Locally incoherent witnessing of quantum coherence
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Theoretical and experimental studies have suggested the relevance of quantum coherence to the performance
of photovoltaic and light-harvesting complex molecular systems. However, there are ambiguities regarding the
validity of statements we can make about the coherence in such systems. Here we analyze the general procedure
for coherence detection in quantum systems and show the counterintuitive phenomenon of detecting a quantum
system’s initial coherence when both the input and output states of the probe interacting with the system are
locally completely incoherent. Our analysis yields the necessary and sufficient conditions for valid claims
regarding the coherence of directly inaccessible systems. We further provide a proof-of-principle protocol that
uses entangled probes to detect quantum coherence satisfying these conditions, and discuss its potency for

detecting coherence.

I. INTRODUCTION

Quantum coherence which indicates that quantum sys-
tems occupy multiple states simultaneously and hence ex-
hibit interference—is the distinctive feature of quantum sys-
tems compared to classical ones. In recent years, quantum
coherence has become a critical element of developing quan-
tum technologies that aim at improving beyond classical ap-
proaches [1-5]. Of particular importance is the potential role
of quantum coherence in the light-harvesting efficiency of bio-
chemical processes, e.g., photosynthesis [6-9], as well as en-
hancing the performance of molecular systems such as or-
ganic solar cells [10—14]. This has stimulated studies of the
effects of quantum coherence in such systems, at the heart of
which lies schemes to certify the presence of quantum coher-
ent mechanisms in molecular systems [15—19].

The main tool to examine quantum coherence in complex
systems including photosynthetic complexes is the ultrafast
spectroscopy [15—-19]. Spectroscopic observations, however,
have led to debates [20-22] mainly because the dynamics
of systems in nature, as opposed to the spectroscopic tech-
niques, is initiated by incoherent inputs such as sunlight [22—
24]. These arguments indicate the need for new approaches
to witness quantum coherence [25, 26] and further investigate
the existence of quantum coherence in systems operating un-
der ambient conditions and proposals of new protocols to de-
tect quantum coherence using incoherent light sources rather
than coherent lasers [27]. Furthermore, it is intuitive to as-
sume that when quantum channels suffer from significant de-
cohereing noise the coherence of the system is untraceable.
We approach these arguments from a quantum informational
perspective and pose the following question (Fig. 1): Is it pos-
sible to make deductions about the coherence properties of a
system when both the input and output probe states interacting
with the system are incoherent?

Here, we answer to the above question in the affirmative.
We show via a counter-example that quantum coherence of
a system can be observed even if both input and output to
the process are fully incoherent. We also provide rigorous
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FIG. 1. A coherence-generating quantum channel with incoherent
input and output. In such circumstances, the quantum coherence gen-
erated in a directly inaccessible system seems undetectable.

necessary and sufficient conditions for this observation to be
possible. We propose a proof-of-principle protocol to detect
the existence of quantum coherence within a system using
incoherent light sources and discuss the physics behind this
counter-intuitive phenomenon.

II. QUANTUM COHERENCE

Let us begin with the description of quantum coherence
from the perspective of quantum information science [5].
In this picture, quantum coherence comprises of the follow-
ing ingredients. First, given a system described in a finite-
dimensional Hilbert space, an orthonormal basis Binc={|i)}
is defined as the incoherent basis. These vectors represent
the basis with respect to which we would like to consider the
quantum coherence properties of the system. Since basis vec-
tors |¢) are also pure quantum states, they define all incoher-
ent quantum states as probabilistic mixtures of the incoherent
basis states. In other words, every density operator gj,. that
can be written as gine= ), p;i|i)(i|, for |i) €Binc, pi=>0, and
>, pi=1, is an incoherent state. The terminology is indeed
justified by noting that every g;,, is diagonal in the basis B¢
with no off-diagonal matrix elements. We denote the collec-
tion of incoherent density operators by Siyc.

The second ingredient of the theory is the set of incoherent
channels denoted by Cin.. A quantum channel is a transfor-
mation that converts any input density operator to an output
density operator. Most generally, a channel is called incoher-
ent if upon receiving an incoherent input quantum state out-
puts an incoherent quantum state. This property defines the
maximal set of incoherent operations. Several other classes
of such transformations have been studied within the quan-
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tum information literature so far [5, 28]; see Appendix A for
a brief review.

