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A B S T R A C T   

Power quality disturbances (PQDs) consist in deviation of voltage and current waveforms from the ideal sinusoid 
at fundamental frequency, and need to be monitored to ensure a reliabile electrical supply. While, traditionally, 
power quality monitoring has been performed using signal processing techniques, coupled with shallow Machine 
Learning classifiers or wave change detection methods, more recently, new approaches, based on Deep Learning, 
have been proposed. These methods have the potential to achieve high classification accuracy and to remove the 
need of extensive data pre-processing, hence being more suitable for real-time deployments. However, high 
classification performance has been only demonstrated using synthetically generated data. In order to address 
limitations related to processing time and accuracy, this paper proposes a novel end-to-end framework for 
automated detection of PQDs based on Deep Transfer Learning. The proposed approach uses a small set of images 
of voltage waveforms to train the model and classify different types of PQDs. This method leverages on the high 
performance of existing pre-trained models for image classification and shows consistent high accuracy for data 
with varying resolution. The proposed methodology provides a pathway towards effective deployment of Deep 
Learning in power quality monitoring systems and real-time applications.   

1. Introduction 

In an ideal power system, voltage and current waveforms are sinu
soid at constant frequency (50 Hz or 60 Hz). Deviations from the ideal 
waveform are referred to as ‘power quality disturbances’ (PQDs). 
Numerous types of PQDs exist, and involve both waveform amplitude 
and frequency. Several standards have been developed to define mea
surement procedures and to harmonize PQD classification [1, 2]. 

PQDs are a concern for system operators and for customers because 
they may cause a number of operational problems. Severe PQDs may result 
in unacceptable operating conditions, thus causing in unplanned outages 
and interruption of supply to customers. Moderate PQDs bring their con
cerns too: if not mitigated, they may cause damage to the equipment on the 
long term, or reduction of its lifetime. For example, small levels of har
monic distortion may lead to pulsating torques in motors or hot-spot 
temperatures in transformers, that may not be detected and therefore 
degrade the equipment [3]. Various solutions have been developed to 
mitigate power quality disturbances, such as passive filters or STATCOMs. 
In order to choose the location and the rating of such equipment, it is 
necessary to undertake monitoring of the power system performance. 

With the increase of power-electronics based devices installed on the 
power grid, power system operators worldwide have been observing an 
increase in the occurrence of PQDs, thus causing growing power quality 
concerns [4]. This situation, combined with the decreasing cost of 
measuring equipment, has been resulting in a proliferation of power 
quality monitoring. The most traditional approaches to power quality 
monitoring employ triggering features to detect PQDs and store them as 
individual events. More recently, adoption of triggerless continuous 
measurements of instantaneous voltage and current waveforms has been 
observed [5, 6]. As a result of the above trends, a large amount of power 
quality recordings is becoming available, thus leading to challenges in 
terms of data processing, management and storage. 

Numerous methods have been proposed to perform automatic PQD 
classification. These methods generally require a feature extraction step, 
followed by a classification algorithm [7]. The most commonly 
employed methods for features extraction include Fast Fourier Trans
formation (FFT), wavelet transformation and Hilbert Huang transform 
(HHT) [8], while the classification step can be achieved using supervised 
Machine Learning (ML) methods such as Artificial Neural Networks 
(ANN), Decision Tree, Support Vector Machine (SVM) or using rule 
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based systems [8]. A recent paper proposes a method that combines 
multidomain feature extraction, Self Organising Maps (SOM) and ANN 
to classify stationary and non-stationary disturbances for wind turbine 
generators [9]. The model is trained on a synthetic dataset and tested 
using two different sets of real signals. The accuracy obtained using 
synthetic data is up to 100%, but the accuracy obtained when using real 
data is not provided. As argued in [10], the main limitation of feature 
extraction approaches is that the accuracy of the prediction relies on the 
selection of hand crafted features, which requires substantial effort. 
Furthermore, abnormal wave-shapes correspond to a very small fraction 
of the recordings [11], thus resulting in unbalanced training sets that 
may not be suitable when employing traditional supervised learning 
methods. To address this issue, alternative approaches based on wave
shape change detection have been proposed [6, 12]. 

