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Impact of ActiGraph Sampling Rate on Free-Living Physical Activity Measurement in 

Youth 

 
Abstract-250 words 
 
ActiGraph sampling frequencies of more than 30 Hz may result in overestimation of activity 

counts in both children and adults, but research on free-living individuals has not included the 

range of sampling frequencies used by researchers. Objective: We compared count- and raw-

acceleration-based metrics from free-living children and adolescents across a range of sampling 

frequencies. Approach: Participants (n=445; 10-15 y) wore an ActiGraph accelerometer for at 

least one 10-h day. Vector Magnitude counts, Mean Amplitude Deviation, Monitor-Independent 

Movement Summary units, and activity intensity classified using six methods (four cut-points, 

two-regression model, and artificial neural network) were compared between 30 Hz and 60, 80, 

90, and 100 Hz sampling frequencies using mean absolute differences, correlations, and 

equivalence testing. Main results: All outcomes were statistically equivalent, and correlation 

coefficients were ≥0.970. Absolute differences were largest for the 30 vs. 80 and 30 vs. 100 Hz 

count comparisons. For comparisons of 30 with 60, 80, 90, or 100 Hz, mean (and maximum) 

absolute differences in minutes of moderate-to-vigorous physical activity per day ranged from 

0.1 to 0.3 (0.4 to 1.5), 0.3 to 1.3 (1.6 to 8.6), 0.1 to 0.3 (1.1 to 2.5), and 0.3 to 2.5 (1.6 to 14.3) 

across the six classification methods. Significance: Acceleration-based outcomes are 

comparable across the full range of sampling rates and therefore recommended for future 

research. If using counts, we recommend a multiple of 30 Hz because using a 100 Hz sampling 

rate resulted in large maximum individual differences and epoch-level differences, and 

increasing differences with activity level. 
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Introduction 

When accelerometers were first used to characterize physical activity (PA) intensity, 

data were sampled at a low frequency and stored using proprietary measures, such as activity 

counts, to save storage space and battery life (Sasaki et al., 2016). However, devices can now 

store raw acceleration data sampled at high frequencies for long periods of time. The most 

commonly used research-grade accelerometer brand (Wijndaele et al., 2015), ActiGraph, has 

allowed users to specify the sampling rate and download raw acceleration data since the 

release of the GT3X in 2010 (John and Freedson, 2012). Since this capability became available, 

researchers have used a variety of sampling rates (Migueles et al., 2017), even though most 

methods for analyzing these data were developed using a sampling rate of 10 or 30 Hz (e.g., 

Freedson et al., 1998). 

ActiGraph sampling rate has been shown to impact the conversion of ActiGraph raw 

acceleration data to activity counts in both adults (Brønd and Arvidsson, 2016; Clevenger et al., 

2021) and children (Clevenger et al., 2019). While this raises concerns regarding the potential 

impact on surveillance, assessment of interventions, and comparability across studies, two of 

the three prior studies in this area (Clevenger et al., 2019; Brønd and Arvidsson, 2016) were 

limited to lab-based or semi-structured activities. Specifically, a lab-based study estimated that 

0.3 to 2.6% of epochs classifying PA intensity could be impacted by using a 100 instead of 30 

Hz sampling rate (Clevenger et al., 2019). This is congruent with the only free-living study, 

which employed a small sample of 20 adults, whereby approximately 3.8 to 5.4% of epochs 

were classified differently when comparing 100 and 30 Hz sampling rates, translating to 

differences of 3.6 to 5.4 min∙day-1 of moderate-to-vigorous intensity PA (MVPA; Clevenger et al., 

2021). A more comprehensive understanding of the impact of ActiGraph sampling rate on free-

living PA measurement using a larger sample size is therefore needed. 

A major limitation of prior research (Clevenger et al., 2021; Clevenger et al., 2019) is the 

comparison of only 100 to 30 Hz sampling rates. Brønd et al. (2016) used a mechanical set-up 



to demonstrate that multiples of 30 Hz (i.e., 60 and 90 Hz) were minimally affected by chosen 

sampling rate. This phenomenon should be replicated in free-living individuals as this would 

allow the capture of data at a higher sampling rate (90 Hz) without affecting count data. 

Additionally, given that United States surveillance efforts, such as the National Health and 

Nutrition Examination Survey (NHANES), use a sampling rate of 80 Hz (Troiano et al., 2014), it 

is important to identify the impact of this specific sampling rate on outcomes. For 2003-2004 and 

2005-2006 NHANES cycles, only count data were released, which may be impacted by 

sampling rate (Brønd and Arvidsson, 2016). Data from 2011-2012 and 2013-2014 NHANES 

cycles included a relatively new metric, Monitor-Independent Movement Summary (MIMS) units 

(John et al., 2019), which is meant to be sampling rate agnostic as raw acceleration data are 

first up-sampled to 100 Hz, then filtered and integrated. However, whether MIMS is comparable 

across a range of sampling rates remains to be investigated.  

In addition to MIMS, researchers are increasingly using other acceleration-based 

metrics, such as Mean Amplitude Deviation (MAD; Vähä‐Ypyä et al., 2015) due to the potential 

for improved comparability across device brands (Wijndaele et al., 2015). Two prior studies 

have reported that raw acceleration metrics are less impacted by ActiGraph sampling rate than 

activity counts, but these were limited to small sample sizes (n=20-29) and/or lab-based 

investigations (Clevenger et al., 2021; Clevenger et al., 2019). Additionally, researchers have 

primarily compared accelerometer metrics across sampling rates or compared PA intensity 

classified using cut-point approaches (Clevenger et al., 2021; Clevenger et al., 2019; Brønd and 

Arvidsson, 2016). Little research has studied the impact of sampling rate when using other 

analytic techniques, such as machine learning (Clevenger et al., 2019; Small et al., 2021) or 

two-regression models (e.g., Crouter et al., 2012), which may better predict activity intensity due 

to greater use of the rich information available from accelerometers. Thus, further investigation 

into the impact of ActiGraph sampling rate on raw acceleration-based metrics and the use of 

more advanced analytic techniques is warranted. 



In this paper, we sought to compare count- and raw-acceleration-based metrics and PA 

intensity, as estimated using cut-point and more advanced techniques, between ActiGraph data 

sampled at 30 Hz compared to data sampled at 60, 80, 90, or 100 Hz. We hypothesized that 

outcomes would be statistically equivalent across sampling rates but that the smallest 

differences would be evident for the raw acceleration-based metrics and for the comparison 

between 30 Hz and multiples of 30 Hz (60 and 90 Hz). 