In order to better understand how these channels look like,
it is useful to introduce a particular transformation called the
fully dephasing channel A that acts on any quantum state as
Alo] == 3", (t]oli)|i)i| = 3, 0i]i)(i|. Here, we have intro-
duced the shorthand g;:=(i|g|i) for the diagonal matrix ele-
ments of the density operator ¢ in the incoherent basis Bjyc,
or simply the population of each incoherent state of the sys-
tem. It is thus evident that the action of the fully dephasing
channel is to completely suppress the coherence of the input
quantum state. Incoherent channels can now be defined as all
channels A that satisfy [28, 29]

Ao A[Qinc] = A[Qinc] (1)

for all incoherent input quantum states o. Here, o denotes the
composition of quantum channels, meaning that each channel
is consecutively applied to the output of the previous channel
to its right. Equation (1) has a very intuitive physical inter-
pretation: a channel is incoherent if and only if the further
application of a fully dephasing channel on its output is re-
dundant for every incoherent input. Equation (1) can also be
rewritten in terms of all input quantum states as

AoAoAg] = Ao A, (2)

wherein a fully dephasing channel has been used to transform
the arbitrary input quantum state into an incoherent one.

The third and final ingredient of the theory of quantum
coherence is incoherent measurement. It is known that ev-
ery quantum measurement is described by a set of effects
M={M}}. An effect My, is positive, i.e., it is Hermitian with
nonnegative eigenvalues, and corresponds to the outcome & of
the measurement M. The collection M such that ) °, M;,=1 is
called a positive operator-valued measure (POVM) [30]. Fur-
thermore, according to the Born rule, given the quantum state
o the probability of outcome % in measurement M is given by
p(k|lo, M) = Tr Myo.

Now, a measurement M;,. is called incoherent if the ma-
trix representation of each of its effects is diagonal with re-
spect to the incoherent basis By, [5]. The simplest example of
an incoherent measurement is indeed the projective measure-
ment onto the incoherent basis, i.e. Mi,.={P;=|i)}i|}:=Tinc.
We denote the collection of all incoherent measurements by
MinC*

III. CHANNELS AND THE PROBE-SYSTEM
INTERACTION

The concept of a channel is very versatile. Consider the
scenario in which a probe interacts with a system and is then
measured. It is implicit that the system’s degree of freedom
of interest cannot directly be accessed without the mediation
of the probe. As a result, all we can speak of is the initial
and the final quantum state of the probe. In other words, the
system—including its initial and final quantum states—and
its interaction with the probe are subsumed by the quantum
channel that transforms the probe.

A generic channel A transforming an input state to the out-
put can be written as [30]

Q(out) — A[Q(in)] — Z Kig(in)KJ. 3)

Here, the operators K; are called Kraus operators of the chan-
nel and satisfy >, K ZT K;=1. This way, it is guaranteed that
the output is a valid normalized density operator; see Ap-
pendix B. The simplest example of a quantum channel is in-
deed a unitary one that acts on the input as

0™ = T[] = UMy, 4)

An important question following Eq. (3) is that what hap-
pens to the unitarity and reversibility of quantum mechanics.
A fundamental theorem of quantum mechanics implies that
every generic quantum channel as in Eq. (3) can be purified to
a unitary channel acting on the input state and some inacces-
sible auxiliary system [30], that is,

0" = A[o™] = Tr, T[o™ @ 7). )

In Eq. (5), 7, is a suitably chosen state of the ancillary subsys-
tem a, Y is a suitably chosen interaction unitary channel act-
ing on the joint input-ancilla compound, and Tr, is the partial
trace taken over the ancilla. We note that the partial trace rep-
resents the inaccessibility of the auxilliary subsystem to the
experimenter.

Equation (5) can be brought to the context of probe-system
interaction by interpreting the input subsystem as the probe
(from now on denoted as g,,) and the ancilla subsystem as the
system of interest (from now on denoted as 7). Neglecting
the interactions with the environment for the moment, Y can
be interpreted as the unitary interaction between the probe and
the system, denoted by Y. The inaccessibility of the ancilla
thus translates to the fact that direct measurements on the sys-
tem of interest are out of reach. Eq. (5) can thus be rewritten
as

Qéout) _ A[an)] = Tr, Tps[an) ® ']TS(in)]7 (6)

that allows us to connect the properties of the inaccessible sys-
tem to the properties of the channel acting on the probe alone.
In the present work we are interested in the initial coher-

ence properties of the system ﬂ's(in) by merely observing the

output probe state o). It is evident from Eq. (6) that there
are three elements that can cause observable coherent effects
in the probe, namely, the initial system state 7\, the ini-

(in)

tial probe state g ', and the probe-system interaction T ps.

Thus, to make valid statements about the coherence of wéin),
we must make sure the latter two potential causes are not in

effect by making two assumptions:
(i) The input state of the probe is incoherent;

(ii) The channel A is incoherent for all incoherent input
states of the system and probe.