Alternatively, several authors have proposed methods based on Deep 
learning (DL) [13–18]. DL is a particular class of ML and refers to 
techniques for learning high-level features from data in a hierarchical 
manner using stacked layer-wise architectures. The main advantage of 
DL over more traditional methods is that it uses data representation 
learning rather than explicit engineered features to perform the classi
fication task, hence removing the need for time-consuming feature en
gineering. DL has gained popularity in recent years, and it has been 
successfully applied to various domains [19] and time series classifica
tion [20, 21]. Ma et al. [22] proposed a method based on stacked 
auto-encoders to extract high-level features of PQDs from simulated 
waveforms. Mohan et al. [16] studied and compared several DL archi
tectures to identify power disturbances using both synthetic and real 
world data. Results showed that the performance of the classifier is 
higher when trained with synthetic waveform distortions and voltage 
fluctuations generated with parametric equation, while lower accuracies 
were achieved when using real word PQDs data, due to the lack of 
sufficient training data for some disturbances. In [14], Liu et al. pre
sented an approach that combines singular spectrum analysis, curvlet 
transformation and deep CNNs to classify PQDs. The method is shown to 
achieve high accuracy, but the classification task is not completely 
automated as it still relies on intermediate data pre-processing steps for 
feature extraction. This limitation was overcome by [13] who proposed 
a closed-loop framework to detect and classify PQDs, employing deep 
CNNs for both feature extraction and classification. This model was 
trained using a simulated dataset with 768,000 samples. It is shown that 
the method achieves higher accuracy and lower computation time when 
compared with state of the art approaches. However, the method uses 
synthetic data obtained from parametric equations. [18] proposes a new 
CNN architecture, that achieves high accuracies for 29 types of PQDs, 
and has been tested on synthetic data. 

Whilst the above mentioned methods use raw signals as an input, a 
different approach is proposed by Balauji et al. [15] using image files of 
the three-phase PQ event data collected for one year from four different 
regions in Turkey. The raw data is converted into voltage rms graphs, 
manually labelled. Despite the promising results, not enough details are 
given regarding the methodology applied for training and testing of the 
model and there is no discussion about over-fitting problems. 

With the exception of [15] and [16], the studies listed above indicate 
that high accuracies have been obtained when training DL models on 
synthetic data, but a research gap has been identified in their validation 
with real world measurements. Large amounts of data are necessary to 
train DL models, requiring adequate computational resources and 
complex optimization procedure to avoid over-fitting. Furthermore, 
when using real world data, the lack of specific instances of PQDs 
anomalies, only occurring in rare cases, may bias the algorithm and 
produce low accuracy for under-represented classes if the model is 
trained with unbalanced data sets. This aspect is addressed in [23] 
where a CNN is fully trained from scratch and a real world data is used. 
This network provides promising results, however, it should be noted 
that seven out of twenty PQDs for each classifiers were used for training, 
corresponding to 30% of the available data. 

In order to address the above challenges in obtaining accurate pre
diction for real PQDs, this paper proposes a novel end-to-end Deep 
Transfer Learning (DTL) framework that uses images of voltage wave
forms as training samples. Instead of training the classification model 
from scratch, transfer learning (TL) enables to reuse existing image 
classification CNNs and, through a process called ‘fine-tuning’, adapt 
them for a new task: in the case of this paper, classification of voltage 
waveforms. TL reduces the complexity and time of the training process 
and requires only a small number of images of anomalies to achieve a 
high predictive performance. The PQD events considered in this work 
are voltage sags, voltage swells and interruptions, obtained from power 
quality monitors installed at various locations. These disturbances were 
chosen since a sufficient number of events were available. According to 
the proposed approach, labelled voltage waveform images are fed to 
several pre-trained CNNs to identify the model that leads to the best 
results in terms of accuracy and computation time. Because a pre-trained 
network is used, the proposed approach does not require extensive 
knowledge of the models. Simultaneously, this approach eliminates the 
need for hand crafted feature extraction methods and complex model 
optimisation, facilitating the deployment of DL for automated classifi
cation of PQDs in real word applications. Furthermore, the method re
quires a small number of images for each anomaly, hence further 
reducing the time necessary for training. To the best of the author’s 
knowledge, this is the first example of an image-based PQDs classifier 
trained and evaluated on real-world power quality recording, which 
obtains high accuracy by leveraging advances in image classification 
achieved by pre-trained CNNs. 

