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Abstract—A recurring theme during the pandemic was the
shortage of hospital beds. Despite all efforts, the healthcare
system still faces 25% of resource strain felt during the first peak
of coronavirus. Digitisation of Electronic Healthcare Records
(EHRs) and the pandemic have brought about many successful
applications of Recurrent Neural Networks (RNNs) to predict
patients’ current and future states. Despite their strong per-
formance, it remains a challenge for users to delve into the
black box which has heavily influenced researchers to utilise
more interpretable techniques such as 1D-Convolutional neural
networks. Others focus on using more interpretable machine
learning techniques but only achieve high performance on a
select subset of patients. By collaborating with medical experts
and artificial intelligence scientists, our study improves on the
REverse Time AttentIoN EX model, a feature and visit level
attention network, for increased interpretability and usability
of RNNs in predicting COVID-19-related hospitalisations. We
achieved 82.40% area under the receiver operating characteristic
curve and showcased effective use of the REverse Time AttentIoN
EXTension model and EHRs in understanding how individual
medical codes contribute to hospitalisation risk prediction. This
study provides a guideline for researchers aiming to design
interpretable temporal neural networks using the power of RNNs
and data mining techniques.

Index Terms—Artificial intelligence, Data mining, Electronic
health records, COVID-19, Attention networks

I. INTRODUCTION

Despite Coronavirus Disease 2019 (COVID-19) prevention
and risk mitigation measures, hospital resource utilisation
remains a significant concern. Although the hospitalisation rate
has reduced from 36.68 to 8.20 per 100,000, United Kingdom
(UK)’s healthcare system still faces 25% of the strain felt
during the first wave. With the resurgence of COVID-19 cases,
patients at high risk of hospitalisation due to the virus must
be rapidly identified for early intervention and risk mitigation.

Numerous studies developed Artificial Intelligence (AI)
predictive tools to identify patients at risk of severe outcomes
due to COVID-19. These tools utilise highly interpretable
Machine Learning (ML) algorithms, such as decision trees
[1]–[3], gradient boosting decision trees [4]–[6] and logistic
regression [7], [8]. These models yielded Area Under the
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Curve (AUC) scores between 0.74 and 0.92 and discovered
critical prognostic markers essential for predicting a patient’s
COVID-19 outcome, including white cell differential count,
creatinine phosphate and lymphocyte proportion.

However, identifying risk factors leading to COVID-19
hospitalisation proved to be difficult for ML models primarily
when large populations and multiple comorbidities are in-
volved. Willete et al. [9] employed a permutation-based linear
discriminant analysis to predict COVID-19 and hospitalisation
risk. When trained on a subset of participants with an antibody
titter, they achieved an AUC of 0.969 (95% CI 0.934–1.000),
but when trained on a more significant portion of the pop-
ulation, the AUC dropped to 0.803 (95% CI 0.663–0.943).
Similarly, Wollenstein et al. [7] only achieved 61% accuracy
predicting COVID-19 hospitalisations.

Deep Learning (DL) techniques, specifically Recurrent Neu-
ral Networks (RNNs), are known for their ability to model
long temporal sequences in heterogeneous patient data [10]–
[12]. Besides being termed as ’black box models’ due to the
lack of interpretability, there are limitations around how DL
models handle dimensionally varying or missing data. These
constraints have led to the use of 1D Convolutional Neural
Network (1D-CNN)s, which generate a feature importance
similar to logistic regression models. 1D-CNNs, however, are
unable to model temporal patterns well and often under-
perform RNNs.

This study aims to employ the capabilities of RNNs in
predicting COVID-19 hospitalisations whilst providing inter-
pretability around the model’s decisions by unboxing the
black box and improving on REverse Time AttentIoN model
(Retain), an interpretable RNN [11] and its successor RE-
verse Time AttentIoN EX model (RetainEX) [12]. Retain and
RetainEX adopt a temporal attention generation mechanism to
learn the importance of each General Practice (GP) visit and
each medical code. However, they lack architectural depth,
visit-level risk scores and a means of learning from imbalanced
datasets. Hence, this study aims to improve the predictability
and interpretability of the Retain models and exhibit the use
of an enhanced version of the model, REverse Time AttentIoN
EXTension model (RetainEXT).