 

Methods 

Data collection and processing 

This is a secondary data analysis of PA data from 10-15 year-old (mean ± standard 

deviation: 13.0 ± 1.1 y) youth in Wales (United Kingdom) with an average body mass index of 

20.8 ± 4.1 kg∙m-2. Prior to data collection, the protocol was approved by the Institutional Review 

Board. For each child who provided assent, one parent/guardian provided written informed 

consent. Youth (N=488; 260 boys, 224 girls, 4 missing values) wore an ActiGraph wGT3X-BT 

(ActiGraph LLC, Pensacola, FL) on an elastic belt over their right hip for seven consecutive 

days, except while sleeping or participating in water-based activities (i.e., showering, 

swimming).  

Monitors were initialized to collect raw acceleration data at a sampling rate of 100 Hz 

and data were downloaded as .gt3x files using ActiLife software (version 6.13.4; firmware 1.2.0). 

In accord with previous research (Clevenger et al., 2021; Clevenger et al., 2019; Brønd et al., 

2017), the 100 Hz data were resampled to 30, 60, 80, and 90 Hz using Java software (Oracle 

Corp., Redwood Shores, CA) and the resample function available in MATLAB (MathWorks Inc., 

Natwick, MA) which uses a polyphase antialiasing filter. These sampling rates were chosen 

because of their frequent use in the literature (particularly for 30 and 100 Hz; Migueles et al., 

2017), use in NHANES (80 Hz; Troiano et al., 2014), and Brønd et al.’s (2016) prior supposition 

that counts are unaffected by sampling rates that are multiples of 30 (i.e., 60 and 90 Hz). While 



ActiLife users can select sampling rates of 40, 50, and 70 Hz, these were not included in the 

present study due to limited use in prior research (Migueles et al., 2017). Thus, each participant 

had five .gt3x files for comparison. 

For each of the five .gt3x files, counts∙s-1 and raw acceleration were exported from 

ActiLife and loaded into R Studio (version 1.2.1335) using the ‘AGread’ package (version 1.1.1). 

Wear-time was classified using the ‘accelerometry’ package (version 3.1.2; Van Domelen and 

Pittard, 2014), with continuous strings of 20 minutes of zero counts in the vertical axis 

considered as non-wear (the most commonly used wear-time criteria in this age group; 

Migueles et al., 2017). Participants were required to have at least one day of 10-h of valid wear 

data to be included in the subsequent analysis, a criterion which allowed the retention of the 

largest sample size (Migueles et al., 2017). We note that the present study does not aim to 

produce unbiased estimates of PA intensity, but rather, to compare estimates across sampling 

rates. Only times classified as wear from all five sampling rates were included in subsequent 

analysis.  

Three accelerometer metrics were calculated at a 5-s epoch for direct comparison; this 

epoch length was selected to capture the intermittent and transient nature of children’s activity. 

Vector magnitude (VM; counts∙5-s-1) was calculated as the square root of the sum of the 

squared counts in each of the three axes. Mean amplitude deviation (MAD; mg) represents the 

typical distance between the square root of the sum of the squared values of the raw 

acceleration signals from each axis and the mean value for a given time period (Aittasalo et al., 

2015). MIMS were generated using a multi-step process of interpolation to 100 Hz, extrapolation 

to account for differences in device dynamic range, bandpass filtering, rectification and 

integration, and summation across the three axes (John et al., 2019). MAD was calculated using 

the ‘acc’ package (version 1.3.3) while MIMS were calculated using the ‘MIMSunit’ package 

(version 0.10.0). 



In addition, six classification methods were used to calculate the percentage of wear-

time in sedentary time, light PA, and MVPA. These methods were chosen to include a variety of 

epoch lengths (1, 5, 10, 15, 60 s), model types (cut-points, two-regression, artificial neural 

network), and inputs (MAD, mean and variance of acceleration, VM counts). Of note, no 

methods for classifying activity intensity from MIMS are currently available. The classification 

methods included: 

1) Hangii et al. (2013) cut-points for VM counts∙s-1 which classified activity intensity as 

sedentary time (<3 counts∙s-1), light PA, (3-56 counts∙s-1), or MVPA (≥56 counts∙s-1);  

2) Aittasalo et al. (2015) cut-points for MAD (per 5-s) which classified intensity as 

sedentary time (<26.9 mg), light PA (26.9-331.9 mg), or MVPA (≥332 mg);  

3) Crouter et al. (2012) two-regression model which predicts METs from VM counts∙10-s-

1 and the coefficient of variation in counts∙10-s-1 which was then classified as sedentary time 

(≤1.5 METs), light PA (>1.5 to <3 METs), or MVPA (≥3 METs). The ‘TwoRegression’ package 

(version 0.1.2) was used to calculate the coefficient of variation (Hibbing, 2018).;  

4) Montoye et al. (2019) artificial neural network using mean and variance in counts∙15-

s-1 to predict METs which were then classified as sedentary time (≤1.5 METs), light PA (>1.5 to 

<3 METs), or MVPA (≥3 METs). We note that this model was developed using data from a 

protocol involving a large amount of physical activity and therefore may not be intended to 

classify lower intensities.; 

5) Romanzini et al. (2014) cut-points for VM counts∙15-s-1 which classified intensity as 

sedentary time (≤180 counts∙15-s-1) light PA (181-756 counts∙15-s-1), or MVPA (≥757 counts∙15-

s-1).; 

6) Brønd et al. (2019) cut-points for VM counts∙min-1  which classified intensity as 

sedentary time (<115 counts∙min-1), light PA (115-2160 counts∙min-1), or MVPA (≥2161 

counts∙min-1). 

 



Statistical analyses 

We compared 30 vs. 60, 30 vs. 80, 30 vs. 90, and 30 vs. 100 Hz sampling rates. Other 

comparisons were not conducted to control familywise (type 1) error and because they have 

little practical relevance as the standard ActiGraph sampling rate is 30 Hz. It is therefore of 

greater interest to compare these other sampling rates (60-100 Hz) to the 30 Hz sampling rate, 

which by itself is used in approximately 70% of studies employing ActiGraph monitors (Migueles 

et al., 2017). MAD, VM, and MIMS were compared at the epoch level (every 5-s) through 

calculation of mean absolute difference, mean absolute percent difference, and Pearson’s 

correlation coefficient (r). Average MAD and VM, and summed MIMS (John et al., 2019) over 

the entire wear period, and percentage of time spent in each activity intensity according to the 

six classification methods were calculated for each participant. Mean absolute differences, 

percentage differences, and Pearson’s correlation coefficients were calculated. The ‘blandr’ 

package (version 0.5.1) was used to generate Bland Altman plots (Bland and Altman, 1986).  

