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Abstract: Modelling and forecasting citywide crowd information (e.g., crowd volume of a 14 
region, the inflow of crowds into a region, outflow of crowds from a region) at a fine spatio-15 
temporal scale is crucial for urban and transport planning, city management, public safety, and 16 
traffic management. However, this is a challenging task due to its complex spatial and temporal 17 
dependences. This paper proposes a novel and efficient model to reduce the training time cost 18 
while maintaining predictive accuracy in forecasting citywide crowd information at a fine 19 
spatio-temporal scale. Our model integrates Gated Recurrent Unit (GRU), convolutional neural 20 
network (CNN), and k-nearest neighbors (k-NN) to jointly capture the spatial and temporal 21 
dependences between two regions in a city. The evaluation with two different datasets in two 22 
different cities shows that compared to the state-of-the-art baselines, our model has better 23 
predictive accuracy (reducing the mean absolute errors MAEs by 20.99% on average) and a 24 
lower training time cost (reducing the time cost to only 26.16% on average of that of the 25 
baselines). Our model also has better abilities in making accurate predictions with low time cost 26 
under the influences of large-scale special events (when massive crowds of people are gathering 27 
in a short time) and for regions with high and irregular crowd changes. In summary, our model 28 
is an effective, efficient, and reliable method for forecasting citywide crowd information at a fine 29 
spatio-temporal scale, and has a high potential for many applications, such as city management, 30 
public safety, and transportation. 31 
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1. Introduction 35 

Modelling and predicting fine-grained spatial-temporal crowd information in citywide 36 
environments, e.g., crowd volume (i.e., the number of people presented) in each region of a city, 37 
crowd flows into or out of each region, is of great importance to urban planning, public safety, 38 
transport planning, and traffic management (Ahas et al. 2015, Demissie, Correia and Bento 2015, 39 
Liu et al. 2020). For instance, modelling the fine-grained crowd distribution in a city provides a 40 
scientific basis for city management to reasonably allocate city resources dynamically and 41 
optimally. Knowing and predicting (near) real-time crowd mobility in a city also helps to prevent 42 
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catastrophic accidents caused by massive crowds of people gathering in a short time. For example, 43 
many tourists and citizens gathered into Bund in Shanghai to celebrate the New Year of 2015, 44 
causing many people to fall and overlap and resulting in a stampede that killed 36 and injured 45 
49. Additionally, such information also helps traffic managers and transportation operators to 46 
optimize their mobility services and improve the efficiency of the transportation system. 47 
Accordingly, much research has been conducted in recent years to develop methods for modeling 48 
and predicting such fine-grained spatial-temporal crowd information in cities. Various data have 49 
been employed as a proxy to represent such crowd information, including mobile phone network 50 
data (such as call detail records CDRs and signaling data) (Jarv, Ahas and Witlox 2014), bike-51 
sharing data (Zhang et al. 2016, Zhang et al. 2018), taxi GPS trajectory data, location-based social 52 
media data, and location-based services usage/log data. 53 

Forecasting crowd information at a fine spatial-temporal resolution in a citywide 54 
environment (e.g., the total volume of crowds in each 1km*1km region of a city in an hourly 55 
interval), however, has always been a challenging task due to its complex spatial and temporal 56 
dependences. In terms of spatial dependences, due to human mobility between different regions 57 
in a city, the crowd volume in a region is affected by the inflow and outflow of nearby regions 58 
and vice versa. With the development of transportation infrastructure, such as subways and other 59 
high-speed transportation (e.g., light rail), that more efficiently connect different regions within 60 
a city, such spatial dependences exist not only between nearby regions, but also between distant 61 
regions. In other words, such spatial dependences often present nonlinear characteristics and are 62 
influenced by many factors. In terms of temporal dependences, the distribution of crowds in a city 63 
changes dynamically over time and can be generally characterized by periodicity (e.g., the crowd 64 
distribution at 9am might be similar on consecutive workdays, repeating every 24 hours) and 65 
recent trends (e.g., the citywide crowd distribution at 9am will affect that of 10am, or even longer). 66 
Meanwhile, time of the day, weekdays/weekends, and special events might also significantly 67 
affect the crowd distribution in a city. Therefore, to effectively forecast fine-grained crowd 68 
information, it is essential to consider both the spatial and temporal dependences. 69 

Existing methods for predicting the volume of crowds and traffic flows can be mainly 70 
divided into two groups: (i) statistical and machine learning, and (ii) deep learning algorithms 71 
(For an extensive overview, please refer to Section 2). Examples of the first group include the 72 
applications of k-nearest neighbors (k-NN), autoregressive integrated moving average (ARIMA) 73 
and its extensions, random forest (RF), support vector regression (SVR) (Smith, Williams and 74 
Oswald 2002, Hamner 2010, Xia et al. 2016). Although these statistical and conventional machine 75 
learning algorithms are easier to train, they are often limited in their predictive accuracy. Recent 76 
years have seen an increasing interest of developing deep learning-based methods. Such studies 77 
typically combine (graph) convolutional neural network (CNN, GCNN), recurrent neural 78 
network (e.g., long short-term memory networks LSTM and gated recurrent units GRU), and 79 
other neural networks to capture the spatio-temporal dependences between the data (Zhang et 80 
al. 2018, Wu et al. 2019, Zheng et al. 2020, Xu, Kang and Cao 2022). Although more complex 81 
models (e.g., with more hidden layers or sophisticated structures) can potentially achieve better 82 
predictive accuracy, much more time must be spent on the training phase, and thus more 83 
computational resources are required and more energy is consumed. How to reduce training time 84 
cost while maintaining excellent predictive accuracy is still an open research challenge. 85 

To tackle this open research challenge, this study proposes a novel and efficient neural 86 
network model for forecasting crowd information in citywide environments, with the aims to 87 
reduce the training time cost while maintaining a better predictive accuracy than the baseline 88 
models. The proposed model combines recurrent neural networks (i.e., GRU) and convolutional 89 
neural network (CNN) to jointly capture the complex spatio-temporal dependences of crowd 90 
information. More importantly, a k-nearest neighbors (k-NN) module, which is shown to be an 91 
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effective and efficient conventional predictive method in the literature, is added to the model to 92 
further capture more ‘neighborhoods’ features and accelerate the convergence of the loss function, 93 
thus reducing the training time cost of the proposed model and improving its predictive accuracy. 94 
In short, we term the proposed neural network model as ST-RCNet-knn. Our contributions are 95 
three-fold: 96 

1) Our proposed ST-RCNet-knn model integrates two DL approaches GRU and CNN and 97 
a conventional ML method k-NN to jointly model spatial and temporal dependences 98 
between nearby grid cells in a city. This combination allows to significantly reduce the 99 
training time cost, while still ensuring an excellent predictive accuracy.  100 

2) We comprehensively evaluate our ST-RCNet-knn model with state-of-the-art predictive 101 
models using two different datasets in two different cities. The evaluation results show 102 
that our ST-RCNet-knn model can better capture both temporal dependences (via the 103 
GRU part) and spatial dependences (via the CNN and k-NN part), despite a very simple 104 
and shallow network structure. Compared to the state-of-the-art baselines, our model 105 
reduces the mean absolute errors (MAEs) by 20.99% on average (minimum: 4.00%; 106 
maximum: 63.56%), while its training time cost is only 26.16% on average (minimum: 107 
1.07%; maximum: 57.98%) of that of the baselines. In short, our model significantly 108 
outperforms the state-of-the-art models in terms of both the predictive accuracies and 109 
the training time costs. 110 

3) The results also illustrate that compared to the state-of-the-art baselines, our model is 111 
able to make more accurate prediction with low time cost under the influences of large-112 
scale special events (when massive crowds gather in short time), as well as more robust 113 
to make prediction for regions with high and irregular crowd changes.  114 

2. Related Work 115 

With regard to prediction of the volume of crowds and traffic flows, two groups of methods 116 
can be identified in the literature: (i) statistical and machine learning-based method, and (ii) deep 117 
learning algorithms. This section summaries the related works from these two perspectives. 118 

2.1 Traditional method for crowd flow prediction 119 

For statistical and conventional machine learning-based algorithms, many researchers have 120 
applied k-nearest neighbors (k-NN) to predict flow volume for a short time (Chen et al. 2018, Xia 121 
et al. 2016). Other predictive methods include Kalman filtering model (Okutani and Stephanedes 122 
1984), support vector regression (Wu, Ho and Lee 2004, Semanjski et al. 2017), Bayesian model 123 
(Sun, Zhang and Yu 2006), and autoregressive integrated moving average (ARIMA) (Smith et al. 124 
2002). With the improvement of prediction techniques, many extended models were proposed to 125 
enhance the predictive accuracy, including spatial-temporal weighted k-nearest neighbors (Xia 126 
et al. 2016), Kohonen ARIMA (Van Der Voort, Dougherty and Watson 1996), seasonal ARIMA 127 
(Williams and Hoel 2003), seasonal SVM (Hong 2011), and online SVM (Castro-Neto et al. 2009). 128 
Additionally, random forest (RF) has been also employed in traffic flow prediction and achieved 129 
a good performance by consider more contextual information (Hamner 2010). Although the 130 
statistical and machine learning algorithms have a lower cost in training time, they are often 131 
limited in capturing complex and dynamic spatio-temporal dependences to obtain better 132 
predictive accuracy. 133 

