment. Algorithms that predict when

he environment will change still could use this benchmark problem,

owever such dynamic is achieved only if the change frequency of the

roblem is deterministic.

We extend the MMPB [5,21,49] as it remains easily extensible and

exible to cover a wide variety of characteristics DOPs exhibit. In our

M. Fox, S. Yang and F. Caraffini Swarm and Evolutionary Computation 74 (2022) 101125

p

t

t

f

r

a

w

s

T

t

m

R

𝐹

w

a

𝑡

t

i

t

i

i

p

i

𝐻

𝑊

𝑉

𝐶

w

z

r

d

c

p

𝑉

w

T

a

t

t

S

t

c

3

a

t

g

g

p

l

q

t

w

r

p

t

p

a

q

c

p

a

w

3

p

b

o

e

b

u

i

u

m

c

o

i

m

s

p

a

m

i

t

p

l

m

a

c

i

s

W

A

I

r

t

p

i

t

m

o

t

i

l

m
roblem, a location separate to the optimum for which we call a ’at-

ractor’ is chosen in the landscape. By adjusting how the peak is moved

owards this location in each environment change, we can produce dif-

erent types and degrees of movements of the optimum. As the attractor

emains fixed for a period of time, this movement is not fully random

nd therefore the EDO algorithm may be able to exploit this information

ith its prediction method.

In MMPB, at each environmental change, the height, width and po-

ition of each peak randomly change dependant on a severity factor.

his test set is modified to allow each peak to have it’s severity fac-

or where it is possible to change some areas of the environment space

ore severely than others, making this an appropriate benchmark to test

OOT algorithms. The base equation of the MPB is described as follows:

 𝑡 (⃗𝑥) = max
𝑖 =1 , 2 , …𝑚

{

𝐻

𝑖
𝑡 − 𝑊

𝑖
𝑡 ⋅

‖‖‖𝑋⃗ − 𝐶

𝑖
𝑡
‖‖‖2 }

(1)

here 𝑚 is the number of peaks, 𝑋 is a solution in the problem space,

nd 𝐻

𝑖
𝑡 , W

𝑖
𝑡 , C

𝑖
𝑡 are the height, width and centre of the 𝑖 th peak in the

 th environment. The shift severity is a definable parameter regulating

he severity (length) of the movement. This value controls the sever-

ty of change: the higher the value, the larger the changes and hence

he more difficult the problem becomes. The MPB is modified by allow-

ng each peak to move independently. The movement of the 𝑖 th peak

s mathematically expressed for the height (Eq. (2)), the width of the

eak (Eq. (3)), the value of how far the peak is shifted (Eq. (4)) which

s then used to move the centre of the peak (Eq. (5)) as follows:

𝑖
𝑡 +1 = 𝐻

𝑖
𝑡 + ℎ 𝑖 𝑠 ⋅ (0 , 1) (2)

𝑖
𝑡 +1 = 𝑊

𝑖
𝑡 + 𝑤

𝑖
𝑠 ⋅ (0 , 1) (3)

 ⃗

𝑖
𝑡 +1 = S 𝑠 ⋅

(1 − 𝜆) ⋅ 𝑟 + 𝜆 ⋅ 𝑉 𝑖 𝑡 ‖‖‖(1 − 𝜆) ⋅ 𝑟 + 𝜆 ⋅ 𝑉 𝑖 𝑡
‖‖‖ (4)

⃗

𝑖
𝑡 +1 = 𝐶

𝑖
𝑡 + 𝑉 𝑖

𝑡 +1 (5)

here 𝑁(0 , 1) is a random number from a Gaussian distribution with a

ero mean and one variance, 𝜆 is the correlation coefficient, and ⃗𝑟 is a

andom vector drawn by a random number between [− 0.5, 0.5] for each

imension. ℎ 𝑖 𝑠 , 𝑤

𝑖
𝑠 , and 𝑆 𝑠 denotes the height, width and shift severity.

Extending the MMPB, we introduce an attractor function, which in-

ludes an attractor weighting, and the Euclidean distance between the

eaks centre and the attractor location, into the shift function as follows:

 ⃗

𝑖
𝑡 +1 = S 𝑠

(1 − 𝜆) ⋅ 𝑟 + 𝜆 ⋅ 𝑉 𝑖 𝑡 ‖‖‖(1 − 𝜆) ⋅ 𝑟 + 𝜆 ⋅ 𝑉 𝑖 𝑡
‖‖‖ + 𝑤 𝑎 ⋅ |𝐴

𝑖
𝑡 − 𝐶

𝑖
𝑡 | (6)

here 𝑆 𝑠 is the shift severity factor, 𝑤 𝑎 the weighting of the attractor.

he Euclidean distance between the attractor, 𝐴

𝑖
𝑡 , and peak, 𝐶

𝑖
𝑡 , is used

s the metric to influence the peaks movement. The purpose of the at-

ractor is to guide the peaks through the landscape to create dynamics

hat could be predicted. Using the attractor weighting, as defined in

ection 3.2 , adjusts the severity of how a peak is attracted to the loca-

ion, and the attractor movement in Section 3.3 adjusts how the peak

an move through the environment.

.2. Attractor weighting

An important attribute in the proposed benchmark problem is the

ttractor weighting which describes how quickly a peak is attracted to

he attractor location. A higher weighting value ensures a quick conver-

ence to the location whereas a low weighting produces a slow conver-

ence, and the peak undergoes a stronger random walk. This adjustable

arameter leads to the predictable movement we see in the MPBA prob-

em. An ideal value should be chosen for the motion method and re-

uired predictability. However, given a higher weighting, the peak is at-

racted to the attractor location, and if the environment does not change
4
hen the peak reaches the location, the peak will continue with a small

andom walk around this attractor reducing the predictability of the

roblem.

Fig. 1 shows the effect of combining different weightings with at-

ractor change using a density plot to show the average location of a

eak over a number of runs given the same peak starting location and

ttractor dynamics. It shows that a balance between the change fre-

uency and attractor weight is needed to ensure that the peak does not

onverge early to the attractor location. If we consider prediction ap-

roaches where the location of the peak is used as the training data,

ny randomness in the data, such as a peak moving around the attractor

hen converged, will cause errors in the prediction.

.3. Attractor dynamics

We define the case where one attractor can influence one or more

eaks and as such, we can increase or decrease the complexity and flexi-

ility of the prediction problem. At present, this movement of individual

ptima has not been studied in DOPs that use prediction methods. How-

ver, future studies may benefit from the inclusion of this feature in the

enchmark problem.

One attractor per peak allows the benchmark to be fully config-

rable. As shown in Fig. 2 , it would be possible for each peak to move in

t’s style and direction. For example, in a group of optima, each individ-

al moves in a circular pattern at different rates, and hence a predictive

odel could identify and capitalise on these patterns. Furthermore, by

oupling one attractor location to multiple optima, over time a group

f optimum converge to one point in the environment space, provid-

ng enough information to the predictive model that could forecast the

ovement of most optima.

Like individual peaks within the benchmark function, we also con-

ider the motion and change frequency dynamics of a given attractor

oint. For a given problem, if the attractor location remains static for

ll environmental changes until the problem terminates, the peak will

ove to it’s attractor location and remain in the immediate area, mov-

ng with a random motion. While this initial movement from the start

o the attractor may be predictable, the random movement around the

oint may not be. We can define two dynamics that control an attractor

ocation, the change frequency and the movement style.

Similar to the frequencies of environmental changes in the bench-

ark function, the change period defines how many fitness evaluations

re made until the attractor location moves again. An attractor’s location

an change at the same change frequency of the benchmark function, or

ndependently to the problem change frequency, such as a different con-

tant rate or a varying rate taken from a random Gaussian distribution.

e can define this constant change frequency in Algorithm 1 .

lgorithm 1 Change attractors in a constant frequency.

nput: Current generation 𝐺, change frequency 𝑣

1: if (𝐺 mod 𝑣 = 0) then

2: Move attractors

3: end if

For problems where the goal is to track moving optima, a constant

ate of change is ideal so that the need for an advanced method of de-

ecting environmental changes is not required. However, algorithms that

redict when an environmental change occurs and introduce diversity

nto the population may show an increase in quick convergence [39] . In

his case, we define a random change frequency using either a uniform

ethod (see Algorithm 2) or a Gaussian method (see Algorithm).

We can also define how the attractor location moves over a series

f changes. The movement of the attractor influences the direction of

ravel the peak is attracted to, and in combination with varied weight-

ngs 𝑤 𝑎 , different movement styles of a peak can be achieved. The fol-

owing shifts in this study are proposed; linear, randomised, and deter-

inistic. These movement types encompass many changes that can be

M. Fox, S. Yang and F. Caraffini Swarm and Evolutionary Computation 74 (2022) 101125

Fig. 1. The distribution of 100 samples of a peak’s movement with varying attractor weight 𝑤 and change frequency 𝑐. For each figure, the experiment was run

30 times, with the one peak initialised at a location of [15, 15], The attractor location is started at [15, 30], with a linear motion movement type, that follows the

same direction in all examples. Each experiment has 500 environmental changes. The figure shows the traces of the peaks movement, where a higher density around

a attractor location shows that most samples of the peaks were pulled towards the attractor. A peak is attracted to the attractor quickly given a higher attractor

weight. A peak with a low attractor weight undergoes more of a random movement through the environment. The effect of the change frequency shows that with a

high frequency the peaks stay around the attractor longer, whereas with a lower frequency the peak has a higher chance of a random walk while moving towards

the attractors location. Balancing the change frequency, weighting and attractor location would ensure that the peak undergoes a smoother movement with varying

degrees of randomness.