The paper is structured as follows: Section 2 introduces the TL 
paradigm and the CNNs considered for the study; Section 3 presents the 
proposed DTL approach; Section 4 presents experimental results and 
quantifies the accuracy of the proposed approach. Section 5 compares 
the proposed approach with other ones presented in the literature. 
Finally, Section 6 draws the conclusions and outlines future work in this 
area. 

2. Background: transfer learning and CNNs 

Transfer learning is an emerging paradigm that enables training 
predictive models by reusing data, models and knowledge from other 
tasks or domains [24, 25]. TL methods have been applied to time series 
prediction [26], natural language processing, sentiment analysis and 
image recognition [24, 27, 28]. 

DL architectures based on CNNs have emerged as very effective tools 
for image recognition [29]. CNNs are layered architectures including 
convolutional, activation and pooling layers [30]; numerous CNNs have 
been proposed and they are available as pre-trained models. Most of 
these architectures has been developed using the ImageNet database 
[31], with advances driven by the ImageNet Large-Scale Visual Recog
nition Challenge (ILSVRC). ImageNet contains millions of images of 
common objects such as keyboards, coffee mugs, pencils, and animals 
[31]. CNN models are particularly useful in image classification because 
they have large learning capability, and they are able to make strong and 
mostly correct assumptions about images features [32]. Furthermore, in 
comparison to feedforward neural networks of similar size, they have 
fewer parameters to train [32]. 

Since the high level features learned to classify images are generic, 
the TL paradigm allows to re-use highly optimized and efficient pre- 
trained models for other image classification tasks. Typically, TL is 
achieved by keeping the upper layers of the CNN unchanged and fine- 
tuning the lower layers to specialize the learning towards the new 
task. Compared to training a CNN from scratch, TL requires less 
computational resources, resulting in faster training time as well as 
reducing over-fitting when training with small size datasets. Because the 
proposed methodology specifically applies TL to DL architectures 
(CNNs), the acronym DTL will be used in the rest of the paper. 

In this study, three networks trained with the ImageNet dataset were 
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considered: SqueezeNet, GoogLeNet and ResNet. These architectures 
were selected because they represent networks of increasing level of 
complexity, with the aim of finding the best trade-off between accuracy 
and training time. These networks are briefly described below, while a 
detailed review of their performance for generic image classification can 
be found in [29]. The network selection process for the purpose of PQD 
classification is described and discussed in Section 4.1. 

SqueezeNet is small network that achieves AlexNet-level accuracy on 
ImageNet with 50x fewer parameters [33]. The number of filters per fire 
module is gradually increased from the beginning to the end of the 
network. The advantage of this architecture is that it requires less 
communication across servers during distributed training and less 
bandwidth to export a new model from the cloud to an embedded sys
tem. Smaller CNNs are more feasible to deploy in hardware with limited 
memory. 

GoogLeNet won the ImageNet Large-Scale Visual Recognition Chal
lenge (ILSVRC) 2014 [34]. It implements a novel element called 
inception module and the architecture consists of a 22 layer deep CNN 
and the number of parameters are reduced to 4 million [30] (while in 
AlexNet they are 60 millions). 

ResNet is based on a novel architecture with ‘skip connections’and 
features heavy batch normalization [35]. Using this technique, the au
thors were able to train a NN with 152 layers (instead of 22 in Goo
gLeNet). ResNet achieved a top-5 error rate of 3.57% which beats 
human-level performance and was awarded the first place in ILSVRC 
2015. 

3. Deep transfer learning framework for PQD classification 

An overview of the generic end-to-end DTL framework proposed in 
this study is presented in Fig. 1. The first step consists in selecting a pre- 
trained network, featuring convolutional layers and final classification 
layers. Convolutional layers learn low-level generic features such as to 
recognize blobs, edges and colours from the ImageNet dataset. The final 
classification layers recognise specific patterns for classification. 
Domain-specific training images (i.e. voltage waveforms) are used to re- 
train the network via DTL: as shown in the centre of Fig. 1, the con
volutional layers of the pre-trained are kept, while the final layers are 
replaced with a fully-connected layer and an output layer. These two 
layers learn details about the new images, and the number of outputs for 
the new fully connected layer is equal to the number of labels. Following 
hyperparameter optimization, a new model (optimized network) is ob
tained. At the deployment stage, the model is fed with new images, and 
as a final result a label is associated with each image, thus resulting in 
PQD classification. 