2.2 Deep learning method for crowd flow prediction 134 

In recent years, DL has grown as one of the best techniques in application fields such as 135 
computer vision (Vinyals et al. 2015) and natural language processing (Gu et al. 2018). As an 136 
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excellent tool being capable of modelling complex dependences between data, DL is very 137 
promising for addressing the problems of predicting crowd information (Xie et al. 2020). For 138 
example, there were researchers who focused on applying the convolutional neural network 139 
(CNN) (Ma et al. 2017) to capture the spatial characteristics for forecasting traffic flow. 140 
Additionally, other researchers proposed an online gated recurrent unit (GRU) model to consider 141 
periodicity characteristics for improving prediction accuracy (Fan et al. 2018). Likewise,  Liu, Liu 142 
and Jia (2019) combined fully connected network and long short-term memory (LSTM) to predict 143 
metro passenger flow, wherein fully connected network is used to extract the external features, 144 
and LSTM is applied to portray the temporal dependency. The studies mentioned above only 145 
considered either spatial or temporal dependences and failed to jointly consider both aspects.  146 

To address this issue, Zhang et al. (2018) proposed a DL-based model (called ST-ResNet), 147 
which combines CNN and residual convolutional network, to capture spatiotemporal 148 
dependences based on three units of temporal closeness, period, and trend of crowd flow. To 149 
further portray the temporal features, many works integrate CNN and RNN to exploit the 150 
capability of the latter to address temporal patterns (Luca et al. 2021). For instance, Yao et al. (2019) 151 
proposed a spatial-temporal dynamic network which applied CNN module to capture the spatial 152 
features and LSTM to portray temporal features. Extended from ST-ResNet, Xu et al. (2022) 153 
developed a high-resolution spatiotemporal transformer network, which employed multi-head 154 
attention mechanism’s transformer to capture the spatiotemporal features in closeness, period 155 
and trend patterns . Apart from portraying the spatiotemporal dependences, other features are 156 
also added to enhance the prediction accuracy. For example, Geng et al. (2019) proposed a multi-157 
graph convolutional network, in which the relationship of neighborhoods, their connective and 158 
function were represented into three graphs. A multi-view residual attention network 159 
additionally applied node2vec to encode the transition probability and transition distance 160 
between urban functional areas, and the crowd flows patterns of the functional areas, which 161 
effectively portrays the mobility pattern to enhance prediction accuracy (Yuan et al. 2020). 162 
Additionally, Zhang et al. (2020) used the Euclidean distance between two regions and the 163 
Pearson correlation coefficient of historical data as distance to construct two k-NN graphs that 164 
are encoded with graph convolutional neural network (GCNN).  165 

For the irregular grids and topological construction, Zhao et al. (2020) proposed a temporal 166 
graph convolutional network, which combines GCNN and GRU, to describe the spatio-temporal 167 
characteristics of traffic flow. Diffusion convolutional recurrent neural network was also 168 
developed to model diffusion process of graph signals, which is proved to be effective in spatio-169 
temporal modelling (Li et al. 2017b). Inspired by that, Wu et al. (2019) designed a gating 170 
mechanism with diffusion convolutional layer, which is helpful for aggregating and transforming 171 
the neighborhood information, along with GCNN to predict the traffic flow. Additionally, Guo 172 
et al. (2019) developed an attention-based GCNN to capture the spatio-temporal attributes of 173 
traffic flow. Similarly, Zheng et al. (2020) introduced the attention mechanism into GMAN, that 174 
includes spatio-temporal embedding layer, ST-attention blocks and transformer attention layer, 175 
to forecast the traffic flow at intersections. They further used node2vec to capture the topological 176 
relationships between intersections. Meanwhile, to capture the time series characteristics more 177 
completely, researchers introduced different ways to encode the temporal dependences of crowd 178 
flow integrating GCNN and transformer model (Xu et al. 2020, Cai et al. 2020).  179 

While more complex models (e.g., with more hidden layers, sophisticated structures, or 180 
supplement information) can potentially achieve better predictive accuracy, much more time 181 
must be spent on the training phase, and thus more computational resources are required and 182 
more energy is consumed, which is unfriendly to the limited computational resources or users 183 
who just expect a good accuracy under limited time cost. How to reduce training time cost while 184 
maintaining excellent predictive accuracy is still an open research challenge. Thereby, this study 185 
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addresses this issue by proposing ST-RCNet-knn, which integrates DL approaches (specifically 186 
GRU and CNN) and conventional ML (specifically k-NN).  187 

3. Methodology 188 

3.1 Problem Definition 189 

This study aims to predict crowd information at a given time in each region of an entire city, 190 
using historical observations. In our methodology, crowd information is seen as a general concept. 191 
It can be crowd volume of a region (i.e., the number of people presented in the region), crowd 192 
density of a region, inflow crowds into a region (i.e., the total traffic of crowds entering the region), 193 
and outflow crowds from a region (i.e., the total traffic of crowds leaving a region). Without loss 194 
of generality, in the following we mainly use crowd volume as an example of crowd information.  195 

Various ways can be used to define a region, in terms of different granularities and semantic 196 
meanings. Similar to Zhang et al. (2018), this study partitions a city into a I × 𝐽 grid map based on 197 
latitude and longitude, where each grid cell represents a region, as shown in Figure 1 (left). 198 

 199 

 200 
Figure 1. Regions of Guangzhou. Left: grid map with 900 cells, each of which has a size of 1km x 201 

1km; Right: an example of a cell-level crowd distribution 202 
 203 
At the tth time interval, the crowd volume in all I × 𝐽 regions/cells can be denoted as a matrix 204 

𝑋𝑡 ∈ ℝ𝐼×𝐽 . An example of such a matrix is shown in Figure 1 (right). It shows the crowd 205 
distribution in Guangzhou (China) during the time from 18:00 to 19:00 on a weekday. Grid cells 206 
with high crowd volumes (those with dark orange colors) are mainly around the urban villages 207 
in the neighboring area of Liwan, Haizhu, and Yuexiu District (old city center) and the CBD 208 
located in Tianhe District (new city center). Owing to relatively low housing expenses and 209 
proximity to workplace, numerous younger people live in these areas, making these areas socially 210 
active. 211 

Therefore, the problem of fine-grained crowd information prediction can be defined as: 212 
given the historical observations  𝑋0, ⋯ , 𝑋𝑡−2, 𝑋𝑡−1, predict 𝑋𝑡. 213 

      𝑋�̂� = 𝑓(𝑋0, ⋯ , 𝑋𝑡−2, 𝑋𝑡−1) (1) 214 

3.2 Overview of the ST-RCNet-knn model 215 

Figure 2 presents the framework of the proposed ST-RCNet-knn model, which consists of 216 
four main components, namely ‘weekly pattern’, ‘daily pattern’, ‘recent hourly trend’, and 217 
‘nearest neighbors’. As illustrated in the top part of Figure 2, we first consider the crowd 218 
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distribution throughout a city at each time interval as a gray-scale image-like matrix. We then 219 
extract different subsets of historical time series, denoting the recent hourly trend (time series 220 
data of the last several hours immediately before 𝑡: 𝑆𝐻 = [𝑋𝑡−𝑎, ⋯ , 𝑋𝑡−2, 𝑋𝑡−1]), daily pattern (time 221 
series of data of the specific hour of the last several days:  𝑆𝐷 = [𝑋𝑡−𝑏∗24, ⋯ , 𝑋𝑡−2∗24, 𝑋𝑡−24]), and 222 
weekly pattern (time series of data of the specific hour and the specific day of the last several 223 
weeks:  𝑆𝑊 = [𝑋𝑡−𝑐∗24∗7, ⋯ , 𝑋𝑡−2∗24∗7, 𝑋𝑡−24∗7]). 𝑎, 𝑏, 𝑐  are hyperparameters describing the input 224 
time series lengths considered in our prediction model.  225 

 226 

 227 
Figure 2. ST-RCNet-knn architecture. GRU: gated recurrent unit; Conv: Convolution; k-NN: k-228 
nearest neighbors. 229 
 230 

These three subsets are then fed into the first three components respectively, with the aim to 231 
model the spatial-temporal characteristics of crowd information at the hourly, daily, and weekly 232 
levels. The ‘weekly pattern’ and ‘daily pattern’ components share the same network structure 233 
with two gated recurrent unit (GRU) layers followed by a convolutional layer (Conv). Such 234 
structure captures the temporal dependences between historical observations of individual 235 
regions (via GRUs), and the spatial dependences between nearby regions (via Conv). For the 236 
‘recent hourly trend’, the importance of spatial dependences increases (e.g., the inflow/outflow 237 
of other regions, nearby or distant, will more directly influence the crowd volume of a region). 238 
Therefore, apart from two GRU layers in the ‘recent hourly trend’, two convolutional layers are 239 
integrated to capture the hourly spatial-temporal characteristics, since two conventional layers 240 
can capture the spatial dependences over a wider range of areas.  241 