Algorithm 2 Change attractors in a uniform randomised frequency.

Input: Current generation 𝐺, change frequency 𝑣 , minimum change fre-

quency 𝑚 , maximum change frequency 𝑛

1: if (𝐺 mod 𝑣 = 0) then

2: 𝑟 = 𝑈 (𝑚, 𝑛)
3: 𝑣 = 𝑟

4: Move attractors

5: end if

Algorithm 3 Change attractors in a Gaussian randomised frequency.

Input: Current generation 𝐺, change frequency 𝑣 , distribution mean 𝑐,

standard deviation of distribution 𝑠

1: if (𝐺 mod 𝑣 = 0) then

2: 𝑟 = 𝑁(𝑐, 𝑠)
3: 𝑣 = 𝑟

4: Move attractors

5: end if
5

M. Fox, S. Yang and F. Caraffini Swarm and Evolutionary Computation 74 (2022) 101125

Fig. 2. A set of peaks movement given a varying number of attractors. Each peak is labelled and it’s movement is represented by a thin-weighted line. The attractor’s

start and movement are shown as a thick-weighted line. The peaks attractiveness to an attractor location is represented using a dashed line. Each figure shows how

a peak moves towards an attractor. The dynamics of the problem change when all peaks move towards an attractor versus when each peak has it’s attractor. (a) 5

peaks attracted to one attractor. This figure shows that all peaks move towards the single attractor location at each environmental change. (b) 5 peaks attracted to

3 attractors. Each peak is initialised with attractiveness to a random attractor. (c) 5 peaks each with it’s attractor. In this example, only one peak can belong to one

attractor.

Algorithm 4 Linear motion of Attractors.

Input: Attractor location list 𝐴𝑙, current movement value list 𝑚 , envi-

ronment bounds 𝑏

1: for all Attractor location, 𝑎 in 𝐴𝑙 do

2: if 𝑎 not in bounds, 𝑏 then

3: 𝑚 = 𝑚 ⋅ −1
4: end if

5: 𝑎 = 𝑎 + 𝑚

6: end for

Algorithm 5 Randomised motion of Attractors.

Input: Attractor location list 𝐴𝑙, environment bounds 𝑏 , distribution

mean 𝑐, standard Deviation of distribution 𝑠

1: for all Attractor location, 𝑎 in 𝐴𝑙 do

2: 𝑟 = 𝑁(𝑐, 𝑠)
3: 𝑎 = 𝑎 + 𝑟

4: if 𝑎 not in bounds, 𝑏 then

5: 𝑎 = 𝑏

6: end if

7: end for

Algorithm 6 Deterministic motion of Attractors.

Input: Attractor location list 𝐴𝑙, deterministic location list 𝐷𝑙, current

index 𝑖

1: for all Attractor location 𝑎 in 𝐴𝑙 do

2: if 𝑖 > 𝑙 𝑒𝑛𝑔𝑡ℎ (𝐷𝑙) then

3: 𝑙 = 𝐷𝑙[1]
4: else

5: 𝑖 = 𝑖 + 1
6: 𝑙 = 𝐷𝑙[𝑖]
7: end if

8: 𝑎 = 𝑙

9: end for

s

e

t

p

f

Fig. 3. One peak’s movement represented as a dashed line, dependent on the

linear movement style of the attractor. This example shows a peaks movement

that is similar to the linear movement of the attractor.

f

I

b

o

m

t

c

l

l

c

s
een in other benchmark problems and as such are proposed as a gen-

ral approach to how the attractor location can change. In most cases,

he attractor location may change in a randomised fashion, which would

artially replicate the MMPB problem but with slightly more predictable

eatures.
6
Based on previous benchmarks where the peaks move in a linear

ashion [39] , an attractor can move given a direction and constant rate.

n combination with a high attractor weighting, the same dynamic can

e achieved. The linear motion is described in Algorithm and the effect

f the attractor motion on the peak can be seen in Fig. 3 . This type of

ovement may be easier to predict in comparison to other movement

ypes since the direction and change frequency of the attractor remains

onstant.

While the above methods are suitable for dynamic problems that

ast for a long time period, understanding the peaks motion using a

arge memory is useful. From Fig. 4 , a random attractor movement is

onstrained to the minimum and maximum bounds of the environment,

uch motion is not predictable and will not produce ideal training data

M. Fox, S. Yang and F. Caraffini Swarm and Evolutionary Computation 74 (2022) 101125

Fig. 4. One peak’s movement represented as a dashed line, dependent on the

random movement style of the attractor.

f

o

t

l

t

c

c

t

m

i

r

n

p

A

s

o

i

A

I

m

t

T

n

t

Fig. 5. One peak’s movement represented as a dashed line, dependent on the

deterministic, square movement style of the attractor. A cyclical motion of the

peak can be created by varying the location, change frequency and weighting

of the attractor.

m

t

4

f

t

t

r

R

(

4

a

f

t

𝑂

w

r

t

a

4

s

w

𝐴
or a prediction model. In most cases, a linear motion attractor location

r deterministic approach is suitable.

In the randomised approach (see Algorithm), the attractor loca-

ion undergoes a random walk with random step sizes across the fitness

andscape. An optimiser’s prediction method may be successful for the

ime period between two changes. However, when the attractor location

hanges, the historical data may not be useful.

We also define a deterministic approach, where the attractors lo-

ations are predetermined in the initialisation of the benchmark func-

ion, as shown in Algorithm. Using a deterministic approach, we can

ove a peak in a motion that creates an n-dimensional shape by tun-

ng the weighting and attractor location parameters. Such a configu-

ation achieves a highly flexible benchmark, allowing for various fit-

ess landscape changes to be observed, as shown in Fig. 5 . For exam-

le, by arranging a set of attractors in a circular pattern (described in

lgorithm 7), the motion of the associated peak is observed to move in

uch a pattern. Two considerations must be made; firstly, the location

f each attractor, and secondly, the order at which each attractor is set

n the list, which affects such creation of the shape.

lgorithm 7 Generate points on a circle.

nput: Circle center 𝑐, circle radius 𝑟 , number of points 𝑝 , location list 𝑙

1: 𝑠 = 2 ⋅ 𝜋∕ 𝑝
2: for all 𝑡 = 𝑖, ⋅𝑝 do

3: 𝑎 = 𝑡 ⋅ 𝑠
4: 𝑥 = 𝑐 𝑥 + 𝑟 ⋅ sin (𝑎)
5: 𝑦 = 𝑐 𝑦 + 𝑟 ⋅ cos (𝑎)
6: 𝑙.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑥, 𝑦)
7: end for

In Fig. 6 , we show five attractor settings and three types of attractor

ovement changes: Linear; Deterministic positioned as a square pat-

ern; and another deterministic method positioned in a circular pattern.

he figure highlights the effect of different peak movements over a set

umber of runs, represented as a density plot. In most cases, increasing

he attractor weighting to a value of 0.015 achieves a balanced peak
7
ovement as it is both attracted to each attractor but does not converge

o the point prematurely.

. Performance metrics

In this section, four performance measures are presented. The per-

ormance measures are chosen based on how well an algorithm chooses

he best solution, how quick the convergence to an optimum is, and

he performance of the forecasting method. We choose the Offline Er-

or (𝑂𝐸) [2] , Best Error After Change (𝐵𝐸𝐴𝐶) [43] , Absolute Recovery

ate (𝐴𝑅𝑅), and our proposed measure, the Best Distance After Change

 𝐵𝐷𝐴𝐶).

.1. Offline error

The first metric considered is the offline error [2] . This is measured

s the average over, at every evaluation, the error of the best solution

ound since the last change on the environment. A value equal, or close

o zero is considered perfect. This is defined as follows:

𝐸 =

1
𝐺

∗
𝑖 = 𝐺 ∑
𝑖 =1

(

1
𝑁

∗
𝑗= 𝑁 ∑
𝑗=1

𝐵𝑂𝐺 𝑖𝑗

)

(7)

here 𝐺 is the total number of generations, 𝑁 is the total number of

uns and 𝐵𝑂𝐺 𝑖𝑗 is the best fitness value found in the last change on

he environment referring to the 𝑖 th generation and 𝑗 th run 𝑗 of the

lgorithm at hand.