The findings of this study will aid in identifying individuals
with a high risk of hospitalisation from the virus, allowing for



early interventions to mitigate risks of post-infection compli-
cations.

Section II includes the study design and population and a
description of RetainEXT. Section III evaluates and compares
the results and feature importance extrapolated from the best-
performing RetainEXT model. Finally, Section IV concludes
and elaborates on future work.

II. METHODOLOGY

A. Study Design
The study design was a retrospective longitudinal Self-

Controlled Case Series (SCCS). Data were obtained from
the Secure Anonymised Information Linkage databank [13],
which contains Electronic Health Records (EHR) of 80%
of the Welsh primary care data. We included demographic,
primary and secondary care data between 2009-2020 to fol-
low the patient’s from their early interactions with the Na-
tional Health Service (NHS) up to and including their first
COVID-19-related hospitalisation.

We used the following inclusion criteria: 1) A minimum of
2 GP interactions in the data collection period; 2) Aged 18 and
above at the start of the data collection period; 3) A hospital
admission within 14 days before a positive COVID-19 test,
undertaken during the hospitalisation.

To limit confounding factors, we excluded medical codes
including COVID-19 infection or hospitalisation collected
within the 14 days before a positive test result. The resulting
cohort comprised 2,277 female and 2,071 male patients with
a mean age of 69.7 years.

B. Data Structure
Similar to the structures in Choi et al. [11] we modelled

each patient’s EHR as Encounter Sequence Modelling (ESM)
[10], where the sequence of patient visits is represented by a
set of a varying number of medical codes d1, ..., dl, where l
is the number of diagnosis codes per GP visit,xt and dj is the
jth code from the dictionary of all codes, D. Therefore, the
total number of possible codes is r = |D|.

Traditionally, ESM models each visit xt 2 {0, 1}|D| as a
binary vector, where the value 1 in the jth coordinate indicates
that dj was documented in the tth visit. Given a sequence of
visits x1, ..., xT , with T as the total number of visits, the goal
of ESM is to predict the codes occurring at the following visit
x2, ..., xT+1, with the number of labels y = |D|.

As |D| contains 27,317 unique read codes, it would be
resource heavy and impractical to train a model on large binary
vectors. Instead, we decided that a patient’s visit, xt, should
only include the medical codes recorded during that visit.

Raw medical codes contain a mixture of alphanumeric
characters, therefore, we decided to encode |D| into sequential
numerical values with arbitrary meaning. Having defined each
patient’s visit as xt = d1, ..., ds, we set the model to predict
the patient risk of hospitalisation, ŷt, at each visit, xt.

Following each visit, xt, was passed through an embedding
layer to learn the representation and later visualise any clusters
of medical codes. This generates vt for each xt, which is then

concatenated to the patient’s age and gender. Both variables
were included at every time step due to the patient’s varying
age and possibly gender.

Furthermore, the model’s comprehension of the time be-
tween visits is vital to determining the risk of hospitalisation
at each visit. For instance, a series of visits to the GP over a
short period may indicate comorbidity or severe illness. Long
hibernation may suggest good health and influence the model
to predict lower risk scores. To harness temporal information,
we incorporate visit dates as an additional feature.

Given a sequence of T events t1, t2, ..., tT , we obtain
�ti = ti � ti�1 for each successive visit. We assume that
the first visit is unaffected by time constraints by fixing �t1
to 1. We explored the benefit of additional representations of
time, which are (1) �ti (time interval between visits) [11],
(2) 1/�ti (its reciprocal value) [14], and (3) 1/ log e + �ti
(an exponentially decaying value) [14]. These values are
concatenated to the embedding,vt for each xt, to enrich the
information for our model.

While handling the data, we found a critical improvement
necessary to improve the epidemiological study design of
Retain and RetainEX.

1) Per-event risk assessment: Retain and RetainEX both
utilise an Learn to Diagnose (L2D) [15] approach and are
limited to predicting a risk score for each patient. This suggests
that both case and control groups were used to learn high-
risk markers, hindering clinicians from evaluating outcome
severity at each GP visit. Thus, our study decided to modify
the algorithm’s output to model a risk score at each GP visit
using an SCCS study design.

The SCCS is a case-only method in which confounders are
automatically controlled for [16]. This allows us to investigate
the association between a transient exposure and an outcome
event which aids clinicians in making better-informed deci-
sions.