We note that assumption (i) necessarily prevents objections
of the kind associated with spectroscopic techniques [20-24].
Now, let us posit the appropriate incoherent bases for the
probe and the system as Bine;p and Binc;s, respectively. As-
sumption (ii) can then be expressed as

Z ps<kv ¢‘Ups|ilvj/>ps<i/a .7,|U;s|lv ¢>ps = 07 (7)
[

for all |i')p, |k)p, |l)p € Bincp With & # [ and all |j")s €
Bine;s. Furthermore, {|$)} is an arbitrary basis for the Hilbert
space of the system. Equation (7) gives us a general restric-
tion on the unitaries for which we can safely draw conclusions
about the coherence properties of the system based merely on
the observation of the probe.

A. Coherent scenario

We can easily verify that Eq. (7) ensures that the output
in Eq. (6) remains incoherent for initially incoherent states of
both system and probe. It is now evident that whenever the
output probe state is verified to be in a coherent superposi-
tion of states in Biyc;p, that must be due to the initial state of
the system being coherent with respect to the incoherent basis
Binc;s- In other words, the unitary interaction Y ¢ transfers the
coherence of the system to the probe. Indeed, this scenario is
straightforward: it corresponds to a coherence generating map
A in Eq. (6) that transforms an incoherent input (probe) state
into a coherent output (probe) state. We are thus mainly inter-
ested in the challenging case in which the map A is incoherent.

B. Incoherent scenario

Whenever the output probe state of the process in Eq. (6)
is incoherent, the naive conclusion is that no signature of the
system’s initial coherence survives the incoherent process A.
In the following, we show that this conclusion is not correct.

Schrodinger versus Heisenber pictures.—According to the
standard quantum mechanics, the probability of outcome £ in
the measurement M on the output of the channel A for the
input state o™ is given by the Born rule, that is,

p(k|o®™), A, M) = Tr(MA[e™)]) = Tr(Mj,0™), (8)

where the map A is defined most generally through its Kraus
operators as introduced in Eq.(3). For the special case of a
unitary channel as in Eq. (4), this reduces to

p(k|o"™, Y, M) = Tr(MY[™]) = Tr(M U™ UT).
©)
We now recall from elementary quantum mechanics that
Eq. (9) describes the Born rule in the Schrdédinger picture
wherein the state of the system undergoes the dynamical evo-
lution according to the unitary T and the effect M) remains
stationary.

(out)
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FIG. 2. Schematic of our coherence detection protocol. The probe
and monitor are initially prepared in the maximally entangled state
gg.r;,). The probe mode then interacts with the directly inaccessible
system which is part of the channel A. We observe the coherence
emerging in the state of the monitor conditioned on the outcomes of

an incoherent measurement on the probe.

We know, however, that the unitary quantum evolution can
also be expressed in the Heisenberg picture by using the rule
of permutation-under-the-trace as

p(k[o™, T, M) = Te(UT M, Uo™), (10)

wherein the dynamical evolution is associated with the ob-
servable rather than the input state of the system.

Similarly to Eq. (10), the case of a general channel of
Eq. (8) can also be recast in the Heisenberg picture as

p(k‘\g(in),A, M) = TI‘(MkA[Q(in)]) = Tr(Ad[Mk]g(in)).
(11)
Here, AY is called the dual channel to A. One can easily work-
out the relation between A and its dual A? in the above equa-
tion (see Appendix C) to find

AYMy) = ZK}M,JQ. (12)

?

It can be easily checked that Eq. (12) reduces to the usual
passage from the Schrédinger to the Heisenberg picture for a
unitary channel.

Despite the similarities between a unitary and a generic
channel in Schrodinger and Heisenberg representations, the
two have a very sharp contrast. Suppose Y is an incoherent
unitary channel with respect to the incoherent basis By,.. Be-
cause Y is invertible, it must transform pure states in By,
to only pure states in Bj,.. The latter must also hold for
the inverse channel Y~![] = U~! - U. Using the fact that
U' = U' we find Y~![] = U - U = Y4[]. Thus, T[]
must also transform pure states in Bi,. to only pure states in
Bine, i.€., the dual of an incoherent unitary channel is also an
incoherent unitary channel. This simple correspondence be-
tween the coherence properties of a unitary channel and its
dual, however, does not hold for a generic channel [28]. In
other words, there are incoherent channels whose duals are
not incoherent. We now move on to show that this asymmetry
can be exploited to prove the coherence of the initial state of
an inaccessible system while the input and output probe are
both locally incoherent.