.2. Absolute recovery rate

The absolute recovery rate [33] of an algorithm defines how quick it

tarts converging on the global optimum before the next change occurs,

hich is given as follows:

𝑅𝑅 =

1
𝐾

𝐾 ∑
𝑖 =1

∑𝑝 (𝑖)
𝑗=1

[
𝑓 𝑏𝑒𝑠𝑡 (𝑖, 𝑗) − 𝑓 𝑏𝑒𝑠𝑡 (𝑖, 1)

]
𝑝 (𝑖)

[
𝑓 ∗ (𝑖) − 𝑓 𝑏𝑒𝑠𝑡 (𝑖, 1)

] (8)

M. Fox, S. Yang and F. Caraffini Swarm and Evolutionary Computation 74 (2022) 101125

Fig. 6. Two-dimensional density distribution charts of MPBA peak movement over 100 environmental changes for three different values of 𝑤 = 0,0.005,0.01 and

attractor movement styles [Linear, Deterministic (Square), Deterministic (Circular)]. Peak starting location of (15, 15). Adjusting the weighting makes the peak

undergo a more random movement, that over time shows the motion can be predicted.

w

a

n

p

𝑖

f

A

r

a

c

4

i

c

B

w

u

i

t

s

g

4

n

d

w

o

t

b

d

c

u

t

t

a

t

d

B

w

t

fi

t

o

t

t

m

u

w

d

w

o

o

t

c

w

i
here 𝑓 𝑏𝑒𝑠𝑡 (𝑖, 𝑗) is the fitness value of the best solution chosen by the

lgorithm until the 𝑗th generation of the change period 𝑖 , 𝐾 is the total

umber of changes, and 𝑝 (𝑖) is the number of generations at each change

eriod 𝑖 and 𝑓 ∗ (𝑖) is the global optimal value of the landscape at the

 th change. This measure allows to test how well an algorithm predicts

uture environments to increase the rate of convergence performs. The

RR result would be 1 in the best case when the algorithm is able to

ecover and converge to the global optimum immediately after a change,

nd would be zero in case the algorithm is unable to recover from the

hange at all [41] .

.3. Best error after change

Using the best error after change, the performance of an algorithm

n terms of how the population is distributed through the search space

an be evaluated as follows:

EAC =

1
𝐾

𝑖 = 𝐾 ∑
𝑖 =1

[𝑓 ∗ (𝑖) − 𝑓 𝑏𝑒𝑠𝑡 (0 , 𝑖)] (9)

here 𝐾 is the total number of changes and 𝑓 𝑏𝑒𝑠𝑡 (0 , 𝑖) is the best individ-

al just after an environmental change in the 𝑖 th change period and 𝑓 ∗ (𝑖)
s the global optimal value of the landscape at the 𝑖 th change period.

The metric measures the difference of fitness between the global op-

ima and the best individual in the population. A value equal to 0 will

uggest the algorithm places an individual at the exact location of the

lobal optima.

.4. Best distance after change

While the previous measures evaluate the convergence rate and fit-

ess rate, measuring the performance of algorithms that incorporate pre-

ictive measures is a challenge. To address this challenge, in this paper,

e propose a measure that considers the distance between the global
8
ptima and the closest individual in the population after an environmen-

al change has occurred. Other measures exist that measure the distance

etween optima and individuals. However, these metrics focus on the

istance at the end of generation runs. Measuring the distance after a

hange occurs and when the individuals are repopulated is important to

nderstand the effect of the predictive function within the optimiser, if

he goal is to identify the best location to place the individuals. Similar

o OE and BEAC, algorithms should aim for a value of 0, meaning that

 individual in the new generation was placed at the exact location of

he global optima. This Best Distance After Change (BDAC) measure is

efined as follows:

DAC =

1
𝐾

𝑖 = 𝐾 ∑
𝑖 =1

𝑓 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 (0 , 𝑖) (10)

here 𝐾 is the total number of changes and 𝑖 is the closest individual

o the global optimum after an environmental change. 𝑓 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 (0 , 𝑖) is the

tness value of the closest individual to the global optimum chosen by

he algorithm in the first change period (0).

Considering that current EDO approaches aim to increase diversity

r converge to a global optimum as quickly as possible, this measure is

olerant to both approaches. It also does not consider how long it takes

o converge to the global optima therefore it is immune to convergence

ethods. In the case of diversity, typical approaches distribute the pop-

lation around the previous optima, assuming that the new optimum is

ithin this distribution of individuals in a population. The closest in-

ividual will be placed near the previous optima. Prediction methods

ill distribute individuals around the estimated location of the global

ptima and therefore it’s centre could be assumed to be at the global

ptima given a perfect prediction.

With current performance measures, the result could be deceived if

he optimiser converges to a local optimum where the fitness value is

lose to the global optimum. In these cases, the performance measures

ould show good results. At the same time, when a new population is

nitialised using an optimiser that does not predict the movement of the

M. Fox, S. Yang and F. Caraffini Swarm and Evolutionary Computation 74 (2022) 101125

Table 1

Parameter settings for MMPB and MPBA benchmark problems .

Benchmark Parameter Admissible values

MMPB & MPBA Number of Peaks ‘ 𝑚 ’ 5, 10, 20

Change Frequency ‘’ 2500

Shift Severity ‘ 𝑆 𝑠 ’ 

1 (0.5,3)

Height Severity ‘ ℎ 𝑠 ’  (1 , 15)
Width Severity ‘ 𝑤 𝑠 ’  (0 . 1 , 1 . 5)
Peaks Shape Cone

Number of Dimensions ‘ 𝑑’ 2 , 5 , 10
Correlations Coefficient ‘ 𝜆’ 0

Peaks Location Range ‘ 𝐶 𝑖
𝑡
’ [0 , 50]

Peak Height ‘ 𝐻

𝑖
𝑡
’ [30 , 70]

Peak Width ‘ 𝑊

𝑖
𝑡
,’ [1 , 12]

Initial Height Value 50

Initial Width Value 6

Number of environments 100

MPBA Attractor Weighting - ‘ 𝑊 𝑎 ’ [0 , 0 . 005 , 0 . 01]
Change frequency ‘ c ’ [1 , 2 , 5 , 10 , 20]
Attractor Movement Styles Rnd, Linear, Square, Circle

1  (𝑎, 𝑏,) indicates a uniformly distributed number in [𝑎, 𝑏] .

o

t

a

W

t

e

b

5

5

r

E

t

m

E

C

a

W

w

[

a

t

t

t

fi

R

u

r

P

p

f

i

e

i

u

a

o

w

d

s

d

o

a

5

M

r

(

c

p
ptima, the randomness of the population would deceive any measure

hat takes into account the error, or distance from the global optimum

s an individual may randomly be placed close to the global optimum.

ith an optimiser that uses prediction, it could be stated that most of

he population would be initialised close to the optima over successive

nvironment changes. Therefore, the value achieved for BDAC will be

etter than that for a non-predictive optimiser.

. Experimental study

.1. Compared algorithms

We compare seven dynamic optimisation algorithms taken from a

ange of literature in different areas of study. The performances of these

DO algorithms on the proposed MPBA and MMPB are assessed through

he metrics outlined in Section 4 .

The algorithms are chosen based on different characteristics and

ethods to solve DOPs. First, we choose four algorithms that deal with

DO: 1) a simple Genetic Algorithm (SGA) [15] ; 2) Neural Network for
Table 2

Results from EDO algorithms by found performance measures with a varied num

Metric Algorithm 2 dimensional case with 5 dimensi

5 peaks 10 peaks 20 peaks 5 peaks

OE SGA 61.1528 63.5857 64.0598 51.5595

NNCP 2.2623 1.8543 1.3761 9.7939

DynPSO 2.1759 1.7217 1.2707 9.3749

SOS 41.5055 61.6210 63.2307 58.7672

DQMOO/AR 61.1878 63.3932 66.1575 48.2973

ROOT 54.4444 62.7267 62.7366 36.2214

ARR SGA 0.9350 0.9439 0.9442 0.6266

NNCP 0.8425 0.8326 0.9219 0.7702

DynPSO 0.8518 0.8448 0.9200 0.7683

SOS 0.8743 0.8893 0.9026 0.7650

DQMOO/AR 0.7645 0.7176 0.7237 0.6529

ROOT 0.7501 0.7306 0.7306 0.6490

BEAC SGA 15.6624 13.5314 12.2177 79.0046

NNCP 18.7501 17.1788 16.5312 59.8322

DynPSO 19.1174 16.9549 17.4090 55.9947

SOS 13.5697 10.8431 10.8024 15.2459

DQMOO/AR 17.0081 16.1959 11.4521 80.6930

ROOT 22.4282 18.4552 18.4553 90.1439

BDAC SGA 5.0001 4.8662 5.1024 29.1730

NNCP 5.9984 4.9119 4.4973 19.3544

DynPSO 6.1786 4.9335 4.5363 19.9683

SOS 27.4090 34.4512 37.8619 64.1490

DQMOO/AR 4.8158 5.0024 5.0300 24.4860

ROOT 5.13930 5.01092 5.01092 28.28805

9
hange Prediction (NNCP) [24] ; 3) Dynamic PSO with partial restart

nd prediction (DynPSO) [25] ; and 4) Self organising scouts, (SOS) [7] .

e also use two other algorithms that incorporate a prediction method

ithin their framework: 1) DQMOO/AR from Hatzakis and Wallace

18] ; and 2) The ROOT framework proposed by Jin et al. [21] . Each

lgorithm uses prediction in a different method, DQMOO/AR uses au-

oregressive forecasting to influence the next generation of individuals

o guide search to an optimum location by initialising individuals at

he predicted optimum location. ROOT uses forecasting to estimate the

tness of an individual in future changes.