C. RetainEXT
Fig. 1 (A) shows our model takes in a patient visit sequence

as C dimensional vectors x1, x2, ..., xT . An embedding matrix
Wemb 2 Rm⇥C is used to convert all 27,317 unique medical
codes linearly into a matrix of size m × C, where m is
the number of units in the embedding layer, resulting in
vt = Wemb · xt. The patient’s age and gender, nt, are also
appended to vt at each visit and passed through a dropout
layer to improve the model’s generalisability. Additionally,
each successive visit generates a set of representations that
characterise the time between visits, �tt, to offer additional
insight into the patient’s state; this is concatenated to vt and
nt.

Following the structure of Retain and RetainEX, we com-
puted two attention types, ↵ and �. Fig. 1 (B) and (C) represent
the stacked Bi-LSTM network that takes in the age, gender and
time-attached visit representations and returns attention values
(e.g. contribution scores).
↵t is a single value representing the importance of each

GP visit. �t is an m-dimensional vector that quantifies the



Fig. 1. Overview of RetainEXT. (A) Using a single embedding layer, a
binary vector xt is represented as embedding vectors vt, with time interval
information appended to the former. (B, C) vt is input into two Bi-LSTM
layers to obtain scalar ↵ and vector � attention weights. (D) ↵, � and vt are
multiplied over all time-steps, and then each time step is passed through a
dense layer. (E) Output from the first dense layer is dimensionally reduced
into a single output per time step. (F) Each time step output is non-linearly
transformed to a risk score ŷ.

significance of each medical code within a specific visit. To
benefit from both visit and feature level importance requires
separate stacked Bi-LSTM to compute each class of attention.

For each [vt;nt;�tt], the stacked ↵-Bi-LSTM computes the
forward and backward hidden states of the first ↵—Bi-LSTM,
then passes it on to the second ↵-Bi-LSTM. The final hidden
state vectors, gf2t and gb2t are concatenated into a single 2m-
dimensional vector, which is passed on to a dense layer.

The parameter w↵ 2 R2m was used to compute a scalar
value for each time step as et = w↵ [gf2t ; gb2t ]. Next, the
softmax function is applied to all scalar values {e1, ..., eT }
to obtain {↵1,↵2, ...,↵T }, a distribution of attention values
that sum to one. Similarly, the concatenated hidden state
vectors generated by the stacked �-Bi-LSTM are multiplied
by w� 2 Rmx2m and return an m-dimensional vector �t for
the tth visit as �t = w� [gf2t ; gb2t ].

After obtaining both ↵t and �t values, we performed

element-wise multiplication with the concatenated array
[vt;nt;�tt], and pass it through a dense layer, with weights
w1

o (Fig. 1D). The output is then passed to the final dense
layer, with weights w2

o . The additional dense layer increased
the complexity of providing interpretability; thus, we defined
wt

out as each event’s aggregated and combined weight. In
mathematical terms, wt

out = ⌃U
z ⌃

T
g w

1
o,g · w2

o,z , where U is
the number of units in the 2nd dense layer.

Lastly, the contribution score for each visit was computed,
st = wt

out · o1t . The tth visit is passed through a dense layer
with sigmoid activation to dimensionally reduce the vector at
each time step, allowing us to compute a normalised prediction
value, ŷt, ranging between 0 and 1 where wt

out 2 Rm. The
predicted value indicates the patient’s risk of hospitalisation in
that particular visit, with a value closer to 1 indicating a higher
risk. We trained our model to minimise binary cross-entropy
loss and conducted hyperparameter tuning for a fraction of
dropout, regularisation, embedding units and stacked LSTM
units. Here, we found improvements needed to limit the input
data to only relevant medical codes and improve performance,
especially when modelling rare events.

1) Stacked and Deeper Architecture: The original imple-
mentations of Retain and RetainEX lacked depth in their
architectures. Stacked Bi-LSTM have increased the capacity
to identify complex nested patterns in patients that single-
layer networks may overlook. Using an additional dense layer
before the output layer also facilitates in understanding non-
linear patterns in the dataset. However, the added layers
increase training time. In Section III we compare the models’
performance gain and training times before and after including
the additional layers.