Two examples of classification will be presented in this paper: for 
binary classification, the labels are ‘normal’ and ‘abnormal’. In this 
context, ‘normal’ waveforms are the ones that are compliant with the 

characteristics described by the power quality standards [1, 2]. The 
remaining waveforms are classified as ‘abnormal’. For classification of 
multiple PQDs (multiclass classification), four labels are possible: 
‘normal’, ‘voltage sag’, ‘voltage swell’ and ‘interruption’. 

3.1. Data acquisition 

Power quality disturbance data for this study are extracted from the 
PQube power quality monitors recordings. These recordings are avail
able on the free cloud-based map by Power Standard Labs [36]. Several 
PQube monitors have been installed worldwide, and they provide 
voltage and current readings as a database of events, including various 
PQDs and snapshots of normal waveforms. The time series for each 
disturbance can be downloaded in various formats (for examples .txt or . 
csv files), and the events are accompanied with a label. Additionally, an 
image for each time series is available. This source has been chosen 
because it is freely available and continuously updated: as a result, the 
methodology presented in this paper can be reproduced and new re
cordings can be retrieved every few weeks for further validation and 
tuning of the models. 

A number of locations were checked for suitability, and it was found 
that the meters located at the University of Strathclyde (UK), ECOXplore 
Pte Ltd (Singapore) and Keystone Hatchery (South Africa) provided data 
which were comparable. More specifically, these meters provided a 
consistent set of three-phase waveforms for a several months and various 
PQDs. For each event, both voltage waveform time-series and images 
were downloaded, and the data was organized into folders by their label. 
The same dataset was used in [37]. 

For network training and optimisation (Section 4.1–Section 4.3), 
power quality data were retrieved from the website from March 2017 
until September 2019. 100 waveforms were used for initial training and 
network selection, and 167 for fine-tuning of the selected model. For 
out-of-sample testing (Section 4.4), 154 additional data was retrieved 
between October 2019 and December 2019. The dataset used for this 
work is relatively small, due to availability of data, and one of the aims 
of the proposed approach is the development of classification methods 
that are robust in spite of the size of the dataset. 

Other PQDs, such as harmonics, were not considered due to the lack 
of data. While it would have been possible to generate synthetic data for 
the missing PQDs, one of the novel contributions of this work consists in 
demonstrating the suitability of proposed DTL approach applied to PQDs 
on real-world data. As discussed in the introduction, the use of synthetic 
waveforms for PQDs classification using CNNs has been already pre
sented in other works such as [16, 22]. 

3.2. Data pre-processing 

A first attempt to classify PQDs was made by using directly the 

Fig. 1. The proposed end-to-end DTL framework replaces the two final layers of a pre-trained network with a fully connected layer and an output layer. The model is 
retrained using appropriately formatted images of voltage waveform. Following hyperparameters optimization, the new model is deployed to label new PQDs. 
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images retrieved from [36]. An example of such images is shown in 
Fig. 2: from the top, the line-to-line voltage, line-to-neutral voltage, 
neutral-to-earth voltage, phase currents and neutral current are shown. 
These images provided to be unsuitable for the proposed application for 
various reasons: in the case of long disturbances, some figures include a 
central cutaway, as shown in Fig. 2; in other cases, images of the same 
disturbance from different events had varying x-axis length, thus making 
them not comparable. 

Therefore, it was decided to write a script to automatically create 
consistent images suitable for training and testing. The raw data (in .csv 
format) was retrieved and a MATLAB script was developed to read 
sampled values, sampling rate and labels from the raw data and generate 
images such as the one shown in Fig. 3. The images were then saved with 
unique names and were organized into folders by type of disturbance. 
The folder structure and the image resolution (224 × 224) were 
designed to meet the specification of the pretrained network. The pro
posed approach is versatile as the images can be generated from the .csv 
files using any software of choice, and source files can be retrieved from 
different power quality meters with varying resolution. The re
quirements to meet are: high resolution and contrast, size as stated 
above, and consistency of the axes. 

In this project, the typical PQD duration was three to five cycles, and 
this is a typical behaviour due to the transients associated to power 
system operation. The waveforms used here are aligned with the typical 
recording shown in [2] - even if shorter PQD duration is theoretically 
possible, they are not common in practical power systems. As a result, 
the images include six cycles of the three-phase voltage waveform, 
however, the number of cycles can be easily modified by changing one 
parameter in the script. 