IV. THE PROTOCOL

A twin-mode probe is initially prepared in the maximally

entangled state o\o) = |®) mp (PF| where
n—1
1D ) mp = 12D [ihmli)p- (13)
i=0

Here, i) €Binc:x With =m, p, Binc:m=DBinc;p and n is any
natural number between two and infinity. The first mode is
called the monitor and the second mode is the probe to be
interacted with the system. Then, the probe mode is sent
through the channel A to interact with the system. However,
the monitor mode is sufficiently isolated from the environment
such that its decoherence is slow compared to the system and
probe mode and can be ignored in timescales of the measure-
ment. This is a physically realistic assumption since the mon-
itor mode is not interacting with any other system and thus,
it can be preserved for timescales much longer than the probe
mode. As an example, when entangled photon pairs are used,
for reasonably short system-probe interaction times, the mon-
itor mode is sent to the detector through an optical fiber which
is almost lossless and decoherence-free. For longer interac-
tion times, it is necessary to store the monitor in a quantum
memory. On the other hand, when an entangled pair of ions
is used, the monitor ion can be preserved free of decoherence
effects in a dilution refrigerator for timescales much longer
than the probe-system interaction. Interestingly, as there are
no limitations on the physical system used as monitor, one
could use an entangled photon-ion pair in which monitor and
probe consist of different species whose coherence lifetimes
differ by orders of magnitude. It is important to note that the
quantum state of the probe mode given by the marginal den-
sity operator Try, ol = 7=}
required.

After the interaction between the probe and the system, an
incoherent measurement on the probe p is carried out. In the
postprocessing stage, the outcomes of the measurement on the
monitor are sorted conditioned on the outcomes of the mea-
surement on the probe. Any coherence within the conditional

data, i.e., coherence within the conditional output state Q(O‘l;:)

for the outcome k of the probe, indicates that the initial state
(in)

i)p(i]/n is incoherent, as

of the system g
see Fig. 2.

In order to understand the working principles of our proto-
col, suppose that the channel A}, induced by the probe-system
interaction as in Eq. (6) is asymmetric with respect to the
Schrodinger and Heisenberg pictures, i.e., its dual Ag is not
incoherent. We proceed step by step according to the proto-
col. We have

was in a coherent quantum superposition;

o) = Iy

® Ay [QEQ?]Z*ZI

1,5,0

,ZKZ

1,5,

(| @ Kili)p Gl

m (7| K7 @ |0)p (7]

(14)

In the last step we have used the trick | ® A[®+] = AT @
I[®*] where ®7 is the shorthand for [®T)(®| and T is the
transposition operation (see Appendix D for the proof). By
postselecting on the outcome £ of an incoherent measurement
on the probe we obtain the conditional state

ZKl k) m

Finally, we examine the off-diagonal elements of the moni-
tor’s conditional state, that is,

LS Gl Ik
l

S G R
l

where we have simply transposed each matrix element and

rearranged the terms. If all the off-diagonal elements

(i |gn?‘uk Y|} of the conditional state are zero, that is, we are un-

able to observe any conditional coherences within the monitor,
this is equivalent to stating that 32, (j| K] |k)um (k| K;]i) = 0
for all £ and all ¢« # j. This readily means that the dual
channel Ad[] = Y, K, lT - K is incoherent (see Ref. [28] or

Appendix E for a proof) which contradicts our assumption.
(out)
m|k

(out) < | out)|k

Ol = (KK (15)

(il 17) kIKF1)

(16)

k|Kili),

Therefore, at least one of the conditional states o must be

coherent.

As we see, the detection power of our protocol is indepen-
dent of the channel being incoherent, rather it depends on the
coherence properties of the dual of the channel. Now, since (i)
the probe mode is incoherent—observe that Tr, |®T}®T| =
I/n, (ii) the channel A is also incoherent, and (iii) the condi-
tional input monitor states (k|®*) (D" |k), = |k)m(k|/n are
incoherent, we must have that the observed conditional coher-
ence is due to the initial coherence of the system’s initial state

(in)
TS .

The main difference between our approach and the previous
studies lies in the treatment of the system as a blackbox chan-
nel A, that transforms the probe. In particular, in Ref. [25]
three witnesses of coherence are introduced using different
interruption mechanisms on the system and its environment.
It has been shown that the detected coherence can be the re-
sult of the system-environment coupling. Here, we have pre-
cluded such distinction between the system and the environ-
ment. Provided that A is incoherent, the detected coherence is
due to the initial state of the system interacting with the probe.

V. EXAMPLE

Let us demonstrate our findings via a simple physical ex-
ample. Suppose the system, the probe, and the monitor are
two-level systems. To preserve the generality of our results,
we do not specify the degree of freedom that encodes the two-
level system. It can be, for instance, the molecular excitations,
the photon number or the polarization of photons. We assume
there are two reservoirs inducing decoherence, one of which
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FIG. 3. Schematic of our example. Two two-level systems, p and
m, are initially prepared in the maximally entangled state QE#;,). The
probe mode exchanges excitation with the system, s, which is be-
lieved to be initially prepared in a superposition of its energy eigen-
states, at the rate gps. While the system and probe may suffer from
dephasings with rates s and ~y;,, respectively, the monitor is isolated
and decoherence-free. Observing coherence within the state of the
monitor mode conditioned on the outcomes of an incoherent mea-
surement on the probe certifies the coherence of system’s initial state.

is coupled to the system and the other couples to the probe,
and investigate two regimes.

