
J
H
E
P
0
9
(
2
0
2
2
)
0
7
3

Published for SISSA by Springer

Received: June 2, 2022
Revised: July 20, 2022

Accepted: July 24, 2022
Published: September 8, 2022

Dualties of adjoint QCD3 from branes

Adi Armoni
Department of Physics, Faculty of Science and Engineering, Swansea University,
Swansea SA2 8PP, U.K.

E-mail: a.armoni@swansea.ac.uk

Abstract: We consider an ‘electric’ U(N) level k QCD3 theory with one adjoint Majorana
fermion. Inspired by brane dynamics, we suggest that for k ≥ N/2 the massive m < 0
theory, in the vicinity of the supersymmetric point, admits a U
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‘magnetic’ dual with one adjoint Majorana fermion. The magnetic theory flows in the IR
to a topological U
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) pure Chern-Simons theory in agreement with the

dynamics of the electric theory. When k < N/2 the magnetic dual is U
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with one adjoint Majorana fermion. Depending on the sign of the fermion mass, the mag-
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TQFT. Dualities for SO and USp theories with one adjoint fermion are also discussed.
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1 Introduction

Quantum chromodynamics in three spacetime dimensions (QCD3) attracted in recent years
a lot of attention (see [1] and references within). The vacuum structure of the theory is
rich as it depends on the number of colours, the number of flavours, the Chern-Simons
(CS) level, the representation of the quarks and their masses.

One particular interesting variant of the theory is QCD with a single Majorana adjoint
fermion. When the mass is large it can be integrated out, resulting in a shift of the Chern-
Simons level as follows

k → k + sgn(m)1
2h(G) , (1.1)

where h(G) is the dual Coexter number of the group. Due to the level shift it follows that
the theory admits at least one phases transition as the mass of the fermion is varied. The
phases of the theory were recently studied in [2], where it was argued that for k ≥ 1

2h(G)
the theory admits two phases, while surprisingly for k < 1

2h(G) the theory admits three
phases: apart from the large positive mass phase and the large negative mass phase, it
admits an intermediate quantum phase. The physics in the vicinity of the two phase
transitions is described by two dual theories. Follow-up papers which are relevant to the
current work include the generalisations to two adjoint flavours [3] and to other two-index
representations [4].

One of the striking results of [2] is that SU(N)0,1 with one adjoint fermion is not
a confining theory. Instead, the IR of the theory is described by U

(
N
2

)
N
2 ,N

TQFT. As
a result the Wilson loop in the fundamental representation shows a perimeter law. A

1Throughout this paper we use the notation Gk for a level k Chern-Simons theory based on gauge
group G.
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Figure 1. Seiberg Duality from branes. The electric theory (left) is a U(N)k′,k′ gauge theory
with one massive m2 � g2 adjoint fermion and an additional light adjoint fermion. Similarly, the
magnetic theory (right) is U(Ñ)−k′,−k′ gauge theory with one massive m2 � g2 adjoint fermion
and an additional light adjoint fermion. k′ = k +N/2.

convincing argument in favour of this result is anomaly matching: the UV theory cannot
flow to a trivial theory in order to match the anomalous 1-form symmetry, see [5] for a
recent discussion.

In this note we use branes to re-derive the dualities of [2] as well as new dualities. We
will use a 3d version of Seiberg duality, closely related to the Giveon-Kutasov duality [6].
The electric theory is U(N)k,2 (or USp(2N)2k, SO(2N)2k, SO(2N + 1)2k) with one adjoint
fermion. The Seiberg dual for k ≥ 1

2h(G) is supersymmetric for a certain value of the
fermion mass. The duality is valid in the vicinity of this value. As we shall see both
electric and magnetic theories admit the same (Witten) index. Moreover, they both flow
to the same IR theory.

When k < 1
2h(G) (in analogy with Nf < Nc in 4d SQCD) supersymmetry is broken.