2) Ragged Tensors: Another novelty of this study is the
adoption of ragged tensors to compute patients with a variable
number of visits and medical codes in each visit. This elim-
inates the need for padding and masking or binary encoding
of medical codes, reduces training time, and improves model
performance.

3) Rare event weighting: RetainEXT implements the use of
sample weighting, which not only attributes a single weight to
a patient but also at each visit. Hospitalisation is considered
a rare event as only 1.59% GP visits of the entire dataset of
medical codes are related to hospitalisation due to COVID-19.
Thus, rare event weighting helps the model learn significantly
more from a few samples. In contrast, the preceding Retain and
RetainEX models struggle to model an imbalanced scenario.

D. Interpretability
The backbone of Retain and RetainEX is their long-standing

ability to provide feature and visit level importance scores.
With this foundation, we focused on understanding the global
feature importance, which is an information-rich measure of
how clinically aligned our model is.

1) Local attention: RetainEXT and its predecessors achieve
its transparency by multiplying the final layer of the stacked
Bi-LSTM generated attention weights ↵t and �t to the visit
vectors vt to obtain the context vector o1t , which are used



instead of the Bi-LSTM hidden state vectors to make pre-
dictions. Each input vector xt has a linear relationship with
the final contribution score, S. Thus, we derive an equation
that measures the contribution score of the code d at time
step t to S by reformulating the aforementioned equations as
Sd
t = ↵twout(Wemb[d, :] ·�t), where Wemb[d, :] is the dth row

of Wemb.
Additionally, we generate a visit-level contribution score St

by aggregating contribution scores of codes for each visit as
St = ⌃d2xtS

d
t .

2) Global feature importance: Retain and RetainEX per-
form dimensionality reduction on the embedding weight of
all clinical markers to visualise possible clusters in the data.
However, Kwon et al. [12] mentioned that limitations exist
in visualising clusters if numerous patients or codes are fed
in, limiting our ability to understand critical high-risk medical
codes.

ML researchers have used global feature importance [17]
to assess the model’s ability to mimic a clinician’s diagnostic
pathways. Leveraging on the linear relationship between the
embedding space and the context vector, the global feature im-
portance is defined as Sd = (⌃T

t ↵t)wout(Wemb[d, :]·(⌃T
t �t)).

III. RESULTS AND EVALUATION

This study demonstrated a high-performing risk prediction
model to identify patients susceptible to hospitalisation due
to COVID-19 before being hospitalised and suffering from
life-long morbidities. While using ten years of historical GP
interactions and a large sample of heterogeneous EHR, our
interpretable Temporal Neural Network (TNN), RetainEXT,
shows statistically significant improvements in traditional
model evaluative metrics (AUROC, F1 Score, Sensitivity,
Specificity) compared to RetainEX and other state-of-the-
art TNN. Of note, without sample weighting, the compared
models severely over-fit, hence we trained all models with
sample weighting.

A. Model Performance
Insights from previous Retain iterations helped set a hy-

perparameter space to allow optimisation using a hyperband
tuner.

We found that excluding dropout and l2 regularisation
acutely improved model performance. Iterations of RetainEXT
with 0 and 0.4 dropout resulted in a 0.17 reduction in f1
score, indicating the data may be very heterogeneous and
thus weighting of features is sparse, and the model requires
multiple features to assess risk. Similar to the original imple-
mentation, convergence on local minima occurs quickly, and
dropout requires a longer training time to work best, indicating
the possibility that the model is stuck at a local minimum and
requires longer to diverge out.

In table I, the cascading LSTM [18] has shown to perform
well in imbalanced scenarios, albeit, less interpretable. Its sen-
sitivity is leveled with RetainEX and the RetainEXT models,
where the only models surpassing it have deeper architectures.
The cascading LSTM was trained for 200 epochs compared to

20 epochs for the RetainEXT model, which further emphasises
the significance of the attention pathways in the convergence
of optimal features.

The 1D-convolutional LSTM benefits from both spatial and
sequential learning and can be easily interpreted by extracting
the kernel weights. Although, even after training for over
200 epochs, the F1 score is comparatively low, suggesting
that successively aggregating medical codes, utilising a fixed
kernel size, assume that the patient’s condition is limited to
that visit and does not take into account the future impact of
that medical code.

