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Abstract
We study the Escape Problem for discrete-time linear dynamical systems over compact semialgebraic
sets. We establish a uniform upper bound on the number of iterations it takes for every orbit of
a rational matrix to escape a compact semialgebraic set defined over rational data. Our bound is
doubly exponential in the ambient dimension, singly exponential in the degrees of the polynomials
used to define the semialgebraic set, and singly exponential in the bitsize of the coefficients of these
polynomials and the bitsize of the matrix entries. We show that our bound is tight by providing a
matching lower bound.
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1 Introduction

An invariant set of a dynamical system is a set K such that every trajectory that starts in
K remains in K. Dually, an escape set K is one such that every trajectory that starts in K

eventually leaves K (either temporarily or permanently). While it is usually straightforward
to establish that a given set K is invariant, it can be challenging to decide whether it is an
escape set. Indeed, while the former problem amounts to showing that K is closed under the
transition function, the latter potentially involves considering entire orbits. In particular,
even in case K has a finite escape time (the maximum number of steps for an orbit to escape
the set), it can be highly non-trivial to establish an explicit upper bound on the escape time.

In this paper we focus on escape sets for (discrete-time) linear dynamical systems. Given
a rational matrix A ∈ Qn×n we say that K ⊆ Rn is an escape set for A if for all points
x ∈ K, there exists t ∈ N such that Atx ̸∈ K. The compact escape problem (CEP) asks to
decide whether a given compact semialgebraic set K is an escape set for a given matrix A.
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39:2 Bounding the Escape Time of an LDS over a Compact Semialgebraic Set

Decidability of CEP was shown in [18] and its computational complexity was characterised
in [9] as being interreducible with the decision problem for a certain fragment of the theory
of real closed fields.

The present paper focusses exclusively on positive instances (A, K) of CEP, that is, we
assume that we are given a compact semialgebraic escape set for a linear dynamical system.
In this situation it turns out, due to compactness of K, that there exists a finite time T such
that for all x ∈ K there exists t ≤ T with Atx ̸∈ K. The least such T is called the escape
time of (A, K). Our main result (Theorem 1, shown below) gives an explicit upper bound
on the escape time of (A, K) as a function of the length of the description of the matrix A

and semialgebraic set K. In general, it is recognised that bounded liveness is a more useful
property than mere liveness. Theorem 1 can be used to establish bounded liveness of several
kinds of systems. For example, the result gives an upper bound on the termination time
of a single-path linear loop with compact guard (cf. [22, 5]); it also gives a bound on the
number of steps to remain in a particular control location of a hybrid system before a given
(compact) state invariant becomes false, forcing a transition.

We next introduce some terminology to formalise our main contribution. We say that
a semialgebraic set S has complexity at most (n, d, τ) if it can be expressed by a boolean
combination of polynomial equations and inequalities P (x1, . . . , xn) ▷◁ 0 with ▷◁∈ {≤, =},
involving polynomials P ∈ Z[x1, . . . , xn] in at most n variables of total degree at most d with
integer coefficients bounded in bitsize by τ . Our main result is as follows:

▶ Theorem 1. There exists an integer function CompactEscape(n, d, τ) ∈ 2(dτ)nO(1)

with the
following property. If K ⊆ Rn is a compact semialgebraic set of complexity at most (n, d, τ)
that is an escape set for a matrix A ∈ Qn×n with entries of bitsize at most τ , then the escape
time of K is bounded by CompactEscape(n, d, τ).

As explained in the proof sketch below, Theorem 1 relies on the availability of certain
quantitative bounds within semialgebraic geometry and number theory, particularly concern-
ing quantifier elimination and Diophantine approximation. The latter results are crucial to
handling the case in which the matrix A has complex eigenvalues of absolute value one.

Note that the upper bound on the escape time in Theorem 1 is singly exponential in the
degrees and the bitsize of the coefficients of the polynomials used to define K and the bitsize
of the coefficients of A. It is doubly exponential in the dimension. In Section 8 we provide
two examples, one where A is an isometry and another in which all eigenvalues of A have
absolute value strictly greater than one, that yield a corresponding lower bound of this form.
It is moreover straightforward to give examples of non-compact escape sets for which the
escape time is infinite.

Proof Overview. Let us now give a high-level overview of the proof of Theorem 1. As in
the statement of the theorem, let K ⊆ Rn be a compact semialgebraic set of complexity at
most (n, d, τ) and let A ∈ Qn×n be a matrix with entries of bitsize bounded by τ , and such
that for all x ∈ K there exists t ∈ N such that Atx /∈ K.

To facilitate the analysis of the dynamical behaviour of A we first transform our system
into real Jordan normal form. A theorem of Cai [6] ensures that this step does not significantly
increase the complexity of the system.