3.3. Model training and testing 

To validate and test the proposed DTL methodology, three incre
mental steps were undertaken as outlined below, with more details and 
results provided in Section 4. Each step allows reinforcing the 

confidence in the model and results in further enhancements. 
Binary classification and network selection (Section 4.1): three well- 

researched pretrained networks (SqueezeNet, GoogleNet and ResNet) 
were trained and tested for suitability of the proposed application, 
namely their ability to achieve a binary classification (normal vs 
abnormal). High accuracy was obtained with all three models, and the 
best network was identified. 

Multiclass classification (Section 4.2) and hyperparameter optimi
zation (Section 4.3): for the best network only, the proposed framework 
was repeated on the more complex multiclass classification problem to 
recognize individual PQDs. As a result, five model were developed, with 
different hyperparameters settings. 

Out-of-sample test (Section 4.4): using the five developed models, 
the multiclass classification was repeated using new data collected few 
months after the initial experiments. This collection of waveforms rep
resents an independent dataset that allows assessing the ability of the 
five models developed above to classify PQDs from new waveforms. As a 
result, the ‘best network overall’ was identified. 

In all tests outlined above, the weights of the convolutional layers 
were frozen by setting their learning rate to zero: as a result, while the 
networks were training, the parameters of these layers were not modi
fied. This process has been adopted because the available data set was 
small, thus preventing the earlier layers from overfitting. Overfitting 
refers to the process where the model fits too well the training data, thus 
being unable to make correct predictions on unseen datasets [19], and it 
has been observed when using small datasets. Furthermore, freezing the 
convolutional layers reduce the time taken by the training process. 

Hyperparameters were kept fixed for binary classification. When 
training the classifier for identifcation of multiple PQDs, hyper
parameter optimization was carried out by using a grid search approach, 
due to ease of implementation. The following training options were 
used: max epochs, mini batch size and learn rate. The max epochs is how 
many times the data passes through the network forward and backward, 
the mini batch size is how many images are in a batch to divide the whole 
data set and the learn rate is the hyperparameter that establish how 
quickly the model adapts. Learn rate is set to a non-zero value for the 
layers which are not frozen, while for the other layers it is equal to zero). 
Stochastic gradient descent (SGD) method [38] was chosen as optimi
zation method. Accuracy measure and confusion matrix were used to 
evaluate the model performance following the steps described in Sec
tion 4.3. 

The advantage of the proposed DTL framework compared to other 
approaches is that it enables training the model with a small number of 
images, using the ability of pre-trained models to learn low-level fea
tures in an efficient way. Another advantage of this approach is that it 

Fig. 2. Screenshot of a voltage sag from PQube, [36].  

Fig. 3. Voltage sag waveform generated using the MATLAB script developed 
for this project. 
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significantly curtails the number of hyperparameters, hence reducing 
the time taken for model optimization. 

4. Evaluation and results 

4.1. Binary classification and pre-trained network selection 

The initial evaluation consisted in testing the ability of three CNNs (i. 
e. SqueezeNet, GoogleNet and ResNet) to classify abnormal and normal 
waveforms (binary classification). This set of experiments guided the 
choice of the best pre-trained model, based on the compromise between 
training time and accuracy. The networks were trained using a small 
dataset containing 100 images extracted from PQube. These images 
were generated using the method described in Section 3.2 and split in 
two sets, with 70% of the images used for training and 30% for testing. 

In this phase the hyperparameters were set to constant values: max 
epochs was equal to 35, mini batch size to 30 and the learn rate to 3e-4. All 
other parameters were left as default. The three CNNs were used to 
classify the test images, and their performance was evaluated using the 
accuracy measure (percentage of the images successfully classified over 
the total number of images) and the confusion matrix. This process led to 
the choice of the best network, and it was repeated three times for 
repeatability. 

The results of the experiments are shown in Table 1. SqueezeNet took 
the shortest time and provided the lowest accuracy. Both GoogLeNet and 
ResNet were able to predict with 100% accuracy, however ResNet took 
approximately twice as long than GoogLeNet. As a result, GoogLeNet 
was chosen for the remaining experiments for its balance between 
training time and accuracy prediction. 