First, we consider the case where the probe-system interac-
tion is fast enough so that system’s decoherence during the in-
teraction is negligible. However, we assume that probe mode
fully dephases due to its interaction with its reservoir before
we measure it. In this case, Ap[ggn)} = A,o0 Qp[ggn)] in
which Qp[ggn)] = Tr, Tps[ggn) ® ﬂs(ln)].

Second, we analyze the case where either of the system
or the probe can decohere during the interaction such that
Ap[of™] = Tror Tpur[ol™ @ 7™ @ 7). Here, the sub-
script r stands for the reservoirs acting on the system and
probe. Let |0) and |1) be the eigenstates of an arbitrary de-
gree of freedom for the system, the probe, and the monitor.
We note that the degree of freedom may be different for each
of the three subsystems. For instance, the system could be a
molecule, as in light-harvesting systems, while the probe is an
entangled pair of photons. In the case of an optical probe, the
vectors |0) and |1) could refer to the photon number or polar-
ization degrees of freedom. The total Hamiltonian (% = 1) is
given by

H:Hm+Hp+Hs+Hinta (17)

in which H; = wj aj+ oy is the bare Hamiltonian of the mode
j = m,p,s. crj+ (o7) is the raising (lowering) operator for
mode j and wj 1s the excitation energy. The probe-system in-
teraction is described by the Hamiltonian [31, 32]

Hiy = gps(U;,rU; +0'50':r)a (18)

where g, is the rate of the excitation exchange between the
system and the probe (see Fig. 3). We highlight that in case
of an optical probe, where the photon is on resonance with
the system and g,,s < ws, the raising (lowering) operator a;’
(0, ) in Hamiltonian (18) is substituted with the bosonic lad-
der operators a' (a) describing creation (annihilation) of a
photon. This yields the so-called Jaynes-Cummings Hamil-
tonian describing the interaction of a two-level system with a
bosonic field. The unitary interaction generated by this Hamil-
tonian satisfies the condition in Eq. (7) which allows us to

make valid statements regarding the system’s initial coher-
ence. We further assume that there are no decay processes
in the protocol that transfer the excitation of mode j to the en-
vironment, that is the collective dynamics of the probe-system
preserves the total excitation number. This is essential if we
post-select excited states of the output probe. However, the
probe-system dynamics is susceptible to a pure dephasing pro-
cess that eliminates the phase coherence of local excitations of
mode i = p, s at a rate of «;. The total dynamics of the probe-
system can be modelled by a Born-Markov master equation
of the form [33-35]

d .
dif = 77’[H7 Q] + ‘Cdeph [O—ZS]Q + ‘Cdeph [Uzp]gv (19)
where o; is the Pauli operator along the z axis of mode i =
s, p- The action of the super-operator describing the dephasing
processes of mode i is

E(Uzigozi —-0). (20)

Edeph [Uzi]g = 9

A. First regime

The system is initially in an arbitrary pure state of the form
|$(0))s = €|1)s + V1 — €2]0)s where € determines its degree
of coherence. We simulate the performance of our protocol
in this scenario in two steps. First, we let the probe interact
with the system via the interaction Hamiltonian (18). Next, we
allow the probe to fully dephase after the interaction, followed
by a measurement of the coherence in the monitor conditioned
on finding the probe in the excited state |1),,. The details of the
calculations for this simulation are provided in Appendix F.

Figure 4 (a) shows the magnitude of the monitor’s off-

fr?‘ult) 0)_|. versus
system’s degree of coherence €. For ¢ = 0 and ¢ = 1, where
the system is in an incoherent state, the monitor remains in an
incoherent state as expected. However, for any other non-zero
€, where the system contains initial coherence, a measurement
of the off-diagonal element of the monitor results in a non-
zero value with its maximum occurring at ¢ = 1/ V2, ie.
for the maximally-coherent initial state of the system. Fig-
ure 4 (b) shows the magnitude of the monitor’s off-diagonal
element of the density matrix versus the detection time for dif-
ferent values of €. These results clearly show that in situations
where the probe is prone to dephasing before we measure it,
our protocol successfully detects the initial coherence within
the system.