Further, adding two extra time representations to the time
input layer results in a 5.5% increase in sensitivity that is
attributed to the model’s increased awareness of the interval
between GP visits. Including time representations that are
normalised between 0 and 1 will generate smaller weight
updates on back-propagation, which drives the model closer
to the global/local minima.

We also note that RetainEXT outperforms RetainEX in
both stacked bi-LSTM configurations, achieving a 0.09 higher
F1 score in the optimal configurations. The added LSTM
and dense layers allow the RetainEXT model to understand
complex non-linear patterns in the patient’s EHR. Both models
present with similar sensitivity, specificity and AUROC. To
determine if the improved performance of RetainEXT is
significantly different from other models, we conducted a 5×2
Cross-Fold F-test and calculated an F-score for each evaluation
metric. DL models tend to have higher degrees of freedom;
hence a critical value of 0.05 was chosen, and the F-score
threshold was set at 1.00.

Sensitivity, AUROC and F1-Score all produced an F-value
below the threshold of 1.00, which suggests our implemen-
tation of RetainEXT is significantly different from RetainEX.
Though both Positive Predictive Value and specificity yield
an F-score that surpasses the threshold, hence both models
are within a margin of error in these metrics. This suggests
both models have a similar capability to learn low-risk features
that are present before hospitalisation, whereas, RetainEXT
is more sensitive to high-risk visits or medical codes which
would allow for early intervention and possibly a reduction in
the risk of hospitalisation.

The increase in performance between RetainEX and our
model is mainly attributed to the stacked LSTM layers and the
time-interval representations. RetainEXT provides the added
ability to understand the patient’s risk after each GP visit,
which is critical for the frequency analysis. The model discov-
ered that patients with multiple secondary care referrals are at
high risk of being hospitalised due to COVID-19. Additionally,
the sample weights have assisted in learning from instances
that make up 1.59% of the dataset.

B. Global Feature Importance
Previous studies have reported that age and underlying

comorbidities, such as hypertension, diabetes and cardiovas-
cular diseases, are risk factors for patients admitted due to
COVID-19 [19]. Congruent with their findings, the average



TABLE I
RETAINEXT AND BASELINE PERFORMANCES ON PREDICTING RISK OF HOSPITALISATION DUE TO COVID-19

Cascading
LSTM [18]

1D-CNN
+ LSTM

RetainEXT
(1-Time Diff.)

RetainEXT (3-Time Diff.) RetainEX
[12]

RetainEXT
(Extra Emb)

F-Test Best
RetainEX vs EXT

Emb. Units 200 200 200 128 128 128, 128 128,128
LSTM Units 64,64 64,64 64, 64 64,64 128,128 128 128,128
Dense Units 1 1 50, 1 50,1 50,1 1 50,1
Sensitivity 55.97% 46.66% 44.83% 58.79% 62.67% 66.03% 56.19% 62.10% 54.10% 0.63
Specificity 88.92% 73.25% 99.23% 98.92% 99.24% 98.77% 99.17% 98.65% 99.32% 2.43

Positive
Predictive Value

40.60% 19.11% 52.71% 51.02 61.44% 50.71% 56.44% 46.74% 60.25% 1.39

AUROC 72.00% 59.96% 72.03% 78.86% 80.96% 82.40% 77.68% 80.37% 76.71% 0.65
F1 Score 0.47 0.27 0.48 0.55 0.62 0.57 0.56 0.53 0.57 0.96
Run-time

(Min/epoch)
12 3 10 10 12 12 25 13 32

Table I illustrates the performance metrics for RetainEXT, its predecessor, RetainEX and other state-of-the-art temporal classification models. The smaller
embedding space with 128 units significantly improves model sensitivity. Additionally, F-test scores for Area Under the Receiver Operating Characteristic
curve (AUROC) are below F-score at 0.05 critical value, which suggests the null hypothesis can be rejected and assume a significant difference between
RetainEX and our model, RetainEXT.

patient age in our dataset is 69.8 years and care home admin-
istrative codes were observed in the global feature importance.
Elderly patients have poorer immune responses and experience
an increased number of age-related comorbidities and there-
fore are at higher risk of hospitalisation from COVID-19 or
other infections.