Yet, we are able to recover two magnetic duals whose matter content was conjectured in [2].
Therefore, string theory beautifully recovers known dualities for k < 1

2h(G) and, more-
over, predicts new dualities for k ≥ 1

2h(G) that can be verified by using several consistency
checks such as anomaly matching, agreement of an index and the coincidence of the low
energy dynamics at the weak coupling regime of large fermion mass.

Throughout the paper we use h(U(N)) = N , h(USp(2N)) = 2N + 2, h(SO(2N)) =
2N − 2. We use the convention USp(2) ∼ SU(2).

2 Brane dynamics

We derive the gauge theory dualities from a duality in string theory. Our setup is similar
to that of refs. [7] and [8]. We consider ‘electric’ and ‘magnetic’ branes configurations as
depicted in figure 1. The configurations consist of N (or Ñ) D3 branes suspended between
NS fivebrane and a tilted (1, k′) fivebrane. The D3 branes span the 012 directions and
a finite segment of the 6 direction. The NS fivebrane spans the 012345 directions. The

2Here we specify the level of the SU(N) part. The U(1) level is rather subtle and will be discussed later.
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(1, k′) fivebrane spans the 01238 directions and it is tilted in the (59) plane with an angle
−π

2 − θ. In order to preserve supersymmetry we choose tan θ = gsk
′. The content of the

theory admits 3d N = 2 supersymmetry and it can be obtained by dimensional reduction
of 4d N = 1 SYM. The CS interaction reduces the supersymmetrey to 3d N = 1. The
Lagrangian of the theory may be written in terms of N = 1 supersymmetry as a level k′

vector multiplet V = (Aµ, χ) coupled to an adjoint scalar multiplet Φ = (φ, ψ). The action
is given by3

S = 1
4g2

∫
d3x tr

(
(Dφ)2 − F 2 + iχ̄ /Dχ+ iψ̄ /Dψ + 2iχ̄[φ, ψ]

)
(2.1)

+ k′

4π

∫
tr
(
A ∧ dA+ 2

3A ∧A ∧A
)
− k′

4π

∫
d3x χ̄χ .

Let us begin with the electric theory. In order to obtain a low energy theory with a gauge
group U(N) and a light adjoint fermion χ, we choose k′ = k + N/2. We then give a
large negative mass to ψ. A mass term for the fermion that lives on the branes can be
achieved by tilting the (1, k′) fivebrane further, or by turning on background fluxes [11].
In particular in ref. [11] the authors discussed in detail how a 3-form background flux in
type IIB can be used to give mass to matter that lives on D3 branes.

The level of the SU(N) part is shifted by −N/2 due to the integration over the massive
adjoint fermion, ψ.4 Note that the U(1) level is not shifted because the adjoint fermion
does not carry a U(1) charge. The resulting electric theory is a 3d N = 1 U(N)k,k′ YM-CS
theory.

We follow the prescription of Elitzur-Giveon-Kutasov [12] and swap the fivebranes in
order to obtain the Seiberg dual, see figure 1. We start with k ≥ N/2 in order to preserve
supersymmetry. The resulting magnetic dual is a N = 1 supersymmetric U(Ñ)−k̃,−k′ YM-
CS theory.5 As we swap the branes the number of D3 branes in the magnetic side becomes
(similar to Nf −Nc D4 branes in 4d SQCD [12])

Ñ = k′ −N = k − 1
2N . (2.2)

The level of the SU(Ñ) part in the magnetic theory, k̃, is given by k′ shifted due to the
massive fermion in the scalar multiplet

k̃ = k′ − 1
2Ñ = k + 1

2N −
1
2

(
k − 1

2N
)

= 1
2k + 3

4N . (2.3)

We therefore propose the following Seiberg duality between two N = 1 supersymmetric
YM-CS theories:

U(N)k,k+ N
2
⇐⇒ U(k −N/2)−( 1

2k+ 3
4N),−(k+ N

2 ) . (2.4)

The above duality (2.4) is the main result of this note.
3The same brane configuration was used in [9] to construct the Acharya-Vafa theory [10] of N = 1 SYM

domain walls.
4It is also possible to begin with −k′ = −k+N/2 and to give a positive mass to ψ. When we do so, the

resulting dual magnetic theory covers a different range of masses of the electric theory. We will later refer
to that theory as magnetic’.