The effect of probe’s dephasing before the interaction with
the system can be seen as a reduction in the initial quantum
correlations between the probe and monitor. It is both natu-
ral and correct that such a reduction in correlations reduces
the power of the monitor to accumulate the coherence exhib-
ited by the probe. We provide the detail of this analysis in
Appendix G.

diagonal element of the density matrix, |(1]o
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FIG. 4. The evolution of quantum coherence within the state of
the system in the first regime. The magnitude of the monitor’s off-
diagonal density matrix element conditioned on detecting a single
excitation in the probe is depicted (a) versus the degree of the sys-
tem’s initial coherence, €, at gpst = 0.75; (b) versus the normalized
detection time, gpst, for different values of e.

B. Second regime

Let us now consider the more realistic regime in which the
system and probe decohere during their interaction due to their
coupling to the environment. We are particularly interested in
the relative time scales of the coherent and dephasing evolu-
tions which allow for detecting the initial coherence of the
system.

We consider the same initial states of [¢(0))s and [®T )y,
for the system and monitor-probe, respectively. We let the
system and probe interact for the duration 7,4 in which both
system and probe are susceptible to decoherence. The dynam-
ical evolution of the entire system is simulated by solving the
master equation (19) for the total state gmps(t). Then, we let
the probe alone decohere further for the duration 7,5 until
it is being measured. Finally, we trace over the state of the
system which is inaccessible and calculate the monitor’s off-

diagonal element (1| ,Qf;)lult
the probe in the excited state |1),, .

In Figure 5 (a), we depict monitor’s coherence as a function
of the probe-system interaction time. It can clearly be seen
that, for fast enough probe-system interactions such that 7,5 <
min(1/7,,1/7s), the initial coherence of the system will be
successfully observed in the monitor even if the probe fully
dephases during its free evolution time Tyeas. However, if ¢
is of the order of the dephasing time of either system or probe,
that is 7, ~ min(1/7p, 1/7s), then the monitor will not retain

)|O> , 1.e., conditioned on finding
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FIG. 5. The evolution of quantum coherence within the state of the
system in the second regime. The magnitude of the monitor’s off-
diagonal density matrix element conditioned on detecting a single
excitation in the probe is depicted (a) versus the normalised probe-
system interaction duration, gpsTps, for the cases where the probe
alone decoheres during the interaction, i.e., 7, = 0.1 and 75 = 0
(solid blue line), and where both the probe and the system deco-
here while interacting, i.e., 7p = 0.1 and s = 0.1 (dashed red
line); (b) versus the normalized evolution time of the monitor for
¥s = vp = 0.1 and two different values of interaction duration. In
both graphs the probe continues to dephase after 7,5 until the mea-
surement is performed at an arbitrary time ¢.

the coherence information. Figure 5 (b) illustrates the time
evolution of the induced coherence within the monitor for this
case.

We observe that decoherence occurring during the probe-
system interaction causes loss of coherence information in the

monitor manifested in the reduction of |(1\Q$|ult) |O>m|. This
is better understood if we think of the probe as an infinites-
imally small part of the bath coupled to the system that is
accessible to us. Upon the system’s interaction with its sur-
roundings, its coherence information spreads to the entire en-
vironment. As a result, the longer the probe-system interac-
tion is, the smaller the share of the probe from that informa-
tion will be. Hence, for the monitor to preserve the informa-
tion on the initial coherence of the system, the probe-system
interaction time should be shorter than the coherence lifetime
of the system. Counter-intuitively, further decoherence of the
probe does not affect the monitoring of the system’s coher-
ence because, with the help of quantum correlations between
the probe and monitor, a copy of this information is stored in
the monitor, which is decoherence-free.



VI. CONCLUSIONS

In conclusion, we have shown the counterintuitive phe-
nomenon of detecting a quantum system’s initial coherence
when the local input and output probe states are completely in-
coherent. We achieved this through rigorously examining the
elements of coherence detection schemes from a quantum in-
formation perspective. Our analysis yields the necessary and
sufficient conditions to enable valid claims regarding the co-
herence of a directly inaccessible system. We provided a pro-
tocol for witnessing the quantum coherence of such systems
that satisfies these conditions. This protocol is then used in a
proof-of-principle demonstration of our results, highlighting
its power and limitations. Our results confirm the necessity
of fast measurements when it comes to the duration of the
probe’s interaction with the system.

We believe our analysis inspires novel protocols to detect
coherent channels using entangled probes. The use of a quan-
tum entangled twin-mode probe also opens up an avenue for
experimental schemes in which the probe might undergo de-
coherence before its information is retrieved. In particular,
we think that, in the near future, entangled light will play a
significant role in probing all sorts of quantum phenomena,
including quantum coherence, in complex systems.
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Appendix A: Classes of incoherent operations

Various classes of incoherent operations have been intro-
duced within the literature, as reviewed by Chitambar and
Gour in [28]. Here, we give a brief overview of these classes
for the interested readers.