Two, one-sided tests of equivalence (TOST) were used to compare mean MAD and VM, 

total MIMS, and percentage of wear-time in each activity intensity using the ‘TOSTER’ package 

(version 0.4.0; Lakens, 2017). Specifically, 90% confidence intervals around the mean 

difference for each variable were constructed. If the confidence interval did not overlap or 

exceed the equivalence bounds, then the monitors were considered equivalent (p<0.05). 

Equivalence bounds were set as 5% of the mean value for each variable except MVPA, for 

which the equivalence bounds were modified 0.5 percentage points, as using the 5% of the 

mean criterion resulted in extremely narrow bounds that have little practical meaning (Clevenger 

et al., 2021; Clevenger et al., 2020). Equivalence bounds are reported in Supplementary Table 

1. Power analysis (using the ‘TOSTER’ package) for the most stringent comparison (MVPA) 

indicates that our sample size was adequate to detect statistical equivalence. 

Results 



 Of the total sample (N=488), 445 participants had sufficient data to be retained for the 

present analysis. Participants had approximately 86.5 ± 36.8 h of wear-time across 5.3 ± 2.0 

days. Overall means for each accelerometer metric at a 5-s epoch (MAD, VM, MIMS) and for 

percentage of time spent in sedentary time, light PA, or MVPA according to the six different 

analysis methods are found in Table 1. Overall, participants spent from 1.7% (Aittasalo et al., 

2015) to 46.7% (Montoye et al., 2019) of their time in MVPA.



Table 1. Accelerometer metrics and percentage of wear-time spent in each activity intensity by ActiGraph sampling frequency 
  
 30 Hz 60 Hz 80 Hz 90 Hz 100 Hz 

Metric      

VM (counts∙5s-

1) 
70.4 ± 22.6 70.4 ± 22.6 71.4 ± 23.0 70.6 ± 22.7 72.4 ± 23.4 

MAD (mg) 36.6 ± 12.9 37.2 ± 13.0 37.3 ± 13.0 37.3± 13.0 37.3 ± 13.0 
MIMS 24,515.5± 11,115.9 24,520.5 ± 11,118.8 24,518.7 ± 11,118.1 24,517.0 ± 11,117.4 24,509.6 ± 11,114.0 

Hangii VM counts∙s-1 cut-points     

Sedentary (%) 73.5 ± 6.3 73.4 ± 6.3 73.4 ± 6.4 73.4 ± 6.3 73.3 ± 6.4 
Light (%) 16.9 ± 3.7 16.9 ± 3.7 16.8 ± 3.7 16.9 ± 3.7 16.7 ± 3.6 
MVPA (%) 9.6 ± 3.5 9.6 ± 3.5 9.8 ± 3.5 9.7 ± 3.5 9.9 ± 3.6 

Aittasalo MAD∙5-s-1 cut-points     

Sedentary (%) 76.4 ± 6.3 76.2 ± 6.4 76.2 ± 6.4 76.2 ± 6.4 76.2 ± 6.4 
Light (%) 21.9 ± 5.5 22.0 ± 5.6 22.0 ± 5.6 22.1 ± 5.6 22.0 ± 5.6 
MVPA (%) 1.7 ± 1.2 1.8 ± 1.2 1.8 ± 1.2 1.8 ± 1.2 1.8 ± 1.2 

Crouter VM two-regression model     

Sedentary (%) 70.5 ± 7.1 70.5 ± 7.1 70.4 ± 7.1 70.5 ± 7.1 70.3 ± 7.1 
Light (%) 15.9 ± 3.4 15.9 ± 3.4 15.8 ± 3.4 15.9 ± 3.4 15.6 ± 3.3 
MVPA (%) 13.6 ± 4.6 13.6 ± 4.6 13.8 ± 4.6 13.6 ± 4.6 14.0 ± 4.7 

Montoye artificial neural network     

Sedentary (%) 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 
Light (%) 53.4 ± 9.1 53.4 ± 9.1 53.3 ± 9.1 53.4 ± 9.1 53.3 ± 9.1 
MVPA (%) 46.6 ± 9.1 46.6 ± 9.1 46.7 ± 9.1 46.6 ± 9.1 46.7 ± 9.1 

Romanzini VM counts∙15-s-1 cut-points     

Sedentary (%) 71.8 ± 6.9 71.7 ± 6.9 71.7 ± 7.0 71.7 ± 6.9 71.6 ± 7.0 
Light (%) 18.4 ± 4.0 18.4 ± 4.0 18.3 ± 3.9 18.4 ± 4.0 18.2 ± 3.9 
MVPA (%) 9.8 ± 4.1 9.8 ± 4.1 10.0 ± 4.2 9.8 ± 4.1 10.2 ± 4.2 

Brønd VM counts∙min-1 cut-points     

Sedentary (%) 44.3 ± 9.5 44.3 ± 9.5 44.2 ± 9.4 44.3 ± 9.5 44.2 ± 9.5 
Light (%) 42.0 ± 6.7 42.0 ± 6.7 41.9 ± 6.7 42.0 ± 6.7 41.8 ± 6.7 
MVPA (%) 13.7 ± 5.4 13.7 ± 5.4 13.9 ± 5.4 13.7 ± 5.4 14.0 ± 5.5 

Data are shown as mean ± standard deviation; VM: Vector Magnitude; MAD: Mean Amplitude Deviation; MIMS: Monitor-Independent 
Movement Summary; MVPA: Moderate-to-Vigorous Physical Activity. Note: the Montoye artificial neural network was developed 
using a protocol involving a high proportion of physical activity, resulting in the low estimates of sedentary time. 
 