The efficiency of k-NN model in traffic flow prediction have been empirically proved (Chen 242 
et al. 2018, Smith et al. 2002). Essentially, it is a nonparametric regression model without 243 
accounting for specific training in advance. To reduce the time cost in the training phase and 244 
further capture more ‘neighborhoods’ features, we introduce a ‘nearest neighbors’ component 245 
based on the k-NN model, which can accelerate the convergence of the loss function to some 246 
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extent. We feed the historical time series data of the past two hours and the latitude/longitude 247 
location information of a grid cell into the k-NN model to obtain preliminary results.  248 

The outputs of the four components are then fused into a single matrix based on parameters, 249 
which assign different weights to the results of these components in different grid cells. An 250 
activation function of Tanh (hyperbolic tangent) is then applied to the fused matrix to output the 251 
final forecasting values 𝑋�̂�. 252 

3.3 Gated Recurrent Unit 253 

The crowd volume in each region of a city changes dynamically over time, and is generally 254 
characterized by periodicity (e.g., the crowd distribution at 3 pm might be similar on consecutive 255 
workdays, repeating every 24 hours) and recent trends (e.g., the citywide crowd distribution at 256 
3pm will affect that of 4pm, or even longer). Considering such temporal dependence is vital for 257 
forecasting fine-scale crowd information in a city. Currently, LSTM and GRU are two state-of-258 
the-art neural network models for processing sequence data, and they avoid the gradient 259 
vanishing and explosion problems of the traditional recurrent neural network (RNN). Both LSTM 260 
and GRU use a gated mechanism to decide how much information from the previous stages 261 
should be passed to the output. Compared to LSTM, GRU has a relatively simpler structure, fewer 262 
parameters and is easier to train (Cho et al. 2014). Therefore, this study employs GRU to model 263 
the temporal dependences from the citywide crowd distribution data.  264 

 265 

  266 
Figure 3. The workflow of a GRU unit 267 

A single GRU unit (Figure 3) takes the current input data 𝑋𝑛 and state ℎ𝑛−1 which holds the 268 
useful information of the previous 𝑛 − 1 GRU units, and outputs the new state ℎ𝑛. It has two gates: 269 
an update gate that determines how much of the previous information needs to be passed along 270 
to the future (i.e., ℎ𝑛); a reset gate deciding how much of the previous information to forget. The 271 
calculation formula of each GRU unit is shown below: 272 

𝑟𝑛 = 𝜎(𝑊𝑟 ∙ [ℎ𝑛−1, 𝑋𝑛] + 𝑏𝑟)  (2) 273 

𝑢𝑛 = 𝜎(𝑊𝑢 ∙ [ℎ𝑛−1, 𝑋𝑛] + 𝑏𝑢) (3) 274 

𝑐𝑛 = 𝑡𝑎𝑛ℎ(𝑊c ∙ [𝑟𝑛 ∘ ℎn−1, 𝑋𝑛] + 𝑏𝑐) (4) 275 

ℎ𝑛 = (1 − 𝑢𝑛) ∘ ℎ𝑛−1 + 𝑧𝑛 ∘ 𝑐𝑛 (5) 276 

�̂�𝑛+1 =  𝜎(𝑊𝑜 ∗ ℎ𝑛)  (6) 277 

Where 𝑋𝑛 denotes the current input data (e.g., the citywide crowd distribution at time 𝑛), W 278 
represents the learnable parameters, 𝜎  and 𝑡𝑎𝑛ℎ  refer to sigmoid and hyperbolic tangent 279 
activation functions which add nonlinearities to the model, operator ∘  denotes Hadamard 280 
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product (i.e., element-wise multiplication).  𝑟𝑛  and 𝑢𝑛  denote the reset gate and update gate 281 
respectively, which control how much previous information ℎ𝑛−1 (gained from previous time 282 
steps) and current information gained from 𝑋𝑛 will be passed along to the new state ℎ𝑛, which is 283 
then used to forecast the �̂�𝑛+1. 𝑐𝑛 is a candidate state.  284 

As shown in Figure 2, we employ two GRU layers to extract the temporal dependences at 285 
the hourly, daily, and weekly levels respectively. Take ‘recent hourly trend’ as an example, the 286 
time series data of the last several hours immediately before 𝑡 (i.e., 𝑆𝐻 = [𝑋𝑡−𝑎, ⋯ , 𝑋𝑡−2, 𝑋𝑡−1]) are 287 
taken one-by-one as input for the first GRU layer. In total, there are 𝑎 GRU units in the first layer, 288 
with the first data input as 𝑋𝑡−𝑎, the second as 𝑋𝑡−𝑎+1, …, and until 𝑋𝑡−1. Each of these 𝑎 GRU 289 
units outputs a state ℎ. Following the common practices in GRU stacking, the GRU units in the 290 
2nd layer take each output state ℎ of the first layer as input step-by-step, and finally output the 291 
final state ℎ. Again, there are 𝑎 GRU units in the 2nd layer. Using equation (6), the final output 292 

state ℎ is then used to forecast X𝑡
𝐻′̂ (in terms of recent hourly trend). Similarly, we can obtain X𝑡

𝐷′̂ 293 

(in terms of daily pattern), and X𝑡
𝑊′̂  (in terms of weekly patterns). Note that X𝑡

𝐻′̂, X𝑡
𝐷′̂ and X𝑡

𝑊′̂  are 294 
all I × 𝐽 matrices. They will be then taken as inputs and fed into the convolutional layer(s) in the 295 
‘recent hourly trend’, ‘daily pattern’, and ‘weekly pattern’ components, respectively.  296 

 297 

3.4 Convolutional Neutral Network 298 

Intuitively, due to human mobility between different regions in a city, the crowd volume in 299 
a region interacts with each other in nearby areas. To model such spatial dependences, we employ 300 
convolutional neural network (CNN) (Lecun et al. 1998), which has been shown to be an effective 301 
method to hierarchically capture the spatial structural information (Zhang et al. 2018). Different 302 
from the classical CNN, we only include convolutional layers, each of which consists of a 303 
convolution operation and activation function (Figure 4). The output of a single convolutional 304 
layer can be described as: 305 

𝑋𝑙+1 = 𝑓(𝑊𝑙 ∗ 𝑋𝑙 + 𝑏𝑙) (7) 306 

where * represents the convolution operation; 𝑊𝑙 are learnable parameters; 𝑙 denotes the 𝑙-307 
th layer in whole CNN model; 𝑋𝑙 denotes the input of the layer; 𝑋𝑙+1 refers to the output of the 308 
convolutional layer, and it also can be the input of 𝑙+1 -th layer; 𝑓 is the activation function. 309 
 310 

 311 
Figure 4. Simplistic graphic concept of CNN. 312 

 313 
In this study, we use filters (i.e., kernels) with size of 3 × 3, which means that a node in a 314 

higher-layer feature map depends on nine nodes of its previous layer (i.e., a lower-level feature 315 
map). This means that one convolution layer is able to capture spatial dependences across 316 
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immediately adjacent regions, while several convolution layers together can further capture 317 
spatial dependences over distant regions (Zhang et al. 2018). To ensure that the input and output 318 
have the same size (i.e., I × 𝐽), we employ a same padding approach, by padding each area outside 319 
the border with a zero and setting stride = 1. 320 

For the ‘weekly pattern’ and ‘daily pattern’ components in Figure 2, a single convolutional 321 
layer with 1 filter is added after the GRU part. In other words, the outputs of the GRU parts (i.e., 322 

X𝑡
𝑊′̂  and X𝑡

𝐷′̂, respectively) are fed into the convolutional layer. Using equation (7) and setting 𝑋𝑙 =323 

X𝑡
𝑊′̂  (or 𝑋𝑙 = X𝑡

𝐷′̂ for daily patterns), they are then used to forecast X𝑡
�̂� (in terms of weekly pattern) 324 

and X𝑡
�̂�  (in terms of daily pattern). The combination of the two GRUs and the convolutional layer 325 

helps to model both temporal and spatial dependences of the time series data.  326 
For the ‘recent hourly trend’, considering the importance of spatial dependences increases, 327 

two convolutional layers, the first with 30 filters and the 2nd with 1 filter, are added after the GRU 328 
parts, with the aims to capture the spatial dependence over a wider range of areas. Using equation 329 

(7), the output of the GRU part (i.e., X𝑡
𝑅′̂) is fed into the first convolutional layer, whose outputs 330 

are then fed into the 2nd convolutional layer to forecast X𝑡
�̂� (in terms of recent hourly trend).  331 