5The levels of the magnetic theory are negative because the fundamental string ends on the left fivebrane,
as opposed to the right fivebrane in the electric theory case. It is as if we integrated out an infinitely heavy
massive flavour, with a negative mass.
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The first check of the duality (2.4) is the Witten index. The electric N = 1 U(N)k,k+ N
2

theory as well as the U(k −N/2)−( 1
2k+ 3

4N),−(k+ N
2 ) admit the same Witten index [13–16]

IW =

(
k + 1

2N
)
!(

k − 1
2N
)
!N !

. (2.5)

The Witten index can be derived from the brane configuration by using the s-rule and
counting all possible ways the N (or Ñ) D3 branes can end on the k + N/2 constituent
fivebranes [17, 18]. Both the electric and magnetic descriptions lead to (2.5), in agreement
with field theory.

Let us briefly discuss the case with k < N/2. When we swap the fivebranes we obtain
Ñ = k − 1

2N anti D3 branes suspended between the fivebranes. The brane configuration
breaks supersymmetry, in agreement with the expectation from the gauge dynamics of the
electric theory when k < N/2. Typically a non-supersymmetric brane configuration is
unstable and cannot be trusted, however in the current configuration the D3 branes are
locked between the fivebranes and therefore the 3d field theory does not suffer from an
instability. An analogoues scenario in 4d SQCD leads to Nc − Nf antibranes suspended
between orthogonal NS fivebranes, however the situation in 4d is more complex because
there are mesons and thus one may explain the Affleck-Dine-Seiberg runaway superpo-
tential by a potential between branes.6 The 3d field theory that lives on the branes is a
non-supersymmetric U(N/2 − k) 1

2k+ 3
4N

YM-CS theory with a Majorana adjoint fermion.
Supersymmetry breaking occurs due to the interaction between the anti D3 branes and the
fivebranes. Our results in section 4 for k < N/2 are in full agreement with the dualities
proposed in [2] and reveals their string theory origin.

Our picture and the conjectured dualities are supported by the gravity dual, proposed
in [19]. The dual of SU(N)k with N = 1 supersymmetry is described by a confining geom-
etry when k = N/2. When k is increased additional branes are added to the geometry in a
SUSY preserving manner. When k is decreased antibranes are added and supersymmetry
is broken. The emerging picture from our setup is essentially the same. The advantage of
the current dualities over the holographic dual is that it applies to finite N as well as for
a wide range of masses, hence it is useful for exploring phase transitions.

In the following sections we will study the field theory dynamics of the electric and
magnetic theories in more detail.

3 Gauge dynamics when k ≥ N/2

The electric U(N)k,k+N/2 theory is supersymmetric when the bare fermion mass is m =
−g2k. It is conjectured that the theory admits two phases. The low energy dynamics is
characterised by two TQFT’s. At large positive mass it is a U(N)k+N/2,k+N/2 TQFT and
at large negative mass it is a U(N)k−N/2,k+N/2 TQFT.