Mean absolute difference and percentage difference, correlation coefficients, and results 

from the equivalence tests are found in Table 2 (30 vs. 60 Hz), Table 3, (30 vs. 80 Hz), Table 4 

(30 vs. 90 Hz), and Table 5 (30 vs. 100 Hz). For all tested sampling frequencies (60, 80, 90, and 

100 Hz), mean metric values and percentage of time spent in each activity intensity were 

considered statistically equivalent to 30 Hz (p<0.001). While all correlations were classified as 

high (r≥0.970), the largest mean absolute differences and percentage differences were found for 

the comparison of 30 vs. 80 and 30 vs. 100 Hz. For example, percentage difference in VM was 

0.1, 1.4, 0.3, and 2.8% for the comparison of 60, 80, 90, and 100 Hz, respectively, with 30 Hz.  



Table 2. Mean absolute differences, correlations, and observed confidence intervals for the equivalence tests for accelerometer 
metrics and percentage of time spent in each activity intensity using 30 vs. 60 Hz sampling frequency 

 Mean Absolute 
Difference ± SD 

Mean Absolute 
Percentage 

Difference ± SD 

Pearson’s r Bias 
± SE 

Confidence Interval for 
Equivalence Test 

Lower Upper 

Metric       

VM (counts∙5-s-1) 0.1 ± 1.1 0.1 ± 0.1 0.999 -0.1 ± 0.0 -0.1 -0.1 
MAD (mg) 0.6 ± 0.3 1.7 ± 0.5 0.999 -0.6 ± 0.0 -0.6 -0.6 
MIMS 5.1 ± 5.5 0.0 ± 0.0 0.999 -5.0 ± 0.3 -5.4 -4.6 

Hangii VM counts∙s-1 cut-points      

Sedentary (%) 0.0 ± 0.0 0.0 ± 0.0 0.999 -0.2 ± 0.0 0.2 0.2 
Light (%) 0.0 ± 0.0 0.1 ± 0.1 0.999 -0.2 ± 0.0 -0.2 -0.2 
MVPA (%) 0.0 ± 0.0 0.1 ± 0.1 0.999 -0.0 ± 0.0 -0.0 -0.0 

Aittasalo MAD∙5-s-1 cut-points      

Sedentary (%) 0.2 ± 0.1 0.3 ± 0.1 0.999 0.2 ± 0.0 0.2 0.2 
Light (%) 0.2 ± 0.1 0.8 ± 0.4 0.999 -0.2 ± 0.0 -0.2 -0.2 
MVPA (%) 0.0 ± 0.0 2.8 ± 1.8 0.999 -0.0 ± 0.0 -0.0 -0.0 

Crouter VM two-regression model      

Sedentary (%) 0.0 ± 0.0 0.0 ± 0.0 0.999 0.0 ± 0.0 0.0 0.0 
Light (%) 0.0 ± 0.0 0.2 ± 0.2 0.999 0.0 ± 0.0 0.0 0.0 
MVPA (%) 0.0 ± 0.0 0.2 ± 0.2 0.999 -0.0 ± 0.0 -0.0 -0.0 

Montoye artificial neural network      

Sedentary (%) 0.0 ± 0.0 7.7 ± 32.2 0.990 -0.0 ± 0.0 -0.0 0.0 
Light (%) 0.0 ± 0.0 0.1 ± 0.1 0.999 0.0 ± 0.0 0.0 0.0 
MVPA (%) 0.0 ± 0.0 0.1 ± 0.1 0.999 -0.0 ± 0.0 -0.0 -0.0 

Romanzini VM counts∙15-s-1 cut-points      

Sedentary (%) 0.0 ± 0.0 0.0 ± 0.0 0.999 0.0 ± 0.0 0.0 0.0 
Light (%) 0.0 ± 0.0 0.2 ± 0.1 0.999 0.0 ± 0.0 0.0 0.0 
MVPA (%) 0.0 ± 0.0 0.2 ± 0.2 0.999 -0.0 ± 0.0 -0.0 -0.0 

Brønd VM counts∙min-1 cut-points      

Sedentary (%) 0.0 ± 0.0 0.1 ± 0.1 0.999 0.0 ± 0.0 -0.0 0.0 
Light (%) 0.1 ± 0.1 0.1 ± 0.1 0.999 0.0 ± 0.0 0.0 0.0 
MVPA (%) 0.0 ± 0.0 0.2 ± 0.2 0.999 -0.0 ± 0.0 -0.0 -0.0 

SD: standard deviation; SE: standard error; VM: Vector Magnitude; MAD: Mean Amplitude Deviation; MIMS: Monitor-Independent 
Movement Summary; MVPA: Moderate-to-Vigorous Physical Activity 
  



Table 3. Mean absolute differences, correlations, and observed confidence intervals for the equivalence tests for accelerometer 
metrics and percentage of time spent in each activity intensity using 30 vs. 80 Hz sampling frequency 

 Mean Absolute 
Difference ± SD 

Mean Absolute 
Percentage 

Difference ± SD 

Pearson’s r Bias 
± SE 

Confidence Interval for 
Equivalence Test 

Lower Upper 

Metric       

VM (counts∙5-s-1) 1.1 ± 0.6 1.4 ± 0.6 0.999 -1.1 ± 0.0 -1.1 -1.0 
MAD (mg) 0.7 ± 0.3 1.9 ± 0.5 0.999 -0.7 ± 0.0 -0.7 -0.7 
MIMS 3.8 ± 9.5 0.0 ± 0.0 0.999 -3.2 ± 0.5 -4.0 -2.5 

Hangii VM counts∙s-1 cut-points      

Sedentary (%) 0.1 ± 0.0 0.1 ± 0.1 0.999 0.2 ± 0.0 0.2 0.2 
Light (%) 0.1 ± 0.1 0.5 ± 0.5 0.999 -0.2 ± 0.0 -0.2 -0.2 
MVPA (%) 0.1 ± 0.1 1.6 ± 1.0 0.999 -0.0 ± 0.0 -0.1 -0.0 

Aittasalo MAD∙5-s-1 cut-points      

Sedentary (%) 0.2 ± 0.1 0.3 ± 0.2 0.999 0.2 ± 0.0 0.2 0.2 
Light (%) 0.2 ± 0.1 0.9 ± 0.4 0.999 -0.2 ± 0.0 -0.2 -0.2 
MVPA (%) 0.0 ± 0.0 2.9 ± 1.9 0.999 -0.0 ± 0.0 -0.1 -0.0 

Crouter VM two-regression model      

Sedentary (%) 0.1 ± 0.1 0.1 ± 0.1 0.999 0.1 ± 0.0 0.1 0.1 
Light (%) 0.2 ± 0.1 0.9 ± 0.7 0.999 0.1 ± 0.0 0.1 0.2 
MVPA (%) 0.2 ± 0.1 1.6 ± 1.0 0.999 -0.2 ± 0.0 -0.2 -0.2 