The dynamics of A naturally decomposes into a rotational part, corresponding to eigen-
values of modulus one, and an expansive or contractive part, corresponding to eigenvalues of
absolute value different from 1 and to generalised eigenvalues of arbitrary moduli. Accord-
ingly, the ambient space Rn decomposes into two subspaces Vrec and Vnon-rec, such that A
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exhibits rotational behaviour on Vrec and expansive or contractive behaviour on Vnon-rec. We
start by considering the special cases where either Vrec = 0 or Vnon-rec = 0, so that only one
of the two types of behaviours occurs.

First, assume that A has no complex eigenvalues of modulus 1. Since every trajectory
under A escapes K we have in particular that 0 /∈ K. A theorem due to Jeronimo, Perrucci
and Tsigaridas [15] shows that K is bounded away from zero by a function of the form
2−(dτ)nO(1)

and a theorem due to Vorobjov [23] establishes an upper bound on the absolute
value of every coordinate of every point in K of the form 2(dτ)nO(1)

. Furthermore, thanks to
a result of Mignotte [17], we can bound the eigenvalues of A away from 1 by a function of
the form 2τnO(1)

. This yields a doubly exponential bound on how long it takes for A to leave
the set K (either by converging to 0 or by converging to infinity in some eigenspace).

Now assume that all eigenvalues of A have modulus 1. This case is handled through a
combination of two bounds. For the first bound we start by noting that for every x ∈ K

the closure of the orbit OA(x) is a compact semialgebraic set that is not entirely contained
within K. In fact we show that for all x ∈ K there exists a point y ∈ OA(x) whose distance
to K is at least 2−(dτ)nO(1)

. This bound is achieved by applying [15, Theorem 1] to a
suitable polynomial on an auxiliary semialgebraic set, which is constructed using quantifier
elimination. The singly exponential bounds obtained in [14, 20] are crucial for this step
to work. The second step of the argument combines Baker’s theorem on linear forms in
logarithms with a quantitative version of Kronecker’s theorem on simultaneous Diophantine
approximation to obtain a bound of the form NP ∈ 2(τP )nO(1)

such that for all positive
integers P every point z ∈ OA(x) is within 2−P of a point of the form Atx with 0 ≤ t ≤ NP .
Combining the two bounds described above, we obtain a doubly exponential bound on the
escape time.

In the presence of both types of behaviour, the analysis of each case becomes more
involved. We select a parameter ε > 0 and partition K into three sets: Krec = K ∩ Vrec, K≥ε,
and K<ε. The matrix A exhibits purely rotational behaviour on Krec. Intuitively, on K≥ε

the expansive or contractive behaviour of A dominates the overall dynamics, while on K<ε

the rotational behaviour dominates the overall dynamics. We establish in Lemma 14 a bound
Nrec such that for each initial point x ∈ Vrec, one of its first Nrec iterates is bounded away
from K. In Lemma 15 we establish a bound N≥ε such that every x ∈ K≥ε either escapes or
enters K<ε ∪ Krec within at most N≥ε iterations. Finally, in Section 7, we establish a bound
on how often the system can switch from a state where rotational behaviour dominates to
one where expansive or non-expansive behaviour does and vice versa. We use this to combine
the two bounds to an overall bound on the escape time, proving Theorem 1.

Main Contributions. While decidability of CEP was already established in [18], the proof
given there was non-effective, combining two unbounded searches. To obtain a uniform
quantitative bound on the escape time, the argument given in [18] needs to be refined and
extended in two significant ways:

Firstly, one needs to establish non-trivial quantitative refinements of the techniques used
in the decidability proof: to bound the escape time for purely expanding or retracting systems,
we need to combine the sharp effective bounds on compact semialgebraic sets from real
algebraic geometry established in [23, 15] with Mignotte’s root separation bound [17]. The
case of purely rotational systems requires an original combination of a quantitative version
of Kronecker’s theorem on simultaneous Diophantine approximation [12] and a quantitative
version of Baker’s theorem on linear forms in logarithms [1]. All of these techniques were
completely absent from the decidability proof.

MFCS 2022



39:4 Bounding the Escape Time of an LDS over a Compact Semialgebraic Set

Secondly, to establish mere decidability of the problem, it was possible to study the
possible behaviours of the system – rotating, expanding, or retracting – in isolation. For
example, if the set K contains a point which has a non-zero component in an eigenspace
of A for an eigenvalue whose modulus is strictly greater than one, then the system must
eventually escape. However, no uniform bound on the escape time may be derived in this
situation, for the component is allowed to be arbitrarily close to zero. Therefore, as outlined
above, it is necessary in our proof to subdivide K into pieces where rotational, retractive, and
expansive behaviour can be present simultaneously. The interaction of the three behaviours
significantly increases the difficulty of the analysis and requires completely new ideas.

2 Mathematical Tools

We use the following singly exponential quantifier elimination result given in [2]. For a
historical overview on this type of result see [2, Chapter 14, Bibliographical Notes].

▶ Theorem 2 ([2, Theorem 14.16]). Let S ⊆ Rk+n1+···+nℓ be a semialgebraic set of complexity
at most (k + n1 + n2 + · · · + nℓ, d, τ). Let Q1, . . . , Qℓ ∈ {∃, ∀} be a sequence of alternating
quantifiers. Consider the set S′ ⊆ Rk of all (x1, . . . , xk) ∈ Rk satisfying the first-order
formula

(Q1(x1,1, . . . , x1,n1)) . . . . (Qℓ(xℓ,1, . . . , xℓ,nℓ
)) .