* PIO: This is the class of physically consistent inco-
herent operations, in the sense that implementations of
such maps does not require any initial coherence to be-
gin with. The Kraus operators of PIO channels are of

the form
K= ¢

inwhich f; : {0,1,2,...,n—1} - {0,1,2,...,n—1}
is a permutation over the index set {i} of incoherent

f3()) (@] Py, (A1)

Vi, Vil ALKGLGIE]) = KAl K]

basis and P; form an orthonormal and complete set of
incoherent projectors.

SIO: This refers to the class of strictly incoherent maps,
each of which possess a set of Kraus operators {K;}
such that

Vi, Vo, AlK;eK]]=K;A[gK]. (A2

It turns out that each Kraus operator has to be of the
form

Ky = el fi Ml (A3)

where f; : {0,1,2,...,n —1} = {0,1,2,...,n — 1}
is again a permutation over the index set of incoherent
basis and ¢;; € C.

DIO: This class is a generalization of SIO by requir-
ing the channel to be decohering-invariant as a whole,
rather than its Kraus operators, i.e.,

Yo, AoAg]=AoAl)]. (A4)

It is easy to show that the dual of DIO channel is also
DIO. Note that for any positive operator II and any
quantum state o, we have

Tr IA[A[g]] = Tr IIA[A[o]],

S AYAMo = AN,

where in the second line we have used the fact that A is
self-dual. Since this holds for all o, we find that

AY[A[)] = A[AY]), (A6)
for any positive operator and thus, A4s are DIO.

I0: Introduced by Baumgratz et al in [36], incoherent
operations (I0) are an extension of SIO where the func-
tion f;(z) in Eq. (A3) is not necessarily a permutation.
Equivalently, IO maps satisfy the variant of Eq. (A2) in
which g is an incoherent state, that is

7oA
= K |i)i| K.

e MIO: Maximal incoherent operations (MIO) form the

most general class of incoherent channels and are de-
fined as all maps satisfying

Yo, AoAoAlg] =AoAlg]. (AB)

We also note that whenever the dual of a MIO channel
is also MIO, it satisfies

Vo, AoAlg] =AoAlg], (A9)

that is, it is a DIO map (see Eq. (A4)). As a result, the
protocol introduced in this work does not witness DIO
channels.



Appendix B: Kraus decomposition of quantum channels

A generic channel A transforming an input state to the out-
put can be written as [30]

Q(out) — A[ 1n) Z Ko ln)KT (B1)
Here, the operators K; are called Kraus operators of the chan-
nel and satisfy >, ZT K;=1. To see that such a transforma-
tion maps density operators to density operators, we first show

that the output operator is positive. For an arbitrary quantum
state |1)) we have

(W0 ) =3 (| Kio ™ Kf|y). (B2)

It is clear that (¢| := (¥|K; is the Hermitian conjugate of
|¢) := K]|¢). Since o™ is a positive operator, it follows
that (¢|0™|¢) > 0. Thus, (1[0(®")|1)) > 0 which proves
our claim.

To see that channel A preserves the normality of the density
operators, we note that

Tr olovt) — Z Tr(KiQ(in)K;r)

= Z Tr(KJKi,Q(in))
i (B3)

= Tr(z KJKZ-Q("]))
= Tr(1o™) = 1.

Hence, the output remains a normalized positive operator, i.e.,
a valid density operator.

Appendix C: Relation between a quantum channel and its dual
channel

Here, we show that the dual of a channel A with Kraus
decomposition Al] = 3, Ki[]K] is given by AD[] =
K [ JK;. Consider the following sequence of operations:

Te(MyAfo®™]) = Tr (M > KidWEK] )

i

= T (M i)

=3 Tr (K;Mkmgﬁn)) (C1)

=Tr (Z IA(JM;CIAQQG“)>
= Tr(AY[M;,] 0 ™).

Since this is true for any input state, it follows that

A Z K[ (C2)

Appendix D: Proof of | ® A[®1] = AT ® I[®F]
Given an operator K and a basis {|i)},

ZU

Then, we use the facts that (i) the two Hilbert spaces of A
and B are assumed to be isomorphic, Hp = Hp, and (ii)
B(j|K|i)g is a c-number and thus we can safely replace it

I®K\ YAli)B = i) J|K|

(D)

with o (j| K|i) ,, to write
Fo Rt = Xl
—Zi

= ndli)ail (KT 1) |94) e,

(1K |i) o 17)

(i KT[5) Al5)B (D2)

where |®T)ap possesses the computational basis as its
Schmidt vectors. It is now easy to sum over ¢ on both sides of
Eq. (D2) to obtain the desired result,

I®KZ| pIND B—WZ|

=KTg I|<I>+>AB

(il (KT @ 1) |0%)ap

>i® K|¢>+>
(D3)

Appendix E: Necessary and sufficient condition for incoherent
channels

For a quantum channel A with Kraus decomposition A[-] =

Yo KK lT , the necessary and sufficient condition to be in-
coherent is given by [28]

> GEi)p (il k) = 0, (EI)

l

for all 7 and j # k.