Montoye artificial neural network      

Sedentary (%) 0.0 ± 0.0 19.4 ± 46.0 0.970 0.0 ± 0.0 -0.0 0.0 
Light (%) 0.1 ± 0.1 0.2 ± 0.1 0.999 0.1 ± 0.0 0.1 0.1 
MVPA (%) 0.1 ± 0.1 0.2 ± 0.1 0.999 -0.1 ± 0.0 -0.1 -0.1 

Romanzini VM counts∙15-s-1 cut-points      

Sedentary (%) 0.1 ± 0.0 0.1 ± 0.1 0.999 0.1 ± 0.0 0.1 0.1 
Light (%) 0.1 ± 0.1 0.7 ± 0.6 0.999 0.1 ± 0.0 0.1 0.1 
MVPA (%) 0.2 ± 0.1 2.2 ± 1.4 0.999 -0.2 ± 0.0 -0.2 -0.2 

Brønd VM counts∙min-1 cut-points      

Sedentary (%) 0.1 ± 0.1 0.2 ± 0.2 0.999 0.1 ± 0.0 0.1 0.1 
Light (%) 0.2 ± 0.2 0.4 ± 0.3 0.999 0.1 ± 0.0 0.1 0.1 
MVPA (%) 0.2 ± 0.1 1.6 ± 1.2 0.999 -0.2 ± 0.0 -0.2 -0.2 

SD: standard deviation; SE: standard error; VM: Vector Magnitude; MAD: Mean Amplitude Deviation; MIMS: Monitor-Independent 
Movement Summary; MVPA: Moderate-to-Vigorous Physical Activity 
  



Table 4. Mean absolute differences, correlations, and observed confidence intervals for the equivalence tests for accelerometer 
metrics and percentage of time spent in each activity intensity using 30 vs. 90 Hz sampling frequency 

 Mean Absolute 
Difference ± SD 

Mean Absolute 
Percentage 

Difference ± SD 

Pearson’s r Bias 
± SE 

Confidence Interval for 
Equivalence Test 

Lower Upper 

Metric       

VM (counts∙5-s-1) 0.2 ± 0.2 0.3 ± 0.2 0.999 -0.2 ± 0.0 -0.2 -0.2 
MAD (mg) 0.7 ± 0.3 2.0 ± 0.5 0.999 -0.7 ± 0.0 -0.7 -0.7 
MIMS 3.2 ± 8.3 0.0 ± 0.0 0.999 -1.5 ± 0.4 -2.2 -0.8 

Hangii VM counts∙s-1 cut-points      

Sedentary (%) 0.0 ± 0.0 0.0 ± 0.0 0.999 0.0 ± 0.0 -0.0 -0.0 
Light (%) 0.0 ± 0.0 0.1 ± 0.1 0.999 -0.0 ± 0.0 -0.0 -0.0 
MVPA (%) 0.0 ± 0.0 0.2 ± 0.2 0.999 -0.0 ± 0.0 -0.0 -0.0 

Aittasalo MAD∙5-s-1 cut-points      

Sedentary (%) 0.2 ± 0.1 0.3 ± 0.2 0.999 0.2 ± 0.0 0.2 0.3 
Light (%) 0.2 ± 0.1 0.9 ± 0.4 0.999 -0.2 ± 0.0 -0.2 -0.2 
MVPA (%) 0.0 ± 0.0 2.9 ± 1.9 0.999 -0.0 ± 0.0 -0.1 -0.0 

Crouter VM two-regression model      

Sedentary (%) 0.0 ± 0.0 0.0 ± 0.0 0.999 0.0 ± 0.0 0.0 0.0 
Light (%) 0.0 ± 0.0 0.2 ± 0.2 0.999 0.0 ± 0.0 0.0 0.0 
MVPA (%) 0.0 ± 0.0 0.3 ± 0.3 0.999 -0.0 ± 0.0 -0.0 -0.0 

Montoye artificial neural network      

Sedentary (%) 0.0 ± 0.0 10.0 ± 34.6 0.985 -0.0 ± 0.0 -0.0 0.0 
Light (%) 0.0 ± 0.0 0.1 ± 0.1 0.999 0.0 ± 0.0 0.0 0.0 
MVPA (%) 0.0 ± 0.0 0.1 ± 0.1 0.999 -0.0 ± 0.0 -0.0 -0.0 

Romanzini VM counts∙15-s-1 cut-points      

Sedentary (%) 0.0 ± 0.0 0.0 ± 0.0 0.999 0.0 ± 0.0 0.0 0.0 
Light (%) 0.0 ± 0.0 0.2 ± 0.2 0.999 0.0 ± 0.0 0.0 0.0 
MVPA (%) 0.0 ± 0.0 0.4 ± 0.4 0.999 -0.0 ± 0.0 -0.0 -0.0 

Brønd VM counts∙min-1 cut-points      

Sedentary (%) 0.1 ± 0.1 0.1 ± 0.2 0.999 0.0 ± 0.0 0.0 0.0 
Light (%) 0.1 ± 0.1 0.2 ± 0.1 0.999 0.0 ± 0.0 0.0 0.0 
MVPA (%) 0.0 ± 0.0 0.4 ± 0.4 0.999 -0.0 ± 0.0 -0.0 -0.0 

SD: standard deviation; SE: standard error; VM: Vector Magnitude; MAD: Mean Amplitude Deviation; MIMS: Monitor-Independent 
Movement Summary; MVPA: Moderate-to-Vigorous Physical Activity 
  



Table 5. Mean absolute differences, correlations, and observed confidence intervals for the equivalence tests for accelerometer 
metrics and percentage of time spent in each activity intensity using 30 vs. 100 Hz sampling frequency 
 

 Mean Absolute 
Difference ± 

SD 

Mean Absolute 
Percentage 

Difference ± SD 

Pearson’s r Bias 
± SE 

Confidence Interval for 
Equivalence Test 

Lower Upper 

Metric       

VM (counts∙5-s-1) 2.0 ± 1.1 2.8 ± 1.0 0.999 2.0 ± 0.1 1.9 2.1 
MAD (mg) 0.7 ± 0.3 1.8 ± 0.5 0.999 0.7 ± 0.0 0.6 0.7 
MIMS 6.7 ± 5.3 0.0 ± 0.0 0.999 -5.9 ± 0.3 -6.4 -5.4 