By comparison between MMPB and MPBA on DQMOO/AR and

OOT, and by other EDO approaches we can see whether the algorithms

sing our proposed benchmark function exhibited better performance

esults when the benchmark problem is predictable than using MMPB.

erformances that improve when the predictability of the benchmark

roblem increases will confirm that using MPBA allows researchers to

ully utilise the prediction components in their algorithms. However,

f results were similar when the predictable factors are increased (for

xample, as we increase the attractor weighting) it will be shown that

ncluding these factors does not contribute to evaluating algorithms that

se prediction.

As such, it is known that the goals for EDO algorithms and ROOT

re different and it would be incorrect to compare the results with each

ther. We therefore include ROOT in the experiment to understand how

ell the ROOT algorithm performs with MPBA only with itself and we

o not compare the results against other algorithms.

Each algorithm uses the respective parameters proposed in their

tudies. In the case of ROOT, we use a historical length 𝑝 of 3, the pre-

iction length, 𝑞, of 8 with the metric to optimise the survival length

f a solution. Therefore we choose a survival threshold value of 40. We

lso define the parameters for the benchmark functions in Table 1 .

.2. Results

In order to compare the effectiveness of the MPBA problem, we test

MPB and our proposed benchmark, MPBA, using the proposed algo-

ithms with three combinations of peaks (5, 10, 20), and dimensions

2, 5, 10). For all experiments, we use a total of 100 environmental

hanges, with 2500 fitness evaluations for each environment. Each ex-

eriment is repeated 30 times, and performance measures are averaged
ber of peaks and dimensions on the MPBA benchmark problem.

onal case with 10 dimensional case with

10 peaks 20 peaks 5 peaks 10 peaks 20 peaks

59.7447 53.4385 7.9524 33.7873 44.4827

7.7112 6.2822 19.9207 15.2768 10.1201

8.2579 8.1403 16.8494 16.4264 13.2080

35.9017 55.0555 34.0690 56.9809 58.5311

62.9116 51.6674 5.0271 7.9267 33.8455

51.9576 52.9165 19.6264 20.7326 23.5916

0.6093 0.6762 0.2545 0.2635 0.2260

0.7663 0.8052 0.5105 0.5580 0.6474

0.7771 0.8000 0.5055 0.5563 0.6482

0.7746 0.7897 0.5779 0.6779 0.6760

0.6434 0.6117 0.5193 0.5014 0.5052

0.6267 0.5800 0.5110 0.4989 0.4658

76.7815 56.4205 159.5400 147.4190 108.1240

58.7864 63.5489 116.9712 104.7152 104.1027

58.5579 64.5354 121.6022 110.6604 99.8927

17.0265 15.8321 21.3898 18.8331 21.4261

56.8730 47.6302 142.4135 130.0634 103.1469

69.5346 53.8776 175.0942 125.9021 111.3809

28.1593 28.9609 63.0752 67.3776 65.1060

19.0196 19.9262 35.2580 35.2565 37.5192

19.4512 20.1058 35.3860 37.6248 37.1735

77.0311 77.7639 99.9095 104.6710 115.2250

26.5906 26.6431 48.1034 55.5575 57.2986

 27.71533 28.32473 60.81157 61.43584 61.43779

M. Fox, S. Yang and F. Caraffini Swarm and Evolutionary Computation 74 (2022) 101125

Table 3

Comparison of the effect of different attractor movement types in MPBA on the performance of compared algorithms.

Attractor movement type Metric SGA NNCP DynPSO SOS DQMOO/AR ROOT

Random OE 5.8434 5.5356 2.2562 1.9103 5.0318 0.5838

ARR 0.9343 0.9016 0.9063 0.9089 0.7305 0.7716

BEAC 6.0634 4.6401 5.5339 6.0753 5.1028 4.9529

BDAC 23.9798 35.9756 23.1130 24.9508 18.8501 21.7059

Linear OE 17.1063 4.9849 1.7716 1.6526 0.7249 0.6161

ARR 0.9623 0.7613 0.8962 0.8968 0.9073 0.8042

BEAC 4.7852 4.4017 4.1024 3.9774 3.5198 5.0649

BDAC 31.1303 22.7834 15.9865 14.8060 10.5071 19.3378

Deterministic - Square OE 4.5798 2.9668 1.6706 1.4774 2.3478 0.5456

ARR 0.9886 0.8323 0.8981 0.9017 0.8569 0.8682

BEAC 4.8182 5.4500 4.1951 4.2078 3.8472 4.9721

BDAC 37.2906 31.7149 15.4954 15.2569 13.7828 23.2993

Deterministic - Circular OE 12.8168 5.6655 1.5851 1.4442 1.3324 0.9418

ARR 0.5135 0.7743 0.9043 0.8958 0.9009 0.8659

BEAC 5.6212 5.1019 5.7672 4.3791 3.2799 4.7584

BDAC 26.3361 34.8776 15.0304 15.0248 15.3557 22.2070

Table 4

OE results of different attractor change frequencies and weights of the MPBA problem.

Weight Algorithm Change frequency

Name Indicator 1 2 5 10 20

0 SGA Average 7.5838 5.5297 10.2335 1.0174 7.9171

p-score – – – – –

SOS Average 3.9660 16.8985 6.8822 5.6579 20.7659

p-score – – – – –

NNCP Average 3.9660 16.8985 6.8822 5.6579 20.7659

p-score – – – – –

DynPSO Average 2.3509 2.2981 2.2405 2.2992 2.2938

p-score – – – – –

DQMOO/AR Average 3.5522 3.0909 4.1500 2.8215 3.4053

p-score – – – – –

ROOT Average 3.8079 4.4125 3.0422 4.1196 3.6558

p-score – – – – –

0.005 SGA Average 9.7034 4.4283 5.5910 5.7475 2.5220

p-score 3.25E − 06 1.11E − 06 1.83E − 06 7.67E − 07 1.71E − 06

SOS Average 7.9148 18.8174 16.7643 21.5184 17.1361

p-score 2.77E − 05 6.66E − 07 1.03E − 06 2.30E − 06 1.77E − 06

NNCP Average 1.5207 1.7128 1.8574 1.7454 1.9511

p-score 0.0045 0.0025 0.0032 0.0012 0.0005

DynPSO Average 1.3982 1.7601 1.7268 1.8965 2.0112

p-score 0.0003 0.0020 0.0005 0.0022 0.0008

DQMOO/AR Average 0.9738 1.9817 2.4833 2.9603 2.2150

p-score 1.41E − 05 0.0082 0.0003 0.7655 0.0026

ROOT Average 1.8223 1.5933 3.1031 1.6067 2.5210

p-score 1.86E − 06 1.98E − 06 0.2802 2.03E − 06 1.73E − 06

0.01 SGA Average 8.1866 3.9069 7.7702 13.3060 5.9055

p-score 4.07E − 06 1.50E − 06 2.71E − 06 2.27E − 06 2.02E − 08

SOS Average 11.1045 8.3810 9.5788 15.8454 14.4089

p-score 2.13E − 07 1.30E − 06 9.30E − 07 1.58E − 06 1.29E − 06

NNCP Average 2.0190 2.0105 1.8274 2.0422 2.1019

p-score 0.0034 0.0045 0.0021 0.0008 0.0010

DynPSO Average 1.9798 1.9656 1.8823 1.9640 2.1578

p-score 0.0041 0.0002 0.0022 0.0012 0.0020

DQMOO/AR Average 2.2640 2.3403 1.5999 2.7231 2.4222

p-score 0.0017 0.1589 3.39E − 05 0.6884 0.0207

ROOT Average 2.4273 2.6094 4.4938 5.4267 4.8426

p-score 5.03E − 07 9.69E − 07 1.10E − 06 2.59E − 06 2.92E − 06

0.015 SGA Average 8.4445 8.7824 3.3662 5.7417 7.2666

p-score 6.52E − 07 1.42E − 06 4.58E − 07 1.87E − 06 1.11E − 06

SOS Average 4.2130 7.1745 9.9371 14.4100 7.2080

p-score 0.0050 1.33E − 06 2.95E − 06 3.29E − 07 3.90E − 06

NNCP Average 2.3109 2.0629 2.0803 2.2814 2.2969

p-score 0.0017 0.0067 0.0048 0.0052 0.0018

DynPSO Average 1.9898 2.1050 2.1278 2.1885 2.2178

p-score 0.0028 0.0005 0.0005 0.0016 0.0060

DQMOO/AR Average 1.4630 1.7381 2.6173 2.9436 3.7768

p-score 3.41E − 05 0.0036 0.0008 0.5038 0.3820

ROOT Average 2.6201 2.9912 4.4177 5.0315 4.3611

p-score 3.46E − 06 3.18E − 06 1.59E − 06 1.32E − 07 4.14E − 07

10

M. Fox, S. Yang and F. Caraffini Swarm and Evolutionary Computation 74 (2022) 101125

Table 5

ARR results of different attractor change frequencies and weights of the MPBA problem.