As part of this initial evaluation, image augmentation (i.e. the 
modification of the existing dataset to generate additional images) was 
tested to assess if it would yield any benefits. To this end, further ex
periments were carried out. It was observed that augmentation causes 
significant loss of details as well as the introduction of new differences 
between images, resulting in overall lower accuracy as well as large 
variation in accuracy, ranging from 66.7% to 100%. Therefore, image 
augmentation was not used in the remaining experiments. 

4.2. Classification of multiple PQDs 

In this case, a new dataset with 167 images was created, where 116 
were used for training and 51 for testing. More specifically the dataset 
contained 60 normal waveforms, 46 voltage sags, 39 interruptions and 
22 voltage swells. The inequality in the number of waveforms for each of 
the classes is due to the availability of voltage disturbances on the PQube 
repository. It is worth noticing that the training set is aligned with 
realistic distribution of PQDs, as voltage sags are the most common types 
of events. Additionally, the dataset is small by design to demonstrate the 
ability of the network to learn from small data samples. In the training 
process 70% of the images were used for training and 30% for testing. 

The majority of the data was retrieved from [36], as described in 
Section 3.1. A few waveforms were generated analytically to increase 
the size of the dataset (12 swells were generated by scaling some of the 
waveforms retrieved from [36]) and to improve the classification of 
waveforms that are close to the limits provided by the standards (some 
normal waveforms with a voltage amplitude equal to +105% and +95% 
of the rated value were created), respectively. 

4.3. Hyperparameter optimization 

As described above, the mini batch size, max epochs and learn rate 
were considered for hyperparameter optimization and a total of 45 ex
periments were carried out. In these experiments max epochs varied 
between 5 and 45 with steps of 5, while mini batch size varied between 10 
and 50 with steps of 10. Initial experiments showed that the optimal 
learning rate was 0.0003, with lower values showing unstable results 
and large variations of accuracy - therefore this parameter was fixed in 
all runs. 

To assess stability, every optimization run was performed five times 
and the mean accuracy and time were recorded. A randomly chosen hold 
out set containing 30% of the data was used at each run to calculate 
overall accuracy. 

The average accuracy obtained with this method is shown in Table 2, 
where the lowest accuracy is 94.9%, obtained with max epochs of 5 and 
mini batch size of 50. The highest accuracy of 100% was achieved in five 
cases highlighted in Table 2: the values of mini batch size and max 
epochs for these five networks are (10,45), (30,10), (30,40), (40,35), 
and (40,40), respectively. The confusion matrix for one of the five net
works is illustrated in Fig. 4, showing that this network is able to classify 
the 51 waveforms used for testing with 100% accuracy. Two examples of 
output predictions for a voltage sag and for an interruption are shown in 
Fig. 5 and Fig. 6. For each example, the model associates a label to the 
PQD under consideration, and a level of confidence measured in per
centage (class probability). 

Results of the average training time when varying max epochs and 
mini batch size are listed in Table 3. A clear trend is identified as 
increasing the max epochs increases the training time of the network. 
However, Table 2 shows that increasing max epochs gives higher ac
curacies. Mini batch size has some impact on the accuracy as smaller 
batch sizes provide marginally higher accuracies, but the effects are 
more pronounced in training time. 

As shown in Table 3, higher batch sizes lead to shorter training times. 

4.4. Out-of-sample testing 

In order to further test the robustness of the proposed approach, an 
out-of-sample test dataset was collected four months after the initial 
experiments consisting of 154 waveforms. The data set contained 88 
normal waveforms, 41 voltage sags, 18 voltage swells and 6 in
terruptions. The five networks that achieved 100% accuracy following 
model optimization were selected for out-of-sample testing. Accuracy 
results for out-of-sample testing are summarized in Table 4. 

The worst performing network was Net(30,40) achieving 81.7% 
overall accuracy in this case, 21 instances of normal waveforms are 
classified as swells, while four swells are classified as sags. The best 
performing network was Net(35,40) that achieved 99.3% accuracy: ac
cording to the confusion matrix shown in Fig. 7, all but one disturbance 
are classified correctly. The only incorrect classification is a voltage sag 
being classified as an interruption - however, as it will be described in 
the next section, this incorrect prediction is due to wrong label associ
ated to the original waveform. Net(40,40) achieved similar results as 
Net(30,40) with some occurrences of normal waveforms classified as 
PQDs, achieving 83.7% accuracy. 

4.5. Incorrect predictions and voltage swell classification 

The results described in the previous section show that Net(35,40) 
provided the best accuracy. The confusion matrix for this model is 
shown in Fig. 7. For this case, the classification resulted in one mismatch 
only, caused by associating an initial wrong label to the waveform data. 