Hangii VM counts∙s-1 cut-points      

Sedentary (%) 0.1 ± 0.1 0.2 ± 0.1 0.999 -0.1 ± 0.0 -0.1 -0.1 
Light (%) 0.2 ± 0.2 1.1 ± 1.0 0.999 -0.2 ± 0.0 -0.2 -0.2 
MVPA (%) 0.3 ± 0.2 3.3 ± 2.0 0.999 0.3 ± 0.0 0.3 0.3 

Aittasalo MAD∙5-s-1 cut-points      

Sedentary (%) 0.2 ± 0.1 0.3 ± 0.2 0.999 -0.2 ± 0.0 -0.2 -0.2 
Light (%) 0.2 ± 0.1 0.9 ± 0.4 0.999 0.2 ± 0.0 0.2 0.2 
MVPA (%) 0.0 ± 0.0 2.7 ± 1.8 0.999 0.0 ± 0.0 0.0 0.0 

Crouter VM two-regression model      

Sedentary (%) 0.1 ± 0.1 0.2 ± 0.1 0.999 -0.1 ± 0.0 -0.1 -0.1 
Light (%) 0.3 ± 0.2 1.9 ± 1.3 0.998 -0.3 ± 0.0 -0.3 -0.3 
MVPA (%) 0.4 ± 0.3 3.2 ± 1.8 0.999 0.4 ± 0.0 0.4 0.4 

Montoye artificial neural network      

Sedentary (%) 0.0 ± 0.0 21.6 ± 49.1 0.969 -0.0 ± 0.0 -0.0 -0.0 
Light (%) 0.2 ± 0.1 0.3 ± 0.2 0.999 -0.2 ± 0.0 -0.2 -0.1 
MVPA (%) 0.2 ± 0.1 0.3 ± 0.2 0.999 0.2 ± 0.0 0.1 0.2 

Romanzini VM counts∙15-s-1 cut-points      

Sedentary (%) 0.1 ± 0.1 0.2 ± 0.1 0.999 -0.1 ± 0.0 -0.1 -0.1 
Light (%) 0.3 ± 0.2 1.6 ± 1.1 0.998 -0.3 ± 0.0 -0.3 -0.3 
MVPA (%) 0.4 ± 0.3 4.4 ± 2.7 0.998 0.4 ± 0.0 0.4 0.4 

Brønd VM counts∙min-1 cut-points      

Sedentary (%) 0.1 ± 0.1 0.3 ± 0.3 0.999 -0.1 ± 0.0 -0.1 -0.1 
Light (%) 0.3 ± 0.2 0.7 ± 0.5 0.999 -0.3 ± 0.0 -0.3 -0.2 
MVPA (%) 0.4 ± 0.2 3.0 ± 1.9 0.999 0.4 ± 0.0 0.4 0.4 

SD: standard deviation; SE: standard error; VM: Vector Magnitude; MAD: Mean Amplitude Deviation; MIMS: Monitor-Independent 
Movement Summary; MVPA: Moderate-to-Vigorous Physical Activity 



When collapsed to min∙day-1 of MVPA (Table 6), mean absolute differences across the 

different classification methods were 0.1 to 0.3 min (30 vs. 60 Hz), 0.3 to 1.3 min (30 vs. 80 Hz), 

0.1 to 0.3 min (30 vs. 90 Hz), and 0.3 to 2.5 min (30 vs. 100 Hz). Maximum differences in MVPA 

in min∙day-1 were 0.4 to 1.5 min (30 vs. 60 Hz), 1.6 to 8.6 min (30 vs. 80 Hz), 1.1 to 2.5 min (30 

vs. 90 Hz), and 1.6 to 14.3 min (30 vs. 100 Hz). 

 The magnitude of differences attributed to sampling rate varied between participants. 

For example, mean absolute differences in mean VM across participants were 0.0 to 0.5 

counts∙5-s-1 (30 vs. 60 Hz), 0.1 to 4.1 counts∙5-s-1 (30 vs. 80 Hz), 0.0 to 1.1 counts∙5-s-1 (30 vs. 

90 Hz), 0.3 to 7.4 counts∙5-s-1 (30 vs. 100 Hz). Bland-Altman plots are found in Supplementary 

Figures 1-36. For the comparison of 30 Hz with 80 or 100 Hz sampling rates, bias increased as 

mean VM counts increased. As mean MAD and MIMS increased, bias increased only slightly, 

and the pattern was consistent across sampling rates. Most often, bias increased as time spent 

in MVPA (regardless of model or cut-points used) increased. 

 



Table 6. Mean absolute difference and maximum difference in min∙day-1 of moderate-to-vigorous physical activity by sampling rate 

across the different classification methods 

Classification Method Mean Absolute Difference ± SD Maximum Absolute Difference 

 30 vs. 
60 

30 vs. 
80 

30 vs. 
90 

30 vs. 
100 

30 vs. 
60 

30 vs. 
80 

30 vs. 
90 

30 vs. 
100 

Hangii VM counts∙s-1 cut-points 0.1 ± 0.1 0.9 ± 0.6 0.1 ± 0.1 1.9 ± 1.2 0.4 5.8 1.1 10.6 
Aittasalo MAD∙5-s-1 cut-points 0.3 ± 0.2 0.3 ± 0.2 0.3 ± 0.2 0.3 ± 0.2 1.5 1.6 1.6 1.6 
Crouter VM two-regression model 0.1 ± 0.1 1.3 ± 0.8 0.3 ± 0.2 2.5 ± 1.5 1.0 6.9 1.4 11.7 
Montoye artificial neural network 0.2 ± 0.2 0.6 ± 0.4 0.3 ± 0.2 0.9 ± 0.5 1.0 2.2 1.4 3.4 
Romanzini VM counts∙15-s-1 cut-
points 

0.1 ± 0.1 1.2 ± 0.8 0.2 ± 0.2 2.5 ± 1.5 0.8 6.6 1.5 14.3 

Brønd VM counts∙min-1 cut-points 0.2 ± 0.2 1.2 ± 0.8 0.3 ± 0.3 2.3 ± 1.3 1.5 8.6 2.5 11.1 

SD: standard deviation; VM: Vector Magnitude; MAD: Mean Amplitude Deviation 

 

 



 Epoch-level comparisons are reported in Table 7. Correlations were classified as high, 

(r≥0.997) and mean absolute percentage differences were less than 10% for all comparisons. 