3.5 K-Nearest Neighbors (k-NN) 332 

K-Nearest Neighbors (k-NN) is one of the most popular classic machine learning models. 333 
For a new point whose value is to be predicted, k-NN first calculates the distance between the 334 
new point and each training point, e.g., using Euclidian or Manhattan distances (for continuous 335 
features) or Hamming distance (for categorical features). It then identifies the k nearest neighbors 336 
(i.e., the training points) of this new point. For classification tasks, the new point will be assigned 337 
the most common class label among its k nearest neighbors. For regression tasks, the value of the 338 
new point is the (weighted) average of the values of its k nearest neighbors.  339 

In this study, we introduce the k-NN model to quickly capture more ‘neighborhoods’ 340 
features, with the aims to accelerate the convergence of the loss function and thus to reduce the 341 
time cost in the training phase. The feature space of each data point (i.e., each region in Figure 1) 342 
is the combination of its latitude/longitude and the past 2-hour crowd volumes: 343 

𝑆𝑖
𝑁𝑁 = (𝑙𝑎𝑡, 𝑙𝑜𝑛, 𝑥𝑡−2, 𝑥𝑡−1)                                                                (8) 344 

Where 𝑙𝑎𝑡 and 𝑙𝑜𝑛 are the latitude and longitude of the center of the i-th region; 𝑥𝑡−2 and 345 
𝑥𝑡−1 are the crowd volumes of the last two hours at this region.  346 

The reason of selecting such a feature space is to balance the importance between location 347 
information and crowd volumes. After normalizing (using Min-Max normalization) each feature 348 
dimension of all data points, Euclidian distance is then used to compute the similarity/distance 349 
between each data point. Consequently, the similarity value not only considers the location 350 
distance but also the similarity of the varying trend of crowd volumes. For each region whose 351 
value (i.e., its crowd volume at time 𝑡) is to be predicted, we then select the top-24 nearest regions 352 
based on the similarity value. The crowd volume of the region at time 𝑡 is then forecasted as the 353 
average volume of these nearest regions at time 𝑡. This step is repeated for each region in the city. 354 

By aggregating these predicted values as a matrix, we can then obtain X𝑡
𝑁�̂�, i.e., the predicted 355 

outcome of the ‘nearest neighbor’ component.  356 

3.6 Fusion 357 

The outputs of the four components ‘weekly pattern’, ‘daily pattern’, ‘recent hourly trend’, 358 

and ‘nearest neighbors’, i.e., X𝑡
�̂�, X𝑡

�̂� , X𝑡
�̂�, and X𝑡

𝑁�̂�, respectively, are then fused into a single matrix 359 
based on parameters, which assign different weights to the results of different components in 360 
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different regions. An activation function of Tanh (hyperbolic tangent) is then applied to the fused 361 
matrix to output the final forecasting values 𝑋�̂�.   362 

𝑋�̂� = tanh(𝑊𝑊 ∘ X𝑡
�̂� + 𝑊𝐷 ∘ X𝑡

�̂� + 𝑊𝑅 ∘ X𝑡
�̂� + 𝑊𝑁𝑁 ∘ X𝑡

𝑁�̂�)          (9) 363 

where ∘ is element-wise multiplication (i.e., Hadamard product); X𝑡
�̂� , X𝑡

�̂� , X𝑡
�̂� , and X𝑡

𝑁�̂�  are 364 
the output of the weekly, daily, recent hourly, and nearest neighbor components, respectively; 365 
𝑊𝑊, 𝑊𝐷, 𝑊𝑅, and 𝑊𝑁𝑁 are the learnable parameters that adjust the degrees affected by these 366 
individual components, respectively.  367 

In this study, the predicted target is continuous data instead of discrete data, we thus utilize 368 
the mean absolute error (MAE) loss function as evaluation standard to minimize the error and 369 
train this model. The loss function can be calculated as: 370 

𝑙𝑜𝑠𝑠(𝜃) = 𝑀𝐴𝐸 = ‖𝑋𝑡 − 𝑋�̂�  ‖ =
1

𝑁
∑ |𝑥𝑡𝑘

− 𝑥𝑡�̂�
|𝑁

𝑘=1             (10) 371 

Where 𝜃 are all learnable parameters in the proposed model, 𝑥𝑡𝑘
 denotes the actual value, 372 

𝑥𝑡�̂�
 represents the predicted value, and N is the total number of values needed to be predicted, 373 

i.e., the total number of regions (= I × 𝐽).  374 

3.7 Algorithm and Optimization 375 

Similar to the training algorithm in Zhang et al. (2018), Algorithm 1 outlines the training 376 
process of the proposed ST-RCNet-knn model. At the first step, we construct the training 377 
instances from the original time series data. The proposed model is then trained via back-378 
propagation using a batch size of 10. Moreover, since the Adam optimizer (Kingma and Ba 2014) 379 
has been widely used in machine learning and deep learning models, we train the model using 380 
this method to learn the learnable parameters. 381 

 382 

Algorithm 1: ST-RCNet-knn Training Algorithm 

Input: Historical observations: {𝑋0, … , 𝑋𝑡−1}; 

            lengths of the recent hourly, daily, and weekly sequence: 𝑎, 𝑏, 𝑐; 

Output: Learned ST-RCNet-knn model 

 

//construct training instances 

𝛪 ← ∅ 

for all available time interval 𝑖 (𝑐 ∗ 24 ∗ 7 ≤ 𝑖 ≤ 𝑡 − 1) do 

       𝑆𝐻 = [𝑋𝑖−𝑎, ⋯ , 𝑋𝑖−2, 𝑋𝑖−1] 

       𝑆𝐷 = [𝑋𝑖−𝑏∗24, ⋯ , 𝑋𝑖−2∗24, 𝑋𝑖−24] 

       𝑆𝑊 = [𝑋𝑖−𝑐∗24∗7, ⋯ , 𝑋𝑖−2∗24∗7, 𝑋𝑖−24∗7] 

       //LAT and LON are the latitude and longitude vectors of all grids 

       S𝑁𝑁 = [𝐿𝐴𝑇, 𝐿𝑂𝑁, 𝑋𝑖−2, 𝑋𝑖−1]   

       //𝑋𝑖 is the target at time 𝑖 

       put a training instance ({𝑆𝐻 ,  𝑆𝐷,  𝑆𝑊,  𝑆𝑁𝑁}, 𝑋𝑖 ) into 𝛪 

        

//train the model 

initialize all learnable parameters 𝜃 in the ST-RCNet-knn 

repeat 

       randomly select a batch of instances 𝛪𝑏  from 𝛪 

        find 𝜃 by minimizing the loss function (i.e., equation (10)) with 𝛪𝑏  

until stopping criteria is met 

 383 
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4. Evaluation 384 

4.1 Evaluation settings 385 

Datasets. Two datasets are used for the evaluation: a Tencent location dataset in Guangzhou 386 
(China), and a Taxicab dataset in Beijing (China). 387 

• TencentGZ: The Tencent location dataset collected from the big data platform of 388 
Tencent (https://heat.qq.com) is adopted as the proxy of fine-scale crowd volume 389 
data. The data recorded all users’ location requests through location-based services 390 
across a variety of Tencent products, including social media, gaming, travel, online 391 
shopping, communications and payment tools. Given the ubiquity of Tencent users 392 
in China, the Tencent location data have a better user representativeness than other 393 
alike data (e.g., Twitter data, Weibo data, taxi trace data, and bike-sharing data), and 394 
therefore they can better reflect the real crowd volume in a city. In this study, we 395 
use a Tencent location dataset generated from 1 to 27, November 2018 for the city 396 
Guangzhou in China. However, due to the absence of the data in one Wednesday, 397 
we remove all the data on Wednesdays. The dataset divided Guangzhou into 900 398 
(=30*30) grid cells, each of which has a size of 1km x 1km. The total number of people 399 
in each grid cell was recorded every hour (See Figure 1 (right) for an example on a 400 
weekday at 18:00-19:00). The dataset is further divided into two parts: the data 401 
before 22 November are viewed as the training set, the rest as the testing set. Besides, 402 
we employ Min-Max normalization method to scale the data. 403 

• TaxiBJ: To test the robustness of the proposed model, this study further employs the 404 
Beijing Taxicab dataset shared by Zhang et al. (2018), which divided Beijing into 405 
1024 (= 32*32) grid cells. For each cell, the dataset recorded both crowd inflow (i.e., 406 
the total traffic of crowds entering this grid) and crowd outflow (i.e., the total traffic 407 
of crowds leaving this grid) in each hour. We select the inflow dataset from 42 408 
consecutive days, wherein the first 35 days are the training set, the rest as the testing 409 
set. Again, we employ Min-Max normalization method to scale the data. 410 
 411 

Baselines. We compare our proposed ST-RCNet-knn model with the following five 412 
baselines. The first five baselines are selected considering their popularity and publication dates.  413 

• RF: It is a classic and popular machine learning model for regression task. RF is 414 
selected mainly because it is found to be easy to train, to have high performances 415 
and not to over-fit the data (Breiman 2001, Cutler, Cutler and Stevens 2012). 416 

• ST-ResNet: It is a popular deep learning model proposed by Zhang et al. (2018), 417 
which integrates the residual units for enabling the model to have a deeper network 418 
and further capture spatiotemporal characteristics.  419 