((x1, . . . , xk, x1,1, . . . , x1,n1 , . . . , xℓ,1, . . . , xℓ,nℓ
) ∈ S)

Then S′ is a semialgebraic set of complexity at most (k, dO(n1·····nℓ), τdO(n1·····nℓ·k)).

The next theorem is due to Vorobjov [23]. See also [13, Lemma 9] and [3, Theorem 4].

▶ Theorem 3. There exists an integer function Bound(n, d, τ) ∈ 2τdO(n) with the following
property:

Let K be a compact semialgebraic set of complexity at most (n, d, τ). Then K is contained
in a ball centred at the origin of radius at most Bound(n, d, τ).

A closely related result, due to [15], yields a lower bound on the minimum of a polynomial
over a compact semialgebraic set, provided the minimum is non-zero. The result in [15]
mentions explicit constants, which is more than we need.

▶ Theorem 4 ([15, Theorem 1]). There exists an integer function LowerBound(n, d, τ) ∈
2(τd)nO(1)

such that the following holds true:
Let P ∈ Q[x1, . . . , xn] be a polynomial of degree at most d, whose coefficients have

bitsize at most τ . Let K be a compact semialgebraic set of complexity at most (n, d, τ). If
minx∈K P (x) > 0 then minx∈K P (x) > 1/ LowerBound.

With the help of Theorem 2, Theorem 4 can be generalised to yield a lower bound on the
distance of two disjoint compact semialgebraic sets. A very similar result is proved in [21]
under more general assumptions. Unfortunately, the complexity bound stated there is not
sufficiently fine-grained for our purpose, since the author do not distinguish the dimension of
a set from the other complexity parameters.

▶ Lemma 5. There exists an integer function Sep(n, d, τ) ∈ 2(τd)nO(1)

with the following
property:

Let K and L be compact semialgebraic sets of complexity at most (n, d, τ). Assume that
every x ∈ K has positive euclidean distance to L. Then infx∈K d(x, L) > 1/ Sep(n, d, τ).
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Proof. See [10, Appendix E]. ◀

We require a version of Kronecker’s theorem on simultaneous Diophantine approximation.
See [19, Corollary 3.1] for a proof.

▶ Theorem 6. Let (λ1, . . . , λm) be complex algebraic numbers of modulus 1. Consider the
free Abelian group

L = {(n1, . . . , nm) ∈ Zm | λn1
1 · · · · · λnm

m = 1} .

Let (β1, . . . , βs) be a basis of L. Let Tm = {(z1, . . . , zm) ∈ Cm | |zj | = 1} denote the complex
unit m-torus. Then the closure of the set

{
(λk

1 , . . . , λk
m) ∈ Tm | k ∈ N

}
is the set S ={

(z1, . . . , zm) ∈ Tm | ∀j ≤ s.(z1, . . . , zm)βj = 1
}

.
Moreover, for all ε > 0 and all (z1, . . . , zm) ∈ S there exist infinitely many indexes k

such that |λk
j − zj | < ε for j = 1, . . . , m.

Moreover, the integer multiplicative relations between given complex algebraic numbers
in the unit circle can be elicited in polynomial space. For a proof see [7, 16]. We assume the
standard encoding of algebraic numbers, see [8] for details.

▶ Theorem 7. Let (λ1, . . . , λm) be complex algebraic numbers of modulus 1. Consider the
free Abelian group

L = {(n1, . . . , nm) ∈ Zm | λn1
1 · · · · · λnm

m } .

Then one can compute in polynomial space a basis (β1, . . . , βs) ∈ (Zm)s for L. Moreover, the
integer entries of the basis elements βj are bounded polynomially in the size of the encodings
of λ1, . . . , λm and singly exponentially in m.

We need to be able to bound away the modulus of eigenvalues that fall outside the unit
circle away from 1. This is achieved by combining a classic result due to Mignotte [17] on
the separation of algebraic numbers with a bound on the height of the resultant of two
polynomials, proved in [4, Theorem 10].

▶ Lemma 8. Let λ be a complex algebraic number whose minimal polynomial has degree
at most d and coefficients bounded in bitsize by τ . Assume that |λ| ≠ 1. Then we have
||λ| − 1| > 2−(τd)O(1)

.

Proof. See [10, Appendix C]. ◀

3 Preliminaries

3.1 Converting the matrix to real Jordan normal form
To obtain a bound on the escape time it will be important to work with instances of the
Escape Problem in real Jordan normal form. In the following, let A denote the field of
algebraic numbers. We establish the following reduction to this case:

▶ Lemma 9. Let (K, A) be an instance of the Compact Escape Problem. Assume that
K is given by a formula involving s polynomial equations and equalities P ▷◁ 0 where
P ∈ Z[x1, . . . , xn] is a polynomial in n variables of degree at most d whose coefficients are
bounded in bitsize by τ .