More specifically, Fig. 8 is classified as ’voltage sag’ by the PQube 
metre, however, all five networks used for out-of-sample testing classi
fied it as interruption: this result is shown in the fourth cell of the top 
row for the confusion matrix of Fig. 7. For the first cycles, the voltage 

Table 1 
Prediction accuracy using three pre-trained CNNs.  

Network Time Accuracy 

SqueezeNet 95.61 s 97% 
GoogLeNet 158.5 s 100% 
ResNet 373.1 s 100%  
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waveform is close to ’normal’, and around 30 ms a voltage drop takes 
place on all phases with a linearly decreasing amplitude. Although the 
snapshot provided does not show the voltage dropping to zero, it seems 
likely that within a few cycles an interruption will occur. Therefore, the 
label applied by the optimized CNNs appears appropriate and allows 
identifying an anomaly thus flagging a waveform for further analysis. 

As a second observation, Net(40,35) was able to classify all voltage 

swells correctly, as shown in Fig. 7, in spite of the low number of voltage 
swell images available for training. This result is significant because 
some of the voltage swells used for out-of-sample testing were artificially 
created, and no similar waveforms were included in the training set. On 
the contrary, Net(30,40) misclassified some of the swells as ’voltage sag’. 
This anomaly is worth exploring, as it allows explaining the importance 
of network optimisation. Fig. 9 was created artificially and labelled 
’voltage swell’ because the voltage profile of one phase exceeds 105% of 
the rated value. The other two phases are either close or below the rated 
value. Therefore, both a voltage sag and a voltage swell are present in 
the waveform, but the label ’voltage swell’ is associated to this image 
because this is the prominent disturbance. Net(30,40) labels the waveform 
shown in Fig. 9 as ’voltage sag’. This result is explained as follows: 
because the training dataset contained a large number of voltage sags, 
the network Net(30,40) is biased toward this disturbance. The result 
provided by the model is acceptable because a voltage sag is present in 
the waveform, although it is not the most prominent disturbance. On the 
contrary, Net(40,35) classifies correctly all out-of-sample waveform, 
including the one shown in Fig. 9. This result confirms the importance to 
carry out the optimization described in Section 3 to identify a network 
that performs accurately in spite of using an unbalanced training set. 

5. Evaluation and comparison with other DL methods 

The average time taken to perform the proposed analysis was 
calculated as 1.1 s per PQD, including the steps of image generation, 
classification and exporting the results. This approach is therefore 
promising for applications where a large number of dataset is available, 
such as continuous monitoring, or real-time analysis. The model may 
need to be re-trained at intervals as changes in power system configu
ration, ageing of equipment or installation of new equipment may 
introduce novel PQDs. The need for re-training may be suggested by the 
decrease in the accuracy of the predictions for new data, and this process 

Table 2 
Average accuracy (as a%with varying max epochs and batch size over five runs). five cases resulted in 100% accuracy (bold font).  

Batch Size Max Epochs  

5 10 15 20 25 30 35 40 45 

10 97.6 97.6 98.8 98.0 98.4 98.4 99.6 99.2 100 
20 98.0 98.4 99.2 98.4 98.0 99.6 98.8 98.4 99.2 
30 98.4 100 99.2 98.8 99.2 99.2 99.6 100 98.8 
40 96.5 96.9 99.2 99.2 99.6 99.2 100 100 99.2 
50 94.9 99.2 99.2 99.6 99.6 98.8 99.6 99.2 99.2  

Fig. 4. Confusion matrix for the optimized networks identified in Table 2. The 
networks are able to classify all PQDs with 100% accuracy. 

Fig. 5. Output prediction and score for a sample voltage sag.  

Fig. 6. Output prediction and score for a sample interruption.  
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can be compared to calibration of traditional power quality meters. 
The sampling time for the raw data may be relatively low, and differ 

between datasets. In this project, the sampling time varied between 128 
and 256 samples per cycle, and was maintained when generating the 
waveforms used for training and testing. In addition to the results shown 
in the previous sections, out-of-sample analysis was carried out for 65 
voltage sags where the sampling rate was reduced to 16 samples per 
cycle. The results showed a 100% accuracy with an average prediction 
speed equal to 1.02 s. While reducing the number of samples per cycle 
does not lead to a significant decrease of the processing time, it allows 
for smaller storage requirements and still results in a high accuracy. 