The proposed magnetic dual describes the supersymmetric point and its vicinity. Start-
ing with U(k−N/2)−( 1

2k+ 3
4N),−(k+N/2) let us integrate out the massive adjont fermion. The

6This argument is due to Shigeki Sugimoto.
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m x

U(N) + adjoint fermion

m=−g k
(susy)

k>N/2
2

(fermion bare mass)

U(N)
k−N/2,k+N/2

U(N)
k+N/2,k+N/2

Figure 2. The phase diagram of adjoint QCD with k ≥ N/2. There are two phases, separated
by a phase transition denoted by the blue dot. The supersymmetric point lies at m = −g2k. The
dual gauge theory (shaded ellipse) describes the phase with negative mass in the vicinity of the
supersymmetric point. When k = N/2 the SU(N) IR theory is trivial (gapped).

resulting theory is U(k−N/2)−N,−(k+N/2) which is dual to U(N)k−N/2,k+N/2 [20]. We ob-
tained the IR TQFT in the vicinity of the supersymmetric electric theory by using the
dual magnetic theory, see figure 2. In addition, at the supersymmetric point there is an
additional adjoint fermion, as expected from the electric side. As we already discussed, the
Witten index of the dual pair matches.

At k = N/2 the dual magnetic theory is trivial, apart from a free massless U(1). This
is not surprising: the SU(N) part of the electric theory is expected to confine and hence
the IR is gapped, except a free U(1).

4 Gauge dynamics when k < N/2

When k < N/2 the electric theory admits three phases. In addition to the large positive
mass and large negative masses, there is an intermediate quantum phase characterised by
a TQFT [2], see figure 3

U(N/2− k)N/2+k,N ∼ U(N/2 + k)−N/2+k,−N . (4.1)

Within this phase there exists a point with a massless Goldstino, due to the spontaneous
breaking of supersymmetry.

Naively, the proposed dual YM-CS is U(N/2−k) 1
2k+ 3

4N,k+N/2 with an adjoint fermion.
However, such naive assignment of the U(1) level is not compatible with the dynamics of
the electric theory. Since we have two magnetic duals we need to make sure that their U(1)
levels reproduce correctly the intermediate phase. In order to have a consistent picture we
need to assign a level N to the U(1) of the magnetic theory (and level −N to the magnetic’
theory). The shift of the U(1) level from its naive value of k+N/2 to the ‘correct’ N may
be achieved by introducing a RR 0-form flux along the 6 direction, or perhaps a localised
flux at the intersection of the D3 antibranes and the fivebrane

S =
∫
dx6

∫
d3xC0F ∧ F = −

∫
dx6 dC0

∫
d3xA ∧ F . (4.2)

– 5 –
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k<N/2

U(N/2−k)

(broken susy)

m=−g k2

magnetic magnetic’

(fermion bare mass)m 

k+N/2,N

SU(N) + adjoint fermion

SU(N)SU(N)
k−N/2 k+N/2

Figure 3. The phase diagram of adjoint QCD with k < N/2. There are three phases, separated
by two phase transitions denoted by blue dots. The supersymmetric point lies at m = −g2k. The
magnetic theory (shaded ellipse) describes the vicinity of the (broken-)supersymmetric point, at
masses both below and above the phase transition. The magnetic’ theory covers regions above and
below the positive mass phase transition.

This is a subtle matter and a better understanding of non-supersymmetric brane configu-
ration which include antibranes is needed.

Let us integrate out the adjoint fermion. Positive and negative masses results in two
TQFT. The negative mass results in U(N/2 − k)(k+N/2),N TQFT and the positive mass
results in U(N/2− k)N,N (which is dual to SU(N)k−N/2,−N ). Thus the dual gauge theory
describes two regimes of the three phases of the electric theory: the negative mass phase
and the intermediate phase, see figure 3. In addition at some value of the mass there is a
massless fermion which corresponds to the Goldstino of the electric theory. Similar to the
magnetic theory, there exists a magnetic’ theory that covers a regime of the positive mass
phase and the intermediate mass phase. The details are as follows: the magnetic’ theory is
U(N/2 + k) 1

2k−
3
4N,−N

with an adjoint fermion. After integrating out the massive fermion

we end up with either U(N/2 + k)−(N/2−k),−N TQFT or U
(
k + 1

2N
)
−N,−N

TQFT. They
describe (by virtue of level-rank duality) the U(N/2 − k)N/2+k,N and SU(N)k+ 1

2N
phases

of the electric theory, see figure 3.
Our results in this section are in agreement with ref. [2].