Let γ1, . . . , γm ∈ R denote the real and imaginary parts of the eigenvalues of A. Let δ be
a bound on the degrees of γ1, . . . , γm.

MFCS 2022



39:6 Bounding the Escape Time of an LDS over a Compact Semialgebraic Set

Then there exists an equivalent instance (J, K ′) of the Compact Escape Problem where
J ∈ A(n+m)×(n+m) is in real Jordan normal form and K ′ is given by a formula involving
at most s + 3m polynomial equations and equalities P ▷◁ 0 where P ∈ Z[x1, . . . , xn+m] is a
polynomial in n + m variables of degree at most δ · d whose coefficients are bounded in bitsize
by τ + d(log(2n) + log(δ + 1) + σ), where σ depends polynomially on n and the bitsize of the
entries of A.

Proof. See [10, Appendix B]. ◀

3.2 Decomposing K

Let K ⊆ Rn be a compact semialgebraic set. Let A ∈ Rn×n be a matrix in real Jordan
normal form,

A =

J1
. . .

Jm

 .

Here, each Ji is a real Jordan block of the form

Ji =


Λi Ii

. . . . . .
Λi Ii

Λi

 ,

where Λi,1 is either a real number or a 2 × 2 real matrix of the form
(

ai −bi

bi ai

)
and,

accordingly, Ii is either the real number 1 or the 2 × 2 identity matrix. The elements Λi

correspond to real or complex eigenvalues λi ∈ C of A. By slight abuse of language we call
|λi| the modulus of Λi. By further slight abuse of language we define the “eigenspace” of
Λi as the one- or two-dimensional space spanned by the vectors that correspond to the first
entry of the Jordan block Ji. The “generalised eigenspaces” for Λi are defined analogously.

Write Rn as the direct sum of two spaces Rn = Vrec ⊕ Vnon-rec where Vrec is the direct
sum of the eigenspaces for eigenvalues of modulus 1, and Vnon-rec is the direct sum of the
eigenspaces and generalised eigenspaces for eigenvalues of modulus ̸= 1 and the generalised
eigenspaces for eigenvalues of modulus 1. By convention, if A has no eigenvalues of modulus
1 we let Vrec = 0. Similarly, if A has only eigenvalues of modulus 1 and no generalised
eigenvalues we let Vnon-rec = 0. Thus, we decompose the state space Rn into a part Vrec on
which A exhibits purely rotational behaviour, and a part Vnon-rec where A is additionally
expansive or contractive.

We will work with several different norms throughout this paper. In addition to the
familiar ℓ2 and ℓ∞ norms we introduce a third norm, depending on the matrix A, that
combines features of the two. It facilitates block-wise arguments while ensuring that the
restriction of A to Vrec is an isometry.

Write Rn as a direct sum Rn = V1 ⊕· · ·⊕Vs ⊕W1 ⊕· · ·⊕Wt, where V1, . . . , Vs correspond
to the Jordan blocks of A associated with real eigenvalues and W1, . . . , Wt correspond to
the Jordan blocks of A associated with non-real eigenvalues. Let πWj

: Rn → Wj and
πVj : Rn → Vj denote the orthogonal projections onto Wj and Vj respectively.

For a vector x ∈ Vi, let ∥x∥Vi

J = ∥x∥∞ . For a vector x = (x1, y1, . . . , xk, yk) ∈ Wi, let

∥x∥Wi

J = max
j=1,...,k

(√
x2

j + y2
j

)
.
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For a vector x ∈ Rn, let

∥x∥J = max
{

max
j=1,...,s

∥∥πVj
(x)

∥∥Vj

J
, max

j=1,...,t

∥∥πWj
(x)

∥∥Wj

J

}
.

Call ∥x∥J the Jordan norm of x. Observe that ∥x∥J depends on the choice of the Vi’s and
Wi’s. The Jordan norm compares to the ℓ2- and ℓ∞- norms as follows:

n−1/2 ∥x∥J ≤ n−1/2 ∥x∥2 ≤ ∥x∥∞ ≤ ∥x∥J ≤ ∥x∥2 ≤ n1/2 ∥x∥∞ ≤ n1/2 ∥x∥J .

Let ε > 0. Consider the ball BJ (0, ε) ⊆ Rn about 0 with respect to the distance induced
by the ∥·∥J -norm. We partition K into three sets:

Krec = K ∩ Vrec

K<ε = K ∩ (Vrec ⊕ ((Vnon-rec ∩ BJ(0, ε)) \ {0}))
K≥ε = K ∩ (Vrec ⊕ (Vnon-rec \ BJ(0, ε)))

4 A quantitative version of Kronecker’s theorem for complex algebraic
numbers

Our central tool for bounding the escape time in the recurrent case is a quantitative version
of Kronecker’s theorem for complex algebraic numbers.