0 500 1,000 1,500 2,000 2,500 3,000

Health Service
Utilisation (HSU)
Health status
(other conditions)
Nutrition &
Supplements
Health status (new
manifestations)
Physician Diagnos-
tic Thinking (PDT)
Health status of
Gastrointestinal
(GI) condition
Health status of
comorbidities

Cumulative Global Importance

Fig. 2. Global grouped feature importance for predicting the risk of hos-
pitalisation due to COVID-19. HSU group features are significantly more
important as the patient will have multiple encounters with the NHS before
being hospitalised. Of note, the high importance of Nutrition & Supplements
may relate to the patient’s diet playing a vital role in mitigating the risk of
adverse outcomes.

Fig. 2 shows a set of grouped markers and their overall
importance in assessing the risk of hospitalisation due to
COVID-19. These groups were created under clinical su-
pervision to understand aggregated markers and medications
instead of singular events. For example, a patient receiving
GI treatment for a particular condition and a new medication
such as an over-the-counter anti-acid suggests that the patient
is experiencing a slight deterioration of the condition but that
the new drug is a determinant of the GI condition.

The most important and prevalent category of markers is
the hospital service utilisation group, which includes anything
from receiving a letter from a specialist to seeing a respiratory
physician. These administrative codes are vital in understand-
ing the patient’s journey through the healthcare system, and the
quantity of referrals may suggest the severity of the condition.

The next vital group of markers is the other conditions,
which include long-term conditions or medication, such as
sleep apnoea medication. While these may not be serious
illnesses, the need for constant medication can deteriorate
immune response over time.

Of interest is the involvement of a nutritionist or sup-
plements in predicting hospitalisation risk. Correct nutrition
can have a significant influence on immune response. The
supplement ferrous fumarate indicates anaemia, which is
strongly associated with hospitalisation. Anaemia leads to
severe outcomes due to COVID-19 [20].

Features in the Physician Diagnostic Thinking (PDT) group
are clinical tests to assess the patient’s state resulting from a
clinician’s suspicion. Tests such as urea microscopy are gener-
ally conducted when a physician suspects an infection without
knowing the cause. White cell differential count, creatinine
phosphate and lymphocyte proportion are also among the top
100 important markers, which are also found in the literature
[1], [2]. Nonetheless, a patient usually undergoes a Full Blood
Count (FBC) just before admission or during the hospital stay,
which may make these tests confounders of hospitalisation.

Finally, the frequency analysis showed that most patients
have had telephone interactions with NHS staff or have
received a specialist’s letter before being hospitalised. This
underscores the significance of the Health Service utilisation
group markers.

C. Limitations
• The available data is not well documented; hence con-

founding codes may be present in the prediction model
and overestimate feature importance.



• The models compared with RetainEX were trained using
an encoded binary vector for each visit and may differ in
performance and time to convergence.

• The use of global feature importance requires all dimen-
sions of the embedding to be added together. This merely
resembles an estimate of the significance of the feature,
and further analysis of the latent space may provide
deeper insights.

IV. CONCLUSION AND FUTURE WORK

In the initial phases of the pandemic, COVID-Related hospi-
talisations have heavily overwhelmed the healthcare systems,
the impact of which is still felt today. With the resurgence
of COVID-19 infections and reinfections globally, it is crucial
that healthcare resources are used effectively. Presently, the
best performing model only achieves a 61% accuracy in
predicting hospitalisations due to COVID-19.

We conducted fundamental improvements on an inter-
pretable TNN, RetainEX, and provided additional tools to
learn from imbalanced EHR when predicting the risk of
adverse outcomes. We leveraged on the predictive power
of RNNs and combined it with a sophisticated attention
generation process. RetainEXT obtained 82.40% AUROC on
assessing risks of hospitalisation due to COVID-19. The model
identified key features including the importance of telephone
calls with patients to assess their severity, poor GI conditions
and low levels of ferrous fumarate indicating anaemia which
are consistent with existing literature. Additionally, PDT path-
ways provide valuable insights into possible infections.

In sum, our model was able to outperform existing models in
predicting COVID-19 hospitalisations while providing better
interpretability.

Future include developing visualisation tools to better in-
terpret the findings and applying it to more diverse sets of
medical records. This increases the model’s reliability and
helps in understanding other rare diseases. Additional im-
provements include using a cascading architecture and custom
loss functions that reward early diagnosis. We believe the
lessons from this study can guide future researchers in building
interpretable recurrent neural network models.
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