5 SO and USp theories

The generalization to SO and USp theories is straightforward, yet we will encounter new
phenomena. We use the same brane configuration that led to the U(N) dualities, with
minor modifications.

The USp theory is realized by adding to the brane configuration an O3+ plane along
the 0126 directions. The orientifold plane does not tolerate a fractional brane, therefore
we need to place N D3 branes and their mirrors, namely an even number of branes. The
resulting theory is USp(2N). Similarly, SO(2N) and SO(2N + 1) theories are realized by

– 6 –
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placing either even or odd number of D3 branes on top of an O3− plane. In both USp/So
cases we will use a (1, 2k′) tilted fivebrane.

5.1 The USp(2N) theory

We begin with the electric theory. Let k′ = k + 1
2(N + 1). The adjoint fermion with large

negative mass shifts the level such that the resulting electric theory that lives on the brane
configuration is USp(2N)2k.

As we swap the fivebranes an additional D3 antibrane (and its mirror) is created
between the fivebranes due to the presesnce of the orientifold plane. Therefore Ñ =
k′ − 1 − N = k − 1

2(N + 1) and k̃ = k′ − 1
2(Ñ + 1) = 1

2k + 3
4N + 1

4 . The resulting
magnetic theory is N = 1 supersymmetric USp

(
2
(
k − 1

2N −
1
2

))
−2( 1

2k+ 3
4N+ 1

4 ) YM-CS
theory, hence we propose the following Seiberg duality

USp(2N)2k ⇐⇒ USp
(

2
(
k − 1

2N −
1
2

))
−2( 1

2k+ 3
4N+ 1

4 )
. (5.1)

The supersymmetric magnetic dual can be trusted when Ñ = k− 1
2(N + 1) ≥ 0. By using

the assignment N → N + 1, k → k + 1 with respect to the U(N)k case we propose an
invariant index7

I =

(
k + 1

2N + 3
2

)
!(

k − 1
2N + 1

2

)
!(N + 1)!

. (5.2)

Both the electric and magnetic branes configurations yields the same result (5.2).
The phase diagram of the USp(2N) theory is similar to U(N) theory. For a negative

fermion mass, where the duality can be trusted, the IR theory is USp(2N)2(k− 1
2 (N+1)) TQFT.

The magnetic theory, upon integrating out the massive fermion, is USp
(
2
(
k − 1

2N −
1
2
))
−2N

.
The two descriptions agree thanks to level-rank duality

USp(2N)2(k− 1
2 (N+1)) ∼ USp

(
2
(
k − 1

2N −
1
2

))
−2N

. (5.3)

When Ñ < 0 the magnetic brane configuration consists of anti D3 branes. It describes
the electric theory when supersymmetry is dynamically broken. When anti D3 branes are
placed on top of O3+ plane the gauge group is USp, but the fermion transforms in the two-
index antisymmetric representation [21], in agreement with the duality conjecture of [2].

The magnetic dual is therefore

USp
(

2
(1

2N + 1
2 − k

))
2( 1

2k+ 3
4N+ 1

4 )
+ antisymmetric fermion. (5.4)

Let us integrate out the fermion in order to obtain the IR theory. The level is shifted
as follows:

1
2k + 3

4N + 1
4 →

1
2k + 3

4N + 1
4 ±

1
2(Ñ − 1) . (5.5)

7In USp/SO theories the index obtained from the branes is not the Witten index, but rather a bosonic
index [16]. I thank Jaume Gomis and Zohar Komargodski for discussions on this matter.
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We therefore obtain for the negative mass phase a TQFT as follows

USp
(

2
(1

2N + 1
2 − k

))
2N
∼ USp(2N)(2(k− 1

2N−
1
2 )) . (5.6)