Let (λ1, . . . , λm) be complex algebraic numbers of modulus 1. Our goal is to find for
all ε > 0 a bound N such that for all (α1, . . . , αm) ∈ Tm contained in the closure of the
sequence (λt

1, . . . , λt
m)t∈N there exists t ≤ N such that |λt

j − αj | < ε for all j = 1, . . . , m.
We first consider the case where the λj ’s do not admit any integer multiplicative relations.

In this case we can employ the following quantitative version of the continuous formulation
of Kronecker’s theorem, proved in [12]:

▶ Theorem 10 ([12, Theorem 4.1]). Let φ1, . . . , φN and ζ1, . . . , ζN be real numbers. Let
ε1, . . . , εN be positive real numbers with εj < 1/2 for all j. Let Mj =

⌈
1
εj

log N
εj

⌉
. Let

φ = (φ1, . . . , φN ). Let δ = min
{

|φ · m| | m ∈ ZN , |mj | < Mj , m ̸= 0
}

. Assume that δ > 0.
Then in any interval I of length T ≥ 4/δ there is a real number t such that ∥φjt − ζj∥ < εj ,

where ∥·∥ denotes distance to the nearest integer.

Intuitively, the number δ in Theorem 10 is a quantitative measure of the linear independ-
ence of the φj ’s, as it bounds away from zero all integer linear combinations of the φj ’s with
suitably bounded coefficients. In our case we consider the numbers φj = log λj . For our
purpose we need to obtain a bound on t, and thus a bound on δ, in terms of the algebraic
complexity of the numbers λ1, . . . , λm. This is achieved by invoking a quantitative version
of Baker’s theorem on linear forms in logarithms due to Baker and Wüstholz [1]. Recall
that any algebraic number µ is the root of a unique irreducible polynomial pµ with pairwise
coprime integer coefficients. The height of an algebraic number µ is the maximum of the
absolute values of the coefficients of pµ. The degree of µ is the degree of pµ. Recall that a
field E is called an extension of a field F if E contains F as a subfield. The degree of a field
extension E ⊇ F is the dimension of E as an F -vector space.

MFCS 2022



39:8 Bounding the Escape Time of an LDS over a Compact Semialgebraic Set

▶ Theorem 11. Let µ1, . . . , µN be algebraic numbers, none of which is equal to 0 or 1. Let

L(z1, . . . , zN ) = b1z1 + · · · + bN zN

be a linear form with rational integer coefficients b1, . . . , bN . Let B be an upper bound on the
absolute values of the bj ’s. For j = 1, . . . , N , let Aj ≥ exp(1) be a bound on the height of µj .
Let d be the degree of the field extension Q(µ1, ,̇µN ) generated by µ1, . . . , µN over Q. Fix a
determination of the complex logarithm log. Let Λ = L(log µ1, . . . , log µN ). If Λ ̸= 0 then

log |Λ| > −(16Nd)2(N+2) log A1 · · · · · log AN log B.

Finally, in the case where the λj ’s admit integer multiplicative relations, we employ
Theorem 7 to bound their complexity. We arrive at the following result:

▶ Theorem 12. Let (λ1, . . . , λm) be complex algebraic numbers of modulus 1. Assume that the
numbers 2πi, log λ1, . . . , log λs are linearly independent over the rationals, where 0 ≤ s ≤ m.
Let d be the degree of the field extension Q(λ1, . . . , λs). Let A1, . . . , As ≥ exp(1) be upper
bounds on the heights of λ1, . . . , λs. Let ℓ ∈ N, and εs+1, . . . , εm ∈ Zs be such that

λℓ
j = (λ1, . . . , λs)εj

for all j = s + 1, . . . , m. By convention, if s = 0 the right-hand side of the above equation is
to be taken equal to 1.

Let

L = max
{

ℓ,

s∑
k=1

|εs+1,k|, . . . ,

s∑
k=1

|εm,k|

}
.

Let α1, . . . , αm ∈ Tm be such that any rational linear relation between the numbers
2πi, log λ1, . . . , log λm is also satisfied by the numbers 2πi, log α1, . . . , log αm. Let ε > 0.
Then there exists a positive integer

t ≤ 8πℓ
( 2πL

ε

)s (
2s 2πL

ε

⌈ 4πL
ε log 4πsL

ε

⌉)(16(s+1)d)2(s+3) log A1·····log As + ℓ

such that
∣∣λt

j − αj

∣∣ < ε for j = 1, . . . , m.

Proof. An outline of the proof is sketched above. See [10, Appendix D] for a full proof. ◀

For the purpose of bounding the escape time, the following coarse bound suffices:

▶ Corollary 13. There exists an integer function Kron(n, τ, P ) ∈ 2(τP )nO(1)

, such that the
following holds true:

Let λ1, . . . , λn be algebraic numbers of modulus 1. Assume that the degree of each λj is
bounded by n. Let τ be a bound on the bitsize of the coefficients of the minimal polynomials of
the λj ’s. Let P be a positive integer. Let α1, . . . , αn be complex numbers which are contained
in the closure of the sequence (λt

1, . . . , λt
n)t∈N. Then there exists a t ≤ Kron(n, τ, P ) such

that |αj − λt
j | < 2−P for all j ∈ {1, . . . , n}.