Maximum epoch-level absolute differences in VM were 291.5 (30 vs. 60 Hz), 876.0 (30 vs. 80 

Hz), 426.1 (30 vs. 90 Hz), and 1595.8 (30 vs. 100 Hz) counts∙5-s-1. Maximum epoch-level 

absolute differences in MAD were 325.6 (30 vs. 60 Hz), 336.5 (30 vs. 80 Hz), 344.5 (30 vs. 90 

Hz), and 346.2 (30 vs.100 Hz) mg. Maximum epoch-level absolute differences in MIMS were 

52.5 (30 vs. 60 Hz), 80.5 (30 vs. 80 Hz), 66.8 (30 vs. 90 Hz), and 59.8 (30 vs. 100 Hz). An 

example comparison of VM, MAD, and MIMS between 100 and 30 Hz sampling rate over one 

day from a single participant is shown in Figure 1. 

 



Table 7. Epoch-level (per 5-s) differences by sampling frequency in Vector Magnitude (VM), Mean Amplitude Deviation (MAD), and 

Monitor-Independent Movement Summary (MIMS) units  

 

 VM (counts∙5-s-1) MAD (mg) MIMS 
Comparison Mean Absolute 

Difference ± SD 
Mean 

Absolute 
Percentage 
Difference ± 

SD 

r Mean 
Absolute 

Difference ± 
SD 

Mean 
Absolute 

Percentage 
Difference ± 

SD 

r Mean 
Absolute 

Difference 
± SD 

Mean 
Absolute 

Percentage 
Difference ± 

SD 

r 

30 vs. 60 Hz 0.6 ± 1.8 2.9 ± 14.9 0.999 0.7 ± 2.4 6.5 ± 6.7 0.999 0.0 ± 0.0 0.9 ± 10.7 0.999 
30 vs. 80 Hz 2.0 ± 7.7 7.5 ± 23.9 0.999 0.8 ± 2.6 8.3 ± 9.6 0.999 0.0 ± 0.0 0.9 ± 10.4 0.999 
30 vs. 90 Hz 0.8 ± 3.3 4.0 ± 17.9 0.999 0.8 ± 2.6 8.3 ± 9.6 0.999 0.0 ± 0.0 0.9 ± 10.4 0.999 
30 vs. 100 Hz 2.9 ± 11.5 9.7 ± 27.2 0.997 0.8 ± 2.6 7.7 ± 9.4 0.999 0.0 ± 0.0 0.8 ± 10.1 0.999 

SD: standard deviation; VM: Vector Magnitude; MAD: Mean Amplitude Deviation; MIMS: Monitor-Independent Movement Summary 



Figure 1. Comparison of (a) Vector Magnitude (VM; counts∙5-s-1), (b) Mean Amplitude Deviation 

(MAD; mg), and (c) Monitor-Independent Movement Summary (MIMS) units between 100 and 

30 Hz sampling rates for one day from one participant. Data are smoothed and shaded regions 

represent variability. 
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(b) 
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Discussion 

 In the present study, we compared three accelerometer metrics and six classification 

methods between a 30 Hz sampling frequency and 60, 80, 90, and 100 Hz sampling 

frequencies for data collected from free-living children wearing ActiGraph hip-worn monitors. 

While differences were largest for the comparison of VM counts between 30 and 100 Hz 

sampling frequencies, and smallest between 30 and 60 or 90 Hz, all outcomes were strongly 

correlated and statistically equivalent across sampling frequencies and resulted in minimal 

differences in outcomes (i.e., min∙day-1 of MVPA; mean of ≤3 min). However, the impact of using 

a 100 vs. 30 Hz sampling rate when using VM counts to classify PA levels was large for a small 

number of participants (~5%). As differences may accrue over longer wear periods, this should 

be considered in future research.  

Prior research has suggested that use of a sampling rate other than 30 Hz (or a multiple 

thereof) results in additional counts being recorded due to signals bypassing ActiGraph’s filter 

(Brønd and Arvidsson, 2016). Comparing 100 and 30 Hz sampling rates in a prior lab-based 

pediatric study resulted in a mean absolute difference of 36.9 counts∙15-s-1 (6.0%; Clevenger et 

al., 2019), while a study of free-living adults reported differences of 44.2 counts∙min-1 (6.0%; 

Clevenger et al., 2021). Differences in the present study for the 100 and 30 Hz comparison were 

smaller (2.0 counts∙5-s-1; 2.8%), which translate to 6.0 counts∙15-s-1 or 24.0 counts∙min-1. These 

smaller differences are likely due to our focus on children instead of adults (Clevenger et al., 

2021) or free-living behavior instead of laboratory-based activities, which often consist of a 

greater proportion of higher-intensity activities (Clevenger et al., 2019). As the primary issue 

with using a sampling rate other than 30 Hz (or a multiple thereof) is that high frequency signals 

bypass ActiGraph’s filter, this seems to have occurred to a lesser degree in this sample and/or 

setting. 



 Only the prior study in free-living adults explored the impact of using a 100 vs. 30 Hz 

sampling rate on the MAD metric, finding a mean absolute difference of 2.2 mg (5.8%), which 

was larger than the present study (0.7 mg; 1.8%) (Clevenger et al., 2021). Smaller differences in 

the present study compared to prior research may be due to our focus on a pediatric sample 

instead of adults. There are two possible explanations for sampling rate differences in an 

acceleration-based metric like MAD. First, this may be due to differences in recorded 

acceleration by sampling rate, which occurs even with other monitor brands, such as Axivity or 

GENEA (Small et al., 2021; Zhang et al., 2012). Second, there may be internal processing of 

ActiGraph’s ‘raw’ data as indicated by other researchers (Brønd and Arvidsson, 2016; John et 

al., 2013). As interest in use of raw acceleration has increased over time, understanding how 

metrics like MAD are affected by data collection decisions is of interest. 

A strength of the present study is the inclusion of MIMS units, which are an open-source 

acceleration-based metric used for national surveillance in the United States (Belcher et al., 

2021). While MIMS are intended to be sampling rate agnostic (John et al., 2019), this has not 

been confirmed but could be affected if ActiGraph raw data are not truly raw (John et al., 2013). 

The present study supports that MIMS are unaffected by sampling rate, with a mean absolute 

percentage difference of 0.0% and minimal bias. Researchers should continue to explore the 

properties of MIMS (e.g., reliability) and develop models for classifying PA intensity.  