The quantum intermediate phase is described by a TQFT

USp
(

2
(1

2N + 1
2 − k

))
2(k+ 1

2N+ 1
2 )
∼ USp

(
2
(
k + 1

2N + 1
2

))
(2(k− 1

2N−
1
2 ))

. (5.7)

Similar to the U(N) case we can use the brane configuration to introduce a magnetic’
theory

USp
(

2
(1

2N + 1
2 + k

))
2( 1

2k−
3
4N−

1
4 )

+ antisymmetric fermion (5.8)

that covers the positive mass and the intermediate phase of the electric theory.
The low energy of the magnetic and magnetic’ theories matches the low energy of the

electric theory.

5.2 SO(2N) and SO(2N + 1) theories

Similar to the USp(2N) theory, we can study SO theories by placing N D3 branes and their
mirrors on top of an O3− plane. The O3− tolarates a fractional D3 brane on it, hence we can
use brane configurations to study both SO(2N) theories and SO(2N + 1) theories. In our
discussion we use the notation SO(2N) with N either integer or half integer. We start with
k′ = k + 1

2(N − 1). The discussion is almost identical to the discussion about USp(2N)
theories. The main difference is that when the fivebranes are exchanged a D3 brane is
created and hence the dual gauge group is SO(2Ñ), with Ñ = k′ + 1−N = k − 1

2(N − 1)
and k̃ = k′ − 1

2(Ñ − 1) = 1
2k + 3

4N −
1
4 . Therefore for Ñ > 0, when SUSY is not broken

the duality is
SO(2N)2k ⇐⇒ SO

(
2
(
k − 1

2N + 1
2

))
−2( 1

2k+ 3
4N−

1
4 )

(5.9)

with an index8

I =

(
k + 1

2N −
3
2

)
!(

k − 1
2N −

1
2

)
!(N − 1)!

. (5.10)

The SUSY duality agrees about the low energy TQFT when the fermion mass is negative

SO(2N)2(k− 1
2 (N−1)) ∼ SO

(
2
(
k − 1

2N + 1
2

))
−2N

. (5.11)

When Ñ is negative the dual magnetic theory lives on a collection of anti D3-branes
placed on an O3− plane. It is SO

(
2
(

1
2N −

1
2 − k

))
2( 1

2k+ 3
4N−

1
4 ) with a two-index symmet-

ric fermion. The magnetic’ theory is SO
(
2
(

1
2N −

1
2 + k

))
2( 1

2k−
3
4N−

1
4 ) with a two-index

symmetric fermion. Upon integration over the symmetric fermion the magnetic and mag-
netic’ theories describe the vacua of the electric theory in its three phases.

8The index calculated using branes is not the Witten index. It is rather a bosonic index, see [16] for a
comprehensive discussion.
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6 Conclusions

In this note we used string theory to derive new dualities as well as to recover known
dualities of adjoint 3d QCD. Branes turned out to be a very useful tool to uncover a
broad picture, where known dualities can be explained in terms of 3d Seiberg duality (or
Giveon-Kutasov duality).

For k ≥ 1
2h(G) we found new supersymmetric dualities that hold even when a mass

is given to the adjoint fermion, indicating that brane dynamics can be trusted even when
supersymmetry is softly broken. For k < 1

2h(G) we found an interesting phenomenon:
Seiberg duality can be extended to the regime where supersymmetry is dynamically broken.
It suggests than in 4d SQCD the Affleck-Dine-Seiberg superpotential may be computed
using a dual magnetic theory. While it is long known that string theory can be used
to compute the ADS superpotential [22], the computation was carried out in the electric
variables.

It would interesting to generalise the results of this note to other representations (using
other branes setups) and more flavours of adjoint fermions (by tilting the branes differently
while preserving more supersymmetry). Another interesting direction of future work is to
relate the brane dynamics to N = 1 supersymetric theories with flavour [23].
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