• Graph WaveNet: It integrates graph convolution layer and dilated casual 420 
convolution (Wu et al. 2019). 421 

• GMAN: It includes a spatio-temporal embedding layer, ST-attention blocks and a 422 
transformer attention layer. It furtheruses node2vec to capture the topological 423 
relationships betweenintersections (Zheng et al. 2020). 424 

• HRSSTs: It applies multi-head attention mechanism’s transformer to portray the 425 
spatio-temporal features in closeness, period and trend patterns (Xu et al. 2022). It is 426 
a latest extension of Zhang et al. (2018). 427 

Evaluation metrics. We are interested in both the predictive accuracy and the training time 428 
cost of the seven models.  429 

https://heat.qq.com/
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• Predictive accuracy. The Mean Absolute Error (MAE), R2, and Root Mean Squared 430 
Error (RMSE) are used to assess the predictive accuracy of the proposed model and 431 
the baselines.  432 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑥𝑘 − 𝑥�̂�|𝑁

𝑘=1                                                      (10) 433 

𝑅2 = 1 −
∑ (𝑥𝑘−𝑥�̂�)2𝑁

𝑘=1

∑ (𝑥𝑘−�̅�𝑘)2𝑁
𝑘=1

                                                      (11) 434 

    𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑥𝑘 − 𝑥�̂�)2𝑁

𝑘=1                                                  (12) 435 

 436 
Where 𝑥 and �̂� are the ground truth and the predicted value, respectively; 𝑁 is the 437 
number of all predicted values (i.e., the number of all regions; 𝑁 = 900  for 438 
TencentGZ dataset; 𝑁 = 1024 for TaxiBJ dataset); �̅� represents the mean value of the 439 
ground truth. 440 
• Training time cost. We measure the training time cost needed to allow a model 441 
to achieve a good result (i.e., when the test MAEs reach a minimal; by plotting 442 
training and test MAEs over different epochs). For a single epoch, the proposed 443 
model and the baselines have different execution time (due to different 444 
computational complexity). Therefore, we measure the training time cost as the total 445 
execution time in seconds. The hardware environment is based on Intel Core i7-446 
8700K CPU and NVIDIA GeForce GTX 1070Ti. The software environment is Python 447 
3.6 and tensorflow-gpu 2.0.0. 448 

 449 
Main objectives of the evaluation. For the evaluation, we would like to answer the 450 

following questions:  451 
1) How do our ST-RCNet-knn model and the five baselines perform in terms of predictive 452 

accuracy and the training time cost (Section 4.2)?  453 
2) How does each component of our ST_RCNet-knn contribute to its prediction(Section 454 

4.3)? 455 
3) How are the predictive accuracies of our ST-RCNet-knn and the baselines influenced by 456 

the variation of the crowd volume (Section 4.4)? 457 
4) How do our ST-RCNet-knn and the baselines perform when predicting crowd 458 

information during a large-scale special event (when the situation of massive people gathering 459 
in short time was happening) (Section 4.5)?  460 

5) How does the predictive accuracy of our ST-RCNet-knn model vary spatially and 461 
temporally (Section 4.6)? 462 
 463 

4.2 Model Comparison Results 464 

4.2.1 Model comparison on different input lengths 465 

Table 1 compares the predictive accuracies (MAE, R2, and RMSE) and the training time costs 466 
of our proposed ST-RCNet-knn model and the baselines, under different input data lengths (i.e., 467 
lengths of the recent hourly, daily, and weekly sequence). We did not include RF, Graph WaveNet 468 
and GMAN in this comparison, since they employ a different architecture: They do not rely on 469 
weekly and daily sequences, but instead only make use the sequence from the last several hours. 470 
Table 1 show that for both datasets, our ST-RCNet-knn model outperforms the baselines in both 471 
the predictive accuracies and the training time costs under most of the input data lengths.  472 
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Predictive accuracy. From the perspective of predictive accuracy, regardless of how the 473 
input data lengths and dataset change, our ST-RCNet-knn model achieves almost the best 474 
accuracy among these three models via the three evaluation metrics.  475 

For both datasets, ST-RCNet-knn greatly outperforms the ST-ResNet model. Compared to 476 
ST-ResNet, our ST-RCNet-knn model reduces the MAEs by 12.9% (minimum: 9.7%; maximum: 477 
19.7%) on average for the TencentGZ dataset, and by 15.4% (minimum: -3%; maximum: 45.5%) 478 
on average for TaxiBJ. Similar advantages of ST-RCNet-knn against HRSSTs (which is a latest 479 
extension of ST-ResNet) can be also observed, with MAEs being reduced by average 14.1% 480 
(minimum: 7.3%; maximum: 24.3%) in the TencentGZ dataset and average 19.1% (minimum: 481 
3.2%; maximum: 43%) in the TaxiBJ dataset. All these demonstrate that the proposed model 482 
structure might have a better ability in capturing the spatio-temporal dependences than the 483 
baseline models in these two datasets. 484 

Furthermore, by analyzing the varied predictive accuracies of the three models under 485 
different combination of input data lengths, we found that the ST-RCNet-knn model has the 486 
smallest variation in predictive accuracy, while the other two baseline models show an obvious 487 
fluctuation. This suggests that, to some extent, our proposed ST-RCNet-knn model structure is 488 
more robust than the other two baseline models. 489 

Training time cost. From the perspective of training time cost, the performance of the 490 
proposed ST-RCNet-knn model is extremely better than the other two models. In the TencentGZ 491 
dataset, the training time cost of our ST-RCNet-knn model is only average 16.8% and 43.3% of 492 
the baselines ST-ResNet and HRSSTs respectively. Similarly, in the TaxiBJ dataset, the training 493 
time cost of our ST-RCNet-knn model is only 28.6% and 33.8% on average of the baselines ST-494 
ResNet and HRSSTs respectively. The training time cost of our ST-RCNet-knn model is only 495 
average 68.4% of ST-RCNet for the TencentGZ dataset, and average 71.8% of ST-RCNet for the 496 
TaxiBJ dataset. 497 

Summary. The above results show that our ST-RCNet-knn model outperforms ST-ResNet 498 
and HRSSTs in terms of both the predictive accuracies and the training time cost under all input 499 
data lengths. This suggests that the proposed model, compare to these two baselines, is more 500 
suitable for large scale prediction task due to the low training cost under premise of excellent 501 
predictive accuracy. 502 

 503 
Table 1. The predictive accuracies and the training time costs of the proposed ST-RCNet-knn 504 
model and the baselines, under different input data lengths (i.e., lengths of the weekly, daily, 505 
and recent hourly sequence (𝑐, 𝑏, a)) 506 

Input  

lengths 

(c, b, a) 

Metrics TencentGZ TaxiBJ 

ST-RCNet-

knn  

ST-ResNet HRSSTs ST-RCNet-

knn 

ST-ResNet HRSSTs 

(1,1,1) MAE 8.253×10-3 9.601×10-3 1.046×10-2 6.164×10-3 6.791×10-3 7.936×10-3 

R2 96.25% 95.2% 94.8% 98.86% 98.65% 98.13% 

RMSE 1.718×10-2 1.943×10-2 2.023×10-2 1.161×10-2 1.264×10-2 1.485×10-2 

Time(s) 90.3 557.7 215.3 219.3 820.8 692.5 

(1,1,2) MAE 8.254×10-3 9.92×10-3 9.783×10-3 5.981×10-3 7.093×10-3 9.432×10-3 

R2 96.25% 95.22% 95.03% 98.9% 98.47% 97.53% 

RMSE 1.719×10-2 1.94×10-2 1.978×10-2 1.113×10-2 1.346×10-2 1.707×10-2 

Time(s) 92.9 559.9 215.6 222.9 823.6 692.9 

(1,1,3) MAE 8.295×10-3 1.003×10-2 9.352×10-3 6.068×10-3 7.377×10-3 7.653×10-3 

R2 96.23% 94.97% 95.38% 98.90% 98.41% 98.42% 

RMSE 1.722×10-2 1.989×10-2 1.907×10-2 1.139×10-2 1.37×10-2 1.365×10-2 

Time(s) 95.9 557.1 215 232.3 818.7 694.3 
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(1,1,4) MAE 8.358×10-3 9.78×10-3 9.697×10-3 6.006×10-3 6.767×10-3 6.659×10-3 