Weight Algorithm Change frequency

Name Indicator 1 2 5 10 20

0 SGA Average 0.8986 0.8648 0.9127 0.9793 0.8988

p-score – – – – –

SOS Average 0.7919 0.8037 0.8229 0.7890 0.8114

p-score – – – – –

NNCP Average 0.7850 0.7871 0.8212 0.8102 0.8083

p-score – – – – –

DynPSO Average 0.7952 0.7985 0.8206 0.7857 0.8253

p-score – – – – –

DQMOO/AR Average 0.7825 0.7082 0.7431 0.7611 0.6990

p-score – – – – –

ROOT Average 0.7603 0.6996 0.7673 0.7608 0.7200

p-score – – – – –

0.005 SGA Average 0.9184 0.8903 0.8963 0.9248 0.9373

p-score 0.5999 0.2623 0.4653 0.0495 0.2059

SOS Average 0.7990 0.8068 0.8552 0.7892 0.7911

p-score 0.9263 0.8451 0.1306 0.8612 0.3286

NNCP Average 0.7996 0.8123 0.8511 0.7851 0.7995

p-score 0.0969 0.0473 0.1626 0.2144 0.0482

DynPSO Average 0.8094 0.7969 0.8487 0.7872 0.7833

p-score 0.0597 0.0656 0.1529 0.2147 0.0691

DQMOO/AR Average 0.8052 0.8063 0.7928 0.7624 0.7002

p-score 0.2134 0.0006 0.0207 0.2536 0.9099

ROOT Average 0.7947 0.7735 0.8015 0.7932 0.8011

p-score 0.0316 0.0087 0.1470 0.2210 0.0013

0.01 SGA Average 0.9090 0.9358 0.9287 0.9071 0.8959

p-score 0.5577 0.0230 0.5440 0.0098 0.7499

SOS Average 0.8740 0.8274 0.7891 0.7331 0.8592

p-score 0.0018 0.3493 0.2623 0.0978 0.1064

NNCP Average 0.8839 0.8275 0.7947 0.7271 0.8515

p-score 0.0844 0.1568 0.1598 0.2302 0.0727

DynPSO Average 0.8723 0.8181 0.7846 0.7281 0.8548

p-score 0.0727 0.1731 0.1479 0.2094 0.0862

DQMOO/AR Average 0.8094 0.7944 0.7660 0.7586 0.7690

p-score 0.0822 0.0073 0.2802 0.9263 0.0117

ROOT Average 0.7615 0.7825 0.6919 0.7095 0.7107

p-score 0.7036 0.0064 0.0015 0.0087 0.6435

0.015 SGA Average 0.9599 0.8923 0.9382 0.9464 0.9487

p-score 0.0472 0.4284 0.4284 0.3086 0.1528

SOS Average 0.8789 0.8436 0.8533 0.8253 0.8162

p-score 0.0003 0.0786 0.1779 0.0897 0.8451

NNCP Average 0.8856 0.8549 0.8602 0.8435 0.8095

p-score 0.0940 0.1289 0.1541 0.2204 0.0690

DynPSO Average 0.8733 0.8451 0.8632 0.8279 0.8271

p-score 0.0892 0.1469 0.1605 0.2130 0.0667

DQMOO/AR Average 0.8564 0.8091 0.7376 0.8209 0.7392

p-score 0.0014 0.0008 0.3820 0.0111 0.0598

ROOT Average 0.7775 0.7808 0.7413 0.6754 0.6964

p-score 0.7189 0.0050 0.0937 0.0032 0.3185

o

c

t

l

t

t

b

a

5

t

t

p

t

i

c

t

c

fi

b

t

i

e

t

f

s

h

i

i

a

o

a

h

m

I
ver the runs. To build an adequate set of historical data for the fore-

asting methods, we also use 100 changes before the performance of

he algorithm is measured. Furthermore, for MPBA we include the fol-

owing combinations: five types of attractor movement dynamics, three

ypes of change frequencies, and three attractor weightings. By testing

hese combinations, we can understand the effectiveness of MPBA as a

enchmark problem for both DOPs that have fully random dynamics,

nd those that contain predictable elements that can be exploited.

.2.1. Effect of varying the number of peaks and dimensions on MPBA

Table 2 (as well as Tables 1 to 5 in the attached supplementary ma-

erial document available online with further numerical results) shows

he effect of varying the number of dimensions and peaks for the com-

ared algorithms. It can be observed that for most algorithms tested,

he offline error increases as the number of dimensions increases. This

s expected as the parameters of the algorithms, the population size and

hange frequency, for example, remain fixed over all experiments. As

he number of dimensions increases, the fitness landscape becomes in-

reasingly complex to search.
11
It can also be observed that as we increase the number of peaks, the

tness increases as the average error of the landscape increases. For OE,

oth ROOT and DQMOO/AR achieve worse results at higher dimensions

han other algorithms. In particular, as the ROOT framework is optimis-

ng for an average fitness above a fitness threshold for a length of future

nvironmental changes, this is expected. However, with DQMOO/AR,

he number of dimensions further increases the number of states for the

orecasting method to predict. OE results highlight that prediction is re-

tricted to the forecasting of the global optima and as such is affected by

ow every optimum’s height changes over time. DQMOO/AR’s forecast-

ng method is optimal with one optimum. When multiple optima exist,

f the population converges to a local optimum, the forecast from the

utoregression using this incorrect data will include large errors. Meth-

ds such as SOS, which incorporate swarm and memory methods, will

chieve optimal results compared to DQMOO/AR and ROOT.

The BEAC metric reveals that methods that use memory schemes

ave the best performance to quickly converge to an optimum, as such

ethods re-initialise their population around the last known optima.

n comparison, our proposed performance measure, BDAC, suggests the

M. Fox, S. Yang and F. Caraffini Swarm and Evolutionary Computation 74 (2022) 101125

Table 6

BEAC results of different attractor change frequencies and weights of the MPBA problem.

Weight Algorithm Change frequency

Name Indicator 1 2 5 10 20

0 SGA Average 20.2497 18.5514 16.1463 16.1771 20.8257

p-score – – – – –

SOS Average 15.5009 17.4034 14.0181 16.0127 18.5062

p-score – – – – –

NNCP Average 18.0927 19.1387 18.0632 18.0589 18.9421

p-score – – – – –

DynPSO Average 19.0014 18.9879 18.8598 18.7166 19.0558

p-score – – – – –

DQMOO/AR Average 18.4232 17.4373 18.7191 17.4702 19.7441

p-score – – – – –

ROOT Average 20.2023 20.9683 18.6403 25.5603 22.7006

p-score – – – – –

0.005 SGA Average 19.1566 18.3044 16.6508 15.6566 18.4773

p-score 2.02E − 06 0.0002 2.29E − 06 1.90E − 06 2.05E − 06

SOS Average 15.7952 15.7746 13.8126 17.8825 16.3644

p-score 2.46E − 05 3.38E − 06 0.0010 9.17E − 07 1.83E − 06

NNCP Average 13.0047 14.0764 14.0042 16.5538 15.9515

p-score 0.0011 0.0022 0.0038 0.0064 0.0021

DynPSO Average 15.9435 15.9730 16.7042 17.0150 18.0439

p-score 0.0036 0.0010 0.0046 0.0017 0.0007

DQMOO/AR Average 19.2073 16.2948 16.5571 16.7927 17.3356

p-score 8.08E − 06 3.42E − 06 1.18E − 06 1.29E − 06 4.78E − 06

ROOT Average 22.9877 17.2174 21.1418 17.1855 17.1295

p-score 1.81E − 06 8.08E − 07 3.00E − 06 2.13E − 06 7.41E − 07

0.01 SGA Average 17.9154 18.3590 17.8624 21.9122 18.7812

p-score 2.41E − 06 0.0030 2.12E − 06 1.62E − 06 1.63E − 06

SOS Average 13.1451 17.8229 17.1413 20.6217 13.1488

p-score 1.38E − 06 1.28E − 06 1.87E − 06 2.20E − 06 1.86E − 06

NNCP Average 14.0704 13.9896 14.8578 15.4990 15.1196

p-score 0.0004 0.0011 0.0008 0.0007 0.0056

DynPSO Average 16.9714 17.0090 18.0086 18.0827 18.4665

p-score 0.0008 0.0009 0.0031 0.0014 0.0029

DQMOO/AR Average 18.8374 16.1519 17.6296 18.1110 20.6317

p-score 0.0011 3.26E − 06 2.53E − 06 0.0028 7.75E − 06

ROOT Average 18.9888 20.6851 20.1997 25.2803 23.9451

p-score 8.54E − 06 0.0001 2.61E − 06 0.0003 2.08E − 07

0.015 SGA Average 13.9394 18.7521 16.8888 18.7312 19.6058

p-score 1.12E − 06 0.0041 1.38E − 06 1.68E − 06 1.15E − 06

SOS Average 13.7732 13.6240 14.8224 16.3392 17.4719

p-score 1.42E − 06 1.53E − 06 1.40E − 06 2.57E − 05 1.85E − 06

NNCP Average 14.8870 16.1788 15.9810 16.8769 16.7043

p-score 0.0001 2.98347E − 05 0.0018 0.0028 0.0009

DynPSO Average 17.2969 17.5152 17.6415 18.0015 18.0799

p-score 0.0010 0.0004 0.0039 0.0023 0.0003

DQMOO/AR Average 16.5861 18.6206 17.1618 20.2887 19.2660

p-score 1.71E − 06 5.28E − 05 2.45E − 06 1.55E − 06 0.0032

ROOT Average 22.4351 20.9605 24.9969 24.2022 21.3686

p-score 1.53E − 06 0.9426 3.14E − 06 1.41E − 06 4.78E − 07

o

a

t

h

s

g

t

i

i

v

t

d

5

t

i

t

a

r

N

s

a

a

e

b

s

o

p

t

o

t

o

D

n

t

o

pposite. The results show that DMQOO/AR, SGA and both DynPSO

nd NNCP achieve better results than SOS. This could be explained by

he movement dynamics of the heights of optima. Considering that the

eight of optima lies within boundaries, one or more peaks may have

imilar heights. As the BEAC metric uses the difference between the

lobal best individual that may have converged to a different peak and

he global optimum, even if the individual is not on the correct optima,

t may cause a good BEAC result. Our method, BDAC, uses the difference

n distance from the individual to the optima. From the results, it is re-

ealed that DMQOO/AR, DynPSO and NNCP initialises individuals near

o the peak, whereas SOS and ROOT initialise individuals at a greater

istance.