Proof. By Kronecker’s theorem, any integer multiplicative relation between the λj ’s is also
satisfied by the αj ’s. Theorem 12 hence yields a bound on t such that |αj − λt

j | < 2−P holds
for all j ∈ {1, . . . , n}.

This bound is given in terms of quantities s, d, ℓ, εs+1, . . . , εm ∈ Zs, A1, . . . , As, and L.
It remains to show that these quantities can be chosen to be suitably bounded in terms of n

and τ .
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Proposition 26 in [10, Appendix D], which is mainly based on Theorem 7, shows that
numbers ℓ and ε1, . . . , εm can be computed in polynomial space. In particular, the absolute
size of L and ℓ is of the form 2(nτ)O(1) . The numbers log Ai are bounded by τ by assumption.
We have s ≤ m ≤ n by definition. Finally, we have assumed that each λj has degree at most
n. It follows that the degree d of the field extension Q(λ1, . . . , λs) is bounded by nn. The
result follows from Theorem 12. ◀

5 The recurrent eigenspace

The next lemma establishes as a special case an escape bound for all initial values x ∈ Krec.
In order to combine the recurrent and the non-recurrent case we need a stronger result,
however. Thus, we establish not only a bound on the escape time for all initial values
x ∈ Krec, but a bound N such that every x ∈ Vrec – not just in Krec – has distance at least
1/N – not just positive distance – from K. Further, note that Lemma 14 is still applicable
in the special cases where Krec = ∅ or Vrec = 0.

▶ Lemma 14. There exists an integer function Rec(n, d, τ) ∈ 2(τd)nO(1)

with the following
property:

Let A ∈ An×n be a matrix in real Jordan normal form with algebraic entries. Assume
that the minimal polynomial of A has rational coefficients whose bitsize is bounded by τ .
Let K ⊆ Rn be a compact semialgebraic set of complexity at most (n, d, τ). If every point
x ∈ Krec escapes K under iterations of A then for all x ∈ Vrec there exists t ≤ Rec(n, d, τ)
such that

distℓ2(Atx, K) >

√
n

Rec(n, d, τ) .

Proof. The full proof is given in [10, Appendix F]. We only sketch an outline here.
We first prove the result for initial points x ∈ Krec. For these points, the closure of the

orbit OA(x) of x under A is a compact semialgebraic set. We employ Corollary 13 to obtain
for all ε > 0 a doubly exponential bound N such that for all x ∈ Krec and all y ∈ OA(x)
there exists t ≤ N such that ∥Atx − y∥2 < ε. We then use Theorem 4 to obtain a uniform
at most doubly exponentially small lower bound on the quantity

inf
x∈Krec

sup
y∈OA(x)

inf
z∈K

∥y − z∥2
2 .

In order to apply this theorem we construct an auxiliary semialgebraic set, whose complexity
is controlled by Theorem 2. Combining these two steps, we obtain a function Rec0 that
satisfies the statement of the lemma for all initial points x ∈ Krec.

Finally, we extend the result to all initial points x ∈ Vrec. The special case where Krec = ∅
is treated using Theorem 4.

In the case where Krec is non-empty we obtain from Lemma 5 that every x ∈ Vrec which
is doubly exponentially close to K with a sufficiently large constant in the third exponent
is already doubly exponentially close to Krec, with a slightly smaller constant in the third
exponent. Now, any point that is sufficiently far away from K trivially satisfies the claim.
By the preceding discussion, points x ∈ Vrec that are sufficiently close to K are already
sufficiently close to Krec, so that there exists an escaping orbit OA(x′) with x′ ∈ Krec which
is close to the orbit of x since A is an isometry on Vrec. This allows us to reduce the result
to the already established result for initial values in Krec. ◀

MFCS 2022



39:10 Bounding the Escape Time of an LDS over a Compact Semialgebraic Set

6 The non-recurrent eigenspace

The next lemma concerns the subset K≥ε of K containing the points in K that are bounded
away from Vrec by some ε > 0.

For any such point, there exist coordinates (or pairs of coordinates if the corresponding
eigenvalues are not real) whose contribution to the Jordan norm is greater than ε. Moreover,
the contribution to the Jordan norm of these coordinates does not stay constant under
applications of A. If the contribution to the norm of at least one such coordinate is increasing
under applications of A, the orbit will eventually leave K, since K is compact. Moreover,
Theorem 3 yields an upper bound on the escape time.

Coordinates whose contribution to the norm is decreasing under applications of A will,
after sufficiently many iterations, contribute less than ε. We establish a uniform upper bound
on the number of iterations required to ensure this for all such coordinates. Combining this
with the previous bound, we obtain a number N such that after at most N applications of
A, every x ∈ K≥ε has either escaped K, entered K<ε ∪ Krec, or it remains in K≥ε because
it has a component whose contribution to the norm was initially smaller than ε, but grew
beyond ε under iteration of A. In the last case, the point will grow in norm beyond the
bound established in Theorem 3 and thus escape K after a further N applications of A. This
yields a uniform bound on the number of iterations that are required for any point x ∈ K≥ε

to either leave K entirely or move into K<ε ∪ Krec.
The overall structure of this proof closely follows the one given in [11], where the

assumptions allow the authors to restrict the discussion to real eigenvalues.