R2 96.25% 95.10% 95.23% 98.93% 98.63% 98.75% 

RMSE 1.719×10-2 1.965×10-2 1.937×10-2 1.125×10-2 1.274×10-2 1.216×10-2 

Time(s) 97.1 555.6 215.2 235.0 822.3 693.5 

(1,2,1) MAE 8.212×10-3 9.49×10-3 9.817×10-3 6.217×10-3 7.027×10-3 7.326×10-3 

R2 96.27% 95.3% 95.08% 98.83% 98.56% 98.48% 

RMSE 1.715×10-2 1.923×10-2 1.968×10-2 1.174×10-2 1.305×10-2 1.341×10-2 

Time(s) 92.9 555.3 214.4 222.9 821.5 693 

(1,2,2) MAE 8.165×10-3 9.633×10-3 1.025×10-2 6.055×10-3 6.556×10-3 7.315×10-3 

R2 96.29% 95.40% 94.93% 98.9% 98.83% 98.35% 

RMSE 1.709×10-2 1.902×10-2 1.998×10-2 1.139×10-2 1.177×10-2 1.395×10-2 

Time(s) 95.4 557.5 214 228.6 820.5 695.1 

(1,2,3) MAE 8.34×10-3 9.55×10-3 1.053×10-2 5.998×10-3 7.276×10-3 6.901×10-3 

R2 96.21% 95.33% 94.52% 98.94% 98.48% 98.66% 

RMSE 1.727×10-2 1.918×10-2 2.078×10-2 1.121×10-2 1.341×10-2 1.258×10-2 

Time(s) 97 569.4 215.8 236.9 808.3 696 

(1,2,4) MAE 8.307×10-3 9.630×10-3 9.506×10-3 5.939×10-3 8.489×10-3 6.701×10-3 

R2 96.2% 95.29% 95.29% 98.96% 97.85% 98.73% 

RMSE 1.715×10-2 1.925×10-2 1.926×10-2 1.109×10-2 1.594×10-2 1.226×10-2 

Time(s) 98.9 562.9 216.4 239.0 822.3 695.4 

(1,3,1) MAE 8.215×10-3 1.024×10-2 9.393×10-3 6.194×10-3 6.878×10-3 9.067×10-3 

R2 96.29% 95.1% 95.41% 98.83% 98.67% 97.98% 

RMSE 1.709×10-2 1.965×10-2 1.9×10-2 1.176×10-2 1.255×10-2 1.546×10-2 

Time(s) 96.0 564.2 214.8 232.6 822.1 695.3 

(1,3,2) MAE 8.305×10-3 9.357×10-3 9.253×10-3 6.029×10-3 6.58×10-3 6.499×10-3 

R2 96.24% 95.49% 95.41% 98.93% 98.77% 98.82% 

RMSE 1.721×10-2 1.884×10-2 1.902×10-2 1.125×10-2 1.207×10-2 1.118×10-2 

Time(s) 98.1 566.8 215.2 237.3 822 696.7 

(1,3,3) MAE 8.260×10-3 9.411×10-3 9.818×10-3 5.938×10-3 6.542×10-3 7.844×10-3 

R2 96.27% 95.32% 95.17% 98.97% 98.77% 98.34% 

RMSE 1.713×10-2 1.919×10-2 1.951×10-2 1.105×10-2 1.206×10-2 1.398×10-2 

Time(s) 97 565.6 216 244.9 825.4 697.1 

(1,3,4) MAE 8.222×10-3 9.322×10-2 9.399×10-3 6.02×10-3 6.905×10-3 7.606×10-3 

R2 96.28% 95.43% 95.43% 98.94% 98.59% 98.41% 

RMSE 1.712×10-2 1.897×10-2 1.898×10-2 1.112×10-2 1.291×10-2 1.372×10-2 

Time(s) 95.8 565.2 216.7 249.4 825.5 697.3 

(2,1,1) MAE 8.402×10-3 9.54×10-3 9.77×10-3 6.656×10-3 7.699×10-3 8.42×10-3 

R2 96.2% 95.46% 93.78% 98.44% 97.89% 97.49% 

RMSE 1.729×10-2 1.891×10-2 2.212×10-2 1.359×10-2 1.579×10-2 1.723×10-2 

Time(s) 85.3 563.5 214.1 222.4 821 693 

(2,1,2) MAE 8.285×10-3 9.417×10-3 9.76×10-2 6.382×10-3 1.164×10-2 1.112×10-2 

R2 96.24% 95.42% 95.08% 98.64% 91.58% 93.13% 

RMSE 1.721×10-2 1.899×10-2 1.969×10-2 1.269×10-2 3.153×10-2 2.849×10-2 

Time(s) 88.9 556.3 215.5 229 825.7 696 

(2,1,3) MAE 8.416×10-3 9.413×10-2 9.367×10-3 6.964×10-3 8.088×10-3 8.0×10-3 

R2 96.19% 95.35 95.2% 98.37% 97.46% 97.72% 

RMSE 1.731×10-2 1.913×10-2 1.944×10-2 1.386×10-2 1.733×10-2 1.643×10-2 

Time(s) 90.1 547.6 215.5 235.9 824 697 

(2,1,4) MAE 8.572×10-3 9.596×10-3 9.462×10-3 7.518×10-3 8.422×10-3 7.777×10-3 

R2 96.1% 95.31% 95.17% 97.8% 97.11% 97.69% 
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RMSE 1.751×10-2 1.922×10-2 1.951×10-2 1.611×10-2 1.848×10-2 1.653×10-2 

Time(s) 93.4 544.6 216.8 241.2 823.4 695 

(2,2,1) MAE 8.291×10-3 9.338×10-3 1.095×10-3 6.718×10-3 7.199×10-3 1.021×10-2 

R2 96.27% 95.56% 94.76% 98.45% 98.27% 94.92% 

RMSE 1.714×10-2 1.87×10-2 2.031×10-2 1.352×10-2 1.429×10-2 2.449×10-2 

Time(s) 87.4 545.5 214.8 227.2 823.9 694.3 

(2,2,2) MAE 8.633×10-3 9.763×10-3 9.317×10-3 6.683×10-3 1.225×10-2 8.222×10-3 

R2 96.19% 95.32% 95.46% 98.50% 89.95% 97.38% 

RMSE 1.732×10-2 1.919×10-2 1.891×10-2 1.333×10-2 3.445×10-2 1.758×10-2 

Time(s) 88.8 547.5 215.7 231.9 823.7 695.8 

(2,2,3) MAE 8.307×10-3 9.357×10-3 9.874×10-3 6.638×10-3 7.363×10-3 7.47×10-3 

R2 96.22% 95.49% 95.03% 98.51% 98.04% 98% 

RMSE 1.725×10-2 1.884×10-2 1.978×10-2 1.327×10-2 1.523×10-2 1.536×10-2 

Time(s) 94.1 546.3 216.2 243.5 818.5 697 

(2,2,4) MAE 8.325×10-3 9.625×10-3 9.612×10-3 6.759×10-3 7.897×10-3 8.278×10-3 

R2 96.19% 95.33% 95.39% 98.44% 97.51% 97.46% 

RMSE 1.731×10-2 1.917×10-2 1.906×10-2 1.357×10-2 1.715×10-2 1.733×10-2 

Time(s) 92.8 549.9 217.5 244 826.9 699.1 

(2,3,1) MAE 8.23×10-3 9.517×10-3 9.46×10-3 6.969×10-3 7.314×10-3 8.93×10-3 

R2 96.25% 95.41% 95.33% 98.25% 98.1% 96.69% 

RMSE 1.719×10-2 1.902×10-2 1.919×10-2 1.437×10-2 1.5×10-2 1.976×10-2 

Time(s) 89.9 545.3 215.7 235.9 828.2 697.3 

(2,3,2) MAE 8.228×10-3 9.233×10-3 9.471×10-3 7.727×10-3 7.465×10-3 8.919×10-3 

R2 96.25% 95.67% 95.33% 97.91% 98.03% 96.58% 

RMSE 1.714×10-2 1.846×10-2 1.943×10-2 1.571×10-2 1.526×10-2 2.009×10-2 

Time(s) 94.4 548.1 215.3 243.4 828.3 698.9 

(2,3,3) MAE 8.40×10-3 9.299×10-2 9.68×10-3 6.879×10-3 7.853×10-3 8.216×10-3 

R2 96.23% 95.51% 95.02% 98.36% 97.68% 97.47% 

RMSE 1.722×10-2 1.881×10-2 1.979×10-2 1.392×10-2 1.654×10-2 1.728×10-2 

Time(s) 94.5 538.4 216.6 249.4 828.9 700.4 

(2,3,4) MAE 8.327×10-3 9.257×10-3 8.983×10-3 6.818×10-3 1.041×10-2 7.86×10-3 

R2 96.24% 95.59% 95.6% 98.41% 93.8% 97.7% 

RMSE 1.72×10-2 1.864×10-2 1.856×10-2 1.372×10-2 2.708×10-2 1.649×10-2 

Time(s) 95.6 547.4 217.9 253.5 830.6 701.4 

4.2.2 Model comparison with all baselines 507 

To further evaluate the performances between our ST-RCNet-knn model and all baselines, 508 
we chose the best model (in terms of predictive accuracy) after turning the hyperparameters for 509 
each of all baselines. Specifically, for GMAN, we used the recent 5 hours and 7 hours for training 510 
TencentGZ and TaxiBJ respectively. As in the Zheng et al. (2020), we set the number of layers, 511 
attention heads and dimensions to (3, 4, 6) and (2, 3, 8) for GMAN on TencentGZ and TaxiBJ 512 
respectively. For Graph WaveNet, we set the numbers of recent hours, sequences of dilation 513 
factors and diffusion steps to (12, 8, 1) and (15, 8, 1) on TencentGZ and TaxiBJ respectively. 514 
According to Table 1, we selected the inputs combination that resulted in the best MAE 515 
performance. Therefore, we selected the (1, 2, 2), (2, 3, 2) and (2, 3, 4) for ST-RCNet-knn, ST-516 
ResNet and HRSSTs on TencentGZ, along with (1, 3, 3), (1, 3, 3) and (1, 3, 2) for them on TaxiBJ. 517 
Additionally, we add one of variants of ST-RCNet-knn, ST-RCNet (i.e., without the k-NN part), 518 
in this comparison. We selected the inputs of (2,1,1) and (1,1,2) on TencentGZ and TaxiBJ 519 
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respectively for ST-RCNet.  By setting these values, we ensure that the comparison is based on 520 
the best predictive performance of all models, making it a fair comparison.  521 