.2.2. Effect of varying attractor movement styles

In Table 3 (and Table 5 in the supplementary material document),

he performance of the algorithms under different attractor movements

s shown. For all runs, we only include one peak with one attractor, and

wo dimensions to highlight the performance of the algorithms under

n environment that is easy to search. Taking into account the algo-
12
ithms’ performance in OE and ARR, the algorithms ROOT, DynPSO and

NCP is successful in most cases. The results suggest that DQMOO/AR

hows the largest improvement for the BEAC and BDAC metrics, where

 deterministic-circular movement achieves better results than a linear

nd deterministic-square movement. A square deterministic shape, how-

ver, is slightly worse than a circular shape. This result may be explained

y considering how the autoregressive model is built in ROOT. Given a

quare or circular deterministic movement, each dimension component

f the individuals may move according to a sinusoidal pattern. These

atterns can be forecasted by the AR model to some degree of accuracy,

hus allowing the algorithm for returning satisfactory results. In the case

f a linear movement, unless the forecast model is multi-dimensional,

he prediction of the movement of the peaks will not be perfect. For

ur comparison algorithms that use prediction; DQMOO/AR, NNCP and

ynPSO shows better results using an attractor movement type that is

ot random. For ROOT, this shows varied results. However, this is due to

he underlying optimisation goal being different from tracking moving

ptima.

M. Fox, S. Yang and F. Caraffini Swarm and Evolutionary Computation 74 (2022) 101125

Table 7

BDAC results of different attractor change frequencies and weights of the MPBA problem.

Weight Algorithm Change frequency

Name Indicator 1 2 5 10 20

0 SGA Average 5.2565 5.6400 4.9568 5.1339 5.2909

p-score – – – – –

SOS Average 39.4506 42.7475 39.4731 42.3682 44.7401

p-score – – – – –

NNCP Average 6.0763 5.9952 6.0901 6.0316 6.0049

p-score – – – – –

DynPSO Average 5.9876 5.9909 6.0535 6.0239 6.0204

p-score – – – – –

DQMOO/AR Average 5.0089 5.4199 5.1225 5.1696 5.4041

p-score – – – – –

ROOT Average 5.1928 4.9296 5.1247 5.4533 5.0543

p-score – – – – –

0.005 SGA Average 4.9491 5.2298 5.1164 4.9519 5.1514

p-score 0.0001 3.59E − 06 0.0230 0.0017 0.0047

SOS Average 35.8729 43.6156 36.3299 35.3178 36.4606

p-score 1.45E − 06 7.30E − 07 1.30E − 06 8.11E − 07 1.75E − 06

NNCP Average 4.3963 4.2484 4.3982 4.3759 4.4154

p-score 0.0023 0.0021 0.0039 5.9677E − 05 0.0001

DynPSO Average 4.1069 4.2253 4.3156 4.3552 4.5205

p-score 0.0043 0.0040 0.0039 0.0058 0.0039

DQMOO/AR Average 4.5251 5.0730 4.8409 5.0158 4.8949

p-score 3.08E − 06 5.51E − 06 8.12E − 05 0.0087 1.07E − 06

ROOT Average 4.8932 5.0086 4.9353 4.9937 4.9118

p-score 2.07E − 05 0.1204 0.0018 1.94E − 06 0.0270

0.01 SGA Average 4.9042 4.8841 4.8953 4.7950 5.2034

p-score 4.45E − 05 2.41E − 06 0.2059 2.79E − 06 0.0786

SOS Average 22.6834 36.6053 35.5441 36.3808 30.4558

p-score 4.56E − 06 1.60E − 06 3.02E − 06 1.23E − 06 2.69E − 06

NNCP Average 4.3698 4.3570 4.7174 4.4839 4.6123

p-score 0.0030 0.0052 0.0045 0.0030 0.0070

DynPSO Average 4.2459 4.4574 4.4817 4.5281 4.6404

p-score 0.0044 0.0049 0.0039 0.0039 0.0030

DQMOO/AR Average 4.7348 5.0066 5.0544 5.1296 4.9002

p-score 5.29E − 05 3.04E − 06 0.1156 0.4779 2.89E − 06

ROOT Average 4.9458 4.9796 5.3327 5.3678 4.9045

p-score 2.47E − 05 0.5038 0.0002 0.0387 0.0093

0.015 SGA Average 4.8068 5.1177 4.8182 4.9024 4.9770

p-score 5.79E − 06 2.70E − 06 0.0207 0.0003 0.0002

SOS Average 30.6760 30.1227 23.0714 26.6972 30.4328

p-score 2.37E − 06 1.85E − 06 6.22E − 06 1.34E − 06 2.20E − 06

NNCP Average 4.5846 4.5953 4.8291 5.1429 5.1992

p-score 0.0030 0.0039 0.0056 0.0040 0.0030

DynPSO Average 4.4850 4.4916 4.5418 4.7232 4.7973

p-score 0.0032 0.0040 0.0042 0.0036 0.0029

DQMOO/AR Average 4.6900 4.9544 5.0277 5.1889 5.2534

p-score 9.35E − 06 4.21E − 06 0.0333 0.4405 0.0196

ROOT Average 4.9566 5.1138 4.9744 4.9998 5.2591

p-score 3.36E − 05 0.0012 0.0117 1.49E − 06 0.0002

5

2

t

t

w

b

a

r

a

t

r

s

q

t

t

i

i

l

w

d

N

c

a

r

s

h

l

t

t

c

o

p
.2.3. Effect of varying attractor weightings and change frequencies

Tables 4 –7 (as well as the extended results shown in Tables 6 to

1 in the supplementary material file) consider the effect of changing

he attractor weights and change frequency with a linear movement on

he chosen algorithms using our metrics. Two dimensions and one peak

ere used. For the case of an attractor weight value of 0, the MPBA

enchmark function acts the same as the MMPB benchmark problem

s each peak is not attracted to an attractor and undergoes the same

andom movement.

From Table 4 , NNCP and DynPSO is the best in most situations,

nd as the weight is increased, while SOS achieve worse results. When

he weight is greater than 0, DMQOO/AR and ROOT produce similar

esults. As the change frequency increases, a low weighting produces

imilar results. However, with a high weight and a high change fre-

uency, OE decreases. The reason for this is if an optimum converges

o an attractor before the attractor moves to another location, the op-

imum will randomly move around the attractor location. Additionally,

t can be observed from Table 5 that the ARR for NNCP and DynPSO
13
n all cases is better than that of other algorithms. However, there is

ittle difference between the relationship with change frequency and

eight.

Comparing BEAC in Table 6 and BDAC in Table 2 shows a clear

ifference between the two performance measures. First, given BEAC,

NCP is the best algorithm considering all weights and change frequen-

ies whereas ROOT is worse in most cases. Overall, prediction methods

chieve better results in comparison to algorithms that do not incorpo-

ate prediction. This is the opposite case seen with BDAC in Table 7 . As

uggested previously, these results may be based on the difference in

eights of the global optima to other optima directly impacting the va-

idity of the BEAC results, whereas BDAC shows that the distance from

he global optima to the closest individual is not sensitive to other op-

ima. The value of BDAC improves for DMQOO/AR as the weight in-

reases in low change frequencies.

From the Table 8 , the results for DynPSO, NNCP and a small range

f results for DQMOO/AR suggest that the benchmark does utilise the

rediction components of the algorithms better than that of MMPB. This

M. Fox, S. Yang and F. Caraffini Swarm and Evolutionary Computation 74 (2022) 101125

Table 8

Pairwise Mann-Whitney U tests (significance level of 0.05) on the different

change frequencies and weights versus a weight of 0, which has the same

behaviour as the MMPB. ▴ denotes a significant result, where - does not. For

each algorithm, the column contains the metrics OE, ARR, BDAC, and BEAC

(from left to right).