▶ Lemma 15. There exists an integer function NonRec(n, d, τ, P ) ∈ 2(dτP )nO(1)

with the
following property:

Let K be a compact semialgebraic set of complexity at most (n, d, τ). Let A ∈ An×n be
a matrix in real Jordan normal form. Assume that the characteristic polynomial of A has
rational coefficients whose bitsize is bounded by τ . Let P be a positive integer.

Then for all x ∈ K≥2−P there exists t ≤ NonRec(n, d, τ, P ) such that Atx /∈ K≥2−P .

Proof. See [10, Appendix G] for details. ◀

7 Proof of Theorem 1

In the previous two sections, we successively showed how to establish a bound on the escape
time for an instance (A, K) when the orbit remains in the recurrent eigenspace and how the
orbit behaves when it starts away from the recurrent eigenspace. In this section, we show
how to combine both results in order to establish an escape bound for any starting point in
K. This will thus prove Theorem 1.

Let (A0, K0) be an instance of the compact escape problem, where K0 ⊆ Rn is a compact
semialgebraic set of complexity at most (n0, d0, τ0) and A0 ∈ Qn×n is a square matrix with
rational entries whose bitsize is bounded by τ0. Assume that every point x ∈ K0 escapes K0
under iterations of A0.

Apply Lemma 9 to convert the instance (A0, K0) into an equivalent instance (A, K) such
that A ∈ An×n is in real Jordan normal form. Then the set K has complexity at most
(n, d, τ), were n = 2n0, d = n0d0, and τ = (n0τ0d0)Cτ for some absolute constant Cτ . By
construction, the characteristic polynomial of A has rational coefficients of bitsize at most τ .

Let Rec be the function from Lemma 14. Let ε = 1
Rec(n,d,τ) and Nrec = Rec(n, d, τ). Let

x ∈ K. If x ∈ Krec then x escapes within Nrec steps. Suppose that x ∈ K<ε.
Then there are two possibilities:
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1. We have Atx /∈ K≥ε for all t ≤ Nrec.
2. We have Atx ∈ K≥ε for at least one t ≤ Nrec.
In the first case, the orbit of x remains close to Vrec for long enough that we can rely on
Lemma 14. Indeed, let x0 denote the orthogonal projection of x onto Vrec. Let t ≤ Nrec be
such that distℓ2(Atx0, K) >

√
nε. Since Atx /∈ K≥ε, we have ∥Atx − Atx0∥J < ε, so that

∥Atx − Atx0∥2 <
√

nε. Let y ∈ K. Then∥∥Atx − y
∥∥

2 ≥
∥∥Atx0 − y

∥∥
2 −

∥∥Atx − Atx0
∥∥

2 >
√

nε −
√

nε = 0.

Thus, x escapes K under iterations of A.
In the second case, let t1 be such that At1x ∈ K≥ε. Let NonRec be the function from

Lemma 15. Let N≥ε = NonRec(n, d, τ, ⌈log(1/ε)⌉). By Lemma 15 there exists t2 ≤ N≥ε such
that At2At1x is contained either in K<ε ∪ Krec or in the complement of K. In the latter case
we are done. In the former case we apply the initial case distinction: either for all t ≤ Nrec
we have AtAt2At1x /∈ K≥ε or we have At3At2At1x ∈ K≥ε for at least one t3 ≤ Nrec. Once
again, in the first case, the point has escaped. By repeating this reasoning, we construct a
(finite or infinite) sequence t1, t2, . . . such that ti ≤ Nrec if i is odd and ti ≤ N≥ε if i is even
and

Ats · · · · · At1x ∈

{
K<ε ∪ Krec if s is even,
K≥ε if s is odd.

We claim that the sequence t1, t2, . . . is finite and contains at most n3 elements.
Consider a real Jordan block of A of size m ≤ n associated to the eigenvalue Λ. Denote

by xJ the orthogonal projection of x onto the dimensions associated with this block.
Assume first that Λ is a real eigenvalue (as opposed to a 2 × 2 block representing a

complex eigenvalue). If Λ = 0, then clearly
∥∥JkxJ

∥∥
J

is monotonically decreasing. Thus,
assume in the sequel that Λ ̸= 0.

Let j ∈ {1, . . . , m}. The m − j + 1’th component of the vector JkxJ , viewed as a function
of t, is an exponential polynomial Ej(t) = ΛtP (t), where P ∈ R[z] is a real polynomial of
degree j − 1. Consider the real function

(Ej(·))2 : R → R, (Ej(t))2 = |Λ|2t |P (t)|2.