To show this, we use a representation of quantum channel
known as the Choi-jamiotkowski isomorphism [37-39]. For
our purpose, it is enough to recall that this isomorphism is
equivalent to applying the channel to the maximally entangled
state |®T)(®T|, represented as ® for short. Now, using the
definition of an incoherent channel given in the main text, that
is Ao A[-] = Ao Ao A[], we find the Choi-jamiotkowski
representation of both sides as

Ao A[®T] = ZI (il @ Kilipo (il (g

and

AoAoAldT] = Z|

2,7,

(i ® [5)p (] (G| K8 (i K 1)

(E3)



Note that, the fully dephasing channel and A only act on the
probe mode in ®*. Equating the two relations, it follows that

> (Kl iIK k) =0, (E4)

l

as claimed.

Appendix F: Detecting coherent state of a two-level system in
first regime

Here, we calculate the conditional state of the monitor con-
ditioned on finding the probe in the excited state |1),,. To do
this, we first calculate the total state of the probe-system af-
ter the interaction. This will be omps(t) = [P (£))mps(P(t)],
where

|D(t))mps = Im @ Ups(£)|® ) mp|0(0))s

1
= 7= Z ‘i>III|Xi>pS7
V2

(F1)

in which Ups(t) = efiHintt

interaction picture and

is the evolution operator in the

1
|Xi)ps = Z F)plaij)s,
j=0
lago)s = V1 —€2|0)s + € cos(gpst)|1)s,

|O‘01 s = —i€ Sin(gpst)m)s,

)

)
|0510>s = —i\/ 1-— 82 Sin(gpst)|1>s,
jo1)s = /1 — €2 os(gpst) 0)s + €]1)s.

(F2)

Hence, the state of the probe is gmp(t) = Trs(omps(t)). Now,
the action of a fully dephasing operation on the probe p-mode
results in the output state

ol = A[gmp(t)]

72“ J‘®Z al]|au <|

i,1=0

(F3)

Next, we postselect on outcome % (k = 0 or 1) of a projective
measurement on the probe p-mode. The conditional state of
the probe m-mode becomes

(out)

Qm|k k|g$§m)|k‘>

(
1 1
= 5 Z alk\alk <l‘

3,l=0

(F4)

Finally, we measure the off diagonal elements of the condi-
tional state of the monitor mode as

1
<alk|azk:> (F5)

Figure 4(b) in the main text shows the plot of the time evo-
lution of the absolute value of this off-diagonal element for
t1=1andl = 0.

0.12

(il 1) =

|0}

0.06

(out)
m|1

|<1|Q

0.00

(=}
FNSY
[T
N

)

FIG. 6. Detected coherence for a probe which is partially dephased
before its interaction with the system. The magnitude of monitor’s
off-diagonal element of the density matrix conditioned on detecting
a single excitation in the probe is plotted versus the normalized de-
tection time, gpst. The values of € are chosen analogues of figure 4
in the main text. The solid lines are plotted for = 1 and the dashed
lines correspond to n = 0.9.

Appendix G: Probe’s decoherence before interaction

We mentioned within the main text that the effect of probe
being dephased before the interaction with the system can be
seen as a reduction in the initial quantum correlations between
the probe and monitor. To see this, let us introduce the partial
dephasing channel defined as

Aylo) :==n1Ifo] + (1 —n)Alel, (G1)

inwhich 0 < < Land Alg] = ¥, (ileli)li)i] = 3, eili)il
is the fully dephasing channel. Equation (G1) has a simple
physical meaning: it is equivalent to applying no dephasing to
the state with probability n and fully dephasing it with proba-
bility of 1 — 7

A two-mode probe state that undergoes decoherence before
interacting with the system can be thought of as going through
the partial dephasing channel A,. We thus find for the input
probe-monitor state that

1

= 2 lmil@ldplil+ 2 D [dmlil @il

1
i=0 i,j=0

(G2)
It is evident that = 1 represents no dephasing and the maxi-
mum correlations between the probe and monitor, while n = 0
represents a fully dephased initial state with no correlations
between the two modes. It is both natural and correct that such
a reduction in correlations reduces the power of the monitor
to accumulate the coherence exhibited by the probe. Having
an initial partial probe dephasing (a non-unity 7)) can be seen
as a reduction in the maximum value of the magnitude of the
monitor’s off-diagonal element of the density matrix as shown
in Fig. 6.

l\')\»—l
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