Weight Algorithm name Change frequency

1 2 5 10 20

0.005 SGA –

SOS –

NNCP ▴–▴▴ ▴–▴▴ ▴–▴▴ ▴–▴▴ ▴–▴▴
DynPSO ▴▴▴▴ ▴▴▴▴ ▴▴▴▴ ▴–▴▴ ▴–▴–

DQMOO/AR – – –▴ ▴▴–▴ –▴–▴ –▴– – – – – –

ROOT – – – – ▴– – – – – – – ▴– –▴ – – –▴
0.01 SGA –

SOS –

NNCP – –▴▴ ▴▴▴▴ ▴–▴▴ ▴–▴▴ ▴–▴▴
DynPSO –▴▴– ▴▴▴▴ ▴–▴▴ ▴–▴– ▴–▴–

DQMOO/AR – – – – –▴▴▴ ▴– –▴ – – – – –▴▴▴
ROOT ▴– – – ▴▴– – –▴– – –▴– – – – – –

0.015 SGA –

SOS –

NNCP –▴▴▴ ▴▴▴▴ ▴▴▴▴ ▴–▴▴ ▴▴▴▴
DynPSO –▴▴▴ ▴▴▴▴ ▴▴▴▴ ▴▴▴– ▴–▴–

DQMOO/AR –▴▴– ▴▴▴– ▴▴▴– – – – – – – – –

ROOT ▴– – – ▴– – – – – – – – – – – – – – –

t

o

f

m

b

s

a

R

5

t

t

p

s

d

f

p

a

a

t

i

s

o

s

t

p

g

r

p

w

c

l

w

m

l

c

a

6

w

c

t

o

o

T

i

d

o

s

n

a

t

m

a

m

p

f

o

c

l

j

o

t

c

f

t

d

b

m

i

d

f

o

D

i

t

C

r

–

t

C

–

S

able shows the pairwise Mann-Whitney U-Test where the combination

f the weight and change frequency is paired with the same change

requency but a weighting of 0. When MPBA has a weighting of 0, the

ovement of the peaks exhibit the same behaviour of the normal MMPB

enchmark. For algorithms that does not have a predictive component,

uch as SGA, there is no significance in the results meaning that the

lgorithm does not produce better results with MPBA. In comparison,

OOT shows a small amount of significance in some problems.

.3. Discussion

It is difficult to compare the success of the algorithms as most of

he tested optimisation methods do not incorporate the same predic-

ion within their algorithmic structure. While it is appropriate to com-

are such algorithms in an EDO setting by measuring error, convergence

peed and accuracy to a global optimum, in the case of measuring pre-

iction typical EDO approaches still achieve good results given a per-

ormance measure that could predict accuracy. Hence, in this work, we

ropose a metric that measures the distance between the global optima

nd closest individual after an environment has changed, suggesting that

n algorithm that uses prediction will re-initialise individuals as close

o the predicted location of the new global optima.

In this study, DQMOO/AR, DynPSO and NNCP is equipped to re-

nitialise individuals using prediction. Other re-initialisation methods,

uch as covering or distributing individuals around previously known

ptima and randomly distributing the population in the whole search

pace may randomly achieve good results if they are re-initialised close

o the global optima, therefore results may be deceiving. Moving the

eak in large steps may produce worse results for non-predictive al-

orithms, where algorithms that use prediction may demonstrate ideal

esults. Using higher attractor weights makes MPBA suitable for these

roblems.

Finding a good balance for the change frequency and attractor

eight ensures that the peak is continually moving. As previously dis-

ussed, if the weight is too high the peak may converge to the attractor

ocation too soon and move around this point. Conversely, a low weight

ould lead to another undesired case where the peak undergoes too

uch of a random walk. In both cases, any benefit of predictability is

ost. However, the MPBA benchmark is flexible as it allows for both
 t

14
ases, allowing researchers to study predictability under different situ-

tions in EDO problems.

. Conclusions and future work

This paper presents a new benchmark problem, denoted MPBA,

hich is useful to evaluate evolutionary dynamic optimisers that in-

orporate forecasting methods to predict how the optima move across

he fitness landscape in successive environmental changes. Such meth-

ds aim to influence the convergence rate of a population, or in the case

f requirement satisfaction problems such as Robust Optimisation over

ime, aim to predict the optima to forecast the future fitness values of

ndividuals.

We also introduce a new performance measure that measures the

istance between the closest individual in the population and the global

ptima at the first iteration after an environmental change. This mea-

ure is based on the idea that an optimiser with a predictor either places

ew individuals around the estimated location of the global optima to

chieve a quick convergence or spreads the population around the op-

ima to increase diversity. An optimiser that does not use prediction

ay not place an individual or focus on the re-initialisation of individu-

ls in the new optimum location, thus a worse result of this performance

easure is achieved.

MPBA exploits the movement of the optima to create a benchmark

roblem that can be predicted. The problem uses an attractor location

or each optimum, or a set of optima and given an attractor weighting,

ver each environmental change the optima will be attracted to the lo-

ation as determined rates. MPBA is fully configurable, as the attractor

ocation can move by following deterministic paths or randomly. By ad-

usting the attraction weighting, change frequency and movement type

f the attractor, we can create predictable optima movements while re-

aining some degree of random walk allowing EDO algorithms that in-

orporate prediction methods to be effectively evaluated.

When using our benchmark problem to test a range of algorithms

rom EDO studies we find that while EDO algorithms that use predic-

ion produce better results than those algorithms that do not use pre-

iction, there is an improvement in prediction-based algorithms as the

enchmark problem becomes more predictable.

We envisage several extensions for this work, such as investigating

ovement patterns by varying the change frequency, attractor weight-

ng and movement styles. Although EDO algorithms have previously

emonstrated good performance on this proposed benchmark problem,

urther work into incorporating more advanced methods of prediction

r time-series forecasting in EDO is needed.

eclaration of Competing Interest

The authors declare that they have no known competing financial

nterests or personal relationships that could have appeared to influence

he work reported in this paper.

RediT authorship contribution statement

Matthew Fox: Conceptualization, Methodology, Software, Data cu-

ation, Formal analysis, Validation, Visualization, Investigation, Writing

original draft, Writing – review & editing. Shengxiang Yang: Concep-

ualization, Methodology, Validation, Writing – review & editing. Fabio

araffini: Methodology, Validation, Visualization, Supervision, Writing

original draft, Writing – review & editing.

upplementary material

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.swevo.2022.101125.

https://doi.org/10.1016/j.swevo.2022.101125

M. Fox, S. Yang and F. Caraffini Swarm and Evolutionary Computation 74 (2022) 101125

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
eferences

[1] V.S. Aragón, S.C. Esquivel, An evolutionary algorithm to track changes of optimum

value locations in dynamic environments, J. Comput. Sci. Technol. 4 (03) (2004)

p.127–133 .

[2] D. Ayvaz, H. Topcuoglu, F. Gürgen, A comparative study of evolutionary

optimization techniques in dynamic environments, in: GECCO ’06, Associa-

tion for Computing Machinery, New York, NY, USA, 2006, p. 13971398,

doi: 10.1145/1143997.1144213 .

[3] T.M. Blackwell, Swarms in dynamic environments, in: Genetic and Evolutionary

Computation Conference, Springer, 2003, pp. 1–12 .

[4] P.A.N. Bosman, Learning, anticipation and time-deception in evolutionary online

dynamic optimization, in: Proceedings of the 7th Annual Workshop on Genetic and

Evolutionary Computation, 2005, pp. 39–47 .

[5] J. Branke, Memory enhanced evolutionary algorithms for changing optimization

problems, in: Proceedings of the 1999 Congress on Evolutionary Computation, vol. 3,

1999, pp. 1875–1882 .

[6] J. Branke, Evolutionary approaches to dynamic optimization problems - updated

survey, 2001.

[7] J. Branke, Evolutionary Optimization in Dynamic Environments, vol. 3, Springer

Science & Business Media, 2012 .

[8] J. Branke, H. Schmeck, Designing evolutionary algorithms for dynamic optimization

problems, in: Advances in Evolutionary Computing, Springer, 2003, pp. 239–262 .

[9] H.G. Cobb, An Investigation Into the Use of Hypermutation as An Adaptive Operator

in Genetic Algorithms Having Continuous, Time-Dependent Nonstationary Environ-

ments, Technical Report, Naval Research Lab Washington DC, 1990 .

10] H.G. Cobb, J.J. Grefenstette, Genetic Algorithms for Tracking Changing Environ-

ments, Technical Report, Naval Research Lab Washington DC, 1993 .

11] C. Cruz, J.R. González, D.A. Pelta, Optimization in dynamic environments: a survey

on problems, methods and measures, Soft Comput. 15 (7) (2011) 1427–1448 .

12] S.C. Esquivel, C.A.C. Coello, Particle swarm optimization in non-stationary envi-

ronments, in: Ibero-American Conference on Artificial Intelligence, Springer, 2004,

pp. 757–766 .

13] H. Fu, B. Sendhoff, K. Tang, X. Yao, Finding robust solutions to dynamic optimiza-

tion problems, in: Proceedings of the 16th European Conference on Applications of

Evolutionary Computation, EvoApplications’13, Springer-Verlag, Berlin, Heidelberg,

2013, pp. 616–625, doi: 10.1007/978-3-642-37192-9_62 .

14] X. Fu, J. Sun, A new learning based dynamic multi-objective optimisation evolution-

ary algorithm, in: 2017 IEEE Congress on Evolutionary Computation (CEC), IEEE,

2017, pp. 341–348 .

15] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,

Pearson Education (US), (1989).

16] J.J. Grefenstette, Evolvability in dynamic fitness landscapes: a genetic algorithm

approach, in: Proceedings of the 1999 Congress on Evolutionary Computation, vol. 3,

1999, pp. 2031–2038 .

17] J.J. Grefenstette, et al., Genetic algorithms for changing environments, in: PPSN,

vol. 2, 1992, pp. 137–144 .