The comparison results are presented in Table 2. It shows that our ST-RCNet-knn model 522 
outperforms all baselines on both datasets in terms of predictive accuracy and training time cost, 523 
followed by its trimmed version ST-RCNet (i.e., without the k-NN part). Compared to the other 524 
baselines (ST-ResNet, GMAN, Graph WaveNet, HRSSTs, and RF), our ST-RCNnet-knn reduces 525 
their MAEs by 18.76% on average (minimum: 4.00%; maximum: 51.08%) in the TencentGZ dataset, 526 
and more importantly, the training time cost of our ST-RCNnet-knn is only about 25.65% 527 
(minimum: 1.07%; maximum: 57.96%) of their training time costs. Similar results can be found 528 
for the TaxiBJ dataset. Additionally, the GMAN and Graph WaveNet are worse than the other 529 
models, probably because these two models make predictions only based on the last several hours, 530 
without making use of the weekly and daily patterns. In summary, compared to the baselines, 531 
our model significantly reduces the training time cost, while still maintaining a better predictive 532 
accuracy.  533 

Table 2. The performance of all models 534 

Data Metric ST-

RCNet-

knn 

ST-

RCNet 

ST-

ResNet 

GMAN Graph 

WaveNet 

HRSSTs RF 

Tencent

GZ 

MAE 8.17×10-3 8.24×10-3 9.23×10-3 9.99×10-3 1.67×10-2 8.98×10-3 8.51×10-3 

R2 96.29% 96.19% 95.67% 94.66% 84.43% 95.6% 95.67% 

RMSE 1.71×10-2 1.73×10-2 1.85×10-2 2.05×10-2 3.5×10-2 1.86×10-2 1.85×10-2 

Time(s) 95.4 129 548.1 8934.2 1185.02 217.9 164.6 

 

TaxiBJ 

MAE 5.94×10-3 5.95×10-3 6.54×10-3 7.09×10-3 1.63×10-2 6.50×10-3 7.29×10-3 

R2 98.97% 98.9% 98.77% 98.42% 90.6% 98.82% 98.31% 

RMSE 1.11×10-2 1.12×10-2 1.21×10-2 1.37×10-2 3.33×10-2 1.12×10-2 1.41×10-2 

Time(s) 244.9 310.2 825.4 16212.8 2713.6 696.7 422.4 

 535 
Figure 5 shows the learning curves of all models on the two datasets. Since each model has 536 

different computational complexity, Table 3 presents their computation time for each epoch. For 537 
both the training and test curves, our ST-RCNet-knn model has better performance of training 538 
convergence on the two datasets. This suggests that the proposed combination of GRU, CNN and 539 
k-NN together with the hourly, daily, and weekly sequences is more efficient in capturing the 540 
spatio-temporal dependences of the data, and therefore leads to faster training convergence.  541 



 17 

 542 

Figure 5. The training curve of all DL-based models: (a) – training curves on TencentGZ; (b) – test 543 
curves on TencentGZ; (c) – training curves on TaxiBJ; (d) – test curves on TaxiBJ. Note that 544 
different models have different computational time in an epoch (See Table 4).  545 

Table 3. The computation time (in second) for each training epoch. 546 

Data ST-RCNet-

knn 

ST-

RCNet 

ST-

ResNet 

GMAN Graph 

WaveNet 

HRSSTs 

TencentGZ  0.6 0.5 0.5 10.5 0.4 1.2 

TaxiBJ 1 1.1 0.9 16.2 0.9 3.1 

 547 

4.3 Ablation study 548 

To investigate how effective each component contributes to the predictive performances of 549 
our ST_RCNet_knn, we compare the four variants by removing the parts of k-NN, weekly, daily, 550 
and recent hourly pattern from ST-RCNet-knn separately. For each of these four variants, we 551 
select the inputs combination with best performance from all inputs combinations. Table 4 shows 552 
that ST-RCNet-knn (i.e., with all four components) outperforms all variants in terms of accuracy, 553 
indicating that considering all these four components together (k-NN part, weekly, daily, and 554 
recent hourly pattern) can better model the complex spatio-temporal dependencies. Additionally, 555 
compared to removing k-NN part, the models with k-NN lead to a much lower training time. 556 
This suggests that the k-NN part is helpful to accelerate the convergence of loss function, and 557 
thus reduce the training time cost.  558 

Table 4. The comparison between variants. 559 

Data Metric ST-RCNet-

knn 

without k-

NN 

without 

weekly  

without 

daily 

without 

hourly 

 MAE 8.17×10-3 8.24×10-3 8.34×10-3 8.2×10-3 8.2×10-3 
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TencentGZ R2 96.29% 96.19% 96.14% 96.26% 96.27% 

RMSE 1.71×10-2 1.73×10-2 1.74×10-2 1.72×10-2 1.71×10-2 

Time(s) 95.4 129 88 88.5 82.6 

 

TaxiBJ 

MAE 5.94×10-3 5.95×10-3 5.97×10-3 5.97×10-3 7.32×10-3 

R2 98.97% 98.9% 98.95% 98.9% 98.3% 

RMSE 1.11×10-2 1.12×10-2 1.11×10-2 1.11×10-2 1.41×10-2 

Time(s) 244.9 310.2 203.1 235.6 237.4 

 560 
 561 

4.4 Influences of the crowd volume variation on the model predictions  562 

This section investigates how the variation of the hourly crowd volumes in each grid cell 563 
influences the predictive accuracies of the seven models. The same hyperparameter values as in 564 
Section 4.2.2 were used. We focused on the TencentGZ dataset, and filtered out the grid cells 565 
where the hourly crowd volume (i.e., the number of people presented in the region) has never 566 
exceeded 100. We therefore removed 197 cells (out of the total 900 ones). 567 

Figure 6 shows the results of the MAEs. The x-axis represents the standard deviation of the 568 
hourly crowd volumes in each grid cell, which is then classified into three groups. The y-axis 569 
shows the MAEs of the seven models. As shown in Figure 6, the MAEs of the seven models 570 
increase greatly with the increase of the standard deviation of the crowd volumes. This is 571 
expected as grid cells with frequently changing crowd volumes are more difficult to predict than 572 
cells with less changes. More importantly, our ST-RCNet-knn model is better than the baselines 573 
in general, and the MAE gaps between ST-RCNet-knn and the baselines become bigger with the 574 
increase of the standard deviation of crowd volumes. Figure 7 shows the results of R2. Similarly, 575 
our ST-RCNet-knn model is better than the baselines, especially when the standard deviation of 576 
crowd volume increase. The above results illustrate that compared to the baselines, our ST-577 
RCNet-knn model is generally able to provide more accurate prediction of crowd volumes for 578 
both grid cells that are highly changing and cells that have less changes.  579 

 580 
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Figure 6. The MAEs of our ST-RCNet-knn model and the baselines on grid cells with different 581 
degrees of crowd change. 582 

 583 
Figure 7. The R2 of our ST-RCNet-knn model and the baselines on grid cells with different 584 

degrees of crowd change. 585 

 586 

4.5 Prediction of crowd information influenced by a large-scale special event  587 

This section aims to study how our ST-RCNet-knn model and the baselines perform when 588 
predicting crowd information during a large-scale special event. An international light festival of 589 
Guangzhou held on the time included in the TencentGZ dataset was found. The international 590 
light festival held on Monday, 26 November 2018 led to the large gathering of people at Zhujiang 591 
New Town which is the CBD of Guangzhou. It covers an area of 6.44 km2. Figure 8 shows how 592 
the crowd volumes of the relevant grids differ on the light festival Monday and other Mondays. 593 
As shown in Figure 8, these two hourly trend lines were similar to each other before 17:00, while 594 
the obvious differences took place after 17:00. The international light festival was held at 19:00, 595 
hence the crowd volumes reached the peak at 19:00. People began to gradually leave after 22:00 596 
when the light show was over. As shown in the literature, predicting crowd information during 597 
such a large-scale special event is very challenging (Ni, He and Gao 2017, Li et al. 2017a).  598 
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 599 
Figure 8. Varying trends of the crowd volumes of the relevant grid cells on the light festival 600 