This function is differentiable in t with derivative

d
dt (Ej(t))2 = Λ2t

(
log(Λ2)(P (t)2) + 2P (t)P ′(t)

)
.

This derivative vanishes if and only if the factor
(
log(Λ2)(P (t)2) + 2P (t)P ′(t)

)
vanishes. This

factor is a polynomial of degree 2j − 2, so that it has at most 2j − 2 real zeroes. It follows
that there exist numbers tj,1, . . . , tj,mj

with mj ≤ 2j − 2 such that the function (Ej(t))2 − ε2

does not change its sign in any of the open intervals

(0, tj,1), (tj,1, tj,2), . . . , (tj,mj−1, tj,mj
), (tj,mj

, +∞).

Thus, the norm ∥J txJ∥J changes from smaller than ε to bigger than ε at most

m∑
j=1

(2j − 2) = 2
m∑

j=1
j − 2m = (m + 1)m − 2m = m2 − m

times.
The case where Λ represents a complex eigenvalue λ is similar. However, we now consider

the evolution of the two coordinates corresponding to one Λ-block simultaneously.

MFCS 2022
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For j ∈ {1, . . . , m}, write Ej(t) for the m− j +1’th component of the vector J txJ , viewed
as a function of t. We have for all j ∈ {1, . . . , m/2} that the function

Fj(t) = (E2j(t))2 + (E2j−1(t))2

is an exponential polynomial Fj(t) = |λ|tPj(t), where Pj ∈ R[z] is a real polynomial of
degree j − 1. Therefore, exactly as in case where Λ is a real eigenvalue, the derivative of Fj

vanishes at most 2j − 2 times. From which we can deduce that the norm ∥J txJ∥J crosses
the ε-threshold at most m2 − m times.

Estimating generously, we have at most n Jordan blocks of size at most n, each of which
crosses the ε-threshold at most n2 − n times. In total, we cross the threshold at most n3 − n2

times. The total escape bound is hence n3 max{Nrec, N≥ε}. By the same argument, the same
escape bound holds true when the initial point x lies in K≥ε.

Substituting the constants Nrec, N≥ε, n, d, and τ with their definitions, we obtain the
upper bound

CompactEscape(n0, d0, τ0) =

(2n0)3 max
{

Rec
(
2n0, n0d0, (n0d0τ0)Cτ

)
,

NonRec
(
2n0, n0d0, (n0d0τ0)Cτ , log

⌈
Rec

(
2n0, n0d0, (n0d0τ0)Cτ

)⌉) }
.

One easily verifies that CompactEscape(n, d, τ) ∈ 2(dτ)nO(1)

as claimed.

8 A matching lower bound on escape time

In Theorem 1 we established a uniform upper bound on the escape time for all positive
instances of the Compact Escape Problem. Our bound is doubly exponential in the ambient
dimension and singly exponential in the rest of the data. We will now show that this bound
cannot be significantly improved by showing that a doubly exponential bound cannot be
avoided even for purely rotational systems. A second example displaying a doubly exponential
lower bound is presented in [10, Appendix H].

▶ Example 16. For (n, d, τ) ∈ N3, let K(n,d,τ) ⊆ Rn+2 be the set of all points (x, y, u1, . . . , un)
satisfying the (in)equalities: x2 + y2 = 1, u1 = 2−τ , (x − 1)2 + y2 ≥ un and for 1 ≤ i ≤
n − 1, ui+1 = (ui)d.

Hence, K(n,d,τ) =
(

S1 \ B
(

(1, 0), 2−τdn−1
))

×
{(

2−τ , 2−τd, . . . , 2−τdn−1
)}

, where S1 ⊆
R2 is the unit circle. Let a = 3

5 , b = 4
5 . Let

A(n,d,τ) =

a −b 0
b a 0
0 0 In


where In is the n × n- identity matrix. It is easy to see that the complex number 3

5 + i 4
5 has

modulus 1 and is not a root of unity. It follows from Dirichlet’s theorem on simultaneous
Diophantine approximation that the orbit of A is equal to S1 ×

{(
2−τ , 2−τd, . . . , 2−τdn−1

)}
,

so that every initial point escapes under A.
We claim that there exists a point x ∈ K(n,d,τ) that requires 2τdn−1 steps to escape.

Indeed, let x0 ∈ K(n,d,τ) be an arbitrary initial point. Consider the orbit xt = Atx0. Let
N < 2τdn−1 . By the pigeonhole principle, the finite set of points x0, . . . , xN contains at least
one consecutive pair of points xi, xj on the circle such that the points xi and xj are joined
by an arc of the circle of length strictly greater than 2/N . It follows that we can ensure that
none of the points x1, . . . , xN is outside of K(n,d,τ) by applying a suitable planar rotation to
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all points. Since all planar rotations commute, there exists for each angle θ an initial point
xθ ∈ S1 ×

{(
2−τ , 2−τd, . . . , 2−τdn−1

)}
, such that the orbit of xθ under A is equal to the

orbit of x0 under A rotated by θ. This proves the claim.
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