18] I. Hatzakis, D. Wallace, Dynamic multi-objective optimization with evolutionary al-

gorithms: a forward-looking approach, in: Proceedings of the 8th Annual Conference

on Genetic and Evolutionary Computation, 2006, pp. 1201–1208 .

19] M. Jiang, Z. Huang, L. Qiu, W. Huang, G.G. Yen, Transfer learning-based dynamic

multiobjective optimization algorithms, IEEE Trans. Evol. Comput. 22 (4) (2017)

501–514 .

20] Y. Jin, J. Branke, et al., Evolutionary optimization in uncertain environ-

ments —Asurvey, IEEE Trans. Evol. Comput. 9 (3) (2005) 303–317 .

21] Y. Jin, K. Tang, X. Yu, B. Sendhoff, X. Yao, A framework for finding

robust optimal solutions over time, Memet. Comput. 5 (1) (2013) 3–18,

doi: 10.1007/s12293-012-0090-2 .

22] C. Li, S. Yang, T.T. Nguyen, E.L. Yu, X. Yao, Y. Jin, H.G. Beyer, P.N. Suganthan,

Benchmark generator for CEC 2009 competition on dynamic optimization, 2008.

23] X.-F. Liu, Z.-H. Zhan, T.-L. Gu, S. Kwong, Z. Lu, H.B.-L. Duh, J. Zhang, Neural

network-based information transfer for dynamic optimization, IEEE Trans. Neural

Netw. Learn. Syst. 31 (5) (2019) 1557–1570 .

24] X.-F. Liu, Z.-H. Zhan, J. Zhang, Neural network for change direction prediction in

dynamic optimization 6 (2018) 72649–72662 .

25] A. Meier, Prediction-Based Nature-Inspired Dynamic Optimization, Universität Old-

enburg, 2020 Ph.D. thesis .

26] A. Meier, O. Kramer, Recurrent neural network-predictions for PSO in dynamic opti-

mization, in: Proceedings of the Genetic and Evolutionary Computation Conference,

2018, pp. 29–36 .
15
27] A. Meier, O. Kramer, Predictive uncertainty estimation with temporal convolutional

networks for dynamic evolutionary optimization, in: International Conference on

Artificial Neural Networks, Springer, 2019, pp. 409–421 .

28] R.W. Morrison, Performance measurement in dynamic environments, GECCO Work-

shop on Evolutionary Algorithms for Dynamic Optimization Problems, 2003 .

29] R.W. Morrison, Designing Evolutionary Algorithms for Dynamic Environments,

Springer Science & Business Media, 2013 .

30] R.W. Morrison, K.A. De Jong, A test problem generator for non-stationary environ-

ments, in: Proceedings of the 1999 Congress on Evolutionary Computation, vol. 3,

1999, pp. 2047–2053 .

31] T.T. Nguyen, Continuous Dynamic Optimisation Using Evolutionary Algorithms,

University of Birmingham, 2011 Ph.D. thesis .

32] T.T. Nguyen, S. Yang, J. Branke, Evolutionary dynamic optimization: a survey of the

state of the art, Swarm Evol. Comput. 6 (2012) 1–24 .

33] T.T. Nguyen, X. Yao, Continuous dynamic constrained optimization —The chal-

lenges, IEEE Trans. Evol. Comput. 16 (6) (2012) 769–786 .

34] M. Rong, D. Gong, Y. Zhang, Y. Jin, W. Pedrycz, Multidirectional prediction ap-

proach for dynamic multiobjective optimization problems, IEEE Trans. Cybern. 49

(9) (2018) 3362–3374 .

35] M. Rong, D.-w. Gong, Y. Zhang, A multi-direction prediction approach for dynamic

multi-objective optimization, in: International Conference on Intelligent Computing,

Springer, 2016, pp. 629–636 .

36] C. Rossi, M. Abderrahim, J.C. Díaz, Tracking moving optima using Kalman-based

predictions, Evol. Comput. 16 (1) (2008) 1–30 .

37] S. Saleem, R. Reynolds, Cultural algorithms in dynamic environments, in: Pro-

ceedings of the 2000 Congress on Evolutionary Computation, vol. 2, 2000,

pp. 1513–1520 .

38] R. Salomon, Re-evaluating genetic algorithm performance under coordinate rotation

of benchmark functions. a survey of some theoretical and practical aspects of genetic

algorithms, BioSystems 39 (3) (1996) 263–278 .

39] A. Simões, E. Costa, Evolutionary algorithms for dynamic environments: Prediction

using linear regression and Markov chains, in: International Conference on Parallel

Problem Solving from Nature, Springer, 2008, pp. 306–315 .

40] A. Simões, E. Costa, Improving prediction in evolutionary algorithms for dynamic

environments, in: Proceedings of the 11th Annual Conference on Genetic and Evo-

lutionary Computation, 2009, pp. 875–882 .

41] N.T. Thanh, Y. Xin, Evolutionary optimization on continuous dynamic constrained

problems-an analysis, in: Evolutionary Computation for Dynamic Optimization Prob-

lems, Springer, 2013, pp. 193–217 .

42] R. Tinós, S. Yang, A self-organizing random immigrants genetic algorithm for

dynamic optimization problems, Genet. Program. Evolvable Mach. 8 (3) (2007)

255–286 .

43] K. Trojanowski, Z. Michalewicz, Searching for optima in non-stationary environ-

ments, in: Proceedings of the 1999 Congress on Evolutionary Computation, vol. 3,

1999, pp. 1843–1850 .

44] K. Weicker, N. Weicker, Dynamic rotation and partial visibility, in: Proceedings of

the 2000 Congress on Evolutionary Computation, vol. 2, 2000, pp. 1125–1131 .

45] Y.G. Woldesenbet, G.G. Yen, Dynamic evolutionary algorithm with variable reloca-

tion, IEEE Trans. Evol. Comput. 13 (3) (2009) 500–513 .

46] Y. Wu, Y. Jin, X. Liu, A directed search strategy for evolutionary dynamic multiob-

jective optimization, Soft Comput. 19 (11) (2015) 3221–3235 .

47] S. Yang, Evolutionary computation for dynamic optimization problems, in: Proceed-

ings of the Companion Publication of the 2015 Annual Conference on Genetic and

Evolutionary Computation, Association for Computing Machinery, New York, NY,

USA, 2015, p. 629649, doi: 10.1145/2739482.2756589 .

48] S. Yang, X. Yao, Population-based incremental learning with associative memory for

dynamic environments, IEEE Trans. Evol. Comput. 12 (5) (2008) 542–561 .

49] D. Yazdani, T.T. Nguyen, J. Branke, J. Wang, A new multi-swarm particle swarm op-

timization for robust optimization over time, in: Applications of Evolutionary Com-

putation. Cham, 2017, pp. 99–109, doi: 10.1007/978-3-319-55792-2_7 .

50] X. Yu, Y. Jin, K. Tang, X. Yao, Robust optimization over time a new perspective on

dynamic optimization problems, in: Congress on Evolutionary Computation, 2010,

pp. 1–6, doi: 10.1109/CEC.2010.5586024 .

51] A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, E. Tsang, Prediction-based population

re-initialization for evolutionary dynamic multi-objective optimization, in: Inter-

national Conference on Evolutionary Multi-Criterion Optimization, Springer, 2007,

pp. 832–846 .

52] H. Zhou, X. Yuan, H. Qu, W. Cui, B. Chen, Visual clustering in parallel coordinates,

Comput. Graph. Forum 27 (3) (2008) 1047–1054 .

http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0001
https://doi.org/10.1145/1143997.1144213
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0003
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0004
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0005
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0007
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0008
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0009
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0010
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0011
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0012
https://doi.org/10.1007/978-3-642-37192-9_62
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0014
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0016
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0017
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0018
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0019
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0020
https://doi.org/10.1007/s12293-012-0090-2
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0023
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0024
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0025
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0026
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0027
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0028
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0029
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0030
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0031
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0032
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0033
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0034
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0035
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0036
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0037
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0038
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0039
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0040
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0041
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0042
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0043
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0044
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0045
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0046
https://doi.org/10.1145/2739482.2756589
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0048
https://doi.org/10.1007/978-3-319-55792-2_7
https://doi.org/10.1109/CEC.2010.5586024
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0051
http://refhub.elsevier.com/S2210-6502(22)00095-5/sbref0052

	A new moving peaks benchmark with attractors for dynamic evolutionary algorithms
	1 Introduction
	2 Related work
	2.1 Evolutionary dynamic optimization (EDO)
	2.2 Requirement satisfaction and prediction in EDO
	2.3 Benchmark problems in EDO

	3 Proposed MPBA benchmark problem
	3.1 Definitions
	3.2 Attractor weighting
	3.3 Attractor dynamics

	4 Performance metrics
	4.1 Offline error
	4.2 Absolute recovery rate
	4.3 Best error after change
	4.4 Best distance after change

	5 Experimental study
	5.1 Compared algorithms
	5.2 Results
	5.2.1 Effect of varying the number of peaks and dimensions on MPBA
	5.2.2 Effect of varying attractor movement styles
	5.2.3 Effect of varying attractor weightings and change frequencies

	5.3 Discussion

	6 Conclusions and future work
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Supplementary material
	References