Monday (i.e., 26 November 2018) and other Mondays. 601 

 602 
In the following, we compare the performances of all models in predicting crowd volumes 603 

during the international light festival. Here, the same hyperparameter values as in Section 4.2.2 604 
were used. The MAEs of different models changing over 24 hours on the light festival day are 605 
shown in Figure 9. As expected, for all models, the MAEs quickly increased during the period of 606 
the light festival. Importantly, the MAEs of our ST-RCNet-knn model (i.e., the blue line with circle) 607 
is below the MAEs of the baselines during the period of the light festival, except those of GMAN. 608 
Specifically, during the period from 17:00 to 23:00, our ST-RCNet-knn model reduces the MAEs 609 
by 21.9%, 15.7%, 14.2%, 22.7%, and 22.8% on average compared to ST-RCNet, ST-ResNet, Graph 610 
WaveNet, HRSSTs, and RF, respectively. Note that while GMAN model outperforms our ST-611 
RCNet-knn model during the period, its training time cost is about 93 times more than our model. 612 
All these demonstrate that our ST-RCNet-knn model is able to achieve good predictive results 613 
with extremely low time cost, when the situation of large people gathering in short time was 614 
happening. 615 

 616 
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Figure 9. The predictive performance of our ST-RCNet-knn model and the baselines on the light 617 
festival day in Guangzhou 618 

 619 

4.6 Spatial and temporal distributions of the predictive performance 620 

Across the city, prediction errors are likely to vary spatially and temporally for a variety of 621 
reasons. To further examine the characteristics of our ST-RCNet-knn model, this section 622 
investigates how its predictive performance (focusing on MAE) varies spatially and temporally, 623 
using the TencentGZ dataset. Again, the input sequence lengths (1,2,2) are selected for the ST-624 
RCNet-knn model.  625 

Figure 10 shows the spatial distribution of the MAEs, comparing weekdays and weekends. 626 
According to the MAEs, we classify all the grid cells in Guangzhou into five groups using an 627 
equal interval classification scheme. As shown in Figure 6, 95% of the grids have low-level errors 628 
(i.e., the 2 categories with the lowest MAEs in the legends) for both weekday and weekend, which 629 
illustrates that our ST-RCNet-knn model has a high potential to be used in city management. Grid 630 
cells with a relatively high level of errors (i.e., the 2 categories with the highest MAEs in the 631 
legends) are mainly located around the urban villages in the neighboring area of Liwan, Haizhu, 632 
and Yuexiu District (old city center), as well as around the CBD located in Tianhe District (new 633 
city center). Specifically, one of the dark-orange cells is always located at an urban village near 634 
the most prosperous area of Guangzhou no matter on weekday or weekend. This is probably 635 
because a large percentage of population lives in narrow urban villages there (due to relatively 636 
low housing expenses and proximity to workplaces), and the high and irregular human mobility 637 
happens in these areas. 638 

 639 
Figure 10. Spatial distribution of the predicting errors (MAEs) of our ST-RCNet-knn model, 640 

comparing weekdays (left) and weekends (right). 641 

 642 
Figure  shows the temporal distribution of the predicting errors. As shown in Figure 11, the 643 

MAEs of our ST-RCNet-knn model are relatively low from 1 am to 11 am, and start to increase 644 
and fluctuate for the rest of the day. This can be explained by the fact that most people often have 645 
relatively regular activity patterns (e.g., either resting at home or commuting) from 1 am to 11 646 
am. And starting from the middays, people start to be involved in various activities over different 647 
areas in a city, which then significantly influences the crowd distribution in the city and makes it 648 
more difficult to achieve an accurate prediction. 649 
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 650 

 651 
Figure 11. Temporal distribution of the predicting errors of our ST-RCNet-knn model. 652 

5. Discussion 653 

The main aim of this paper is to explore a model to reduce the training time cost while 654 
maintaining an excellent predictive accuracy in forecasting citywide crowd information at a fine 655 
spatio-temporal scale. To this end, we propose ST-RCNet-knn, which integrates two DL 656 
approaches (i.e., GRU and CNN) and a conventional ML method k-NN to jointly model the 657 
spatial and temporal dependences between any two regions in a city. Using two different datasets 658 
in two different cities, we show that, compared to the state-of-the-art models, our ST-RCNet-knn 659 
model performed better in terms of MAEs and R2 for both datasets. More importantly, the 660 
training time costs of ST-RCNet-knn model are just about 26.16% on average (minimum: 1.07%; 661 
maximum: 57.98%). In other words, compared to the baselines, our model significantly reduces 662 
the training time cost, while still maintaining a better predictive accuracy. Comparison between 663 
ST-RCNet-knn and its trimmed version ST-RCNet (i.e., with the k-NN part) shows that adding 664 
k-NN reduces the training time costs to approximately 76.45% of ST-RCNet. The above results 665 
demonstrate that compared to the baselines, our ST-RCNet-knn model can better capture both 666 
temporal dependences (via the GRU part) and spatial dependences (via the CNN and k-NN part). 667 
Meanwhile, due to the relatively simpler and shallower structure, our ST-RCNet-knn model leads 668 
to a significant less training time cost. Furthermore, the adding of k-NN to our model also helps 669 
to capture more spatial information and to accelerate the convergence of loss function, thus 670 
reducing the training time cost of the proposed model and further improving its predictive 671 
accuracy.  672 

Checking the model performance when predicting crowd information during a large-scale 673 
special event (when massive crowds are gathering in short time), we found that our ST-RCNet-674 
knn model outperforms almost all baselines and only slightly worse than GMAN in such a case 675 
(note that the training time cost of GMAN is about 93 times more than that of our model). This is 676 
desirable, as accurately predicting sudden massive crowds gathering is of vital importance to 677 
applications related to public safety and helps to prevent potential catastrophic accidents. The 678 
evaluation results also show that the MAEs of all models increase with the increase of the 679 
standard deviation of the crowd volumes, and R2 of all models increase with the increase of the 680 
standard deviation of the crowd volumes. However, our ST-RCNet-knn model is generally able 681 
to provide more accurate prediction for both regions that are highly changing and those with less 682 
changes. Such advantages of our model under large-scale events and crowd volume variation 683 
might be due to the proposed combination of GRU, CNN and k-NN together with the hourly, 684 
daily, and weekly sequences. 685 
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In summary, the evaluation results show that our ST-RCNet-knn model significantly 686 
outperforms the state-of-the-art models in terms of both the predictive accuracies and the training 687 
time costs. Meanwhile, ST-RCNet-knn is able to make accurate prediction under the influences 688 
of large-scale special events with lowest training time cost, as well as robust to regions with 689 
various degrees of variations. All these suggest that our proposed model has a high potential in 690 
many applications (e.g., city management and transportation), in which forecasting citywide 691 
crowd information at a fine spatio-temporal scale is a key. 692 

Several limitations of this study (and thus future work) should be noted. Firstly, in the 693 
evaluation, data were at an 1km x 1km spatial and 1 hour temporal resolution, and from two 694 
large cities. It would be interesting to investigate how our proposed model performs across 695 
different spatial and temporal scales, as well as in medium and small cities. Secondly, while our 696 
model allows to capture some spatio-temporal dependences, more explicit considerations of the 697 
underlying geographic features, e.g., land use, distance to city center, POI categories and their 698 
distribution, road/transportation network configuration, are still missing. Considering such 699 
geographic features might improve the “transferability” of a predictive model. Thirdly, despite 700 
being significantly better than the state-of-the-art model, the MAEs of our model still increase 701 
greatly with the increase of the standard deviation of the crowd volumes, as well as when the 702 
situation of massive crowd of people gathering in short time was happening. Further research 703 
attentions should be paid to such issues. Again, explicitly considering the underlying geographic 704 
contexts might be a potential solution. 705 

6. Conclusion 706 

This paper proposes a novel and efficient model (i.e., ST-RCNet-knn) to reduce the training 707 
time cost while maintaining an excellent predictive accuracy in forecasting citywide crowd 708 
information at a fine spatio-temporal scale. ST-RCNet-knn seamlessly integrates GRU, CNN and 709 
k-NN to jointly capture the spatial and temporal dependences in a citywide. The evaluation with 710 
two different datasets in two different cities shows that our ST-RCNet-knn significantly 711 
outperforms the state-of-the-art models in terms of predictive accuracy, training time cost, and 712 
abilities in making accurate prediction with lowest training time cost under the influences of 713 
large-scale special events and for regions with various degrees of variations. All these suggest 714 
that ST-RCNet-knn is an effective, efficient, and reliable method for forecasting citywide crowd 715 
information at a fine spatio-temporal scale, and has a high potential for many applications, such 716 
as city management, public safety, and transportation. 717 

Further research attentions should be paid to improve the prediction under the influences of 718 
large-scale short-time and irregular events and for regions with high degrees of variations. 719 
Considering the underlying geographic features (e.g., land use, road/transportation network 720 
configuration), as well as external aspects (e.g., weather) might be a potential solution. 721 
Meanwhile, we are also interested in developing explainable AI techniques to better understand 722 
the capacities and limitations of the prediction models. 723 
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