The literature review shows only a scarce amount of results using DL 
for PQDs classifications. Table 5 shows a comparison between these 
approaches. The sampling rate of the proposed method is significantly 
lower than all the others. The results presented in [16] show that in 
general accuracy decreases when using real measurements. [15] shows 
high accuracy when raw data are used, however, due to lack of details, 
this method cannot be duplicated. The results in [23] show high accu
racy, however, 30% of the test data is used for classification. Addition
ally, because the network is trained from scratch, the training time is 
approximately 8 s/image, which is significantly larger than the one 
obtained with the proposed methodology. 

Table 3 
Average time in seconds from varying max epochs and batch size over five runs.  

Batch Size Max Epochs  

5 10 15 20 25 30 35 40 45 

10 139.2 265.4 390.7 522.1 665.1 790.9 928.3 1028.7 1136.4 
20 78.1 146.0 213.7 285.6 357.8 419.2 493.3 553.9 618.1 
30 56.6 105.0 153.2 203.6 255.7 298.2 351.6 396.8 440.0 
40 48.5 86.4 124.7 166.4 206.6 241.4 288.0 318.0 352.1 
50 53.7 97.0 139.1 185.5 230.5 273.5 320.9 358.8 400.4  

Table 4 
Comparison of prediction accuracy for out-of-sample data using five different 
networks.  

Network (batch size, max  
epochs) 

Net(10, 
45) 

Net(30, 
10) 

Net(30, 
40) 

Net(40, 
35) 

Net(30, 
10) 

Accuracy 94.8% 85.0% 81.7% 99.3% 83.7%  

Fig. 7. Confusion matrix for the network model Net(40,35), using out-of- 
sample data. 

Fig. 8. Mismatch 1 - Voltage sag (PQube) vs interruption Net(40,35).  

Fig. 9. Mismatch 2 - Voltage swell (synthetic data) vs voltage sag according to 
Net(30,40). 

Table 5 
Comparison of various DL methods proposed in the literature.  

Reference Sample 
frequency 

Synthetic 
Data 

Accuracy Raw 
Data 

Accuracy 

Proposed 0.8–1.28 kHz – – Y 99.8% 
[13] 3.2 kHz Y 99.96% – – 
[15] 25.6 kHz – – Y 94% - 

100% 
[16] – Y 98.4% Y 91.9% 
[18] 6.4 kHz Y 86.9–100% – – 
[22] – Y 99.75% Y – 
[23] 7.6 kHz Y 99.8% Y 98.8%  
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In general, the use of images for PQD classification poses some 
concerns in terms of processing time, storage requirements, and training 
time. The discussion carried out above and the comparison with other 
methods shows that the proposed methodology mitigates all concerns, 
due to the effective deployment of DTL, and the use of low-resolution 
images. 

6. Conclusions 

This paper proposes a novel framework to build a PQDs classifier 
based on the modification of existing CNNs using DTL. Real world power 
quality data available from online repositories were collected, and high- 
resolution images were generated to fine tune an existing pre-trained 
network (GoogleNet) to provide an accurate classification. A max 
epoch equal to 35 and batch size equal to 40 were chosen following 
hyperparameter optimization. 

The novelty of the proposed approach consists in the use of DTL to 
develop an imagebased CNN classifier with the ability to automatically 
detect PQDs in three-phase voltage waveforms. The validity of the 
method is demonstrated by using with real-world data collected from 
power quality monitors installed at different locations, overcoming 
limitations of current CNN-based PQDs classifiers, which obtain high 
accuracy on mostly synthetic data. The disturbances considered for this 
work included voltage sags, voltage swells and interruptions because 
these are the anomalies available in the adopted data set. Validation on 
out of sample data showed that, despite the small size of the training 
data set, the DTL model achieves high accuracy in the classification of 
real-word PQDs, when compared to classifiers using synthetic data in the 
training phase. This work leverage advances of DTL technologies in the 
field of image classification to pave the way towards real-world 
deployment of effective image-based PQDs detection. 

Future work will address the identification of more complex and 
subtle power quality disturbances (such as harmonics and voltage 
fluctuations), in both three-phase and single-phase voltage recordings. 
Applications of this methodology to real time monitoring will also be 
considered. 
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