Differences by sampling rate were magnified at the epoch level versus when data were 

collapsed to mean values per participant over the entire wear period. Compared to the epoch-

level comparison of 100 and 30 Hz sampling rates in free-living adults (Clevenger et al., 2021), 

the present study demonstrated stronger correlation coefficients and lower mean absolute 

percentage differences for both VM (r=0.808 vs. 0.997; 40.6 vs. 9.7%) and MAD (r=0.744 vs. 

0.999; 38.3 vs. 7.7%). Notably, the present study employs a much large sample size (n=445) 

than the prior study (n=20). However, in line with prior research, we report that differences 

attributable to sampling rate were larger for some participants, as illustrated by maximum 



differences well above the group mean differences (Table 6). The Bland-Altman plots support 

that differences due to sampling rate tend to increase in more active participants, similar to 

Brønd et al. (Brønd and Arvidsson, 2016), and Clevenger et al. (Clevenger et al., 2021). This 

raises some concern that sampling rate differences in future studies may be larger depending 

on the sample characteristics. 

 While we found that 60, 80, 90, and 100 Hz data were statistically equivalent when 

collapsed to mean values per participant over the entire wear period, it is also important to 

consider whether any of these differences are practically meaningful. Differences in min∙day-1 of 

MVPA per 10-h wear day were, on average, 1 minute or less when using a 60, 80, or 90 Hz 

sampling rate and less than 3 min when using a 100 Hz sampling rate compared to a 30 Hz 

sampling rate. However, we note that maximum differences were sometimes considerably 

larger. Specifically, up to 6.3% of participants (depending on the classification method) had an 

absolute difference in MVPA of ≥5 min∙day-1. While these differences may seem small, we note 

that differences of this magnitude are in line with changes in daily MVPA reported in prior 

interventions (Kriemler et al., 2011; Dobbins et al., 2013). These estimates are also for a 10-h 

wear day and differences may accrue over longer wear periods. For example, the maximum 

difference of 14.3 min∙day-1 of MVPA becomes a difference of 17.2 min∙day-1 over a 12-h wear 

day or 100.1 min over an entire 7-day wear week (at 10-h per day). Similarly, up to 12.8% of 

participants had an absolute difference in MVPA of ≥5 min∙day-1 over a 12-h wear day.  

Of note, PA measurement is only affected when using VM counts to classify activity 

intensity as the maximum difference when using MAD cut-points was only 1.6 min. While there 

is no established method of classifying activity intensity using MIMS, the small epoch-level 

differences and minimal bias indicate this may also be a promising metric for classifying activity 

intensity across a range of sampling rates. Additionally, no participants had more than a 5 

min∙day-1 difference in MVPA when using a sampling rate of 60 or 90 Hz compared to 30 Hz. 

Thus, for most participants, the impact of using a sampling rate of 60 or 90 Hz compared to 30 



Hz is negligible when measuring overall PA levels while some caution should be exercised 

when using a sampling of 80 or 100 Hz. In future research employing sampling rates other than 

30 Hz (or multiples thereof), we recommend use of a non-count metric like MAD to classify 

activity, or downsampling to 30 Hz using a similar process to the present study, if the goal is to 

maintain comparability with prior research employing a 30 Hz sampling rate. 

 The majority of prior research has compared a 100 to 30 Hz sampling rate, which makes 

sense given that these are the two most commonly used sampling rates for ActiGraph devices 

(Migueles et al., 2017). In addition, we compared 30 Hz data to sampling rates of 60, 80, 90 Hz. 

In line with the findings of Brønd et al. (2016), we found that 30, 60, and 90 Hz data are not 

exactly the same but that differences were smaller when comparing 30 Hz with 60 or 90 Hz than 

comparing 30 Hz with 80 or 100 Hz. ActiGraph accelerometers can also sample at 40, 50, and 

70 Hz but these were not included in the present study due to their limited use in prior research 

(Migueles et al., 2017). Brønd et al. (2016) reported that an ActiGraph sampling at 40 Hz 

recorded the highest counts in a mechanical experiment (even more than 100Hz) and had a 

different pattern of bias during a semi-structured activity involving walking and running. As the 

present study can only support equivalence of 60, 80, 90, and 100 Hz sampling rates with 30 Hz 

data, additional research will need to be done if researchers wish to use other sampling rates.  

Another limitation of the present study is that we did not investigate the effect of 

sampling rate on other metrics, like vertical axis counts or mean acceleration, or outcomes like 

activity type. Future research may also replicate this analysis using other accelerometer wear-

locations as wrist-worn ActiGraph monitors may be less affected by sampling rate (Clevenger et 

al., 2019). In addition to the wrist, other wear-locations, such as the thigh or ankle, may also be 

of interest but were not included in present or prior studies. Our use of a minimum wear-time of 

a single 10-h∙day-1, which we selected to retain the largest number of participants in our sample, 

is a potential limitation. While this wear-time criteria should not affect our findings, which 

focused on differences attributable to ActiGraph sampling frequency and not getting unbiased 



estimates of habitual PA participation, there may be concern that requiring fewer wear hours per 

day or fewer wear days results in lower estimates of PA participation. Finally, our goal was not 

to optimize ActiGraph’s activity count algorithm. While the algorithm for calculating activity 

counts was recently published (Neishabouri et al., 2022), it is still uncertain which specific step 

leads to this discrepancy by sampling rate or if modifications would address this issue. 

 This study provides the first large-scale investigation into the impact of chosen sampling 

rate on processing of ActiGraph accelerometer data, including both acceleration- and count-

based metrics, several methods for classifying PA intensity, and multiple sampling rates. Our 

findings support that the investigated outcomes (percentage of time spent in each activity 

intensity and mean VM and MAD, and total MIMS over the wear period) are equivalent between 

30 and 60, 80, 90, or 100 Hz sampling rates. However, the largest differences were found when 

comparing a 80 or 100 Hz sampling rate with the standard 30 Hz. Due to large individual 

differences and epoch-level differences, and increasing differences with activity level, we 

recommend that researchers employing count-based metrics continue using a 30 Hz sampling 

rate or multiple thereof (60, 90 Hz) if the goal is to maintain comparability with prior research 

which almost exclusively uses a 30 Hz sampling rate. As a prior review showed that 

approximately 20% of studies did not report the sampling rate used (Migueles et al., 2017), we 

note that including this information in reporting of future trials is needed. 
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